]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/net/wireless/ath5k/base.c
rt2x00mac: In error case stop netdev queue, free skb and return NETDEV_TX_OK
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / wireless / ath5k / base.c
CommitLineData
fa1c114f
JS
1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
fa1c114f
JS
43#include <linux/module.h>
44#include <linux/delay.h>
274c7c36 45#include <linux/hardirq.h>
fa1c114f 46#include <linux/if.h>
274c7c36 47#include <linux/io.h>
fa1c114f
JS
48#include <linux/netdevice.h>
49#include <linux/cache.h>
50#include <linux/pci.h>
51#include <linux/ethtool.h>
52#include <linux/uaccess.h>
53
54#include <net/ieee80211_radiotap.h>
55
56#include <asm/unaligned.h>
57
58#include "base.h"
59#include "reg.h"
60#include "debug.h"
61
fa1c114f
JS
62static int ath5k_calinterval = 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
63
64
65/******************\
66* Internal defines *
67\******************/
68
69/* Module info */
70MODULE_AUTHOR("Jiri Slaby");
71MODULE_AUTHOR("Nick Kossifidis");
72MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
73MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
74MODULE_LICENSE("Dual BSD/GPL");
400ec45a 75MODULE_VERSION("0.5.0 (EXPERIMENTAL)");
fa1c114f
JS
76
77
78/* Known PCI ids */
79static struct pci_device_id ath5k_pci_id_table[] __devinitdata = {
80 { PCI_VDEVICE(ATHEROS, 0x0207), .driver_data = AR5K_AR5210 }, /* 5210 early */
81 { PCI_VDEVICE(ATHEROS, 0x0007), .driver_data = AR5K_AR5210 }, /* 5210 */
82 { PCI_VDEVICE(ATHEROS, 0x0011), .driver_data = AR5K_AR5211 }, /* 5311 - this is on AHB bus !*/
83 { PCI_VDEVICE(ATHEROS, 0x0012), .driver_data = AR5K_AR5211 }, /* 5211 */
84 { PCI_VDEVICE(ATHEROS, 0x0013), .driver_data = AR5K_AR5212 }, /* 5212 */
85 { PCI_VDEVICE(3COM_2, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 5212 */
86 { PCI_VDEVICE(3COM, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 3CRDAG675 5212 */
87 { PCI_VDEVICE(ATHEROS, 0x1014), .driver_data = AR5K_AR5212 }, /* IBM minipci 5212 */
88 { PCI_VDEVICE(ATHEROS, 0x0014), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
89 { PCI_VDEVICE(ATHEROS, 0x0015), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
90 { PCI_VDEVICE(ATHEROS, 0x0016), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
91 { PCI_VDEVICE(ATHEROS, 0x0017), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
92 { PCI_VDEVICE(ATHEROS, 0x0018), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
93 { PCI_VDEVICE(ATHEROS, 0x0019), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
94 { PCI_VDEVICE(ATHEROS, 0x001a), .driver_data = AR5K_AR5212 }, /* 2413 Griffin-lite */
95 { PCI_VDEVICE(ATHEROS, 0x001b), .driver_data = AR5K_AR5212 }, /* 5413 Eagle */
96 { PCI_VDEVICE(ATHEROS, 0x001c), .driver_data = AR5K_AR5212 }, /* 5424 Condor (PCI-E)*/
fa1c114f
JS
97 { 0 }
98};
99MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
100
101/* Known SREVs */
102static struct ath5k_srev_name srev_names[] = {
103 { "5210", AR5K_VERSION_VER, AR5K_SREV_VER_AR5210 },
104 { "5311", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311 },
105 { "5311A", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311A },
106 { "5311B", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311B },
107 { "5211", AR5K_VERSION_VER, AR5K_SREV_VER_AR5211 },
108 { "5212", AR5K_VERSION_VER, AR5K_SREV_VER_AR5212 },
109 { "5213", AR5K_VERSION_VER, AR5K_SREV_VER_AR5213 },
110 { "5213A", AR5K_VERSION_VER, AR5K_SREV_VER_AR5213A },
bb0c9dc2
NK
111 { "2413", AR5K_VERSION_VER, AR5K_SREV_VER_AR2413 },
112 { "2414", AR5K_VERSION_VER, AR5K_SREV_VER_AR2414 },
fa1c114f
JS
113 { "2424", AR5K_VERSION_VER, AR5K_SREV_VER_AR2424 },
114 { "5424", AR5K_VERSION_VER, AR5K_SREV_VER_AR5424 },
115 { "5413", AR5K_VERSION_VER, AR5K_SREV_VER_AR5413 },
116 { "5414", AR5K_VERSION_VER, AR5K_SREV_VER_AR5414 },
117 { "5416", AR5K_VERSION_VER, AR5K_SREV_VER_AR5416 },
118 { "5418", AR5K_VERSION_VER, AR5K_SREV_VER_AR5418 },
136bfc79 119 { "2425", AR5K_VERSION_VER, AR5K_SREV_VER_AR2425 },
fa1c114f
JS
120 { "xxxxx", AR5K_VERSION_VER, AR5K_SREV_UNKNOWN },
121 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
122 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
123 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
124 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
125 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
126 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
127 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
bb0c9dc2 128 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC0 },
fa1c114f
JS
129 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC1 },
130 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC2 },
131 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
132 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
133};
134
135/*
136 * Prototypes - PCI stack related functions
137 */
138static int __devinit ath5k_pci_probe(struct pci_dev *pdev,
139 const struct pci_device_id *id);
140static void __devexit ath5k_pci_remove(struct pci_dev *pdev);
141#ifdef CONFIG_PM
142static int ath5k_pci_suspend(struct pci_dev *pdev,
143 pm_message_t state);
144static int ath5k_pci_resume(struct pci_dev *pdev);
145#else
146#define ath5k_pci_suspend NULL
147#define ath5k_pci_resume NULL
148#endif /* CONFIG_PM */
149
04a9e451 150static struct pci_driver ath5k_pci_driver = {
fa1c114f
JS
151 .name = "ath5k_pci",
152 .id_table = ath5k_pci_id_table,
153 .probe = ath5k_pci_probe,
154 .remove = __devexit_p(ath5k_pci_remove),
155 .suspend = ath5k_pci_suspend,
156 .resume = ath5k_pci_resume,
157};
158
159
160
161/*
162 * Prototypes - MAC 802.11 stack related functions
163 */
e039fa4a 164static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb);
fa1c114f
JS
165static int ath5k_reset(struct ieee80211_hw *hw);
166static int ath5k_start(struct ieee80211_hw *hw);
167static void ath5k_stop(struct ieee80211_hw *hw);
168static int ath5k_add_interface(struct ieee80211_hw *hw,
169 struct ieee80211_if_init_conf *conf);
170static void ath5k_remove_interface(struct ieee80211_hw *hw,
171 struct ieee80211_if_init_conf *conf);
172static int ath5k_config(struct ieee80211_hw *hw,
173 struct ieee80211_conf *conf);
32bfd35d
JB
174static int ath5k_config_interface(struct ieee80211_hw *hw,
175 struct ieee80211_vif *vif,
fa1c114f
JS
176 struct ieee80211_if_conf *conf);
177static void ath5k_configure_filter(struct ieee80211_hw *hw,
178 unsigned int changed_flags,
179 unsigned int *new_flags,
180 int mc_count, struct dev_mc_list *mclist);
181static int ath5k_set_key(struct ieee80211_hw *hw,
182 enum set_key_cmd cmd,
183 const u8 *local_addr, const u8 *addr,
184 struct ieee80211_key_conf *key);
185static int ath5k_get_stats(struct ieee80211_hw *hw,
186 struct ieee80211_low_level_stats *stats);
187static int ath5k_get_tx_stats(struct ieee80211_hw *hw,
188 struct ieee80211_tx_queue_stats *stats);
189static u64 ath5k_get_tsf(struct ieee80211_hw *hw);
190static void ath5k_reset_tsf(struct ieee80211_hw *hw);
191static int ath5k_beacon_update(struct ieee80211_hw *hw,
e039fa4a 192 struct sk_buff *skb);
fa1c114f
JS
193
194static struct ieee80211_ops ath5k_hw_ops = {
195 .tx = ath5k_tx,
196 .start = ath5k_start,
197 .stop = ath5k_stop,
198 .add_interface = ath5k_add_interface,
199 .remove_interface = ath5k_remove_interface,
200 .config = ath5k_config,
201 .config_interface = ath5k_config_interface,
202 .configure_filter = ath5k_configure_filter,
203 .set_key = ath5k_set_key,
204 .get_stats = ath5k_get_stats,
205 .conf_tx = NULL,
206 .get_tx_stats = ath5k_get_tx_stats,
207 .get_tsf = ath5k_get_tsf,
208 .reset_tsf = ath5k_reset_tsf,
fa1c114f
JS
209};
210
211/*
212 * Prototypes - Internal functions
213 */
214/* Attach detach */
215static int ath5k_attach(struct pci_dev *pdev,
216 struct ieee80211_hw *hw);
217static void ath5k_detach(struct pci_dev *pdev,
218 struct ieee80211_hw *hw);
219/* Channel/mode setup */
220static inline short ath5k_ieee2mhz(short chan);
221static unsigned int ath5k_copy_rates(struct ieee80211_rate *rates,
222 const struct ath5k_rate_table *rt,
223 unsigned int max);
224static unsigned int ath5k_copy_channels(struct ath5k_hw *ah,
225 struct ieee80211_channel *channels,
226 unsigned int mode,
227 unsigned int max);
228static int ath5k_getchannels(struct ieee80211_hw *hw);
229static int ath5k_chan_set(struct ath5k_softc *sc,
230 struct ieee80211_channel *chan);
231static void ath5k_setcurmode(struct ath5k_softc *sc,
232 unsigned int mode);
233static void ath5k_mode_setup(struct ath5k_softc *sc);
d8ee398d
LR
234static void ath5k_set_total_hw_rates(struct ath5k_softc *sc);
235
fa1c114f
JS
236/* Descriptor setup */
237static int ath5k_desc_alloc(struct ath5k_softc *sc,
238 struct pci_dev *pdev);
239static void ath5k_desc_free(struct ath5k_softc *sc,
240 struct pci_dev *pdev);
241/* Buffers setup */
242static int ath5k_rxbuf_setup(struct ath5k_softc *sc,
243 struct ath5k_buf *bf);
244static int ath5k_txbuf_setup(struct ath5k_softc *sc,
e039fa4a 245 struct ath5k_buf *bf);
fa1c114f
JS
246static inline void ath5k_txbuf_free(struct ath5k_softc *sc,
247 struct ath5k_buf *bf)
248{
249 BUG_ON(!bf);
250 if (!bf->skb)
251 return;
252 pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
253 PCI_DMA_TODEVICE);
254 dev_kfree_skb(bf->skb);
255 bf->skb = NULL;
256}
257
258/* Queues setup */
259static struct ath5k_txq *ath5k_txq_setup(struct ath5k_softc *sc,
260 int qtype, int subtype);
261static int ath5k_beaconq_setup(struct ath5k_hw *ah);
262static int ath5k_beaconq_config(struct ath5k_softc *sc);
263static void ath5k_txq_drainq(struct ath5k_softc *sc,
264 struct ath5k_txq *txq);
265static void ath5k_txq_cleanup(struct ath5k_softc *sc);
266static void ath5k_txq_release(struct ath5k_softc *sc);
267/* Rx handling */
268static int ath5k_rx_start(struct ath5k_softc *sc);
269static void ath5k_rx_stop(struct ath5k_softc *sc);
270static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc,
271 struct ath5k_desc *ds,
b47f407b
BR
272 struct sk_buff *skb,
273 struct ath5k_rx_status *rs);
fa1c114f
JS
274static void ath5k_tasklet_rx(unsigned long data);
275/* Tx handling */
276static void ath5k_tx_processq(struct ath5k_softc *sc,
277 struct ath5k_txq *txq);
278static void ath5k_tasklet_tx(unsigned long data);
279/* Beacon handling */
280static int ath5k_beacon_setup(struct ath5k_softc *sc,
e039fa4a 281 struct ath5k_buf *bf);
fa1c114f
JS
282static void ath5k_beacon_send(struct ath5k_softc *sc);
283static void ath5k_beacon_config(struct ath5k_softc *sc);
9804b98d 284static void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
fa1c114f
JS
285
286static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
287{
288 u64 tsf = ath5k_hw_get_tsf64(ah);
289
290 if ((tsf & 0x7fff) < rstamp)
291 tsf -= 0x8000;
292
293 return (tsf & ~0x7fff) | rstamp;
294}
295
296/* Interrupt handling */
297static int ath5k_init(struct ath5k_softc *sc);
298static int ath5k_stop_locked(struct ath5k_softc *sc);
299static int ath5k_stop_hw(struct ath5k_softc *sc);
300static irqreturn_t ath5k_intr(int irq, void *dev_id);
301static void ath5k_tasklet_reset(unsigned long data);
302
303static void ath5k_calibrate(unsigned long data);
304/* LED functions */
3a078876
BC
305static int ath5k_init_leds(struct ath5k_softc *sc);
306static void ath5k_led_enable(struct ath5k_softc *sc);
307static void ath5k_led_off(struct ath5k_softc *sc);
308static void ath5k_unregister_leds(struct ath5k_softc *sc);
fa1c114f
JS
309
310/*
311 * Module init/exit functions
312 */
313static int __init
314init_ath5k_pci(void)
315{
316 int ret;
317
318 ath5k_debug_init();
319
04a9e451 320 ret = pci_register_driver(&ath5k_pci_driver);
fa1c114f
JS
321 if (ret) {
322 printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
323 return ret;
324 }
325
326 return 0;
327}
328
329static void __exit
330exit_ath5k_pci(void)
331{
04a9e451 332 pci_unregister_driver(&ath5k_pci_driver);
fa1c114f
JS
333
334 ath5k_debug_finish();
335}
336
337module_init(init_ath5k_pci);
338module_exit(exit_ath5k_pci);
339
340
341/********************\
342* PCI Initialization *
343\********************/
344
345static const char *
346ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
347{
348 const char *name = "xxxxx";
349 unsigned int i;
350
351 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
352 if (srev_names[i].sr_type != type)
353 continue;
354 if ((val & 0xff) < srev_names[i + 1].sr_val) {
355 name = srev_names[i].sr_name;
356 break;
357 }
358 }
359
360 return name;
361}
362
363static int __devinit
364ath5k_pci_probe(struct pci_dev *pdev,
365 const struct pci_device_id *id)
366{
367 void __iomem *mem;
368 struct ath5k_softc *sc;
369 struct ieee80211_hw *hw;
370 int ret;
371 u8 csz;
372
373 ret = pci_enable_device(pdev);
374 if (ret) {
375 dev_err(&pdev->dev, "can't enable device\n");
376 goto err;
377 }
378
379 /* XXX 32-bit addressing only */
380 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
381 if (ret) {
382 dev_err(&pdev->dev, "32-bit DMA not available\n");
383 goto err_dis;
384 }
385
386 /*
387 * Cache line size is used to size and align various
388 * structures used to communicate with the hardware.
389 */
390 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
391 if (csz == 0) {
392 /*
393 * Linux 2.4.18 (at least) writes the cache line size
394 * register as a 16-bit wide register which is wrong.
395 * We must have this setup properly for rx buffer
396 * DMA to work so force a reasonable value here if it
397 * comes up zero.
398 */
399 csz = L1_CACHE_BYTES / sizeof(u32);
400 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
401 }
402 /*
403 * The default setting of latency timer yields poor results,
404 * set it to the value used by other systems. It may be worth
405 * tweaking this setting more.
406 */
407 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
408
409 /* Enable bus mastering */
410 pci_set_master(pdev);
411
412 /*
413 * Disable the RETRY_TIMEOUT register (0x41) to keep
414 * PCI Tx retries from interfering with C3 CPU state.
415 */
416 pci_write_config_byte(pdev, 0x41, 0);
417
418 ret = pci_request_region(pdev, 0, "ath5k");
419 if (ret) {
420 dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
421 goto err_dis;
422 }
423
424 mem = pci_iomap(pdev, 0, 0);
425 if (!mem) {
426 dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
427 ret = -EIO;
428 goto err_reg;
429 }
430
431 /*
432 * Allocate hw (mac80211 main struct)
433 * and hw->priv (driver private data)
434 */
435 hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
436 if (hw == NULL) {
437 dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
438 ret = -ENOMEM;
439 goto err_map;
440 }
441
442 dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
443
444 /* Initialize driver private data */
445 SET_IEEE80211_DEV(hw, &pdev->dev);
566bfe5a
BR
446 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
447 IEEE80211_HW_SIGNAL_DBM |
448 IEEE80211_HW_NOISE_DBM;
fa1c114f
JS
449 hw->extra_tx_headroom = 2;
450 hw->channel_change_time = 5000;
fa1c114f
JS
451 sc = hw->priv;
452 sc->hw = hw;
453 sc->pdev = pdev;
454
455 ath5k_debug_init_device(sc);
456
457 /*
458 * Mark the device as detached to avoid processing
459 * interrupts until setup is complete.
460 */
461 __set_bit(ATH_STAT_INVALID, sc->status);
462
463 sc->iobase = mem; /* So we can unmap it on detach */
464 sc->cachelsz = csz * sizeof(u32); /* convert to bytes */
465 sc->opmode = IEEE80211_IF_TYPE_STA;
466 mutex_init(&sc->lock);
467 spin_lock_init(&sc->rxbuflock);
468 spin_lock_init(&sc->txbuflock);
469
470 /* Set private data */
471 pci_set_drvdata(pdev, hw);
472
fa1c114f
JS
473 /* Setup interrupt handler */
474 ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
475 if (ret) {
476 ATH5K_ERR(sc, "request_irq failed\n");
477 goto err_free;
478 }
479
480 /* Initialize device */
481 sc->ah = ath5k_hw_attach(sc, id->driver_data);
482 if (IS_ERR(sc->ah)) {
483 ret = PTR_ERR(sc->ah);
484 goto err_irq;
485 }
486
487 /* Finish private driver data initialization */
488 ret = ath5k_attach(pdev, hw);
489 if (ret)
490 goto err_ah;
491
492 ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
493 ath5k_chip_name(AR5K_VERSION_VER,sc->ah->ah_mac_srev),
494 sc->ah->ah_mac_srev,
495 sc->ah->ah_phy_revision);
496
400ec45a 497 if (!sc->ah->ah_single_chip) {
fa1c114f 498 /* Single chip radio (!RF5111) */
400ec45a
LR
499 if (sc->ah->ah_radio_5ghz_revision &&
500 !sc->ah->ah_radio_2ghz_revision) {
fa1c114f 501 /* No 5GHz support -> report 2GHz radio */
400ec45a
LR
502 if (!test_bit(AR5K_MODE_11A,
503 sc->ah->ah_capabilities.cap_mode)) {
fa1c114f 504 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
400ec45a
LR
505 ath5k_chip_name(AR5K_VERSION_RAD,
506 sc->ah->ah_radio_5ghz_revision),
507 sc->ah->ah_radio_5ghz_revision);
508 /* No 2GHz support (5110 and some
509 * 5Ghz only cards) -> report 5Ghz radio */
510 } else if (!test_bit(AR5K_MODE_11B,
511 sc->ah->ah_capabilities.cap_mode)) {
fa1c114f 512 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
400ec45a
LR
513 ath5k_chip_name(AR5K_VERSION_RAD,
514 sc->ah->ah_radio_5ghz_revision),
515 sc->ah->ah_radio_5ghz_revision);
fa1c114f
JS
516 /* Multiband radio */
517 } else {
518 ATH5K_INFO(sc, "RF%s multiband radio found"
519 " (0x%x)\n",
400ec45a
LR
520 ath5k_chip_name(AR5K_VERSION_RAD,
521 sc->ah->ah_radio_5ghz_revision),
522 sc->ah->ah_radio_5ghz_revision);
fa1c114f
JS
523 }
524 }
400ec45a
LR
525 /* Multi chip radio (RF5111 - RF2111) ->
526 * report both 2GHz/5GHz radios */
527 else if (sc->ah->ah_radio_5ghz_revision &&
528 sc->ah->ah_radio_2ghz_revision){
fa1c114f 529 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
400ec45a
LR
530 ath5k_chip_name(AR5K_VERSION_RAD,
531 sc->ah->ah_radio_5ghz_revision),
532 sc->ah->ah_radio_5ghz_revision);
fa1c114f 533 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
400ec45a
LR
534 ath5k_chip_name(AR5K_VERSION_RAD,
535 sc->ah->ah_radio_2ghz_revision),
536 sc->ah->ah_radio_2ghz_revision);
fa1c114f
JS
537 }
538 }
539
540
541 /* ready to process interrupts */
542 __clear_bit(ATH_STAT_INVALID, sc->status);
543
544 return 0;
545err_ah:
546 ath5k_hw_detach(sc->ah);
547err_irq:
548 free_irq(pdev->irq, sc);
549err_free:
fa1c114f
JS
550 ieee80211_free_hw(hw);
551err_map:
552 pci_iounmap(pdev, mem);
553err_reg:
554 pci_release_region(pdev, 0);
555err_dis:
556 pci_disable_device(pdev);
557err:
558 return ret;
559}
560
561static void __devexit
562ath5k_pci_remove(struct pci_dev *pdev)
563{
564 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
565 struct ath5k_softc *sc = hw->priv;
566
567 ath5k_debug_finish_device(sc);
568 ath5k_detach(pdev, hw);
569 ath5k_hw_detach(sc->ah);
570 free_irq(pdev->irq, sc);
fa1c114f
JS
571 pci_iounmap(pdev, sc->iobase);
572 pci_release_region(pdev, 0);
573 pci_disable_device(pdev);
574 ieee80211_free_hw(hw);
575}
576
577#ifdef CONFIG_PM
578static int
579ath5k_pci_suspend(struct pci_dev *pdev, pm_message_t state)
580{
581 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
582 struct ath5k_softc *sc = hw->priv;
583
3a078876 584 ath5k_led_off(sc);
fa1c114f
JS
585
586 ath5k_stop_hw(sc);
3e4242b9
JS
587
588 free_irq(pdev->irq, sc);
fa1c114f
JS
589 pci_save_state(pdev);
590 pci_disable_device(pdev);
591 pci_set_power_state(pdev, PCI_D3hot);
592
593 return 0;
594}
595
596static int
597ath5k_pci_resume(struct pci_dev *pdev)
598{
599 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
600 struct ath5k_softc *sc = hw->priv;
247ae449
JL
601 struct ath5k_hw *ah = sc->ah;
602 int i, err;
fa1c114f 603
3e4242b9 604 pci_restore_state(pdev);
fa1c114f
JS
605
606 err = pci_enable_device(pdev);
607 if (err)
608 return err;
609
fa1c114f
JS
610 /*
611 * Suspend/Resume resets the PCI configuration space, so we have to
612 * re-disable the RETRY_TIMEOUT register (0x41) to keep
613 * PCI Tx retries from interfering with C3 CPU state
614 */
615 pci_write_config_byte(pdev, 0x41, 0);
616
3e4242b9
JS
617 err = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
618 if (err) {
619 ATH5K_ERR(sc, "request_irq failed\n");
37465c8a 620 goto err_no_irq;
3e4242b9
JS
621 }
622
623 err = ath5k_init(sc);
624 if (err)
625 goto err_irq;
3a078876 626 ath5k_led_enable(sc);
fa1c114f 627
247ae449
JL
628 /*
629 * Reset the key cache since some parts do not
630 * reset the contents on initial power up or resume.
631 *
632 * FIXME: This may need to be revisited when mac80211 becomes
633 * aware of suspend/resume.
634 */
635 for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
636 ath5k_hw_reset_key(ah, i);
637
fa1c114f 638 return 0;
3e4242b9
JS
639err_irq:
640 free_irq(pdev->irq, sc);
37465c8a 641err_no_irq:
3e4242b9
JS
642 pci_disable_device(pdev);
643 return err;
fa1c114f
JS
644}
645#endif /* CONFIG_PM */
646
647
648
649/***********************\
650* Driver Initialization *
651\***********************/
652
653static int
654ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
655{
656 struct ath5k_softc *sc = hw->priv;
657 struct ath5k_hw *ah = sc->ah;
658 u8 mac[ETH_ALEN];
659 unsigned int i;
660 int ret;
661
662 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
663
664 /*
665 * Check if the MAC has multi-rate retry support.
666 * We do this by trying to setup a fake extended
667 * descriptor. MAC's that don't have support will
668 * return false w/o doing anything. MAC's that do
669 * support it will return true w/o doing anything.
670 */
b9887638
JS
671 ret = ah->ah_setup_xtx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
672 if (ret < 0)
673 goto err;
674 if (ret > 0)
fa1c114f
JS
675 __set_bit(ATH_STAT_MRRETRY, sc->status);
676
677 /*
678 * Reset the key cache since some parts do not
679 * reset the contents on initial power up.
680 */
c65638a7 681 for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
fa1c114f
JS
682 ath5k_hw_reset_key(ah, i);
683
684 /*
685 * Collect the channel list. The 802.11 layer
686 * is resposible for filtering this list based
687 * on settings like the phy mode and regulatory
688 * domain restrictions.
689 */
690 ret = ath5k_getchannels(hw);
691 if (ret) {
692 ATH5K_ERR(sc, "can't get channels\n");
693 goto err;
694 }
695
d8ee398d
LR
696 /* Set *_rates so we can map hw rate index */
697 ath5k_set_total_hw_rates(sc);
698
fa1c114f 699 /* NB: setup here so ath5k_rate_update is happy */
d8ee398d
LR
700 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
701 ath5k_setcurmode(sc, AR5K_MODE_11A);
fa1c114f 702 else
d8ee398d 703 ath5k_setcurmode(sc, AR5K_MODE_11B);
fa1c114f
JS
704
705 /*
706 * Allocate tx+rx descriptors and populate the lists.
707 */
708 ret = ath5k_desc_alloc(sc, pdev);
709 if (ret) {
710 ATH5K_ERR(sc, "can't allocate descriptors\n");
711 goto err;
712 }
713
714 /*
715 * Allocate hardware transmit queues: one queue for
716 * beacon frames and one data queue for each QoS
717 * priority. Note that hw functions handle reseting
718 * these queues at the needed time.
719 */
720 ret = ath5k_beaconq_setup(ah);
721 if (ret < 0) {
722 ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
723 goto err_desc;
724 }
725 sc->bhalq = ret;
726
727 sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
728 if (IS_ERR(sc->txq)) {
729 ATH5K_ERR(sc, "can't setup xmit queue\n");
730 ret = PTR_ERR(sc->txq);
731 goto err_bhal;
732 }
733
734 tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
735 tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
736 tasklet_init(&sc->restq, ath5k_tasklet_reset, (unsigned long)sc);
737 setup_timer(&sc->calib_tim, ath5k_calibrate, (unsigned long)sc);
fa1c114f
JS
738
739 ath5k_hw_get_lladdr(ah, mac);
740 SET_IEEE80211_PERM_ADDR(hw, mac);
741 /* All MAC address bits matter for ACKs */
742 memset(sc->bssidmask, 0xff, ETH_ALEN);
743 ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
744
745 ret = ieee80211_register_hw(hw);
746 if (ret) {
747 ATH5K_ERR(sc, "can't register ieee80211 hw\n");
748 goto err_queues;
749 }
750
3a078876
BC
751 ath5k_init_leds(sc);
752
fa1c114f
JS
753 return 0;
754err_queues:
755 ath5k_txq_release(sc);
756err_bhal:
757 ath5k_hw_release_tx_queue(ah, sc->bhalq);
758err_desc:
759 ath5k_desc_free(sc, pdev);
760err:
761 return ret;
762}
763
764static void
765ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
766{
767 struct ath5k_softc *sc = hw->priv;
768
769 /*
770 * NB: the order of these is important:
771 * o call the 802.11 layer before detaching ath5k_hw to
772 * insure callbacks into the driver to delete global
773 * key cache entries can be handled
774 * o reclaim the tx queue data structures after calling
775 * the 802.11 layer as we'll get called back to reclaim
776 * node state and potentially want to use them
777 * o to cleanup the tx queues the hal is called, so detach
778 * it last
779 * XXX: ??? detach ath5k_hw ???
780 * Other than that, it's straightforward...
781 */
782 ieee80211_unregister_hw(hw);
783 ath5k_desc_free(sc, pdev);
784 ath5k_txq_release(sc);
785 ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
3a078876 786 ath5k_unregister_leds(sc);
fa1c114f
JS
787
788 /*
789 * NB: can't reclaim these until after ieee80211_ifdetach
790 * returns because we'll get called back to reclaim node
791 * state and potentially want to use them.
792 */
793}
794
795
796
797
798/********************\
799* Channel/mode setup *
800\********************/
801
802/*
803 * Convert IEEE channel number to MHz frequency.
804 */
805static inline short
806ath5k_ieee2mhz(short chan)
807{
808 if (chan <= 14 || chan >= 27)
809 return ieee80211chan2mhz(chan);
810 else
811 return 2212 + chan * 20;
812}
813
814static unsigned int
815ath5k_copy_rates(struct ieee80211_rate *rates,
816 const struct ath5k_rate_table *rt,
817 unsigned int max)
818{
819 unsigned int i, count;
820
821 if (rt == NULL)
822 return 0;
823
824 for (i = 0, count = 0; i < rt->rate_count && max > 0; i++) {
d8ee398d
LR
825 rates[count].bitrate = rt->rates[i].rate_kbps / 100;
826 rates[count].hw_value = rt->rates[i].rate_code;
827 rates[count].flags = rt->rates[i].modulation;
fa1c114f
JS
828 count++;
829 max--;
830 }
831
832 return count;
833}
834
835static unsigned int
836ath5k_copy_channels(struct ath5k_hw *ah,
837 struct ieee80211_channel *channels,
838 unsigned int mode,
839 unsigned int max)
840{
d8ee398d 841 unsigned int i, count, size, chfreq, freq, ch;
fa1c114f
JS
842
843 if (!test_bit(mode, ah->ah_modes))
844 return 0;
845
fa1c114f 846 switch (mode) {
d8ee398d
LR
847 case AR5K_MODE_11A:
848 case AR5K_MODE_11A_TURBO:
fa1c114f 849 /* 1..220, but 2GHz frequencies are filtered by check_channel */
d8ee398d 850 size = 220 ;
fa1c114f
JS
851 chfreq = CHANNEL_5GHZ;
852 break;
d8ee398d
LR
853 case AR5K_MODE_11B:
854 case AR5K_MODE_11G:
855 case AR5K_MODE_11G_TURBO:
856 size = 26;
fa1c114f
JS
857 chfreq = CHANNEL_2GHZ;
858 break;
859 default:
860 ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
861 return 0;
862 }
863
864 for (i = 0, count = 0; i < size && max > 0; i++) {
d8ee398d
LR
865 ch = i + 1 ;
866 freq = ath5k_ieee2mhz(ch);
fa1c114f 867
d8ee398d
LR
868 /* Check if channel is supported by the chipset */
869 if (!ath5k_channel_ok(ah, freq, chfreq))
fa1c114f
JS
870 continue;
871
d8ee398d
LR
872 /* Write channel info and increment counter */
873 channels[count].center_freq = freq;
a3f4b914
LR
874 channels[count].band = (chfreq == CHANNEL_2GHZ) ?
875 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
400ec45a
LR
876 switch (mode) {
877 case AR5K_MODE_11A:
878 case AR5K_MODE_11G:
879 channels[count].hw_value = chfreq | CHANNEL_OFDM;
880 break;
881 case AR5K_MODE_11A_TURBO:
882 case AR5K_MODE_11G_TURBO:
883 channels[count].hw_value = chfreq |
884 CHANNEL_OFDM | CHANNEL_TURBO;
885 break;
886 case AR5K_MODE_11B:
d8ee398d
LR
887 channels[count].hw_value = CHANNEL_B;
888 }
fa1c114f 889
fa1c114f
JS
890 count++;
891 max--;
892 }
893
894 return count;
895}
896
d8ee398d
LR
897static int
898ath5k_getchannels(struct ieee80211_hw *hw)
fa1c114f
JS
899{
900 struct ath5k_softc *sc = hw->priv;
d8ee398d
LR
901 struct ath5k_hw *ah = sc->ah;
902 struct ieee80211_supported_band *sbands = sc->sbands;
903 const struct ath5k_rate_table *hw_rates;
904 unsigned int max_r, max_c, count_r, count_c;
905 int mode2g = AR5K_MODE_11G;
fa1c114f 906
d8ee398d 907 BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
fa1c114f 908
d8ee398d
LR
909 max_r = ARRAY_SIZE(sc->rates);
910 max_c = ARRAY_SIZE(sc->channels);
911 count_r = count_c = 0;
912
913 /* 2GHz band */
400ec45a 914 if (!test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
d8ee398d 915 mode2g = AR5K_MODE_11B;
400ec45a
LR
916 if (!test_bit(AR5K_MODE_11B,
917 sc->ah->ah_capabilities.cap_mode))
d8ee398d 918 mode2g = -1;
fa1c114f 919 }
fa1c114f 920
400ec45a
LR
921 if (mode2g > 0) {
922 struct ieee80211_supported_band *sband =
923 &sbands[IEEE80211_BAND_2GHZ];
fa1c114f 924
d8ee398d
LR
925 sband->bitrates = sc->rates;
926 sband->channels = sc->channels;
fa1c114f 927
d8ee398d
LR
928 sband->band = IEEE80211_BAND_2GHZ;
929 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
930 mode2g, max_c);
fa1c114f 931
d8ee398d
LR
932 hw_rates = ath5k_hw_get_rate_table(ah, mode2g);
933 sband->n_bitrates = ath5k_copy_rates(sband->bitrates,
400ec45a 934 hw_rates, max_r);
fa1c114f 935
d8ee398d
LR
936 count_c = sband->n_channels;
937 count_r = sband->n_bitrates;
fa1c114f 938
d8ee398d
LR
939 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
940
941 max_r -= count_r;
942 max_c -= count_c;
fa1c114f 943
fa1c114f
JS
944 }
945
d8ee398d 946 /* 5GHz band */
fa1c114f 947
400ec45a
LR
948 if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
949 struct ieee80211_supported_band *sband =
950 &sbands[IEEE80211_BAND_5GHZ];
fa1c114f 951
d8ee398d
LR
952 sband->bitrates = &sc->rates[count_r];
953 sband->channels = &sc->channels[count_c];
fa1c114f 954
d8ee398d
LR
955 sband->band = IEEE80211_BAND_5GHZ;
956 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
957 AR5K_MODE_11A, max_c);
958
959 hw_rates = ath5k_hw_get_rate_table(ah, AR5K_MODE_11A);
960 sband->n_bitrates = ath5k_copy_rates(sband->bitrates,
400ec45a 961 hw_rates, max_r);
d8ee398d
LR
962
963 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
964 }
965
b446197c 966 ath5k_debug_dump_bands(sc);
d8ee398d
LR
967
968 return 0;
fa1c114f
JS
969}
970
971/*
972 * Set/change channels. If the channel is really being changed,
973 * it's done by reseting the chip. To accomplish this we must
974 * first cleanup any pending DMA, then restart stuff after a la
975 * ath5k_init.
976 */
977static int
978ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
979{
980 struct ath5k_hw *ah = sc->ah;
981 int ret;
982
d8ee398d
LR
983 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "(%u MHz) -> (%u MHz)\n",
984 sc->curchan->center_freq, chan->center_freq);
985
986 if (chan->center_freq != sc->curchan->center_freq ||
987 chan->hw_value != sc->curchan->hw_value) {
988
989 sc->curchan = chan;
990 sc->curband = &sc->sbands[chan->band];
fa1c114f 991
fa1c114f
JS
992 /*
993 * To switch channels clear any pending DMA operations;
994 * wait long enough for the RX fifo to drain, reset the
995 * hardware at the new frequency, and then re-enable
996 * the relevant bits of the h/w.
997 */
998 ath5k_hw_set_intr(ah, 0); /* disable interrupts */
999 ath5k_txq_cleanup(sc); /* clear pending tx frames */
1000 ath5k_rx_stop(sc); /* turn off frame recv */
d8ee398d 1001 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
fa1c114f 1002 if (ret) {
d8ee398d
LR
1003 ATH5K_ERR(sc, "%s: unable to reset channel "
1004 "(%u Mhz)\n", __func__, chan->center_freq);
fa1c114f
JS
1005 return ret;
1006 }
d8ee398d 1007
fa1c114f
JS
1008 ath5k_hw_set_txpower_limit(sc->ah, 0);
1009
1010 /*
1011 * Re-enable rx framework.
1012 */
1013 ret = ath5k_rx_start(sc);
1014 if (ret) {
1015 ATH5K_ERR(sc, "%s: unable to restart recv logic\n",
1016 __func__);
1017 return ret;
1018 }
1019
1020 /*
1021 * Change channels and update the h/w rate map
1022 * if we're switching; e.g. 11a to 11b/g.
1023 *
1024 * XXX needed?
1025 */
1026/* ath5k_chan_change(sc, chan); */
1027
1028 ath5k_beacon_config(sc);
1029 /*
1030 * Re-enable interrupts.
1031 */
1032 ath5k_hw_set_intr(ah, sc->imask);
1033 }
1034
1035 return 0;
1036}
1037
1038static void
1039ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
1040{
fa1c114f 1041 sc->curmode = mode;
d8ee398d 1042
400ec45a 1043 if (mode == AR5K_MODE_11A) {
d8ee398d
LR
1044 sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
1045 } else {
1046 sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
1047 }
fa1c114f
JS
1048}
1049
1050static void
1051ath5k_mode_setup(struct ath5k_softc *sc)
1052{
1053 struct ath5k_hw *ah = sc->ah;
1054 u32 rfilt;
1055
1056 /* configure rx filter */
1057 rfilt = sc->filter_flags;
1058 ath5k_hw_set_rx_filter(ah, rfilt);
1059
1060 if (ath5k_hw_hasbssidmask(ah))
1061 ath5k_hw_set_bssid_mask(ah, sc->bssidmask);
1062
1063 /* configure operational mode */
1064 ath5k_hw_set_opmode(ah);
1065
1066 ath5k_hw_set_mcast_filter(ah, 0, 0);
1067 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
1068}
1069
d8ee398d
LR
1070/*
1071 * Match the hw provided rate index (through descriptors)
1072 * to an index for sc->curband->bitrates, so it can be used
1073 * by the stack.
1074 *
1075 * This one is a little bit tricky but i think i'm right
1076 * about this...
1077 *
1078 * We have 4 rate tables in the following order:
1079 * XR (4 rates)
1080 * 802.11a (8 rates)
1081 * 802.11b (4 rates)
1082 * 802.11g (12 rates)
1083 * that make the hw rate table.
1084 *
1085 * Lets take a 5211 for example that supports a and b modes only.
1086 * First comes the 802.11a table and then 802.11b (total 12 rates).
1087 * When hw returns eg. 11 it points to the last 802.11b rate (11Mbit),
1088 * if it returns 2 it points to the second 802.11a rate etc.
1089 *
1090 * Same goes for 5212 who has xr/a/b/g support (total 28 rates).
1091 * First comes the XR table, then 802.11a, 802.11b and 802.11g.
1092 * When hw returns eg. 27 it points to the last 802.11g rate (54Mbits) etc
1093 */
1094static void
400ec45a 1095ath5k_set_total_hw_rates(struct ath5k_softc *sc) {
d8ee398d
LR
1096
1097 struct ath5k_hw *ah = sc->ah;
1098
400ec45a 1099 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
d8ee398d
LR
1100 sc->a_rates = 8;
1101
400ec45a 1102 if (test_bit(AR5K_MODE_11B, ah->ah_modes))
d8ee398d
LR
1103 sc->b_rates = 4;
1104
400ec45a 1105 if (test_bit(AR5K_MODE_11G, ah->ah_modes))
d8ee398d
LR
1106 sc->g_rates = 12;
1107
1108 /* XXX: Need to see what what happens when
1109 xr disable bits in eeprom are set */
400ec45a 1110 if (ah->ah_version >= AR5K_AR5212)
d8ee398d
LR
1111 sc->xr_rates = 4;
1112
1113}
1114
1115static inline int
400ec45a 1116ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix) {
d8ee398d
LR
1117
1118 int mac80211_rix;
1119
400ec45a 1120 if(sc->curband->band == IEEE80211_BAND_2GHZ) {
d8ee398d 1121 /* We setup a g ratetable for both b/g modes */
400ec45a
LR
1122 mac80211_rix =
1123 hw_rix - sc->b_rates - sc->a_rates - sc->xr_rates;
d8ee398d
LR
1124 } else {
1125 mac80211_rix = hw_rix - sc->xr_rates;
1126 }
1127
1128 /* Something went wrong, fallback to basic rate for this band */
400ec45a
LR
1129 if ((mac80211_rix >= sc->curband->n_bitrates) ||
1130 (mac80211_rix <= 0 ))
d8ee398d 1131 mac80211_rix = 1;
d8ee398d
LR
1132
1133 return mac80211_rix;
1134}
1135
fa1c114f
JS
1136
1137
1138
1139/***************\
1140* Buffers setup *
1141\***************/
1142
1143static int
1144ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1145{
1146 struct ath5k_hw *ah = sc->ah;
1147 struct sk_buff *skb = bf->skb;
1148 struct ath5k_desc *ds;
1149
1150 if (likely(skb == NULL)) {
1151 unsigned int off;
1152
1153 /*
1154 * Allocate buffer with headroom_needed space for the
1155 * fake physical layer header at the start.
1156 */
1157 skb = dev_alloc_skb(sc->rxbufsize + sc->cachelsz - 1);
1158 if (unlikely(skb == NULL)) {
1159 ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
1160 sc->rxbufsize + sc->cachelsz - 1);
1161 return -ENOMEM;
1162 }
1163 /*
1164 * Cache-line-align. This is important (for the
1165 * 5210 at least) as not doing so causes bogus data
1166 * in rx'd frames.
1167 */
1168 off = ((unsigned long)skb->data) % sc->cachelsz;
1169 if (off != 0)
1170 skb_reserve(skb, sc->cachelsz - off);
1171
1172 bf->skb = skb;
1173 bf->skbaddr = pci_map_single(sc->pdev,
1174 skb->data, sc->rxbufsize, PCI_DMA_FROMDEVICE);
8d8bb39b 1175 if (unlikely(pci_dma_mapping_error(sc->pdev, bf->skbaddr))) {
fa1c114f
JS
1176 ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
1177 dev_kfree_skb(skb);
1178 bf->skb = NULL;
1179 return -ENOMEM;
1180 }
1181 }
1182
1183 /*
1184 * Setup descriptors. For receive we always terminate
1185 * the descriptor list with a self-linked entry so we'll
1186 * not get overrun under high load (as can happen with a
1187 * 5212 when ANI processing enables PHY error frames).
1188 *
1189 * To insure the last descriptor is self-linked we create
1190 * each descriptor as self-linked and add it to the end. As
1191 * each additional descriptor is added the previous self-linked
1192 * entry is ``fixed'' naturally. This should be safe even
1193 * if DMA is happening. When processing RX interrupts we
1194 * never remove/process the last, self-linked, entry on the
1195 * descriptor list. This insures the hardware always has
1196 * someplace to write a new frame.
1197 */
1198 ds = bf->desc;
1199 ds->ds_link = bf->daddr; /* link to self */
1200 ds->ds_data = bf->skbaddr;
1201 ath5k_hw_setup_rx_desc(ah, ds,
1202 skb_tailroom(skb), /* buffer size */
1203 0);
1204
1205 if (sc->rxlink != NULL)
1206 *sc->rxlink = bf->daddr;
1207 sc->rxlink = &ds->ds_link;
1208 return 0;
1209}
1210
1211static int
e039fa4a 1212ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
fa1c114f
JS
1213{
1214 struct ath5k_hw *ah = sc->ah;
1215 struct ath5k_txq *txq = sc->txq;
1216 struct ath5k_desc *ds = bf->desc;
1217 struct sk_buff *skb = bf->skb;
a888d52d 1218 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
fa1c114f
JS
1219 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
1220 int ret;
1221
1222 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
e039fa4a 1223
fa1c114f
JS
1224 /* XXX endianness */
1225 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1226 PCI_DMA_TODEVICE);
1227
e039fa4a 1228 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
fa1c114f
JS
1229 flags |= AR5K_TXDESC_NOACK;
1230
281c56dd 1231 pktlen = skb->len;
fa1c114f 1232
d0f09804 1233 if (info->control.hw_key) {
e039fa4a
JB
1234 keyidx = info->control.hw_key->hw_key_idx;
1235 pktlen += info->control.icv_len;
fa1c114f 1236 }
fa1c114f
JS
1237 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
1238 ieee80211_get_hdrlen_from_skb(skb), AR5K_PKT_TYPE_NORMAL,
2e92e6f2 1239 (sc->power_level * 2),
e039fa4a
JB
1240 ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1241 info->control.retry_limit, keyidx, 0, flags, 0, 0);
fa1c114f
JS
1242 if (ret)
1243 goto err_unmap;
1244
1245 ds->ds_link = 0;
1246 ds->ds_data = bf->skbaddr;
1247
1248 spin_lock_bh(&txq->lock);
1249 list_add_tail(&bf->list, &txq->q);
57ffc589 1250 sc->tx_stats[txq->qnum].len++;
fa1c114f
JS
1251 if (txq->link == NULL) /* is this first packet? */
1252 ath5k_hw_put_tx_buf(ah, txq->qnum, bf->daddr);
1253 else /* no, so only link it */
1254 *txq->link = bf->daddr;
1255
1256 txq->link = &ds->ds_link;
1257 ath5k_hw_tx_start(ah, txq->qnum);
274c7c36 1258 mmiowb();
fa1c114f
JS
1259 spin_unlock_bh(&txq->lock);
1260
1261 return 0;
1262err_unmap:
1263 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1264 return ret;
1265}
1266
1267/*******************\
1268* Descriptors setup *
1269\*******************/
1270
1271static int
1272ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
1273{
1274 struct ath5k_desc *ds;
1275 struct ath5k_buf *bf;
1276 dma_addr_t da;
1277 unsigned int i;
1278 int ret;
1279
1280 /* allocate descriptors */
1281 sc->desc_len = sizeof(struct ath5k_desc) *
1282 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
1283 sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
1284 if (sc->desc == NULL) {
1285 ATH5K_ERR(sc, "can't allocate descriptors\n");
1286 ret = -ENOMEM;
1287 goto err;
1288 }
1289 ds = sc->desc;
1290 da = sc->desc_daddr;
1291 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
1292 ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
1293
1294 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
1295 sizeof(struct ath5k_buf), GFP_KERNEL);
1296 if (bf == NULL) {
1297 ATH5K_ERR(sc, "can't allocate bufptr\n");
1298 ret = -ENOMEM;
1299 goto err_free;
1300 }
1301 sc->bufptr = bf;
1302
1303 INIT_LIST_HEAD(&sc->rxbuf);
1304 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
1305 bf->desc = ds;
1306 bf->daddr = da;
1307 list_add_tail(&bf->list, &sc->rxbuf);
1308 }
1309
1310 INIT_LIST_HEAD(&sc->txbuf);
1311 sc->txbuf_len = ATH_TXBUF;
1312 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
1313 da += sizeof(*ds)) {
1314 bf->desc = ds;
1315 bf->daddr = da;
1316 list_add_tail(&bf->list, &sc->txbuf);
1317 }
1318
1319 /* beacon buffer */
1320 bf->desc = ds;
1321 bf->daddr = da;
1322 sc->bbuf = bf;
1323
1324 return 0;
1325err_free:
1326 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1327err:
1328 sc->desc = NULL;
1329 return ret;
1330}
1331
1332static void
1333ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
1334{
1335 struct ath5k_buf *bf;
1336
1337 ath5k_txbuf_free(sc, sc->bbuf);
1338 list_for_each_entry(bf, &sc->txbuf, list)
1339 ath5k_txbuf_free(sc, bf);
1340 list_for_each_entry(bf, &sc->rxbuf, list)
1341 ath5k_txbuf_free(sc, bf);
1342
1343 /* Free memory associated with all descriptors */
1344 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1345
1346 kfree(sc->bufptr);
1347 sc->bufptr = NULL;
1348}
1349
1350
1351
1352
1353
1354/**************\
1355* Queues setup *
1356\**************/
1357
1358static struct ath5k_txq *
1359ath5k_txq_setup(struct ath5k_softc *sc,
1360 int qtype, int subtype)
1361{
1362 struct ath5k_hw *ah = sc->ah;
1363 struct ath5k_txq *txq;
1364 struct ath5k_txq_info qi = {
1365 .tqi_subtype = subtype,
1366 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1367 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1368 .tqi_cw_max = AR5K_TXQ_USEDEFAULT
1369 };
1370 int qnum;
1371
1372 /*
1373 * Enable interrupts only for EOL and DESC conditions.
1374 * We mark tx descriptors to receive a DESC interrupt
1375 * when a tx queue gets deep; otherwise waiting for the
1376 * EOL to reap descriptors. Note that this is done to
1377 * reduce interrupt load and this only defers reaping
1378 * descriptors, never transmitting frames. Aside from
1379 * reducing interrupts this also permits more concurrency.
1380 * The only potential downside is if the tx queue backs
1381 * up in which case the top half of the kernel may backup
1382 * due to a lack of tx descriptors.
1383 */
1384 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1385 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1386 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1387 if (qnum < 0) {
1388 /*
1389 * NB: don't print a message, this happens
1390 * normally on parts with too few tx queues
1391 */
1392 return ERR_PTR(qnum);
1393 }
1394 if (qnum >= ARRAY_SIZE(sc->txqs)) {
1395 ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
1396 qnum, ARRAY_SIZE(sc->txqs));
1397 ath5k_hw_release_tx_queue(ah, qnum);
1398 return ERR_PTR(-EINVAL);
1399 }
1400 txq = &sc->txqs[qnum];
1401 if (!txq->setup) {
1402 txq->qnum = qnum;
1403 txq->link = NULL;
1404 INIT_LIST_HEAD(&txq->q);
1405 spin_lock_init(&txq->lock);
1406 txq->setup = true;
1407 }
1408 return &sc->txqs[qnum];
1409}
1410
1411static int
1412ath5k_beaconq_setup(struct ath5k_hw *ah)
1413{
1414 struct ath5k_txq_info qi = {
1415 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1416 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1417 .tqi_cw_max = AR5K_TXQ_USEDEFAULT,
1418 /* NB: for dynamic turbo, don't enable any other interrupts */
1419 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1420 };
1421
1422 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1423}
1424
1425static int
1426ath5k_beaconq_config(struct ath5k_softc *sc)
1427{
1428 struct ath5k_hw *ah = sc->ah;
1429 struct ath5k_txq_info qi;
1430 int ret;
1431
1432 ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
1433 if (ret)
1434 return ret;
8e5f3d0a
AY
1435 if (sc->opmode == IEEE80211_IF_TYPE_AP ||
1436 sc->opmode == IEEE80211_IF_TYPE_MESH_POINT) {
fa1c114f
JS
1437 /*
1438 * Always burst out beacon and CAB traffic
1439 * (aifs = cwmin = cwmax = 0)
1440 */
1441 qi.tqi_aifs = 0;
1442 qi.tqi_cw_min = 0;
1443 qi.tqi_cw_max = 0;
6d91e1d8
BR
1444 } else if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
1445 /*
1446 * Adhoc mode; backoff between 0 and (2 * cw_min).
1447 */
1448 qi.tqi_aifs = 0;
1449 qi.tqi_cw_min = 0;
1450 qi.tqi_cw_max = 2 * ah->ah_cw_min;
fa1c114f
JS
1451 }
1452
6d91e1d8
BR
1453 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1454 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1455 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1456
fa1c114f
JS
1457 ret = ath5k_hw_setup_tx_queueprops(ah, sc->bhalq, &qi);
1458 if (ret) {
1459 ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1460 "hardware queue!\n", __func__);
1461 return ret;
1462 }
1463
1464 return ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */;
1465}
1466
1467static void
1468ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1469{
1470 struct ath5k_buf *bf, *bf0;
1471
1472 /*
1473 * NB: this assumes output has been stopped and
1474 * we do not need to block ath5k_tx_tasklet
1475 */
1476 spin_lock_bh(&txq->lock);
1477 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
b47f407b 1478 ath5k_debug_printtxbuf(sc, bf);
fa1c114f
JS
1479
1480 ath5k_txbuf_free(sc, bf);
1481
1482 spin_lock_bh(&sc->txbuflock);
57ffc589 1483 sc->tx_stats[txq->qnum].len--;
fa1c114f
JS
1484 list_move_tail(&bf->list, &sc->txbuf);
1485 sc->txbuf_len++;
1486 spin_unlock_bh(&sc->txbuflock);
1487 }
1488 txq->link = NULL;
1489 spin_unlock_bh(&txq->lock);
1490}
1491
1492/*
1493 * Drain the transmit queues and reclaim resources.
1494 */
1495static void
1496ath5k_txq_cleanup(struct ath5k_softc *sc)
1497{
1498 struct ath5k_hw *ah = sc->ah;
1499 unsigned int i;
1500
1501 /* XXX return value */
1502 if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
1503 /* don't touch the hardware if marked invalid */
1504 ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1505 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1506 ath5k_hw_get_tx_buf(ah, sc->bhalq));
1507 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1508 if (sc->txqs[i].setup) {
1509 ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1510 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1511 "link %p\n",
1512 sc->txqs[i].qnum,
1513 ath5k_hw_get_tx_buf(ah,
1514 sc->txqs[i].qnum),
1515 sc->txqs[i].link);
1516 }
1517 }
36d6825b 1518 ieee80211_wake_queues(sc->hw); /* XXX move to callers */
fa1c114f
JS
1519
1520 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1521 if (sc->txqs[i].setup)
1522 ath5k_txq_drainq(sc, &sc->txqs[i]);
1523}
1524
1525static void
1526ath5k_txq_release(struct ath5k_softc *sc)
1527{
1528 struct ath5k_txq *txq = sc->txqs;
1529 unsigned int i;
1530
1531 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1532 if (txq->setup) {
1533 ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1534 txq->setup = false;
1535 }
1536}
1537
1538
1539
1540
1541/*************\
1542* RX Handling *
1543\*************/
1544
1545/*
1546 * Enable the receive h/w following a reset.
1547 */
1548static int
1549ath5k_rx_start(struct ath5k_softc *sc)
1550{
1551 struct ath5k_hw *ah = sc->ah;
1552 struct ath5k_buf *bf;
1553 int ret;
1554
1555 sc->rxbufsize = roundup(IEEE80211_MAX_LEN, sc->cachelsz);
1556
1557 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rxbufsize %u\n",
1558 sc->cachelsz, sc->rxbufsize);
1559
1560 sc->rxlink = NULL;
1561
1562 spin_lock_bh(&sc->rxbuflock);
1563 list_for_each_entry(bf, &sc->rxbuf, list) {
1564 ret = ath5k_rxbuf_setup(sc, bf);
1565 if (ret != 0) {
1566 spin_unlock_bh(&sc->rxbuflock);
1567 goto err;
1568 }
1569 }
1570 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1571 spin_unlock_bh(&sc->rxbuflock);
1572
1573 ath5k_hw_put_rx_buf(ah, bf->daddr);
1574 ath5k_hw_start_rx(ah); /* enable recv descriptors */
1575 ath5k_mode_setup(sc); /* set filters, etc. */
1576 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1577
1578 return 0;
1579err:
1580 return ret;
1581}
1582
1583/*
1584 * Disable the receive h/w in preparation for a reset.
1585 */
1586static void
1587ath5k_rx_stop(struct ath5k_softc *sc)
1588{
1589 struct ath5k_hw *ah = sc->ah;
1590
1591 ath5k_hw_stop_pcu_recv(ah); /* disable PCU */
1592 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1593 ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */
fa1c114f
JS
1594
1595 ath5k_debug_printrxbuffs(sc, ah);
1596
1597 sc->rxlink = NULL; /* just in case */
1598}
1599
1600static unsigned int
1601ath5k_rx_decrypted(struct ath5k_softc *sc, struct ath5k_desc *ds,
b47f407b 1602 struct sk_buff *skb, struct ath5k_rx_status *rs)
fa1c114f
JS
1603{
1604 struct ieee80211_hdr *hdr = (void *)skb->data;
1605 unsigned int keyix, hlen = ieee80211_get_hdrlen_from_skb(skb);
1606
b47f407b
BR
1607 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1608 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
fa1c114f
JS
1609 return RX_FLAG_DECRYPTED;
1610
1611 /* Apparently when a default key is used to decrypt the packet
1612 the hw does not set the index used to decrypt. In such cases
1613 get the index from the packet. */
24b56e70
HH
1614 if (ieee80211_has_protected(hdr->frame_control) &&
1615 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1616 skb->len >= hlen + 4) {
fa1c114f
JS
1617 keyix = skb->data[hlen + 3] >> 6;
1618
1619 if (test_bit(keyix, sc->keymap))
1620 return RX_FLAG_DECRYPTED;
1621 }
1622
1623 return 0;
1624}
1625
036cd1ec
BR
1626
1627static void
6ba81c2c
BR
1628ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1629 struct ieee80211_rx_status *rxs)
036cd1ec 1630{
6ba81c2c 1631 u64 tsf, bc_tstamp;
036cd1ec
BR
1632 u32 hw_tu;
1633 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1634
24b56e70 1635 if (ieee80211_is_beacon(mgmt->frame_control) &&
38c07b43 1636 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
036cd1ec
BR
1637 memcmp(mgmt->bssid, sc->ah->ah_bssid, ETH_ALEN) == 0) {
1638 /*
6ba81c2c
BR
1639 * Received an IBSS beacon with the same BSSID. Hardware *must*
1640 * have updated the local TSF. We have to work around various
1641 * hardware bugs, though...
036cd1ec 1642 */
6ba81c2c
BR
1643 tsf = ath5k_hw_get_tsf64(sc->ah);
1644 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1645 hw_tu = TSF_TO_TU(tsf);
1646
1647 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1648 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
06501d29
JL
1649 (unsigned long long)bc_tstamp,
1650 (unsigned long long)rxs->mactime,
1651 (unsigned long long)(rxs->mactime - bc_tstamp),
1652 (unsigned long long)tsf);
6ba81c2c
BR
1653
1654 /*
1655 * Sometimes the HW will give us a wrong tstamp in the rx
1656 * status, causing the timestamp extension to go wrong.
1657 * (This seems to happen especially with beacon frames bigger
1658 * than 78 byte (incl. FCS))
1659 * But we know that the receive timestamp must be later than the
1660 * timestamp of the beacon since HW must have synced to that.
1661 *
1662 * NOTE: here we assume mactime to be after the frame was
1663 * received, not like mac80211 which defines it at the start.
1664 */
1665 if (bc_tstamp > rxs->mactime) {
036cd1ec 1666 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
6ba81c2c 1667 "fixing mactime from %llx to %llx\n",
06501d29
JL
1668 (unsigned long long)rxs->mactime,
1669 (unsigned long long)tsf);
6ba81c2c 1670 rxs->mactime = tsf;
036cd1ec 1671 }
6ba81c2c
BR
1672
1673 /*
1674 * Local TSF might have moved higher than our beacon timers,
1675 * in that case we have to update them to continue sending
1676 * beacons. This also takes care of synchronizing beacon sending
1677 * times with other stations.
1678 */
1679 if (hw_tu >= sc->nexttbtt)
1680 ath5k_beacon_update_timers(sc, bc_tstamp);
036cd1ec
BR
1681 }
1682}
1683
1684
fa1c114f
JS
1685static void
1686ath5k_tasklet_rx(unsigned long data)
1687{
1688 struct ieee80211_rx_status rxs = {};
b47f407b 1689 struct ath5k_rx_status rs = {};
fa1c114f
JS
1690 struct sk_buff *skb;
1691 struct ath5k_softc *sc = (void *)data;
3a0f2c87 1692 struct ath5k_buf *bf, *bf_last;
fa1c114f 1693 struct ath5k_desc *ds;
fa1c114f
JS
1694 int ret;
1695 int hdrlen;
1696 int pad;
1697
1698 spin_lock(&sc->rxbuflock);
3a0f2c87
JS
1699 if (list_empty(&sc->rxbuf)) {
1700 ATH5K_WARN(sc, "empty rx buf pool\n");
1701 goto unlock;
1702 }
1703 bf_last = list_entry(sc->rxbuf.prev, struct ath5k_buf, list);
fa1c114f 1704 do {
d6894b5b
BC
1705 rxs.flag = 0;
1706
fa1c114f
JS
1707 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1708 BUG_ON(bf->skb == NULL);
1709 skb = bf->skb;
1710 ds = bf->desc;
1711
3a0f2c87
JS
1712 /*
1713 * last buffer must not be freed to ensure proper hardware
1714 * function. When the hardware finishes also a packet next to
1715 * it, we are sure, it doesn't use it anymore and we can go on.
1716 */
1717 if (bf_last == bf)
1718 bf->flags |= 1;
1719 if (bf->flags) {
1720 struct ath5k_buf *bf_next = list_entry(bf->list.next,
1721 struct ath5k_buf, list);
1722 ret = sc->ah->ah_proc_rx_desc(sc->ah, bf_next->desc,
1723 &rs);
1724 if (ret)
1725 break;
1726 bf->flags &= ~1;
1727 /* skip the overwritten one (even status is martian) */
1728 goto next;
1729 }
fa1c114f 1730
b47f407b 1731 ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
fa1c114f
JS
1732 if (unlikely(ret == -EINPROGRESS))
1733 break;
1734 else if (unlikely(ret)) {
1735 ATH5K_ERR(sc, "error in processing rx descriptor\n");
65872e6b 1736 spin_unlock(&sc->rxbuflock);
fa1c114f
JS
1737 return;
1738 }
1739
b47f407b 1740 if (unlikely(rs.rs_more)) {
fa1c114f
JS
1741 ATH5K_WARN(sc, "unsupported jumbo\n");
1742 goto next;
1743 }
1744
b47f407b
BR
1745 if (unlikely(rs.rs_status)) {
1746 if (rs.rs_status & AR5K_RXERR_PHY)
fa1c114f 1747 goto next;
b47f407b 1748 if (rs.rs_status & AR5K_RXERR_DECRYPT) {
fa1c114f
JS
1749 /*
1750 * Decrypt error. If the error occurred
1751 * because there was no hardware key, then
1752 * let the frame through so the upper layers
1753 * can process it. This is necessary for 5210
1754 * parts which have no way to setup a ``clear''
1755 * key cache entry.
1756 *
1757 * XXX do key cache faulting
1758 */
b47f407b
BR
1759 if (rs.rs_keyix == AR5K_RXKEYIX_INVALID &&
1760 !(rs.rs_status & AR5K_RXERR_CRC))
fa1c114f
JS
1761 goto accept;
1762 }
b47f407b 1763 if (rs.rs_status & AR5K_RXERR_MIC) {
fa1c114f
JS
1764 rxs.flag |= RX_FLAG_MMIC_ERROR;
1765 goto accept;
1766 }
1767
1768 /* let crypto-error packets fall through in MNTR */
b47f407b
BR
1769 if ((rs.rs_status &
1770 ~(AR5K_RXERR_DECRYPT|AR5K_RXERR_MIC)) ||
fa1c114f
JS
1771 sc->opmode != IEEE80211_IF_TYPE_MNTR)
1772 goto next;
1773 }
1774accept:
fa1c114f
JS
1775 pci_unmap_single(sc->pdev, bf->skbaddr, sc->rxbufsize,
1776 PCI_DMA_FROMDEVICE);
1777 bf->skb = NULL;
1778
b47f407b 1779 skb_put(skb, rs.rs_datalen);
fa1c114f
JS
1780
1781 /*
1782 * the hardware adds a padding to 4 byte boundaries between
1783 * the header and the payload data if the header length is
1784 * not multiples of 4 - remove it
1785 */
1786 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1787 if (hdrlen & 3) {
1788 pad = hdrlen % 4;
1789 memmove(skb->data + pad, skb->data, hdrlen);
1790 skb_pull(skb, pad);
1791 }
1792
c0e1899b
BR
1793 /*
1794 * always extend the mac timestamp, since this information is
1795 * also needed for proper IBSS merging.
1796 *
1797 * XXX: it might be too late to do it here, since rs_tstamp is
1798 * 15bit only. that means TSF extension has to be done within
1799 * 32768usec (about 32ms). it might be necessary to move this to
1800 * the interrupt handler, like it is done in madwifi.
e14296ca
BR
1801 *
1802 * Unfortunately we don't know when the hardware takes the rx
1803 * timestamp (beginning of phy frame, data frame, end of rx?).
1804 * The only thing we know is that it is hardware specific...
1805 * On AR5213 it seems the rx timestamp is at the end of the
1806 * frame, but i'm not sure.
1807 *
1808 * NOTE: mac80211 defines mactime at the beginning of the first
1809 * data symbol. Since we don't have any time references it's
1810 * impossible to comply to that. This affects IBSS merge only
1811 * right now, so it's not too bad...
c0e1899b 1812 */
b47f407b 1813 rxs.mactime = ath5k_extend_tsf(sc->ah, rs.rs_tstamp);
c0e1899b
BR
1814 rxs.flag |= RX_FLAG_TSFT;
1815
d8ee398d
LR
1816 rxs.freq = sc->curchan->center_freq;
1817 rxs.band = sc->curband->band;
fa1c114f 1818
fa1c114f 1819 rxs.noise = sc->ah->ah_noise_floor;
566bfe5a
BR
1820 rxs.signal = rxs.noise + rs.rs_rssi;
1821 rxs.qual = rs.rs_rssi * 100 / 64;
fa1c114f 1822
b47f407b
BR
1823 rxs.antenna = rs.rs_antenna;
1824 rxs.rate_idx = ath5k_hw_to_driver_rix(sc, rs.rs_rate);
1825 rxs.flag |= ath5k_rx_decrypted(sc, ds, skb, &rs);
fa1c114f
JS
1826
1827 ath5k_debug_dump_skb(sc, skb, "RX ", 0);
1828
036cd1ec
BR
1829 /* check beacons in IBSS mode */
1830 if (sc->opmode == IEEE80211_IF_TYPE_IBSS)
6ba81c2c 1831 ath5k_check_ibss_tsf(sc, skb, &rxs);
036cd1ec 1832
fa1c114f 1833 __ieee80211_rx(sc->hw, skb, &rxs);
fa1c114f
JS
1834next:
1835 list_move_tail(&bf->list, &sc->rxbuf);
1836 } while (ath5k_rxbuf_setup(sc, bf) == 0);
3a0f2c87 1837unlock:
fa1c114f
JS
1838 spin_unlock(&sc->rxbuflock);
1839}
1840
1841
1842
1843
1844/*************\
1845* TX Handling *
1846\*************/
1847
1848static void
1849ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1850{
b47f407b 1851 struct ath5k_tx_status ts = {};
fa1c114f
JS
1852 struct ath5k_buf *bf, *bf0;
1853 struct ath5k_desc *ds;
1854 struct sk_buff *skb;
e039fa4a 1855 struct ieee80211_tx_info *info;
fa1c114f
JS
1856 int ret;
1857
1858 spin_lock(&txq->lock);
1859 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1860 ds = bf->desc;
1861
b47f407b 1862 ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
fa1c114f
JS
1863 if (unlikely(ret == -EINPROGRESS))
1864 break;
1865 else if (unlikely(ret)) {
1866 ATH5K_ERR(sc, "error %d while processing queue %u\n",
1867 ret, txq->qnum);
1868 break;
1869 }
1870
1871 skb = bf->skb;
a888d52d 1872 info = IEEE80211_SKB_CB(skb);
fa1c114f 1873 bf->skb = NULL;
e039fa4a 1874
fa1c114f
JS
1875 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
1876 PCI_DMA_TODEVICE);
1877
e039fa4a 1878 info->status.retry_count = ts.ts_shortretry + ts.ts_longretry / 6;
b47f407b 1879 if (unlikely(ts.ts_status)) {
fa1c114f 1880 sc->ll_stats.dot11ACKFailureCount++;
b47f407b 1881 if (ts.ts_status & AR5K_TXERR_XRETRY)
e039fa4a 1882 info->status.excessive_retries = 1;
b47f407b 1883 else if (ts.ts_status & AR5K_TXERR_FILT)
e039fa4a 1884 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
fa1c114f 1885 } else {
e039fa4a
JB
1886 info->flags |= IEEE80211_TX_STAT_ACK;
1887 info->status.ack_signal = ts.ts_rssi;
fa1c114f
JS
1888 }
1889
e039fa4a 1890 ieee80211_tx_status(sc->hw, skb);
57ffc589 1891 sc->tx_stats[txq->qnum].count++;
fa1c114f
JS
1892
1893 spin_lock(&sc->txbuflock);
57ffc589 1894 sc->tx_stats[txq->qnum].len--;
fa1c114f
JS
1895 list_move_tail(&bf->list, &sc->txbuf);
1896 sc->txbuf_len++;
1897 spin_unlock(&sc->txbuflock);
1898 }
1899 if (likely(list_empty(&txq->q)))
1900 txq->link = NULL;
1901 spin_unlock(&txq->lock);
1902 if (sc->txbuf_len > ATH_TXBUF / 5)
1903 ieee80211_wake_queues(sc->hw);
1904}
1905
1906static void
1907ath5k_tasklet_tx(unsigned long data)
1908{
1909 struct ath5k_softc *sc = (void *)data;
1910
1911 ath5k_tx_processq(sc, sc->txq);
fa1c114f
JS
1912}
1913
1914
fa1c114f
JS
1915/*****************\
1916* Beacon handling *
1917\*****************/
1918
1919/*
1920 * Setup the beacon frame for transmit.
1921 */
1922static int
e039fa4a 1923ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
fa1c114f
JS
1924{
1925 struct sk_buff *skb = bf->skb;
a888d52d 1926 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
fa1c114f
JS
1927 struct ath5k_hw *ah = sc->ah;
1928 struct ath5k_desc *ds;
1929 int ret, antenna = 0;
1930 u32 flags;
1931
1932 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1933 PCI_DMA_TODEVICE);
1934 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1935 "skbaddr %llx\n", skb, skb->data, skb->len,
1936 (unsigned long long)bf->skbaddr);
8d8bb39b 1937 if (pci_dma_mapping_error(sc->pdev, bf->skbaddr)) {
fa1c114f
JS
1938 ATH5K_ERR(sc, "beacon DMA mapping failed\n");
1939 return -EIO;
1940 }
1941
1942 ds = bf->desc;
1943
1944 flags = AR5K_TXDESC_NOACK;
1945 if (sc->opmode == IEEE80211_IF_TYPE_IBSS && ath5k_hw_hasveol(ah)) {
1946 ds->ds_link = bf->daddr; /* self-linked */
1947 flags |= AR5K_TXDESC_VEOL;
1948 /*
1949 * Let hardware handle antenna switching if txantenna is not set
1950 */
1951 } else {
1952 ds->ds_link = 0;
1953 /*
1954 * Switch antenna every 4 beacons if txantenna is not set
1955 * XXX assumes two antennas
1956 */
1957 if (antenna == 0)
1958 antenna = sc->bsent & 4 ? 2 : 1;
1959 }
1960
1961 ds->ds_data = bf->skbaddr;
281c56dd 1962 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
fa1c114f 1963 ieee80211_get_hdrlen_from_skb(skb),
400ec45a 1964 AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
e039fa4a 1965 ieee80211_get_tx_rate(sc->hw, info)->hw_value,
2e92e6f2 1966 1, AR5K_TXKEYIX_INVALID,
400ec45a 1967 antenna, flags, 0, 0);
fa1c114f
JS
1968 if (ret)
1969 goto err_unmap;
1970
1971 return 0;
1972err_unmap:
1973 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1974 return ret;
1975}
1976
1977/*
1978 * Transmit a beacon frame at SWBA. Dynamic updates to the
1979 * frame contents are done as needed and the slot time is
1980 * also adjusted based on current state.
1981 *
1982 * this is usually called from interrupt context (ath5k_intr())
1983 * but also from ath5k_beacon_config() in IBSS mode which in turn
1984 * can be called from a tasklet and user context
1985 */
1986static void
1987ath5k_beacon_send(struct ath5k_softc *sc)
1988{
1989 struct ath5k_buf *bf = sc->bbuf;
1990 struct ath5k_hw *ah = sc->ah;
1991
be9b7259 1992 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
fa1c114f
JS
1993
1994 if (unlikely(bf->skb == NULL || sc->opmode == IEEE80211_IF_TYPE_STA ||
1995 sc->opmode == IEEE80211_IF_TYPE_MNTR)) {
1996 ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
1997 return;
1998 }
1999 /*
2000 * Check if the previous beacon has gone out. If
2001 * not don't don't try to post another, skip this
2002 * period and wait for the next. Missed beacons
2003 * indicate a problem and should not occur. If we
2004 * miss too many consecutive beacons reset the device.
2005 */
2006 if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
2007 sc->bmisscount++;
be9b7259 2008 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
fa1c114f
JS
2009 "missed %u consecutive beacons\n", sc->bmisscount);
2010 if (sc->bmisscount > 3) { /* NB: 3 is a guess */
be9b7259 2011 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
fa1c114f
JS
2012 "stuck beacon time (%u missed)\n",
2013 sc->bmisscount);
2014 tasklet_schedule(&sc->restq);
2015 }
2016 return;
2017 }
2018 if (unlikely(sc->bmisscount != 0)) {
be9b7259 2019 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
fa1c114f
JS
2020 "resume beacon xmit after %u misses\n",
2021 sc->bmisscount);
2022 sc->bmisscount = 0;
2023 }
2024
2025 /*
2026 * Stop any current dma and put the new frame on the queue.
2027 * This should never fail since we check above that no frames
2028 * are still pending on the queue.
2029 */
2030 if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
2031 ATH5K_WARN(sc, "beacon queue %u didn't stop?\n", sc->bhalq);
2032 /* NB: hw still stops DMA, so proceed */
2033 }
fa1c114f
JS
2034
2035 ath5k_hw_put_tx_buf(ah, sc->bhalq, bf->daddr);
2036 ath5k_hw_tx_start(ah, sc->bhalq);
be9b7259 2037 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
fa1c114f
JS
2038 sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
2039
2040 sc->bsent++;
2041}
2042
2043
9804b98d
BR
2044/**
2045 * ath5k_beacon_update_timers - update beacon timers
2046 *
2047 * @sc: struct ath5k_softc pointer we are operating on
2048 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2049 * beacon timer update based on the current HW TSF.
2050 *
2051 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2052 * of a received beacon or the current local hardware TSF and write it to the
2053 * beacon timer registers.
2054 *
2055 * This is called in a variety of situations, e.g. when a beacon is received,
6ba81c2c 2056 * when a TSF update has been detected, but also when an new IBSS is created or
9804b98d
BR
2057 * when we otherwise know we have to update the timers, but we keep it in this
2058 * function to have it all together in one place.
2059 */
fa1c114f 2060static void
9804b98d 2061ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
fa1c114f
JS
2062{
2063 struct ath5k_hw *ah = sc->ah;
9804b98d
BR
2064 u32 nexttbtt, intval, hw_tu, bc_tu;
2065 u64 hw_tsf;
fa1c114f
JS
2066
2067 intval = sc->bintval & AR5K_BEACON_PERIOD;
2068 if (WARN_ON(!intval))
2069 return;
2070
9804b98d
BR
2071 /* beacon TSF converted to TU */
2072 bc_tu = TSF_TO_TU(bc_tsf);
fa1c114f 2073
9804b98d
BR
2074 /* current TSF converted to TU */
2075 hw_tsf = ath5k_hw_get_tsf64(ah);
2076 hw_tu = TSF_TO_TU(hw_tsf);
fa1c114f 2077
9804b98d
BR
2078#define FUDGE 3
2079 /* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2080 if (bc_tsf == -1) {
2081 /*
2082 * no beacons received, called internally.
2083 * just need to refresh timers based on HW TSF.
2084 */
2085 nexttbtt = roundup(hw_tu + FUDGE, intval);
2086 } else if (bc_tsf == 0) {
2087 /*
2088 * no beacon received, probably called by ath5k_reset_tsf().
2089 * reset TSF to start with 0.
2090 */
2091 nexttbtt = intval;
2092 intval |= AR5K_BEACON_RESET_TSF;
2093 } else if (bc_tsf > hw_tsf) {
2094 /*
2095 * beacon received, SW merge happend but HW TSF not yet updated.
2096 * not possible to reconfigure timers yet, but next time we
2097 * receive a beacon with the same BSSID, the hardware will
2098 * automatically update the TSF and then we need to reconfigure
2099 * the timers.
2100 */
2101 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2102 "need to wait for HW TSF sync\n");
2103 return;
2104 } else {
2105 /*
2106 * most important case for beacon synchronization between STA.
2107 *
2108 * beacon received and HW TSF has been already updated by HW.
2109 * update next TBTT based on the TSF of the beacon, but make
2110 * sure it is ahead of our local TSF timer.
2111 */
2112 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2113 }
2114#undef FUDGE
fa1c114f 2115
036cd1ec
BR
2116 sc->nexttbtt = nexttbtt;
2117
fa1c114f 2118 intval |= AR5K_BEACON_ENA;
fa1c114f 2119 ath5k_hw_init_beacon(ah, nexttbtt, intval);
9804b98d
BR
2120
2121 /*
2122 * debugging output last in order to preserve the time critical aspect
2123 * of this function
2124 */
2125 if (bc_tsf == -1)
2126 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2127 "reconfigured timers based on HW TSF\n");
2128 else if (bc_tsf == 0)
2129 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2130 "reset HW TSF and timers\n");
2131 else
2132 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2133 "updated timers based on beacon TSF\n");
2134
2135 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
04f93a87
DM
2136 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2137 (unsigned long long) bc_tsf,
2138 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
9804b98d
BR
2139 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2140 intval & AR5K_BEACON_PERIOD,
2141 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2142 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
fa1c114f
JS
2143}
2144
2145
036cd1ec
BR
2146/**
2147 * ath5k_beacon_config - Configure the beacon queues and interrupts
2148 *
2149 * @sc: struct ath5k_softc pointer we are operating on
fa1c114f
JS
2150 *
2151 * When operating in station mode we want to receive a BMISS interrupt when we
2152 * stop seeing beacons from the AP we've associated with so we can look for
2153 * another AP to associate with.
2154 *
036cd1ec 2155 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
6ba81c2c 2156 * interrupts to detect TSF updates only.
036cd1ec
BR
2157 *
2158 * AP mode is missing.
fa1c114f
JS
2159 */
2160static void
2161ath5k_beacon_config(struct ath5k_softc *sc)
2162{
2163 struct ath5k_hw *ah = sc->ah;
2164
2165 ath5k_hw_set_intr(ah, 0);
2166 sc->bmisscount = 0;
dc1968e7 2167 sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
fa1c114f
JS
2168
2169 if (sc->opmode == IEEE80211_IF_TYPE_STA) {
2170 sc->imask |= AR5K_INT_BMISS;
2171 } else if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2172 /*
036cd1ec
BR
2173 * In IBSS mode we use a self-linked tx descriptor and let the
2174 * hardware send the beacons automatically. We have to load it
fa1c114f 2175 * only once here.
036cd1ec 2176 * We use the SWBA interrupt only to keep track of the beacon
6ba81c2c 2177 * timers in order to detect automatic TSF updates.
fa1c114f
JS
2178 */
2179 ath5k_beaconq_config(sc);
fa1c114f 2180
036cd1ec
BR
2181 sc->imask |= AR5K_INT_SWBA;
2182
2183 if (ath5k_hw_hasveol(ah))
fa1c114f
JS
2184 ath5k_beacon_send(sc);
2185 }
2186 /* TODO else AP */
2187
2188 ath5k_hw_set_intr(ah, sc->imask);
2189}
2190
2191
2192/********************\
2193* Interrupt handling *
2194\********************/
2195
2196static int
2197ath5k_init(struct ath5k_softc *sc)
2198{
2199 int ret;
2200
2201 mutex_lock(&sc->lock);
2202
2203 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2204
2205 /*
2206 * Stop anything previously setup. This is safe
2207 * no matter this is the first time through or not.
2208 */
2209 ath5k_stop_locked(sc);
2210
2211 /*
2212 * The basic interface to setting the hardware in a good
2213 * state is ``reset''. On return the hardware is known to
2214 * be powered up and with interrupts disabled. This must
2215 * be followed by initialization of the appropriate bits
2216 * and then setup of the interrupt mask.
2217 */
d8ee398d
LR
2218 sc->curchan = sc->hw->conf.channel;
2219 sc->curband = &sc->sbands[sc->curchan->band];
fa1c114f
JS
2220 ret = ath5k_hw_reset(sc->ah, sc->opmode, sc->curchan, false);
2221 if (ret) {
2222 ATH5K_ERR(sc, "unable to reset hardware: %d\n", ret);
2223 goto done;
2224 }
2225 /*
2226 * This is needed only to setup initial state
2227 * but it's best done after a reset.
2228 */
2229 ath5k_hw_set_txpower_limit(sc->ah, 0);
2230
2231 /*
2232 * Setup the hardware after reset: the key cache
2233 * is filled as needed and the receive engine is
2234 * set going. Frame transmit is handled entirely
2235 * in the frame output path; there's nothing to do
2236 * here except setup the interrupt mask.
2237 */
2238 ret = ath5k_rx_start(sc);
2239 if (ret)
2240 goto done;
2241
2242 /*
2243 * Enable interrupts.
2244 */
2245 sc->imask = AR5K_INT_RX | AR5K_INT_TX | AR5K_INT_RXEOL |
194828a2
NK
2246 AR5K_INT_RXORN | AR5K_INT_FATAL | AR5K_INT_GLOBAL |
2247 AR5K_INT_MIB;
fa1c114f
JS
2248
2249 ath5k_hw_set_intr(sc->ah, sc->imask);
2250 /* Set ack to be sent at low bit-rates */
2251 ath5k_hw_set_ack_bitrate_high(sc->ah, false);
2252
2253 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2254 msecs_to_jiffies(ath5k_calinterval * 1000)));
2255
2256 ret = 0;
2257done:
274c7c36 2258 mmiowb();
fa1c114f
JS
2259 mutex_unlock(&sc->lock);
2260 return ret;
2261}
2262
2263static int
2264ath5k_stop_locked(struct ath5k_softc *sc)
2265{
2266 struct ath5k_hw *ah = sc->ah;
2267
2268 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2269 test_bit(ATH_STAT_INVALID, sc->status));
2270
2271 /*
2272 * Shutdown the hardware and driver:
2273 * stop output from above
2274 * disable interrupts
2275 * turn off timers
2276 * turn off the radio
2277 * clear transmit machinery
2278 * clear receive machinery
2279 * drain and release tx queues
2280 * reclaim beacon resources
2281 * power down hardware
2282 *
2283 * Note that some of this work is not possible if the
2284 * hardware is gone (invalid).
2285 */
2286 ieee80211_stop_queues(sc->hw);
2287
2288 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
3a078876 2289 ath5k_led_off(sc);
fa1c114f 2290 ath5k_hw_set_intr(ah, 0);
274c7c36 2291 synchronize_irq(sc->pdev->irq);
fa1c114f
JS
2292 }
2293 ath5k_txq_cleanup(sc);
2294 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2295 ath5k_rx_stop(sc);
2296 ath5k_hw_phy_disable(ah);
2297 } else
2298 sc->rxlink = NULL;
2299
2300 return 0;
2301}
2302
2303/*
2304 * Stop the device, grabbing the top-level lock to protect
2305 * against concurrent entry through ath5k_init (which can happen
2306 * if another thread does a system call and the thread doing the
2307 * stop is preempted).
2308 */
2309static int
2310ath5k_stop_hw(struct ath5k_softc *sc)
2311{
2312 int ret;
2313
2314 mutex_lock(&sc->lock);
2315 ret = ath5k_stop_locked(sc);
2316 if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2317 /*
2318 * Set the chip in full sleep mode. Note that we are
2319 * careful to do this only when bringing the interface
2320 * completely to a stop. When the chip is in this state
2321 * it must be carefully woken up or references to
2322 * registers in the PCI clock domain may freeze the bus
2323 * (and system). This varies by chip and is mostly an
2324 * issue with newer parts that go to sleep more quickly.
2325 */
2326 if (sc->ah->ah_mac_srev >= 0x78) {
2327 /*
2328 * XXX
2329 * don't put newer MAC revisions > 7.8 to sleep because
2330 * of the above mentioned problems
2331 */
2332 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mac version > 7.8, "
2333 "not putting device to sleep\n");
2334 } else {
2335 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2336 "putting device to full sleep\n");
2337 ath5k_hw_set_power(sc->ah, AR5K_PM_FULL_SLEEP, true, 0);
2338 }
2339 }
2340 ath5k_txbuf_free(sc, sc->bbuf);
274c7c36 2341 mmiowb();
fa1c114f
JS
2342 mutex_unlock(&sc->lock);
2343
2344 del_timer_sync(&sc->calib_tim);
10488f8a
JS
2345 tasklet_kill(&sc->rxtq);
2346 tasklet_kill(&sc->txtq);
2347 tasklet_kill(&sc->restq);
fa1c114f
JS
2348
2349 return ret;
2350}
2351
2352static irqreturn_t
2353ath5k_intr(int irq, void *dev_id)
2354{
2355 struct ath5k_softc *sc = dev_id;
2356 struct ath5k_hw *ah = sc->ah;
2357 enum ath5k_int status;
2358 unsigned int counter = 1000;
2359
2360 if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2361 !ath5k_hw_is_intr_pending(ah)))
2362 return IRQ_NONE;
2363
2364 do {
2365 /*
2366 * Figure out the reason(s) for the interrupt. Note
2367 * that get_isr returns a pseudo-ISR that may include
2368 * bits we haven't explicitly enabled so we mask the
2369 * value to insure we only process bits we requested.
2370 */
2371 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2372 ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2373 status, sc->imask);
2374 status &= sc->imask; /* discard unasked for bits */
2375 if (unlikely(status & AR5K_INT_FATAL)) {
2376 /*
2377 * Fatal errors are unrecoverable.
2378 * Typically these are caused by DMA errors.
2379 */
2380 tasklet_schedule(&sc->restq);
2381 } else if (unlikely(status & AR5K_INT_RXORN)) {
2382 tasklet_schedule(&sc->restq);
2383 } else {
2384 if (status & AR5K_INT_SWBA) {
2385 /*
2386 * Software beacon alert--time to send a beacon.
2387 * Handle beacon transmission directly; deferring
2388 * this is too slow to meet timing constraints
2389 * under load.
036cd1ec
BR
2390 *
2391 * In IBSS mode we use this interrupt just to
2392 * keep track of the next TBTT (target beacon
6ba81c2c
BR
2393 * transmission time) in order to detect wether
2394 * automatic TSF updates happened.
fa1c114f 2395 */
036cd1ec
BR
2396 if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2397 /* XXX: only if VEOL suppported */
2398 u64 tsf = ath5k_hw_get_tsf64(ah);
2399 sc->nexttbtt += sc->bintval;
2400 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
04f93a87
DM
2401 "SWBA nexttbtt: %x hw_tu: %x "
2402 "TSF: %llx\n",
2403 sc->nexttbtt,
2404 TSF_TO_TU(tsf),
2405 (unsigned long long) tsf);
036cd1ec
BR
2406 } else {
2407 ath5k_beacon_send(sc);
2408 }
fa1c114f
JS
2409 }
2410 if (status & AR5K_INT_RXEOL) {
2411 /*
2412 * NB: the hardware should re-read the link when
2413 * RXE bit is written, but it doesn't work at
2414 * least on older hardware revs.
2415 */
2416 sc->rxlink = NULL;
2417 }
2418 if (status & AR5K_INT_TXURN) {
2419 /* bump tx trigger level */
2420 ath5k_hw_update_tx_triglevel(ah, true);
2421 }
2422 if (status & AR5K_INT_RX)
2423 tasklet_schedule(&sc->rxtq);
2424 if (status & AR5K_INT_TX)
2425 tasklet_schedule(&sc->txtq);
2426 if (status & AR5K_INT_BMISS) {
2427 }
2428 if (status & AR5K_INT_MIB) {
194828a2
NK
2429 /*
2430 * These stats are also used for ANI i think
2431 * so how about updating them more often ?
2432 */
2433 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
fa1c114f
JS
2434 }
2435 }
2436 } while (ath5k_hw_is_intr_pending(ah) && counter-- > 0);
2437
2438 if (unlikely(!counter))
2439 ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2440
2441 return IRQ_HANDLED;
2442}
2443
2444static void
2445ath5k_tasklet_reset(unsigned long data)
2446{
2447 struct ath5k_softc *sc = (void *)data;
2448
2449 ath5k_reset(sc->hw);
2450}
2451
2452/*
2453 * Periodically recalibrate the PHY to account
2454 * for temperature/environment changes.
2455 */
2456static void
2457ath5k_calibrate(unsigned long data)
2458{
2459 struct ath5k_softc *sc = (void *)data;
2460 struct ath5k_hw *ah = sc->ah;
2461
2462 ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
400ec45a
LR
2463 ieee80211_frequency_to_channel(sc->curchan->center_freq),
2464 sc->curchan->hw_value);
fa1c114f
JS
2465
2466 if (ath5k_hw_get_rf_gain(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2467 /*
2468 * Rfgain is out of bounds, reset the chip
2469 * to load new gain values.
2470 */
2471 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2472 ath5k_reset(sc->hw);
2473 }
2474 if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2475 ATH5K_ERR(sc, "calibration of channel %u failed\n",
400ec45a
LR
2476 ieee80211_frequency_to_channel(
2477 sc->curchan->center_freq));
fa1c114f
JS
2478
2479 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2480 msecs_to_jiffies(ath5k_calinterval * 1000)));
2481}
2482
2483
2484
2485/***************\
2486* LED functions *
2487\***************/
2488
2489static void
3a078876 2490ath5k_led_enable(struct ath5k_softc *sc)
fa1c114f 2491{
3a078876
BC
2492 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
2493 ath5k_hw_set_gpio_output(sc->ah, sc->led_pin);
2494 ath5k_led_off(sc);
fa1c114f
JS
2495 }
2496}
2497
fa1c114f 2498static void
3a078876 2499ath5k_led_on(struct ath5k_softc *sc)
fa1c114f 2500{
3a078876
BC
2501 if (!test_bit(ATH_STAT_LEDSOFT, sc->status))
2502 return;
fa1c114f 2503 ath5k_hw_set_gpio(sc->ah, sc->led_pin, sc->led_on);
fa1c114f
JS
2504}
2505
2506static void
3a078876 2507ath5k_led_off(struct ath5k_softc *sc)
fa1c114f 2508{
3a078876 2509 if (!test_bit(ATH_STAT_LEDSOFT, sc->status))
fa1c114f 2510 return;
3a078876
BC
2511 ath5k_hw_set_gpio(sc->ah, sc->led_pin, !sc->led_on);
2512}
2513
2514static void
2515ath5k_led_brightness_set(struct led_classdev *led_dev,
2516 enum led_brightness brightness)
2517{
2518 struct ath5k_led *led = container_of(led_dev, struct ath5k_led,
2519 led_dev);
2520
2521 if (brightness == LED_OFF)
2522 ath5k_led_off(led->sc);
2523 else
2524 ath5k_led_on(led->sc);
2525}
2526
2527static int
2528ath5k_register_led(struct ath5k_softc *sc, struct ath5k_led *led,
2529 const char *name, char *trigger)
2530{
2531 int err;
2532
2533 led->sc = sc;
2534 strncpy(led->name, name, sizeof(led->name));
2535 led->led_dev.name = led->name;
2536 led->led_dev.default_trigger = trigger;
2537 led->led_dev.brightness_set = ath5k_led_brightness_set;
2538
2539 err = led_classdev_register(&sc->pdev->dev, &led->led_dev);
2540 if (err)
2541 {
2542 ATH5K_WARN(sc, "could not register LED %s\n", name);
2543 led->sc = NULL;
fa1c114f 2544 }
3a078876 2545 return err;
fa1c114f
JS
2546}
2547
3a078876
BC
2548static void
2549ath5k_unregister_led(struct ath5k_led *led)
2550{
2551 if (!led->sc)
2552 return;
2553 led_classdev_unregister(&led->led_dev);
2554 ath5k_led_off(led->sc);
2555 led->sc = NULL;
2556}
2557
2558static void
2559ath5k_unregister_leds(struct ath5k_softc *sc)
2560{
2561 ath5k_unregister_led(&sc->rx_led);
2562 ath5k_unregister_led(&sc->tx_led);
2563}
2564
2565
2566static int
2567ath5k_init_leds(struct ath5k_softc *sc)
2568{
2569 int ret = 0;
2570 struct ieee80211_hw *hw = sc->hw;
2571 struct pci_dev *pdev = sc->pdev;
2572 char name[ATH5K_LED_MAX_NAME_LEN + 1];
2573
3a078876
BC
2574 /*
2575 * Auto-enable soft led processing for IBM cards and for
2576 * 5211 minipci cards.
2577 */
2578 if (pdev->device == PCI_DEVICE_ID_ATHEROS_AR5212_IBM ||
2579 pdev->device == PCI_DEVICE_ID_ATHEROS_AR5211) {
2580 __set_bit(ATH_STAT_LEDSOFT, sc->status);
2581 sc->led_pin = 0;
734b5aa9 2582 sc->led_on = 0; /* active low */
3a078876
BC
2583 }
2584 /* Enable softled on PIN1 on HP Compaq nc6xx, nc4000 & nx5000 laptops */
2585 if (pdev->subsystem_vendor == PCI_VENDOR_ID_COMPAQ) {
2586 __set_bit(ATH_STAT_LEDSOFT, sc->status);
2587 sc->led_pin = 1;
734b5aa9 2588 sc->led_on = 1; /* active high */
3a078876
BC
2589 }
2590 if (!test_bit(ATH_STAT_LEDSOFT, sc->status))
2591 goto out;
2592
2593 ath5k_led_enable(sc);
2594
2595 snprintf(name, sizeof(name), "ath5k-%s::rx", wiphy_name(hw->wiphy));
2596 ret = ath5k_register_led(sc, &sc->rx_led, name,
2597 ieee80211_get_rx_led_name(hw));
2598 if (ret)
2599 goto out;
2600
2601 snprintf(name, sizeof(name), "ath5k-%s::tx", wiphy_name(hw->wiphy));
2602 ret = ath5k_register_led(sc, &sc->tx_led, name,
2603 ieee80211_get_tx_led_name(hw));
2604out:
2605 return ret;
2606}
fa1c114f
JS
2607
2608
2609/********************\
2610* Mac80211 functions *
2611\********************/
2612
2613static int
e039fa4a 2614ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
fa1c114f
JS
2615{
2616 struct ath5k_softc *sc = hw->priv;
2617 struct ath5k_buf *bf;
2618 unsigned long flags;
2619 int hdrlen;
2620 int pad;
2621
2622 ath5k_debug_dump_skb(sc, skb, "TX ", 1);
2623
2624 if (sc->opmode == IEEE80211_IF_TYPE_MNTR)
2625 ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
2626
2627 /*
2628 * the hardware expects the header padded to 4 byte boundaries
2629 * if this is not the case we add the padding after the header
2630 */
2631 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2632 if (hdrlen & 3) {
2633 pad = hdrlen % 4;
2634 if (skb_headroom(skb) < pad) {
2635 ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough"
2636 " headroom to pad %d\n", hdrlen, pad);
2637 return -1;
2638 }
2639 skb_push(skb, pad);
2640 memmove(skb->data, skb->data+pad, hdrlen);
2641 }
2642
fa1c114f
JS
2643 spin_lock_irqsave(&sc->txbuflock, flags);
2644 if (list_empty(&sc->txbuf)) {
2645 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
2646 spin_unlock_irqrestore(&sc->txbuflock, flags);
e2530083 2647 ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
fa1c114f
JS
2648 return -1;
2649 }
2650 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
2651 list_del(&bf->list);
2652 sc->txbuf_len--;
2653 if (list_empty(&sc->txbuf))
2654 ieee80211_stop_queues(hw);
2655 spin_unlock_irqrestore(&sc->txbuflock, flags);
2656
2657 bf->skb = skb;
2658
e039fa4a 2659 if (ath5k_txbuf_setup(sc, bf)) {
fa1c114f
JS
2660 bf->skb = NULL;
2661 spin_lock_irqsave(&sc->txbuflock, flags);
2662 list_add_tail(&bf->list, &sc->txbuf);
2663 sc->txbuf_len++;
2664 spin_unlock_irqrestore(&sc->txbuflock, flags);
2665 dev_kfree_skb_any(skb);
2666 return 0;
2667 }
2668
2669 return 0;
2670}
2671
2672static int
2673ath5k_reset(struct ieee80211_hw *hw)
2674{
2675 struct ath5k_softc *sc = hw->priv;
2676 struct ath5k_hw *ah = sc->ah;
2677 int ret;
2678
2679 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
fa1c114f
JS
2680
2681 ath5k_hw_set_intr(ah, 0);
2682 ath5k_txq_cleanup(sc);
2683 ath5k_rx_stop(sc);
2684
2685 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
2686 if (unlikely(ret)) {
2687 ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2688 goto err;
2689 }
2690 ath5k_hw_set_txpower_limit(sc->ah, 0);
2691
2692 ret = ath5k_rx_start(sc);
2693 if (unlikely(ret)) {
2694 ATH5K_ERR(sc, "can't start recv logic\n");
2695 goto err;
2696 }
2697 /*
2698 * We may be doing a reset in response to an ioctl
2699 * that changes the channel so update any state that
2700 * might change as a result.
2701 *
2702 * XXX needed?
2703 */
2704/* ath5k_chan_change(sc, c); */
2705 ath5k_beacon_config(sc);
2706 /* intrs are started by ath5k_beacon_config */
2707
2708 ieee80211_wake_queues(hw);
2709
2710 return 0;
2711err:
2712 return ret;
2713}
2714
2715static int ath5k_start(struct ieee80211_hw *hw)
2716{
2717 return ath5k_init(hw->priv);
2718}
2719
2720static void ath5k_stop(struct ieee80211_hw *hw)
2721{
2722 ath5k_stop_hw(hw->priv);
2723}
2724
2725static int ath5k_add_interface(struct ieee80211_hw *hw,
2726 struct ieee80211_if_init_conf *conf)
2727{
2728 struct ath5k_softc *sc = hw->priv;
2729 int ret;
2730
2731 mutex_lock(&sc->lock);
32bfd35d 2732 if (sc->vif) {
fa1c114f
JS
2733 ret = 0;
2734 goto end;
2735 }
2736
32bfd35d 2737 sc->vif = conf->vif;
fa1c114f
JS
2738
2739 switch (conf->type) {
2740 case IEEE80211_IF_TYPE_STA:
2741 case IEEE80211_IF_TYPE_IBSS:
2742 case IEEE80211_IF_TYPE_MNTR:
2743 sc->opmode = conf->type;
2744 break;
2745 default:
2746 ret = -EOPNOTSUPP;
2747 goto end;
2748 }
2749 ret = 0;
2750end:
2751 mutex_unlock(&sc->lock);
2752 return ret;
2753}
2754
2755static void
2756ath5k_remove_interface(struct ieee80211_hw *hw,
2757 struct ieee80211_if_init_conf *conf)
2758{
2759 struct ath5k_softc *sc = hw->priv;
2760
2761 mutex_lock(&sc->lock);
32bfd35d 2762 if (sc->vif != conf->vif)
fa1c114f
JS
2763 goto end;
2764
32bfd35d 2765 sc->vif = NULL;
fa1c114f
JS
2766end:
2767 mutex_unlock(&sc->lock);
2768}
2769
d8ee398d
LR
2770/*
2771 * TODO: Phy disable/diversity etc
2772 */
fa1c114f
JS
2773static int
2774ath5k_config(struct ieee80211_hw *hw,
2775 struct ieee80211_conf *conf)
2776{
2777 struct ath5k_softc *sc = hw->priv;
2778
e535c1ac 2779 sc->bintval = conf->beacon_int;
d8ee398d 2780 sc->power_level = conf->power_level;
fa1c114f 2781
d8ee398d 2782 return ath5k_chan_set(sc, conf->channel);
fa1c114f
JS
2783}
2784
2785static int
32bfd35d 2786ath5k_config_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
fa1c114f
JS
2787 struct ieee80211_if_conf *conf)
2788{
2789 struct ath5k_softc *sc = hw->priv;
2790 struct ath5k_hw *ah = sc->ah;
2791 int ret;
2792
2793 /* Set to a reasonable value. Note that this will
2794 * be set to mac80211's value at ath5k_config(). */
e535c1ac 2795 sc->bintval = 1000;
fa1c114f 2796 mutex_lock(&sc->lock);
32bfd35d 2797 if (sc->vif != vif) {
fa1c114f
JS
2798 ret = -EIO;
2799 goto unlock;
2800 }
2801 if (conf->bssid) {
2802 /* Cache for later use during resets */
2803 memcpy(ah->ah_bssid, conf->bssid, ETH_ALEN);
2804 /* XXX: assoc id is set to 0 for now, mac80211 doesn't have
2805 * a clean way of letting us retrieve this yet. */
2806 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
274c7c36 2807 mmiowb();
fa1c114f 2808 }
9d139c81
JB
2809
2810 if (conf->changed & IEEE80211_IFCC_BEACON &&
2811 vif->type == IEEE80211_IF_TYPE_IBSS) {
2812 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
2813 if (!beacon) {
2814 ret = -ENOMEM;
2815 goto unlock;
2816 }
2817 /* call old handler for now */
2818 ath5k_beacon_update(hw, beacon);
2819 }
2820
fa1c114f
JS
2821 mutex_unlock(&sc->lock);
2822
2823 return ath5k_reset(hw);
2824unlock:
2825 mutex_unlock(&sc->lock);
2826 return ret;
2827}
2828
2829#define SUPPORTED_FIF_FLAGS \
2830 FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
2831 FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2832 FIF_BCN_PRBRESP_PROMISC
2833/*
2834 * o always accept unicast, broadcast, and multicast traffic
2835 * o multicast traffic for all BSSIDs will be enabled if mac80211
2836 * says it should be
2837 * o maintain current state of phy ofdm or phy cck error reception.
2838 * If the hardware detects any of these type of errors then
2839 * ath5k_hw_get_rx_filter() will pass to us the respective
2840 * hardware filters to be able to receive these type of frames.
2841 * o probe request frames are accepted only when operating in
2842 * hostap, adhoc, or monitor modes
2843 * o enable promiscuous mode according to the interface state
2844 * o accept beacons:
2845 * - when operating in adhoc mode so the 802.11 layer creates
2846 * node table entries for peers,
2847 * - when operating in station mode for collecting rssi data when
2848 * the station is otherwise quiet, or
2849 * - when scanning
2850 */
2851static void ath5k_configure_filter(struct ieee80211_hw *hw,
2852 unsigned int changed_flags,
2853 unsigned int *new_flags,
2854 int mc_count, struct dev_mc_list *mclist)
2855{
2856 struct ath5k_softc *sc = hw->priv;
2857 struct ath5k_hw *ah = sc->ah;
2858 u32 mfilt[2], val, rfilt;
2859 u8 pos;
2860 int i;
2861
2862 mfilt[0] = 0;
2863 mfilt[1] = 0;
2864
2865 /* Only deal with supported flags */
2866 changed_flags &= SUPPORTED_FIF_FLAGS;
2867 *new_flags &= SUPPORTED_FIF_FLAGS;
2868
2869 /* If HW detects any phy or radar errors, leave those filters on.
2870 * Also, always enable Unicast, Broadcasts and Multicast
2871 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2872 rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
2873 (AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
2874 AR5K_RX_FILTER_MCAST);
2875
2876 if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
2877 if (*new_flags & FIF_PROMISC_IN_BSS) {
2878 rfilt |= AR5K_RX_FILTER_PROM;
2879 __set_bit(ATH_STAT_PROMISC, sc->status);
2880 }
2881 else
2882 __clear_bit(ATH_STAT_PROMISC, sc->status);
2883 }
2884
2885 /* Note, AR5K_RX_FILTER_MCAST is already enabled */
2886 if (*new_flags & FIF_ALLMULTI) {
2887 mfilt[0] = ~0;
2888 mfilt[1] = ~0;
2889 } else {
2890 for (i = 0; i < mc_count; i++) {
2891 if (!mclist)
2892 break;
2893 /* calculate XOR of eight 6-bit values */
533dd1b0 2894 val = get_unaligned_le32(mclist->dmi_addr + 0);
fa1c114f 2895 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
533dd1b0 2896 val = get_unaligned_le32(mclist->dmi_addr + 3);
fa1c114f
JS
2897 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2898 pos &= 0x3f;
2899 mfilt[pos / 32] |= (1 << (pos % 32));
2900 /* XXX: we might be able to just do this instead,
2901 * but not sure, needs testing, if we do use this we'd
2902 * neet to inform below to not reset the mcast */
2903 /* ath5k_hw_set_mcast_filterindex(ah,
2904 * mclist->dmi_addr[5]); */
2905 mclist = mclist->next;
2906 }
2907 }
2908
2909 /* This is the best we can do */
2910 if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
2911 rfilt |= AR5K_RX_FILTER_PHYERR;
2912
2913 /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
2914 * and probes for any BSSID, this needs testing */
2915 if (*new_flags & FIF_BCN_PRBRESP_PROMISC)
2916 rfilt |= AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ;
2917
2918 /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2919 * set we should only pass on control frames for this
2920 * station. This needs testing. I believe right now this
2921 * enables *all* control frames, which is OK.. but
2922 * but we should see if we can improve on granularity */
2923 if (*new_flags & FIF_CONTROL)
2924 rfilt |= AR5K_RX_FILTER_CONTROL;
2925
2926 /* Additional settings per mode -- this is per ath5k */
2927
2928 /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
2929
2930 if (sc->opmode == IEEE80211_IF_TYPE_MNTR)
2931 rfilt |= AR5K_RX_FILTER_CONTROL | AR5K_RX_FILTER_BEACON |
2932 AR5K_RX_FILTER_PROBEREQ | AR5K_RX_FILTER_PROM;
2933 if (sc->opmode != IEEE80211_IF_TYPE_STA)
2934 rfilt |= AR5K_RX_FILTER_PROBEREQ;
2935 if (sc->opmode != IEEE80211_IF_TYPE_AP &&
8e5f3d0a 2936 sc->opmode != IEEE80211_IF_TYPE_MESH_POINT &&
fa1c114f
JS
2937 test_bit(ATH_STAT_PROMISC, sc->status))
2938 rfilt |= AR5K_RX_FILTER_PROM;
2939 if (sc->opmode == IEEE80211_IF_TYPE_STA ||
2940 sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2941 rfilt |= AR5K_RX_FILTER_BEACON;
2942 }
2943
2944 /* Set filters */
2945 ath5k_hw_set_rx_filter(ah,rfilt);
2946
2947 /* Set multicast bits */
2948 ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
2949 /* Set the cached hw filter flags, this will alter actually
2950 * be set in HW */
2951 sc->filter_flags = rfilt;
2952}
2953
2954static int
2955ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
2956 const u8 *local_addr, const u8 *addr,
2957 struct ieee80211_key_conf *key)
2958{
2959 struct ath5k_softc *sc = hw->priv;
2960 int ret = 0;
2961
2962 switch(key->alg) {
2963 case ALG_WEP:
6844e63a
LR
2964 /* XXX: fix hardware encryption, its not working. For now
2965 * allow software encryption */
2966 /* break; */
fa1c114f
JS
2967 case ALG_TKIP:
2968 case ALG_CCMP:
2969 return -EOPNOTSUPP;
2970 default:
2971 WARN_ON(1);
2972 return -EINVAL;
2973 }
2974
2975 mutex_lock(&sc->lock);
2976
2977 switch (cmd) {
2978 case SET_KEY:
2979 ret = ath5k_hw_set_key(sc->ah, key->keyidx, key, addr);
2980 if (ret) {
2981 ATH5K_ERR(sc, "can't set the key\n");
2982 goto unlock;
2983 }
2984 __set_bit(key->keyidx, sc->keymap);
2985 key->hw_key_idx = key->keyidx;
2986 break;
2987 case DISABLE_KEY:
2988 ath5k_hw_reset_key(sc->ah, key->keyidx);
2989 __clear_bit(key->keyidx, sc->keymap);
2990 break;
2991 default:
2992 ret = -EINVAL;
2993 goto unlock;
2994 }
2995
2996unlock:
274c7c36 2997 mmiowb();
fa1c114f
JS
2998 mutex_unlock(&sc->lock);
2999 return ret;
3000}
3001
3002static int
3003ath5k_get_stats(struct ieee80211_hw *hw,
3004 struct ieee80211_low_level_stats *stats)
3005{
3006 struct ath5k_softc *sc = hw->priv;
194828a2
NK
3007 struct ath5k_hw *ah = sc->ah;
3008
3009 /* Force update */
3010 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
fa1c114f
JS
3011
3012 memcpy(stats, &sc->ll_stats, sizeof(sc->ll_stats));
3013
3014 return 0;
3015}
3016
3017static int
3018ath5k_get_tx_stats(struct ieee80211_hw *hw,
3019 struct ieee80211_tx_queue_stats *stats)
3020{
3021 struct ath5k_softc *sc = hw->priv;
3022
3023 memcpy(stats, &sc->tx_stats, sizeof(sc->tx_stats));
3024
3025 return 0;
3026}
3027
3028static u64
3029ath5k_get_tsf(struct ieee80211_hw *hw)
3030{
3031 struct ath5k_softc *sc = hw->priv;
3032
3033 return ath5k_hw_get_tsf64(sc->ah);
3034}
3035
3036static void
3037ath5k_reset_tsf(struct ieee80211_hw *hw)
3038{
3039 struct ath5k_softc *sc = hw->priv;
3040
9804b98d
BR
3041 /*
3042 * in IBSS mode we need to update the beacon timers too.
3043 * this will also reset the TSF if we call it with 0
3044 */
3045 if (sc->opmode == IEEE80211_IF_TYPE_IBSS)
3046 ath5k_beacon_update_timers(sc, 0);
3047 else
3048 ath5k_hw_reset_tsf(sc->ah);
fa1c114f
JS
3049}
3050
3051static int
e039fa4a 3052ath5k_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb)
fa1c114f
JS
3053{
3054 struct ath5k_softc *sc = hw->priv;
3055 int ret;
3056
3057 ath5k_debug_dump_skb(sc, skb, "BC ", 1);
3058
fa1c114f
JS
3059 if (sc->opmode != IEEE80211_IF_TYPE_IBSS) {
3060 ret = -EIO;
3061 goto end;
3062 }
3063
3064 ath5k_txbuf_free(sc, sc->bbuf);
3065 sc->bbuf->skb = skb;
e039fa4a 3066 ret = ath5k_beacon_setup(sc, sc->bbuf);
fa1c114f
JS
3067 if (ret)
3068 sc->bbuf->skb = NULL;
274c7c36 3069 else {
fa1c114f 3070 ath5k_beacon_config(sc);
274c7c36
JS
3071 mmiowb();
3072 }
fa1c114f
JS
3073
3074end:
fa1c114f
JS
3075 return ret;
3076}
3077