]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/net/wireless/zd1211rw/zd_chip.c
Merge git://git.infradead.org/~kmpark/onenand-mtd-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / zd1211rw / zd_chip.c
CommitLineData
66bb42fd
DD
1/* ZD1211 USB-WLAN driver for Linux
2 *
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
e85d0918
DD
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21/* This file implements all the hardware specific functions for the ZD1211
22 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
23 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
24 */
25
26#include <linux/kernel.h>
27#include <linux/errno.h>
28
29#include "zd_def.h"
30#include "zd_chip.h"
31#include "zd_ieee80211.h"
32#include "zd_mac.h"
33#include "zd_rf.h"
e85d0918
DD
34
35void zd_chip_init(struct zd_chip *chip,
459c51ad 36 struct ieee80211_hw *hw,
e85d0918
DD
37 struct usb_interface *intf)
38{
39 memset(chip, 0, sizeof(*chip));
40 mutex_init(&chip->mutex);
459c51ad 41 zd_usb_init(&chip->usb, hw, intf);
e85d0918
DD
42 zd_rf_init(&chip->rf);
43}
44
45void zd_chip_clear(struct zd_chip *chip)
46{
c48cf125 47 ZD_ASSERT(!mutex_is_locked(&chip->mutex));
e85d0918
DD
48 zd_usb_clear(&chip->usb);
49 zd_rf_clear(&chip->rf);
e85d0918 50 mutex_destroy(&chip->mutex);
c48cf125 51 ZD_MEMCLEAR(chip, sizeof(*chip));
e85d0918
DD
52}
53
74553aed 54static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
e85d0918 55{
459c51ad 56 u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
e85d0918
DD
57 return scnprintf(buffer, size, "%02x-%02x-%02x",
58 addr[0], addr[1], addr[2]);
59}
60
61/* Prints an identifier line, which will support debugging. */
62static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
63{
64 int i = 0;
65
66 i = scnprintf(buffer, size, "zd1211%s chip ",
74553aed 67 zd_chip_is_zd1211b(chip) ? "b" : "");
e85d0918
DD
68 i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
69 i += scnprintf(buffer+i, size-i, " ");
74553aed 70 i += scnprint_mac_oui(chip, buffer+i, size-i);
e85d0918
DD
71 i += scnprintf(buffer+i, size-i, " ");
72 i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
f2a81a16 73 i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
e85d0918
DD
74 chip->patch_cck_gain ? 'g' : '-',
75 chip->patch_cr157 ? '7' : '-',
20fe2176 76 chip->patch_6m_band_edge ? '6' : '-',
f2a81a16
DD
77 chip->new_phy_layout ? 'N' : '-',
78 chip->al2230s_bit ? 'S' : '-');
e85d0918
DD
79 return i;
80}
81
82static void print_id(struct zd_chip *chip)
83{
84 char buffer[80];
85
86 scnprint_id(chip, buffer, sizeof(buffer));
87 buffer[sizeof(buffer)-1] = 0;
88 dev_info(zd_chip_dev(chip), "%s\n", buffer);
89}
90
0ce34bc8
DD
91static zd_addr_t inc_addr(zd_addr_t addr)
92{
93 u16 a = (u16)addr;
94 /* Control registers use byte addressing, but everything else uses word
95 * addressing. */
96 if ((a & 0xf000) == CR_START)
97 a += 2;
98 else
99 a += 1;
100 return (zd_addr_t)a;
101}
102
e85d0918
DD
103/* Read a variable number of 32-bit values. Parameter count is not allowed to
104 * exceed USB_MAX_IOREAD32_COUNT.
105 */
106int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
107 unsigned int count)
108{
109 int r;
110 int i;
fa46081c 111 zd_addr_t *a16;
e85d0918
DD
112 u16 *v16;
113 unsigned int count16;
114
115 if (count > USB_MAX_IOREAD32_COUNT)
116 return -EINVAL;
117
118 /* Allocate a single memory block for values and addresses. */
119 count16 = 2*count;
44956855 120 a16 = (zd_addr_t *) kmalloc(count16 * (sizeof(zd_addr_t) + sizeof(u16)),
35c3404e 121 GFP_KERNEL);
e85d0918
DD
122 if (!a16) {
123 dev_dbg_f(zd_chip_dev(chip),
124 "error ENOMEM in allocation of a16\n");
125 r = -ENOMEM;
126 goto out;
127 }
128 v16 = (u16 *)(a16 + count16);
129
130 for (i = 0; i < count; i++) {
131 int j = 2*i;
132 /* We read the high word always first. */
0ce34bc8 133 a16[j] = inc_addr(addr[i]);
e85d0918
DD
134 a16[j+1] = addr[i];
135 }
136
137 r = zd_ioread16v_locked(chip, v16, a16, count16);
138 if (r) {
139 dev_dbg_f(zd_chip_dev(chip),
140 "error: zd_ioread16v_locked. Error number %d\n", r);
141 goto out;
142 }
143
144 for (i = 0; i < count; i++) {
145 int j = 2*i;
146 values[i] = (v16[j] << 16) | v16[j+1];
147 }
148
149out:
150 kfree((void *)a16);
151 return r;
152}
153
154int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
155 unsigned int count)
156{
157 int i, j, r;
158 struct zd_ioreq16 *ioreqs16;
159 unsigned int count16;
160
161 ZD_ASSERT(mutex_is_locked(&chip->mutex));
162
163 if (count == 0)
164 return 0;
165 if (count > USB_MAX_IOWRITE32_COUNT)
166 return -EINVAL;
167
168 /* Allocate a single memory block for values and addresses. */
169 count16 = 2*count;
35c3404e 170 ioreqs16 = kmalloc(count16 * sizeof(struct zd_ioreq16), GFP_KERNEL);
e85d0918
DD
171 if (!ioreqs16) {
172 r = -ENOMEM;
173 dev_dbg_f(zd_chip_dev(chip),
174 "error %d in ioreqs16 allocation\n", r);
175 goto out;
176 }
177
178 for (i = 0; i < count; i++) {
179 j = 2*i;
180 /* We write the high word always first. */
181 ioreqs16[j].value = ioreqs[i].value >> 16;
0ce34bc8 182 ioreqs16[j].addr = inc_addr(ioreqs[i].addr);
e85d0918
DD
183 ioreqs16[j+1].value = ioreqs[i].value;
184 ioreqs16[j+1].addr = ioreqs[i].addr;
185 }
186
187 r = zd_usb_iowrite16v(&chip->usb, ioreqs16, count16);
188#ifdef DEBUG
189 if (r) {
190 dev_dbg_f(zd_chip_dev(chip),
191 "error %d in zd_usb_write16v\n", r);
192 }
193#endif /* DEBUG */
194out:
195 kfree(ioreqs16);
196 return r;
197}
198
199int zd_iowrite16a_locked(struct zd_chip *chip,
200 const struct zd_ioreq16 *ioreqs, unsigned int count)
201{
202 int r;
203 unsigned int i, j, t, max;
204
205 ZD_ASSERT(mutex_is_locked(&chip->mutex));
206 for (i = 0; i < count; i += j + t) {
207 t = 0;
208 max = count-i;
209 if (max > USB_MAX_IOWRITE16_COUNT)
210 max = USB_MAX_IOWRITE16_COUNT;
211 for (j = 0; j < max; j++) {
212 if (!ioreqs[i+j].addr) {
213 t = 1;
214 break;
215 }
216 }
217
218 r = zd_usb_iowrite16v(&chip->usb, &ioreqs[i], j);
219 if (r) {
220 dev_dbg_f(zd_chip_dev(chip),
221 "error zd_usb_iowrite16v. Error number %d\n",
222 r);
223 return r;
224 }
225 }
226
227 return 0;
228}
229
230/* Writes a variable number of 32 bit registers. The functions will split
231 * that in several USB requests. A split can be forced by inserting an IO
232 * request with an zero address field.
233 */
234int zd_iowrite32a_locked(struct zd_chip *chip,
235 const struct zd_ioreq32 *ioreqs, unsigned int count)
236{
237 int r;
238 unsigned int i, j, t, max;
239
240 for (i = 0; i < count; i += j + t) {
241 t = 0;
242 max = count-i;
243 if (max > USB_MAX_IOWRITE32_COUNT)
244 max = USB_MAX_IOWRITE32_COUNT;
245 for (j = 0; j < max; j++) {
246 if (!ioreqs[i+j].addr) {
247 t = 1;
248 break;
249 }
250 }
251
252 r = _zd_iowrite32v_locked(chip, &ioreqs[i], j);
253 if (r) {
254 dev_dbg_f(zd_chip_dev(chip),
255 "error _zd_iowrite32v_locked."
256 " Error number %d\n", r);
257 return r;
258 }
259 }
260
261 return 0;
262}
263
264int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
265{
266 int r;
267
e85d0918
DD
268 mutex_lock(&chip->mutex);
269 r = zd_ioread16_locked(chip, value, addr);
270 mutex_unlock(&chip->mutex);
271 return r;
272}
273
274int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
275{
276 int r;
277
e85d0918
DD
278 mutex_lock(&chip->mutex);
279 r = zd_ioread32_locked(chip, value, addr);
280 mutex_unlock(&chip->mutex);
281 return r;
282}
283
284int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
285{
286 int r;
287
e85d0918
DD
288 mutex_lock(&chip->mutex);
289 r = zd_iowrite16_locked(chip, value, addr);
290 mutex_unlock(&chip->mutex);
291 return r;
292}
293
294int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
295{
296 int r;
297
e85d0918
DD
298 mutex_lock(&chip->mutex);
299 r = zd_iowrite32_locked(chip, value, addr);
300 mutex_unlock(&chip->mutex);
301 return r;
302}
303
304int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
305 u32 *values, unsigned int count)
306{
307 int r;
308
e85d0918
DD
309 mutex_lock(&chip->mutex);
310 r = zd_ioread32v_locked(chip, values, addresses, count);
311 mutex_unlock(&chip->mutex);
312 return r;
313}
314
315int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
316 unsigned int count)
317{
318 int r;
319
e85d0918
DD
320 mutex_lock(&chip->mutex);
321 r = zd_iowrite32a_locked(chip, ioreqs, count);
322 mutex_unlock(&chip->mutex);
323 return r;
324}
325
326static int read_pod(struct zd_chip *chip, u8 *rf_type)
327{
328 int r;
329 u32 value;
330
331 ZD_ASSERT(mutex_is_locked(&chip->mutex));
332 r = zd_ioread32_locked(chip, &value, E2P_POD);
333 if (r)
334 goto error;
335 dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
336
337 /* FIXME: AL2230 handling (Bit 7 in POD) */
338 *rf_type = value & 0x0f;
339 chip->pa_type = (value >> 16) & 0x0f;
340 chip->patch_cck_gain = (value >> 8) & 0x1;
341 chip->patch_cr157 = (value >> 13) & 0x1;
342 chip->patch_6m_band_edge = (value >> 21) & 0x1;
20fe2176 343 chip->new_phy_layout = (value >> 31) & 0x1;
ae6ead46 344 chip->al2230s_bit = (value >> 7) & 0x1;
583afd1e
UK
345 chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
346 chip->supports_tx_led = 1;
347 if (value & (1 << 24)) { /* LED scenario */
348 if (value & (1 << 29))
349 chip->supports_tx_led = 0;
350 }
e85d0918
DD
351
352 dev_dbg_f(zd_chip_dev(chip),
353 "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
583afd1e 354 "patch 6M %d new PHY %d link LED%d tx led %d\n",
e85d0918
DD
355 zd_rf_name(*rf_type), *rf_type,
356 chip->pa_type, chip->patch_cck_gain,
583afd1e
UK
357 chip->patch_cr157, chip->patch_6m_band_edge,
358 chip->new_phy_layout,
359 chip->link_led == LED1 ? 1 : 2,
360 chip->supports_tx_led);
e85d0918
DD
361 return 0;
362error:
363 *rf_type = 0;
364 chip->pa_type = 0;
365 chip->patch_cck_gain = 0;
366 chip->patch_cr157 = 0;
367 chip->patch_6m_band_edge = 0;
20fe2176 368 chip->new_phy_layout = 0;
e85d0918
DD
369 return r;
370}
371
e85d0918
DD
372/* MAC address: if custom mac addresses are to to be used CR_MAC_ADDR_P1 and
373 * CR_MAC_ADDR_P2 must be overwritten
374 */
e85d0918
DD
375int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
376{
377 int r;
378 struct zd_ioreq32 reqs[2] = {
379 [0] = { .addr = CR_MAC_ADDR_P1 },
380 [1] = { .addr = CR_MAC_ADDR_P2 },
381 };
0795af57 382 DECLARE_MAC_BUF(mac);
e85d0918 383
459c51ad
DD
384 if (mac_addr) {
385 reqs[0].value = (mac_addr[3] << 24)
386 | (mac_addr[2] << 16)
387 | (mac_addr[1] << 8)
388 | mac_addr[0];
389 reqs[1].value = (mac_addr[5] << 8)
390 | mac_addr[4];
391 dev_dbg_f(zd_chip_dev(chip),
392 "mac addr %s\n", print_mac(mac, mac_addr));
393 } else {
394 dev_dbg_f(zd_chip_dev(chip), "set NULL mac\n");
395 }
e85d0918
DD
396
397 mutex_lock(&chip->mutex);
398 r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
e85d0918
DD
399 mutex_unlock(&chip->mutex);
400 return r;
401}
402
403int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
404{
405 int r;
406 u32 value;
407
408 mutex_lock(&chip->mutex);
409 r = zd_ioread32_locked(chip, &value, E2P_SUBID);
410 mutex_unlock(&chip->mutex);
411 if (r)
412 return r;
413
414 *regdomain = value >> 16;
415 dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
416
417 return 0;
418}
419
420static int read_values(struct zd_chip *chip, u8 *values, size_t count,
421 zd_addr_t e2p_addr, u32 guard)
422{
423 int r;
424 int i;
425 u32 v;
426
427 ZD_ASSERT(mutex_is_locked(&chip->mutex));
428 for (i = 0;;) {
0ce34bc8
DD
429 r = zd_ioread32_locked(chip, &v,
430 (zd_addr_t)((u16)e2p_addr+i/2));
e85d0918
DD
431 if (r)
432 return r;
433 v -= guard;
434 if (i+4 < count) {
435 values[i++] = v;
436 values[i++] = v >> 8;
437 values[i++] = v >> 16;
438 values[i++] = v >> 24;
439 continue;
440 }
441 for (;i < count; i++)
442 values[i] = v >> (8*(i%3));
443 return 0;
444 }
445}
446
447static int read_pwr_cal_values(struct zd_chip *chip)
448{
449 return read_values(chip, chip->pwr_cal_values,
450 E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
451 0);
452}
453
454static int read_pwr_int_values(struct zd_chip *chip)
455{
456 return read_values(chip, chip->pwr_int_values,
457 E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
458 E2P_PWR_INT_GUARD);
459}
460
461static int read_ofdm_cal_values(struct zd_chip *chip)
462{
463 int r;
464 int i;
465 static const zd_addr_t addresses[] = {
466 E2P_36M_CAL_VALUE1,
467 E2P_48M_CAL_VALUE1,
468 E2P_54M_CAL_VALUE1,
469 };
470
471 for (i = 0; i < 3; i++) {
472 r = read_values(chip, chip->ofdm_cal_values[i],
473 E2P_CHANNEL_COUNT, addresses[i], 0);
474 if (r)
475 return r;
476 }
477 return 0;
478}
479
480static int read_cal_int_tables(struct zd_chip *chip)
481{
482 int r;
483
484 r = read_pwr_cal_values(chip);
485 if (r)
486 return r;
487 r = read_pwr_int_values(chip);
488 if (r)
489 return r;
490 r = read_ofdm_cal_values(chip);
491 if (r)
492 return r;
493 return 0;
494}
495
496/* phy means physical registers */
497int zd_chip_lock_phy_regs(struct zd_chip *chip)
498{
499 int r;
500 u32 tmp;
501
502 ZD_ASSERT(mutex_is_locked(&chip->mutex));
503 r = zd_ioread32_locked(chip, &tmp, CR_REG1);
504 if (r) {
505 dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
506 return r;
507 }
508
e85d0918
DD
509 tmp &= ~UNLOCK_PHY_REGS;
510
511 r = zd_iowrite32_locked(chip, tmp, CR_REG1);
512 if (r)
513 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
514 return r;
515}
516
517int zd_chip_unlock_phy_regs(struct zd_chip *chip)
518{
519 int r;
520 u32 tmp;
521
522 ZD_ASSERT(mutex_is_locked(&chip->mutex));
523 r = zd_ioread32_locked(chip, &tmp, CR_REG1);
524 if (r) {
525 dev_err(zd_chip_dev(chip),
526 "error ioread32(CR_REG1): %d\n", r);
527 return r;
528 }
529
e85d0918
DD
530 tmp |= UNLOCK_PHY_REGS;
531
532 r = zd_iowrite32_locked(chip, tmp, CR_REG1);
533 if (r)
534 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
535 return r;
536}
537
92b3e2e9 538/* CR157 can be optionally patched by the EEPROM for original ZD1211 */
e85d0918
DD
539static int patch_cr157(struct zd_chip *chip)
540{
541 int r;
92b3e2e9 542 u16 value;
e85d0918
DD
543
544 if (!chip->patch_cr157)
545 return 0;
546
92b3e2e9 547 r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
e85d0918
DD
548 if (r)
549 return r;
550
551 dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
552 return zd_iowrite32_locked(chip, value >> 8, CR157);
553}
554
555/*
556 * 6M band edge can be optionally overwritten for certain RF's
557 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
558 * bit (for AL2230, AL2230S)
559 */
72018b22
DD
560static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
561{
562 ZD_ASSERT(mutex_is_locked(&chip->mutex));
563 if (!chip->patch_6m_band_edge)
564 return 0;
565
566 return zd_rf_patch_6m_band_edge(&chip->rf, channel);
567}
568
569/* Generic implementation of 6M band edge patching, used by most RFs via
570 * zd_rf_generic_patch_6m() */
571int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
e85d0918
DD
572{
573 struct zd_ioreq16 ioreqs[] = {
574 { CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 },
575 { CR47, 0x1e },
576 };
577
e85d0918
DD
578 /* FIXME: Channel 11 is not the edge for all regulatory domains. */
579 if (channel == 1 || channel == 11)
580 ioreqs[0].value = 0x12;
581
582 dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
583 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
584}
585
586static int zd1211_hw_reset_phy(struct zd_chip *chip)
587{
588 static const struct zd_ioreq16 ioreqs[] = {
589 { CR0, 0x0a }, { CR1, 0x06 }, { CR2, 0x26 },
590 { CR3, 0x38 }, { CR4, 0x80 }, { CR9, 0xa0 },
591 { CR10, 0x81 }, { CR11, 0x00 }, { CR12, 0x7f },
592 { CR13, 0x8c }, { CR14, 0x80 }, { CR15, 0x3d },
593 { CR16, 0x20 }, { CR17, 0x1e }, { CR18, 0x0a },
594 { CR19, 0x48 }, { CR20, 0x0c }, { CR21, 0x0c },
595 { CR22, 0x23 }, { CR23, 0x90 }, { CR24, 0x14 },
596 { CR25, 0x40 }, { CR26, 0x10 }, { CR27, 0x19 },
597 { CR28, 0x7f }, { CR29, 0x80 }, { CR30, 0x4b },
598 { CR31, 0x60 }, { CR32, 0x43 }, { CR33, 0x08 },
599 { CR34, 0x06 }, { CR35, 0x0a }, { CR36, 0x00 },
600 { CR37, 0x00 }, { CR38, 0x38 }, { CR39, 0x0c },
601 { CR40, 0x84 }, { CR41, 0x2a }, { CR42, 0x80 },
602 { CR43, 0x10 }, { CR44, 0x12 }, { CR46, 0xff },
603 { CR47, 0x1E }, { CR48, 0x26 }, { CR49, 0x5b },
604 { CR64, 0xd0 }, { CR65, 0x04 }, { CR66, 0x58 },
605 { CR67, 0xc9 }, { CR68, 0x88 }, { CR69, 0x41 },
606 { CR70, 0x23 }, { CR71, 0x10 }, { CR72, 0xff },
607 { CR73, 0x32 }, { CR74, 0x30 }, { CR75, 0x65 },
608 { CR76, 0x41 }, { CR77, 0x1b }, { CR78, 0x30 },
609 { CR79, 0x68 }, { CR80, 0x64 }, { CR81, 0x64 },
610 { CR82, 0x00 }, { CR83, 0x00 }, { CR84, 0x00 },
611 { CR85, 0x02 }, { CR86, 0x00 }, { CR87, 0x00 },
612 { CR88, 0xff }, { CR89, 0xfc }, { CR90, 0x00 },
613 { CR91, 0x00 }, { CR92, 0x00 }, { CR93, 0x08 },
614 { CR94, 0x00 }, { CR95, 0x00 }, { CR96, 0xff },
615 { CR97, 0xe7 }, { CR98, 0x00 }, { CR99, 0x00 },
616 { CR100, 0x00 }, { CR101, 0xae }, { CR102, 0x02 },
617 { CR103, 0x00 }, { CR104, 0x03 }, { CR105, 0x65 },
618 { CR106, 0x04 }, { CR107, 0x00 }, { CR108, 0x0a },
619 { CR109, 0xaa }, { CR110, 0xaa }, { CR111, 0x25 },
620 { CR112, 0x25 }, { CR113, 0x00 }, { CR119, 0x1e },
621 { CR125, 0x90 }, { CR126, 0x00 }, { CR127, 0x00 },
622 { },
623 { CR5, 0x00 }, { CR6, 0x00 }, { CR7, 0x00 },
624 { CR8, 0x00 }, { CR9, 0x20 }, { CR12, 0xf0 },
625 { CR20, 0x0e }, { CR21, 0x0e }, { CR27, 0x10 },
626 { CR44, 0x33 }, { CR47, 0x1E }, { CR83, 0x24 },
627 { CR84, 0x04 }, { CR85, 0x00 }, { CR86, 0x0C },
628 { CR87, 0x12 }, { CR88, 0x0C }, { CR89, 0x00 },
629 { CR90, 0x10 }, { CR91, 0x08 }, { CR93, 0x00 },
630 { CR94, 0x01 }, { CR95, 0x00 }, { CR96, 0x50 },
631 { CR97, 0x37 }, { CR98, 0x35 }, { CR101, 0x13 },
632 { CR102, 0x27 }, { CR103, 0x27 }, { CR104, 0x18 },
633 { CR105, 0x12 }, { CR109, 0x27 }, { CR110, 0x27 },
634 { CR111, 0x27 }, { CR112, 0x27 }, { CR113, 0x27 },
635 { CR114, 0x27 }, { CR115, 0x26 }, { CR116, 0x24 },
636 { CR117, 0xfc }, { CR118, 0xfa }, { CR120, 0x4f },
dc536a70
DD
637 { CR125, 0xaa }, { CR127, 0x03 }, { CR128, 0x14 },
638 { CR129, 0x12 }, { CR130, 0x10 }, { CR131, 0x0C },
639 { CR136, 0xdf }, { CR137, 0x40 }, { CR138, 0xa0 },
640 { CR139, 0xb0 }, { CR140, 0x99 }, { CR141, 0x82 },
641 { CR142, 0x54 }, { CR143, 0x1c }, { CR144, 0x6c },
642 { CR147, 0x07 }, { CR148, 0x4c }, { CR149, 0x50 },
643 { CR150, 0x0e }, { CR151, 0x18 }, { CR160, 0xfe },
644 { CR161, 0xee }, { CR162, 0xaa }, { CR163, 0xfa },
645 { CR164, 0xfa }, { CR165, 0xea }, { CR166, 0xbe },
646 { CR167, 0xbe }, { CR168, 0x6a }, { CR169, 0xba },
647 { CR170, 0xba }, { CR171, 0xba },
e85d0918
DD
648 /* Note: CR204 must lead the CR203 */
649 { CR204, 0x7d },
650 { },
651 { CR203, 0x30 },
652 };
653
654 int r, t;
655
656 dev_dbg_f(zd_chip_dev(chip), "\n");
657
658 r = zd_chip_lock_phy_regs(chip);
659 if (r)
660 goto out;
661
662 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
663 if (r)
664 goto unlock;
665
666 r = patch_cr157(chip);
667unlock:
668 t = zd_chip_unlock_phy_regs(chip);
669 if (t && !r)
670 r = t;
671out:
672 return r;
673}
674
675static int zd1211b_hw_reset_phy(struct zd_chip *chip)
676{
677 static const struct zd_ioreq16 ioreqs[] = {
678 { CR0, 0x14 }, { CR1, 0x06 }, { CR2, 0x26 },
679 { CR3, 0x38 }, { CR4, 0x80 }, { CR9, 0xe0 },
680 { CR10, 0x81 },
681 /* power control { { CR11, 1 << 6 }, */
682 { CR11, 0x00 },
683 { CR12, 0xf0 }, { CR13, 0x8c }, { CR14, 0x80 },
684 { CR15, 0x3d }, { CR16, 0x20 }, { CR17, 0x1e },
685 { CR18, 0x0a }, { CR19, 0x48 },
686 { CR20, 0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
687 { CR21, 0x0e }, { CR22, 0x23 }, { CR23, 0x90 },
688 { CR24, 0x14 }, { CR25, 0x40 }, { CR26, 0x10 },
689 { CR27, 0x10 }, { CR28, 0x7f }, { CR29, 0x80 },
fe7215ca 690 { CR30, 0x4b }, /* ASIC/FWT, no jointly decoder */
e85d0918
DD
691 { CR31, 0x60 }, { CR32, 0x43 }, { CR33, 0x08 },
692 { CR34, 0x06 }, { CR35, 0x0a }, { CR36, 0x00 },
693 { CR37, 0x00 }, { CR38, 0x38 }, { CR39, 0x0c },
694 { CR40, 0x84 }, { CR41, 0x2a }, { CR42, 0x80 },
695 { CR43, 0x10 }, { CR44, 0x33 }, { CR46, 0xff },
696 { CR47, 0x1E }, { CR48, 0x26 }, { CR49, 0x5b },
697 { CR64, 0xd0 }, { CR65, 0x04 }, { CR66, 0x58 },
698 { CR67, 0xc9 }, { CR68, 0x88 }, { CR69, 0x41 },
699 { CR70, 0x23 }, { CR71, 0x10 }, { CR72, 0xff },
700 { CR73, 0x32 }, { CR74, 0x30 }, { CR75, 0x65 },
701 { CR76, 0x41 }, { CR77, 0x1b }, { CR78, 0x30 },
702 { CR79, 0xf0 }, { CR80, 0x64 }, { CR81, 0x64 },
703 { CR82, 0x00 }, { CR83, 0x24 }, { CR84, 0x04 },
704 { CR85, 0x00 }, { CR86, 0x0c }, { CR87, 0x12 },
705 { CR88, 0x0c }, { CR89, 0x00 }, { CR90, 0x58 },
706 { CR91, 0x04 }, { CR92, 0x00 }, { CR93, 0x00 },
707 { CR94, 0x01 },
708 { CR95, 0x20 }, /* ZD1211B */
709 { CR96, 0x50 }, { CR97, 0x37 }, { CR98, 0x35 },
710 { CR99, 0x00 }, { CR100, 0x01 }, { CR101, 0x13 },
711 { CR102, 0x27 }, { CR103, 0x27 }, { CR104, 0x18 },
712 { CR105, 0x12 }, { CR106, 0x04 }, { CR107, 0x00 },
713 { CR108, 0x0a }, { CR109, 0x27 }, { CR110, 0x27 },
714 { CR111, 0x27 }, { CR112, 0x27 }, { CR113, 0x27 },
715 { CR114, 0x27 }, { CR115, 0x26 }, { CR116, 0x24 },
716 { CR117, 0xfc }, { CR118, 0xfa }, { CR119, 0x1e },
717 { CR125, 0x90 }, { CR126, 0x00 }, { CR127, 0x00 },
718 { CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 },
719 { CR131, 0x0c }, { CR136, 0xdf }, { CR137, 0xa0 },
720 { CR138, 0xa8 }, { CR139, 0xb4 }, { CR140, 0x98 },
721 { CR141, 0x82 }, { CR142, 0x53 }, { CR143, 0x1c },
722 { CR144, 0x6c }, { CR147, 0x07 }, { CR148, 0x40 },
723 { CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
724 { CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
725 { CR151, 0x18 }, { CR159, 0x70 }, { CR160, 0xfe },
726 { CR161, 0xee }, { CR162, 0xaa }, { CR163, 0xfa },
727 { CR164, 0xfa }, { CR165, 0xea }, { CR166, 0xbe },
728 { CR167, 0xbe }, { CR168, 0x6a }, { CR169, 0xba },
729 { CR170, 0xba }, { CR171, 0xba },
730 /* Note: CR204 must lead the CR203 */
731 { CR204, 0x7d },
732 {},
733 { CR203, 0x30 },
734 };
735
736 int r, t;
737
738 dev_dbg_f(zd_chip_dev(chip), "\n");
739
740 r = zd_chip_lock_phy_regs(chip);
741 if (r)
742 goto out;
743
744 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
e85d0918
DD
745 t = zd_chip_unlock_phy_regs(chip);
746 if (t && !r)
747 r = t;
748out:
749 return r;
750}
751
752static int hw_reset_phy(struct zd_chip *chip)
753{
74553aed 754 return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
e85d0918
DD
755 zd1211_hw_reset_phy(chip);
756}
757
758static int zd1211_hw_init_hmac(struct zd_chip *chip)
759{
760 static const struct zd_ioreq32 ioreqs[] = {
e85d0918 761 { CR_ZD1211_RETRY_MAX, 0x2 },
e85d0918 762 { CR_RX_THRESHOLD, 0x000c0640 },
e85d0918
DD
763 };
764
e85d0918
DD
765 dev_dbg_f(zd_chip_dev(chip), "\n");
766 ZD_ASSERT(mutex_is_locked(&chip->mutex));
34c44912 767 return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
e85d0918
DD
768}
769
770static int zd1211b_hw_init_hmac(struct zd_chip *chip)
771{
772 static const struct zd_ioreq32 ioreqs[] = {
e85d0918
DD
773 { CR_ZD1211B_RETRY_MAX, 0x02020202 },
774 { CR_ZD1211B_TX_PWR_CTL4, 0x007f003f },
775 { CR_ZD1211B_TX_PWR_CTL3, 0x007f003f },
776 { CR_ZD1211B_TX_PWR_CTL2, 0x003f001f },
777 { CR_ZD1211B_TX_PWR_CTL1, 0x001f000f },
778 { CR_ZD1211B_AIFS_CTL1, 0x00280028 },
779 { CR_ZD1211B_AIFS_CTL2, 0x008C003C },
780 { CR_ZD1211B_TXOP, 0x01800824 },
34c44912
DD
781 { CR_RX_THRESHOLD, 0x000c0eff, },
782 };
783
784 dev_dbg_f(zd_chip_dev(chip), "\n");
785 ZD_ASSERT(mutex_is_locked(&chip->mutex));
786 return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
787}
788
789static int hw_init_hmac(struct zd_chip *chip)
790{
791 int r;
792 static const struct zd_ioreq32 ioreqs[] = {
793 { CR_ACK_TIMEOUT_EXT, 0x20 },
794 { CR_ADDA_MBIAS_WARMTIME, 0x30000808 },
e85d0918 795 { CR_SNIFFER_ON, 0 },
fde627b5 796 { CR_RX_FILTER, STA_RX_FILTER },
e85d0918
DD
797 { CR_GROUP_HASH_P1, 0x00 },
798 { CR_GROUP_HASH_P2, 0x80000000 },
799 { CR_REG1, 0xa4 },
800 { CR_ADDA_PWR_DWN, 0x7f },
801 { CR_BCN_PLCP_CFG, 0x00f00401 },
802 { CR_PHY_DELAY, 0x00 },
803 { CR_ACK_TIMEOUT_EXT, 0x80 },
804 { CR_ADDA_PWR_DWN, 0x00 },
805 { CR_ACK_TIME_80211, 0x100 },
e85d0918
DD
806 { CR_RX_PE_DELAY, 0x70 },
807 { CR_PS_CTRL, 0x10000000 },
808 { CR_RTS_CTS_RATE, 0x02030203 },
e85d0918
DD
809 { CR_AFTER_PNP, 0x1 },
810 { CR_WEP_PROTECT, 0x114 },
34c44912 811 { CR_IFS_VALUE, IFS_VALUE_DEFAULT },
e85d0918
DD
812 };
813
e85d0918
DD
814 ZD_ASSERT(mutex_is_locked(&chip->mutex));
815 r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
34c44912
DD
816 if (r)
817 return r;
e85d0918 818
74553aed 819 return zd_chip_is_zd1211b(chip) ?
e85d0918
DD
820 zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
821}
822
823struct aw_pt_bi {
824 u32 atim_wnd_period;
825 u32 pre_tbtt;
826 u32 beacon_interval;
827};
828
829static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
830{
831 int r;
832 static const zd_addr_t aw_pt_bi_addr[] =
833 { CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
834 u32 values[3];
835
836 r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
837 ARRAY_SIZE(aw_pt_bi_addr));
838 if (r) {
839 memset(s, 0, sizeof(*s));
840 return r;
841 }
842
843 s->atim_wnd_period = values[0];
844 s->pre_tbtt = values[1];
845 s->beacon_interval = values[2];
e85d0918
DD
846 return 0;
847}
848
849static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
850{
851 struct zd_ioreq32 reqs[3];
852
853 if (s->beacon_interval <= 5)
854 s->beacon_interval = 5;
855 if (s->pre_tbtt < 4 || s->pre_tbtt >= s->beacon_interval)
856 s->pre_tbtt = s->beacon_interval - 1;
857 if (s->atim_wnd_period >= s->pre_tbtt)
858 s->atim_wnd_period = s->pre_tbtt - 1;
859
860 reqs[0].addr = CR_ATIM_WND_PERIOD;
861 reqs[0].value = s->atim_wnd_period;
862 reqs[1].addr = CR_PRE_TBTT;
863 reqs[1].value = s->pre_tbtt;
864 reqs[2].addr = CR_BCN_INTERVAL;
865 reqs[2].value = s->beacon_interval;
866
e85d0918
DD
867 return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
868}
869
870
871static int set_beacon_interval(struct zd_chip *chip, u32 interval)
872{
873 int r;
874 struct aw_pt_bi s;
875
876 ZD_ASSERT(mutex_is_locked(&chip->mutex));
877 r = get_aw_pt_bi(chip, &s);
878 if (r)
879 return r;
880 s.beacon_interval = interval;
881 return set_aw_pt_bi(chip, &s);
882}
883
884int zd_set_beacon_interval(struct zd_chip *chip, u32 interval)
885{
886 int r;
887
888 mutex_lock(&chip->mutex);
889 r = set_beacon_interval(chip, interval);
890 mutex_unlock(&chip->mutex);
891 return r;
892}
893
894static int hw_init(struct zd_chip *chip)
895{
896 int r;
897
898 dev_dbg_f(zd_chip_dev(chip), "\n");
899 ZD_ASSERT(mutex_is_locked(&chip->mutex));
900 r = hw_reset_phy(chip);
901 if (r)
902 return r;
903
904 r = hw_init_hmac(chip);
905 if (r)
906 return r;
98227a90 907
98227a90 908 return set_beacon_interval(chip, 100);
e85d0918
DD
909}
910
0ce34bc8
DD
911static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
912{
913 return (zd_addr_t)((u16)chip->fw_regs_base + offset);
914}
915
e85d0918
DD
916#ifdef DEBUG
917static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
918 const char *addr_string)
919{
920 int r;
921 u32 value;
922
923 r = zd_ioread32_locked(chip, &value, addr);
924 if (r) {
925 dev_dbg_f(zd_chip_dev(chip),
926 "error reading %s. Error number %d\n", addr_string, r);
927 return r;
928 }
929
930 dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
931 addr_string, (unsigned int)value);
932 return 0;
933}
934
935static int test_init(struct zd_chip *chip)
936{
937 int r;
938
939 r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
940 if (r)
941 return r;
942 r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
943 if (r)
944 return r;
945 return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
946}
947
948static void dump_fw_registers(struct zd_chip *chip)
949{
0ce34bc8
DD
950 const zd_addr_t addr[4] = {
951 fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
952 fw_reg_addr(chip, FW_REG_USB_SPEED),
953 fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
954 fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
e85d0918
DD
955 };
956
957 int r;
958 u16 values[4];
959
960 r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
961 ARRAY_SIZE(addr));
962 if (r) {
963 dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
964 r);
965 return;
966 }
967
968 dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
969 dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
970 dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
971 dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
972}
973#endif /* DEBUG */
974
975static int print_fw_version(struct zd_chip *chip)
976{
977 int r;
978 u16 version;
979
0ce34bc8
DD
980 r = zd_ioread16_locked(chip, &version,
981 fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
e85d0918
DD
982 if (r)
983 return r;
984
985 dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
986 return 0;
987}
988
459c51ad 989static int set_mandatory_rates(struct zd_chip *chip, int mode)
e85d0918
DD
990{
991 u32 rates;
992 ZD_ASSERT(mutex_is_locked(&chip->mutex));
993 /* This sets the mandatory rates, which only depend from the standard
994 * that the device is supporting. Until further notice we should try
995 * to support 802.11g also for full speed USB.
996 */
459c51ad
DD
997 switch (mode) {
998 case MODE_IEEE80211B:
e85d0918
DD
999 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
1000 break;
459c51ad 1001 case MODE_IEEE80211G:
e85d0918
DD
1002 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
1003 CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
1004 break;
1005 default:
1006 return -EINVAL;
1007 }
1008 return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1009}
1010
b1382ede 1011int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
459c51ad 1012 int preamble)
b1382ede 1013{
b1382ede
DD
1014 u32 value = 0;
1015
459c51ad 1016 dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
b1382ede
DD
1017 value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1018 value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1019
459c51ad
DD
1020 /* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1021 value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1022 value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
64f222cc 1023 value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
b1382ede
DD
1024 value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1025
1026 return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1027}
1028
e85d0918
DD
1029int zd_chip_enable_hwint(struct zd_chip *chip)
1030{
1031 int r;
1032
1033 mutex_lock(&chip->mutex);
1034 r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1035 mutex_unlock(&chip->mutex);
1036 return r;
1037}
1038
1039static int disable_hwint(struct zd_chip *chip)
1040{
1041 return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1042}
1043
1044int zd_chip_disable_hwint(struct zd_chip *chip)
1045{
1046 int r;
1047
1048 mutex_lock(&chip->mutex);
1049 r = disable_hwint(chip);
1050 mutex_unlock(&chip->mutex);
1051 return r;
1052}
1053
0ce34bc8
DD
1054static int read_fw_regs_offset(struct zd_chip *chip)
1055{
1056 int r;
1057
1058 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1059 r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1060 FWRAW_REGS_ADDR);
1061 if (r)
1062 return r;
1063 dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1064 (u16)chip->fw_regs_base);
1065
1066 return 0;
1067}
1068
74553aed
DD
1069/* Read mac address using pre-firmware interface */
1070int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1071{
1072 dev_dbg_f(zd_chip_dev(chip), "\n");
1073 return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1074 ETH_ALEN);
1075}
0ce34bc8 1076
74553aed 1077int zd_chip_init_hw(struct zd_chip *chip)
e85d0918
DD
1078{
1079 int r;
1080 u8 rf_type;
1081
1082 dev_dbg_f(zd_chip_dev(chip), "\n");
1083
1084 mutex_lock(&chip->mutex);
e85d0918
DD
1085
1086#ifdef DEBUG
1087 r = test_init(chip);
1088 if (r)
1089 goto out;
1090#endif
1091 r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1092 if (r)
1093 goto out;
1094
0ce34bc8 1095 r = read_fw_regs_offset(chip);
e85d0918
DD
1096 if (r)
1097 goto out;
1098
1099 /* GPI is always disabled, also in the other driver.
1100 */
1101 r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1102 if (r)
1103 goto out;
1104 r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1105 if (r)
1106 goto out;
1107 /* Currently we support IEEE 802.11g for full and high speed USB.
1108 * It might be discussed, whether we should suppport pure b mode for
1109 * full speed USB.
1110 */
459c51ad 1111 r = set_mandatory_rates(chip, MODE_IEEE80211G);
e85d0918
DD
1112 if (r)
1113 goto out;
1114 /* Disabling interrupts is certainly a smart thing here.
1115 */
1116 r = disable_hwint(chip);
1117 if (r)
1118 goto out;
1119 r = read_pod(chip, &rf_type);
1120 if (r)
1121 goto out;
1122 r = hw_init(chip);
1123 if (r)
1124 goto out;
1125 r = zd_rf_init_hw(&chip->rf, rf_type);
1126 if (r)
1127 goto out;
1128
1129 r = print_fw_version(chip);
1130 if (r)
1131 goto out;
1132
1133#ifdef DEBUG
1134 dump_fw_registers(chip);
1135 r = test_init(chip);
1136 if (r)
1137 goto out;
1138#endif /* DEBUG */
1139
e85d0918
DD
1140 r = read_cal_int_tables(chip);
1141 if (r)
1142 goto out;
1143
1144 print_id(chip);
1145out:
1146 mutex_unlock(&chip->mutex);
1147 return r;
1148}
1149
1150static int update_pwr_int(struct zd_chip *chip, u8 channel)
1151{
1152 u8 value = chip->pwr_int_values[channel - 1];
cbb5e6bb 1153 return zd_iowrite16_locked(chip, value, CR31);
e85d0918
DD
1154}
1155
1156static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1157{
1158 u8 value = chip->pwr_cal_values[channel-1];
cbb5e6bb 1159 return zd_iowrite16_locked(chip, value, CR68);
e85d0918
DD
1160}
1161
1162static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1163{
cbb5e6bb 1164 struct zd_ioreq16 ioreqs[3];
e85d0918
DD
1165
1166 ioreqs[0].addr = CR67;
1167 ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1168 ioreqs[1].addr = CR66;
1169 ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1170 ioreqs[2].addr = CR65;
1171 ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1172
cbb5e6bb 1173 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
e85d0918
DD
1174}
1175
1176static int update_channel_integration_and_calibration(struct zd_chip *chip,
1177 u8 channel)
1178{
1179 int r;
1180
9c8fc71d
DD
1181 if (!zd_rf_should_update_pwr_int(&chip->rf))
1182 return 0;
1183
e85d0918
DD
1184 r = update_pwr_int(chip, channel);
1185 if (r)
1186 return r;
74553aed 1187 if (zd_chip_is_zd1211b(chip)) {
cbb5e6bb 1188 static const struct zd_ioreq16 ioreqs[] = {
e85d0918
DD
1189 { CR69, 0x28 },
1190 {},
1191 { CR69, 0x2a },
1192 };
1193
1194 r = update_ofdm_cal(chip, channel);
1195 if (r)
1196 return r;
1197 r = update_pwr_cal(chip, channel);
1198 if (r)
1199 return r;
cbb5e6bb 1200 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
e85d0918
DD
1201 if (r)
1202 return r;
1203 }
1204
1205 return 0;
1206}
1207
1208/* The CCK baseband gain can be optionally patched by the EEPROM */
1209static int patch_cck_gain(struct zd_chip *chip)
1210{
1211 int r;
1212 u32 value;
1213
aaf83d4f 1214 if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
e85d0918
DD
1215 return 0;
1216
1217 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1218 r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1219 if (r)
1220 return r;
1221 dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
cbb5e6bb 1222 return zd_iowrite16_locked(chip, value & 0xff, CR47);
e85d0918
DD
1223}
1224
1225int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1226{
1227 int r, t;
1228
1229 mutex_lock(&chip->mutex);
1230 r = zd_chip_lock_phy_regs(chip);
1231 if (r)
1232 goto out;
1233 r = zd_rf_set_channel(&chip->rf, channel);
1234 if (r)
1235 goto unlock;
1236 r = update_channel_integration_and_calibration(chip, channel);
1237 if (r)
1238 goto unlock;
1239 r = patch_cck_gain(chip);
1240 if (r)
1241 goto unlock;
1242 r = patch_6m_band_edge(chip, channel);
1243 if (r)
1244 goto unlock;
1245 r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1246unlock:
1247 t = zd_chip_unlock_phy_regs(chip);
1248 if (t && !r)
1249 r = t;
1250out:
1251 mutex_unlock(&chip->mutex);
1252 return r;
1253}
1254
1255u8 zd_chip_get_channel(struct zd_chip *chip)
1256{
1257 u8 channel;
1258
1259 mutex_lock(&chip->mutex);
1260 channel = chip->rf.channel;
1261 mutex_unlock(&chip->mutex);
1262 return channel;
1263}
1264
583afd1e 1265int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
e85d0918 1266{
0ce34bc8
DD
1267 const zd_addr_t a[] = {
1268 fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
583afd1e
UK
1269 CR_LED,
1270 };
e85d0918 1271
583afd1e
UK
1272 int r;
1273 u16 v[ARRAY_SIZE(a)];
1274 struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
0ce34bc8 1275 [0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
583afd1e
UK
1276 [1] = { CR_LED },
1277 };
1278 u16 other_led;
e85d0918 1279
e85d0918 1280 mutex_lock(&chip->mutex);
583afd1e 1281 r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
e85d0918 1282 if (r)
583afd1e
UK
1283 goto out;
1284
1285 other_led = chip->link_led == LED1 ? LED2 : LED1;
1286
e85d0918 1287 switch (status) {
e85d0918 1288 case LED_OFF:
583afd1e
UK
1289 ioreqs[0].value = FW_LINK_OFF;
1290 ioreqs[1].value = v[1] & ~(LED1|LED2);
e85d0918 1291 break;
583afd1e
UK
1292 case LED_SCANNING:
1293 ioreqs[0].value = FW_LINK_OFF;
1294 ioreqs[1].value = v[1] & ~other_led;
1295 if (get_seconds() % 3 == 0) {
1296 ioreqs[1].value &= ~chip->link_led;
1297 } else {
1298 ioreqs[1].value |= chip->link_led;
1299 }
e85d0918 1300 break;
583afd1e
UK
1301 case LED_ASSOCIATED:
1302 ioreqs[0].value = FW_LINK_TX;
1303 ioreqs[1].value = v[1] & ~other_led;
1304 ioreqs[1].value |= chip->link_led;
e85d0918
DD
1305 break;
1306 default:
583afd1e 1307 r = -EINVAL;
e85d0918
DD
1308 goto out;
1309 }
e85d0918 1310
583afd1e
UK
1311 if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1312 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1313 if (r)
e85d0918 1314 goto out;
e85d0918 1315 }
583afd1e 1316 r = 0;
e85d0918 1317out:
583afd1e 1318 mutex_unlock(&chip->mutex);
e85d0918
DD
1319 return r;
1320}
1321
459c51ad 1322int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
e85d0918 1323{
459c51ad
DD
1324 int r;
1325
1326 if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1327 return -EINVAL;
e85d0918 1328
459c51ad
DD
1329 mutex_lock(&chip->mutex);
1330 r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1331 mutex_unlock(&chip->mutex);
1332 return r;
e85d0918
DD
1333}
1334
64f222cc 1335static int ofdm_qual_db(u8 status_quality, u8 zd_rate, unsigned int size)
e85d0918
DD
1336{
1337 static const u16 constants[] = {
1338 715, 655, 585, 540, 470, 410, 360, 315,
1339 270, 235, 205, 175, 150, 125, 105, 85,
1340 65, 50, 40, 25, 15
1341 };
1342
1343 int i;
1344 u32 x;
1345
1346 /* It seems that their quality parameter is somehow per signal
1347 * and is now transferred per bit.
1348 */
64f222cc 1349 switch (zd_rate) {
e85d0918
DD
1350 case ZD_OFDM_RATE_6M:
1351 case ZD_OFDM_RATE_12M:
1352 case ZD_OFDM_RATE_24M:
1353 size *= 2;
1354 break;
1355 case ZD_OFDM_RATE_9M:
1356 case ZD_OFDM_RATE_18M:
1357 case ZD_OFDM_RATE_36M:
1358 case ZD_OFDM_RATE_54M:
1359 size *= 4;
1360 size /= 3;
1361 break;
1362 case ZD_OFDM_RATE_48M:
1363 size *= 3;
1364 size /= 2;
1365 break;
1366 default:
1367 return -EINVAL;
1368 }
1369
1370 x = (10000 * status_quality)/size;
1371 for (i = 0; i < ARRAY_SIZE(constants); i++) {
1372 if (x > constants[i])
1373 break;
1374 }
1375
64f222cc 1376 switch (zd_rate) {
db888aed
UK
1377 case ZD_OFDM_RATE_6M:
1378 case ZD_OFDM_RATE_9M:
1379 i += 3;
1380 break;
1381 case ZD_OFDM_RATE_12M:
1382 case ZD_OFDM_RATE_18M:
1383 i += 5;
1384 break;
1385 case ZD_OFDM_RATE_24M:
1386 case ZD_OFDM_RATE_36M:
1387 i += 9;
1388 break;
1389 case ZD_OFDM_RATE_48M:
1390 case ZD_OFDM_RATE_54M:
1391 i += 15;
1392 break;
1393 default:
1394 return -EINVAL;
1395 }
1396
e85d0918
DD
1397 return i;
1398}
1399
64f222cc 1400static int ofdm_qual_percent(u8 status_quality, u8 zd_rate, unsigned int size)
db888aed
UK
1401{
1402 int r;
1403
64f222cc 1404 r = ofdm_qual_db(status_quality, zd_rate, size);
db888aed
UK
1405 ZD_ASSERT(r >= 0);
1406 if (r < 0)
1407 r = 0;
1408
1409 r = (r * 100)/29;
1410 return r <= 100 ? r : 100;
1411}
1412
e85d0918
DD
1413static unsigned int log10times100(unsigned int x)
1414{
1415 static const u8 log10[] = {
1416 0,
1417 0, 30, 47, 60, 69, 77, 84, 90, 95, 100,
1418 104, 107, 111, 114, 117, 120, 123, 125, 127, 130,
1419 132, 134, 136, 138, 139, 141, 143, 144, 146, 147,
1420 149, 150, 151, 153, 154, 155, 156, 157, 159, 160,
1421 161, 162, 163, 164, 165, 166, 167, 168, 169, 169,
1422 170, 171, 172, 173, 174, 174, 175, 176, 177, 177,
1423 178, 179, 179, 180, 181, 181, 182, 183, 183, 184,
1424 185, 185, 186, 186, 187, 188, 188, 189, 189, 190,
1425 190, 191, 191, 192, 192, 193, 193, 194, 194, 195,
1426 195, 196, 196, 197, 197, 198, 198, 199, 199, 200,
1427 200, 200, 201, 201, 202, 202, 202, 203, 203, 204,
1428 204, 204, 205, 205, 206, 206, 206, 207, 207, 207,
1429 208, 208, 208, 209, 209, 210, 210, 210, 211, 211,
1430 211, 212, 212, 212, 213, 213, 213, 213, 214, 214,
1431 214, 215, 215, 215, 216, 216, 216, 217, 217, 217,
1432 217, 218, 218, 218, 219, 219, 219, 219, 220, 220,
1433 220, 220, 221, 221, 221, 222, 222, 222, 222, 223,
1434 223, 223, 223, 224, 224, 224, 224,
1435 };
1436
1437 return x < ARRAY_SIZE(log10) ? log10[x] : 225;
1438}
1439
1440enum {
1441 MAX_CCK_EVM_DB = 45,
1442};
1443
1444static int cck_evm_db(u8 status_quality)
1445{
1446 return (20 * log10times100(status_quality)) / 100;
1447}
1448
1449static int cck_snr_db(u8 status_quality)
1450{
1451 int r = MAX_CCK_EVM_DB - cck_evm_db(status_quality);
1452 ZD_ASSERT(r >= 0);
1453 return r;
1454}
1455
db888aed 1456static int cck_qual_percent(u8 status_quality)
e85d0918 1457{
db888aed
UK
1458 int r;
1459
1460 r = cck_snr_db(status_quality);
1461 r = (100*r)/17;
1462 return r <= 100 ? r : 100;
e85d0918
DD
1463}
1464
64f222cc
UK
1465static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1466{
1467 return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1468}
1469
e85d0918
DD
1470u8 zd_rx_qual_percent(const void *rx_frame, unsigned int size,
1471 const struct rx_status *status)
1472{
db888aed
UK
1473 return (status->frame_status&ZD_RX_OFDM) ?
1474 ofdm_qual_percent(status->signal_quality_ofdm,
459c51ad 1475 zd_rate_from_ofdm_plcp_header(rx_frame),
db888aed
UK
1476 size) :
1477 cck_qual_percent(status->signal_quality_cck);
e85d0918
DD
1478}
1479
459c51ad
DD
1480/**
1481 * zd_rx_rate - report zd-rate
1482 * @rx_frame - received frame
1483 * @rx_status - rx_status as given by the device
1484 *
1485 * This function converts the rate as encoded in the received packet to the
1486 * zd-rate, we are using on other places in the driver.
1487 */
1488u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
e85d0918 1489{
459c51ad 1490 u8 zd_rate;
e85d0918 1491 if (status->frame_status & ZD_RX_OFDM) {
459c51ad 1492 zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
e85d0918 1493 } else {
64f222cc
UK
1494 switch (zd_cck_plcp_header_signal(rx_frame)) {
1495 case ZD_CCK_PLCP_SIGNAL_1M:
459c51ad 1496 zd_rate = ZD_CCK_RATE_1M;
e85d0918 1497 break;
64f222cc 1498 case ZD_CCK_PLCP_SIGNAL_2M:
459c51ad 1499 zd_rate = ZD_CCK_RATE_2M;
e85d0918 1500 break;
64f222cc 1501 case ZD_CCK_PLCP_SIGNAL_5M5:
459c51ad 1502 zd_rate = ZD_CCK_RATE_5_5M;
e85d0918 1503 break;
64f222cc 1504 case ZD_CCK_PLCP_SIGNAL_11M:
459c51ad 1505 zd_rate = ZD_CCK_RATE_11M;
e85d0918
DD
1506 break;
1507 default:
459c51ad 1508 zd_rate = 0;
e85d0918
DD
1509 }
1510 }
1511
459c51ad 1512 return zd_rate;
e85d0918
DD
1513}
1514
1515int zd_chip_switch_radio_on(struct zd_chip *chip)
1516{
1517 int r;
1518
1519 mutex_lock(&chip->mutex);
1520 r = zd_switch_radio_on(&chip->rf);
1521 mutex_unlock(&chip->mutex);
1522 return r;
1523}
1524
1525int zd_chip_switch_radio_off(struct zd_chip *chip)
1526{
1527 int r;
1528
1529 mutex_lock(&chip->mutex);
1530 r = zd_switch_radio_off(&chip->rf);
1531 mutex_unlock(&chip->mutex);
1532 return r;
1533}
1534
1535int zd_chip_enable_int(struct zd_chip *chip)
1536{
1537 int r;
1538
1539 mutex_lock(&chip->mutex);
1540 r = zd_usb_enable_int(&chip->usb);
1541 mutex_unlock(&chip->mutex);
1542 return r;
1543}
1544
1545void zd_chip_disable_int(struct zd_chip *chip)
1546{
1547 mutex_lock(&chip->mutex);
1548 zd_usb_disable_int(&chip->usb);
1549 mutex_unlock(&chip->mutex);
1550}
1551
459c51ad 1552int zd_chip_enable_rxtx(struct zd_chip *chip)
e85d0918
DD
1553{
1554 int r;
1555
1556 mutex_lock(&chip->mutex);
459c51ad 1557 zd_usb_enable_tx(&chip->usb);
e85d0918
DD
1558 r = zd_usb_enable_rx(&chip->usb);
1559 mutex_unlock(&chip->mutex);
1560 return r;
1561}
1562
459c51ad 1563void zd_chip_disable_rxtx(struct zd_chip *chip)
e85d0918
DD
1564{
1565 mutex_lock(&chip->mutex);
1566 zd_usb_disable_rx(&chip->usb);
459c51ad 1567 zd_usb_disable_tx(&chip->usb);
e85d0918
DD
1568 mutex_unlock(&chip->mutex);
1569}
1570
1571int zd_rfwritev_locked(struct zd_chip *chip,
1572 const u32* values, unsigned int count, u8 bits)
1573{
1574 int r;
1575 unsigned int i;
1576
1577 for (i = 0; i < count; i++) {
1578 r = zd_rfwrite_locked(chip, values[i], bits);
1579 if (r)
1580 return r;
1581 }
1582
1583 return 0;
1584}
20fe2176
DD
1585
1586/*
1587 * We can optionally program the RF directly through CR regs, if supported by
1588 * the hardware. This is much faster than the older method.
1589 */
ec62bd91 1590int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
20fe2176
DD
1591{
1592 struct zd_ioreq16 ioreqs[] = {
1593 { CR244, (value >> 16) & 0xff },
1594 { CR243, (value >> 8) & 0xff },
1595 { CR242, value & 0xff },
1596 };
1597 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1598 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1599}
1600
1601int zd_rfwritev_cr_locked(struct zd_chip *chip,
1602 const u32 *values, unsigned int count)
1603{
1604 int r;
1605 unsigned int i;
1606
1607 for (i = 0; i < count; i++) {
1608 r = zd_rfwrite_cr_locked(chip, values[i]);
1609 if (r)
1610 return r;
1611 }
1612
1613 return 0;
1614}
9cdac965
UK
1615
1616int zd_chip_set_multicast_hash(struct zd_chip *chip,
1617 struct zd_mc_hash *hash)
1618{
1619 struct zd_ioreq32 ioreqs[] = {
1620 { CR_GROUP_HASH_P1, hash->low },
1621 { CR_GROUP_HASH_P2, hash->high },
1622 };
1623
9cdac965
UK
1624 return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1625}