]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/fc.c
nvme: Move transports to use nvme-core workqueue
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / fc.c
CommitLineData
e399441d
JS
1/*
2 * Copyright (c) 2016 Avago Technologies. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful.
9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13 * See the GNU General Public License for more details, a copy of which
14 * can be found in the file COPYING included with this package
15 *
16 */
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18#include <linux/module.h>
19#include <linux/parser.h>
20#include <uapi/scsi/fc/fc_fs.h>
21#include <uapi/scsi/fc/fc_els.h>
61bff8ef 22#include <linux/delay.h>
e399441d
JS
23
24#include "nvme.h"
25#include "fabrics.h"
26#include <linux/nvme-fc-driver.h>
27#include <linux/nvme-fc.h>
28
29
30/* *************************** Data Structures/Defines ****************** */
31
32
33/*
34 * We handle AEN commands ourselves and don't even let the
35 * block layer know about them.
36 */
37#define NVME_FC_NR_AEN_COMMANDS 1
38#define NVME_FC_AQ_BLKMQ_DEPTH \
39 (NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
40#define AEN_CMDID_BASE (NVME_FC_AQ_BLKMQ_DEPTH + 1)
41
42enum nvme_fc_queue_flags {
43 NVME_FC_Q_CONNECTED = (1 << 0),
44};
45
46#define NVMEFC_QUEUE_DELAY 3 /* ms units */
47
48struct nvme_fc_queue {
49 struct nvme_fc_ctrl *ctrl;
50 struct device *dev;
51 struct blk_mq_hw_ctx *hctx;
52 void *lldd_handle;
53 int queue_size;
54 size_t cmnd_capsule_len;
55 u32 qnum;
56 u32 rqcnt;
57 u32 seqno;
58
59 u64 connection_id;
60 atomic_t csn;
61
62 unsigned long flags;
63} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
64
8d64daf7
JS
65enum nvme_fcop_flags {
66 FCOP_FLAGS_TERMIO = (1 << 0),
67 FCOP_FLAGS_RELEASED = (1 << 1),
68 FCOP_FLAGS_COMPLETE = (1 << 2),
78a7ac26 69 FCOP_FLAGS_AEN = (1 << 3),
8d64daf7
JS
70};
71
e399441d
JS
72struct nvmefc_ls_req_op {
73 struct nvmefc_ls_req ls_req;
74
c913a8b0 75 struct nvme_fc_rport *rport;
e399441d
JS
76 struct nvme_fc_queue *queue;
77 struct request *rq;
8d64daf7 78 u32 flags;
e399441d
JS
79
80 int ls_error;
81 struct completion ls_done;
c913a8b0 82 struct list_head lsreq_list; /* rport->ls_req_list */
e399441d
JS
83 bool req_queued;
84};
85
86enum nvme_fcpop_state {
87 FCPOP_STATE_UNINIT = 0,
88 FCPOP_STATE_IDLE = 1,
89 FCPOP_STATE_ACTIVE = 2,
90 FCPOP_STATE_ABORTED = 3,
78a7ac26 91 FCPOP_STATE_COMPLETE = 4,
e399441d
JS
92};
93
94struct nvme_fc_fcp_op {
95 struct nvme_request nreq; /*
96 * nvme/host/core.c
97 * requires this to be
98 * the 1st element in the
99 * private structure
100 * associated with the
101 * request.
102 */
103 struct nvmefc_fcp_req fcp_req;
104
105 struct nvme_fc_ctrl *ctrl;
106 struct nvme_fc_queue *queue;
107 struct request *rq;
108
109 atomic_t state;
78a7ac26 110 u32 flags;
e399441d
JS
111 u32 rqno;
112 u32 nents;
113
114 struct nvme_fc_cmd_iu cmd_iu;
115 struct nvme_fc_ersp_iu rsp_iu;
116};
117
118struct nvme_fc_lport {
119 struct nvme_fc_local_port localport;
120
121 struct ida endp_cnt;
122 struct list_head port_list; /* nvme_fc_port_list */
123 struct list_head endp_list;
124 struct device *dev; /* physical device for dma */
125 struct nvme_fc_port_template *ops;
126 struct kref ref;
127} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
128
129struct nvme_fc_rport {
130 struct nvme_fc_remote_port remoteport;
131
132 struct list_head endp_list; /* for lport->endp_list */
133 struct list_head ctrl_list;
c913a8b0
JS
134 struct list_head ls_req_list;
135 struct device *dev; /* physical device for dma */
136 struct nvme_fc_lport *lport;
e399441d
JS
137 spinlock_t lock;
138 struct kref ref;
139} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
140
61bff8ef
JS
141enum nvme_fcctrl_flags {
142 FCCTRL_TERMIO = (1 << 0),
e399441d
JS
143};
144
145struct nvme_fc_ctrl {
146 spinlock_t lock;
147 struct nvme_fc_queue *queues;
e399441d
JS
148 struct device *dev;
149 struct nvme_fc_lport *lport;
150 struct nvme_fc_rport *rport;
61bff8ef 151 u32 queue_count;
e399441d
JS
152 u32 cnum;
153
154 u64 association_id;
155
156 u64 cap;
157
158 struct list_head ctrl_list; /* rport->ctrl_list */
e399441d
JS
159
160 struct blk_mq_tag_set admin_tag_set;
161 struct blk_mq_tag_set tag_set;
162
163 struct work_struct delete_work;
61bff8ef
JS
164 struct work_struct reset_work;
165 struct delayed_work connect_work;
61bff8ef 166
e399441d 167 struct kref ref;
61bff8ef
JS
168 u32 flags;
169 u32 iocnt;
e399441d
JS
170
171 struct nvme_fc_fcp_op aen_ops[NVME_FC_NR_AEN_COMMANDS];
172
173 struct nvme_ctrl ctrl;
174};
175
176static inline struct nvme_fc_ctrl *
177to_fc_ctrl(struct nvme_ctrl *ctrl)
178{
179 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
180}
181
182static inline struct nvme_fc_lport *
183localport_to_lport(struct nvme_fc_local_port *portptr)
184{
185 return container_of(portptr, struct nvme_fc_lport, localport);
186}
187
188static inline struct nvme_fc_rport *
189remoteport_to_rport(struct nvme_fc_remote_port *portptr)
190{
191 return container_of(portptr, struct nvme_fc_rport, remoteport);
192}
193
194static inline struct nvmefc_ls_req_op *
195ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
196{
197 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
198}
199
200static inline struct nvme_fc_fcp_op *
201fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
202{
203 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
204}
205
206
207
208/* *************************** Globals **************************** */
209
210
211static DEFINE_SPINLOCK(nvme_fc_lock);
212
213static LIST_HEAD(nvme_fc_lport_list);
214static DEFINE_IDA(nvme_fc_local_port_cnt);
215static DEFINE_IDA(nvme_fc_ctrl_cnt);
216
e399441d
JS
217
218
219
220/* *********************** FC-NVME Port Management ************************ */
221
222static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
223static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
224 struct nvme_fc_queue *, unsigned int);
225
226
227/**
228 * nvme_fc_register_localport - transport entry point called by an
229 * LLDD to register the existence of a NVME
230 * host FC port.
231 * @pinfo: pointer to information about the port to be registered
232 * @template: LLDD entrypoints and operational parameters for the port
233 * @dev: physical hardware device node port corresponds to. Will be
234 * used for DMA mappings
235 * @lport_p: pointer to a local port pointer. Upon success, the routine
236 * will allocate a nvme_fc_local_port structure and place its
237 * address in the local port pointer. Upon failure, local port
238 * pointer will be set to 0.
239 *
240 * Returns:
241 * a completion status. Must be 0 upon success; a negative errno
242 * (ex: -ENXIO) upon failure.
243 */
244int
245nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
246 struct nvme_fc_port_template *template,
247 struct device *dev,
248 struct nvme_fc_local_port **portptr)
249{
250 struct nvme_fc_lport *newrec;
251 unsigned long flags;
252 int ret, idx;
253
254 if (!template->localport_delete || !template->remoteport_delete ||
255 !template->ls_req || !template->fcp_io ||
256 !template->ls_abort || !template->fcp_abort ||
257 !template->max_hw_queues || !template->max_sgl_segments ||
258 !template->max_dif_sgl_segments || !template->dma_boundary) {
259 ret = -EINVAL;
260 goto out_reghost_failed;
261 }
262
263 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
264 GFP_KERNEL);
265 if (!newrec) {
266 ret = -ENOMEM;
267 goto out_reghost_failed;
268 }
269
270 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
271 if (idx < 0) {
272 ret = -ENOSPC;
273 goto out_fail_kfree;
274 }
275
276 if (!get_device(dev) && dev) {
277 ret = -ENODEV;
278 goto out_ida_put;
279 }
280
281 INIT_LIST_HEAD(&newrec->port_list);
282 INIT_LIST_HEAD(&newrec->endp_list);
283 kref_init(&newrec->ref);
284 newrec->ops = template;
285 newrec->dev = dev;
286 ida_init(&newrec->endp_cnt);
287 newrec->localport.private = &newrec[1];
288 newrec->localport.node_name = pinfo->node_name;
289 newrec->localport.port_name = pinfo->port_name;
290 newrec->localport.port_role = pinfo->port_role;
291 newrec->localport.port_id = pinfo->port_id;
292 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
293 newrec->localport.port_num = idx;
294
295 spin_lock_irqsave(&nvme_fc_lock, flags);
296 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
297 spin_unlock_irqrestore(&nvme_fc_lock, flags);
298
299 if (dev)
300 dma_set_seg_boundary(dev, template->dma_boundary);
301
302 *portptr = &newrec->localport;
303 return 0;
304
305out_ida_put:
306 ida_simple_remove(&nvme_fc_local_port_cnt, idx);
307out_fail_kfree:
308 kfree(newrec);
309out_reghost_failed:
310 *portptr = NULL;
311
312 return ret;
313}
314EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
315
316static void
317nvme_fc_free_lport(struct kref *ref)
318{
319 struct nvme_fc_lport *lport =
320 container_of(ref, struct nvme_fc_lport, ref);
321 unsigned long flags;
322
323 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
324 WARN_ON(!list_empty(&lport->endp_list));
325
326 /* remove from transport list */
327 spin_lock_irqsave(&nvme_fc_lock, flags);
328 list_del(&lport->port_list);
329 spin_unlock_irqrestore(&nvme_fc_lock, flags);
330
331 /* let the LLDD know we've finished tearing it down */
332 lport->ops->localport_delete(&lport->localport);
333
334 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
335 ida_destroy(&lport->endp_cnt);
336
337 put_device(lport->dev);
338
339 kfree(lport);
340}
341
342static void
343nvme_fc_lport_put(struct nvme_fc_lport *lport)
344{
345 kref_put(&lport->ref, nvme_fc_free_lport);
346}
347
348static int
349nvme_fc_lport_get(struct nvme_fc_lport *lport)
350{
351 return kref_get_unless_zero(&lport->ref);
352}
353
354/**
355 * nvme_fc_unregister_localport - transport entry point called by an
356 * LLDD to deregister/remove a previously
357 * registered a NVME host FC port.
358 * @localport: pointer to the (registered) local port that is to be
359 * deregistered.
360 *
361 * Returns:
362 * a completion status. Must be 0 upon success; a negative errno
363 * (ex: -ENXIO) upon failure.
364 */
365int
366nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
367{
368 struct nvme_fc_lport *lport = localport_to_lport(portptr);
369 unsigned long flags;
370
371 if (!portptr)
372 return -EINVAL;
373
374 spin_lock_irqsave(&nvme_fc_lock, flags);
375
376 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
377 spin_unlock_irqrestore(&nvme_fc_lock, flags);
378 return -EINVAL;
379 }
380 portptr->port_state = FC_OBJSTATE_DELETED;
381
382 spin_unlock_irqrestore(&nvme_fc_lock, flags);
383
384 nvme_fc_lport_put(lport);
385
386 return 0;
387}
388EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
389
390/**
391 * nvme_fc_register_remoteport - transport entry point called by an
392 * LLDD to register the existence of a NVME
393 * subsystem FC port on its fabric.
394 * @localport: pointer to the (registered) local port that the remote
395 * subsystem port is connected to.
396 * @pinfo: pointer to information about the port to be registered
397 * @rport_p: pointer to a remote port pointer. Upon success, the routine
398 * will allocate a nvme_fc_remote_port structure and place its
399 * address in the remote port pointer. Upon failure, remote port
400 * pointer will be set to 0.
401 *
402 * Returns:
403 * a completion status. Must be 0 upon success; a negative errno
404 * (ex: -ENXIO) upon failure.
405 */
406int
407nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
408 struct nvme_fc_port_info *pinfo,
409 struct nvme_fc_remote_port **portptr)
410{
411 struct nvme_fc_lport *lport = localport_to_lport(localport);
412 struct nvme_fc_rport *newrec;
413 unsigned long flags;
414 int ret, idx;
415
416 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
417 GFP_KERNEL);
418 if (!newrec) {
419 ret = -ENOMEM;
420 goto out_reghost_failed;
421 }
422
423 if (!nvme_fc_lport_get(lport)) {
424 ret = -ESHUTDOWN;
425 goto out_kfree_rport;
426 }
427
428 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
429 if (idx < 0) {
430 ret = -ENOSPC;
431 goto out_lport_put;
432 }
433
434 INIT_LIST_HEAD(&newrec->endp_list);
435 INIT_LIST_HEAD(&newrec->ctrl_list);
c913a8b0 436 INIT_LIST_HEAD(&newrec->ls_req_list);
e399441d
JS
437 kref_init(&newrec->ref);
438 spin_lock_init(&newrec->lock);
439 newrec->remoteport.localport = &lport->localport;
c913a8b0
JS
440 newrec->dev = lport->dev;
441 newrec->lport = lport;
e399441d
JS
442 newrec->remoteport.private = &newrec[1];
443 newrec->remoteport.port_role = pinfo->port_role;
444 newrec->remoteport.node_name = pinfo->node_name;
445 newrec->remoteport.port_name = pinfo->port_name;
446 newrec->remoteport.port_id = pinfo->port_id;
447 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
448 newrec->remoteport.port_num = idx;
449
450 spin_lock_irqsave(&nvme_fc_lock, flags);
451 list_add_tail(&newrec->endp_list, &lport->endp_list);
452 spin_unlock_irqrestore(&nvme_fc_lock, flags);
453
454 *portptr = &newrec->remoteport;
455 return 0;
456
457out_lport_put:
458 nvme_fc_lport_put(lport);
459out_kfree_rport:
460 kfree(newrec);
461out_reghost_failed:
462 *portptr = NULL;
463 return ret;
e399441d
JS
464}
465EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
466
467static void
468nvme_fc_free_rport(struct kref *ref)
469{
470 struct nvme_fc_rport *rport =
471 container_of(ref, struct nvme_fc_rport, ref);
472 struct nvme_fc_lport *lport =
473 localport_to_lport(rport->remoteport.localport);
474 unsigned long flags;
475
476 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
477 WARN_ON(!list_empty(&rport->ctrl_list));
478
479 /* remove from lport list */
480 spin_lock_irqsave(&nvme_fc_lock, flags);
481 list_del(&rport->endp_list);
482 spin_unlock_irqrestore(&nvme_fc_lock, flags);
483
484 /* let the LLDD know we've finished tearing it down */
485 lport->ops->remoteport_delete(&rport->remoteport);
486
487 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
488
489 kfree(rport);
490
491 nvme_fc_lport_put(lport);
492}
493
494static void
495nvme_fc_rport_put(struct nvme_fc_rport *rport)
496{
497 kref_put(&rport->ref, nvme_fc_free_rport);
498}
499
500static int
501nvme_fc_rport_get(struct nvme_fc_rport *rport)
502{
503 return kref_get_unless_zero(&rport->ref);
504}
505
8d64daf7
JS
506static int
507nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
508{
509 struct nvmefc_ls_req_op *lsop;
510 unsigned long flags;
511
512restart:
513 spin_lock_irqsave(&rport->lock, flags);
514
515 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
516 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
517 lsop->flags |= FCOP_FLAGS_TERMIO;
518 spin_unlock_irqrestore(&rport->lock, flags);
519 rport->lport->ops->ls_abort(&rport->lport->localport,
520 &rport->remoteport,
521 &lsop->ls_req);
522 goto restart;
523 }
524 }
525 spin_unlock_irqrestore(&rport->lock, flags);
526
527 return 0;
528}
529
e399441d
JS
530/**
531 * nvme_fc_unregister_remoteport - transport entry point called by an
532 * LLDD to deregister/remove a previously
533 * registered a NVME subsystem FC port.
534 * @remoteport: pointer to the (registered) remote port that is to be
535 * deregistered.
536 *
537 * Returns:
538 * a completion status. Must be 0 upon success; a negative errno
539 * (ex: -ENXIO) upon failure.
540 */
541int
542nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
543{
544 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
545 struct nvme_fc_ctrl *ctrl;
546 unsigned long flags;
547
548 if (!portptr)
549 return -EINVAL;
550
551 spin_lock_irqsave(&rport->lock, flags);
552
553 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
554 spin_unlock_irqrestore(&rport->lock, flags);
555 return -EINVAL;
556 }
557 portptr->port_state = FC_OBJSTATE_DELETED;
558
559 /* tear down all associations to the remote port */
560 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
561 __nvme_fc_del_ctrl(ctrl);
562
563 spin_unlock_irqrestore(&rport->lock, flags);
564
8d64daf7
JS
565 nvme_fc_abort_lsops(rport);
566
e399441d
JS
567 nvme_fc_rport_put(rport);
568 return 0;
569}
570EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
571
572
573/* *********************** FC-NVME DMA Handling **************************** */
574
575/*
576 * The fcloop device passes in a NULL device pointer. Real LLD's will
577 * pass in a valid device pointer. If NULL is passed to the dma mapping
578 * routines, depending on the platform, it may or may not succeed, and
579 * may crash.
580 *
581 * As such:
582 * Wrapper all the dma routines and check the dev pointer.
583 *
584 * If simple mappings (return just a dma address, we'll noop them,
585 * returning a dma address of 0.
586 *
587 * On more complex mappings (dma_map_sg), a pseudo routine fills
588 * in the scatter list, setting all dma addresses to 0.
589 */
590
591static inline dma_addr_t
592fc_dma_map_single(struct device *dev, void *ptr, size_t size,
593 enum dma_data_direction dir)
594{
595 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
596}
597
598static inline int
599fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
600{
601 return dev ? dma_mapping_error(dev, dma_addr) : 0;
602}
603
604static inline void
605fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
606 enum dma_data_direction dir)
607{
608 if (dev)
609 dma_unmap_single(dev, addr, size, dir);
610}
611
612static inline void
613fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
614 enum dma_data_direction dir)
615{
616 if (dev)
617 dma_sync_single_for_cpu(dev, addr, size, dir);
618}
619
620static inline void
621fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
622 enum dma_data_direction dir)
623{
624 if (dev)
625 dma_sync_single_for_device(dev, addr, size, dir);
626}
627
628/* pseudo dma_map_sg call */
629static int
630fc_map_sg(struct scatterlist *sg, int nents)
631{
632 struct scatterlist *s;
633 int i;
634
635 WARN_ON(nents == 0 || sg[0].length == 0);
636
637 for_each_sg(sg, s, nents, i) {
638 s->dma_address = 0L;
639#ifdef CONFIG_NEED_SG_DMA_LENGTH
640 s->dma_length = s->length;
641#endif
642 }
643 return nents;
644}
645
646static inline int
647fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
648 enum dma_data_direction dir)
649{
650 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
651}
652
653static inline void
654fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
655 enum dma_data_direction dir)
656{
657 if (dev)
658 dma_unmap_sg(dev, sg, nents, dir);
659}
660
661
662/* *********************** FC-NVME LS Handling **************************** */
663
664static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
665static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
666
667
668static void
c913a8b0 669__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
e399441d 670{
c913a8b0 671 struct nvme_fc_rport *rport = lsop->rport;
e399441d
JS
672 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
673 unsigned long flags;
674
c913a8b0 675 spin_lock_irqsave(&rport->lock, flags);
e399441d
JS
676
677 if (!lsop->req_queued) {
c913a8b0 678 spin_unlock_irqrestore(&rport->lock, flags);
e399441d
JS
679 return;
680 }
681
682 list_del(&lsop->lsreq_list);
683
684 lsop->req_queued = false;
685
c913a8b0 686 spin_unlock_irqrestore(&rport->lock, flags);
e399441d 687
c913a8b0 688 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
e399441d
JS
689 (lsreq->rqstlen + lsreq->rsplen),
690 DMA_BIDIRECTIONAL);
691
c913a8b0 692 nvme_fc_rport_put(rport);
e399441d
JS
693}
694
695static int
c913a8b0 696__nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
e399441d
JS
697 struct nvmefc_ls_req_op *lsop,
698 void (*done)(struct nvmefc_ls_req *req, int status))
699{
700 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
701 unsigned long flags;
c913a8b0 702 int ret = 0;
e399441d 703
c913a8b0
JS
704 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
705 return -ECONNREFUSED;
706
707 if (!nvme_fc_rport_get(rport))
e399441d
JS
708 return -ESHUTDOWN;
709
710 lsreq->done = done;
c913a8b0 711 lsop->rport = rport;
e399441d
JS
712 lsop->req_queued = false;
713 INIT_LIST_HEAD(&lsop->lsreq_list);
714 init_completion(&lsop->ls_done);
715
c913a8b0 716 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
e399441d
JS
717 lsreq->rqstlen + lsreq->rsplen,
718 DMA_BIDIRECTIONAL);
c913a8b0
JS
719 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
720 ret = -EFAULT;
721 goto out_putrport;
e399441d
JS
722 }
723 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
724
c913a8b0 725 spin_lock_irqsave(&rport->lock, flags);
e399441d 726
c913a8b0 727 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
e399441d
JS
728
729 lsop->req_queued = true;
730
c913a8b0 731 spin_unlock_irqrestore(&rport->lock, flags);
e399441d 732
c913a8b0
JS
733 ret = rport->lport->ops->ls_req(&rport->lport->localport,
734 &rport->remoteport, lsreq);
e399441d 735 if (ret)
c913a8b0
JS
736 goto out_unlink;
737
738 return 0;
739
740out_unlink:
741 lsop->ls_error = ret;
742 spin_lock_irqsave(&rport->lock, flags);
743 lsop->req_queued = false;
744 list_del(&lsop->lsreq_list);
745 spin_unlock_irqrestore(&rport->lock, flags);
746 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
747 (lsreq->rqstlen + lsreq->rsplen),
748 DMA_BIDIRECTIONAL);
749out_putrport:
750 nvme_fc_rport_put(rport);
e399441d
JS
751
752 return ret;
753}
754
755static void
756nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
757{
758 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
759
760 lsop->ls_error = status;
761 complete(&lsop->ls_done);
762}
763
764static int
c913a8b0 765nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
e399441d
JS
766{
767 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
768 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
769 int ret;
770
c913a8b0 771 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
e399441d 772
c913a8b0 773 if (!ret) {
e399441d
JS
774 /*
775 * No timeout/not interruptible as we need the struct
776 * to exist until the lldd calls us back. Thus mandate
777 * wait until driver calls back. lldd responsible for
778 * the timeout action
779 */
780 wait_for_completion(&lsop->ls_done);
781
c913a8b0 782 __nvme_fc_finish_ls_req(lsop);
e399441d 783
c913a8b0 784 ret = lsop->ls_error;
e399441d
JS
785 }
786
c913a8b0
JS
787 if (ret)
788 return ret;
789
e399441d
JS
790 /* ACC or RJT payload ? */
791 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
792 return -ENXIO;
793
794 return 0;
795}
796
c913a8b0
JS
797static int
798nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
e399441d
JS
799 struct nvmefc_ls_req_op *lsop,
800 void (*done)(struct nvmefc_ls_req *req, int status))
801{
e399441d
JS
802 /* don't wait for completion */
803
c913a8b0 804 return __nvme_fc_send_ls_req(rport, lsop, done);
e399441d
JS
805}
806
807/* Validation Error indexes into the string table below */
808enum {
809 VERR_NO_ERROR = 0,
810 VERR_LSACC = 1,
811 VERR_LSDESC_RQST = 2,
812 VERR_LSDESC_RQST_LEN = 3,
813 VERR_ASSOC_ID = 4,
814 VERR_ASSOC_ID_LEN = 5,
815 VERR_CONN_ID = 6,
816 VERR_CONN_ID_LEN = 7,
817 VERR_CR_ASSOC = 8,
818 VERR_CR_ASSOC_ACC_LEN = 9,
819 VERR_CR_CONN = 10,
820 VERR_CR_CONN_ACC_LEN = 11,
821 VERR_DISCONN = 12,
822 VERR_DISCONN_ACC_LEN = 13,
823};
824
825static char *validation_errors[] = {
826 "OK",
827 "Not LS_ACC",
828 "Not LSDESC_RQST",
829 "Bad LSDESC_RQST Length",
830 "Not Association ID",
831 "Bad Association ID Length",
832 "Not Connection ID",
833 "Bad Connection ID Length",
834 "Not CR_ASSOC Rqst",
835 "Bad CR_ASSOC ACC Length",
836 "Not CR_CONN Rqst",
837 "Bad CR_CONN ACC Length",
838 "Not Disconnect Rqst",
839 "Bad Disconnect ACC Length",
840};
841
842static int
843nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
844 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
845{
846 struct nvmefc_ls_req_op *lsop;
847 struct nvmefc_ls_req *lsreq;
848 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
849 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
850 int ret, fcret = 0;
851
852 lsop = kzalloc((sizeof(*lsop) +
853 ctrl->lport->ops->lsrqst_priv_sz +
854 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
855 if (!lsop) {
856 ret = -ENOMEM;
857 goto out_no_memory;
858 }
859 lsreq = &lsop->ls_req;
860
861 lsreq->private = (void *)&lsop[1];
862 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
863 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
864 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
865
866 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
867 assoc_rqst->desc_list_len =
868 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
869
870 assoc_rqst->assoc_cmd.desc_tag =
871 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
872 assoc_rqst->assoc_cmd.desc_len =
873 fcnvme_lsdesc_len(
874 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
875
876 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
877 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
878 /* Linux supports only Dynamic controllers */
879 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
8e412263 880 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
e399441d
JS
881 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
882 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
883 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
884 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
885
886 lsop->queue = queue;
887 lsreq->rqstaddr = assoc_rqst;
888 lsreq->rqstlen = sizeof(*assoc_rqst);
889 lsreq->rspaddr = assoc_acc;
890 lsreq->rsplen = sizeof(*assoc_acc);
891 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
892
c913a8b0 893 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
e399441d
JS
894 if (ret)
895 goto out_free_buffer;
896
897 /* process connect LS completion */
898
899 /* validate the ACC response */
900 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
901 fcret = VERR_LSACC;
f77fc87c 902 else if (assoc_acc->hdr.desc_list_len !=
e399441d
JS
903 fcnvme_lsdesc_len(
904 sizeof(struct fcnvme_ls_cr_assoc_acc)))
905 fcret = VERR_CR_ASSOC_ACC_LEN;
f77fc87c
JS
906 else if (assoc_acc->hdr.rqst.desc_tag !=
907 cpu_to_be32(FCNVME_LSDESC_RQST))
e399441d
JS
908 fcret = VERR_LSDESC_RQST;
909 else if (assoc_acc->hdr.rqst.desc_len !=
910 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
911 fcret = VERR_LSDESC_RQST_LEN;
912 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
913 fcret = VERR_CR_ASSOC;
914 else if (assoc_acc->associd.desc_tag !=
915 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
916 fcret = VERR_ASSOC_ID;
917 else if (assoc_acc->associd.desc_len !=
918 fcnvme_lsdesc_len(
919 sizeof(struct fcnvme_lsdesc_assoc_id)))
920 fcret = VERR_ASSOC_ID_LEN;
921 else if (assoc_acc->connectid.desc_tag !=
922 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
923 fcret = VERR_CONN_ID;
924 else if (assoc_acc->connectid.desc_len !=
925 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
926 fcret = VERR_CONN_ID_LEN;
927
928 if (fcret) {
929 ret = -EBADF;
930 dev_err(ctrl->dev,
931 "q %d connect failed: %s\n",
932 queue->qnum, validation_errors[fcret]);
933 } else {
934 ctrl->association_id =
935 be64_to_cpu(assoc_acc->associd.association_id);
936 queue->connection_id =
937 be64_to_cpu(assoc_acc->connectid.connection_id);
938 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
939 }
940
941out_free_buffer:
942 kfree(lsop);
943out_no_memory:
944 if (ret)
945 dev_err(ctrl->dev,
946 "queue %d connect admin queue failed (%d).\n",
947 queue->qnum, ret);
948 return ret;
949}
950
951static int
952nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
953 u16 qsize, u16 ersp_ratio)
954{
955 struct nvmefc_ls_req_op *lsop;
956 struct nvmefc_ls_req *lsreq;
957 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
958 struct fcnvme_ls_cr_conn_acc *conn_acc;
959 int ret, fcret = 0;
960
961 lsop = kzalloc((sizeof(*lsop) +
962 ctrl->lport->ops->lsrqst_priv_sz +
963 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
964 if (!lsop) {
965 ret = -ENOMEM;
966 goto out_no_memory;
967 }
968 lsreq = &lsop->ls_req;
969
970 lsreq->private = (void *)&lsop[1];
971 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
972 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
973 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
974
975 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
976 conn_rqst->desc_list_len = cpu_to_be32(
977 sizeof(struct fcnvme_lsdesc_assoc_id) +
978 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
979
980 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
981 conn_rqst->associd.desc_len =
982 fcnvme_lsdesc_len(
983 sizeof(struct fcnvme_lsdesc_assoc_id));
984 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
985 conn_rqst->connect_cmd.desc_tag =
986 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
987 conn_rqst->connect_cmd.desc_len =
988 fcnvme_lsdesc_len(
989 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
990 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
991 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
992 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
993
994 lsop->queue = queue;
995 lsreq->rqstaddr = conn_rqst;
996 lsreq->rqstlen = sizeof(*conn_rqst);
997 lsreq->rspaddr = conn_acc;
998 lsreq->rsplen = sizeof(*conn_acc);
999 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1000
c913a8b0 1001 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
e399441d
JS
1002 if (ret)
1003 goto out_free_buffer;
1004
1005 /* process connect LS completion */
1006
1007 /* validate the ACC response */
1008 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1009 fcret = VERR_LSACC;
f77fc87c 1010 else if (conn_acc->hdr.desc_list_len !=
e399441d
JS
1011 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1012 fcret = VERR_CR_CONN_ACC_LEN;
f77fc87c 1013 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
e399441d
JS
1014 fcret = VERR_LSDESC_RQST;
1015 else if (conn_acc->hdr.rqst.desc_len !=
1016 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1017 fcret = VERR_LSDESC_RQST_LEN;
1018 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1019 fcret = VERR_CR_CONN;
1020 else if (conn_acc->connectid.desc_tag !=
1021 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1022 fcret = VERR_CONN_ID;
1023 else if (conn_acc->connectid.desc_len !=
1024 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1025 fcret = VERR_CONN_ID_LEN;
1026
1027 if (fcret) {
1028 ret = -EBADF;
1029 dev_err(ctrl->dev,
1030 "q %d connect failed: %s\n",
1031 queue->qnum, validation_errors[fcret]);
1032 } else {
1033 queue->connection_id =
1034 be64_to_cpu(conn_acc->connectid.connection_id);
1035 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1036 }
1037
1038out_free_buffer:
1039 kfree(lsop);
1040out_no_memory:
1041 if (ret)
1042 dev_err(ctrl->dev,
1043 "queue %d connect command failed (%d).\n",
1044 queue->qnum, ret);
1045 return ret;
1046}
1047
1048static void
1049nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1050{
1051 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
e399441d 1052
c913a8b0 1053 __nvme_fc_finish_ls_req(lsop);
e399441d
JS
1054
1055 /* fc-nvme iniator doesn't care about success or failure of cmd */
1056
1057 kfree(lsop);
1058}
1059
1060/*
1061 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1062 * the FC-NVME Association. Terminating the association also
1063 * terminates the FC-NVME connections (per queue, both admin and io
1064 * queues) that are part of the association. E.g. things are torn
1065 * down, and the related FC-NVME Association ID and Connection IDs
1066 * become invalid.
1067 *
1068 * The behavior of the fc-nvme initiator is such that it's
1069 * understanding of the association and connections will implicitly
1070 * be torn down. The action is implicit as it may be due to a loss of
1071 * connectivity with the fc-nvme target, so you may never get a
1072 * response even if you tried. As such, the action of this routine
1073 * is to asynchronously send the LS, ignore any results of the LS, and
1074 * continue on with terminating the association. If the fc-nvme target
1075 * is present and receives the LS, it too can tear down.
1076 */
1077static void
1078nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1079{
1080 struct fcnvme_ls_disconnect_rqst *discon_rqst;
1081 struct fcnvme_ls_disconnect_acc *discon_acc;
1082 struct nvmefc_ls_req_op *lsop;
1083 struct nvmefc_ls_req *lsreq;
c913a8b0 1084 int ret;
e399441d
JS
1085
1086 lsop = kzalloc((sizeof(*lsop) +
1087 ctrl->lport->ops->lsrqst_priv_sz +
1088 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1089 GFP_KERNEL);
1090 if (!lsop)
1091 /* couldn't sent it... too bad */
1092 return;
1093
1094 lsreq = &lsop->ls_req;
1095
1096 lsreq->private = (void *)&lsop[1];
1097 discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1098 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1099 discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1100
1101 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1102 discon_rqst->desc_list_len = cpu_to_be32(
1103 sizeof(struct fcnvme_lsdesc_assoc_id) +
1104 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1105
1106 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1107 discon_rqst->associd.desc_len =
1108 fcnvme_lsdesc_len(
1109 sizeof(struct fcnvme_lsdesc_assoc_id));
1110
1111 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1112
1113 discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1114 FCNVME_LSDESC_DISCONN_CMD);
1115 discon_rqst->discon_cmd.desc_len =
1116 fcnvme_lsdesc_len(
1117 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1118 discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1119 discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1120
1121 lsreq->rqstaddr = discon_rqst;
1122 lsreq->rqstlen = sizeof(*discon_rqst);
1123 lsreq->rspaddr = discon_acc;
1124 lsreq->rsplen = sizeof(*discon_acc);
1125 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1126
c913a8b0
JS
1127 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1128 nvme_fc_disconnect_assoc_done);
1129 if (ret)
1130 kfree(lsop);
e399441d
JS
1131
1132 /* only meaningful part to terminating the association */
1133 ctrl->association_id = 0;
1134}
1135
1136
1137/* *********************** NVME Ctrl Routines **************************** */
1138
78a7ac26 1139static void __nvme_fc_final_op_cleanup(struct request *rq);
f874d5d0 1140static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
e399441d
JS
1141
1142static int
1143nvme_fc_reinit_request(void *data, struct request *rq)
1144{
1145 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1146 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1147
1148 memset(cmdiu, 0, sizeof(*cmdiu));
1149 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1150 cmdiu->fc_id = NVME_CMD_FC_ID;
1151 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1152 memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1153
1154 return 0;
1155}
1156
1157static void
1158__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1159 struct nvme_fc_fcp_op *op)
1160{
1161 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1162 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1163 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1164 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1165
1166 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1167}
1168
1169static void
d6296d39
CH
1170nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1171 unsigned int hctx_idx)
e399441d
JS
1172{
1173 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1174
d6296d39 1175 return __nvme_fc_exit_request(set->driver_data, op);
e399441d
JS
1176}
1177
78a7ac26
JS
1178static int
1179__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1180{
1181 int state;
1182
1183 state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1184 if (state != FCPOP_STATE_ACTIVE) {
1185 atomic_set(&op->state, state);
1186 return -ECANCELED;
1187 }
1188
1189 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1190 &ctrl->rport->remoteport,
1191 op->queue->lldd_handle,
1192 &op->fcp_req);
1193
1194 return 0;
1195}
1196
e399441d 1197static void
78a7ac26 1198nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
e399441d
JS
1199{
1200 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
78a7ac26
JS
1201 unsigned long flags;
1202 int i, ret;
e399441d
JS
1203
1204 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
78a7ac26 1205 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
e399441d 1206 continue;
78a7ac26
JS
1207
1208 spin_lock_irqsave(&ctrl->lock, flags);
61bff8ef
JS
1209 if (ctrl->flags & FCCTRL_TERMIO) {
1210 ctrl->iocnt++;
1211 aen_op->flags |= FCOP_FLAGS_TERMIO;
1212 }
78a7ac26
JS
1213 spin_unlock_irqrestore(&ctrl->lock, flags);
1214
1215 ret = __nvme_fc_abort_op(ctrl, aen_op);
1216 if (ret) {
1217 /*
1218 * if __nvme_fc_abort_op failed the io wasn't
1219 * active. Thus this call path is running in
1220 * parallel to the io complete. Treat as non-error.
1221 */
1222
1223 /* back out the flags/counters */
1224 spin_lock_irqsave(&ctrl->lock, flags);
61bff8ef
JS
1225 if (ctrl->flags & FCCTRL_TERMIO)
1226 ctrl->iocnt--;
78a7ac26
JS
1227 aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1228 spin_unlock_irqrestore(&ctrl->lock, flags);
1229 return;
1230 }
e399441d
JS
1231 }
1232}
1233
78a7ac26
JS
1234static inline int
1235__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1236 struct nvme_fc_fcp_op *op)
1237{
1238 unsigned long flags;
1239 bool complete_rq = false;
1240
1241 spin_lock_irqsave(&ctrl->lock, flags);
61bff8ef
JS
1242 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1243 if (ctrl->flags & FCCTRL_TERMIO)
1244 ctrl->iocnt--;
1245 }
78a7ac26
JS
1246 if (op->flags & FCOP_FLAGS_RELEASED)
1247 complete_rq = true;
1248 else
1249 op->flags |= FCOP_FLAGS_COMPLETE;
1250 spin_unlock_irqrestore(&ctrl->lock, flags);
1251
1252 return complete_rq;
1253}
1254
baee29ac 1255static void
e399441d
JS
1256nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1257{
1258 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1259 struct request *rq = op->rq;
1260 struct nvmefc_fcp_req *freq = &op->fcp_req;
1261 struct nvme_fc_ctrl *ctrl = op->ctrl;
1262 struct nvme_fc_queue *queue = op->queue;
1263 struct nvme_completion *cqe = &op->rsp_iu.cqe;
458f280d 1264 struct nvme_command *sqe = &op->cmd_iu.sqe;
d663b69f 1265 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
27fa9bc5 1266 union nvme_result result;
f874d5d0 1267 bool complete_rq, terminate_assoc = true;
e399441d
JS
1268
1269 /*
1270 * WARNING:
1271 * The current linux implementation of a nvme controller
1272 * allocates a single tag set for all io queues and sizes
1273 * the io queues to fully hold all possible tags. Thus, the
1274 * implementation does not reference or care about the sqhd
1275 * value as it never needs to use the sqhd/sqtail pointers
1276 * for submission pacing.
1277 *
1278 * This affects the FC-NVME implementation in two ways:
1279 * 1) As the value doesn't matter, we don't need to waste
1280 * cycles extracting it from ERSPs and stamping it in the
1281 * cases where the transport fabricates CQEs on successful
1282 * completions.
1283 * 2) The FC-NVME implementation requires that delivery of
1284 * ERSP completions are to go back to the nvme layer in order
1285 * relative to the rsn, such that the sqhd value will always
1286 * be "in order" for the nvme layer. As the nvme layer in
1287 * linux doesn't care about sqhd, there's no need to return
1288 * them in order.
1289 *
1290 * Additionally:
1291 * As the core nvme layer in linux currently does not look at
1292 * every field in the cqe - in cases where the FC transport must
1293 * fabricate a CQE, the following fields will not be set as they
1294 * are not referenced:
1295 * cqe.sqid, cqe.sqhd, cqe.command_id
f874d5d0
JS
1296 *
1297 * Failure or error of an individual i/o, in a transport
1298 * detected fashion unrelated to the nvme completion status,
1299 * potentially cause the initiator and target sides to get out
1300 * of sync on SQ head/tail (aka outstanding io count allowed).
1301 * Per FC-NVME spec, failure of an individual command requires
1302 * the connection to be terminated, which in turn requires the
1303 * association to be terminated.
e399441d
JS
1304 */
1305
1306 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1307 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1308
1309 if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
d663b69f 1310 status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
62eeacb0 1311 else if (freq->status)
d663b69f 1312 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
e399441d
JS
1313
1314 /*
1315 * For the linux implementation, if we have an unsuccesful
1316 * status, they blk-mq layer can typically be called with the
1317 * non-zero status and the content of the cqe isn't important.
1318 */
1319 if (status)
1320 goto done;
1321
1322 /*
1323 * command completed successfully relative to the wire
1324 * protocol. However, validate anything received and
1325 * extract the status and result from the cqe (create it
1326 * where necessary).
1327 */
1328
1329 switch (freq->rcv_rsplen) {
1330
1331 case 0:
1332 case NVME_FC_SIZEOF_ZEROS_RSP:
1333 /*
1334 * No response payload or 12 bytes of payload (which
1335 * should all be zeros) are considered successful and
1336 * no payload in the CQE by the transport.
1337 */
1338 if (freq->transferred_length !=
1339 be32_to_cpu(op->cmd_iu.data_len)) {
d663b69f 1340 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
e399441d
JS
1341 goto done;
1342 }
27fa9bc5 1343 result.u64 = 0;
e399441d
JS
1344 break;
1345
1346 case sizeof(struct nvme_fc_ersp_iu):
1347 /*
1348 * The ERSP IU contains a full completion with CQE.
1349 * Validate ERSP IU and look at cqe.
1350 */
1351 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1352 (freq->rcv_rsplen / 4) ||
1353 be32_to_cpu(op->rsp_iu.xfrd_len) !=
1354 freq->transferred_length ||
726a1080 1355 op->rsp_iu.status_code ||
458f280d 1356 sqe->common.command_id != cqe->command_id)) {
d663b69f 1357 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
e399441d
JS
1358 goto done;
1359 }
27fa9bc5 1360 result = cqe->result;
d663b69f 1361 status = cqe->status;
e399441d
JS
1362 break;
1363
1364 default:
d663b69f 1365 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
e399441d
JS
1366 goto done;
1367 }
1368
f874d5d0
JS
1369 terminate_assoc = false;
1370
e399441d 1371done:
78a7ac26 1372 if (op->flags & FCOP_FLAGS_AEN) {
27fa9bc5 1373 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
78a7ac26
JS
1374 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1375 atomic_set(&op->state, FCPOP_STATE_IDLE);
1376 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
e399441d 1377 nvme_fc_ctrl_put(ctrl);
f874d5d0 1378 goto check_error;
e399441d
JS
1379 }
1380
78a7ac26
JS
1381 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1382 if (!complete_rq) {
1383 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
e392e1f1 1384 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
78a7ac26 1385 if (blk_queue_dying(rq->q))
e392e1f1 1386 status |= cpu_to_le16(NVME_SC_DNR << 1);
78a7ac26
JS
1387 }
1388 nvme_end_request(rq, status, result);
1389 } else
1390 __nvme_fc_final_op_cleanup(rq);
f874d5d0
JS
1391
1392check_error:
1393 if (terminate_assoc)
1394 nvme_fc_error_recovery(ctrl, "transport detected io error");
e399441d
JS
1395}
1396
1397static int
1398__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1399 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1400 struct request *rq, u32 rqno)
1401{
1402 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1403 int ret = 0;
1404
1405 memset(op, 0, sizeof(*op));
1406 op->fcp_req.cmdaddr = &op->cmd_iu;
1407 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1408 op->fcp_req.rspaddr = &op->rsp_iu;
1409 op->fcp_req.rsplen = sizeof(op->rsp_iu);
1410 op->fcp_req.done = nvme_fc_fcpio_done;
1411 op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1412 op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1413 op->ctrl = ctrl;
1414 op->queue = queue;
1415 op->rq = rq;
1416 op->rqno = rqno;
1417
1418 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1419 cmdiu->fc_id = NVME_CMD_FC_ID;
1420 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1421
1422 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1423 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1424 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1425 dev_err(ctrl->dev,
1426 "FCP Op failed - cmdiu dma mapping failed.\n");
1427 ret = EFAULT;
1428 goto out_on_error;
1429 }
1430
1431 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1432 &op->rsp_iu, sizeof(op->rsp_iu),
1433 DMA_FROM_DEVICE);
1434 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1435 dev_err(ctrl->dev,
1436 "FCP Op failed - rspiu dma mapping failed.\n");
1437 ret = EFAULT;
1438 }
1439
1440 atomic_set(&op->state, FCPOP_STATE_IDLE);
1441out_on_error:
1442 return ret;
1443}
1444
1445static int
d6296d39
CH
1446nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1447 unsigned int hctx_idx, unsigned int numa_node)
e399441d 1448{
d6296d39 1449 struct nvme_fc_ctrl *ctrl = set->driver_data;
e399441d
JS
1450 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1451 struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1];
1452
1453 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1454}
1455
1456static int
d6296d39
CH
1457nvme_fc_init_admin_request(struct blk_mq_tag_set *set, struct request *rq,
1458 unsigned int hctx_idx, unsigned int numa_node)
e399441d 1459{
d6296d39 1460 struct nvme_fc_ctrl *ctrl = set->driver_data;
e399441d
JS
1461 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1462 struct nvme_fc_queue *queue = &ctrl->queues[0];
1463
1464 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1465}
1466
1467static int
1468nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1469{
1470 struct nvme_fc_fcp_op *aen_op;
1471 struct nvme_fc_cmd_iu *cmdiu;
1472 struct nvme_command *sqe;
61bff8ef 1473 void *private;
e399441d
JS
1474 int i, ret;
1475
1476 aen_op = ctrl->aen_ops;
1477 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
61bff8ef
JS
1478 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1479 GFP_KERNEL);
1480 if (!private)
1481 return -ENOMEM;
1482
e399441d
JS
1483 cmdiu = &aen_op->cmd_iu;
1484 sqe = &cmdiu->sqe;
1485 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1486 aen_op, (struct request *)NULL,
1487 (AEN_CMDID_BASE + i));
61bff8ef
JS
1488 if (ret) {
1489 kfree(private);
e399441d 1490 return ret;
61bff8ef 1491 }
e399441d 1492
78a7ac26 1493 aen_op->flags = FCOP_FLAGS_AEN;
61bff8ef
JS
1494 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1495 aen_op->fcp_req.private = private;
78a7ac26 1496
e399441d
JS
1497 memset(sqe, 0, sizeof(*sqe));
1498 sqe->common.opcode = nvme_admin_async_event;
78a7ac26 1499 /* Note: core layer may overwrite the sqe.command_id value */
e399441d
JS
1500 sqe->common.command_id = AEN_CMDID_BASE + i;
1501 }
1502 return 0;
1503}
1504
61bff8ef
JS
1505static void
1506nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1507{
1508 struct nvme_fc_fcp_op *aen_op;
1509 int i;
1510
1511 aen_op = ctrl->aen_ops;
1512 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1513 if (!aen_op->fcp_req.private)
1514 continue;
1515
1516 __nvme_fc_exit_request(ctrl, aen_op);
1517
1518 kfree(aen_op->fcp_req.private);
1519 aen_op->fcp_req.private = NULL;
1520 }
1521}
e399441d
JS
1522
1523static inline void
1524__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1525 unsigned int qidx)
1526{
1527 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1528
1529 hctx->driver_data = queue;
1530 queue->hctx = hctx;
1531}
1532
1533static int
1534nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1535 unsigned int hctx_idx)
1536{
1537 struct nvme_fc_ctrl *ctrl = data;
1538
1539 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1540
1541 return 0;
1542}
1543
1544static int
1545nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1546 unsigned int hctx_idx)
1547{
1548 struct nvme_fc_ctrl *ctrl = data;
1549
1550 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1551
1552 return 0;
1553}
1554
1555static void
1556nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1557{
1558 struct nvme_fc_queue *queue;
1559
1560 queue = &ctrl->queues[idx];
1561 memset(queue, 0, sizeof(*queue));
1562 queue->ctrl = ctrl;
1563 queue->qnum = idx;
1564 atomic_set(&queue->csn, 1);
1565 queue->dev = ctrl->dev;
1566
1567 if (idx > 0)
1568 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1569 else
1570 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1571
1572 queue->queue_size = queue_size;
1573
1574 /*
1575 * Considered whether we should allocate buffers for all SQEs
1576 * and CQEs and dma map them - mapping their respective entries
1577 * into the request structures (kernel vm addr and dma address)
1578 * thus the driver could use the buffers/mappings directly.
1579 * It only makes sense if the LLDD would use them for its
1580 * messaging api. It's very unlikely most adapter api's would use
1581 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1582 * structures were used instead.
1583 */
1584}
1585
1586/*
1587 * This routine terminates a queue at the transport level.
1588 * The transport has already ensured that all outstanding ios on
1589 * the queue have been terminated.
1590 * The transport will send a Disconnect LS request to terminate
1591 * the queue's connection. Termination of the admin queue will also
1592 * terminate the association at the target.
1593 */
1594static void
1595nvme_fc_free_queue(struct nvme_fc_queue *queue)
1596{
1597 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1598 return;
1599
1600 /*
1601 * Current implementation never disconnects a single queue.
1602 * It always terminates a whole association. So there is never
1603 * a disconnect(queue) LS sent to the target.
1604 */
1605
1606 queue->connection_id = 0;
1607 clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1608}
1609
1610static void
1611__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1612 struct nvme_fc_queue *queue, unsigned int qidx)
1613{
1614 if (ctrl->lport->ops->delete_queue)
1615 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1616 queue->lldd_handle);
1617 queue->lldd_handle = NULL;
1618}
1619
e399441d
JS
1620static void
1621nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1622{
1623 int i;
1624
1625 for (i = 1; i < ctrl->queue_count; i++)
1626 nvme_fc_free_queue(&ctrl->queues[i]);
1627}
1628
1629static int
1630__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1631 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1632{
1633 int ret = 0;
1634
1635 queue->lldd_handle = NULL;
1636 if (ctrl->lport->ops->create_queue)
1637 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1638 qidx, qsize, &queue->lldd_handle);
1639
1640 return ret;
1641}
1642
1643static void
1644nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1645{
1646 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
1647 int i;
1648
1649 for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
1650 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1651}
1652
1653static int
1654nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1655{
1656 struct nvme_fc_queue *queue = &ctrl->queues[1];
17a1ec08 1657 int i, ret;
e399441d
JS
1658
1659 for (i = 1; i < ctrl->queue_count; i++, queue++) {
1660 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
17a1ec08
JT
1661 if (ret)
1662 goto delete_queues;
e399441d
JS
1663 }
1664
1665 return 0;
17a1ec08
JT
1666
1667delete_queues:
1668 for (; i >= 0; i--)
1669 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1670 return ret;
e399441d
JS
1671}
1672
1673static int
1674nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1675{
1676 int i, ret = 0;
1677
1678 for (i = 1; i < ctrl->queue_count; i++) {
1679 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1680 (qsize / 5));
1681 if (ret)
1682 break;
1683 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1684 if (ret)
1685 break;
1686 }
1687
1688 return ret;
1689}
1690
1691static void
1692nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1693{
1694 int i;
1695
1696 for (i = 1; i < ctrl->queue_count; i++)
1697 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1698}
1699
1700static void
1701nvme_fc_ctrl_free(struct kref *ref)
1702{
1703 struct nvme_fc_ctrl *ctrl =
1704 container_of(ref, struct nvme_fc_ctrl, ref);
1705 unsigned long flags;
1706
61bff8ef
JS
1707 if (ctrl->ctrl.tagset) {
1708 blk_cleanup_queue(ctrl->ctrl.connect_q);
1709 blk_mq_free_tag_set(&ctrl->tag_set);
e399441d
JS
1710 }
1711
61bff8ef
JS
1712 /* remove from rport list */
1713 spin_lock_irqsave(&ctrl->rport->lock, flags);
1714 list_del(&ctrl->ctrl_list);
1715 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1716
1717 blk_cleanup_queue(ctrl->ctrl.admin_q);
1718 blk_mq_free_tag_set(&ctrl->admin_tag_set);
1719
1720 kfree(ctrl->queues);
1721
e399441d
JS
1722 put_device(ctrl->dev);
1723 nvme_fc_rport_put(ctrl->rport);
1724
e399441d 1725 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
de41447a
EM
1726 if (ctrl->ctrl.opts)
1727 nvmf_free_options(ctrl->ctrl.opts);
e399441d
JS
1728 kfree(ctrl);
1729}
1730
1731static void
1732nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1733{
1734 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1735}
1736
1737static int
1738nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1739{
1740 return kref_get_unless_zero(&ctrl->ref);
1741}
1742
1743/*
1744 * All accesses from nvme core layer done - can now free the
1745 * controller. Called after last nvme_put_ctrl() call
1746 */
1747static void
61bff8ef 1748nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
e399441d
JS
1749{
1750 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1751
1752 WARN_ON(nctrl != &ctrl->ctrl);
1753
61bff8ef
JS
1754 nvme_fc_ctrl_put(ctrl);
1755}
e399441d 1756
61bff8ef
JS
1757static void
1758nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1759{
1760 dev_warn(ctrl->ctrl.device,
1761 "NVME-FC{%d}: transport association error detected: %s\n",
1762 ctrl->cnum, errmsg);
589ff775 1763 dev_warn(ctrl->ctrl.device,
61bff8ef 1764 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
e399441d 1765
2952a879
JS
1766 /* stop the queues on error, cleanup is in reset thread */
1767 if (ctrl->queue_count > 1)
1768 nvme_stop_queues(&ctrl->ctrl);
1769
61bff8ef
JS
1770 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1771 dev_err(ctrl->ctrl.device,
1772 "NVME-FC{%d}: error_recovery: Couldn't change state "
1773 "to RECONNECTING\n", ctrl->cnum);
1774 return;
e399441d
JS
1775 }
1776
9a6327d2 1777 if (!queue_work(nvme_wq, &ctrl->reset_work))
61bff8ef
JS
1778 dev_err(ctrl->ctrl.device,
1779 "NVME-FC{%d}: error_recovery: Failed to schedule "
1780 "reset work\n", ctrl->cnum);
e399441d
JS
1781}
1782
baee29ac 1783static enum blk_eh_timer_return
e399441d
JS
1784nvme_fc_timeout(struct request *rq, bool reserved)
1785{
1786 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1787 struct nvme_fc_ctrl *ctrl = op->ctrl;
1788 int ret;
1789
1790 if (reserved)
1791 return BLK_EH_RESET_TIMER;
1792
1793 ret = __nvme_fc_abort_op(ctrl, op);
1794 if (ret)
1795 /* io wasn't active to abort consider it done */
1796 return BLK_EH_HANDLED;
1797
1798 /*
61bff8ef
JS
1799 * we can't individually ABTS an io without affecting the queue,
1800 * thus killing the queue, adn thus the association.
1801 * So resolve by performing a controller reset, which will stop
1802 * the host/io stack, terminate the association on the link,
1803 * and recreate an association on the link.
e399441d 1804 */
61bff8ef 1805 nvme_fc_error_recovery(ctrl, "io timeout error");
e399441d
JS
1806
1807 return BLK_EH_HANDLED;
1808}
1809
1810static int
1811nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1812 struct nvme_fc_fcp_op *op)
1813{
1814 struct nvmefc_fcp_req *freq = &op->fcp_req;
e399441d
JS
1815 enum dma_data_direction dir;
1816 int ret;
1817
1818 freq->sg_cnt = 0;
1819
b131c61d 1820 if (!blk_rq_payload_bytes(rq))
e399441d
JS
1821 return 0;
1822
1823 freq->sg_table.sgl = freq->first_sgl;
19e420bb
CH
1824 ret = sg_alloc_table_chained(&freq->sg_table,
1825 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
e399441d
JS
1826 if (ret)
1827 return -ENOMEM;
1828
1829 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
19e420bb 1830 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
e399441d
JS
1831 dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1832 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1833 op->nents, dir);
1834 if (unlikely(freq->sg_cnt <= 0)) {
1835 sg_free_table_chained(&freq->sg_table, true);
1836 freq->sg_cnt = 0;
1837 return -EFAULT;
1838 }
1839
1840 /*
1841 * TODO: blk_integrity_rq(rq) for DIF
1842 */
1843 return 0;
1844}
1845
1846static void
1847nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1848 struct nvme_fc_fcp_op *op)
1849{
1850 struct nvmefc_fcp_req *freq = &op->fcp_req;
1851
1852 if (!freq->sg_cnt)
1853 return;
1854
1855 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1856 ((rq_data_dir(rq) == WRITE) ?
1857 DMA_TO_DEVICE : DMA_FROM_DEVICE));
1858
1859 nvme_cleanup_cmd(rq);
1860
1861 sg_free_table_chained(&freq->sg_table, true);
1862
1863 freq->sg_cnt = 0;
1864}
1865
1866/*
1867 * In FC, the queue is a logical thing. At transport connect, the target
1868 * creates its "queue" and returns a handle that is to be given to the
1869 * target whenever it posts something to the corresponding SQ. When an
1870 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1871 * command contained within the SQE, an io, and assigns a FC exchange
1872 * to it. The SQE and the associated SQ handle are sent in the initial
1873 * CMD IU sents on the exchange. All transfers relative to the io occur
1874 * as part of the exchange. The CQE is the last thing for the io,
1875 * which is transferred (explicitly or implicitly) with the RSP IU
1876 * sent on the exchange. After the CQE is received, the FC exchange is
1877 * terminaed and the Exchange may be used on a different io.
1878 *
1879 * The transport to LLDD api has the transport making a request for a
1880 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1881 * resource and transfers the command. The LLDD will then process all
1882 * steps to complete the io. Upon completion, the transport done routine
1883 * is called.
1884 *
1885 * So - while the operation is outstanding to the LLDD, there is a link
1886 * level FC exchange resource that is also outstanding. This must be
1887 * considered in all cleanup operations.
1888 */
fc17b653 1889static blk_status_t
e399441d
JS
1890nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1891 struct nvme_fc_fcp_op *op, u32 data_len,
1892 enum nvmefc_fcp_datadir io_dir)
1893{
1894 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1895 struct nvme_command *sqe = &cmdiu->sqe;
1896 u32 csn;
1897 int ret;
1898
61bff8ef
JS
1899 /*
1900 * before attempting to send the io, check to see if we believe
1901 * the target device is present
1902 */
1903 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
fc17b653 1904 return BLK_STS_IOERR;
61bff8ef 1905
e399441d 1906 if (!nvme_fc_ctrl_get(ctrl))
fc17b653 1907 return BLK_STS_IOERR;
e399441d
JS
1908
1909 /* format the FC-NVME CMD IU and fcp_req */
1910 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1911 csn = atomic_inc_return(&queue->csn);
1912 cmdiu->csn = cpu_to_be32(csn);
1913 cmdiu->data_len = cpu_to_be32(data_len);
1914 switch (io_dir) {
1915 case NVMEFC_FCP_WRITE:
1916 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1917 break;
1918 case NVMEFC_FCP_READ:
1919 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1920 break;
1921 case NVMEFC_FCP_NODATA:
1922 cmdiu->flags = 0;
1923 break;
1924 }
1925 op->fcp_req.payload_length = data_len;
1926 op->fcp_req.io_dir = io_dir;
1927 op->fcp_req.transferred_length = 0;
1928 op->fcp_req.rcv_rsplen = 0;
62eeacb0 1929 op->fcp_req.status = NVME_SC_SUCCESS;
e399441d
JS
1930 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1931
1932 /*
1933 * validate per fabric rules, set fields mandated by fabric spec
1934 * as well as those by FC-NVME spec.
1935 */
1936 WARN_ON_ONCE(sqe->common.metadata);
1937 WARN_ON_ONCE(sqe->common.dptr.prp1);
1938 WARN_ON_ONCE(sqe->common.dptr.prp2);
1939 sqe->common.flags |= NVME_CMD_SGL_METABUF;
1940
1941 /*
1942 * format SQE DPTR field per FC-NVME rules
1943 * type=data block descr; subtype=offset;
1944 * offset is currently 0.
1945 */
1946 sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1947 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1948 sqe->rw.dptr.sgl.addr = 0;
1949
78a7ac26 1950 if (!(op->flags & FCOP_FLAGS_AEN)) {
e399441d
JS
1951 ret = nvme_fc_map_data(ctrl, op->rq, op);
1952 if (ret < 0) {
e399441d
JS
1953 nvme_cleanup_cmd(op->rq);
1954 nvme_fc_ctrl_put(ctrl);
fc17b653
CH
1955 if (ret == -ENOMEM || ret == -EAGAIN)
1956 return BLK_STS_RESOURCE;
1957 return BLK_STS_IOERR;
e399441d
JS
1958 }
1959 }
1960
1961 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1962 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1963
1964 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1965
78a7ac26 1966 if (!(op->flags & FCOP_FLAGS_AEN))
e399441d
JS
1967 blk_mq_start_request(op->rq);
1968
1969 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1970 &ctrl->rport->remoteport,
1971 queue->lldd_handle, &op->fcp_req);
1972
1973 if (ret) {
e399441d
JS
1974 if (op->rq) { /* normal request */
1975 nvme_fc_unmap_data(ctrl, op->rq, op);
1976 nvme_cleanup_cmd(op->rq);
1977 }
1978 /* else - aen. no cleanup needed */
1979
1980 nvme_fc_ctrl_put(ctrl);
1981
1982 if (ret != -EBUSY)
fc17b653 1983 return BLK_STS_IOERR;
e399441d
JS
1984
1985 if (op->rq) {
1986 blk_mq_stop_hw_queues(op->rq->q);
1987 blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1988 }
fc17b653 1989 return BLK_STS_RESOURCE;
e399441d
JS
1990 }
1991
fc17b653 1992 return BLK_STS_OK;
e399441d
JS
1993}
1994
fc17b653 1995static blk_status_t
e399441d
JS
1996nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1997 const struct blk_mq_queue_data *bd)
1998{
1999 struct nvme_ns *ns = hctx->queue->queuedata;
2000 struct nvme_fc_queue *queue = hctx->driver_data;
2001 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2002 struct request *rq = bd->rq;
2003 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2004 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2005 struct nvme_command *sqe = &cmdiu->sqe;
2006 enum nvmefc_fcp_datadir io_dir;
2007 u32 data_len;
fc17b653 2008 blk_status_t ret;
e399441d
JS
2009
2010 ret = nvme_setup_cmd(ns, rq, sqe);
2011 if (ret)
2012 return ret;
2013
b131c61d 2014 data_len = blk_rq_payload_bytes(rq);
e399441d
JS
2015 if (data_len)
2016 io_dir = ((rq_data_dir(rq) == WRITE) ?
2017 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2018 else
2019 io_dir = NVMEFC_FCP_NODATA;
2020
2021 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2022}
2023
2024static struct blk_mq_tags *
2025nvme_fc_tagset(struct nvme_fc_queue *queue)
2026{
2027 if (queue->qnum == 0)
2028 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2029
2030 return queue->ctrl->tag_set.tags[queue->qnum - 1];
2031}
2032
2033static int
2034nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2035
2036{
2037 struct nvme_fc_queue *queue = hctx->driver_data;
2038 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2039 struct request *req;
2040 struct nvme_fc_fcp_op *op;
2041
2042 req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
61bff8ef 2043 if (!req)
e399441d 2044 return 0;
e399441d
JS
2045
2046 op = blk_mq_rq_to_pdu(req);
2047
2048 if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2049 (ctrl->lport->ops->poll_queue))
2050 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2051 queue->lldd_handle);
2052
2053 return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2054}
2055
2056static void
2057nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2058{
2059 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2060 struct nvme_fc_fcp_op *aen_op;
61bff8ef
JS
2061 unsigned long flags;
2062 bool terminating = false;
fc17b653 2063 blk_status_t ret;
e399441d
JS
2064
2065 if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2066 return;
2067
61bff8ef
JS
2068 spin_lock_irqsave(&ctrl->lock, flags);
2069 if (ctrl->flags & FCCTRL_TERMIO)
2070 terminating = true;
2071 spin_unlock_irqrestore(&ctrl->lock, flags);
2072
2073 if (terminating)
2074 return;
2075
e399441d
JS
2076 aen_op = &ctrl->aen_ops[aer_idx];
2077
2078 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2079 NVMEFC_FCP_NODATA);
2080 if (ret)
2081 dev_err(ctrl->ctrl.device,
2082 "failed async event work [%d]\n", aer_idx);
2083}
2084
2085static void
78a7ac26 2086__nvme_fc_final_op_cleanup(struct request *rq)
e399441d
JS
2087{
2088 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2089 struct nvme_fc_ctrl *ctrl = op->ctrl;
e399441d 2090
78a7ac26
JS
2091 atomic_set(&op->state, FCPOP_STATE_IDLE);
2092 op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2093 FCOP_FLAGS_COMPLETE);
e399441d
JS
2094
2095 nvme_cleanup_cmd(rq);
e399441d 2096 nvme_fc_unmap_data(ctrl, rq, op);
77f02a7a 2097 nvme_complete_rq(rq);
e399441d
JS
2098 nvme_fc_ctrl_put(ctrl);
2099
e399441d
JS
2100}
2101
78a7ac26
JS
2102static void
2103nvme_fc_complete_rq(struct request *rq)
2104{
2105 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2106 struct nvme_fc_ctrl *ctrl = op->ctrl;
2107 unsigned long flags;
2108 bool completed = false;
2109
2110 /*
2111 * the core layer, on controller resets after calling
2112 * nvme_shutdown_ctrl(), calls complete_rq without our
2113 * calling blk_mq_complete_request(), thus there may still
2114 * be live i/o outstanding with the LLDD. Means transport has
2115 * to track complete calls vs fcpio_done calls to know what
2116 * path to take on completes and dones.
2117 */
2118 spin_lock_irqsave(&ctrl->lock, flags);
2119 if (op->flags & FCOP_FLAGS_COMPLETE)
2120 completed = true;
2121 else
2122 op->flags |= FCOP_FLAGS_RELEASED;
2123 spin_unlock_irqrestore(&ctrl->lock, flags);
2124
2125 if (completed)
2126 __nvme_fc_final_op_cleanup(rq);
2127}
2128
e399441d
JS
2129/*
2130 * This routine is used by the transport when it needs to find active
2131 * io on a queue that is to be terminated. The transport uses
2132 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2133 * this routine to kill them on a 1 by 1 basis.
2134 *
2135 * As FC allocates FC exchange for each io, the transport must contact
2136 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2137 * After terminating the exchange the LLDD will call the transport's
2138 * normal io done path for the request, but it will have an aborted
2139 * status. The done path will return the io request back to the block
2140 * layer with an error status.
2141 */
2142static void
2143nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2144{
2145 struct nvme_ctrl *nctrl = data;
2146 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2147 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
78a7ac26
JS
2148 unsigned long flags;
2149 int status;
e399441d
JS
2150
2151 if (!blk_mq_request_started(req))
2152 return;
2153
78a7ac26 2154 spin_lock_irqsave(&ctrl->lock, flags);
61bff8ef
JS
2155 if (ctrl->flags & FCCTRL_TERMIO) {
2156 ctrl->iocnt++;
2157 op->flags |= FCOP_FLAGS_TERMIO;
2158 }
78a7ac26
JS
2159 spin_unlock_irqrestore(&ctrl->lock, flags);
2160
e399441d 2161 status = __nvme_fc_abort_op(ctrl, op);
78a7ac26
JS
2162 if (status) {
2163 /*
2164 * if __nvme_fc_abort_op failed the io wasn't
2165 * active. Thus this call path is running in
2166 * parallel to the io complete. Treat as non-error.
2167 */
2168
2169 /* back out the flags/counters */
2170 spin_lock_irqsave(&ctrl->lock, flags);
61bff8ef
JS
2171 if (ctrl->flags & FCCTRL_TERMIO)
2172 ctrl->iocnt--;
78a7ac26
JS
2173 op->flags &= ~FCOP_FLAGS_TERMIO;
2174 spin_unlock_irqrestore(&ctrl->lock, flags);
e399441d 2175 return;
78a7ac26 2176 }
e399441d
JS
2177}
2178
78a7ac26 2179
61bff8ef
JS
2180static const struct blk_mq_ops nvme_fc_mq_ops = {
2181 .queue_rq = nvme_fc_queue_rq,
2182 .complete = nvme_fc_complete_rq,
2183 .init_request = nvme_fc_init_request,
2184 .exit_request = nvme_fc_exit_request,
2185 .reinit_request = nvme_fc_reinit_request,
2186 .init_hctx = nvme_fc_init_hctx,
2187 .poll = nvme_fc_poll,
2188 .timeout = nvme_fc_timeout,
2189};
e399441d 2190
61bff8ef
JS
2191static int
2192nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
e399441d 2193{
61bff8ef
JS
2194 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2195 int ret;
e399441d 2196
61bff8ef
JS
2197 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2198 if (ret) {
2199 dev_info(ctrl->ctrl.device,
2200 "set_queue_count failed: %d\n", ret);
2201 return ret;
2202 }
e399441d 2203
61bff8ef
JS
2204 ctrl->queue_count = opts->nr_io_queues + 1;
2205 if (!opts->nr_io_queues)
2206 return 0;
e399441d 2207
61bff8ef 2208 nvme_fc_init_io_queues(ctrl);
e399441d 2209
61bff8ef
JS
2210 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2211 ctrl->tag_set.ops = &nvme_fc_mq_ops;
2212 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2213 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2214 ctrl->tag_set.numa_node = NUMA_NO_NODE;
2215 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2216 ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2217 (SG_CHUNK_SIZE *
2218 sizeof(struct scatterlist)) +
2219 ctrl->lport->ops->fcprqst_priv_sz;
2220 ctrl->tag_set.driver_data = ctrl;
2221 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
2222 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
e399441d 2223
61bff8ef
JS
2224 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2225 if (ret)
2226 return ret;
e399441d 2227
61bff8ef 2228 ctrl->ctrl.tagset = &ctrl->tag_set;
e399441d 2229
61bff8ef
JS
2230 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2231 if (IS_ERR(ctrl->ctrl.connect_q)) {
2232 ret = PTR_ERR(ctrl->ctrl.connect_q);
2233 goto out_free_tag_set;
2234 }
e399441d 2235
61bff8ef 2236 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
e399441d 2237 if (ret)
61bff8ef 2238 goto out_cleanup_blk_queue;
e399441d 2239
61bff8ef
JS
2240 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2241 if (ret)
2242 goto out_delete_hw_queues;
e399441d
JS
2243
2244 return 0;
e399441d 2245
61bff8ef
JS
2246out_delete_hw_queues:
2247 nvme_fc_delete_hw_io_queues(ctrl);
2248out_cleanup_blk_queue:
2249 nvme_stop_keep_alive(&ctrl->ctrl);
2250 blk_cleanup_queue(ctrl->ctrl.connect_q);
2251out_free_tag_set:
2252 blk_mq_free_tag_set(&ctrl->tag_set);
2253 nvme_fc_free_io_queues(ctrl);
e399441d 2254
61bff8ef
JS
2255 /* force put free routine to ignore io queues */
2256 ctrl->ctrl.tagset = NULL;
2257
2258 return ret;
2259}
e399441d
JS
2260
2261static int
61bff8ef 2262nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
e399441d
JS
2263{
2264 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2265 int ret;
2266
2267 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2268 if (ret) {
2269 dev_info(ctrl->ctrl.device,
2270 "set_queue_count failed: %d\n", ret);
2271 return ret;
2272 }
2273
61bff8ef
JS
2274 /* check for io queues existing */
2275 if (ctrl->queue_count == 1)
e399441d
JS
2276 return 0;
2277
e399441d
JS
2278 nvme_fc_init_io_queues(ctrl);
2279
61bff8ef 2280 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
e399441d 2281 if (ret)
61bff8ef 2282 goto out_free_io_queues;
e399441d
JS
2283
2284 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2285 if (ret)
61bff8ef 2286 goto out_free_io_queues;
e399441d
JS
2287
2288 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2289 if (ret)
2290 goto out_delete_hw_queues;
2291
2292 return 0;
2293
2294out_delete_hw_queues:
2295 nvme_fc_delete_hw_io_queues(ctrl);
61bff8ef 2296out_free_io_queues:
e399441d 2297 nvme_fc_free_io_queues(ctrl);
61bff8ef
JS
2298 return ret;
2299}
e399441d 2300
61bff8ef
JS
2301/*
2302 * This routine restarts the controller on the host side, and
2303 * on the link side, recreates the controller association.
2304 */
2305static int
2306nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2307{
2308 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2309 u32 segs;
2310 int ret;
2311 bool changed;
2312
5bbecdbc 2313 ++ctrl->ctrl.opts->nr_reconnects;
61bff8ef
JS
2314
2315 /*
2316 * Create the admin queue
2317 */
2318
2319 nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2320
2321 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2322 NVME_FC_AQ_BLKMQ_DEPTH);
2323 if (ret)
2324 goto out_free_queue;
2325
2326 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2327 NVME_FC_AQ_BLKMQ_DEPTH,
2328 (NVME_FC_AQ_BLKMQ_DEPTH / 4));
2329 if (ret)
2330 goto out_delete_hw_queue;
2331
2332 if (ctrl->ctrl.state != NVME_CTRL_NEW)
2333 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
2334
2335 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2336 if (ret)
2337 goto out_disconnect_admin_queue;
2338
2339 /*
2340 * Check controller capabilities
2341 *
2342 * todo:- add code to check if ctrl attributes changed from
2343 * prior connection values
2344 */
2345
2346 ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
2347 if (ret) {
2348 dev_err(ctrl->ctrl.device,
2349 "prop_get NVME_REG_CAP failed\n");
2350 goto out_disconnect_admin_queue;
2351 }
2352
2353 ctrl->ctrl.sqsize =
2354 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
2355
2356 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
2357 if (ret)
2358 goto out_disconnect_admin_queue;
2359
2360 segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2361 ctrl->lport->ops->max_sgl_segments);
2362 ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2363
2364 ret = nvme_init_identify(&ctrl->ctrl);
2365 if (ret)
2366 goto out_disconnect_admin_queue;
2367
2368 /* sanity checks */
2369
2370 /* FC-NVME does not have other data in the capsule */
2371 if (ctrl->ctrl.icdoff) {
2372 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2373 ctrl->ctrl.icdoff);
2374 goto out_disconnect_admin_queue;
2375 }
2376
2377 nvme_start_keep_alive(&ctrl->ctrl);
2378
2379 /* FC-NVME supports normal SGL Data Block Descriptors */
2380
2381 if (opts->queue_size > ctrl->ctrl.maxcmd) {
2382 /* warn if maxcmd is lower than queue_size */
2383 dev_warn(ctrl->ctrl.device,
2384 "queue_size %zu > ctrl maxcmd %u, reducing "
2385 "to queue_size\n",
2386 opts->queue_size, ctrl->ctrl.maxcmd);
2387 opts->queue_size = ctrl->ctrl.maxcmd;
2388 }
2389
2390 ret = nvme_fc_init_aen_ops(ctrl);
2391 if (ret)
2392 goto out_term_aen_ops;
2393
2394 /*
2395 * Create the io queues
2396 */
2397
2398 if (ctrl->queue_count > 1) {
2399 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2400 ret = nvme_fc_create_io_queues(ctrl);
2401 else
2402 ret = nvme_fc_reinit_io_queues(ctrl);
2403 if (ret)
2404 goto out_term_aen_ops;
2405 }
2406
2407 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2408 WARN_ON_ONCE(!changed);
2409
5bbecdbc 2410 ctrl->ctrl.opts->nr_reconnects = 0;
61bff8ef 2411
61bff8ef
JS
2412 if (ctrl->queue_count > 1) {
2413 nvme_start_queues(&ctrl->ctrl);
2414 nvme_queue_scan(&ctrl->ctrl);
2415 nvme_queue_async_events(&ctrl->ctrl);
2416 }
2417
2418 return 0; /* Success */
2419
2420out_term_aen_ops:
2421 nvme_fc_term_aen_ops(ctrl);
2422 nvme_stop_keep_alive(&ctrl->ctrl);
2423out_disconnect_admin_queue:
2424 /* send a Disconnect(association) LS to fc-nvme target */
2425 nvme_fc_xmt_disconnect_assoc(ctrl);
2426out_delete_hw_queue:
2427 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2428out_free_queue:
2429 nvme_fc_free_queue(&ctrl->queues[0]);
e399441d
JS
2430
2431 return ret;
2432}
2433
61bff8ef
JS
2434/*
2435 * This routine stops operation of the controller on the host side.
2436 * On the host os stack side: Admin and IO queues are stopped,
2437 * outstanding ios on them terminated via FC ABTS.
2438 * On the link side: the association is terminated.
2439 */
2440static void
2441nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2442{
2443 unsigned long flags;
2444
2445 nvme_stop_keep_alive(&ctrl->ctrl);
2446
2447 spin_lock_irqsave(&ctrl->lock, flags);
2448 ctrl->flags |= FCCTRL_TERMIO;
2449 ctrl->iocnt = 0;
2450 spin_unlock_irqrestore(&ctrl->lock, flags);
2451
2452 /*
2453 * If io queues are present, stop them and terminate all outstanding
2454 * ios on them. As FC allocates FC exchange for each io, the
2455 * transport must contact the LLDD to terminate the exchange,
2456 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2457 * to tell us what io's are busy and invoke a transport routine
2458 * to kill them with the LLDD. After terminating the exchange
2459 * the LLDD will call the transport's normal io done path, but it
2460 * will have an aborted status. The done path will return the
2461 * io requests back to the block layer as part of normal completions
2462 * (but with error status).
2463 */
2464 if (ctrl->queue_count > 1) {
2465 nvme_stop_queues(&ctrl->ctrl);
2466 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2467 nvme_fc_terminate_exchange, &ctrl->ctrl);
2468 }
2469
2470 /*
2471 * Other transports, which don't have link-level contexts bound
2472 * to sqe's, would try to gracefully shutdown the controller by
2473 * writing the registers for shutdown and polling (call
2474 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2475 * just aborted and we will wait on those contexts, and given
2476 * there was no indication of how live the controlelr is on the
2477 * link, don't send more io to create more contexts for the
2478 * shutdown. Let the controller fail via keepalive failure if
2479 * its still present.
2480 */
2481
2482 /*
2483 * clean up the admin queue. Same thing as above.
2484 * use blk_mq_tagset_busy_itr() and the transport routine to
2485 * terminate the exchanges.
2486 */
2487 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
2488 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2489 nvme_fc_terminate_exchange, &ctrl->ctrl);
2490
2491 /* kill the aens as they are a separate path */
2492 nvme_fc_abort_aen_ops(ctrl);
2493
2494 /* wait for all io that had to be aborted */
2495 spin_lock_irqsave(&ctrl->lock, flags);
2496 while (ctrl->iocnt) {
2497 spin_unlock_irqrestore(&ctrl->lock, flags);
2498 msleep(1000);
2499 spin_lock_irqsave(&ctrl->lock, flags);
2500 }
2501 ctrl->flags &= ~FCCTRL_TERMIO;
2502 spin_unlock_irqrestore(&ctrl->lock, flags);
2503
2504 nvme_fc_term_aen_ops(ctrl);
2505
2506 /*
2507 * send a Disconnect(association) LS to fc-nvme target
2508 * Note: could have been sent at top of process, but
2509 * cleaner on link traffic if after the aborts complete.
2510 * Note: if association doesn't exist, association_id will be 0
2511 */
2512 if (ctrl->association_id)
2513 nvme_fc_xmt_disconnect_assoc(ctrl);
2514
2515 if (ctrl->ctrl.tagset) {
2516 nvme_fc_delete_hw_io_queues(ctrl);
2517 nvme_fc_free_io_queues(ctrl);
2518 }
2519
2520 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2521 nvme_fc_free_queue(&ctrl->queues[0]);
2522}
2523
2524static void
2525nvme_fc_delete_ctrl_work(struct work_struct *work)
2526{
2527 struct nvme_fc_ctrl *ctrl =
2528 container_of(work, struct nvme_fc_ctrl, delete_work);
2529
2530 cancel_work_sync(&ctrl->reset_work);
2531 cancel_delayed_work_sync(&ctrl->connect_work);
2532
2533 /*
2534 * kill the association on the link side. this will block
2535 * waiting for io to terminate
2536 */
2537 nvme_fc_delete_association(ctrl);
2538
2539 /*
2540 * tear down the controller
a5321aa5
JS
2541 * After the last reference on the nvme ctrl is removed,
2542 * the transport nvme_fc_nvme_ctrl_freed() callback will be
2543 * invoked. From there, the transport will tear down it's
2544 * logical queues and association.
61bff8ef
JS
2545 */
2546 nvme_uninit_ctrl(&ctrl->ctrl);
2547
2548 nvme_put_ctrl(&ctrl->ctrl);
2549}
2550
5bbecdbc
JS
2551static bool
2552__nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl)
61bff8ef
JS
2553{
2554 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
5bbecdbc 2555 return true;
61bff8ef 2556
9a6327d2 2557 if (!queue_work(nvme_wq, &ctrl->delete_work))
5bbecdbc 2558 return true;
61bff8ef 2559
5bbecdbc
JS
2560 return false;
2561}
2562
2563static int
2564__nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2565{
2566 return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0;
61bff8ef
JS
2567}
2568
2569/*
2570 * Request from nvme core layer to delete the controller
2571 */
2572static int
2573nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2574{
2575 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2576 int ret;
2577
2578 if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2579 return -EBUSY;
2580
2581 ret = __nvme_fc_del_ctrl(ctrl);
2582
2583 if (!ret)
9a6327d2 2584 flush_workqueue(nvme_wq);
61bff8ef
JS
2585
2586 nvme_put_ctrl(&ctrl->ctrl);
2587
2588 return ret;
2589}
2590
5bbecdbc
JS
2591static void
2592nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2593{
2594 /* If we are resetting/deleting then do nothing */
2595 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
2596 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
2597 ctrl->ctrl.state == NVME_CTRL_LIVE);
2598 return;
2599 }
2600
589ff775 2601 dev_info(ctrl->ctrl.device,
5bbecdbc
JS
2602 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2603 ctrl->cnum, status);
2604
2605 if (nvmf_should_reconnect(&ctrl->ctrl)) {
2606 dev_info(ctrl->ctrl.device,
2607 "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2608 ctrl->cnum, ctrl->ctrl.opts->reconnect_delay);
9a6327d2 2609 queue_delayed_work(nvme_wq, &ctrl->connect_work,
5bbecdbc
JS
2610 ctrl->ctrl.opts->reconnect_delay * HZ);
2611 } else {
589ff775 2612 dev_warn(ctrl->ctrl.device,
5bbecdbc
JS
2613 "NVME-FC{%d}: Max reconnect attempts (%d) "
2614 "reached. Removing controller\n",
2615 ctrl->cnum, ctrl->ctrl.opts->nr_reconnects);
2616 WARN_ON(__nvme_fc_schedule_delete_work(ctrl));
2617 }
2618}
2619
61bff8ef
JS
2620static void
2621nvme_fc_reset_ctrl_work(struct work_struct *work)
2622{
2623 struct nvme_fc_ctrl *ctrl =
2624 container_of(work, struct nvme_fc_ctrl, reset_work);
2625 int ret;
2626
2627 /* will block will waiting for io to terminate */
2628 nvme_fc_delete_association(ctrl);
2629
2630 ret = nvme_fc_create_association(ctrl);
5bbecdbc
JS
2631 if (ret)
2632 nvme_fc_reconnect_or_delete(ctrl, ret);
2633 else
61bff8ef
JS
2634 dev_info(ctrl->ctrl.device,
2635 "NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2636}
2637
2638/*
2639 * called by the nvme core layer, for sysfs interface that requests
2640 * a reset of the nvme controller
2641 */
2642static int
2643nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl)
2644{
2645 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2646
589ff775 2647 dev_info(ctrl->ctrl.device,
61bff8ef
JS
2648 "NVME-FC{%d}: admin requested controller reset\n", ctrl->cnum);
2649
2650 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
2651 return -EBUSY;
2652
9a6327d2 2653 if (!queue_work(nvme_wq, &ctrl->reset_work))
61bff8ef
JS
2654 return -EBUSY;
2655
2656 flush_work(&ctrl->reset_work);
2657
2658 return 0;
2659}
2660
2661static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2662 .name = "fc",
2663 .module = THIS_MODULE,
d3d5b87d 2664 .flags = NVME_F_FABRICS,
61bff8ef
JS
2665 .reg_read32 = nvmf_reg_read32,
2666 .reg_read64 = nvmf_reg_read64,
2667 .reg_write32 = nvmf_reg_write32,
2668 .reset_ctrl = nvme_fc_reset_nvme_ctrl,
2669 .free_ctrl = nvme_fc_nvme_ctrl_freed,
2670 .submit_async_event = nvme_fc_submit_async_event,
2671 .delete_ctrl = nvme_fc_del_nvme_ctrl,
2672 .get_subsysnqn = nvmf_get_subsysnqn,
2673 .get_address = nvmf_get_address,
2674};
2675
2676static void
2677nvme_fc_connect_ctrl_work(struct work_struct *work)
2678{
2679 int ret;
2680
2681 struct nvme_fc_ctrl *ctrl =
2682 container_of(to_delayed_work(work),
2683 struct nvme_fc_ctrl, connect_work);
2684
2685 ret = nvme_fc_create_association(ctrl);
5bbecdbc
JS
2686 if (ret)
2687 nvme_fc_reconnect_or_delete(ctrl, ret);
2688 else
61bff8ef
JS
2689 dev_info(ctrl->ctrl.device,
2690 "NVME-FC{%d}: controller reconnect complete\n",
2691 ctrl->cnum);
2692}
2693
2694
2695static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2696 .queue_rq = nvme_fc_queue_rq,
2697 .complete = nvme_fc_complete_rq,
2698 .init_request = nvme_fc_init_admin_request,
2699 .exit_request = nvme_fc_exit_request,
2700 .reinit_request = nvme_fc_reinit_request,
2701 .init_hctx = nvme_fc_init_admin_hctx,
2702 .timeout = nvme_fc_timeout,
2703};
2704
e399441d
JS
2705
2706static struct nvme_ctrl *
61bff8ef 2707nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
e399441d
JS
2708 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2709{
2710 struct nvme_fc_ctrl *ctrl;
2711 unsigned long flags;
2712 int ret, idx;
e399441d 2713
85e6a6ad
JS
2714 if (!(rport->remoteport.port_role &
2715 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2716 ret = -EBADR;
2717 goto out_fail;
2718 }
2719
e399441d
JS
2720 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2721 if (!ctrl) {
2722 ret = -ENOMEM;
2723 goto out_fail;
2724 }
2725
2726 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2727 if (idx < 0) {
2728 ret = -ENOSPC;
2729 goto out_free_ctrl;
2730 }
2731
2732 ctrl->ctrl.opts = opts;
2733 INIT_LIST_HEAD(&ctrl->ctrl_list);
e399441d
JS
2734 ctrl->lport = lport;
2735 ctrl->rport = rport;
2736 ctrl->dev = lport->dev;
e399441d
JS
2737 ctrl->cnum = idx;
2738
e399441d
JS
2739 get_device(ctrl->dev);
2740 kref_init(&ctrl->ref);
2741
61bff8ef
JS
2742 INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
2743 INIT_WORK(&ctrl->reset_work, nvme_fc_reset_ctrl_work);
2744 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
e399441d
JS
2745 spin_lock_init(&ctrl->lock);
2746
2747 /* io queue count */
2748 ctrl->queue_count = min_t(unsigned int,
2749 opts->nr_io_queues,
2750 lport->ops->max_hw_queues);
2751 opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */
2752 ctrl->queue_count++; /* +1 for admin queue */
2753
2754 ctrl->ctrl.sqsize = opts->queue_size - 1;
2755 ctrl->ctrl.kato = opts->kato;
2756
2757 ret = -ENOMEM;
2758 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
2759 GFP_KERNEL);
2760 if (!ctrl->queues)
61bff8ef 2761 goto out_free_ida;
e399441d 2762
61bff8ef
JS
2763 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2764 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2765 ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2766 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2767 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2768 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2769 (SG_CHUNK_SIZE *
2770 sizeof(struct scatterlist)) +
2771 ctrl->lport->ops->fcprqst_priv_sz;
2772 ctrl->admin_tag_set.driver_data = ctrl;
2773 ctrl->admin_tag_set.nr_hw_queues = 1;
2774 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
e399441d 2775
61bff8ef 2776 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
e399441d 2777 if (ret)
61bff8ef 2778 goto out_free_queues;
e399441d 2779
61bff8ef
JS
2780 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2781 if (IS_ERR(ctrl->ctrl.admin_q)) {
2782 ret = PTR_ERR(ctrl->ctrl.admin_q);
2783 goto out_free_admin_tag_set;
e399441d
JS
2784 }
2785
61bff8ef
JS
2786 /*
2787 * Would have been nice to init io queues tag set as well.
2788 * However, we require interaction from the controller
2789 * for max io queue count before we can do so.
2790 * Defer this to the connect path.
2791 */
e399441d 2792
61bff8ef
JS
2793 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2794 if (ret)
2795 goto out_cleanup_admin_q;
e399441d 2796
61bff8ef 2797 /* at this point, teardown path changes to ref counting on nvme ctrl */
e399441d
JS
2798
2799 spin_lock_irqsave(&rport->lock, flags);
2800 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2801 spin_unlock_irqrestore(&rport->lock, flags);
2802
61bff8ef
JS
2803 ret = nvme_fc_create_association(ctrl);
2804 if (ret) {
de41447a 2805 ctrl->ctrl.opts = NULL;
61bff8ef
JS
2806 /* initiate nvme ctrl ref counting teardown */
2807 nvme_uninit_ctrl(&ctrl->ctrl);
24b7f059 2808 nvme_put_ctrl(&ctrl->ctrl);
61bff8ef
JS
2809
2810 /* as we're past the point where we transition to the ref
2811 * counting teardown path, if we return a bad pointer here,
2812 * the calling routine, thinking it's prior to the
2813 * transition, will do an rport put. Since the teardown
2814 * path also does a rport put, we do an extra get here to
2815 * so proper order/teardown happens.
2816 */
2817 nvme_fc_rport_get(rport);
2818
2819 if (ret > 0)
2820 ret = -EIO;
2821 return ERR_PTR(ret);
e399441d
JS
2822 }
2823
2cb657bc
JS
2824 kref_get(&ctrl->ctrl.kref);
2825
61bff8ef
JS
2826 dev_info(ctrl->ctrl.device,
2827 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2828 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
e399441d 2829
61bff8ef 2830 return &ctrl->ctrl;
e399441d 2831
61bff8ef
JS
2832out_cleanup_admin_q:
2833 blk_cleanup_queue(ctrl->ctrl.admin_q);
2834out_free_admin_tag_set:
2835 blk_mq_free_tag_set(&ctrl->admin_tag_set);
2836out_free_queues:
2837 kfree(ctrl->queues);
e399441d 2838out_free_ida:
61bff8ef 2839 put_device(ctrl->dev);
e399441d
JS
2840 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2841out_free_ctrl:
2842 kfree(ctrl);
2843out_fail:
e399441d
JS
2844 /* exit via here doesn't follow ctlr ref points */
2845 return ERR_PTR(ret);
2846}
2847
2848enum {
2849 FCT_TRADDR_ERR = 0,
2850 FCT_TRADDR_WWNN = 1 << 0,
2851 FCT_TRADDR_WWPN = 1 << 1,
2852};
2853
2854struct nvmet_fc_traddr {
2855 u64 nn;
2856 u64 pn;
2857};
2858
2859static const match_table_t traddr_opt_tokens = {
2860 { FCT_TRADDR_WWNN, "nn-%s" },
2861 { FCT_TRADDR_WWPN, "pn-%s" },
2862 { FCT_TRADDR_ERR, NULL }
2863};
2864
2865static int
2866nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2867{
2868 substring_t args[MAX_OPT_ARGS];
2869 char *options, *o, *p;
2870 int token, ret = 0;
2871 u64 token64;
2872
2873 options = o = kstrdup(buf, GFP_KERNEL);
2874 if (!options)
2875 return -ENOMEM;
2876
2877 while ((p = strsep(&o, ":\n")) != NULL) {
2878 if (!*p)
2879 continue;
2880
2881 token = match_token(p, traddr_opt_tokens, args);
2882 switch (token) {
2883 case FCT_TRADDR_WWNN:
2884 if (match_u64(args, &token64)) {
2885 ret = -EINVAL;
2886 goto out;
2887 }
2888 traddr->nn = token64;
2889 break;
2890 case FCT_TRADDR_WWPN:
2891 if (match_u64(args, &token64)) {
2892 ret = -EINVAL;
2893 goto out;
2894 }
2895 traddr->pn = token64;
2896 break;
2897 default:
2898 pr_warn("unknown traddr token or missing value '%s'\n",
2899 p);
2900 ret = -EINVAL;
2901 goto out;
2902 }
2903 }
2904
2905out:
2906 kfree(options);
2907 return ret;
2908}
2909
2910static struct nvme_ctrl *
2911nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2912{
2913 struct nvme_fc_lport *lport;
2914 struct nvme_fc_rport *rport;
61bff8ef 2915 struct nvme_ctrl *ctrl;
e399441d
JS
2916 struct nvmet_fc_traddr laddr = { 0L, 0L };
2917 struct nvmet_fc_traddr raddr = { 0L, 0L };
2918 unsigned long flags;
2919 int ret;
2920
2921 ret = nvme_fc_parse_address(&raddr, opts->traddr);
2922 if (ret || !raddr.nn || !raddr.pn)
2923 return ERR_PTR(-EINVAL);
2924
2925 ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2926 if (ret || !laddr.nn || !laddr.pn)
2927 return ERR_PTR(-EINVAL);
2928
2929 /* find the host and remote ports to connect together */
2930 spin_lock_irqsave(&nvme_fc_lock, flags);
2931 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2932 if (lport->localport.node_name != laddr.nn ||
2933 lport->localport.port_name != laddr.pn)
2934 continue;
2935
2936 list_for_each_entry(rport, &lport->endp_list, endp_list) {
2937 if (rport->remoteport.node_name != raddr.nn ||
2938 rport->remoteport.port_name != raddr.pn)
2939 continue;
2940
2941 /* if fail to get reference fall through. Will error */
2942 if (!nvme_fc_rport_get(rport))
2943 break;
2944
2945 spin_unlock_irqrestore(&nvme_fc_lock, flags);
2946
61bff8ef
JS
2947 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
2948 if (IS_ERR(ctrl))
2949 nvme_fc_rport_put(rport);
2950 return ctrl;
e399441d
JS
2951 }
2952 }
2953 spin_unlock_irqrestore(&nvme_fc_lock, flags);
2954
2955 return ERR_PTR(-ENOENT);
2956}
2957
2958
2959static struct nvmf_transport_ops nvme_fc_transport = {
2960 .name = "fc",
2961 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
5bbecdbc 2962 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
e399441d
JS
2963 .create_ctrl = nvme_fc_create_ctrl,
2964};
2965
2966static int __init nvme_fc_init_module(void)
2967{
9a6327d2 2968 return nvmf_register_transport(&nvme_fc_transport);
e399441d
JS
2969}
2970
2971static void __exit nvme_fc_exit_module(void)
2972{
2973 /* sanity check - all lports should be removed */
2974 if (!list_empty(&nvme_fc_lport_list))
2975 pr_warn("%s: localport list not empty\n", __func__);
2976
2977 nvmf_unregister_transport(&nvme_fc_transport);
2978
e399441d
JS
2979 ida_destroy(&nvme_fc_local_port_cnt);
2980 ida_destroy(&nvme_fc_ctrl_cnt);
2981}
2982
2983module_init(nvme_fc_init_module);
2984module_exit(nvme_fc_exit_module);
2985
2986MODULE_LICENSE("GPL v2");