]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/core.c
nvme: factor request completion code into a common helper
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / core.c
CommitLineData
21d34711
CH
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/blkdev.h>
16#include <linux/blk-mq.h>
5fd4ce1b 17#include <linux/delay.h>
21d34711 18#include <linux/errno.h>
1673f1f0 19#include <linux/hdreg.h>
21d34711 20#include <linux/kernel.h>
5bae7f73
CH
21#include <linux/module.h>
22#include <linux/list_sort.h>
21d34711
CH
23#include <linux/slab.h>
24#include <linux/types.h>
1673f1f0
CH
25#include <linux/pr.h>
26#include <linux/ptrace.h>
27#include <linux/nvme_ioctl.h>
28#include <linux/t10-pi.h>
c5552fde 29#include <linux/pm_qos.h>
1673f1f0
CH
30#include <scsi/sg.h>
31#include <asm/unaligned.h>
21d34711
CH
32
33#include "nvme.h"
038bd4cb 34#include "fabrics.h"
21d34711 35
f3ca80fc
CH
36#define NVME_MINORS (1U << MINORBITS)
37
ba0ba7d3
ML
38unsigned char admin_timeout = 60;
39module_param(admin_timeout, byte, 0644);
40MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
576d55d6 41EXPORT_SYMBOL_GPL(admin_timeout);
ba0ba7d3
ML
42
43unsigned char nvme_io_timeout = 30;
44module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
45MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
576d55d6 46EXPORT_SYMBOL_GPL(nvme_io_timeout);
ba0ba7d3
ML
47
48unsigned char shutdown_timeout = 5;
49module_param(shutdown_timeout, byte, 0644);
50MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
51
f80ec966
KB
52unsigned int nvme_max_retries = 5;
53module_param_named(max_retries, nvme_max_retries, uint, 0644);
54MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
55EXPORT_SYMBOL_GPL(nvme_max_retries);
5bae7f73 56
f3ca80fc
CH
57static int nvme_char_major;
58module_param(nvme_char_major, int, 0);
59
c5552fde
AL
60static unsigned long default_ps_max_latency_us = 25000;
61module_param(default_ps_max_latency_us, ulong, 0644);
62MODULE_PARM_DESC(default_ps_max_latency_us,
63 "max power saving latency for new devices; use PM QOS to change per device");
64
f3ca80fc 65static LIST_HEAD(nvme_ctrl_list);
9f2482b9 66static DEFINE_SPINLOCK(dev_list_lock);
1673f1f0 67
f3ca80fc
CH
68static struct class *nvme_class;
69
77f02a7a
CH
70static inline bool nvme_req_needs_retry(struct request *req, u16 status)
71{
72 return !(status & NVME_SC_DNR || blk_noretry_request(req)) &&
73 (jiffies - req->start_time) < req->timeout &&
74 req->retries < nvme_max_retries;
75}
76
77void nvme_complete_rq(struct request *req)
78{
79 int error = 0;
80
81 if (unlikely(req->errors)) {
82 if (nvme_req_needs_retry(req, req->errors)) {
83 req->retries++;
84 blk_mq_requeue_request(req,
85 !blk_mq_queue_stopped(req->q));
86 return;
87 }
88
89 if (blk_rq_is_passthrough(req))
90 error = req->errors;
91 else
92 error = nvme_error_status(req->errors);
93 }
94
95 blk_mq_end_request(req, error);
96}
97EXPORT_SYMBOL_GPL(nvme_complete_rq);
98
c55a2fd4
ML
99void nvme_cancel_request(struct request *req, void *data, bool reserved)
100{
101 int status;
102
103 if (!blk_mq_request_started(req))
104 return;
105
106 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
107 "Cancelling I/O %d", req->tag);
108
109 status = NVME_SC_ABORT_REQ;
110 if (blk_queue_dying(req->q))
111 status |= NVME_SC_DNR;
112 blk_mq_complete_request(req, status);
113}
114EXPORT_SYMBOL_GPL(nvme_cancel_request);
115
bb8d261e
CH
116bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
117 enum nvme_ctrl_state new_state)
118{
f6b6a28e 119 enum nvme_ctrl_state old_state;
bb8d261e
CH
120 bool changed = false;
121
122 spin_lock_irq(&ctrl->lock);
f6b6a28e
GKB
123
124 old_state = ctrl->state;
bb8d261e
CH
125 switch (new_state) {
126 case NVME_CTRL_LIVE:
127 switch (old_state) {
7d2e8008 128 case NVME_CTRL_NEW:
bb8d261e 129 case NVME_CTRL_RESETTING:
def61eca 130 case NVME_CTRL_RECONNECTING:
bb8d261e
CH
131 changed = true;
132 /* FALLTHRU */
133 default:
134 break;
135 }
136 break;
137 case NVME_CTRL_RESETTING:
138 switch (old_state) {
139 case NVME_CTRL_NEW:
def61eca
CH
140 case NVME_CTRL_LIVE:
141 case NVME_CTRL_RECONNECTING:
142 changed = true;
143 /* FALLTHRU */
144 default:
145 break;
146 }
147 break;
148 case NVME_CTRL_RECONNECTING:
149 switch (old_state) {
bb8d261e
CH
150 case NVME_CTRL_LIVE:
151 changed = true;
152 /* FALLTHRU */
153 default:
154 break;
155 }
156 break;
157 case NVME_CTRL_DELETING:
158 switch (old_state) {
159 case NVME_CTRL_LIVE:
160 case NVME_CTRL_RESETTING:
def61eca 161 case NVME_CTRL_RECONNECTING:
bb8d261e
CH
162 changed = true;
163 /* FALLTHRU */
164 default:
165 break;
166 }
167 break;
0ff9d4e1
KB
168 case NVME_CTRL_DEAD:
169 switch (old_state) {
170 case NVME_CTRL_DELETING:
171 changed = true;
172 /* FALLTHRU */
173 default:
174 break;
175 }
176 break;
bb8d261e
CH
177 default:
178 break;
179 }
bb8d261e
CH
180
181 if (changed)
182 ctrl->state = new_state;
183
f6b6a28e
GKB
184 spin_unlock_irq(&ctrl->lock);
185
bb8d261e
CH
186 return changed;
187}
188EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
189
1673f1f0
CH
190static void nvme_free_ns(struct kref *kref)
191{
192 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
193
b0b4e09c
MB
194 if (ns->ndev)
195 nvme_nvm_unregister(ns);
1673f1f0 196
b0b4e09c
MB
197 if (ns->disk) {
198 spin_lock(&dev_list_lock);
199 ns->disk->private_data = NULL;
200 spin_unlock(&dev_list_lock);
201 }
1673f1f0 202
1673f1f0 203 put_disk(ns->disk);
075790eb
KB
204 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
205 nvme_put_ctrl(ns->ctrl);
1673f1f0
CH
206 kfree(ns);
207}
208
5bae7f73 209static void nvme_put_ns(struct nvme_ns *ns)
1673f1f0
CH
210{
211 kref_put(&ns->kref, nvme_free_ns);
212}
213
214static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
215{
216 struct nvme_ns *ns;
217
218 spin_lock(&dev_list_lock);
219 ns = disk->private_data;
e439bb12
SG
220 if (ns) {
221 if (!kref_get_unless_zero(&ns->kref))
222 goto fail;
223 if (!try_module_get(ns->ctrl->ops->module))
224 goto fail_put_ns;
225 }
1673f1f0
CH
226 spin_unlock(&dev_list_lock);
227
228 return ns;
e439bb12
SG
229
230fail_put_ns:
231 kref_put(&ns->kref, nvme_free_ns);
232fail:
233 spin_unlock(&dev_list_lock);
234 return NULL;
1673f1f0
CH
235}
236
4160982e 237struct request *nvme_alloc_request(struct request_queue *q,
eb71f435 238 struct nvme_command *cmd, unsigned int flags, int qid)
21d34711 239{
aebf526b 240 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
21d34711 241 struct request *req;
21d34711 242
eb71f435 243 if (qid == NVME_QID_ANY) {
aebf526b 244 req = blk_mq_alloc_request(q, op, flags);
eb71f435 245 } else {
aebf526b 246 req = blk_mq_alloc_request_hctx(q, op, flags,
eb71f435
CH
247 qid ? qid - 1 : 0);
248 }
21d34711 249 if (IS_ERR(req))
4160982e 250 return req;
21d34711 251
21d34711 252 req->cmd_flags |= REQ_FAILFAST_DRIVER;
d49187e9 253 nvme_req(req)->cmd = cmd;
21d34711 254
4160982e
CH
255 return req;
256}
576d55d6 257EXPORT_SYMBOL_GPL(nvme_alloc_request);
4160982e 258
8093f7ca
ML
259static inline void nvme_setup_flush(struct nvme_ns *ns,
260 struct nvme_command *cmnd)
261{
262 memset(cmnd, 0, sizeof(*cmnd));
263 cmnd->common.opcode = nvme_cmd_flush;
264 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
265}
266
267static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
268 struct nvme_command *cmnd)
269{
b35ba01e 270 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
8093f7ca 271 struct nvme_dsm_range *range;
b35ba01e 272 struct bio *bio;
8093f7ca 273
b35ba01e 274 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
8093f7ca
ML
275 if (!range)
276 return BLK_MQ_RQ_QUEUE_BUSY;
277
b35ba01e
CH
278 __rq_for_each_bio(bio, req) {
279 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
280 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
281
282 range[n].cattr = cpu_to_le32(0);
283 range[n].nlb = cpu_to_le32(nlb);
284 range[n].slba = cpu_to_le64(slba);
285 n++;
286 }
287
288 if (WARN_ON_ONCE(n != segments)) {
289 kfree(range);
290 return BLK_MQ_RQ_QUEUE_ERROR;
291 }
8093f7ca
ML
292
293 memset(cmnd, 0, sizeof(*cmnd));
294 cmnd->dsm.opcode = nvme_cmd_dsm;
295 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
b35ba01e 296 cmnd->dsm.nr = segments - 1;
8093f7ca
ML
297 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
298
f9d03f96
CH
299 req->special_vec.bv_page = virt_to_page(range);
300 req->special_vec.bv_offset = offset_in_page(range);
b35ba01e 301 req->special_vec.bv_len = sizeof(*range) * segments;
f9d03f96 302 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
8093f7ca 303
bac0000a 304 return BLK_MQ_RQ_QUEUE_OK;
8093f7ca 305}
8093f7ca 306
8093f7ca
ML
307static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
308 struct nvme_command *cmnd)
309{
310 u16 control = 0;
311 u32 dsmgmt = 0;
312
313 if (req->cmd_flags & REQ_FUA)
314 control |= NVME_RW_FUA;
315 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
316 control |= NVME_RW_LR;
317
318 if (req->cmd_flags & REQ_RAHEAD)
319 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
320
321 memset(cmnd, 0, sizeof(*cmnd));
322 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
8093f7ca
ML
323 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
324 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
325 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
326
327 if (ns->ms) {
328 switch (ns->pi_type) {
329 case NVME_NS_DPS_PI_TYPE3:
330 control |= NVME_RW_PRINFO_PRCHK_GUARD;
331 break;
332 case NVME_NS_DPS_PI_TYPE1:
333 case NVME_NS_DPS_PI_TYPE2:
334 control |= NVME_RW_PRINFO_PRCHK_GUARD |
335 NVME_RW_PRINFO_PRCHK_REF;
336 cmnd->rw.reftag = cpu_to_le32(
337 nvme_block_nr(ns, blk_rq_pos(req)));
338 break;
339 }
340 if (!blk_integrity_rq(req))
341 control |= NVME_RW_PRINFO_PRACT;
342 }
343
344 cmnd->rw.control = cpu_to_le16(control);
345 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
346}
347
348int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
349 struct nvme_command *cmd)
350{
bac0000a 351 int ret = BLK_MQ_RQ_QUEUE_OK;
8093f7ca 352
aebf526b
CH
353 switch (req_op(req)) {
354 case REQ_OP_DRV_IN:
355 case REQ_OP_DRV_OUT:
d49187e9 356 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
aebf526b
CH
357 break;
358 case REQ_OP_FLUSH:
8093f7ca 359 nvme_setup_flush(ns, cmd);
aebf526b
CH
360 break;
361 case REQ_OP_DISCARD:
8093f7ca 362 ret = nvme_setup_discard(ns, req, cmd);
aebf526b
CH
363 break;
364 case REQ_OP_READ:
365 case REQ_OP_WRITE:
8093f7ca 366 nvme_setup_rw(ns, req, cmd);
aebf526b
CH
367 break;
368 default:
369 WARN_ON_ONCE(1);
370 return BLK_MQ_RQ_QUEUE_ERROR;
371 }
8093f7ca 372
721b3917 373 cmd->common.command_id = req->tag;
8093f7ca
ML
374 return ret;
375}
376EXPORT_SYMBOL_GPL(nvme_setup_cmd);
377
4160982e
CH
378/*
379 * Returns 0 on success. If the result is negative, it's a Linux error code;
380 * if the result is positive, it's an NVM Express status code
381 */
382int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
d49187e9 383 union nvme_result *result, void *buffer, unsigned bufflen,
eb71f435 384 unsigned timeout, int qid, int at_head, int flags)
4160982e
CH
385{
386 struct request *req;
387 int ret;
388
eb71f435 389 req = nvme_alloc_request(q, cmd, flags, qid);
4160982e
CH
390 if (IS_ERR(req))
391 return PTR_ERR(req);
392
393 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
394
21d34711
CH
395 if (buffer && bufflen) {
396 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
397 if (ret)
398 goto out;
4160982e
CH
399 }
400
eb71f435 401 blk_execute_rq(req->q, NULL, req, at_head);
d49187e9
CH
402 if (result)
403 *result = nvme_req(req)->result;
4160982e
CH
404 ret = req->errors;
405 out:
406 blk_mq_free_request(req);
407 return ret;
408}
eb71f435 409EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
4160982e
CH
410
411int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
412 void *buffer, unsigned bufflen)
413{
eb71f435
CH
414 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
415 NVME_QID_ANY, 0, 0);
4160982e 416}
576d55d6 417EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
4160982e 418
0b7f1f26
KB
419int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
420 void __user *ubuffer, unsigned bufflen,
421 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
422 u32 *result, unsigned timeout)
4160982e 423{
7a5abb4b 424 bool write = nvme_is_write(cmd);
0b7f1f26
KB
425 struct nvme_ns *ns = q->queuedata;
426 struct gendisk *disk = ns ? ns->disk : NULL;
4160982e 427 struct request *req;
0b7f1f26
KB
428 struct bio *bio = NULL;
429 void *meta = NULL;
4160982e
CH
430 int ret;
431
eb71f435 432 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
4160982e
CH
433 if (IS_ERR(req))
434 return PTR_ERR(req);
435
436 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
437
438 if (ubuffer && bufflen) {
21d34711
CH
439 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
440 GFP_KERNEL);
441 if (ret)
442 goto out;
443 bio = req->bio;
21d34711 444
0b7f1f26
KB
445 if (!disk)
446 goto submit;
447 bio->bi_bdev = bdget_disk(disk, 0);
448 if (!bio->bi_bdev) {
449 ret = -ENODEV;
450 goto out_unmap;
451 }
452
e9fc63d6 453 if (meta_buffer && meta_len) {
0b7f1f26
KB
454 struct bio_integrity_payload *bip;
455
456 meta = kmalloc(meta_len, GFP_KERNEL);
457 if (!meta) {
458 ret = -ENOMEM;
459 goto out_unmap;
460 }
461
462 if (write) {
463 if (copy_from_user(meta, meta_buffer,
464 meta_len)) {
465 ret = -EFAULT;
466 goto out_free_meta;
467 }
468 }
469
470 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
06c1e390
KB
471 if (IS_ERR(bip)) {
472 ret = PTR_ERR(bip);
0b7f1f26
KB
473 goto out_free_meta;
474 }
475
476 bip->bip_iter.bi_size = meta_len;
477 bip->bip_iter.bi_sector = meta_seed;
478
479 ret = bio_integrity_add_page(bio, virt_to_page(meta),
480 meta_len, offset_in_page(meta));
481 if (ret != meta_len) {
482 ret = -ENOMEM;
483 goto out_free_meta;
484 }
485 }
486 }
487 submit:
488 blk_execute_rq(req->q, disk, req, 0);
489 ret = req->errors;
21d34711 490 if (result)
d49187e9 491 *result = le32_to_cpu(nvme_req(req)->result.u32);
0b7f1f26
KB
492 if (meta && !ret && !write) {
493 if (copy_to_user(meta_buffer, meta, meta_len))
494 ret = -EFAULT;
495 }
496 out_free_meta:
497 kfree(meta);
498 out_unmap:
499 if (bio) {
500 if (disk && bio->bi_bdev)
501 bdput(bio->bi_bdev);
502 blk_rq_unmap_user(bio);
503 }
21d34711
CH
504 out:
505 blk_mq_free_request(req);
506 return ret;
507}
508
0b7f1f26
KB
509int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
510 void __user *ubuffer, unsigned bufflen, u32 *result,
511 unsigned timeout)
512{
513 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
514 result, timeout);
515}
516
038bd4cb
SG
517static void nvme_keep_alive_end_io(struct request *rq, int error)
518{
519 struct nvme_ctrl *ctrl = rq->end_io_data;
520
521 blk_mq_free_request(rq);
522
523 if (error) {
524 dev_err(ctrl->device,
525 "failed nvme_keep_alive_end_io error=%d\n", error);
526 return;
527 }
528
529 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
530}
531
532static int nvme_keep_alive(struct nvme_ctrl *ctrl)
533{
534 struct nvme_command c;
535 struct request *rq;
536
537 memset(&c, 0, sizeof(c));
538 c.common.opcode = nvme_admin_keep_alive;
539
540 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
541 NVME_QID_ANY);
542 if (IS_ERR(rq))
543 return PTR_ERR(rq);
544
545 rq->timeout = ctrl->kato * HZ;
546 rq->end_io_data = ctrl;
547
548 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
549
550 return 0;
551}
552
553static void nvme_keep_alive_work(struct work_struct *work)
554{
555 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
556 struct nvme_ctrl, ka_work);
557
558 if (nvme_keep_alive(ctrl)) {
559 /* allocation failure, reset the controller */
560 dev_err(ctrl->device, "keep-alive failed\n");
561 ctrl->ops->reset_ctrl(ctrl);
562 return;
563 }
564}
565
566void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
567{
568 if (unlikely(ctrl->kato == 0))
569 return;
570
571 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
572 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
573}
574EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
575
576void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
577{
578 if (unlikely(ctrl->kato == 0))
579 return;
580
581 cancel_delayed_work_sync(&ctrl->ka_work);
582}
583EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
584
1c63dc66 585int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
21d34711
CH
586{
587 struct nvme_command c = { };
588 int error;
589
590 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
591 c.identify.opcode = nvme_admin_identify;
986994a2 592 c.identify.cns = NVME_ID_CNS_CTRL;
21d34711
CH
593
594 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
595 if (!*id)
596 return -ENOMEM;
597
598 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
599 sizeof(struct nvme_id_ctrl));
600 if (error)
601 kfree(*id);
602 return error;
603}
604
540c801c
KB
605static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
606{
607 struct nvme_command c = { };
608
609 c.identify.opcode = nvme_admin_identify;
986994a2 610 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
540c801c
KB
611 c.identify.nsid = cpu_to_le32(nsid);
612 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
613}
614
1c63dc66 615int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
21d34711
CH
616 struct nvme_id_ns **id)
617{
618 struct nvme_command c = { };
619 int error;
620
621 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
778f067c
MG
622 c.identify.opcode = nvme_admin_identify;
623 c.identify.nsid = cpu_to_le32(nsid);
986994a2 624 c.identify.cns = NVME_ID_CNS_NS;
21d34711
CH
625
626 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
627 if (!*id)
628 return -ENOMEM;
629
630 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
631 sizeof(struct nvme_id_ns));
632 if (error)
633 kfree(*id);
634 return error;
635}
636
1c63dc66 637int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
1a6fe74d 638 void *buffer, size_t buflen, u32 *result)
21d34711
CH
639{
640 struct nvme_command c;
d49187e9 641 union nvme_result res;
1cb3cce5 642 int ret;
21d34711
CH
643
644 memset(&c, 0, sizeof(c));
645 c.features.opcode = nvme_admin_get_features;
646 c.features.nsid = cpu_to_le32(nsid);
21d34711
CH
647 c.features.fid = cpu_to_le32(fid);
648
d49187e9 649 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
eb71f435 650 NVME_QID_ANY, 0, 0);
9b47f77a 651 if (ret >= 0 && result)
d49187e9 652 *result = le32_to_cpu(res.u32);
1cb3cce5 653 return ret;
21d34711
CH
654}
655
1c63dc66 656int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
1a6fe74d 657 void *buffer, size_t buflen, u32 *result)
21d34711
CH
658{
659 struct nvme_command c;
d49187e9 660 union nvme_result res;
1cb3cce5 661 int ret;
21d34711
CH
662
663 memset(&c, 0, sizeof(c));
664 c.features.opcode = nvme_admin_set_features;
21d34711
CH
665 c.features.fid = cpu_to_le32(fid);
666 c.features.dword11 = cpu_to_le32(dword11);
667
d49187e9 668 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1a6fe74d 669 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
9b47f77a 670 if (ret >= 0 && result)
d49187e9 671 *result = le32_to_cpu(res.u32);
1cb3cce5 672 return ret;
21d34711
CH
673}
674
1c63dc66 675int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
21d34711
CH
676{
677 struct nvme_command c = { };
678 int error;
679
680 c.common.opcode = nvme_admin_get_log_page,
681 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
682 c.common.cdw10[0] = cpu_to_le32(
683 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
684 NVME_LOG_SMART),
685
686 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
687 if (!*log)
688 return -ENOMEM;
689
690 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
691 sizeof(struct nvme_smart_log));
692 if (error)
693 kfree(*log);
694 return error;
695}
1673f1f0 696
9a0be7ab
CH
697int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
698{
699 u32 q_count = (*count - 1) | ((*count - 1) << 16);
700 u32 result;
701 int status, nr_io_queues;
702
1a6fe74d 703 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
9a0be7ab 704 &result);
f5fa90dc 705 if (status < 0)
9a0be7ab
CH
706 return status;
707
f5fa90dc
CH
708 /*
709 * Degraded controllers might return an error when setting the queue
710 * count. We still want to be able to bring them online and offer
711 * access to the admin queue, as that might be only way to fix them up.
712 */
713 if (status > 0) {
714 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
715 *count = 0;
716 } else {
717 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
718 *count = min(*count, nr_io_queues);
719 }
720
9a0be7ab
CH
721 return 0;
722}
576d55d6 723EXPORT_SYMBOL_GPL(nvme_set_queue_count);
9a0be7ab 724
1673f1f0
CH
725static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
726{
727 struct nvme_user_io io;
728 struct nvme_command c;
729 unsigned length, meta_len;
730 void __user *metadata;
731
732 if (copy_from_user(&io, uio, sizeof(io)))
733 return -EFAULT;
63088ec7
KB
734 if (io.flags)
735 return -EINVAL;
1673f1f0
CH
736
737 switch (io.opcode) {
738 case nvme_cmd_write:
739 case nvme_cmd_read:
740 case nvme_cmd_compare:
741 break;
742 default:
743 return -EINVAL;
744 }
745
746 length = (io.nblocks + 1) << ns->lba_shift;
747 meta_len = (io.nblocks + 1) * ns->ms;
748 metadata = (void __user *)(uintptr_t)io.metadata;
749
750 if (ns->ext) {
751 length += meta_len;
752 meta_len = 0;
753 } else if (meta_len) {
754 if ((io.metadata & 3) || !io.metadata)
755 return -EINVAL;
756 }
757
758 memset(&c, 0, sizeof(c));
759 c.rw.opcode = io.opcode;
760 c.rw.flags = io.flags;
761 c.rw.nsid = cpu_to_le32(ns->ns_id);
762 c.rw.slba = cpu_to_le64(io.slba);
763 c.rw.length = cpu_to_le16(io.nblocks);
764 c.rw.control = cpu_to_le16(io.control);
765 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
766 c.rw.reftag = cpu_to_le32(io.reftag);
767 c.rw.apptag = cpu_to_le16(io.apptag);
768 c.rw.appmask = cpu_to_le16(io.appmask);
769
770 return __nvme_submit_user_cmd(ns->queue, &c,
771 (void __user *)(uintptr_t)io.addr, length,
772 metadata, meta_len, io.slba, NULL, 0);
773}
774
f3ca80fc 775static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1673f1f0
CH
776 struct nvme_passthru_cmd __user *ucmd)
777{
778 struct nvme_passthru_cmd cmd;
779 struct nvme_command c;
780 unsigned timeout = 0;
781 int status;
782
783 if (!capable(CAP_SYS_ADMIN))
784 return -EACCES;
785 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
786 return -EFAULT;
63088ec7
KB
787 if (cmd.flags)
788 return -EINVAL;
1673f1f0
CH
789
790 memset(&c, 0, sizeof(c));
791 c.common.opcode = cmd.opcode;
792 c.common.flags = cmd.flags;
793 c.common.nsid = cpu_to_le32(cmd.nsid);
794 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
795 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
796 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
797 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
798 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
799 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
800 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
801 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
802
803 if (cmd.timeout_ms)
804 timeout = msecs_to_jiffies(cmd.timeout_ms);
805
806 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
d1ea7be5 807 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1673f1f0
CH
808 &cmd.result, timeout);
809 if (status >= 0) {
810 if (put_user(cmd.result, &ucmd->result))
811 return -EFAULT;
812 }
813
814 return status;
815}
816
817static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
818 unsigned int cmd, unsigned long arg)
819{
820 struct nvme_ns *ns = bdev->bd_disk->private_data;
821
822 switch (cmd) {
823 case NVME_IOCTL_ID:
824 force_successful_syscall_return();
825 return ns->ns_id;
826 case NVME_IOCTL_ADMIN_CMD:
827 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
828 case NVME_IOCTL_IO_CMD:
829 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
830 case NVME_IOCTL_SUBMIT_IO:
831 return nvme_submit_io(ns, (void __user *)arg);
44907332 832#ifdef CONFIG_BLK_DEV_NVME_SCSI
1673f1f0
CH
833 case SG_GET_VERSION_NUM:
834 return nvme_sg_get_version_num((void __user *)arg);
835 case SG_IO:
836 return nvme_sg_io(ns, (void __user *)arg);
44907332 837#endif
1673f1f0 838 default:
84d4add7
MB
839#ifdef CONFIG_NVM
840 if (ns->ndev)
841 return nvme_nvm_ioctl(ns, cmd, arg);
842#endif
a98e58e5 843 if (is_sed_ioctl(cmd))
4f1244c8 844 return sed_ioctl(ns->ctrl->opal_dev, cmd,
e225c20e 845 (void __user *) arg);
1673f1f0
CH
846 return -ENOTTY;
847 }
848}
849
850#ifdef CONFIG_COMPAT
851static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
852 unsigned int cmd, unsigned long arg)
853{
854 switch (cmd) {
855 case SG_IO:
856 return -ENOIOCTLCMD;
857 }
858 return nvme_ioctl(bdev, mode, cmd, arg);
859}
860#else
861#define nvme_compat_ioctl NULL
862#endif
863
864static int nvme_open(struct block_device *bdev, fmode_t mode)
865{
866 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
867}
868
869static void nvme_release(struct gendisk *disk, fmode_t mode)
870{
e439bb12
SG
871 struct nvme_ns *ns = disk->private_data;
872
873 module_put(ns->ctrl->ops->module);
874 nvme_put_ns(ns);
1673f1f0
CH
875}
876
877static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
878{
879 /* some standard values */
880 geo->heads = 1 << 6;
881 geo->sectors = 1 << 5;
882 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
883 return 0;
884}
885
886#ifdef CONFIG_BLK_DEV_INTEGRITY
887static void nvme_init_integrity(struct nvme_ns *ns)
888{
889 struct blk_integrity integrity;
890
fa9a89fc 891 memset(&integrity, 0, sizeof(integrity));
1673f1f0
CH
892 switch (ns->pi_type) {
893 case NVME_NS_DPS_PI_TYPE3:
894 integrity.profile = &t10_pi_type3_crc;
ba36c21b
NB
895 integrity.tag_size = sizeof(u16) + sizeof(u32);
896 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1673f1f0
CH
897 break;
898 case NVME_NS_DPS_PI_TYPE1:
899 case NVME_NS_DPS_PI_TYPE2:
900 integrity.profile = &t10_pi_type1_crc;
ba36c21b
NB
901 integrity.tag_size = sizeof(u16);
902 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1673f1f0
CH
903 break;
904 default:
905 integrity.profile = NULL;
906 break;
907 }
908 integrity.tuple_size = ns->ms;
909 blk_integrity_register(ns->disk, &integrity);
910 blk_queue_max_integrity_segments(ns->queue, 1);
911}
912#else
913static void nvme_init_integrity(struct nvme_ns *ns)
914{
915}
916#endif /* CONFIG_BLK_DEV_INTEGRITY */
917
918static void nvme_config_discard(struct nvme_ns *ns)
919{
08095e70 920 struct nvme_ctrl *ctrl = ns->ctrl;
1673f1f0 921 u32 logical_block_size = queue_logical_block_size(ns->queue);
08095e70 922
b35ba01e
CH
923 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
924 NVME_DSM_MAX_RANGES);
925
08095e70
KB
926 if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
927 ns->queue->limits.discard_zeroes_data = 1;
928 else
929 ns->queue->limits.discard_zeroes_data = 0;
930
1673f1f0
CH
931 ns->queue->limits.discard_alignment = logical_block_size;
932 ns->queue->limits.discard_granularity = logical_block_size;
bd0fc288 933 blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
b35ba01e 934 blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
1673f1f0
CH
935 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
936}
937
ac81bfa9 938static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
1673f1f0 939{
ac81bfa9 940 if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
b0b4e09c 941 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
1673f1f0
CH
942 return -ENODEV;
943 }
1673f1f0 944
ac81bfa9
MB
945 if ((*id)->ncap == 0) {
946 kfree(*id);
947 return -ENODEV;
1673f1f0
CH
948 }
949
8ef2074d 950 if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
ac81bfa9 951 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
8ef2074d 952 if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
ac81bfa9
MB
953 memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));
954
955 return 0;
956}
957
958static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
959{
960 struct nvme_ns *ns = disk->private_data;
961 u8 lbaf, pi_type;
962 u16 old_ms;
963 unsigned short bs;
2b9b6e86 964
1673f1f0
CH
965 old_ms = ns->ms;
966 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
967 ns->lba_shift = id->lbaf[lbaf].ds;
968 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
969 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
970
971 /*
972 * If identify namespace failed, use default 512 byte block size so
973 * block layer can use before failing read/write for 0 capacity.
974 */
975 if (ns->lba_shift == 0)
976 ns->lba_shift = 9;
977 bs = 1 << ns->lba_shift;
1673f1f0
CH
978 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
979 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
980 id->dps & NVME_NS_DPS_PI_MASK : 0;
981
982 blk_mq_freeze_queue(disk->queue);
983 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
984 ns->ms != old_ms ||
985 bs != queue_logical_block_size(disk->queue) ||
986 (ns->ms && ns->ext)))
987 blk_integrity_unregister(disk);
988
989 ns->pi_type = pi_type;
990 blk_queue_logical_block_size(ns->queue, bs);
991
4b9d5b15 992 if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1673f1f0 993 nvme_init_integrity(ns);
1673f1f0
CH
994 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
995 set_capacity(disk, 0);
996 else
997 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
998
999 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1000 nvme_config_discard(ns);
1001 blk_mq_unfreeze_queue(disk->queue);
ac81bfa9 1002}
1673f1f0 1003
ac81bfa9
MB
1004static int nvme_revalidate_disk(struct gendisk *disk)
1005{
1006 struct nvme_ns *ns = disk->private_data;
1007 struct nvme_id_ns *id = NULL;
1008 int ret;
1009
1010 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1011 set_capacity(disk, 0);
1012 return -ENODEV;
1013 }
1014
1015 ret = nvme_revalidate_ns(ns, &id);
1016 if (ret)
1017 return ret;
1018
1019 __nvme_revalidate_disk(disk, id);
1673f1f0 1020 kfree(id);
ac81bfa9 1021
1673f1f0
CH
1022 return 0;
1023}
1024
1025static char nvme_pr_type(enum pr_type type)
1026{
1027 switch (type) {
1028 case PR_WRITE_EXCLUSIVE:
1029 return 1;
1030 case PR_EXCLUSIVE_ACCESS:
1031 return 2;
1032 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1033 return 3;
1034 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1035 return 4;
1036 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1037 return 5;
1038 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1039 return 6;
1040 default:
1041 return 0;
1042 }
1043};
1044
1045static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1046 u64 key, u64 sa_key, u8 op)
1047{
1048 struct nvme_ns *ns = bdev->bd_disk->private_data;
1049 struct nvme_command c;
1050 u8 data[16] = { 0, };
1051
1052 put_unaligned_le64(key, &data[0]);
1053 put_unaligned_le64(sa_key, &data[8]);
1054
1055 memset(&c, 0, sizeof(c));
1056 c.common.opcode = op;
1057 c.common.nsid = cpu_to_le32(ns->ns_id);
1058 c.common.cdw10[0] = cpu_to_le32(cdw10);
1059
1060 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1061}
1062
1063static int nvme_pr_register(struct block_device *bdev, u64 old,
1064 u64 new, unsigned flags)
1065{
1066 u32 cdw10;
1067
1068 if (flags & ~PR_FL_IGNORE_KEY)
1069 return -EOPNOTSUPP;
1070
1071 cdw10 = old ? 2 : 0;
1072 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1073 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1074 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1075}
1076
1077static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1078 enum pr_type type, unsigned flags)
1079{
1080 u32 cdw10;
1081
1082 if (flags & ~PR_FL_IGNORE_KEY)
1083 return -EOPNOTSUPP;
1084
1085 cdw10 = nvme_pr_type(type) << 8;
1086 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1087 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1088}
1089
1090static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1091 enum pr_type type, bool abort)
1092{
1093 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1094 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1095}
1096
1097static int nvme_pr_clear(struct block_device *bdev, u64 key)
1098{
8c0b3915 1099 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1673f1f0
CH
1100 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1101}
1102
1103static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1104{
1105 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1106 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1107}
1108
1109static const struct pr_ops nvme_pr_ops = {
1110 .pr_register = nvme_pr_register,
1111 .pr_reserve = nvme_pr_reserve,
1112 .pr_release = nvme_pr_release,
1113 .pr_preempt = nvme_pr_preempt,
1114 .pr_clear = nvme_pr_clear,
1115};
1116
a98e58e5 1117#ifdef CONFIG_BLK_SED_OPAL
4f1244c8
CH
1118int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1119 bool send)
a98e58e5 1120{
4f1244c8 1121 struct nvme_ctrl *ctrl = data;
a98e58e5 1122 struct nvme_command cmd;
a98e58e5
SB
1123
1124 memset(&cmd, 0, sizeof(cmd));
1125 if (send)
1126 cmd.common.opcode = nvme_admin_security_send;
1127 else
1128 cmd.common.opcode = nvme_admin_security_recv;
a98e58e5
SB
1129 cmd.common.nsid = 0;
1130 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1131 cmd.common.cdw10[1] = cpu_to_le32(len);
1132
1133 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1134 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1135}
1136EXPORT_SYMBOL_GPL(nvme_sec_submit);
1137#endif /* CONFIG_BLK_SED_OPAL */
1138
5bae7f73 1139static const struct block_device_operations nvme_fops = {
1673f1f0
CH
1140 .owner = THIS_MODULE,
1141 .ioctl = nvme_ioctl,
1142 .compat_ioctl = nvme_compat_ioctl,
1143 .open = nvme_open,
1144 .release = nvme_release,
1145 .getgeo = nvme_getgeo,
1146 .revalidate_disk= nvme_revalidate_disk,
1147 .pr_ops = &nvme_pr_ops,
1148};
1149
5fd4ce1b
CH
1150static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1151{
1152 unsigned long timeout =
1153 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1154 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1155 int ret;
1156
1157 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
0df1e4f5
KB
1158 if (csts == ~0)
1159 return -ENODEV;
5fd4ce1b
CH
1160 if ((csts & NVME_CSTS_RDY) == bit)
1161 break;
1162
1163 msleep(100);
1164 if (fatal_signal_pending(current))
1165 return -EINTR;
1166 if (time_after(jiffies, timeout)) {
1b3c47c1 1167 dev_err(ctrl->device,
5fd4ce1b
CH
1168 "Device not ready; aborting %s\n", enabled ?
1169 "initialisation" : "reset");
1170 return -ENODEV;
1171 }
1172 }
1173
1174 return ret;
1175}
1176
1177/*
1178 * If the device has been passed off to us in an enabled state, just clear
1179 * the enabled bit. The spec says we should set the 'shutdown notification
1180 * bits', but doing so may cause the device to complete commands to the
1181 * admin queue ... and we don't know what memory that might be pointing at!
1182 */
1183int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1184{
1185 int ret;
1186
1187 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1188 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1189
1190 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1191 if (ret)
1192 return ret;
54adc010 1193
b5a10c5f 1194 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
54adc010
GP
1195 msleep(NVME_QUIRK_DELAY_AMOUNT);
1196
5fd4ce1b
CH
1197 return nvme_wait_ready(ctrl, cap, false);
1198}
576d55d6 1199EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
5fd4ce1b
CH
1200
1201int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1202{
1203 /*
1204 * Default to a 4K page size, with the intention to update this
1205 * path in the future to accomodate architectures with differing
1206 * kernel and IO page sizes.
1207 */
1208 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1209 int ret;
1210
1211 if (page_shift < dev_page_min) {
1b3c47c1 1212 dev_err(ctrl->device,
5fd4ce1b
CH
1213 "Minimum device page size %u too large for host (%u)\n",
1214 1 << dev_page_min, 1 << page_shift);
1215 return -ENODEV;
1216 }
1217
1218 ctrl->page_size = 1 << page_shift;
1219
1220 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1221 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1222 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1223 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1224 ctrl->ctrl_config |= NVME_CC_ENABLE;
1225
1226 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1227 if (ret)
1228 return ret;
1229 return nvme_wait_ready(ctrl, cap, true);
1230}
576d55d6 1231EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
5fd4ce1b
CH
1232
1233int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1234{
1235 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1236 u32 csts;
1237 int ret;
1238
1239 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1240 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1241
1242 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1243 if (ret)
1244 return ret;
1245
1246 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1247 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1248 break;
1249
1250 msleep(100);
1251 if (fatal_signal_pending(current))
1252 return -EINTR;
1253 if (time_after(jiffies, timeout)) {
1b3c47c1 1254 dev_err(ctrl->device,
5fd4ce1b
CH
1255 "Device shutdown incomplete; abort shutdown\n");
1256 return -ENODEV;
1257 }
1258 }
1259
1260 return ret;
1261}
576d55d6 1262EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
5fd4ce1b 1263
da35825d
CH
1264static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1265 struct request_queue *q)
1266{
7c88cb00
JA
1267 bool vwc = false;
1268
da35825d 1269 if (ctrl->max_hw_sectors) {
45686b61
CH
1270 u32 max_segments =
1271 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1272
da35825d 1273 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
45686b61 1274 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
da35825d 1275 }
e6282aef
KB
1276 if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1277 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
da35825d 1278 blk_queue_virt_boundary(q, ctrl->page_size - 1);
7c88cb00
JA
1279 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1280 vwc = true;
1281 blk_queue_write_cache(q, vwc, vwc);
da35825d
CH
1282}
1283
c5552fde
AL
1284static void nvme_configure_apst(struct nvme_ctrl *ctrl)
1285{
1286 /*
1287 * APST (Autonomous Power State Transition) lets us program a
1288 * table of power state transitions that the controller will
1289 * perform automatically. We configure it with a simple
1290 * heuristic: we are willing to spend at most 2% of the time
1291 * transitioning between power states. Therefore, when running
1292 * in any given state, we will enter the next lower-power
1293 * non-operational state after waiting 100 * (enlat + exlat)
1294 * microseconds, as long as that state's total latency is under
1295 * the requested maximum latency.
1296 *
1297 * We will not autonomously enter any non-operational state for
1298 * which the total latency exceeds ps_max_latency_us. Users
1299 * can set ps_max_latency_us to zero to turn off APST.
1300 */
1301
1302 unsigned apste;
1303 struct nvme_feat_auto_pst *table;
1304 int ret;
1305
1306 /*
1307 * If APST isn't supported or if we haven't been initialized yet,
1308 * then don't do anything.
1309 */
1310 if (!ctrl->apsta)
1311 return;
1312
1313 if (ctrl->npss > 31) {
1314 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1315 return;
1316 }
1317
1318 table = kzalloc(sizeof(*table), GFP_KERNEL);
1319 if (!table)
1320 return;
1321
1322 if (ctrl->ps_max_latency_us == 0) {
1323 /* Turn off APST. */
1324 apste = 0;
1325 } else {
1326 __le64 target = cpu_to_le64(0);
1327 int state;
1328
1329 /*
1330 * Walk through all states from lowest- to highest-power.
1331 * According to the spec, lower-numbered states use more
1332 * power. NPSS, despite the name, is the index of the
1333 * lowest-power state, not the number of states.
1334 */
1335 for (state = (int)ctrl->npss; state >= 0; state--) {
1336 u64 total_latency_us, transition_ms;
1337
1338 if (target)
1339 table->entries[state] = target;
1340
1341 /*
1342 * Is this state a useful non-operational state for
1343 * higher-power states to autonomously transition to?
1344 */
1345 if (!(ctrl->psd[state].flags &
1346 NVME_PS_FLAGS_NON_OP_STATE))
1347 continue;
1348
1349 total_latency_us =
1350 (u64)le32_to_cpu(ctrl->psd[state].entry_lat) +
1351 + le32_to_cpu(ctrl->psd[state].exit_lat);
1352 if (total_latency_us > ctrl->ps_max_latency_us)
1353 continue;
1354
1355 /*
1356 * This state is good. Use it as the APST idle
1357 * target for higher power states.
1358 */
1359 transition_ms = total_latency_us + 19;
1360 do_div(transition_ms, 20);
1361 if (transition_ms > (1 << 24) - 1)
1362 transition_ms = (1 << 24) - 1;
1363
1364 target = cpu_to_le64((state << 3) |
1365 (transition_ms << 8));
1366 }
1367
1368 apste = 1;
1369 }
1370
1371 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1372 table, sizeof(*table), NULL);
1373 if (ret)
1374 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1375
1376 kfree(table);
1377}
1378
1379static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1380{
1381 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1382 u64 latency;
1383
1384 switch (val) {
1385 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1386 case PM_QOS_LATENCY_ANY:
1387 latency = U64_MAX;
1388 break;
1389
1390 default:
1391 latency = val;
1392 }
1393
1394 if (ctrl->ps_max_latency_us != latency) {
1395 ctrl->ps_max_latency_us = latency;
1396 nvme_configure_apst(ctrl);
1397 }
1398}
1399
bd4da3ab
AL
1400struct nvme_core_quirk_entry {
1401 /*
1402 * NVMe model and firmware strings are padded with spaces. For
1403 * simplicity, strings in the quirk table are padded with NULLs
1404 * instead.
1405 */
1406 u16 vid;
1407 const char *mn;
1408 const char *fr;
1409 unsigned long quirks;
1410};
1411
1412static const struct nvme_core_quirk_entry core_quirks[] = {
c5552fde
AL
1413 /*
1414 * Seen on a Samsung "SM951 NVMe SAMSUNG 256GB": using APST causes
1415 * the controller to go out to lunch. It dies when the watchdog
1416 * timer reads CSTS and gets 0xffffffff.
1417 */
1418 {
1419 .vid = 0x144d,
1420 .fr = "BXW75D0Q",
1421 .quirks = NVME_QUIRK_NO_APST,
1422 },
bd4da3ab
AL
1423};
1424
1425/* match is null-terminated but idstr is space-padded. */
1426static bool string_matches(const char *idstr, const char *match, size_t len)
1427{
1428 size_t matchlen;
1429
1430 if (!match)
1431 return true;
1432
1433 matchlen = strlen(match);
1434 WARN_ON_ONCE(matchlen > len);
1435
1436 if (memcmp(idstr, match, matchlen))
1437 return false;
1438
1439 for (; matchlen < len; matchlen++)
1440 if (idstr[matchlen] != ' ')
1441 return false;
1442
1443 return true;
1444}
1445
1446static bool quirk_matches(const struct nvme_id_ctrl *id,
1447 const struct nvme_core_quirk_entry *q)
1448{
1449 return q->vid == le16_to_cpu(id->vid) &&
1450 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1451 string_matches(id->fr, q->fr, sizeof(id->fr));
1452}
1453
7fd8930f
CH
1454/*
1455 * Initialize the cached copies of the Identify data and various controller
1456 * register in our nvme_ctrl structure. This should be called as soon as
1457 * the admin queue is fully up and running.
1458 */
1459int nvme_init_identify(struct nvme_ctrl *ctrl)
1460{
1461 struct nvme_id_ctrl *id;
1462 u64 cap;
1463 int ret, page_shift;
a229dbf6 1464 u32 max_hw_sectors;
c5552fde 1465 u8 prev_apsta;
7fd8930f 1466
f3ca80fc
CH
1467 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1468 if (ret) {
1b3c47c1 1469 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
f3ca80fc
CH
1470 return ret;
1471 }
1472
7fd8930f
CH
1473 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1474 if (ret) {
1b3c47c1 1475 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
7fd8930f
CH
1476 return ret;
1477 }
1478 page_shift = NVME_CAP_MPSMIN(cap) + 12;
1479
8ef2074d 1480 if (ctrl->vs >= NVME_VS(1, 1, 0))
f3ca80fc
CH
1481 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1482
7fd8930f
CH
1483 ret = nvme_identify_ctrl(ctrl, &id);
1484 if (ret) {
1b3c47c1 1485 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
7fd8930f
CH
1486 return -EIO;
1487 }
1488
bd4da3ab
AL
1489 if (!ctrl->identified) {
1490 /*
1491 * Check for quirks. Quirk can depend on firmware version,
1492 * so, in principle, the set of quirks present can change
1493 * across a reset. As a possible future enhancement, we
1494 * could re-scan for quirks every time we reinitialize
1495 * the device, but we'd have to make sure that the driver
1496 * behaves intelligently if the quirks change.
1497 */
1498
1499 int i;
1500
1501 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
1502 if (quirk_matches(id, &core_quirks[i]))
1503 ctrl->quirks |= core_quirks[i].quirks;
1504 }
1505 }
1506
8a9ae523 1507 ctrl->oacs = le16_to_cpu(id->oacs);
118472ab 1508 ctrl->vid = le16_to_cpu(id->vid);
7fd8930f 1509 ctrl->oncs = le16_to_cpup(&id->oncs);
6bf25d16 1510 atomic_set(&ctrl->abort_limit, id->acl + 1);
7fd8930f 1511 ctrl->vwc = id->vwc;
931e1c22 1512 ctrl->cntlid = le16_to_cpup(&id->cntlid);
7fd8930f
CH
1513 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1514 memcpy(ctrl->model, id->mn, sizeof(id->mn));
1515 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1516 if (id->mdts)
a229dbf6 1517 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
7fd8930f 1518 else
a229dbf6
CH
1519 max_hw_sectors = UINT_MAX;
1520 ctrl->max_hw_sectors =
1521 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
7fd8930f 1522
da35825d 1523 nvme_set_queue_limits(ctrl, ctrl->admin_q);
07bfcd09 1524 ctrl->sgls = le32_to_cpu(id->sgls);
038bd4cb 1525 ctrl->kas = le16_to_cpu(id->kas);
07bfcd09 1526
c5552fde
AL
1527 ctrl->npss = id->npss;
1528 prev_apsta = ctrl->apsta;
1529 ctrl->apsta = (ctrl->quirks & NVME_QUIRK_NO_APST) ? 0 : id->apsta;
1530 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
1531
07bfcd09
CH
1532 if (ctrl->ops->is_fabrics) {
1533 ctrl->icdoff = le16_to_cpu(id->icdoff);
1534 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1535 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1536 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1537
1538 /*
1539 * In fabrics we need to verify the cntlid matches the
1540 * admin connect
1541 */
1542 if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1543 ret = -EINVAL;
038bd4cb
SG
1544
1545 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1546 dev_err(ctrl->dev,
1547 "keep-alive support is mandatory for fabrics\n");
1548 ret = -EINVAL;
1549 }
07bfcd09
CH
1550 } else {
1551 ctrl->cntlid = le16_to_cpu(id->cntlid);
1552 }
da35825d 1553
7fd8930f 1554 kfree(id);
bd4da3ab 1555
c5552fde
AL
1556 if (ctrl->apsta && !prev_apsta)
1557 dev_pm_qos_expose_latency_tolerance(ctrl->device);
1558 else if (!ctrl->apsta && prev_apsta)
1559 dev_pm_qos_hide_latency_tolerance(ctrl->device);
1560
1561 nvme_configure_apst(ctrl);
1562
bd4da3ab 1563 ctrl->identified = true;
c5552fde 1564
07bfcd09 1565 return ret;
7fd8930f 1566}
576d55d6 1567EXPORT_SYMBOL_GPL(nvme_init_identify);
7fd8930f 1568
f3ca80fc 1569static int nvme_dev_open(struct inode *inode, struct file *file)
1673f1f0 1570{
f3ca80fc
CH
1571 struct nvme_ctrl *ctrl;
1572 int instance = iminor(inode);
1573 int ret = -ENODEV;
1673f1f0 1574
f3ca80fc
CH
1575 spin_lock(&dev_list_lock);
1576 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1577 if (ctrl->instance != instance)
1578 continue;
1579
1580 if (!ctrl->admin_q) {
1581 ret = -EWOULDBLOCK;
1582 break;
1583 }
1584 if (!kref_get_unless_zero(&ctrl->kref))
1585 break;
1586 file->private_data = ctrl;
1587 ret = 0;
1588 break;
1589 }
1590 spin_unlock(&dev_list_lock);
1591
1592 return ret;
1673f1f0
CH
1593}
1594
f3ca80fc 1595static int nvme_dev_release(struct inode *inode, struct file *file)
1673f1f0 1596{
f3ca80fc
CH
1597 nvme_put_ctrl(file->private_data);
1598 return 0;
1599}
1600
bfd89471
CH
1601static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1602{
1603 struct nvme_ns *ns;
1604 int ret;
1605
1606 mutex_lock(&ctrl->namespaces_mutex);
1607 if (list_empty(&ctrl->namespaces)) {
1608 ret = -ENOTTY;
1609 goto out_unlock;
1610 }
1611
1612 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1613 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1b3c47c1 1614 dev_warn(ctrl->device,
bfd89471
CH
1615 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1616 ret = -EINVAL;
1617 goto out_unlock;
1618 }
1619
1b3c47c1 1620 dev_warn(ctrl->device,
bfd89471
CH
1621 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1622 kref_get(&ns->kref);
1623 mutex_unlock(&ctrl->namespaces_mutex);
1624
1625 ret = nvme_user_cmd(ctrl, ns, argp);
1626 nvme_put_ns(ns);
1627 return ret;
1628
1629out_unlock:
1630 mutex_unlock(&ctrl->namespaces_mutex);
1631 return ret;
1632}
1633
f3ca80fc
CH
1634static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1635 unsigned long arg)
1636{
1637 struct nvme_ctrl *ctrl = file->private_data;
1638 void __user *argp = (void __user *)arg;
f3ca80fc
CH
1639
1640 switch (cmd) {
1641 case NVME_IOCTL_ADMIN_CMD:
1642 return nvme_user_cmd(ctrl, NULL, argp);
1643 case NVME_IOCTL_IO_CMD:
bfd89471 1644 return nvme_dev_user_cmd(ctrl, argp);
f3ca80fc 1645 case NVME_IOCTL_RESET:
1b3c47c1 1646 dev_warn(ctrl->device, "resetting controller\n");
f3ca80fc
CH
1647 return ctrl->ops->reset_ctrl(ctrl);
1648 case NVME_IOCTL_SUBSYS_RESET:
1649 return nvme_reset_subsystem(ctrl);
9ec3bb2f
KB
1650 case NVME_IOCTL_RESCAN:
1651 nvme_queue_scan(ctrl);
1652 return 0;
f3ca80fc
CH
1653 default:
1654 return -ENOTTY;
1655 }
1656}
1657
1658static const struct file_operations nvme_dev_fops = {
1659 .owner = THIS_MODULE,
1660 .open = nvme_dev_open,
1661 .release = nvme_dev_release,
1662 .unlocked_ioctl = nvme_dev_ioctl,
1663 .compat_ioctl = nvme_dev_ioctl,
1664};
1665
1666static ssize_t nvme_sysfs_reset(struct device *dev,
1667 struct device_attribute *attr, const char *buf,
1668 size_t count)
1669{
1670 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1671 int ret;
1672
1673 ret = ctrl->ops->reset_ctrl(ctrl);
1674 if (ret < 0)
1675 return ret;
1676 return count;
1673f1f0 1677}
f3ca80fc 1678static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1673f1f0 1679
9ec3bb2f
KB
1680static ssize_t nvme_sysfs_rescan(struct device *dev,
1681 struct device_attribute *attr, const char *buf,
1682 size_t count)
1683{
1684 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1685
1686 nvme_queue_scan(ctrl);
1687 return count;
1688}
1689static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1690
118472ab
KB
1691static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1692 char *buf)
1693{
40267efd 1694 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
118472ab
KB
1695 struct nvme_ctrl *ctrl = ns->ctrl;
1696 int serial_len = sizeof(ctrl->serial);
1697 int model_len = sizeof(ctrl->model);
1698
1699 if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1700 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1701
1702 if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1703 return sprintf(buf, "eui.%8phN\n", ns->eui);
1704
1705 while (ctrl->serial[serial_len - 1] == ' ')
1706 serial_len--;
1707 while (ctrl->model[model_len - 1] == ' ')
1708 model_len--;
1709
1710 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1711 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1712}
1713static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1714
2b9b6e86
KB
1715static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1716 char *buf)
1717{
40267efd 1718 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2b9b6e86
KB
1719 return sprintf(buf, "%pU\n", ns->uuid);
1720}
1721static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1722
1723static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1724 char *buf)
1725{
40267efd 1726 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2b9b6e86
KB
1727 return sprintf(buf, "%8phd\n", ns->eui);
1728}
1729static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1730
1731static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1732 char *buf)
1733{
40267efd 1734 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2b9b6e86
KB
1735 return sprintf(buf, "%d\n", ns->ns_id);
1736}
1737static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1738
1739static struct attribute *nvme_ns_attrs[] = {
118472ab 1740 &dev_attr_wwid.attr,
2b9b6e86
KB
1741 &dev_attr_uuid.attr,
1742 &dev_attr_eui.attr,
1743 &dev_attr_nsid.attr,
1744 NULL,
1745};
1746
1a353d85 1747static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
2b9b6e86
KB
1748 struct attribute *a, int n)
1749{
1750 struct device *dev = container_of(kobj, struct device, kobj);
40267efd 1751 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2b9b6e86
KB
1752
1753 if (a == &dev_attr_uuid.attr) {
1754 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1755 return 0;
1756 }
1757 if (a == &dev_attr_eui.attr) {
1758 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1759 return 0;
1760 }
1761 return a->mode;
1762}
1763
1764static const struct attribute_group nvme_ns_attr_group = {
1765 .attrs = nvme_ns_attrs,
1a353d85 1766 .is_visible = nvme_ns_attrs_are_visible,
2b9b6e86
KB
1767};
1768
931e1c22 1769#define nvme_show_str_function(field) \
779ff756
KB
1770static ssize_t field##_show(struct device *dev, \
1771 struct device_attribute *attr, char *buf) \
1772{ \
1773 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1774 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
1775} \
1776static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1777
931e1c22
ML
1778#define nvme_show_int_function(field) \
1779static ssize_t field##_show(struct device *dev, \
1780 struct device_attribute *attr, char *buf) \
1781{ \
1782 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1783 return sprintf(buf, "%d\n", ctrl->field); \
1784} \
1785static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1786
1787nvme_show_str_function(model);
1788nvme_show_str_function(serial);
1789nvme_show_str_function(firmware_rev);
1790nvme_show_int_function(cntlid);
779ff756 1791
1a353d85
ML
1792static ssize_t nvme_sysfs_delete(struct device *dev,
1793 struct device_attribute *attr, const char *buf,
1794 size_t count)
1795{
1796 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1797
1798 if (device_remove_file_self(dev, attr))
1799 ctrl->ops->delete_ctrl(ctrl);
1800 return count;
1801}
1802static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1803
1804static ssize_t nvme_sysfs_show_transport(struct device *dev,
1805 struct device_attribute *attr,
1806 char *buf)
1807{
1808 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1809
1810 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1811}
1812static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1813
8432bdb2
SG
1814static ssize_t nvme_sysfs_show_state(struct device *dev,
1815 struct device_attribute *attr,
1816 char *buf)
1817{
1818 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1819 static const char *const state_name[] = {
1820 [NVME_CTRL_NEW] = "new",
1821 [NVME_CTRL_LIVE] = "live",
1822 [NVME_CTRL_RESETTING] = "resetting",
1823 [NVME_CTRL_RECONNECTING]= "reconnecting",
1824 [NVME_CTRL_DELETING] = "deleting",
1825 [NVME_CTRL_DEAD] = "dead",
1826 };
1827
1828 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
1829 state_name[ctrl->state])
1830 return sprintf(buf, "%s\n", state_name[ctrl->state]);
1831
1832 return sprintf(buf, "unknown state\n");
1833}
1834
1835static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
1836
1a353d85
ML
1837static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1838 struct device_attribute *attr,
1839 char *buf)
1840{
1841 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1842
1843 return snprintf(buf, PAGE_SIZE, "%s\n",
1844 ctrl->ops->get_subsysnqn(ctrl));
1845}
1846static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1847
1848static ssize_t nvme_sysfs_show_address(struct device *dev,
1849 struct device_attribute *attr,
1850 char *buf)
1851{
1852 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1853
1854 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1855}
1856static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1857
779ff756
KB
1858static struct attribute *nvme_dev_attrs[] = {
1859 &dev_attr_reset_controller.attr,
9ec3bb2f 1860 &dev_attr_rescan_controller.attr,
779ff756
KB
1861 &dev_attr_model.attr,
1862 &dev_attr_serial.attr,
1863 &dev_attr_firmware_rev.attr,
931e1c22 1864 &dev_attr_cntlid.attr,
1a353d85
ML
1865 &dev_attr_delete_controller.attr,
1866 &dev_attr_transport.attr,
1867 &dev_attr_subsysnqn.attr,
1868 &dev_attr_address.attr,
8432bdb2 1869 &dev_attr_state.attr,
779ff756
KB
1870 NULL
1871};
1872
1a353d85
ML
1873#define CHECK_ATTR(ctrl, a, name) \
1874 if ((a) == &dev_attr_##name.attr && \
1875 !(ctrl)->ops->get_##name) \
1876 return 0
1877
1878static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1879 struct attribute *a, int n)
1880{
1881 struct device *dev = container_of(kobj, struct device, kobj);
1882 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1883
1884 if (a == &dev_attr_delete_controller.attr) {
1885 if (!ctrl->ops->delete_ctrl)
1886 return 0;
1887 }
1888
1889 CHECK_ATTR(ctrl, a, subsysnqn);
1890 CHECK_ATTR(ctrl, a, address);
1891
1892 return a->mode;
1893}
1894
779ff756 1895static struct attribute_group nvme_dev_attrs_group = {
1a353d85
ML
1896 .attrs = nvme_dev_attrs,
1897 .is_visible = nvme_dev_attrs_are_visible,
779ff756
KB
1898};
1899
1900static const struct attribute_group *nvme_dev_attr_groups[] = {
1901 &nvme_dev_attrs_group,
1902 NULL,
1903};
1904
5bae7f73
CH
1905static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1906{
1907 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1908 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1909
1910 return nsa->ns_id - nsb->ns_id;
1911}
1912
32f0c4af 1913static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
5bae7f73 1914{
32f0c4af 1915 struct nvme_ns *ns, *ret = NULL;
69d3b8ac 1916
32f0c4af 1917 mutex_lock(&ctrl->namespaces_mutex);
5bae7f73 1918 list_for_each_entry(ns, &ctrl->namespaces, list) {
32f0c4af
KB
1919 if (ns->ns_id == nsid) {
1920 kref_get(&ns->kref);
1921 ret = ns;
1922 break;
1923 }
5bae7f73
CH
1924 if (ns->ns_id > nsid)
1925 break;
1926 }
32f0c4af
KB
1927 mutex_unlock(&ctrl->namespaces_mutex);
1928 return ret;
5bae7f73
CH
1929}
1930
1931static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1932{
1933 struct nvme_ns *ns;
1934 struct gendisk *disk;
ac81bfa9
MB
1935 struct nvme_id_ns *id;
1936 char disk_name[DISK_NAME_LEN];
5bae7f73
CH
1937 int node = dev_to_node(ctrl->dev);
1938
1939 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1940 if (!ns)
1941 return;
1942
075790eb
KB
1943 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1944 if (ns->instance < 0)
1945 goto out_free_ns;
1946
5bae7f73
CH
1947 ns->queue = blk_mq_init_queue(ctrl->tagset);
1948 if (IS_ERR(ns->queue))
075790eb 1949 goto out_release_instance;
5bae7f73
CH
1950 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1951 ns->queue->queuedata = ns;
1952 ns->ctrl = ctrl;
1953
5bae7f73
CH
1954 kref_init(&ns->kref);
1955 ns->ns_id = nsid;
5bae7f73 1956 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
5bae7f73
CH
1957
1958 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
da35825d 1959 nvme_set_queue_limits(ctrl, ns->queue);
5bae7f73 1960
ac81bfa9 1961 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
5bae7f73 1962
ac81bfa9
MB
1963 if (nvme_revalidate_ns(ns, &id))
1964 goto out_free_queue;
1965
3dc87dd0
MB
1966 if (nvme_nvm_ns_supported(ns, id) &&
1967 nvme_nvm_register(ns, disk_name, node)) {
1968 dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
1969 goto out_free_id;
1970 }
ac81bfa9 1971
3dc87dd0
MB
1972 disk = alloc_disk_node(0, node);
1973 if (!disk)
1974 goto out_free_id;
ac81bfa9 1975
3dc87dd0
MB
1976 disk->fops = &nvme_fops;
1977 disk->private_data = ns;
1978 disk->queue = ns->queue;
1979 disk->flags = GENHD_FL_EXT_DEVT;
1980 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
1981 ns->disk = disk;
1982
1983 __nvme_revalidate_disk(disk, id);
5bae7f73 1984
32f0c4af
KB
1985 mutex_lock(&ctrl->namespaces_mutex);
1986 list_add_tail(&ns->list, &ctrl->namespaces);
1987 mutex_unlock(&ctrl->namespaces_mutex);
1988
5bae7f73 1989 kref_get(&ctrl->kref);
ac81bfa9
MB
1990
1991 kfree(id);
1992
0d52c756 1993 device_add_disk(ctrl->device, ns->disk);
2b9b6e86
KB
1994 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1995 &nvme_ns_attr_group))
1996 pr_warn("%s: failed to create sysfs group for identification\n",
1997 ns->disk->disk_name);
3dc87dd0
MB
1998 if (ns->ndev && nvme_nvm_register_sysfs(ns))
1999 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2000 ns->disk->disk_name);
5bae7f73 2001 return;
ac81bfa9
MB
2002 out_free_id:
2003 kfree(id);
5bae7f73
CH
2004 out_free_queue:
2005 blk_cleanup_queue(ns->queue);
075790eb
KB
2006 out_release_instance:
2007 ida_simple_remove(&ctrl->ns_ida, ns->instance);
5bae7f73
CH
2008 out_free_ns:
2009 kfree(ns);
2010}
2011
2012static void nvme_ns_remove(struct nvme_ns *ns)
2013{
646017a6
KB
2014 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2015 return;
69d3b8ac 2016
b0b4e09c 2017 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
5bae7f73
CH
2018 if (blk_get_integrity(ns->disk))
2019 blk_integrity_unregister(ns->disk);
2b9b6e86
KB
2020 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2021 &nvme_ns_attr_group);
3dc87dd0
MB
2022 if (ns->ndev)
2023 nvme_nvm_unregister_sysfs(ns);
5bae7f73 2024 del_gendisk(ns->disk);
5bae7f73
CH
2025 blk_mq_abort_requeue_list(ns->queue);
2026 blk_cleanup_queue(ns->queue);
2027 }
32f0c4af
KB
2028
2029 mutex_lock(&ns->ctrl->namespaces_mutex);
5bae7f73 2030 list_del_init(&ns->list);
32f0c4af
KB
2031 mutex_unlock(&ns->ctrl->namespaces_mutex);
2032
5bae7f73
CH
2033 nvme_put_ns(ns);
2034}
2035
540c801c
KB
2036static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2037{
2038 struct nvme_ns *ns;
2039
32f0c4af 2040 ns = nvme_find_get_ns(ctrl, nsid);
540c801c 2041 if (ns) {
b0b4e09c 2042 if (ns->disk && revalidate_disk(ns->disk))
540c801c 2043 nvme_ns_remove(ns);
32f0c4af 2044 nvme_put_ns(ns);
540c801c
KB
2045 } else
2046 nvme_alloc_ns(ctrl, nsid);
2047}
2048
47b0e50a
SB
2049static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
2050 unsigned nsid)
2051{
2052 struct nvme_ns *ns, *next;
2053
2054 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
2055 if (ns->ns_id > nsid)
2056 nvme_ns_remove(ns);
2057 }
2058}
2059
540c801c
KB
2060static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
2061{
2062 struct nvme_ns *ns;
2063 __le32 *ns_list;
2064 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
2065 int ret = 0;
2066
2067 ns_list = kzalloc(0x1000, GFP_KERNEL);
2068 if (!ns_list)
2069 return -ENOMEM;
2070
2071 for (i = 0; i < num_lists; i++) {
2072 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
2073 if (ret)
47b0e50a 2074 goto free;
540c801c
KB
2075
2076 for (j = 0; j < min(nn, 1024U); j++) {
2077 nsid = le32_to_cpu(ns_list[j]);
2078 if (!nsid)
2079 goto out;
2080
2081 nvme_validate_ns(ctrl, nsid);
2082
2083 while (++prev < nsid) {
32f0c4af
KB
2084 ns = nvme_find_get_ns(ctrl, prev);
2085 if (ns) {
540c801c 2086 nvme_ns_remove(ns);
32f0c4af
KB
2087 nvme_put_ns(ns);
2088 }
540c801c
KB
2089 }
2090 }
2091 nn -= j;
2092 }
2093 out:
47b0e50a
SB
2094 nvme_remove_invalid_namespaces(ctrl, prev);
2095 free:
540c801c
KB
2096 kfree(ns_list);
2097 return ret;
2098}
2099
5955be21 2100static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
5bae7f73 2101{
5bae7f73
CH
2102 unsigned i;
2103
540c801c
KB
2104 for (i = 1; i <= nn; i++)
2105 nvme_validate_ns(ctrl, i);
2106
47b0e50a 2107 nvme_remove_invalid_namespaces(ctrl, nn);
5bae7f73
CH
2108}
2109
5955be21 2110static void nvme_scan_work(struct work_struct *work)
5bae7f73 2111{
5955be21
CH
2112 struct nvme_ctrl *ctrl =
2113 container_of(work, struct nvme_ctrl, scan_work);
5bae7f73 2114 struct nvme_id_ctrl *id;
540c801c 2115 unsigned nn;
5bae7f73 2116
5955be21
CH
2117 if (ctrl->state != NVME_CTRL_LIVE)
2118 return;
2119
5bae7f73
CH
2120 if (nvme_identify_ctrl(ctrl, &id))
2121 return;
540c801c
KB
2122
2123 nn = le32_to_cpu(id->nn);
8ef2074d 2124 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
540c801c
KB
2125 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2126 if (!nvme_scan_ns_list(ctrl, nn))
2127 goto done;
2128 }
5955be21 2129 nvme_scan_ns_sequential(ctrl, nn);
540c801c 2130 done:
32f0c4af 2131 mutex_lock(&ctrl->namespaces_mutex);
540c801c 2132 list_sort(NULL, &ctrl->namespaces, ns_cmp);
69d3b8ac 2133 mutex_unlock(&ctrl->namespaces_mutex);
5bae7f73
CH
2134 kfree(id);
2135}
5955be21
CH
2136
2137void nvme_queue_scan(struct nvme_ctrl *ctrl)
2138{
2139 /*
2140 * Do not queue new scan work when a controller is reset during
2141 * removal.
2142 */
2143 if (ctrl->state == NVME_CTRL_LIVE)
2144 schedule_work(&ctrl->scan_work);
2145}
2146EXPORT_SYMBOL_GPL(nvme_queue_scan);
5bae7f73 2147
32f0c4af
KB
2148/*
2149 * This function iterates the namespace list unlocked to allow recovery from
2150 * controller failure. It is up to the caller to ensure the namespace list is
2151 * not modified by scan work while this function is executing.
2152 */
5bae7f73
CH
2153void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
2154{
2155 struct nvme_ns *ns, *next;
2156
0ff9d4e1
KB
2157 /*
2158 * The dead states indicates the controller was not gracefully
2159 * disconnected. In that case, we won't be able to flush any data while
2160 * removing the namespaces' disks; fail all the queues now to avoid
2161 * potentially having to clean up the failed sync later.
2162 */
2163 if (ctrl->state == NVME_CTRL_DEAD)
2164 nvme_kill_queues(ctrl);
2165
5bae7f73
CH
2166 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
2167 nvme_ns_remove(ns);
2168}
576d55d6 2169EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
5bae7f73 2170
f866fc42
CH
2171static void nvme_async_event_work(struct work_struct *work)
2172{
2173 struct nvme_ctrl *ctrl =
2174 container_of(work, struct nvme_ctrl, async_event_work);
2175
2176 spin_lock_irq(&ctrl->lock);
2177 while (ctrl->event_limit > 0) {
2178 int aer_idx = --ctrl->event_limit;
2179
2180 spin_unlock_irq(&ctrl->lock);
2181 ctrl->ops->submit_async_event(ctrl, aer_idx);
2182 spin_lock_irq(&ctrl->lock);
2183 }
2184 spin_unlock_irq(&ctrl->lock);
2185}
2186
7bf58533
CH
2187void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
2188 union nvme_result *res)
f866fc42 2189{
7bf58533
CH
2190 u32 result = le32_to_cpu(res->u32);
2191 bool done = true;
f866fc42 2192
7bf58533
CH
2193 switch (le16_to_cpu(status) >> 1) {
2194 case NVME_SC_SUCCESS:
2195 done = false;
2196 /*FALLTHRU*/
2197 case NVME_SC_ABORT_REQ:
f866fc42
CH
2198 ++ctrl->event_limit;
2199 schedule_work(&ctrl->async_event_work);
7bf58533
CH
2200 break;
2201 default:
2202 break;
f866fc42
CH
2203 }
2204
7bf58533 2205 if (done)
f866fc42
CH
2206 return;
2207
2208 switch (result & 0xff07) {
2209 case NVME_AER_NOTICE_NS_CHANGED:
2210 dev_info(ctrl->device, "rescanning\n");
2211 nvme_queue_scan(ctrl);
2212 break;
2213 default:
2214 dev_warn(ctrl->device, "async event result %08x\n", result);
2215 }
2216}
2217EXPORT_SYMBOL_GPL(nvme_complete_async_event);
2218
2219void nvme_queue_async_events(struct nvme_ctrl *ctrl)
2220{
2221 ctrl->event_limit = NVME_NR_AERS;
2222 schedule_work(&ctrl->async_event_work);
2223}
2224EXPORT_SYMBOL_GPL(nvme_queue_async_events);
2225
f3ca80fc
CH
2226static DEFINE_IDA(nvme_instance_ida);
2227
2228static int nvme_set_instance(struct nvme_ctrl *ctrl)
2229{
2230 int instance, error;
2231
2232 do {
2233 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2234 return -ENODEV;
2235
2236 spin_lock(&dev_list_lock);
2237 error = ida_get_new(&nvme_instance_ida, &instance);
2238 spin_unlock(&dev_list_lock);
2239 } while (error == -EAGAIN);
2240
2241 if (error)
2242 return -ENODEV;
2243
2244 ctrl->instance = instance;
2245 return 0;
2246}
2247
2248static void nvme_release_instance(struct nvme_ctrl *ctrl)
2249{
2250 spin_lock(&dev_list_lock);
2251 ida_remove(&nvme_instance_ida, ctrl->instance);
2252 spin_unlock(&dev_list_lock);
2253}
2254
53029b04 2255void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
576d55d6 2256{
f866fc42 2257 flush_work(&ctrl->async_event_work);
5955be21
CH
2258 flush_work(&ctrl->scan_work);
2259 nvme_remove_namespaces(ctrl);
2260
53029b04 2261 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
f3ca80fc
CH
2262
2263 spin_lock(&dev_list_lock);
2264 list_del(&ctrl->node);
2265 spin_unlock(&dev_list_lock);
53029b04 2266}
576d55d6 2267EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
53029b04
KB
2268
2269static void nvme_free_ctrl(struct kref *kref)
2270{
2271 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
f3ca80fc
CH
2272
2273 put_device(ctrl->device);
2274 nvme_release_instance(ctrl);
075790eb 2275 ida_destroy(&ctrl->ns_ida);
f3ca80fc
CH
2276
2277 ctrl->ops->free_ctrl(ctrl);
2278}
2279
2280void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2281{
2282 kref_put(&ctrl->kref, nvme_free_ctrl);
2283}
576d55d6 2284EXPORT_SYMBOL_GPL(nvme_put_ctrl);
f3ca80fc
CH
2285
2286/*
2287 * Initialize a NVMe controller structures. This needs to be called during
2288 * earliest initialization so that we have the initialized structured around
2289 * during probing.
2290 */
2291int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2292 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2293{
2294 int ret;
2295
bb8d261e
CH
2296 ctrl->state = NVME_CTRL_NEW;
2297 spin_lock_init(&ctrl->lock);
f3ca80fc 2298 INIT_LIST_HEAD(&ctrl->namespaces);
69d3b8ac 2299 mutex_init(&ctrl->namespaces_mutex);
f3ca80fc
CH
2300 kref_init(&ctrl->kref);
2301 ctrl->dev = dev;
2302 ctrl->ops = ops;
2303 ctrl->quirks = quirks;
5955be21 2304 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
f866fc42 2305 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
f3ca80fc
CH
2306
2307 ret = nvme_set_instance(ctrl);
2308 if (ret)
2309 goto out;
2310
779ff756 2311 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
f3ca80fc 2312 MKDEV(nvme_char_major, ctrl->instance),
f4f0f63e 2313 ctrl, nvme_dev_attr_groups,
779ff756 2314 "nvme%d", ctrl->instance);
f3ca80fc
CH
2315 if (IS_ERR(ctrl->device)) {
2316 ret = PTR_ERR(ctrl->device);
2317 goto out_release_instance;
2318 }
2319 get_device(ctrl->device);
075790eb 2320 ida_init(&ctrl->ns_ida);
f3ca80fc 2321
f3ca80fc
CH
2322 spin_lock(&dev_list_lock);
2323 list_add_tail(&ctrl->node, &nvme_ctrl_list);
2324 spin_unlock(&dev_list_lock);
2325
c5552fde
AL
2326 /*
2327 * Initialize latency tolerance controls. The sysfs files won't
2328 * be visible to userspace unless the device actually supports APST.
2329 */
2330 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
2331 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
2332 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
2333
f3ca80fc 2334 return 0;
f3ca80fc
CH
2335out_release_instance:
2336 nvme_release_instance(ctrl);
2337out:
2338 return ret;
2339}
576d55d6 2340EXPORT_SYMBOL_GPL(nvme_init_ctrl);
f3ca80fc 2341
69d9a99c
KB
2342/**
2343 * nvme_kill_queues(): Ends all namespace queues
2344 * @ctrl: the dead controller that needs to end
2345 *
2346 * Call this function when the driver determines it is unable to get the
2347 * controller in a state capable of servicing IO.
2348 */
2349void nvme_kill_queues(struct nvme_ctrl *ctrl)
2350{
2351 struct nvme_ns *ns;
2352
32f0c4af
KB
2353 mutex_lock(&ctrl->namespaces_mutex);
2354 list_for_each_entry(ns, &ctrl->namespaces, list) {
69d9a99c
KB
2355 /*
2356 * Revalidating a dead namespace sets capacity to 0. This will
2357 * end buffered writers dirtying pages that can't be synced.
2358 */
f33447b9
KB
2359 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2360 continue;
2361 revalidate_disk(ns->disk);
69d9a99c
KB
2362 blk_set_queue_dying(ns->queue);
2363 blk_mq_abort_requeue_list(ns->queue);
2364 blk_mq_start_stopped_hw_queues(ns->queue, true);
69d9a99c 2365 }
32f0c4af 2366 mutex_unlock(&ctrl->namespaces_mutex);
69d9a99c 2367}
237045fc 2368EXPORT_SYMBOL_GPL(nvme_kill_queues);
69d9a99c 2369
302ad8cc
KB
2370void nvme_unfreeze(struct nvme_ctrl *ctrl)
2371{
2372 struct nvme_ns *ns;
2373
2374 mutex_lock(&ctrl->namespaces_mutex);
2375 list_for_each_entry(ns, &ctrl->namespaces, list)
2376 blk_mq_unfreeze_queue(ns->queue);
2377 mutex_unlock(&ctrl->namespaces_mutex);
2378}
2379EXPORT_SYMBOL_GPL(nvme_unfreeze);
2380
2381void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
2382{
2383 struct nvme_ns *ns;
2384
2385 mutex_lock(&ctrl->namespaces_mutex);
2386 list_for_each_entry(ns, &ctrl->namespaces, list) {
2387 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
2388 if (timeout <= 0)
2389 break;
2390 }
2391 mutex_unlock(&ctrl->namespaces_mutex);
2392}
2393EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
2394
2395void nvme_wait_freeze(struct nvme_ctrl *ctrl)
2396{
2397 struct nvme_ns *ns;
2398
2399 mutex_lock(&ctrl->namespaces_mutex);
2400 list_for_each_entry(ns, &ctrl->namespaces, list)
2401 blk_mq_freeze_queue_wait(ns->queue);
2402 mutex_unlock(&ctrl->namespaces_mutex);
2403}
2404EXPORT_SYMBOL_GPL(nvme_wait_freeze);
2405
2406void nvme_start_freeze(struct nvme_ctrl *ctrl)
2407{
2408 struct nvme_ns *ns;
2409
2410 mutex_lock(&ctrl->namespaces_mutex);
2411 list_for_each_entry(ns, &ctrl->namespaces, list)
1671d522 2412 blk_freeze_queue_start(ns->queue);
302ad8cc
KB
2413 mutex_unlock(&ctrl->namespaces_mutex);
2414}
2415EXPORT_SYMBOL_GPL(nvme_start_freeze);
2416
25646264 2417void nvme_stop_queues(struct nvme_ctrl *ctrl)
363c9aac
SG
2418{
2419 struct nvme_ns *ns;
2420
32f0c4af 2421 mutex_lock(&ctrl->namespaces_mutex);
a6eaa884 2422 list_for_each_entry(ns, &ctrl->namespaces, list)
3174dd33 2423 blk_mq_quiesce_queue(ns->queue);
32f0c4af 2424 mutex_unlock(&ctrl->namespaces_mutex);
363c9aac 2425}
576d55d6 2426EXPORT_SYMBOL_GPL(nvme_stop_queues);
363c9aac 2427
25646264 2428void nvme_start_queues(struct nvme_ctrl *ctrl)
363c9aac
SG
2429{
2430 struct nvme_ns *ns;
2431
32f0c4af
KB
2432 mutex_lock(&ctrl->namespaces_mutex);
2433 list_for_each_entry(ns, &ctrl->namespaces, list) {
363c9aac
SG
2434 blk_mq_start_stopped_hw_queues(ns->queue, true);
2435 blk_mq_kick_requeue_list(ns->queue);
2436 }
32f0c4af 2437 mutex_unlock(&ctrl->namespaces_mutex);
363c9aac 2438}
576d55d6 2439EXPORT_SYMBOL_GPL(nvme_start_queues);
363c9aac 2440
5bae7f73
CH
2441int __init nvme_core_init(void)
2442{
2443 int result;
2444
f3ca80fc
CH
2445 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2446 &nvme_dev_fops);
2447 if (result < 0)
b09dcf58 2448 return result;
f3ca80fc
CH
2449 else if (result > 0)
2450 nvme_char_major = result;
2451
2452 nvme_class = class_create(THIS_MODULE, "nvme");
2453 if (IS_ERR(nvme_class)) {
2454 result = PTR_ERR(nvme_class);
2455 goto unregister_chrdev;
2456 }
2457
5bae7f73 2458 return 0;
f3ca80fc
CH
2459
2460 unregister_chrdev:
2461 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
f3ca80fc 2462 return result;
5bae7f73
CH
2463}
2464
2465void nvme_core_exit(void)
2466{
f3ca80fc
CH
2467 class_destroy(nvme_class);
2468 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
5bae7f73 2469}
576d55d6
ML
2470
2471MODULE_LICENSE("GPL");
2472MODULE_VERSION("1.0");
2473module_init(nvme_core_init);
2474module_exit(nvme_core_exit);