]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/nvdimm/pmem.c
acpi/nfit: queue issuing of ars when an uc error notification comes in
[mirror_ubuntu-focal-kernel.git] / drivers / nvdimm / pmem.c
CommitLineData
9e853f23
RZ
1/*
2 * Persistent Memory Driver
3 *
9f53f9fa 4 * Copyright (c) 2014-2015, Intel Corporation.
9e853f23
RZ
5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 */
17
18#include <asm/cacheflush.h>
19#include <linux/blkdev.h>
20#include <linux/hdreg.h>
21#include <linux/init.h>
22#include <linux/platform_device.h>
23#include <linux/module.h>
24#include <linux/moduleparam.h>
b95f5f43 25#include <linux/badblocks.h>
9476df7d 26#include <linux/memremap.h>
32ab0a3f 27#include <linux/vmalloc.h>
71389703 28#include <linux/blk-mq.h>
34c0fd54 29#include <linux/pfn_t.h>
9e853f23 30#include <linux/slab.h>
0aed55af 31#include <linux/uio.h>
c1d6e828 32#include <linux/dax.h>
9f53f9fa 33#include <linux/nd.h>
23c47d2a 34#include <linux/backing-dev.h>
f295e53b 35#include "pmem.h"
32ab0a3f 36#include "pfn.h"
9f53f9fa 37#include "nd.h"
06e8ccda 38#include "nd-core.h"
9e853f23 39
f284a4f2
DW
40static struct device *to_dev(struct pmem_device *pmem)
41{
42 /*
43 * nvdimm bus services need a 'dev' parameter, and we record the device
44 * at init in bb.dev.
45 */
46 return pmem->bb.dev;
47}
48
49static struct nd_region *to_region(struct pmem_device *pmem)
50{
51 return to_nd_region(to_dev(pmem)->parent);
52}
9e853f23 53
4e4cbee9
CH
54static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
55 phys_addr_t offset, unsigned int len)
59e64739 56{
f284a4f2 57 struct device *dev = to_dev(pmem);
59e64739
DW
58 sector_t sector;
59 long cleared;
4e4cbee9 60 blk_status_t rc = BLK_STS_OK;
59e64739
DW
61
62 sector = (offset - pmem->data_offset) / 512;
59e64739 63
868f036f
DW
64 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
65 if (cleared < len)
4e4cbee9 66 rc = BLK_STS_IOERR;
59e64739 67 if (cleared > 0 && cleared / 512) {
868f036f 68 cleared /= 512;
426824d6 69 dev_dbg(dev, "%#llx clear %ld sector%s\n",
868f036f
DW
70 (unsigned long long) sector, cleared,
71 cleared > 1 ? "s" : "");
0a3f27b9 72 badblocks_clear(&pmem->bb, sector, cleared);
975750a9
TK
73 if (pmem->bb_state)
74 sysfs_notify_dirent(pmem->bb_state);
59e64739 75 }
3115bb02 76
f2b61257 77 arch_invalidate_pmem(pmem->virt_addr + offset, len);
868f036f
DW
78
79 return rc;
59e64739
DW
80}
81
bd697a80
VV
82static void write_pmem(void *pmem_addr, struct page *page,
83 unsigned int off, unsigned int len)
84{
98cc093c
HY
85 unsigned int chunk;
86 void *mem;
87
88 while (len) {
89 mem = kmap_atomic(page);
90 chunk = min_t(unsigned int, len, PAGE_SIZE);
91 memcpy_flushcache(pmem_addr, mem + off, chunk);
92 kunmap_atomic(mem);
93 len -= chunk;
94 off = 0;
95 page++;
96 pmem_addr += PAGE_SIZE;
97 }
bd697a80
VV
98}
99
4e4cbee9 100static blk_status_t read_pmem(struct page *page, unsigned int off,
bd697a80
VV
101 void *pmem_addr, unsigned int len)
102{
98cc093c 103 unsigned int chunk;
60622d68 104 unsigned long rem;
98cc093c
HY
105 void *mem;
106
107 while (len) {
108 mem = kmap_atomic(page);
109 chunk = min_t(unsigned int, len, PAGE_SIZE);
60622d68 110 rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
98cc093c 111 kunmap_atomic(mem);
60622d68 112 if (rem)
98cc093c
HY
113 return BLK_STS_IOERR;
114 len -= chunk;
115 off = 0;
116 page++;
117 pmem_addr += PAGE_SIZE;
118 }
4e4cbee9 119 return BLK_STS_OK;
bd697a80
VV
120}
121
4e4cbee9 122static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
c11f0c0b 123 unsigned int len, unsigned int off, bool is_write,
9e853f23
RZ
124 sector_t sector)
125{
4e4cbee9 126 blk_status_t rc = BLK_STS_OK;
59e64739 127 bool bad_pmem = false;
32ab0a3f 128 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
7a9eb206 129 void *pmem_addr = pmem->virt_addr + pmem_off;
9e853f23 130
59e64739
DW
131 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
132 bad_pmem = true;
133
c11f0c0b 134 if (!is_write) {
59e64739 135 if (unlikely(bad_pmem))
4e4cbee9 136 rc = BLK_STS_IOERR;
b5ebc8ec 137 else {
bd697a80 138 rc = read_pmem(page, off, pmem_addr, len);
b5ebc8ec
DW
139 flush_dcache_page(page);
140 }
9e853f23 141 } else {
0a370d26
DW
142 /*
143 * Note that we write the data both before and after
144 * clearing poison. The write before clear poison
145 * handles situations where the latest written data is
146 * preserved and the clear poison operation simply marks
147 * the address range as valid without changing the data.
148 * In this case application software can assume that an
149 * interrupted write will either return the new good
150 * data or an error.
151 *
152 * However, if pmem_clear_poison() leaves the data in an
153 * indeterminate state we need to perform the write
154 * after clear poison.
155 */
9e853f23 156 flush_dcache_page(page);
bd697a80 157 write_pmem(pmem_addr, page, off, len);
59e64739 158 if (unlikely(bad_pmem)) {
3115bb02 159 rc = pmem_clear_poison(pmem, pmem_off, len);
bd697a80 160 write_pmem(pmem_addr, page, off, len);
59e64739 161 }
9e853f23
RZ
162 }
163
b5ebc8ec 164 return rc;
9e853f23
RZ
165}
166
dece1635 167static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
9e853f23 168{
4e4cbee9 169 blk_status_t rc = 0;
f0dc089c
DW
170 bool do_acct;
171 unsigned long start;
9e853f23 172 struct bio_vec bvec;
9e853f23 173 struct bvec_iter iter;
bd842b8c 174 struct pmem_device *pmem = q->queuedata;
7e267a8c
DW
175 struct nd_region *nd_region = to_region(pmem);
176
d2d6364d 177 if (bio->bi_opf & REQ_PREFLUSH)
7e267a8c 178 nvdimm_flush(nd_region);
9e853f23 179
f0dc089c 180 do_acct = nd_iostat_start(bio, &start);
e10624f8
DW
181 bio_for_each_segment(bvec, bio, iter) {
182 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
c11f0c0b 183 bvec.bv_offset, op_is_write(bio_op(bio)),
e10624f8
DW
184 iter.bi_sector);
185 if (rc) {
4e4cbee9 186 bio->bi_status = rc;
e10624f8
DW
187 break;
188 }
189 }
f0dc089c
DW
190 if (do_acct)
191 nd_iostat_end(bio, start);
61031952 192
1eff9d32 193 if (bio->bi_opf & REQ_FUA)
7e267a8c 194 nvdimm_flush(nd_region);
61031952 195
4246a0b6 196 bio_endio(bio);
dece1635 197 return BLK_QC_T_NONE;
9e853f23
RZ
198}
199
200static int pmem_rw_page(struct block_device *bdev, sector_t sector,
c11f0c0b 201 struct page *page, bool is_write)
9e853f23 202{
bd842b8c 203 struct pmem_device *pmem = bdev->bd_queue->queuedata;
4e4cbee9 204 blk_status_t rc;
9e853f23 205
98cc093c
HY
206 rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
207 0, is_write, sector);
9e853f23 208
e10624f8
DW
209 /*
210 * The ->rw_page interface is subtle and tricky. The core
211 * retries on any error, so we can only invoke page_endio() in
212 * the successful completion case. Otherwise, we'll see crashes
213 * caused by double completion.
214 */
215 if (rc == 0)
c11f0c0b 216 page_endio(page, is_write, 0);
e10624f8 217
4e4cbee9 218 return blk_status_to_errno(rc);
9e853f23
RZ
219}
220
f295e53b 221/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
c1d6e828
DW
222__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
223 long nr_pages, void **kaddr, pfn_t *pfn)
9e853f23 224{
c1d6e828 225 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
589e75d1 226
c1d6e828
DW
227 if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
228 PFN_PHYS(nr_pages))))
0a70bd43 229 return -EIO;
e2e05394 230 *kaddr = pmem->virt_addr + offset;
34c0fd54 231 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
9e853f23 232
0a70bd43
DW
233 /*
234 * If badblocks are present, limit known good range to the
235 * requested range.
236 */
237 if (unlikely(pmem->bb.count))
c1d6e828
DW
238 return nr_pages;
239 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
9e853f23
RZ
240}
241
242static const struct block_device_operations pmem_fops = {
243 .owner = THIS_MODULE,
244 .rw_page = pmem_rw_page,
58138820 245 .revalidate_disk = nvdimm_revalidate_disk,
9e853f23
RZ
246};
247
c1d6e828
DW
248static long pmem_dax_direct_access(struct dax_device *dax_dev,
249 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
250{
251 struct pmem_device *pmem = dax_get_private(dax_dev);
252
253 return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
254}
255
0aed55af
DW
256static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
257 void *addr, size_t bytes, struct iov_iter *i)
258{
259 return copy_from_iter_flushcache(addr, bytes, i);
260}
261
b3a9a0c3
DW
262static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
263 void *addr, size_t bytes, struct iov_iter *i)
264{
6dfdb2b6 265 return copy_to_iter_mcsafe(addr, bytes, i);
b3a9a0c3
DW
266}
267
c1d6e828
DW
268static const struct dax_operations pmem_dax_ops = {
269 .direct_access = pmem_dax_direct_access,
0aed55af 270 .copy_from_iter = pmem_copy_from_iter,
b3a9a0c3 271 .copy_to_iter = pmem_copy_to_iter,
c1d6e828
DW
272};
273
6e0c90d6
DW
274static const struct attribute_group *pmem_attribute_groups[] = {
275 &dax_attribute_group,
276 NULL,
c1d6e828
DW
277};
278
030b99e3
DW
279static void pmem_release_queue(void *q)
280{
281 blk_cleanup_queue(q);
282}
283
71389703
DW
284static void pmem_freeze_queue(void *q)
285{
d3b5d352 286 blk_freeze_queue_start(q);
71389703
DW
287}
288
c1d6e828 289static void pmem_release_disk(void *__pmem)
030b99e3 290{
c1d6e828
DW
291 struct pmem_device *pmem = __pmem;
292
293 kill_dax(pmem->dax_dev);
294 put_dax(pmem->dax_dev);
295 del_gendisk(pmem->disk);
296 put_disk(pmem->disk);
030b99e3
DW
297}
298
e7638488
DW
299static void pmem_release_pgmap_ops(void *__pgmap)
300{
301 dev_pagemap_put_ops();
302}
303
304static void fsdax_pagefree(struct page *page, void *data)
305{
306 wake_up_var(&page->_refcount);
307}
308
309static int setup_pagemap_fsdax(struct device *dev, struct dev_pagemap *pgmap)
310{
311 dev_pagemap_get_ops();
312 if (devm_add_action_or_reset(dev, pmem_release_pgmap_ops, pgmap))
313 return -ENOMEM;
314 pgmap->type = MEMORY_DEVICE_FS_DAX;
315 pgmap->page_free = fsdax_pagefree;
316
317 return 0;
318}
319
200c79da
DW
320static int pmem_attach_disk(struct device *dev,
321 struct nd_namespace_common *ndns)
9e853f23 322{
200c79da 323 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
f284a4f2 324 struct nd_region *nd_region = to_nd_region(dev->parent);
ce7f11a2 325 int nid = dev_to_node(dev), fua;
200c79da 326 struct resource *res = &nsio->res;
e8d51348 327 struct resource bb_res;
200c79da 328 struct nd_pfn *nd_pfn = NULL;
c1d6e828 329 struct dax_device *dax_dev;
200c79da 330 struct nd_pfn_sb *pfn_sb;
9e853f23 331 struct pmem_device *pmem;
468ded03 332 struct request_queue *q;
6e0c90d6 333 struct device *gendev;
200c79da
DW
334 struct gendisk *disk;
335 void *addr;
e8d51348
CH
336 int rc;
337
338 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
339 if (!pmem)
340 return -ENOMEM;
200c79da
DW
341
342 /* while nsio_rw_bytes is active, parse a pfn info block if present */
343 if (is_nd_pfn(dev)) {
344 nd_pfn = to_nd_pfn(dev);
e8d51348
CH
345 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
346 if (rc)
347 return rc;
200c79da
DW
348 }
349
350 /* we're attaching a block device, disable raw namespace access */
351 devm_nsio_disable(dev, nsio);
9e853f23 352
200c79da 353 dev_set_drvdata(dev, pmem);
9e853f23
RZ
354 pmem->phys_addr = res->start;
355 pmem->size = resource_size(res);
0b277961
DW
356 fua = nvdimm_has_flush(nd_region);
357 if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
61031952 358 dev_warn(dev, "unable to guarantee persistence of writes\n");
0b277961
DW
359 fua = 0;
360 }
9e853f23 361
947df02d 362 if (!devm_request_mem_region(dev, res->start, resource_size(res),
450c6633 363 dev_name(&ndns->dev))) {
947df02d 364 dev_warn(dev, "could not reserve region %pR\n", res);
200c79da 365 return -EBUSY;
9e853f23
RZ
366 }
367
5ee0524b 368 q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev), NULL);
468ded03 369 if (!q)
200c79da 370 return -ENOMEM;
468ded03 371
71389703
DW
372 if (devm_add_action_or_reset(dev, pmem_release_queue, q))
373 return -ENOMEM;
374
34c0fd54 375 pmem->pfn_flags = PFN_DEV;
e8d51348 376 pmem->pgmap.ref = &q->q_usage_counter;
200c79da 377 if (is_nd_pfn(dev)) {
e7638488
DW
378 if (setup_pagemap_fsdax(dev, &pmem->pgmap))
379 return -ENOMEM;
e8d51348 380 addr = devm_memremap_pages(dev, &pmem->pgmap);
200c79da
DW
381 pfn_sb = nd_pfn->pfn_sb;
382 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
e8d51348
CH
383 pmem->pfn_pad = resource_size(res) -
384 resource_size(&pmem->pgmap.res);
200c79da 385 pmem->pfn_flags |= PFN_MAP;
e8d51348
CH
386 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
387 bb_res.start += pmem->data_offset;
200c79da 388 } else if (pmem_should_map_pages(dev)) {
e8d51348
CH
389 memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
390 pmem->pgmap.altmap_valid = false;
e7638488
DW
391 if (setup_pagemap_fsdax(dev, &pmem->pgmap))
392 return -ENOMEM;
e8d51348 393 addr = devm_memremap_pages(dev, &pmem->pgmap);
34c0fd54 394 pmem->pfn_flags |= PFN_MAP;
e8d51348 395 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
34c0fd54 396 } else
200c79da
DW
397 addr = devm_memremap(dev, pmem->phys_addr,
398 pmem->size, ARCH_MEMREMAP_PMEM);
b36f4761 399
030b99e3 400 /*
71389703 401 * At release time the queue must be frozen before
030b99e3
DW
402 * devm_memremap_pages is unwound
403 */
71389703 404 if (devm_add_action_or_reset(dev, pmem_freeze_queue, q))
200c79da 405 return -ENOMEM;
8c2f7e86 406
200c79da
DW
407 if (IS_ERR(addr))
408 return PTR_ERR(addr);
7a9eb206 409 pmem->virt_addr = addr;
9e853f23 410
ce7f11a2 411 blk_queue_write_cache(q, true, fua);
5a92289f
DW
412 blk_queue_make_request(q, pmem_make_request);
413 blk_queue_physical_block_size(q, PAGE_SIZE);
f979b13c 414 blk_queue_logical_block_size(q, pmem_sector_size(ndns));
5a92289f 415 blk_queue_max_hw_sectors(q, UINT_MAX);
8b904b5b
BVA
416 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
417 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
5a92289f 418 q->queuedata = pmem;
9e853f23 419
538ea4aa 420 disk = alloc_disk_node(0, nid);
030b99e3
DW
421 if (!disk)
422 return -ENOMEM;
c1d6e828 423 pmem->disk = disk;
9e853f23 424
9e853f23 425 disk->fops = &pmem_fops;
5a92289f 426 disk->queue = q;
9e853f23 427 disk->flags = GENHD_FL_EXT_DEVT;
23c47d2a 428 disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
5212e11f 429 nvdimm_namespace_disk_name(ndns, disk->disk_name);
cfe30b87
DW
430 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
431 / 512);
b95f5f43
DW
432 if (devm_init_badblocks(dev, &pmem->bb))
433 return -ENOMEM;
e8d51348 434 nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
57f7f317 435 disk->bb = &pmem->bb;
f02716db 436
c1d6e828
DW
437 dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
438 if (!dax_dev) {
439 put_disk(disk);
440 return -ENOMEM;
441 }
ce7f11a2 442 dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
c1d6e828
DW
443 pmem->dax_dev = dax_dev;
444
6e0c90d6
DW
445 gendev = disk_to_dev(disk);
446 gendev->groups = pmem_attribute_groups;
447
c1d6e828
DW
448 device_add_disk(dev, disk);
449 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
f02716db
DW
450 return -ENOMEM;
451
58138820 452 revalidate_disk(disk);
9e853f23 453
975750a9
TK
454 pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
455 "badblocks");
6aa734a2
DW
456 if (!pmem->bb_state)
457 dev_warn(dev, "'badblocks' notification disabled\n");
975750a9 458
8c2f7e86
DW
459 return 0;
460}
9e853f23 461
9f53f9fa 462static int nd_pmem_probe(struct device *dev)
9e853f23 463{
8c2f7e86 464 struct nd_namespace_common *ndns;
9e853f23 465
8c2f7e86
DW
466 ndns = nvdimm_namespace_common_probe(dev);
467 if (IS_ERR(ndns))
468 return PTR_ERR(ndns);
bf9bccc1 469
200c79da
DW
470 if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
471 return -ENXIO;
708ab62b 472
200c79da 473 if (is_nd_btt(dev))
708ab62b
CH
474 return nvdimm_namespace_attach_btt(ndns);
475
32ab0a3f 476 if (is_nd_pfn(dev))
200c79da 477 return pmem_attach_disk(dev, ndns);
32ab0a3f 478
200c79da 479 /* if we find a valid info-block we'll come back as that personality */
c5ed9268
DW
480 if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
481 || nd_dax_probe(dev, ndns) == 0)
32ab0a3f 482 return -ENXIO;
32ab0a3f 483
200c79da
DW
484 /* ...otherwise we're just a raw pmem device */
485 return pmem_attach_disk(dev, ndns);
9e853f23
RZ
486}
487
9f53f9fa 488static int nd_pmem_remove(struct device *dev)
9e853f23 489{
6aa734a2
DW
490 struct pmem_device *pmem = dev_get_drvdata(dev);
491
8c2f7e86 492 if (is_nd_btt(dev))
298f2bc5 493 nvdimm_namespace_detach_btt(to_nd_btt(dev));
6aa734a2
DW
494 else {
495 /*
496 * Note, this assumes device_lock() context to not race
497 * nd_pmem_notify()
498 */
499 sysfs_put(pmem->bb_state);
500 pmem->bb_state = NULL;
501 }
476f848a
DW
502 nvdimm_flush(to_nd_region(dev->parent));
503
9e853f23
RZ
504 return 0;
505}
506
476f848a
DW
507static void nd_pmem_shutdown(struct device *dev)
508{
509 nvdimm_flush(to_nd_region(dev->parent));
510}
511
71999466
DW
512static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
513{
b2518c78 514 struct nd_region *nd_region;
298f2bc5
DW
515 resource_size_t offset = 0, end_trunc = 0;
516 struct nd_namespace_common *ndns;
517 struct nd_namespace_io *nsio;
518 struct resource res;
b2518c78 519 struct badblocks *bb;
975750a9 520 struct kernfs_node *bb_state;
71999466
DW
521
522 if (event != NVDIMM_REVALIDATE_POISON)
523 return;
524
298f2bc5
DW
525 if (is_nd_btt(dev)) {
526 struct nd_btt *nd_btt = to_nd_btt(dev);
527
528 ndns = nd_btt->ndns;
b2518c78
TK
529 nd_region = to_nd_region(ndns->dev.parent);
530 nsio = to_nd_namespace_io(&ndns->dev);
531 bb = &nsio->bb;
975750a9 532 bb_state = NULL;
b2518c78
TK
533 } else {
534 struct pmem_device *pmem = dev_get_drvdata(dev);
a3901802 535
b2518c78
TK
536 nd_region = to_region(pmem);
537 bb = &pmem->bb;
975750a9 538 bb_state = pmem->bb_state;
b2518c78
TK
539
540 if (is_nd_pfn(dev)) {
541 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
542 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
543
544 ndns = nd_pfn->ndns;
545 offset = pmem->data_offset +
546 __le32_to_cpu(pfn_sb->start_pad);
547 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
548 } else {
549 ndns = to_ndns(dev);
550 }
551
552 nsio = to_nd_namespace_io(&ndns->dev);
553 }
a3901802 554
298f2bc5
DW
555 res.start = nsio->res.start + offset;
556 res.end = nsio->res.end - end_trunc;
b2518c78 557 nvdimm_badblocks_populate(nd_region, bb, &res);
975750a9
TK
558 if (bb_state)
559 sysfs_notify_dirent(bb_state);
71999466
DW
560}
561
9f53f9fa
DW
562MODULE_ALIAS("pmem");
563MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
bf9bccc1 564MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
9f53f9fa
DW
565static struct nd_device_driver nd_pmem_driver = {
566 .probe = nd_pmem_probe,
567 .remove = nd_pmem_remove,
71999466 568 .notify = nd_pmem_notify,
476f848a 569 .shutdown = nd_pmem_shutdown,
9f53f9fa
DW
570 .drv = {
571 .name = "nd_pmem",
9e853f23 572 },
bf9bccc1 573 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
9e853f23
RZ
574};
575
03e90843 576module_nd_driver(nd_pmem_driver);
9e853f23
RZ
577
578MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
579MODULE_LICENSE("GPL v2");