]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/net/wireless/rt2x00/rt61pci.c
ath9k: Choose correct ANI calibration period
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / wireless / rt2x00 / rt61pci.c
CommitLineData
95ea3627 1/*
811aa9ca 2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
95ea3627
ID
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
a7f3a06c 27#include <linux/crc-itu-t.h>
95ea3627
ID
28#include <linux/delay.h>
29#include <linux/etherdevice.h>
30#include <linux/init.h>
31#include <linux/kernel.h>
32#include <linux/module.h>
33#include <linux/pci.h>
34#include <linux/eeprom_93cx6.h>
35
36#include "rt2x00.h"
37#include "rt2x00pci.h"
38#include "rt61pci.h"
39
008c4482
ID
40/*
41 * Allow hardware encryption to be disabled.
42 */
43static int modparam_nohwcrypt = 0;
44module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
95ea3627
ID
47/*
48 * Register access.
49 * BBP and RF register require indirect register access,
50 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51 * These indirect registers work with busy bits,
52 * and we will try maximal REGISTER_BUSY_COUNT times to access
53 * the register while taking a REGISTER_BUSY_DELAY us delay
54 * between each attampt. When the busy bit is still set at that time,
55 * the access attempt is considered to have failed,
56 * and we will print an error.
57 */
c9c3b1a5
ID
58#define WAIT_FOR_BBP(__dev, __reg) \
59 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60#define WAIT_FOR_RF(__dev, __reg) \
61 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62#define WAIT_FOR_MCU(__dev, __reg) \
63 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
64 H2M_MAILBOX_CSR_OWNER, (__reg))
95ea3627 65
0e14f6d3 66static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
67 const unsigned int word, const u8 value)
68{
69 u32 reg;
70
8ff48a8b
ID
71 mutex_lock(&rt2x00dev->csr_mutex);
72
95ea3627 73 /*
c9c3b1a5
ID
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
95ea3627 76 */
c9c3b1a5
ID
77 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78 reg = 0;
79 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83
84 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
85 }
8ff48a8b 86
8ff48a8b 87 mutex_unlock(&rt2x00dev->csr_mutex);
95ea3627
ID
88}
89
0e14f6d3 90static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
91 const unsigned int word, u8 *value)
92{
93 u32 reg;
94
8ff48a8b
ID
95 mutex_lock(&rt2x00dev->csr_mutex);
96
95ea3627 97 /*
c9c3b1a5
ID
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
95ea3627 104 */
c9c3b1a5
ID
105 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106 reg = 0;
107 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
95ea3627 110
c9c3b1a5 111 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
95ea3627 112
c9c3b1a5
ID
113 WAIT_FOR_BBP(rt2x00dev, &reg);
114 }
95ea3627
ID
115
116 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
8ff48a8b 117
8ff48a8b 118 mutex_unlock(&rt2x00dev->csr_mutex);
95ea3627
ID
119}
120
0e14f6d3 121static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
122 const unsigned int word, const u32 value)
123{
124 u32 reg;
95ea3627
ID
125
126 if (!word)
127 return;
128
8ff48a8b
ID
129 mutex_lock(&rt2x00dev->csr_mutex);
130
c9c3b1a5
ID
131 /*
132 * Wait until the RF becomes available, afterwards we
133 * can safely write the new data into the register.
134 */
135 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
136 reg = 0;
137 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
138 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
139 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
140 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
141
142 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
143 rt2x00_rf_write(rt2x00dev, word, value);
95ea3627
ID
144 }
145
8ff48a8b 146 mutex_unlock(&rt2x00dev->csr_mutex);
95ea3627
ID
147}
148
771fd565 149#ifdef CONFIG_RT2X00_LIB_LEDS
a9450b70
ID
150/*
151 * This function is only called from rt61pci_led_brightness()
152 * make gcc happy by placing this function inside the
153 * same ifdef statement as the caller.
154 */
0e14f6d3 155static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
156 const u8 command, const u8 token,
157 const u8 arg0, const u8 arg1)
158{
159 u32 reg;
160
8ff48a8b
ID
161 mutex_lock(&rt2x00dev->csr_mutex);
162
c9c3b1a5
ID
163 /*
164 * Wait until the MCU becomes available, afterwards we
165 * can safely write the new data into the register.
166 */
167 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
168 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
169 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
170 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
171 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
172 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
173
174 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
175 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
176 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
177 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
178 }
8ff48a8b 179
8ff48a8b
ID
180 mutex_unlock(&rt2x00dev->csr_mutex);
181
95ea3627 182}
771fd565 183#endif /* CONFIG_RT2X00_LIB_LEDS */
95ea3627
ID
184
185static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
186{
187 struct rt2x00_dev *rt2x00dev = eeprom->data;
188 u32 reg;
189
190 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
191
192 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
193 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
194 eeprom->reg_data_clock =
195 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
196 eeprom->reg_chip_select =
197 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
198}
199
200static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
201{
202 struct rt2x00_dev *rt2x00dev = eeprom->data;
203 u32 reg = 0;
204
205 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
206 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
207 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
208 !!eeprom->reg_data_clock);
209 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
210 !!eeprom->reg_chip_select);
211
212 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
213}
214
215#ifdef CONFIG_RT2X00_LIB_DEBUGFS
95ea3627
ID
216static const struct rt2x00debug rt61pci_rt2x00debug = {
217 .owner = THIS_MODULE,
218 .csr = {
743b97ca
ID
219 .read = rt2x00pci_register_read,
220 .write = rt2x00pci_register_write,
221 .flags = RT2X00DEBUGFS_OFFSET,
222 .word_base = CSR_REG_BASE,
95ea3627
ID
223 .word_size = sizeof(u32),
224 .word_count = CSR_REG_SIZE / sizeof(u32),
225 },
226 .eeprom = {
227 .read = rt2x00_eeprom_read,
228 .write = rt2x00_eeprom_write,
743b97ca 229 .word_base = EEPROM_BASE,
95ea3627
ID
230 .word_size = sizeof(u16),
231 .word_count = EEPROM_SIZE / sizeof(u16),
232 },
233 .bbp = {
234 .read = rt61pci_bbp_read,
235 .write = rt61pci_bbp_write,
743b97ca 236 .word_base = BBP_BASE,
95ea3627
ID
237 .word_size = sizeof(u8),
238 .word_count = BBP_SIZE / sizeof(u8),
239 },
240 .rf = {
241 .read = rt2x00_rf_read,
242 .write = rt61pci_rf_write,
743b97ca 243 .word_base = RF_BASE,
95ea3627
ID
244 .word_size = sizeof(u32),
245 .word_count = RF_SIZE / sizeof(u32),
246 },
247};
248#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
249
58169529 250#ifdef CONFIG_RT2X00_LIB_RFKILL
95ea3627
ID
251static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
252{
253 u32 reg;
254
255 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
181d6902 256 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
95ea3627 257}
81873e9c
ID
258#else
259#define rt61pci_rfkill_poll NULL
58169529 260#endif /* CONFIG_RT2X00_LIB_RFKILL */
95ea3627 261
771fd565 262#ifdef CONFIG_RT2X00_LIB_LEDS
a2e1d52a 263static void rt61pci_brightness_set(struct led_classdev *led_cdev,
a9450b70
ID
264 enum led_brightness brightness)
265{
266 struct rt2x00_led *led =
267 container_of(led_cdev, struct rt2x00_led, led_dev);
268 unsigned int enabled = brightness != LED_OFF;
269 unsigned int a_mode =
270 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
271 unsigned int bg_mode =
272 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
273
274 if (led->type == LED_TYPE_RADIO) {
275 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
276 MCU_LEDCS_RADIO_STATUS, enabled);
277
278 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
279 (led->rt2x00dev->led_mcu_reg & 0xff),
280 ((led->rt2x00dev->led_mcu_reg >> 8)));
281 } else if (led->type == LED_TYPE_ASSOC) {
282 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
283 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
284 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
285 MCU_LEDCS_LINK_A_STATUS, a_mode);
286
287 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
288 (led->rt2x00dev->led_mcu_reg & 0xff),
289 ((led->rt2x00dev->led_mcu_reg >> 8)));
290 } else if (led->type == LED_TYPE_QUALITY) {
291 /*
292 * The brightness is divided into 6 levels (0 - 5),
293 * this means we need to convert the brightness
294 * argument into the matching level within that range.
295 */
296 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
297 brightness / (LED_FULL / 6), 0);
298 }
299}
a2e1d52a
ID
300
301static int rt61pci_blink_set(struct led_classdev *led_cdev,
302 unsigned long *delay_on,
303 unsigned long *delay_off)
304{
305 struct rt2x00_led *led =
306 container_of(led_cdev, struct rt2x00_led, led_dev);
307 u32 reg;
308
309 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
310 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
311 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
312 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
313
314 return 0;
315}
475433be
ID
316
317static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
318 struct rt2x00_led *led,
319 enum led_type type)
320{
321 led->rt2x00dev = rt2x00dev;
322 led->type = type;
323 led->led_dev.brightness_set = rt61pci_brightness_set;
324 led->led_dev.blink_set = rt61pci_blink_set;
325 led->flags = LED_INITIALIZED;
326}
771fd565 327#endif /* CONFIG_RT2X00_LIB_LEDS */
a9450b70 328
95ea3627
ID
329/*
330 * Configuration handlers.
331 */
61e754f4
ID
332static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
333 struct rt2x00lib_crypto *crypto,
334 struct ieee80211_key_conf *key)
335{
336 struct hw_key_entry key_entry;
337 struct rt2x00_field32 field;
338 u32 mask;
339 u32 reg;
340
341 if (crypto->cmd == SET_KEY) {
342 /*
343 * rt2x00lib can't determine the correct free
344 * key_idx for shared keys. We have 1 register
345 * with key valid bits. The goal is simple, read
346 * the register, if that is full we have no slots
347 * left.
348 * Note that each BSS is allowed to have up to 4
349 * shared keys, so put a mask over the allowed
350 * entries.
351 */
352 mask = (0xf << crypto->bssidx);
353
354 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
355 reg &= mask;
356
357 if (reg && reg == mask)
358 return -ENOSPC;
359
acaf908d 360 key->hw_key_idx += reg ? ffz(reg) : 0;
61e754f4
ID
361
362 /*
363 * Upload key to hardware
364 */
365 memcpy(key_entry.key, crypto->key,
366 sizeof(key_entry.key));
367 memcpy(key_entry.tx_mic, crypto->tx_mic,
368 sizeof(key_entry.tx_mic));
369 memcpy(key_entry.rx_mic, crypto->rx_mic,
370 sizeof(key_entry.rx_mic));
371
372 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
373 rt2x00pci_register_multiwrite(rt2x00dev, reg,
374 &key_entry, sizeof(key_entry));
375
376 /*
377 * The cipher types are stored over 2 registers.
378 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
379 * bssidx 1 and 2 keys are stored in SEC_CSR5.
380 * Using the correct defines correctly will cause overhead,
381 * so just calculate the correct offset.
382 */
383 if (key->hw_key_idx < 8) {
384 field.bit_offset = (3 * key->hw_key_idx);
385 field.bit_mask = 0x7 << field.bit_offset;
386
387 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
388 rt2x00_set_field32(&reg, field, crypto->cipher);
389 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
390 } else {
391 field.bit_offset = (3 * (key->hw_key_idx - 8));
392 field.bit_mask = 0x7 << field.bit_offset;
393
394 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
395 rt2x00_set_field32(&reg, field, crypto->cipher);
396 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
397 }
398
399 /*
400 * The driver does not support the IV/EIV generation
401 * in hardware. However it doesn't support the IV/EIV
402 * inside the ieee80211 frame either, but requires it
403 * to be provided seperately for the descriptor.
404 * rt2x00lib will cut the IV/EIV data out of all frames
405 * given to us by mac80211, but we must tell mac80211
406 * to generate the IV/EIV data.
407 */
408 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
409 }
410
411 /*
412 * SEC_CSR0 contains only single-bit fields to indicate
413 * a particular key is valid. Because using the FIELD32()
414 * defines directly will cause a lot of overhead we use
415 * a calculation to determine the correct bit directly.
416 */
417 mask = 1 << key->hw_key_idx;
418
419 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
420 if (crypto->cmd == SET_KEY)
421 reg |= mask;
422 else if (crypto->cmd == DISABLE_KEY)
423 reg &= ~mask;
424 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
425
426 return 0;
427}
428
429static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
430 struct rt2x00lib_crypto *crypto,
431 struct ieee80211_key_conf *key)
432{
433 struct hw_pairwise_ta_entry addr_entry;
434 struct hw_key_entry key_entry;
435 u32 mask;
436 u32 reg;
437
438 if (crypto->cmd == SET_KEY) {
439 /*
440 * rt2x00lib can't determine the correct free
441 * key_idx for pairwise keys. We have 2 registers
442 * with key valid bits. The goal is simple, read
443 * the first register, if that is full move to
444 * the next register.
445 * When both registers are full, we drop the key,
446 * otherwise we use the first invalid entry.
447 */
448 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
449 if (reg && reg == ~0) {
450 key->hw_key_idx = 32;
451 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
452 if (reg && reg == ~0)
453 return -ENOSPC;
454 }
455
acaf908d 456 key->hw_key_idx += reg ? ffz(reg) : 0;
61e754f4
ID
457
458 /*
459 * Upload key to hardware
460 */
461 memcpy(key_entry.key, crypto->key,
462 sizeof(key_entry.key));
463 memcpy(key_entry.tx_mic, crypto->tx_mic,
464 sizeof(key_entry.tx_mic));
465 memcpy(key_entry.rx_mic, crypto->rx_mic,
466 sizeof(key_entry.rx_mic));
467
468 memset(&addr_entry, 0, sizeof(addr_entry));
469 memcpy(&addr_entry, crypto->address, ETH_ALEN);
470 addr_entry.cipher = crypto->cipher;
471
472 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
473 rt2x00pci_register_multiwrite(rt2x00dev, reg,
474 &key_entry, sizeof(key_entry));
475
476 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
477 rt2x00pci_register_multiwrite(rt2x00dev, reg,
478 &addr_entry, sizeof(addr_entry));
479
480 /*
481 * Enable pairwise lookup table for given BSS idx,
482 * without this received frames will not be decrypted
483 * by the hardware.
484 */
485 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
486 reg |= (1 << crypto->bssidx);
487 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
488
489 /*
490 * The driver does not support the IV/EIV generation
491 * in hardware. However it doesn't support the IV/EIV
492 * inside the ieee80211 frame either, but requires it
493 * to be provided seperately for the descriptor.
494 * rt2x00lib will cut the IV/EIV data out of all frames
495 * given to us by mac80211, but we must tell mac80211
496 * to generate the IV/EIV data.
497 */
498 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
499 }
500
501 /*
502 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
503 * a particular key is valid. Because using the FIELD32()
504 * defines directly will cause a lot of overhead we use
505 * a calculation to determine the correct bit directly.
506 */
507 if (key->hw_key_idx < 32) {
508 mask = 1 << key->hw_key_idx;
509
510 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
511 if (crypto->cmd == SET_KEY)
512 reg |= mask;
513 else if (crypto->cmd == DISABLE_KEY)
514 reg &= ~mask;
515 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
516 } else {
517 mask = 1 << (key->hw_key_idx - 32);
518
519 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
520 if (crypto->cmd == SET_KEY)
521 reg |= mask;
522 else if (crypto->cmd == DISABLE_KEY)
523 reg &= ~mask;
524 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
525 }
526
527 return 0;
528}
529
3a643d24
ID
530static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
531 const unsigned int filter_flags)
532{
533 u32 reg;
534
535 /*
536 * Start configuration steps.
537 * Note that the version error will always be dropped
538 * and broadcast frames will always be accepted since
539 * there is no filter for it at this time.
540 */
541 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
542 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
543 !(filter_flags & FIF_FCSFAIL));
544 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
545 !(filter_flags & FIF_PLCPFAIL));
546 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
547 !(filter_flags & FIF_CONTROL));
548 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
549 !(filter_flags & FIF_PROMISC_IN_BSS));
550 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
e0b005fa
ID
551 !(filter_flags & FIF_PROMISC_IN_BSS) &&
552 !rt2x00dev->intf_ap_count);
3a643d24
ID
553 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
554 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
555 !(filter_flags & FIF_ALLMULTI));
556 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
557 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
558 !(filter_flags & FIF_CONTROL));
559 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
560}
561
6bb40dd1
ID
562static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
563 struct rt2x00_intf *intf,
564 struct rt2x00intf_conf *conf,
565 const unsigned int flags)
95ea3627 566{
6bb40dd1
ID
567 unsigned int beacon_base;
568 u32 reg;
95ea3627 569
6bb40dd1
ID
570 if (flags & CONFIG_UPDATE_TYPE) {
571 /*
572 * Clear current synchronisation setup.
573 * For the Beacon base registers we only need to clear
574 * the first byte since that byte contains the VALID and OWNER
575 * bits which (when set to 0) will invalidate the entire beacon.
576 */
577 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
6bb40dd1 578 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
95ea3627 579
6bb40dd1
ID
580 /*
581 * Enable synchronisation.
582 */
583 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
fd3c91c5 584 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
6bb40dd1 585 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
fd3c91c5 586 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
6bb40dd1
ID
587 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
588 }
95ea3627 589
6bb40dd1
ID
590 if (flags & CONFIG_UPDATE_MAC) {
591 reg = le32_to_cpu(conf->mac[1]);
592 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
593 conf->mac[1] = cpu_to_le32(reg);
95ea3627 594
6bb40dd1
ID
595 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
596 conf->mac, sizeof(conf->mac));
597 }
95ea3627 598
6bb40dd1
ID
599 if (flags & CONFIG_UPDATE_BSSID) {
600 reg = le32_to_cpu(conf->bssid[1]);
601 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
602 conf->bssid[1] = cpu_to_le32(reg);
95ea3627 603
6bb40dd1
ID
604 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
605 conf->bssid, sizeof(conf->bssid));
606 }
95ea3627
ID
607}
608
3a643d24
ID
609static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
610 struct rt2x00lib_erp *erp)
95ea3627 611{
95ea3627 612 u32 reg;
95ea3627
ID
613
614 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
72810379 615 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
95ea3627
ID
616 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
617
618 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
4f5af6eb 619 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
72810379 620 !!erp->short_preamble);
95ea3627 621 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
95ea3627 622
e4ea1c40 623 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
95ea3627 624
e4ea1c40
ID
625 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
626 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
627 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
95ea3627 628
e4ea1c40
ID
629 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
630 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
631 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
632 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
633 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
95ea3627
ID
634}
635
636static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
addc81bd 637 struct antenna_setup *ant)
95ea3627
ID
638{
639 u8 r3;
640 u8 r4;
641 u8 r77;
642
643 rt61pci_bbp_read(rt2x00dev, 3, &r3);
644 rt61pci_bbp_read(rt2x00dev, 4, &r4);
645 rt61pci_bbp_read(rt2x00dev, 77, &r77);
646
647 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
acaa410d 648 rt2x00_rf(&rt2x00dev->chip, RF5325));
e4cd2ff8
ID
649
650 /*
651 * Configure the RX antenna.
652 */
addc81bd 653 switch (ant->rx) {
95ea3627 654 case ANTENNA_HW_DIVERSITY:
acaa410d 655 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
95ea3627 656 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
8318d78a 657 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
95ea3627
ID
658 break;
659 case ANTENNA_A:
acaa410d 660 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
95ea3627 661 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
8318d78a 662 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
acaa410d
MN
663 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
664 else
665 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
95ea3627
ID
666 break;
667 case ANTENNA_B:
a4fe07d9 668 default:
acaa410d 669 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
95ea3627 670 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
8318d78a 671 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
acaa410d
MN
672 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
673 else
674 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
95ea3627
ID
675 break;
676 }
677
678 rt61pci_bbp_write(rt2x00dev, 77, r77);
679 rt61pci_bbp_write(rt2x00dev, 3, r3);
680 rt61pci_bbp_write(rt2x00dev, 4, r4);
681}
682
683static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
addc81bd 684 struct antenna_setup *ant)
95ea3627
ID
685{
686 u8 r3;
687 u8 r4;
688 u8 r77;
689
690 rt61pci_bbp_read(rt2x00dev, 3, &r3);
691 rt61pci_bbp_read(rt2x00dev, 4, &r4);
692 rt61pci_bbp_read(rt2x00dev, 77, &r77);
693
694 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
acaa410d 695 rt2x00_rf(&rt2x00dev->chip, RF2529));
95ea3627
ID
696 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
697 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
698
e4cd2ff8
ID
699 /*
700 * Configure the RX antenna.
701 */
addc81bd 702 switch (ant->rx) {
95ea3627 703 case ANTENNA_HW_DIVERSITY:
acaa410d 704 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
95ea3627
ID
705 break;
706 case ANTENNA_A:
acaa410d
MN
707 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
708 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
95ea3627
ID
709 break;
710 case ANTENNA_B:
a4fe07d9 711 default:
acaa410d
MN
712 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
713 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
95ea3627
ID
714 break;
715 }
716
717 rt61pci_bbp_write(rt2x00dev, 77, r77);
718 rt61pci_bbp_write(rt2x00dev, 3, r3);
719 rt61pci_bbp_write(rt2x00dev, 4, r4);
720}
721
722static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
723 const int p1, const int p2)
724{
725 u32 reg;
726
727 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
728
acaa410d
MN
729 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
730 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
731
732 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
733 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
734
735 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
95ea3627
ID
736}
737
738static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
addc81bd 739 struct antenna_setup *ant)
95ea3627 740{
95ea3627
ID
741 u8 r3;
742 u8 r4;
743 u8 r77;
744
745 rt61pci_bbp_read(rt2x00dev, 3, &r3);
746 rt61pci_bbp_read(rt2x00dev, 4, &r4);
747 rt61pci_bbp_read(rt2x00dev, 77, &r77);
e4cd2ff8 748
e4cd2ff8
ID
749 /*
750 * Configure the RX antenna.
751 */
752 switch (ant->rx) {
753 case ANTENNA_A:
acaa410d
MN
754 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
755 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
756 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
e4cd2ff8 757 break;
e4cd2ff8
ID
758 case ANTENNA_HW_DIVERSITY:
759 /*
a4fe07d9
ID
760 * FIXME: Antenna selection for the rf 2529 is very confusing
761 * in the legacy driver. Just default to antenna B until the
762 * legacy code can be properly translated into rt2x00 code.
e4cd2ff8
ID
763 */
764 case ANTENNA_B:
a4fe07d9 765 default:
acaa410d
MN
766 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
767 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
768 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
e4cd2ff8
ID
769 break;
770 }
771
e4cd2ff8 772 rt61pci_bbp_write(rt2x00dev, 77, r77);
95ea3627
ID
773 rt61pci_bbp_write(rt2x00dev, 3, r3);
774 rt61pci_bbp_write(rt2x00dev, 4, r4);
775}
776
777struct antenna_sel {
778 u8 word;
779 /*
780 * value[0] -> non-LNA
781 * value[1] -> LNA
782 */
783 u8 value[2];
784};
785
786static const struct antenna_sel antenna_sel_a[] = {
787 { 96, { 0x58, 0x78 } },
788 { 104, { 0x38, 0x48 } },
789 { 75, { 0xfe, 0x80 } },
790 { 86, { 0xfe, 0x80 } },
791 { 88, { 0xfe, 0x80 } },
792 { 35, { 0x60, 0x60 } },
793 { 97, { 0x58, 0x58 } },
794 { 98, { 0x58, 0x58 } },
795};
796
797static const struct antenna_sel antenna_sel_bg[] = {
798 { 96, { 0x48, 0x68 } },
799 { 104, { 0x2c, 0x3c } },
800 { 75, { 0xfe, 0x80 } },
801 { 86, { 0xfe, 0x80 } },
802 { 88, { 0xfe, 0x80 } },
803 { 35, { 0x50, 0x50 } },
804 { 97, { 0x48, 0x48 } },
805 { 98, { 0x48, 0x48 } },
806};
807
e4ea1c40
ID
808static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
809 struct antenna_setup *ant)
95ea3627
ID
810{
811 const struct antenna_sel *sel;
812 unsigned int lna;
813 unsigned int i;
814 u32 reg;
815
a4fe07d9
ID
816 /*
817 * We should never come here because rt2x00lib is supposed
818 * to catch this and send us the correct antenna explicitely.
819 */
820 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
821 ant->tx == ANTENNA_SW_DIVERSITY);
822
8318d78a 823 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
95ea3627
ID
824 sel = antenna_sel_a;
825 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
95ea3627
ID
826 } else {
827 sel = antenna_sel_bg;
828 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
95ea3627
ID
829 }
830
acaa410d
MN
831 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
832 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
833
834 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
835
ddc827f9 836 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
8318d78a 837 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
ddc827f9 838 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
8318d78a 839 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
ddc827f9 840
95ea3627
ID
841 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
842
843 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
844 rt2x00_rf(&rt2x00dev->chip, RF5325))
addc81bd 845 rt61pci_config_antenna_5x(rt2x00dev, ant);
95ea3627 846 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
addc81bd 847 rt61pci_config_antenna_2x(rt2x00dev, ant);
95ea3627
ID
848 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
849 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
addc81bd 850 rt61pci_config_antenna_2x(rt2x00dev, ant);
95ea3627 851 else
addc81bd 852 rt61pci_config_antenna_2529(rt2x00dev, ant);
95ea3627
ID
853 }
854}
855
e4ea1c40
ID
856static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
857 struct rt2x00lib_conf *libconf)
858{
859 u16 eeprom;
860 short lna_gain = 0;
861
862 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
863 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
864 lna_gain += 14;
865
866 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
867 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
868 } else {
869 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
870 lna_gain += 14;
871
872 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
873 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
874 }
875
876 rt2x00dev->lna_gain = lna_gain;
877}
878
879static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
880 struct rf_channel *rf, const int txpower)
881{
882 u8 r3;
883 u8 r94;
884 u8 smart;
885
886 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
887 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
888
889 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
890 rt2x00_rf(&rt2x00dev->chip, RF2527));
891
892 rt61pci_bbp_read(rt2x00dev, 3, &r3);
893 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
894 rt61pci_bbp_write(rt2x00dev, 3, r3);
895
896 r94 = 6;
897 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
898 r94 += txpower - MAX_TXPOWER;
899 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
900 r94 += txpower;
901 rt61pci_bbp_write(rt2x00dev, 94, r94);
902
903 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
904 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
905 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
906 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
907
908 udelay(200);
909
910 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
911 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
912 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
913 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
914
915 udelay(200);
916
917 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
918 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
919 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
920 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
921
922 msleep(1);
923}
924
925static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
926 const int txpower)
927{
928 struct rf_channel rf;
929
930 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
931 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
932 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
933 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
934
935 rt61pci_config_channel(rt2x00dev, &rf, txpower);
936}
937
938static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
5c58ee51 939 struct rt2x00lib_conf *libconf)
95ea3627
ID
940{
941 u32 reg;
942
e4ea1c40
ID
943 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
944 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
945 libconf->conf->long_frame_max_tx_count);
946 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
947 libconf->conf->short_frame_max_tx_count);
948 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
949}
95ea3627 950
e4ea1c40
ID
951static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
952 struct rt2x00lib_conf *libconf)
953{
954 u32 reg;
95ea3627
ID
955
956 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
957 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
958 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
959
960 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
961 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
962 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
963
964 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
5c58ee51
ID
965 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
966 libconf->conf->beacon_int * 16);
95ea3627
ID
967 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
968}
969
970static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
6bb40dd1
ID
971 struct rt2x00lib_conf *libconf,
972 const unsigned int flags)
95ea3627 973{
ba2ab471
ID
974 /* Always recalculate LNA gain before changing configuration */
975 rt61pci_config_lna_gain(rt2x00dev, libconf);
976
e4ea1c40 977 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
5c58ee51
ID
978 rt61pci_config_channel(rt2x00dev, &libconf->rf,
979 libconf->conf->power_level);
e4ea1c40
ID
980 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
981 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
5c58ee51 982 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
e4ea1c40
ID
983 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
984 rt61pci_config_retry_limit(rt2x00dev, libconf);
985 if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
5c58ee51 986 rt61pci_config_duration(rt2x00dev, libconf);
95ea3627
ID
987}
988
95ea3627
ID
989/*
990 * Link tuning
991 */
ebcf26da
ID
992static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
993 struct link_qual *qual)
95ea3627
ID
994{
995 u32 reg;
996
997 /*
998 * Update FCS error count from register.
999 */
1000 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
ebcf26da 1001 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
95ea3627
ID
1002
1003 /*
1004 * Update False CCA count from register.
1005 */
1006 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
ebcf26da 1007 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
95ea3627
ID
1008}
1009
1010static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
1011{
1012 rt61pci_bbp_write(rt2x00dev, 17, 0x20);
1013 rt2x00dev->link.vgc_level = 0x20;
1014}
1015
1016static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
1017{
1018 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
1019 u8 r17;
1020 u8 up_bound;
1021 u8 low_bound;
1022
95ea3627
ID
1023 rt61pci_bbp_read(rt2x00dev, 17, &r17);
1024
1025 /*
1026 * Determine r17 bounds.
1027 */
1497074a 1028 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
95ea3627
ID
1029 low_bound = 0x28;
1030 up_bound = 0x48;
1031 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1032 low_bound += 0x10;
1033 up_bound += 0x10;
1034 }
1035 } else {
1036 low_bound = 0x20;
1037 up_bound = 0x40;
1038 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1039 low_bound += 0x10;
1040 up_bound += 0x10;
1041 }
1042 }
1043
6bb40dd1
ID
1044 /*
1045 * If we are not associated, we should go straight to the
1046 * dynamic CCA tuning.
1047 */
1048 if (!rt2x00dev->intf_associated)
1049 goto dynamic_cca_tune;
1050
95ea3627
ID
1051 /*
1052 * Special big-R17 for very short distance
1053 */
1054 if (rssi >= -35) {
1055 if (r17 != 0x60)
1056 rt61pci_bbp_write(rt2x00dev, 17, 0x60);
1057 return;
1058 }
1059
1060 /*
1061 * Special big-R17 for short distance
1062 */
1063 if (rssi >= -58) {
1064 if (r17 != up_bound)
1065 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1066 return;
1067 }
1068
1069 /*
1070 * Special big-R17 for middle-short distance
1071 */
1072 if (rssi >= -66) {
1073 low_bound += 0x10;
1074 if (r17 != low_bound)
1075 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1076 return;
1077 }
1078
1079 /*
1080 * Special mid-R17 for middle distance
1081 */
1082 if (rssi >= -74) {
1083 low_bound += 0x08;
1084 if (r17 != low_bound)
1085 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1086 return;
1087 }
1088
1089 /*
1090 * Special case: Change up_bound based on the rssi.
1091 * Lower up_bound when rssi is weaker then -74 dBm.
1092 */
1093 up_bound -= 2 * (-74 - rssi);
1094 if (low_bound > up_bound)
1095 up_bound = low_bound;
1096
1097 if (r17 > up_bound) {
1098 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1099 return;
1100 }
1101
6bb40dd1
ID
1102dynamic_cca_tune:
1103
95ea3627
ID
1104 /*
1105 * r17 does not yet exceed upper limit, continue and base
1106 * the r17 tuning on the false CCA count.
1107 */
ebcf26da 1108 if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
95ea3627
ID
1109 if (++r17 > up_bound)
1110 r17 = up_bound;
1111 rt61pci_bbp_write(rt2x00dev, 17, r17);
ebcf26da 1112 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
95ea3627
ID
1113 if (--r17 < low_bound)
1114 r17 = low_bound;
1115 rt61pci_bbp_write(rt2x00dev, 17, r17);
1116 }
1117}
1118
1119/*
a7f3a06c 1120 * Firmware functions
95ea3627
ID
1121 */
1122static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1123{
1124 char *fw_name;
1125
1126 switch (rt2x00dev->chip.rt) {
1127 case RT2561:
1128 fw_name = FIRMWARE_RT2561;
1129 break;
1130 case RT2561s:
1131 fw_name = FIRMWARE_RT2561s;
1132 break;
1133 case RT2661:
1134 fw_name = FIRMWARE_RT2661;
1135 break;
1136 default:
1137 fw_name = NULL;
1138 break;
1139 }
1140
1141 return fw_name;
1142}
1143
f160ebcb 1144static u16 rt61pci_get_firmware_crc(const void *data, const size_t len)
a7f3a06c
ID
1145{
1146 u16 crc;
1147
1148 /*
1149 * Use the crc itu-t algorithm.
1150 * The last 2 bytes in the firmware array are the crc checksum itself,
1151 * this means that we should never pass those 2 bytes to the crc
1152 * algorithm.
1153 */
1154 crc = crc_itu_t(0, data, len - 2);
1155 crc = crc_itu_t_byte(crc, 0);
1156 crc = crc_itu_t_byte(crc, 0);
1157
1158 return crc;
1159}
1160
f160ebcb 1161static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
95ea3627
ID
1162 const size_t len)
1163{
1164 int i;
1165 u32 reg;
1166
1167 /*
1168 * Wait for stable hardware.
1169 */
1170 for (i = 0; i < 100; i++) {
1171 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1172 if (reg)
1173 break;
1174 msleep(1);
1175 }
1176
1177 if (!reg) {
1178 ERROR(rt2x00dev, "Unstable hardware.\n");
1179 return -EBUSY;
1180 }
1181
1182 /*
1183 * Prepare MCU and mailbox for firmware loading.
1184 */
1185 reg = 0;
1186 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1187 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1188 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1189 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1190 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1191
1192 /*
1193 * Write firmware to device.
1194 */
1195 reg = 0;
1196 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1197 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1198 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1199
1200 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1201 data, len);
1202
1203 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1204 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1205
1206 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1207 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1208
1209 for (i = 0; i < 100; i++) {
1210 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1211 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1212 break;
1213 msleep(1);
1214 }
1215
1216 if (i == 100) {
1217 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1218 return -EBUSY;
1219 }
1220
e6d3e902
ID
1221 /*
1222 * Hardware needs another millisecond before it is ready.
1223 */
1224 msleep(1);
1225
95ea3627
ID
1226 /*
1227 * Reset MAC and BBP registers.
1228 */
1229 reg = 0;
1230 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1231 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1232 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1233
1234 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1235 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1236 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1237 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1238
1239 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1240 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1241 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1242
1243 return 0;
1244}
1245
a7f3a06c
ID
1246/*
1247 * Initialization functions.
1248 */
798b7adb 1249static bool rt61pci_get_entry_state(struct queue_entry *entry)
95ea3627 1250{
b8be63ff 1251 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
95ea3627
ID
1252 u32 word;
1253
798b7adb
ID
1254 if (entry->queue->qid == QID_RX) {
1255 rt2x00_desc_read(entry_priv->desc, 0, &word);
95ea3627 1256
798b7adb
ID
1257 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1258 } else {
1259 rt2x00_desc_read(entry_priv->desc, 0, &word);
1260
1261 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1262 rt2x00_get_field32(word, TXD_W0_VALID));
1263 }
95ea3627
ID
1264}
1265
798b7adb 1266static void rt61pci_clear_entry(struct queue_entry *entry)
95ea3627 1267{
b8be63ff 1268 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
798b7adb 1269 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
95ea3627
ID
1270 u32 word;
1271
798b7adb
ID
1272 if (entry->queue->qid == QID_RX) {
1273 rt2x00_desc_read(entry_priv->desc, 5, &word);
1274 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1275 skbdesc->skb_dma);
1276 rt2x00_desc_write(entry_priv->desc, 5, word);
1277
1278 rt2x00_desc_read(entry_priv->desc, 0, &word);
1279 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1280 rt2x00_desc_write(entry_priv->desc, 0, word);
1281 } else {
1282 rt2x00_desc_read(entry_priv->desc, 0, &word);
1283 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1284 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1285 rt2x00_desc_write(entry_priv->desc, 0, word);
1286 }
95ea3627
ID
1287}
1288
181d6902 1289static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
95ea3627 1290{
b8be63ff 1291 struct queue_entry_priv_pci *entry_priv;
95ea3627
ID
1292 u32 reg;
1293
95ea3627
ID
1294 /*
1295 * Initialize registers.
1296 */
1297 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1298 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
181d6902 1299 rt2x00dev->tx[0].limit);
95ea3627 1300 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
181d6902 1301 rt2x00dev->tx[1].limit);
95ea3627 1302 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
181d6902 1303 rt2x00dev->tx[2].limit);
95ea3627 1304 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
181d6902 1305 rt2x00dev->tx[3].limit);
95ea3627
ID
1306 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1307
1308 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
95ea3627 1309 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
181d6902 1310 rt2x00dev->tx[0].desc_size / 4);
95ea3627
ID
1311 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1312
b8be63ff 1313 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
95ea3627 1314 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
30b3a23c 1315 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
b8be63ff 1316 entry_priv->desc_dma);
95ea3627
ID
1317 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1318
b8be63ff 1319 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
95ea3627 1320 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
30b3a23c 1321 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
b8be63ff 1322 entry_priv->desc_dma);
95ea3627
ID
1323 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1324
b8be63ff 1325 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
95ea3627 1326 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
30b3a23c 1327 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
b8be63ff 1328 entry_priv->desc_dma);
95ea3627
ID
1329 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1330
b8be63ff 1331 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
95ea3627 1332 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
30b3a23c 1333 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
b8be63ff 1334 entry_priv->desc_dma);
95ea3627
ID
1335 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1336
95ea3627 1337 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
181d6902 1338 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
95ea3627
ID
1339 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1340 rt2x00dev->rx->desc_size / 4);
1341 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1342 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1343
b8be63ff 1344 entry_priv = rt2x00dev->rx->entries[0].priv_data;
95ea3627 1345 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
30b3a23c 1346 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
b8be63ff 1347 entry_priv->desc_dma);
95ea3627
ID
1348 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1349
1350 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1351 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1352 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1353 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1354 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
95ea3627
ID
1355 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1356
1357 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1358 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1359 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1360 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1361 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
95ea3627
ID
1362 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1363
1364 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1365 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1366 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1367
1368 return 0;
1369}
1370
1371static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1372{
1373 u32 reg;
1374
1375 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1376 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1377 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1378 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1379 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1380
1381 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1382 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1383 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1384 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1385 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1386 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1387 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1388 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1389 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1390 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1391
1392 /*
1393 * CCK TXD BBP registers
1394 */
1395 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1396 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1397 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1398 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1399 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1400 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1401 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1402 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1403 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1404 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1405
1406 /*
1407 * OFDM TXD BBP registers
1408 */
1409 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1410 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1411 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1412 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1413 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1414 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1415 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1416 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1417
1418 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1419 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1420 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1421 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1422 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1423 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1424
1425 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1426 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1427 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1428 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1429 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1430 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1431
1f909162
ID
1432 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1433 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1434 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1435 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1436 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1437 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1438 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1439 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1440
95ea3627
ID
1441 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1442
1443 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1444
1445 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1446 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1447 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1448
1449 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1450
1451 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1452 return -EBUSY;
1453
1454 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1455
1456 /*
1457 * Invalidate all Shared Keys (SEC_CSR0),
1458 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1459 */
1460 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1461 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1462 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1463
1464 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1465 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1466 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1467 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1468
1469 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1470
1471 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1472
1473 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1474
6bb40dd1
ID
1475 /*
1476 * Clear all beacons
1477 * For the Beacon base registers we only need to clear
1478 * the first byte since that byte contains the VALID and OWNER
1479 * bits which (when set to 0) will invalidate the entire beacon.
1480 */
1481 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1482 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1483 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1484 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1485
95ea3627
ID
1486 /*
1487 * We must clear the error counters.
1488 * These registers are cleared on read,
1489 * so we may pass a useless variable to store the value.
1490 */
1491 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1492 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1493 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1494
1495 /*
1496 * Reset MAC and BBP registers.
1497 */
1498 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1499 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1500 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1501 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1502
1503 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1504 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1505 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1506 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1507
1508 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1509 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1510 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1511
1512 return 0;
1513}
1514
2b08da3f 1515static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
95ea3627
ID
1516{
1517 unsigned int i;
95ea3627
ID
1518 u8 value;
1519
1520 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1521 rt61pci_bbp_read(rt2x00dev, 0, &value);
1522 if ((value != 0xff) && (value != 0x00))
2b08da3f 1523 return 0;
95ea3627
ID
1524 udelay(REGISTER_BUSY_DELAY);
1525 }
1526
1527 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1528 return -EACCES;
2b08da3f
ID
1529}
1530
1531static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1532{
1533 unsigned int i;
1534 u16 eeprom;
1535 u8 reg_id;
1536 u8 value;
1537
1538 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1539 return -EACCES;
95ea3627 1540
95ea3627
ID
1541 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1542 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1543 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1544 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1545 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1546 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1547 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1548 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1549 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1550 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1551 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1552 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1553 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1554 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1555 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1556 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1557 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1558 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1559 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1560 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1561 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1562 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1563 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1564 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1565
95ea3627
ID
1566 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1567 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1568
1569 if (eeprom != 0xffff && eeprom != 0x0000) {
1570 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1571 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
95ea3627
ID
1572 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1573 }
1574 }
95ea3627
ID
1575
1576 return 0;
1577}
1578
1579/*
1580 * Device state switch handlers.
1581 */
1582static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1583 enum dev_state state)
1584{
1585 u32 reg;
1586
1587 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1588 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
2b08da3f
ID
1589 (state == STATE_RADIO_RX_OFF) ||
1590 (state == STATE_RADIO_RX_OFF_LINK));
95ea3627
ID
1591 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1592}
1593
1594static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1595 enum dev_state state)
1596{
1597 int mask = (state == STATE_RADIO_IRQ_OFF);
1598 u32 reg;
1599
1600 /*
1601 * When interrupts are being enabled, the interrupt registers
1602 * should clear the register to assure a clean state.
1603 */
1604 if (state == STATE_RADIO_IRQ_ON) {
1605 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1606 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1607
1608 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1609 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1610 }
1611
1612 /*
1613 * Only toggle the interrupts bits we are going to use.
1614 * Non-checked interrupt bits are disabled by default.
1615 */
1616 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1617 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1618 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1619 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1620 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1621 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1622
1623 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1624 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1625 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1626 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1627 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1628 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1629 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1630 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1631 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1632 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1633}
1634
1635static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1636{
1637 u32 reg;
1638
1639 /*
1640 * Initialize all registers.
1641 */
2b08da3f
ID
1642 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1643 rt61pci_init_registers(rt2x00dev) ||
1644 rt61pci_init_bbp(rt2x00dev)))
95ea3627 1645 return -EIO;
95ea3627
ID
1646
1647 /*
1648 * Enable RX.
1649 */
1650 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1651 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1652 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1653
95ea3627
ID
1654 return 0;
1655}
1656
1657static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1658{
1659 u32 reg;
1660
95ea3627
ID
1661 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1662
1663 /*
1664 * Disable synchronisation.
1665 */
1666 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1667
1668 /*
1669 * Cancel RX and TX.
1670 */
1671 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1672 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1673 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1674 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1675 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
95ea3627 1676 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
95ea3627
ID
1677}
1678
1679static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1680{
1681 u32 reg;
1682 unsigned int i;
1683 char put_to_sleep;
95ea3627
ID
1684
1685 put_to_sleep = (state != STATE_AWAKE);
1686
1687 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1688 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1689 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1690 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1691
1692 /*
1693 * Device is not guaranteed to be in the requested state yet.
1694 * We must wait until the register indicates that the
1695 * device has entered the correct state.
1696 */
1697 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1698 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
2b08da3f
ID
1699 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1700 if (state == !put_to_sleep)
95ea3627
ID
1701 return 0;
1702 msleep(10);
1703 }
1704
95ea3627
ID
1705 return -EBUSY;
1706}
1707
1708static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1709 enum dev_state state)
1710{
1711 int retval = 0;
1712
1713 switch (state) {
1714 case STATE_RADIO_ON:
1715 retval = rt61pci_enable_radio(rt2x00dev);
1716 break;
1717 case STATE_RADIO_OFF:
1718 rt61pci_disable_radio(rt2x00dev);
1719 break;
1720 case STATE_RADIO_RX_ON:
61667d8d 1721 case STATE_RADIO_RX_ON_LINK:
95ea3627 1722 case STATE_RADIO_RX_OFF:
61667d8d 1723 case STATE_RADIO_RX_OFF_LINK:
2b08da3f
ID
1724 rt61pci_toggle_rx(rt2x00dev, state);
1725 break;
1726 case STATE_RADIO_IRQ_ON:
1727 case STATE_RADIO_IRQ_OFF:
1728 rt61pci_toggle_irq(rt2x00dev, state);
95ea3627
ID
1729 break;
1730 case STATE_DEEP_SLEEP:
1731 case STATE_SLEEP:
1732 case STATE_STANDBY:
1733 case STATE_AWAKE:
1734 retval = rt61pci_set_state(rt2x00dev, state);
1735 break;
1736 default:
1737 retval = -ENOTSUPP;
1738 break;
1739 }
1740
2b08da3f
ID
1741 if (unlikely(retval))
1742 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1743 state, retval);
1744
95ea3627
ID
1745 return retval;
1746}
1747
1748/*
1749 * TX descriptor initialization
1750 */
1751static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
61e754f4
ID
1752 struct sk_buff *skb,
1753 struct txentry_desc *txdesc)
95ea3627 1754{
181d6902 1755 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
dd3193e1 1756 __le32 *txd = skbdesc->desc;
95ea3627
ID
1757 u32 word;
1758
1759 /*
1760 * Start writing the descriptor words.
1761 */
1762 rt2x00_desc_read(txd, 1, &word);
181d6902
ID
1763 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1764 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1765 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1766 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
61e754f4 1767 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
5adf6d63
ID
1768 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1769 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
4de36fe5 1770 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
95ea3627
ID
1771 rt2x00_desc_write(txd, 1, word);
1772
1773 rt2x00_desc_read(txd, 2, &word);
181d6902
ID
1774 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1775 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1776 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1777 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
95ea3627
ID
1778 rt2x00_desc_write(txd, 2, word);
1779
61e754f4
ID
1780 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1781 _rt2x00_desc_write(txd, 3, skbdesc->iv);
1782 _rt2x00_desc_write(txd, 4, skbdesc->eiv);
1783 }
1784
95ea3627 1785 rt2x00_desc_read(txd, 5, &word);
4de36fe5
GW
1786 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1787 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1788 skbdesc->entry->entry_idx);
95ea3627 1789 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
ac1aa7e4 1790 TXPOWER_TO_DEV(rt2x00dev->tx_power));
95ea3627
ID
1791 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1792 rt2x00_desc_write(txd, 5, word);
1793
4de36fe5
GW
1794 rt2x00_desc_read(txd, 6, &word);
1795 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
c4da0048 1796 skbdesc->skb_dma);
4de36fe5
GW
1797 rt2x00_desc_write(txd, 6, word);
1798
d7bafff3
AB
1799 if (skbdesc->desc_len > TXINFO_SIZE) {
1800 rt2x00_desc_read(txd, 11, &word);
d56d453a 1801 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
d7bafff3
AB
1802 rt2x00_desc_write(txd, 11, word);
1803 }
95ea3627
ID
1804
1805 rt2x00_desc_read(txd, 0, &word);
1806 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1807 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1808 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
181d6902 1809 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
95ea3627 1810 rt2x00_set_field32(&word, TXD_W0_ACK,
181d6902 1811 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
95ea3627 1812 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
181d6902 1813 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
95ea3627 1814 rt2x00_set_field32(&word, TXD_W0_OFDM,
181d6902
ID
1815 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1816 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
95ea3627 1817 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
61486e0f 1818 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
61e754f4
ID
1819 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1820 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1821 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1822 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1823 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
d56d453a 1824 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
95ea3627 1825 rt2x00_set_field32(&word, TXD_W0_BURST,
181d6902 1826 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
61e754f4 1827 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
95ea3627
ID
1828 rt2x00_desc_write(txd, 0, word);
1829}
1830
1831/*
1832 * TX data initialization
1833 */
bd88a781
ID
1834static void rt61pci_write_beacon(struct queue_entry *entry)
1835{
1836 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1837 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1838 unsigned int beacon_base;
1839 u32 reg;
1840
1841 /*
1842 * Disable beaconing while we are reloading the beacon data,
1843 * otherwise we might be sending out invalid data.
1844 */
1845 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1846 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1847 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1848 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1849 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1850
1851 /*
1852 * Write entire beacon with descriptor to register.
1853 */
1854 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1855 rt2x00pci_register_multiwrite(rt2x00dev,
1856 beacon_base,
1857 skbdesc->desc, skbdesc->desc_len);
1858 rt2x00pci_register_multiwrite(rt2x00dev,
1859 beacon_base + skbdesc->desc_len,
1860 entry->skb->data, entry->skb->len);
1861
1862 /*
1863 * Clean up beacon skb.
1864 */
1865 dev_kfree_skb_any(entry->skb);
1866 entry->skb = NULL;
1867}
1868
95ea3627 1869static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
e58c6aca 1870 const enum data_queue_qid queue)
95ea3627
ID
1871{
1872 u32 reg;
1873
e58c6aca 1874 if (queue == QID_BEACON) {
95ea3627
ID
1875 /*
1876 * For Wi-Fi faily generated beacons between participating
1877 * stations. Set TBTT phase adaptive adjustment step to 8us.
1878 */
1879 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1880
1881 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1882 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
8af244cc
ID
1883 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1884 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
95ea3627
ID
1885 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1886 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1887 }
1888 return;
1889 }
1890
1891 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
e58c6aca
ID
1892 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1893 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1894 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1895 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
95ea3627
ID
1896 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1897}
1898
1899/*
1900 * RX control handlers
1901 */
1902static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1903{
ba2ab471 1904 u8 offset = rt2x00dev->lna_gain;
95ea3627
ID
1905 u8 lna;
1906
1907 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1908 switch (lna) {
1909 case 3:
ba2ab471 1910 offset += 90;
95ea3627
ID
1911 break;
1912 case 2:
ba2ab471 1913 offset += 74;
95ea3627
ID
1914 break;
1915 case 1:
ba2ab471 1916 offset += 64;
95ea3627
ID
1917 break;
1918 default:
1919 return 0;
1920 }
1921
8318d78a 1922 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
95ea3627
ID
1923 if (lna == 3 || lna == 2)
1924 offset += 10;
95ea3627
ID
1925 }
1926
1927 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1928}
1929
181d6902 1930static void rt61pci_fill_rxdone(struct queue_entry *entry,
55887511 1931 struct rxdone_entry_desc *rxdesc)
95ea3627 1932{
61e754f4 1933 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
b8be63ff 1934 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
95ea3627
ID
1935 u32 word0;
1936 u32 word1;
1937
b8be63ff
ID
1938 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1939 rt2x00_desc_read(entry_priv->desc, 1, &word1);
95ea3627 1940
4150c572 1941 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
181d6902 1942 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
95ea3627 1943
61e754f4
ID
1944 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1945 rxdesc->cipher =
1946 rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1947 rxdesc->cipher_status =
1948 rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1949 }
1950
1951 if (rxdesc->cipher != CIPHER_NONE) {
1952 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv);
1953 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->eiv);
1954 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1955
1956 /*
1957 * Hardware has stripped IV/EIV data from 802.11 frame during
1958 * decryption. It has provided the data seperately but rt2x00lib
1959 * should decide if it should be reinserted.
1960 */
1961 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1962
1963 /*
1964 * FIXME: Legacy driver indicates that the frame does
1965 * contain the Michael Mic. Unfortunately, in rt2x00
1966 * the MIC seems to be missing completely...
1967 */
1968 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1969
1970 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1971 rxdesc->flags |= RX_FLAG_DECRYPTED;
1972 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1973 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1974 }
1975
95ea3627
ID
1976 /*
1977 * Obtain the status about this packet.
89993890
ID
1978 * When frame was received with an OFDM bitrate,
1979 * the signal is the PLCP value. If it was received with
1980 * a CCK bitrate the signal is the rate in 100kbit/s.
95ea3627 1981 */
181d6902 1982 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
61e754f4 1983 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
181d6902 1984 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
19d30e02 1985
19d30e02
ID
1986 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1987 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
6c6aa3c0
ID
1988 else
1989 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
19d30e02
ID
1990 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1991 rxdesc->dev_flags |= RXDONE_MY_BSS;
95ea3627
ID
1992}
1993
1994/*
1995 * Interrupt functions.
1996 */
1997static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
1998{
181d6902
ID
1999 struct data_queue *queue;
2000 struct queue_entry *entry;
2001 struct queue_entry *entry_done;
b8be63ff 2002 struct queue_entry_priv_pci *entry_priv;
181d6902 2003 struct txdone_entry_desc txdesc;
95ea3627
ID
2004 u32 word;
2005 u32 reg;
2006 u32 old_reg;
2007 int type;
2008 int index;
95ea3627
ID
2009
2010 /*
2011 * During each loop we will compare the freshly read
2012 * STA_CSR4 register value with the value read from
2013 * the previous loop. If the 2 values are equal then
2014 * we should stop processing because the chance it
2015 * quite big that the device has been unplugged and
2016 * we risk going into an endless loop.
2017 */
2018 old_reg = 0;
2019
2020 while (1) {
2021 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2022 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2023 break;
2024
2025 if (old_reg == reg)
2026 break;
2027 old_reg = reg;
2028
2029 /*
2030 * Skip this entry when it contains an invalid
181d6902 2031 * queue identication number.
95ea3627
ID
2032 */
2033 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
181d6902
ID
2034 queue = rt2x00queue_get_queue(rt2x00dev, type);
2035 if (unlikely(!queue))
95ea3627
ID
2036 continue;
2037
2038 /*
2039 * Skip this entry when it contains an invalid
2040 * index number.
2041 */
2042 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
181d6902 2043 if (unlikely(index >= queue->limit))
95ea3627
ID
2044 continue;
2045
181d6902 2046 entry = &queue->entries[index];
b8be63ff
ID
2047 entry_priv = entry->priv_data;
2048 rt2x00_desc_read(entry_priv->desc, 0, &word);
95ea3627
ID
2049
2050 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2051 !rt2x00_get_field32(word, TXD_W0_VALID))
2052 return;
2053
181d6902 2054 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
62bc060b 2055 while (entry != entry_done) {
181d6902
ID
2056 /* Catch up.
2057 * Just report any entries we missed as failed.
2058 */
62bc060b 2059 WARNING(rt2x00dev,
181d6902
ID
2060 "TX status report missed for entry %d\n",
2061 entry_done->entry_idx);
2062
fb55f4d1
ID
2063 txdesc.flags = 0;
2064 __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
181d6902
ID
2065 txdesc.retry = 0;
2066
d74f5ba4 2067 rt2x00lib_txdone(entry_done, &txdesc);
181d6902 2068 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
62bc060b
MN
2069 }
2070
95ea3627
ID
2071 /*
2072 * Obtain the status about this packet.
2073 */
fb55f4d1
ID
2074 txdesc.flags = 0;
2075 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2076 case 0: /* Success, maybe with retry */
2077 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2078 break;
2079 case 6: /* Failure, excessive retries */
2080 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2081 /* Don't break, this is a failed frame! */
2082 default: /* Failure */
2083 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2084 }
181d6902 2085 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
95ea3627 2086
d74f5ba4 2087 rt2x00lib_txdone(entry, &txdesc);
95ea3627
ID
2088 }
2089}
2090
2091static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2092{
2093 struct rt2x00_dev *rt2x00dev = dev_instance;
2094 u32 reg_mcu;
2095 u32 reg;
2096
2097 /*
2098 * Get the interrupt sources & saved to local variable.
2099 * Write register value back to clear pending interrupts.
2100 */
2101 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2102 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2103
2104 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2105 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2106
2107 if (!reg && !reg_mcu)
2108 return IRQ_NONE;
2109
0262ab0d 2110 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
95ea3627
ID
2111 return IRQ_HANDLED;
2112
2113 /*
2114 * Handle interrupts, walk through all bits
2115 * and run the tasks, the bits are checked in order of
2116 * priority.
2117 */
2118
2119 /*
2120 * 1 - Rx ring done interrupt.
2121 */
2122 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2123 rt2x00pci_rxdone(rt2x00dev);
2124
2125 /*
2126 * 2 - Tx ring done interrupt.
2127 */
2128 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2129 rt61pci_txdone(rt2x00dev);
2130
2131 /*
2132 * 3 - Handle MCU command done.
2133 */
2134 if (reg_mcu)
2135 rt2x00pci_register_write(rt2x00dev,
2136 M2H_CMD_DONE_CSR, 0xffffffff);
2137
2138 return IRQ_HANDLED;
2139}
2140
2141/*
2142 * Device probe functions.
2143 */
2144static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2145{
2146 struct eeprom_93cx6 eeprom;
2147 u32 reg;
2148 u16 word;
2149 u8 *mac;
2150 s8 value;
2151
2152 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2153
2154 eeprom.data = rt2x00dev;
2155 eeprom.register_read = rt61pci_eepromregister_read;
2156 eeprom.register_write = rt61pci_eepromregister_write;
2157 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2158 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2159 eeprom.reg_data_in = 0;
2160 eeprom.reg_data_out = 0;
2161 eeprom.reg_data_clock = 0;
2162 eeprom.reg_chip_select = 0;
2163
2164 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2165 EEPROM_SIZE / sizeof(u16));
2166
2167 /*
2168 * Start validation of the data that has been read.
2169 */
2170 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2171 if (!is_valid_ether_addr(mac)) {
2172 random_ether_addr(mac);
e174961c 2173 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
95ea3627
ID
2174 }
2175
2176 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2177 if (word == 0xffff) {
2178 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
362f3b6b
ID
2179 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2180 ANTENNA_B);
2181 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2182 ANTENNA_B);
95ea3627
ID
2183 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2184 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2185 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2186 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2187 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2188 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2189 }
2190
2191 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2192 if (word == 0xffff) {
2193 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2194 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2195 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
2196 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2197 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2198 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2199 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2200 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2201 }
2202
2203 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2204 if (word == 0xffff) {
2205 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2206 LED_MODE_DEFAULT);
2207 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2208 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2209 }
2210
2211 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2212 if (word == 0xffff) {
2213 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2214 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2215 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2216 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2217 }
2218
2219 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2220 if (word == 0xffff) {
2221 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2222 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2223 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2224 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2225 } else {
2226 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2227 if (value < -10 || value > 10)
2228 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2229 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2230 if (value < -10 || value > 10)
2231 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2232 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2233 }
2234
2235 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2236 if (word == 0xffff) {
2237 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2238 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2239 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
417f412f 2240 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
95ea3627
ID
2241 } else {
2242 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2243 if (value < -10 || value > 10)
2244 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2245 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2246 if (value < -10 || value > 10)
2247 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2248 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2249 }
2250
2251 return 0;
2252}
2253
2254static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2255{
2256 u32 reg;
2257 u16 value;
2258 u16 eeprom;
2259 u16 device;
2260
2261 /*
2262 * Read EEPROM word for configuration.
2263 */
2264 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2265
2266 /*
2267 * Identify RF chipset.
2268 * To determine the RT chip we have to read the
2269 * PCI header of the device.
2270 */
14a3bf89 2271 pci_read_config_word(to_pci_dev(rt2x00dev->dev),
95ea3627
ID
2272 PCI_CONFIG_HEADER_DEVICE, &device);
2273 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2274 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2275 rt2x00_set_chip(rt2x00dev, device, value, reg);
2276
2277 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2278 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2279 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2280 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2281 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2282 return -ENODEV;
2283 }
2284
e4cd2ff8
ID
2285 /*
2286 * Determine number of antenna's.
2287 */
2288 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2289 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2290
95ea3627
ID
2291 /*
2292 * Identify default antenna configuration.
2293 */
addc81bd 2294 rt2x00dev->default_ant.tx =
95ea3627 2295 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
addc81bd 2296 rt2x00dev->default_ant.rx =
95ea3627
ID
2297 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2298
2299 /*
2300 * Read the Frame type.
2301 */
2302 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2303 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2304
95ea3627
ID
2305 /*
2306 * Detect if this device has an hardware controlled radio.
2307 */
58169529 2308#ifdef CONFIG_RT2X00_LIB_RFKILL
95ea3627 2309 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
066cb637 2310 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
58169529 2311#endif /* CONFIG_RT2X00_LIB_RFKILL */
95ea3627
ID
2312
2313 /*
2314 * Read frequency offset and RF programming sequence.
2315 */
2316 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2317 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2318 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2319
2320 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2321
2322 /*
2323 * Read external LNA informations.
2324 */
2325 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2326
2327 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2328 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2329 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2330 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2331
e4cd2ff8
ID
2332 /*
2333 * When working with a RF2529 chip without double antenna
2334 * the antenna settings should be gathered from the NIC
2335 * eeprom word.
2336 */
2337 if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2338 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2339 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2340 case 0:
2341 rt2x00dev->default_ant.tx = ANTENNA_B;
2342 rt2x00dev->default_ant.rx = ANTENNA_A;
2343 break;
2344 case 1:
2345 rt2x00dev->default_ant.tx = ANTENNA_B;
2346 rt2x00dev->default_ant.rx = ANTENNA_B;
2347 break;
2348 case 2:
2349 rt2x00dev->default_ant.tx = ANTENNA_A;
2350 rt2x00dev->default_ant.rx = ANTENNA_A;
2351 break;
2352 case 3:
2353 rt2x00dev->default_ant.tx = ANTENNA_A;
2354 rt2x00dev->default_ant.rx = ANTENNA_B;
2355 break;
2356 }
2357
2358 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2359 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2360 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2361 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2362 }
2363
95ea3627
ID
2364 /*
2365 * Store led settings, for correct led behaviour.
2366 * If the eeprom value is invalid,
2367 * switch to default led mode.
2368 */
771fd565 2369#ifdef CONFIG_RT2X00_LIB_LEDS
95ea3627 2370 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
a9450b70
ID
2371 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2372
475433be
ID
2373 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2374 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2375 if (value == LED_MODE_SIGNAL_STRENGTH)
2376 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2377 LED_TYPE_QUALITY);
95ea3627 2378
a9450b70
ID
2379 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2380 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
95ea3627
ID
2381 rt2x00_get_field16(eeprom,
2382 EEPROM_LED_POLARITY_GPIO_0));
a9450b70 2383 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
95ea3627
ID
2384 rt2x00_get_field16(eeprom,
2385 EEPROM_LED_POLARITY_GPIO_1));
a9450b70 2386 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
95ea3627
ID
2387 rt2x00_get_field16(eeprom,
2388 EEPROM_LED_POLARITY_GPIO_2));
a9450b70 2389 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
95ea3627
ID
2390 rt2x00_get_field16(eeprom,
2391 EEPROM_LED_POLARITY_GPIO_3));
a9450b70 2392 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
95ea3627
ID
2393 rt2x00_get_field16(eeprom,
2394 EEPROM_LED_POLARITY_GPIO_4));
a9450b70 2395 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
95ea3627 2396 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
a9450b70 2397 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
95ea3627
ID
2398 rt2x00_get_field16(eeprom,
2399 EEPROM_LED_POLARITY_RDY_G));
a9450b70 2400 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
95ea3627
ID
2401 rt2x00_get_field16(eeprom,
2402 EEPROM_LED_POLARITY_RDY_A));
771fd565 2403#endif /* CONFIG_RT2X00_LIB_LEDS */
95ea3627
ID
2404
2405 return 0;
2406}
2407
2408/*
2409 * RF value list for RF5225 & RF5325
2410 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2411 */
2412static const struct rf_channel rf_vals_noseq[] = {
2413 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2414 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2415 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2416 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2417 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2418 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2419 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2420 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2421 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2422 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2423 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2424 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2425 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2426 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2427
2428 /* 802.11 UNI / HyperLan 2 */
2429 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2430 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2431 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2432 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2433 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2434 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2435 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2436 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2437
2438 /* 802.11 HyperLan 2 */
2439 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2440 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2441 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2442 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2443 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2444 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2445 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2446 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2447 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2448 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2449
2450 /* 802.11 UNII */
2451 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2452 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2453 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2454 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2455 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2456 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2457
2458 /* MMAC(Japan)J52 ch 34,38,42,46 */
2459 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2460 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2461 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2462 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2463};
2464
2465/*
2466 * RF value list for RF5225 & RF5325
2467 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2468 */
2469static const struct rf_channel rf_vals_seq[] = {
2470 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2471 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2472 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2473 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2474 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2475 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2476 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2477 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2478 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2479 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2480 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2481 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2482 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2483 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2484
2485 /* 802.11 UNI / HyperLan 2 */
2486 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2487 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2488 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2489 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2490 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2491 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2492 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2493 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2494
2495 /* 802.11 HyperLan 2 */
2496 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2497 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2498 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2499 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2500 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2501 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2502 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2503 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2504 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2505 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2506
2507 /* 802.11 UNII */
2508 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2509 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2510 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2511 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2512 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2513 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2514
2515 /* MMAC(Japan)J52 ch 34,38,42,46 */
2516 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2517 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2518 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2519 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2520};
2521
8c5e7a5f 2522static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
95ea3627
ID
2523{
2524 struct hw_mode_spec *spec = &rt2x00dev->spec;
8c5e7a5f
ID
2525 struct channel_info *info;
2526 char *tx_power;
95ea3627
ID
2527 unsigned int i;
2528
2529 /*
2530 * Initialize all hw fields.
2531 */
2532 rt2x00dev->hw->flags =
566bfe5a
BR
2533 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2534 IEEE80211_HW_SIGNAL_DBM;
95ea3627 2535 rt2x00dev->hw->extra_tx_headroom = 0;
95ea3627 2536
14a3bf89 2537 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
95ea3627
ID
2538 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2539 rt2x00_eeprom_addr(rt2x00dev,
2540 EEPROM_MAC_ADDR_0));
2541
95ea3627
ID
2542 /*
2543 * Initialize hw_mode information.
2544 */
31562e80
ID
2545 spec->supported_bands = SUPPORT_BAND_2GHZ;
2546 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
95ea3627
ID
2547
2548 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2549 spec->num_channels = 14;
2550 spec->channels = rf_vals_noseq;
2551 } else {
2552 spec->num_channels = 14;
2553 spec->channels = rf_vals_seq;
2554 }
2555
2556 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2557 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
31562e80 2558 spec->supported_bands |= SUPPORT_BAND_5GHZ;
95ea3627 2559 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
8c5e7a5f
ID
2560 }
2561
2562 /*
2563 * Create channel information array
2564 */
2565 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2566 if (!info)
2567 return -ENOMEM;
2568
2569 spec->channels_info = info;
95ea3627 2570
8c5e7a5f
ID
2571 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2572 for (i = 0; i < 14; i++)
2573 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
95ea3627 2574
8c5e7a5f
ID
2575 if (spec->num_channels > 14) {
2576 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2577 for (i = 14; i < spec->num_channels; i++)
2578 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
95ea3627 2579 }
8c5e7a5f
ID
2580
2581 return 0;
95ea3627
ID
2582}
2583
2584static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2585{
2586 int retval;
2587
2588 /*
2589 * Allocate eeprom data.
2590 */
2591 retval = rt61pci_validate_eeprom(rt2x00dev);
2592 if (retval)
2593 return retval;
2594
2595 retval = rt61pci_init_eeprom(rt2x00dev);
2596 if (retval)
2597 return retval;
2598
2599 /*
2600 * Initialize hw specifications.
2601 */
8c5e7a5f
ID
2602 retval = rt61pci_probe_hw_mode(rt2x00dev);
2603 if (retval)
2604 return retval;
95ea3627
ID
2605
2606 /*
c4da0048 2607 * This device requires firmware and DMA mapped skbs.
95ea3627 2608 */
066cb637 2609 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
c4da0048 2610 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
008c4482
ID
2611 if (!modparam_nohwcrypt)
2612 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
95ea3627
ID
2613
2614 /*
2615 * Set the rssi offset.
2616 */
2617 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2618
2619 return 0;
2620}
2621
2622/*
2623 * IEEE80211 stack callback functions.
2624 */
2af0a570
ID
2625static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2626 const struct ieee80211_tx_queue_params *params)
2627{
2628 struct rt2x00_dev *rt2x00dev = hw->priv;
2629 struct data_queue *queue;
2630 struct rt2x00_field32 field;
2631 int retval;
2632 u32 reg;
2633
2634 /*
2635 * First pass the configuration through rt2x00lib, that will
2636 * update the queue settings and validate the input. After that
2637 * we are free to update the registers based on the value
2638 * in the queue parameter.
2639 */
2640 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2641 if (retval)
2642 return retval;
2643
2644 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2645
2646 /* Update WMM TXOP register */
2647 if (queue_idx < 2) {
2648 field.bit_offset = queue_idx * 16;
2649 field.bit_mask = 0xffff << field.bit_offset;
2650
2651 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
2652 rt2x00_set_field32(&reg, field, queue->txop);
2653 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
2654 } else if (queue_idx < 4) {
2655 field.bit_offset = (queue_idx - 2) * 16;
2656 field.bit_mask = 0xffff << field.bit_offset;
2657
2658 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
2659 rt2x00_set_field32(&reg, field, queue->txop);
2660 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
2661 }
2662
2663 /* Update WMM registers */
2664 field.bit_offset = queue_idx * 4;
2665 field.bit_mask = 0xf << field.bit_offset;
2666
2667 rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2668 rt2x00_set_field32(&reg, field, queue->aifs);
2669 rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2670
2671 rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2672 rt2x00_set_field32(&reg, field, queue->cw_min);
2673 rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2674
2675 rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2676 rt2x00_set_field32(&reg, field, queue->cw_max);
2677 rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2678
2679 return 0;
2680}
2681
95ea3627
ID
2682static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2683{
2684 struct rt2x00_dev *rt2x00dev = hw->priv;
2685 u64 tsf;
2686 u32 reg;
2687
2688 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2689 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2690 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2691 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2692
2693 return tsf;
2694}
2695
95ea3627
ID
2696static const struct ieee80211_ops rt61pci_mac80211_ops = {
2697 .tx = rt2x00mac_tx,
4150c572
JB
2698 .start = rt2x00mac_start,
2699 .stop = rt2x00mac_stop,
95ea3627
ID
2700 .add_interface = rt2x00mac_add_interface,
2701 .remove_interface = rt2x00mac_remove_interface,
2702 .config = rt2x00mac_config,
2703 .config_interface = rt2x00mac_config_interface,
3a643d24 2704 .configure_filter = rt2x00mac_configure_filter,
61e754f4 2705 .set_key = rt2x00mac_set_key,
95ea3627 2706 .get_stats = rt2x00mac_get_stats,
471b3efd 2707 .bss_info_changed = rt2x00mac_bss_info_changed,
2af0a570 2708 .conf_tx = rt61pci_conf_tx,
95ea3627
ID
2709 .get_tx_stats = rt2x00mac_get_tx_stats,
2710 .get_tsf = rt61pci_get_tsf,
95ea3627
ID
2711};
2712
2713static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2714 .irq_handler = rt61pci_interrupt,
2715 .probe_hw = rt61pci_probe_hw,
2716 .get_firmware_name = rt61pci_get_firmware_name,
a7f3a06c 2717 .get_firmware_crc = rt61pci_get_firmware_crc,
95ea3627
ID
2718 .load_firmware = rt61pci_load_firmware,
2719 .initialize = rt2x00pci_initialize,
2720 .uninitialize = rt2x00pci_uninitialize,
798b7adb
ID
2721 .get_entry_state = rt61pci_get_entry_state,
2722 .clear_entry = rt61pci_clear_entry,
95ea3627 2723 .set_device_state = rt61pci_set_device_state,
95ea3627 2724 .rfkill_poll = rt61pci_rfkill_poll,
95ea3627
ID
2725 .link_stats = rt61pci_link_stats,
2726 .reset_tuner = rt61pci_reset_tuner,
2727 .link_tuner = rt61pci_link_tuner,
2728 .write_tx_desc = rt61pci_write_tx_desc,
2729 .write_tx_data = rt2x00pci_write_tx_data,
bd88a781 2730 .write_beacon = rt61pci_write_beacon,
95ea3627
ID
2731 .kick_tx_queue = rt61pci_kick_tx_queue,
2732 .fill_rxdone = rt61pci_fill_rxdone,
61e754f4
ID
2733 .config_shared_key = rt61pci_config_shared_key,
2734 .config_pairwise_key = rt61pci_config_pairwise_key,
3a643d24 2735 .config_filter = rt61pci_config_filter,
6bb40dd1 2736 .config_intf = rt61pci_config_intf,
72810379 2737 .config_erp = rt61pci_config_erp,
e4ea1c40 2738 .config_ant = rt61pci_config_ant,
95ea3627
ID
2739 .config = rt61pci_config,
2740};
2741
181d6902
ID
2742static const struct data_queue_desc rt61pci_queue_rx = {
2743 .entry_num = RX_ENTRIES,
2744 .data_size = DATA_FRAME_SIZE,
2745 .desc_size = RXD_DESC_SIZE,
b8be63ff 2746 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2747};
2748
2749static const struct data_queue_desc rt61pci_queue_tx = {
2750 .entry_num = TX_ENTRIES,
2751 .data_size = DATA_FRAME_SIZE,
2752 .desc_size = TXD_DESC_SIZE,
b8be63ff 2753 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2754};
2755
2756static const struct data_queue_desc rt61pci_queue_bcn = {
6bb40dd1 2757 .entry_num = 4 * BEACON_ENTRIES,
78720897 2758 .data_size = 0, /* No DMA required for beacons */
181d6902 2759 .desc_size = TXINFO_SIZE,
b8be63ff 2760 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2761};
2762
95ea3627 2763static const struct rt2x00_ops rt61pci_ops = {
2360157c 2764 .name = KBUILD_MODNAME,
6bb40dd1
ID
2765 .max_sta_intf = 1,
2766 .max_ap_intf = 4,
95ea3627
ID
2767 .eeprom_size = EEPROM_SIZE,
2768 .rf_size = RF_SIZE,
61448f88 2769 .tx_queues = NUM_TX_QUEUES,
181d6902
ID
2770 .rx = &rt61pci_queue_rx,
2771 .tx = &rt61pci_queue_tx,
2772 .bcn = &rt61pci_queue_bcn,
95ea3627
ID
2773 .lib = &rt61pci_rt2x00_ops,
2774 .hw = &rt61pci_mac80211_ops,
2775#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2776 .debugfs = &rt61pci_rt2x00debug,
2777#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2778};
2779
2780/*
2781 * RT61pci module information.
2782 */
2783static struct pci_device_id rt61pci_device_table[] = {
2784 /* RT2561s */
2785 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2786 /* RT2561 v2 */
2787 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2788 /* RT2661 */
2789 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2790 { 0, }
2791};
2792
2793MODULE_AUTHOR(DRV_PROJECT);
2794MODULE_VERSION(DRV_VERSION);
2795MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2796MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2797 "PCI & PCMCIA chipset based cards");
2798MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2799MODULE_FIRMWARE(FIRMWARE_RT2561);
2800MODULE_FIRMWARE(FIRMWARE_RT2561s);
2801MODULE_FIRMWARE(FIRMWARE_RT2661);
2802MODULE_LICENSE("GPL");
2803
2804static struct pci_driver rt61pci_driver = {
2360157c 2805 .name = KBUILD_MODNAME,
95ea3627
ID
2806 .id_table = rt61pci_device_table,
2807 .probe = rt2x00pci_probe,
2808 .remove = __devexit_p(rt2x00pci_remove),
2809 .suspend = rt2x00pci_suspend,
2810 .resume = rt2x00pci_resume,
2811};
2812
2813static int __init rt61pci_init(void)
2814{
2815 return pci_register_driver(&rt61pci_driver);
2816}
2817
2818static void __exit rt61pci_exit(void)
2819{
2820 pci_unregister_driver(&rt61pci_driver);
2821}
2822
2823module_init(rt61pci_init);
2824module_exit(rt61pci_exit);