]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/wireless/iwlwifi/iwl-4965-hw.h
iwl3945: sync tx queue data structure with iwlagn
[mirror_ubuntu-zesty-kernel.git] / drivers / net / wireless / iwlwifi / iwl-4965-hw.h
CommitLineData
b481de9c
ZY
1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
eb7ae89c 8 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
b481de9c
ZY
9 *
10 * This program is free software; you can redistribute it and/or modify
01ebd063 11 * it under the terms of version 2 of the GNU General Public License as
b481de9c
ZY
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
759ef89f 28 * Intel Linux Wireless <ilw@linux.intel.com>
b481de9c
ZY
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
eb7ae89c 33 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
b481de9c
ZY
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
fcd427bb
BC
63/*
64 * Please use this file (iwl-4965-hw.h) only for hardware-related definitions.
5a36ba0e 65 * Use iwl-commands.h for uCode API definitions.
3e0d4cb1 66 * Use iwl-dev.h for driver implementation definitions.
fcd427bb 67 */
b481de9c
ZY
68
69#ifndef __iwl_4965_hw_h__
70#define __iwl_4965_hw_h__
71
4b52c39d
EG
72#include "iwl-fh.h"
73
a96a27f9 74/* EEPROM */
073d3f5f
TW
75#define IWL4965_EEPROM_IMG_SIZE 1024
76
1fea8e88
BC
77/*
78 * uCode queue management definitions ...
79 * Queue #4 is the command queue for 3945 and 4965; map it to Tx FIFO chnl 4.
80 * The first queue used for block-ack aggregation is #7 (4965 only).
81 * All block-ack aggregation queues should map to Tx DMA/FIFO channel 7.
82 */
5d08cd1d
CH
83#define IWL_CMD_QUEUE_NUM 4
84#define IWL_CMD_FIFO_NUM 4
7f3e4bb6 85#define IWL49_FIRST_AMPDU_QUEUE 7
5d08cd1d 86
5d08cd1d
CH
87/* Time constants */
88#define SHORT_SLOT_TIME 9
89#define LONG_SLOT_TIME 20
90
91/* RSSI to dBm */
250bdd21 92#define IWL49_RSSI_OFFSET 44
5d08cd1d 93
5d08cd1d 94
5d08cd1d 95
8f061891 96/* PCI registers */
e7b63581
TW
97#define PCI_CFG_RETRY_TIMEOUT 0x041
98#define PCI_CFG_POWER_SOURCE 0x0C8
99#define PCI_REG_WUM8 0x0E8
100#define PCI_CFG_LINK_CTRL 0x0F0
8f061891
TW
101
102/* PCI register values */
e7b63581
TW
103#define PCI_CFG_LINK_CTRL_VAL_L0S_EN 0x01
104#define PCI_CFG_LINK_CTRL_VAL_L1_EN 0x02
105#define PCI_CFG_CMD_REG_INT_DIS_MSK 0x04
5d08cd1d
CH
106#define PCI_CFG_PMC_PME_FROM_D3COLD_SUPPORT (0x80000000)
107
5d08cd1d 108
5d08cd1d
CH
109#define IWL_NUM_SCAN_RATES (2)
110
5d08cd1d 111#define IWL_DEFAULT_TX_RETRY 15
5d08cd1d
CH
112
113#define RX_QUEUE_SIZE 256
114#define RX_QUEUE_MASK 255
115#define RX_QUEUE_SIZE_LOG 8
116
5d08cd1d
CH
117/*
118 * RX related structures and functions
119 */
120#define RX_FREE_BUFFERS 64
121#define RX_LOW_WATERMARK 8
122
fcd427bb 123/* Size of one Rx buffer in host DRAM */
9ee1ba47
RR
124#define IWL_RX_BUF_SIZE_4K (4 * 1024)
125#define IWL_RX_BUF_SIZE_8K (8 * 1024)
fcd427bb
BC
126
127/* Sizes and addresses for instruction and data memory (SRAM) in
128 * 4965's embedded processor. Driver access is via HBUS_TARG_MEM_* regs. */
250bdd21 129#define IWL49_RTC_INST_LOWER_BOUND (0x000000)
12a81f60 130#define IWL49_RTC_INST_UPPER_BOUND (0x018000)
fcd427bb 131
250bdd21 132#define IWL49_RTC_DATA_LOWER_BOUND (0x800000)
12a81f60 133#define IWL49_RTC_DATA_UPPER_BOUND (0x80A000)
fcd427bb 134
250bdd21
SO
135#define IWL49_RTC_INST_SIZE (IWL49_RTC_INST_UPPER_BOUND - \
136 IWL49_RTC_INST_LOWER_BOUND)
137#define IWL49_RTC_DATA_SIZE (IWL49_RTC_DATA_UPPER_BOUND - \
138 IWL49_RTC_DATA_LOWER_BOUND)
b481de9c 139
250bdd21
SO
140#define IWL49_MAX_INST_SIZE IWL49_RTC_INST_SIZE
141#define IWL49_MAX_DATA_SIZE IWL49_RTC_DATA_SIZE
b481de9c 142
fcd427bb 143/* Size of uCode instruction memory in bootstrap state machine */
250bdd21 144#define IWL49_MAX_BSM_SIZE BSM_SRAM_SIZE
fcd427bb 145
bb8c093b 146static inline int iwl4965_hw_valid_rtc_data_addr(u32 addr)
b481de9c 147{
250bdd21 148 return (addr >= IWL49_RTC_DATA_LOWER_BOUND) &&
12a81f60 149 (addr < IWL49_RTC_DATA_UPPER_BOUND);
b481de9c
ZY
150}
151
5991b419 152/********************* START TEMPERATURE *************************************/
b481de9c 153
0c434c5a 154/**
5991b419
BC
155 * 4965 temperature calculation.
156 *
157 * The driver must calculate the device temperature before calculating
158 * a txpower setting (amplifier gain is temperature dependent). The
159 * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration
160 * values used for the life of the driver, and one of which (R4) is the
161 * real-time temperature indicator.
162 *
163 * uCode provides all 4 values to the driver via the "initialize alive"
164 * notification (see struct iwl4965_init_alive_resp). After the runtime uCode
165 * image loads, uCode updates the R4 value via statistics notifications
166 * (see STATISTICS_NOTIFICATION), which occur after each received beacon
167 * when associated, or can be requested via REPLY_STATISTICS_CMD.
168 *
169 * NOTE: uCode provides the R4 value as a 23-bit signed value. Driver
170 * must sign-extend to 32 bits before applying formula below.
171 *
172 * Formula:
173 *
174 * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8
175 *
176 * NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is
177 * an additional correction, which should be centered around 0 degrees
178 * Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for
179 * centering the 97/100 correction around 0 degrees K.
180 *
181 * Add 273 to Kelvin value to find degrees Celsius, for comparing current
182 * temperature with factory-measured temperatures when calculating txpower
183 * settings.
184 */
b481de9c
ZY
185#define TEMPERATURE_CALIB_KELVIN_OFFSET 8
186#define TEMPERATURE_CALIB_A_VAL 259
187
5991b419 188/* Limit range of calculated temperature to be between these Kelvin values */
b481de9c
ZY
189#define IWL_TX_POWER_TEMPERATURE_MIN (263)
190#define IWL_TX_POWER_TEMPERATURE_MAX (410)
191
192#define IWL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
193 (((t) < IWL_TX_POWER_TEMPERATURE_MIN) || \
194 ((t) > IWL_TX_POWER_TEMPERATURE_MAX))
195
5991b419
BC
196/********************* END TEMPERATURE ***************************************/
197
198/********************* START TXPOWER *****************************************/
199
0c434c5a
BC
200/**
201 * 4965 txpower calculations rely on information from three sources:
202 *
203 * 1) EEPROM
204 * 2) "initialize" alive notification
205 * 3) statistics notifications
206 *
207 * EEPROM data consists of:
208 *
209 * 1) Regulatory information (max txpower and channel usage flags) is provided
210 * separately for each channel that can possibly supported by 4965.
211 * 40 MHz wide (.11n fat) channels are listed separately from 20 MHz
212 * (legacy) channels.
213 *
214 * See struct iwl4965_eeprom_channel for format, and struct iwl4965_eeprom
215 * for locations in EEPROM.
216 *
217 * 2) Factory txpower calibration information is provided separately for
218 * sub-bands of contiguous channels. 2.4GHz has just one sub-band,
219 * but 5 GHz has several sub-bands.
220 *
221 * In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided.
222 *
223 * See struct iwl4965_eeprom_calib_info (and the tree of structures
224 * contained within it) for format, and struct iwl4965_eeprom for
225 * locations in EEPROM.
226 *
227 * "Initialization alive" notification (see struct iwl4965_init_alive_resp)
228 * consists of:
229 *
230 * 1) Temperature calculation parameters.
231 *
232 * 2) Power supply voltage measurement.
233 *
234 * 3) Tx gain compensation to balance 2 transmitters for MIMO use.
235 *
236 * Statistics notifications deliver:
237 *
238 * 1) Current values for temperature param R4.
239 */
5991b419 240
0c434c5a
BC
241/**
242 * To calculate a txpower setting for a given desired target txpower, channel,
243 * modulation bit rate, and transmitter chain (4965 has 2 transmitters to
244 * support MIMO and transmit diversity), driver must do the following:
245 *
246 * 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel.
247 * Do not exceed regulatory limit; reduce target txpower if necessary.
248 *
249 * If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
250 * 2 transmitters will be used simultaneously; driver must reduce the
251 * regulatory limit by 3 dB (half-power) for each transmitter, so the
252 * combined total output of the 2 transmitters is within regulatory limits.
253 *
254 *
255 * 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by
256 * backoff for this bit rate*. Do not exceed (saturation - backoff[rate]);
257 * reduce target txpower if necessary.
258 *
259 * Backoff values below are in 1/2 dB units (equivalent to steps in
260 * txpower gain tables):
261 *
262 * OFDM 6 - 36 MBit: 10 steps (5 dB)
263 * OFDM 48 MBit: 15 steps (7.5 dB)
264 * OFDM 54 MBit: 17 steps (8.5 dB)
265 * OFDM 60 MBit: 20 steps (10 dB)
266 * CCK all rates: 10 steps (5 dB)
267 *
268 * Backoff values apply to saturation txpower on a per-transmitter basis;
269 * when using MIMO (2 transmitters), each transmitter uses the same
270 * saturation level provided in EEPROM, and the same backoff values;
271 * no reduction (such as with regulatory txpower limits) is required.
272 *
273 * Saturation and Backoff values apply equally to 20 Mhz (legacy) channel
274 * widths and 40 Mhz (.11n fat) channel widths; there is no separate
275 * factory measurement for fat channels.
276 *
277 * The result of this step is the final target txpower. The rest of
278 * the steps figure out the proper settings for the device to achieve
279 * that target txpower.
280 *
281 *
a96a27f9
TW
282 * 3) Determine (EEPROM) calibration sub band for the target channel, by
283 * comparing against first and last channels in each sub band
0c434c5a
BC
284 * (see struct iwl4965_eeprom_calib_subband_info).
285 *
286 *
287 * 4) Linearly interpolate (EEPROM) factory calibration measurement sets,
a96a27f9 288 * referencing the 2 factory-measured (sample) channels within the sub band.
0c434c5a
BC
289 *
290 * Interpolation is based on difference between target channel's frequency
291 * and the sample channels' frequencies. Since channel numbers are based
292 * on frequency (5 MHz between each channel number), this is equivalent
293 * to interpolating based on channel number differences.
294 *
295 * Note that the sample channels may or may not be the channels at the
a96a27f9 296 * edges of the sub band. The target channel may be "outside" of the
0c434c5a
BC
297 * span of the sampled channels.
298 *
299 * Driver may choose the pair (for 2 Tx chains) of measurements (see
300 * struct iwl4965_eeprom_calib_ch_info) for which the actual measured
301 * txpower comes closest to the desired txpower. Usually, though,
302 * the middle set of measurements is closest to the regulatory limits,
303 * and is therefore a good choice for all txpower calculations (this
304 * assumes that high accuracy is needed for maximizing legal txpower,
305 * while lower txpower configurations do not need as much accuracy).
306 *
307 * Driver should interpolate both members of the chosen measurement pair,
308 * i.e. for both Tx chains (radio transmitters), unless the driver knows
309 * that only one of the chains will be used (e.g. only one tx antenna
310 * connected, but this should be unusual). The rate scaling algorithm
311 * switches antennas to find best performance, so both Tx chains will
312 * be used (although only one at a time) even for non-MIMO transmissions.
313 *
314 * Driver should interpolate factory values for temperature, gain table
315 * index, and actual power. The power amplifier detector values are
316 * not used by the driver.
317 *
318 * Sanity check: If the target channel happens to be one of the sample
319 * channels, the results should agree with the sample channel's
320 * measurements!
321 *
322 *
323 * 5) Find difference between desired txpower and (interpolated)
324 * factory-measured txpower. Using (interpolated) factory gain table index
325 * (shown elsewhere) as a starting point, adjust this index lower to
326 * increase txpower, or higher to decrease txpower, until the target
327 * txpower is reached. Each step in the gain table is 1/2 dB.
328 *
329 * For example, if factory measured txpower is 16 dBm, and target txpower
330 * is 13 dBm, add 6 steps to the factory gain index to reduce txpower
331 * by 3 dB.
332 *
333 *
334 * 6) Find difference between current device temperature and (interpolated)
335 * factory-measured temperature for sub-band. Factory values are in
336 * degrees Celsius. To calculate current temperature, see comments for
337 * "4965 temperature calculation".
338 *
339 * If current temperature is higher than factory temperature, driver must
a96a27f9 340 * increase gain (lower gain table index), and vice verse.
0c434c5a
BC
341 *
342 * Temperature affects gain differently for different channels:
343 *
344 * 2.4 GHz all channels: 3.5 degrees per half-dB step
345 * 5 GHz channels 34-43: 4.5 degrees per half-dB step
346 * 5 GHz channels >= 44: 4.0 degrees per half-dB step
347 *
348 * NOTE: Temperature can increase rapidly when transmitting, especially
349 * with heavy traffic at high txpowers. Driver should update
350 * temperature calculations often under these conditions to
351 * maintain strong txpower in the face of rising temperature.
352 *
353 *
354 * 7) Find difference between current power supply voltage indicator
355 * (from "initialize alive") and factory-measured power supply voltage
356 * indicator (EEPROM).
357 *
358 * If the current voltage is higher (indicator is lower) than factory
359 * voltage, gain should be reduced (gain table index increased) by:
360 *
361 * (eeprom - current) / 7
362 *
363 * If the current voltage is lower (indicator is higher) than factory
364 * voltage, gain should be increased (gain table index decreased) by:
365 *
366 * 2 * (current - eeprom) / 7
367 *
368 * If number of index steps in either direction turns out to be > 2,
369 * something is wrong ... just use 0.
370 *
371 * NOTE: Voltage compensation is independent of band/channel.
372 *
373 * NOTE: "Initialize" uCode measures current voltage, which is assumed
374 * to be constant after this initial measurement. Voltage
375 * compensation for txpower (number of steps in gain table)
376 * may be calculated once and used until the next uCode bootload.
377 *
378 *
379 * 8) If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
380 * adjust txpower for each transmitter chain, so txpower is balanced
381 * between the two chains. There are 5 pairs of tx_atten[group][chain]
382 * values in "initialize alive", one pair for each of 5 channel ranges:
383 *
384 * Group 0: 5 GHz channel 34-43
385 * Group 1: 5 GHz channel 44-70
386 * Group 2: 5 GHz channel 71-124
387 * Group 3: 5 GHz channel 125-200
388 * Group 4: 2.4 GHz all channels
389 *
390 * Add the tx_atten[group][chain] value to the index for the target chain.
391 * The values are signed, but are in pairs of 0 and a non-negative number,
392 * so as to reduce gain (if necessary) of the "hotter" channel. This
393 * avoids any need to double-check for regulatory compliance after
394 * this step.
395 *
396 *
397 * 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation
398 * value to the index:
399 *
400 * Hardware rev B: 9 steps (4.5 dB)
401 * Hardware rev C: 5 steps (2.5 dB)
402 *
403 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
404 * bits [3:2], 1 = B, 2 = C.
405 *
406 * NOTE: This compensation is in addition to any saturation backoff that
407 * might have been applied in an earlier step.
408 *
409 *
410 * 10) Select the gain table, based on band (2.4 vs 5 GHz).
411 *
412 * Limit the adjusted index to stay within the table!
413 *
414 *
415 * 11) Read gain table entries for DSP and radio gain, place into appropriate
416 * location(s) in command (struct iwl4965_txpowertable_cmd).
417 */
b481de9c 418
0c434c5a 419/* Limit range of txpower output target to be between these values */
b481de9c
ZY
420#define IWL_TX_POWER_TARGET_POWER_MIN (0) /* 0 dBm = 1 milliwatt */
421#define IWL_TX_POWER_TARGET_POWER_MAX (16) /* 16 dBm */
422
0c434c5a
BC
423/**
424 * When MIMO is used (2 transmitters operating simultaneously), driver should
425 * limit each transmitter to deliver a max of 3 dB below the regulatory limit
426 * for the device. That is, use half power for each transmitter, so total
427 * txpower is within regulatory limits.
428 *
429 * The value "6" represents number of steps in gain table to reduce power 3 dB.
430 * Each step is 1/2 dB.
431 */
432#define IWL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6)
433
434/**
435 * CCK gain compensation.
436 *
437 * When calculating txpowers for CCK, after making sure that the target power
438 * is within regulatory and saturation limits, driver must additionally
439 * back off gain by adding these values to the gain table index.
440 *
441 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
442 * bits [3:2], 1 = B, 2 = C.
443 */
444#define IWL_TX_POWER_CCK_COMPENSATION_B_STEP (9)
445#define IWL_TX_POWER_CCK_COMPENSATION_C_STEP (5)
446
447/*
448 * 4965 power supply voltage compensation for txpower
449 */
450#define TX_POWER_IWL_VOLTAGE_CODES_PER_03V (7)
451
452/**
453 * Gain tables.
454 *
455 * The following tables contain pair of values for setting txpower, i.e.
456 * gain settings for the output of the device's digital signal processor (DSP),
457 * and for the analog gain structure of the transmitter.
458 *
459 * Each entry in the gain tables represents a step of 1/2 dB. Note that these
460 * are *relative* steps, not indications of absolute output power. Output
461 * power varies with temperature, voltage, and channel frequency, and also
462 * requires consideration of average power (to satisfy regulatory constraints),
463 * and peak power (to avoid distortion of the output signal).
464 *
465 * Each entry contains two values:
466 * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
467 * linear value that multiplies the output of the digital signal processor,
468 * before being sent to the analog radio.
469 * 2) Radio gain. This sets the analog gain of the radio Tx path.
470 * It is a coarser setting, and behaves in a logarithmic (dB) fashion.
471 *
472 * EEPROM contains factory calibration data for txpower. This maps actual
473 * measured txpower levels to gain settings in the "well known" tables
474 * below ("well-known" means here that both factory calibration *and* the
475 * driver work with the same table).
476 *
477 * There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table
478 * has an extension (into negative indexes), in case the driver needs to
479 * boost power setting for high device temperatures (higher than would be
480 * present during factory calibration). A 5 Ghz EEPROM index of "40"
481 * corresponds to the 49th entry in the table used by the driver.
482 */
483#define MIN_TX_GAIN_INDEX (0) /* highest gain, lowest idx, 2.4 */
484#define MIN_TX_GAIN_INDEX_52GHZ_EXT (-9) /* highest gain, lowest idx, 5 */
485
486/**
487 * 2.4 GHz gain table
488 *
489 * Index Dsp gain Radio gain
490 * 0 110 0x3f (highest gain)
491 * 1 104 0x3f
492 * 2 98 0x3f
493 * 3 110 0x3e
494 * 4 104 0x3e
495 * 5 98 0x3e
496 * 6 110 0x3d
497 * 7 104 0x3d
498 * 8 98 0x3d
499 * 9 110 0x3c
500 * 10 104 0x3c
501 * 11 98 0x3c
502 * 12 110 0x3b
503 * 13 104 0x3b
504 * 14 98 0x3b
505 * 15 110 0x3a
506 * 16 104 0x3a
507 * 17 98 0x3a
508 * 18 110 0x39
509 * 19 104 0x39
510 * 20 98 0x39
511 * 21 110 0x38
512 * 22 104 0x38
513 * 23 98 0x38
514 * 24 110 0x37
515 * 25 104 0x37
516 * 26 98 0x37
517 * 27 110 0x36
518 * 28 104 0x36
519 * 29 98 0x36
520 * 30 110 0x35
521 * 31 104 0x35
522 * 32 98 0x35
523 * 33 110 0x34
524 * 34 104 0x34
525 * 35 98 0x34
526 * 36 110 0x33
527 * 37 104 0x33
528 * 38 98 0x33
529 * 39 110 0x32
530 * 40 104 0x32
531 * 41 98 0x32
532 * 42 110 0x31
533 * 43 104 0x31
534 * 44 98 0x31
535 * 45 110 0x30
536 * 46 104 0x30
537 * 47 98 0x30
538 * 48 110 0x6
539 * 49 104 0x6
540 * 50 98 0x6
541 * 51 110 0x5
542 * 52 104 0x5
543 * 53 98 0x5
544 * 54 110 0x4
545 * 55 104 0x4
546 * 56 98 0x4
547 * 57 110 0x3
548 * 58 104 0x3
549 * 59 98 0x3
550 * 60 110 0x2
551 * 61 104 0x2
552 * 62 98 0x2
553 * 63 110 0x1
554 * 64 104 0x1
555 * 65 98 0x1
556 * 66 110 0x0
557 * 67 104 0x0
558 * 68 98 0x0
559 * 69 97 0
560 * 70 96 0
561 * 71 95 0
562 * 72 94 0
563 * 73 93 0
564 * 74 92 0
565 * 75 91 0
566 * 76 90 0
567 * 77 89 0
568 * 78 88 0
569 * 79 87 0
570 * 80 86 0
571 * 81 85 0
572 * 82 84 0
573 * 83 83 0
574 * 84 82 0
575 * 85 81 0
576 * 86 80 0
577 * 87 79 0
578 * 88 78 0
579 * 89 77 0
580 * 90 76 0
581 * 91 75 0
582 * 92 74 0
583 * 93 73 0
584 * 94 72 0
585 * 95 71 0
586 * 96 70 0
587 * 97 69 0
588 * 98 68 0
589 */
590
591/**
592 * 5 GHz gain table
593 *
594 * Index Dsp gain Radio gain
595 * -9 123 0x3F (highest gain)
596 * -8 117 0x3F
597 * -7 110 0x3F
598 * -6 104 0x3F
599 * -5 98 0x3F
600 * -4 110 0x3E
601 * -3 104 0x3E
602 * -2 98 0x3E
603 * -1 110 0x3D
604 * 0 104 0x3D
605 * 1 98 0x3D
606 * 2 110 0x3C
607 * 3 104 0x3C
608 * 4 98 0x3C
609 * 5 110 0x3B
610 * 6 104 0x3B
611 * 7 98 0x3B
612 * 8 110 0x3A
613 * 9 104 0x3A
614 * 10 98 0x3A
615 * 11 110 0x39
616 * 12 104 0x39
617 * 13 98 0x39
618 * 14 110 0x38
619 * 15 104 0x38
620 * 16 98 0x38
621 * 17 110 0x37
622 * 18 104 0x37
623 * 19 98 0x37
624 * 20 110 0x36
625 * 21 104 0x36
626 * 22 98 0x36
627 * 23 110 0x35
628 * 24 104 0x35
629 * 25 98 0x35
630 * 26 110 0x34
631 * 27 104 0x34
632 * 28 98 0x34
633 * 29 110 0x33
634 * 30 104 0x33
635 * 31 98 0x33
636 * 32 110 0x32
637 * 33 104 0x32
638 * 34 98 0x32
639 * 35 110 0x31
640 * 36 104 0x31
641 * 37 98 0x31
642 * 38 110 0x30
643 * 39 104 0x30
644 * 40 98 0x30
645 * 41 110 0x25
646 * 42 104 0x25
647 * 43 98 0x25
648 * 44 110 0x24
649 * 45 104 0x24
650 * 46 98 0x24
651 * 47 110 0x23
652 * 48 104 0x23
653 * 49 98 0x23
654 * 50 110 0x22
655 * 51 104 0x18
656 * 52 98 0x18
657 * 53 110 0x17
658 * 54 104 0x17
659 * 55 98 0x17
660 * 56 110 0x16
661 * 57 104 0x16
662 * 58 98 0x16
663 * 59 110 0x15
664 * 60 104 0x15
665 * 61 98 0x15
666 * 62 110 0x14
667 * 63 104 0x14
668 * 64 98 0x14
669 * 65 110 0x13
670 * 66 104 0x13
671 * 67 98 0x13
672 * 68 110 0x12
673 * 69 104 0x08
674 * 70 98 0x08
675 * 71 110 0x07
676 * 72 104 0x07
677 * 73 98 0x07
678 * 74 110 0x06
679 * 75 104 0x06
680 * 76 98 0x06
681 * 77 110 0x05
682 * 78 104 0x05
683 * 79 98 0x05
684 * 80 110 0x04
685 * 81 104 0x04
686 * 82 98 0x04
687 * 83 110 0x03
688 * 84 104 0x03
689 * 85 98 0x03
690 * 86 110 0x02
691 * 87 104 0x02
692 * 88 98 0x02
693 * 89 110 0x01
694 * 90 104 0x01
695 * 91 98 0x01
696 * 92 110 0x00
697 * 93 104 0x00
698 * 94 98 0x00
699 * 95 93 0x00
700 * 96 88 0x00
701 * 97 83 0x00
702 * 98 78 0x00
703 */
b481de9c 704
0c434c5a
BC
705
706/**
707 * Sanity checks and default values for EEPROM regulatory levels.
708 * If EEPROM values fall outside MIN/MAX range, use default values.
709 *
710 * Regulatory limits refer to the maximum average txpower allowed by
711 * regulatory agencies in the geographies in which the device is meant
712 * to be operated. These limits are SKU-specific (i.e. geography-specific),
713 * and channel-specific; each channel has an individual regulatory limit
714 * listed in the EEPROM.
715 *
716 * Units are in half-dBm (i.e. "34" means 17 dBm).
717 */
b481de9c
ZY
718#define IWL_TX_POWER_DEFAULT_REGULATORY_24 (34)
719#define IWL_TX_POWER_DEFAULT_REGULATORY_52 (34)
720#define IWL_TX_POWER_REGULATORY_MIN (0)
721#define IWL_TX_POWER_REGULATORY_MAX (34)
0c434c5a
BC
722
723/**
724 * Sanity checks and default values for EEPROM saturation levels.
725 * If EEPROM values fall outside MIN/MAX range, use default values.
726 *
727 * Saturation is the highest level that the output power amplifier can produce
728 * without significant clipping distortion. This is a "peak" power level.
729 * Different types of modulation (i.e. various "rates", and OFDM vs. CCK)
730 * require differing amounts of backoff, relative to their average power output,
731 * in order to avoid clipping distortion.
732 *
733 * Driver must make sure that it is violating neither the saturation limit,
734 * nor the regulatory limit, when calculating Tx power settings for various
735 * rates.
736 *
737 * Units are in half-dBm (i.e. "38" means 19 dBm).
738 */
b481de9c
ZY
739#define IWL_TX_POWER_DEFAULT_SATURATION_24 (38)
740#define IWL_TX_POWER_DEFAULT_SATURATION_52 (38)
741#define IWL_TX_POWER_SATURATION_MIN (20)
742#define IWL_TX_POWER_SATURATION_MAX (50)
743
0c434c5a
BC
744/**
745 * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance)
746 * and thermal Txpower calibration.
747 *
748 * When calculating txpower, driver must compensate for current device
749 * temperature; higher temperature requires higher gain. Driver must calculate
750 * current temperature (see "4965 temperature calculation"), then compare vs.
751 * factory calibration temperature in EEPROM; if current temperature is higher
752 * than factory temperature, driver must *increase* gain by proportions shown
753 * in table below. If current temperature is lower than factory, driver must
754 * *decrease* gain.
755 *
756 * Different frequency ranges require different compensation, as shown below.
757 */
758/* Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB. */
b481de9c
ZY
759#define CALIB_IWL_TX_ATTEN_GR1_FCH 34
760#define CALIB_IWL_TX_ATTEN_GR1_LCH 43
0c434c5a
BC
761
762/* Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB. */
b481de9c
ZY
763#define CALIB_IWL_TX_ATTEN_GR2_FCH 44
764#define CALIB_IWL_TX_ATTEN_GR2_LCH 70
0c434c5a
BC
765
766/* Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB. */
b481de9c
ZY
767#define CALIB_IWL_TX_ATTEN_GR3_FCH 71
768#define CALIB_IWL_TX_ATTEN_GR3_LCH 124
0c434c5a
BC
769
770/* Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB. */
b481de9c
ZY
771#define CALIB_IWL_TX_ATTEN_GR4_FCH 125
772#define CALIB_IWL_TX_ATTEN_GR4_LCH 200
0c434c5a
BC
773
774/* Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB. */
b481de9c
ZY
775#define CALIB_IWL_TX_ATTEN_GR5_FCH 1
776#define CALIB_IWL_TX_ATTEN_GR5_LCH 20
777
0c434c5a
BC
778enum {
779 CALIB_CH_GROUP_1 = 0,
780 CALIB_CH_GROUP_2 = 1,
781 CALIB_CH_GROUP_3 = 2,
782 CALIB_CH_GROUP_4 = 3,
783 CALIB_CH_GROUP_5 = 4,
784 CALIB_CH_GROUP_MAX
785};
786
b481de9c
ZY
787/********************* END TXPOWER *****************************************/
788
5d5456fe
BC
789
790/**
791 * Tx/Rx Queues
792 *
793 * Most communication between driver and 4965 is via queues of data buffers.
794 * For example, all commands that the driver issues to device's embedded
795 * controller (uCode) are via the command queue (one of the Tx queues). All
796 * uCode command responses/replies/notifications, including Rx frames, are
797 * conveyed from uCode to driver via the Rx queue.
798 *
799 * Most support for these queues, including handshake support, resides in
800 * structures in host DRAM, shared between the driver and the device. When
801 * allocating this memory, the driver must make sure that data written by
802 * the host CPU updates DRAM immediately (and does not get "stuck" in CPU's
803 * cache memory), so DRAM and cache are consistent, and the device can
804 * immediately see changes made by the driver.
805 *
806 * 4965 supports up to 16 DRAM-based Tx queues, and services these queues via
807 * up to 7 DMA channels (FIFOs). Each Tx queue is supported by a circular array
808 * in DRAM containing 256 Transmit Frame Descriptors (TFDs).
809 */
038669e4
EG
810#define IWL49_NUM_FIFOS 7
811#define IWL49_CMD_FIFO_NUM 4
812#define IWL49_NUM_QUEUES 16
9f17b318 813#define IWL49_NUM_AMPDU_QUEUES 8
5d5456fe 814
b481de9c 815
5d5456fe 816/**
127901ab 817 * struct iwl4965_schedq_bc_tbl
5d5456fe
BC
818 *
819 * Byte Count table
820 *
821 * Each Tx queue uses a byte-count table containing 320 entries:
822 * one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that
823 * duplicate the first 64 entries (to avoid wrap-around within a Tx window;
824 * max Tx window is 64 TFDs).
825 *
826 * When driver sets up a new TFD, it must also enter the total byte count
827 * of the frame to be transmitted into the corresponding entry in the byte
828 * count table for the chosen Tx queue. If the TFD index is 0-63, the driver
829 * must duplicate the byte count entry in corresponding index 256-319.
830 *
127901ab 831 * padding puts each byte count table on a 1024-byte boundary;
5d5456fe
BC
832 * 4965 assumes tables are separated by 1024 bytes.
833 */
4ddbb7d0 834struct iwl4965_scd_bc_tbl {
127901ab
TW
835 __le16 tfd_offset[TFD_QUEUE_BC_SIZE];
836 u8 pad[1024 - (TFD_QUEUE_BC_SIZE) * sizeof(__le16)];
b481de9c
ZY
837} __attribute__ ((packed));
838
4ddbb7d0 839#endif /* !__iwl_4965_hw_h__ */