]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/nvme/host/fc.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / fc.c
CommitLineData
e399441d
JS
1/*
2 * Copyright (c) 2016 Avago Technologies. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful.
9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13 * See the GNU General Public License for more details, a copy of which
14 * can be found in the file COPYING included with this package
15 *
16 */
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18#include <linux/module.h>
19#include <linux/parser.h>
20#include <uapi/scsi/fc/fc_fs.h>
21#include <uapi/scsi/fc/fc_els.h>
61bff8ef 22#include <linux/delay.h>
e399441d
JS
23
24#include "nvme.h"
25#include "fabrics.h"
26#include <linux/nvme-fc-driver.h>
27#include <linux/nvme-fc.h>
28
29
30/* *************************** Data Structures/Defines ****************** */
31
32
33/*
34 * We handle AEN commands ourselves and don't even let the
35 * block layer know about them.
36 */
37#define NVME_FC_NR_AEN_COMMANDS 1
38#define NVME_FC_AQ_BLKMQ_DEPTH \
39 (NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
40#define AEN_CMDID_BASE (NVME_FC_AQ_BLKMQ_DEPTH + 1)
41
42enum nvme_fc_queue_flags {
43 NVME_FC_Q_CONNECTED = (1 << 0),
44};
45
46#define NVMEFC_QUEUE_DELAY 3 /* ms units */
47
48struct nvme_fc_queue {
49 struct nvme_fc_ctrl *ctrl;
50 struct device *dev;
51 struct blk_mq_hw_ctx *hctx;
52 void *lldd_handle;
53 int queue_size;
54 size_t cmnd_capsule_len;
55 u32 qnum;
56 u32 rqcnt;
57 u32 seqno;
58
59 u64 connection_id;
60 atomic_t csn;
61
62 unsigned long flags;
63} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
64
8d64daf7
JS
65enum nvme_fcop_flags {
66 FCOP_FLAGS_TERMIO = (1 << 0),
67 FCOP_FLAGS_RELEASED = (1 << 1),
68 FCOP_FLAGS_COMPLETE = (1 << 2),
78a7ac26 69 FCOP_FLAGS_AEN = (1 << 3),
8d64daf7
JS
70};
71
e399441d
JS
72struct nvmefc_ls_req_op {
73 struct nvmefc_ls_req ls_req;
74
c913a8b0 75 struct nvme_fc_rport *rport;
e399441d
JS
76 struct nvme_fc_queue *queue;
77 struct request *rq;
8d64daf7 78 u32 flags;
e399441d
JS
79
80 int ls_error;
81 struct completion ls_done;
c913a8b0 82 struct list_head lsreq_list; /* rport->ls_req_list */
e399441d
JS
83 bool req_queued;
84};
85
86enum nvme_fcpop_state {
87 FCPOP_STATE_UNINIT = 0,
88 FCPOP_STATE_IDLE = 1,
89 FCPOP_STATE_ACTIVE = 2,
90 FCPOP_STATE_ABORTED = 3,
78a7ac26 91 FCPOP_STATE_COMPLETE = 4,
e399441d
JS
92};
93
94struct nvme_fc_fcp_op {
95 struct nvme_request nreq; /*
96 * nvme/host/core.c
97 * requires this to be
98 * the 1st element in the
99 * private structure
100 * associated with the
101 * request.
102 */
103 struct nvmefc_fcp_req fcp_req;
104
105 struct nvme_fc_ctrl *ctrl;
106 struct nvme_fc_queue *queue;
107 struct request *rq;
108
109 atomic_t state;
78a7ac26 110 u32 flags;
e399441d
JS
111 u32 rqno;
112 u32 nents;
113
114 struct nvme_fc_cmd_iu cmd_iu;
115 struct nvme_fc_ersp_iu rsp_iu;
116};
117
118struct nvme_fc_lport {
119 struct nvme_fc_local_port localport;
120
121 struct ida endp_cnt;
122 struct list_head port_list; /* nvme_fc_port_list */
123 struct list_head endp_list;
124 struct device *dev; /* physical device for dma */
125 struct nvme_fc_port_template *ops;
126 struct kref ref;
127} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
128
129struct nvme_fc_rport {
130 struct nvme_fc_remote_port remoteport;
131
132 struct list_head endp_list; /* for lport->endp_list */
133 struct list_head ctrl_list;
c913a8b0
JS
134 struct list_head ls_req_list;
135 struct device *dev; /* physical device for dma */
136 struct nvme_fc_lport *lport;
e399441d
JS
137 spinlock_t lock;
138 struct kref ref;
139} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
140
61bff8ef
JS
141enum nvme_fcctrl_flags {
142 FCCTRL_TERMIO = (1 << 0),
e399441d
JS
143};
144
145struct nvme_fc_ctrl {
146 spinlock_t lock;
147 struct nvme_fc_queue *queues;
e399441d
JS
148 struct device *dev;
149 struct nvme_fc_lport *lport;
150 struct nvme_fc_rport *rport;
61bff8ef 151 u32 queue_count;
e399441d
JS
152 u32 cnum;
153
154 u64 association_id;
155
156 u64 cap;
157
158 struct list_head ctrl_list; /* rport->ctrl_list */
e399441d
JS
159
160 struct blk_mq_tag_set admin_tag_set;
161 struct blk_mq_tag_set tag_set;
162
163 struct work_struct delete_work;
61bff8ef
JS
164 struct work_struct reset_work;
165 struct delayed_work connect_work;
61bff8ef 166
e399441d 167 struct kref ref;
61bff8ef
JS
168 u32 flags;
169 u32 iocnt;
e399441d
JS
170
171 struct nvme_fc_fcp_op aen_ops[NVME_FC_NR_AEN_COMMANDS];
172
173 struct nvme_ctrl ctrl;
174};
175
176static inline struct nvme_fc_ctrl *
177to_fc_ctrl(struct nvme_ctrl *ctrl)
178{
179 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
180}
181
182static inline struct nvme_fc_lport *
183localport_to_lport(struct nvme_fc_local_port *portptr)
184{
185 return container_of(portptr, struct nvme_fc_lport, localport);
186}
187
188static inline struct nvme_fc_rport *
189remoteport_to_rport(struct nvme_fc_remote_port *portptr)
190{
191 return container_of(portptr, struct nvme_fc_rport, remoteport);
192}
193
194static inline struct nvmefc_ls_req_op *
195ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
196{
197 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
198}
199
200static inline struct nvme_fc_fcp_op *
201fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
202{
203 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
204}
205
206
207
208/* *************************** Globals **************************** */
209
210
211static DEFINE_SPINLOCK(nvme_fc_lock);
212
213static LIST_HEAD(nvme_fc_lport_list);
214static DEFINE_IDA(nvme_fc_local_port_cnt);
215static DEFINE_IDA(nvme_fc_ctrl_cnt);
216
217static struct workqueue_struct *nvme_fc_wq;
218
219
220
221/* *********************** FC-NVME Port Management ************************ */
222
223static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
224static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
225 struct nvme_fc_queue *, unsigned int);
226
227
228/**
229 * nvme_fc_register_localport - transport entry point called by an
230 * LLDD to register the existence of a NVME
231 * host FC port.
232 * @pinfo: pointer to information about the port to be registered
233 * @template: LLDD entrypoints and operational parameters for the port
234 * @dev: physical hardware device node port corresponds to. Will be
235 * used for DMA mappings
236 * @lport_p: pointer to a local port pointer. Upon success, the routine
237 * will allocate a nvme_fc_local_port structure and place its
238 * address in the local port pointer. Upon failure, local port
239 * pointer will be set to 0.
240 *
241 * Returns:
242 * a completion status. Must be 0 upon success; a negative errno
243 * (ex: -ENXIO) upon failure.
244 */
245int
246nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
247 struct nvme_fc_port_template *template,
248 struct device *dev,
249 struct nvme_fc_local_port **portptr)
250{
251 struct nvme_fc_lport *newrec;
252 unsigned long flags;
253 int ret, idx;
254
255 if (!template->localport_delete || !template->remoteport_delete ||
256 !template->ls_req || !template->fcp_io ||
257 !template->ls_abort || !template->fcp_abort ||
258 !template->max_hw_queues || !template->max_sgl_segments ||
259 !template->max_dif_sgl_segments || !template->dma_boundary) {
260 ret = -EINVAL;
261 goto out_reghost_failed;
262 }
263
264 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
265 GFP_KERNEL);
266 if (!newrec) {
267 ret = -ENOMEM;
268 goto out_reghost_failed;
269 }
270
271 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
272 if (idx < 0) {
273 ret = -ENOSPC;
274 goto out_fail_kfree;
275 }
276
277 if (!get_device(dev) && dev) {
278 ret = -ENODEV;
279 goto out_ida_put;
280 }
281
282 INIT_LIST_HEAD(&newrec->port_list);
283 INIT_LIST_HEAD(&newrec->endp_list);
284 kref_init(&newrec->ref);
285 newrec->ops = template;
286 newrec->dev = dev;
287 ida_init(&newrec->endp_cnt);
288 newrec->localport.private = &newrec[1];
289 newrec->localport.node_name = pinfo->node_name;
290 newrec->localport.port_name = pinfo->port_name;
291 newrec->localport.port_role = pinfo->port_role;
292 newrec->localport.port_id = pinfo->port_id;
293 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
294 newrec->localport.port_num = idx;
295
296 spin_lock_irqsave(&nvme_fc_lock, flags);
297 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
298 spin_unlock_irqrestore(&nvme_fc_lock, flags);
299
300 if (dev)
301 dma_set_seg_boundary(dev, template->dma_boundary);
302
303 *portptr = &newrec->localport;
304 return 0;
305
306out_ida_put:
307 ida_simple_remove(&nvme_fc_local_port_cnt, idx);
308out_fail_kfree:
309 kfree(newrec);
310out_reghost_failed:
311 *portptr = NULL;
312
313 return ret;
314}
315EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
316
317static void
318nvme_fc_free_lport(struct kref *ref)
319{
320 struct nvme_fc_lport *lport =
321 container_of(ref, struct nvme_fc_lport, ref);
322 unsigned long flags;
323
324 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
325 WARN_ON(!list_empty(&lport->endp_list));
326
327 /* remove from transport list */
328 spin_lock_irqsave(&nvme_fc_lock, flags);
329 list_del(&lport->port_list);
330 spin_unlock_irqrestore(&nvme_fc_lock, flags);
331
332 /* let the LLDD know we've finished tearing it down */
333 lport->ops->localport_delete(&lport->localport);
334
335 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
336 ida_destroy(&lport->endp_cnt);
337
338 put_device(lport->dev);
339
340 kfree(lport);
341}
342
343static void
344nvme_fc_lport_put(struct nvme_fc_lport *lport)
345{
346 kref_put(&lport->ref, nvme_fc_free_lport);
347}
348
349static int
350nvme_fc_lport_get(struct nvme_fc_lport *lport)
351{
352 return kref_get_unless_zero(&lport->ref);
353}
354
355/**
356 * nvme_fc_unregister_localport - transport entry point called by an
357 * LLDD to deregister/remove a previously
358 * registered a NVME host FC port.
359 * @localport: pointer to the (registered) local port that is to be
360 * deregistered.
361 *
362 * Returns:
363 * a completion status. Must be 0 upon success; a negative errno
364 * (ex: -ENXIO) upon failure.
365 */
366int
367nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
368{
369 struct nvme_fc_lport *lport = localport_to_lport(portptr);
370 unsigned long flags;
371
372 if (!portptr)
373 return -EINVAL;
374
375 spin_lock_irqsave(&nvme_fc_lock, flags);
376
377 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
378 spin_unlock_irqrestore(&nvme_fc_lock, flags);
379 return -EINVAL;
380 }
381 portptr->port_state = FC_OBJSTATE_DELETED;
382
383 spin_unlock_irqrestore(&nvme_fc_lock, flags);
384
385 nvme_fc_lport_put(lport);
386
387 return 0;
388}
389EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
390
391/**
392 * nvme_fc_register_remoteport - transport entry point called by an
393 * LLDD to register the existence of a NVME
394 * subsystem FC port on its fabric.
395 * @localport: pointer to the (registered) local port that the remote
396 * subsystem port is connected to.
397 * @pinfo: pointer to information about the port to be registered
398 * @rport_p: pointer to a remote port pointer. Upon success, the routine
399 * will allocate a nvme_fc_remote_port structure and place its
400 * address in the remote port pointer. Upon failure, remote port
401 * pointer will be set to 0.
402 *
403 * Returns:
404 * a completion status. Must be 0 upon success; a negative errno
405 * (ex: -ENXIO) upon failure.
406 */
407int
408nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
409 struct nvme_fc_port_info *pinfo,
410 struct nvme_fc_remote_port **portptr)
411{
412 struct nvme_fc_lport *lport = localport_to_lport(localport);
413 struct nvme_fc_rport *newrec;
414 unsigned long flags;
415 int ret, idx;
416
417 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
418 GFP_KERNEL);
419 if (!newrec) {
420 ret = -ENOMEM;
421 goto out_reghost_failed;
422 }
423
424 if (!nvme_fc_lport_get(lport)) {
425 ret = -ESHUTDOWN;
426 goto out_kfree_rport;
427 }
428
429 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
430 if (idx < 0) {
431 ret = -ENOSPC;
432 goto out_lport_put;
433 }
434
435 INIT_LIST_HEAD(&newrec->endp_list);
436 INIT_LIST_HEAD(&newrec->ctrl_list);
c913a8b0 437 INIT_LIST_HEAD(&newrec->ls_req_list);
e399441d
JS
438 kref_init(&newrec->ref);
439 spin_lock_init(&newrec->lock);
440 newrec->remoteport.localport = &lport->localport;
c913a8b0
JS
441 newrec->dev = lport->dev;
442 newrec->lport = lport;
e399441d
JS
443 newrec->remoteport.private = &newrec[1];
444 newrec->remoteport.port_role = pinfo->port_role;
445 newrec->remoteport.node_name = pinfo->node_name;
446 newrec->remoteport.port_name = pinfo->port_name;
447 newrec->remoteport.port_id = pinfo->port_id;
448 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
449 newrec->remoteport.port_num = idx;
450
451 spin_lock_irqsave(&nvme_fc_lock, flags);
452 list_add_tail(&newrec->endp_list, &lport->endp_list);
453 spin_unlock_irqrestore(&nvme_fc_lock, flags);
454
455 *portptr = &newrec->remoteport;
456 return 0;
457
458out_lport_put:
459 nvme_fc_lport_put(lport);
460out_kfree_rport:
461 kfree(newrec);
462out_reghost_failed:
463 *portptr = NULL;
464 return ret;
e399441d
JS
465}
466EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
467
468static void
469nvme_fc_free_rport(struct kref *ref)
470{
471 struct nvme_fc_rport *rport =
472 container_of(ref, struct nvme_fc_rport, ref);
473 struct nvme_fc_lport *lport =
474 localport_to_lport(rport->remoteport.localport);
475 unsigned long flags;
476
477 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
478 WARN_ON(!list_empty(&rport->ctrl_list));
479
480 /* remove from lport list */
481 spin_lock_irqsave(&nvme_fc_lock, flags);
482 list_del(&rport->endp_list);
483 spin_unlock_irqrestore(&nvme_fc_lock, flags);
484
485 /* let the LLDD know we've finished tearing it down */
486 lport->ops->remoteport_delete(&rport->remoteport);
487
488 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
489
490 kfree(rport);
491
492 nvme_fc_lport_put(lport);
493}
494
495static void
496nvme_fc_rport_put(struct nvme_fc_rport *rport)
497{
498 kref_put(&rport->ref, nvme_fc_free_rport);
499}
500
501static int
502nvme_fc_rport_get(struct nvme_fc_rport *rport)
503{
504 return kref_get_unless_zero(&rport->ref);
505}
506
8d64daf7
JS
507static int
508nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
509{
510 struct nvmefc_ls_req_op *lsop;
511 unsigned long flags;
512
513restart:
514 spin_lock_irqsave(&rport->lock, flags);
515
516 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
517 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
518 lsop->flags |= FCOP_FLAGS_TERMIO;
519 spin_unlock_irqrestore(&rport->lock, flags);
520 rport->lport->ops->ls_abort(&rport->lport->localport,
521 &rport->remoteport,
522 &lsop->ls_req);
523 goto restart;
524 }
525 }
526 spin_unlock_irqrestore(&rport->lock, flags);
527
528 return 0;
529}
530
e399441d
JS
531/**
532 * nvme_fc_unregister_remoteport - transport entry point called by an
533 * LLDD to deregister/remove a previously
534 * registered a NVME subsystem FC port.
535 * @remoteport: pointer to the (registered) remote port that is to be
536 * deregistered.
537 *
538 * Returns:
539 * a completion status. Must be 0 upon success; a negative errno
540 * (ex: -ENXIO) upon failure.
541 */
542int
543nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
544{
545 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
546 struct nvme_fc_ctrl *ctrl;
547 unsigned long flags;
548
549 if (!portptr)
550 return -EINVAL;
551
552 spin_lock_irqsave(&rport->lock, flags);
553
554 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
555 spin_unlock_irqrestore(&rport->lock, flags);
556 return -EINVAL;
557 }
558 portptr->port_state = FC_OBJSTATE_DELETED;
559
560 /* tear down all associations to the remote port */
561 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
562 __nvme_fc_del_ctrl(ctrl);
563
564 spin_unlock_irqrestore(&rport->lock, flags);
565
8d64daf7
JS
566 nvme_fc_abort_lsops(rport);
567
e399441d
JS
568 nvme_fc_rport_put(rport);
569 return 0;
570}
571EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
572
573
574/* *********************** FC-NVME DMA Handling **************************** */
575
576/*
577 * The fcloop device passes in a NULL device pointer. Real LLD's will
578 * pass in a valid device pointer. If NULL is passed to the dma mapping
579 * routines, depending on the platform, it may or may not succeed, and
580 * may crash.
581 *
582 * As such:
583 * Wrapper all the dma routines and check the dev pointer.
584 *
585 * If simple mappings (return just a dma address, we'll noop them,
586 * returning a dma address of 0.
587 *
588 * On more complex mappings (dma_map_sg), a pseudo routine fills
589 * in the scatter list, setting all dma addresses to 0.
590 */
591
592static inline dma_addr_t
593fc_dma_map_single(struct device *dev, void *ptr, size_t size,
594 enum dma_data_direction dir)
595{
596 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
597}
598
599static inline int
600fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
601{
602 return dev ? dma_mapping_error(dev, dma_addr) : 0;
603}
604
605static inline void
606fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
607 enum dma_data_direction dir)
608{
609 if (dev)
610 dma_unmap_single(dev, addr, size, dir);
611}
612
613static inline void
614fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
615 enum dma_data_direction dir)
616{
617 if (dev)
618 dma_sync_single_for_cpu(dev, addr, size, dir);
619}
620
621static inline void
622fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
623 enum dma_data_direction dir)
624{
625 if (dev)
626 dma_sync_single_for_device(dev, addr, size, dir);
627}
628
629/* pseudo dma_map_sg call */
630static int
631fc_map_sg(struct scatterlist *sg, int nents)
632{
633 struct scatterlist *s;
634 int i;
635
636 WARN_ON(nents == 0 || sg[0].length == 0);
637
638 for_each_sg(sg, s, nents, i) {
639 s->dma_address = 0L;
640#ifdef CONFIG_NEED_SG_DMA_LENGTH
641 s->dma_length = s->length;
642#endif
643 }
644 return nents;
645}
646
647static inline int
648fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
649 enum dma_data_direction dir)
650{
651 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
652}
653
654static inline void
655fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
656 enum dma_data_direction dir)
657{
658 if (dev)
659 dma_unmap_sg(dev, sg, nents, dir);
660}
661
662
663/* *********************** FC-NVME LS Handling **************************** */
664
665static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
666static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
667
668
669static void
c913a8b0 670__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
e399441d 671{
c913a8b0 672 struct nvme_fc_rport *rport = lsop->rport;
e399441d
JS
673 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
674 unsigned long flags;
675
c913a8b0 676 spin_lock_irqsave(&rport->lock, flags);
e399441d
JS
677
678 if (!lsop->req_queued) {
c913a8b0 679 spin_unlock_irqrestore(&rport->lock, flags);
e399441d
JS
680 return;
681 }
682
683 list_del(&lsop->lsreq_list);
684
685 lsop->req_queued = false;
686
c913a8b0 687 spin_unlock_irqrestore(&rport->lock, flags);
e399441d 688
c913a8b0 689 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
e399441d
JS
690 (lsreq->rqstlen + lsreq->rsplen),
691 DMA_BIDIRECTIONAL);
692
c913a8b0 693 nvme_fc_rport_put(rport);
e399441d
JS
694}
695
696static int
c913a8b0 697__nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
e399441d
JS
698 struct nvmefc_ls_req_op *lsop,
699 void (*done)(struct nvmefc_ls_req *req, int status))
700{
701 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
702 unsigned long flags;
c913a8b0 703 int ret = 0;
e399441d 704
c913a8b0
JS
705 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
706 return -ECONNREFUSED;
707
708 if (!nvme_fc_rport_get(rport))
e399441d
JS
709 return -ESHUTDOWN;
710
711 lsreq->done = done;
c913a8b0 712 lsop->rport = rport;
e399441d
JS
713 lsop->req_queued = false;
714 INIT_LIST_HEAD(&lsop->lsreq_list);
715 init_completion(&lsop->ls_done);
716
c913a8b0 717 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
e399441d
JS
718 lsreq->rqstlen + lsreq->rsplen,
719 DMA_BIDIRECTIONAL);
c913a8b0
JS
720 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
721 ret = -EFAULT;
722 goto out_putrport;
e399441d
JS
723 }
724 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
725
c913a8b0 726 spin_lock_irqsave(&rport->lock, flags);
e399441d 727
c913a8b0 728 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
e399441d
JS
729
730 lsop->req_queued = true;
731
c913a8b0 732 spin_unlock_irqrestore(&rport->lock, flags);
e399441d 733
c913a8b0
JS
734 ret = rport->lport->ops->ls_req(&rport->lport->localport,
735 &rport->remoteport, lsreq);
e399441d 736 if (ret)
c913a8b0
JS
737 goto out_unlink;
738
739 return 0;
740
741out_unlink:
742 lsop->ls_error = ret;
743 spin_lock_irqsave(&rport->lock, flags);
744 lsop->req_queued = false;
745 list_del(&lsop->lsreq_list);
746 spin_unlock_irqrestore(&rport->lock, flags);
747 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
748 (lsreq->rqstlen + lsreq->rsplen),
749 DMA_BIDIRECTIONAL);
750out_putrport:
751 nvme_fc_rport_put(rport);
e399441d
JS
752
753 return ret;
754}
755
756static void
757nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
758{
759 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
760
761 lsop->ls_error = status;
762 complete(&lsop->ls_done);
763}
764
765static int
c913a8b0 766nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
e399441d
JS
767{
768 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
769 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
770 int ret;
771
c913a8b0 772 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
e399441d 773
c913a8b0 774 if (!ret) {
e399441d
JS
775 /*
776 * No timeout/not interruptible as we need the struct
777 * to exist until the lldd calls us back. Thus mandate
778 * wait until driver calls back. lldd responsible for
779 * the timeout action
780 */
781 wait_for_completion(&lsop->ls_done);
782
c913a8b0 783 __nvme_fc_finish_ls_req(lsop);
e399441d 784
c913a8b0 785 ret = lsop->ls_error;
e399441d
JS
786 }
787
c913a8b0
JS
788 if (ret)
789 return ret;
790
e399441d
JS
791 /* ACC or RJT payload ? */
792 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
793 return -ENXIO;
794
795 return 0;
796}
797
c913a8b0
JS
798static int
799nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
e399441d
JS
800 struct nvmefc_ls_req_op *lsop,
801 void (*done)(struct nvmefc_ls_req *req, int status))
802{
e399441d
JS
803 /* don't wait for completion */
804
c913a8b0 805 return __nvme_fc_send_ls_req(rport, lsop, done);
e399441d
JS
806}
807
808/* Validation Error indexes into the string table below */
809enum {
810 VERR_NO_ERROR = 0,
811 VERR_LSACC = 1,
812 VERR_LSDESC_RQST = 2,
813 VERR_LSDESC_RQST_LEN = 3,
814 VERR_ASSOC_ID = 4,
815 VERR_ASSOC_ID_LEN = 5,
816 VERR_CONN_ID = 6,
817 VERR_CONN_ID_LEN = 7,
818 VERR_CR_ASSOC = 8,
819 VERR_CR_ASSOC_ACC_LEN = 9,
820 VERR_CR_CONN = 10,
821 VERR_CR_CONN_ACC_LEN = 11,
822 VERR_DISCONN = 12,
823 VERR_DISCONN_ACC_LEN = 13,
824};
825
826static char *validation_errors[] = {
827 "OK",
828 "Not LS_ACC",
829 "Not LSDESC_RQST",
830 "Bad LSDESC_RQST Length",
831 "Not Association ID",
832 "Bad Association ID Length",
833 "Not Connection ID",
834 "Bad Connection ID Length",
835 "Not CR_ASSOC Rqst",
836 "Bad CR_ASSOC ACC Length",
837 "Not CR_CONN Rqst",
838 "Bad CR_CONN ACC Length",
839 "Not Disconnect Rqst",
840 "Bad Disconnect ACC Length",
841};
842
843static int
844nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
845 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
846{
847 struct nvmefc_ls_req_op *lsop;
848 struct nvmefc_ls_req *lsreq;
849 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
850 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
851 int ret, fcret = 0;
852
853 lsop = kzalloc((sizeof(*lsop) +
854 ctrl->lport->ops->lsrqst_priv_sz +
855 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
856 if (!lsop) {
857 ret = -ENOMEM;
858 goto out_no_memory;
859 }
860 lsreq = &lsop->ls_req;
861
862 lsreq->private = (void *)&lsop[1];
863 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
864 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
865 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
866
867 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
868 assoc_rqst->desc_list_len =
869 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
870
871 assoc_rqst->assoc_cmd.desc_tag =
872 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
873 assoc_rqst->assoc_cmd.desc_len =
874 fcnvme_lsdesc_len(
875 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
876
877 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
878 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
879 /* Linux supports only Dynamic controllers */
880 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
881 memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id,
882 min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be)));
883 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
884 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
885 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
886 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
887
888 lsop->queue = queue;
889 lsreq->rqstaddr = assoc_rqst;
890 lsreq->rqstlen = sizeof(*assoc_rqst);
891 lsreq->rspaddr = assoc_acc;
892 lsreq->rsplen = sizeof(*assoc_acc);
893 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
894
c913a8b0 895 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
e399441d
JS
896 if (ret)
897 goto out_free_buffer;
898
899 /* process connect LS completion */
900
901 /* validate the ACC response */
902 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
903 fcret = VERR_LSACC;
f77fc87c 904 else if (assoc_acc->hdr.desc_list_len !=
e399441d
JS
905 fcnvme_lsdesc_len(
906 sizeof(struct fcnvme_ls_cr_assoc_acc)))
907 fcret = VERR_CR_ASSOC_ACC_LEN;
f77fc87c
JS
908 else if (assoc_acc->hdr.rqst.desc_tag !=
909 cpu_to_be32(FCNVME_LSDESC_RQST))
e399441d
JS
910 fcret = VERR_LSDESC_RQST;
911 else if (assoc_acc->hdr.rqst.desc_len !=
912 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
913 fcret = VERR_LSDESC_RQST_LEN;
914 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
915 fcret = VERR_CR_ASSOC;
916 else if (assoc_acc->associd.desc_tag !=
917 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
918 fcret = VERR_ASSOC_ID;
919 else if (assoc_acc->associd.desc_len !=
920 fcnvme_lsdesc_len(
921 sizeof(struct fcnvme_lsdesc_assoc_id)))
922 fcret = VERR_ASSOC_ID_LEN;
923 else if (assoc_acc->connectid.desc_tag !=
924 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
925 fcret = VERR_CONN_ID;
926 else if (assoc_acc->connectid.desc_len !=
927 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
928 fcret = VERR_CONN_ID_LEN;
929
930 if (fcret) {
931 ret = -EBADF;
932 dev_err(ctrl->dev,
933 "q %d connect failed: %s\n",
934 queue->qnum, validation_errors[fcret]);
935 } else {
936 ctrl->association_id =
937 be64_to_cpu(assoc_acc->associd.association_id);
938 queue->connection_id =
939 be64_to_cpu(assoc_acc->connectid.connection_id);
940 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
941 }
942
943out_free_buffer:
944 kfree(lsop);
945out_no_memory:
946 if (ret)
947 dev_err(ctrl->dev,
948 "queue %d connect admin queue failed (%d).\n",
949 queue->qnum, ret);
950 return ret;
951}
952
953static int
954nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
955 u16 qsize, u16 ersp_ratio)
956{
957 struct nvmefc_ls_req_op *lsop;
958 struct nvmefc_ls_req *lsreq;
959 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
960 struct fcnvme_ls_cr_conn_acc *conn_acc;
961 int ret, fcret = 0;
962
963 lsop = kzalloc((sizeof(*lsop) +
964 ctrl->lport->ops->lsrqst_priv_sz +
965 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
966 if (!lsop) {
967 ret = -ENOMEM;
968 goto out_no_memory;
969 }
970 lsreq = &lsop->ls_req;
971
972 lsreq->private = (void *)&lsop[1];
973 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
974 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
975 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
976
977 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
978 conn_rqst->desc_list_len = cpu_to_be32(
979 sizeof(struct fcnvme_lsdesc_assoc_id) +
980 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
981
982 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
983 conn_rqst->associd.desc_len =
984 fcnvme_lsdesc_len(
985 sizeof(struct fcnvme_lsdesc_assoc_id));
986 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
987 conn_rqst->connect_cmd.desc_tag =
988 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
989 conn_rqst->connect_cmd.desc_len =
990 fcnvme_lsdesc_len(
991 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
992 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
993 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
994 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
995
996 lsop->queue = queue;
997 lsreq->rqstaddr = conn_rqst;
998 lsreq->rqstlen = sizeof(*conn_rqst);
999 lsreq->rspaddr = conn_acc;
1000 lsreq->rsplen = sizeof(*conn_acc);
1001 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1002
c913a8b0 1003 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
e399441d
JS
1004 if (ret)
1005 goto out_free_buffer;
1006
1007 /* process connect LS completion */
1008
1009 /* validate the ACC response */
1010 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1011 fcret = VERR_LSACC;
f77fc87c 1012 else if (conn_acc->hdr.desc_list_len !=
e399441d
JS
1013 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1014 fcret = VERR_CR_CONN_ACC_LEN;
f77fc87c 1015 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
e399441d
JS
1016 fcret = VERR_LSDESC_RQST;
1017 else if (conn_acc->hdr.rqst.desc_len !=
1018 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1019 fcret = VERR_LSDESC_RQST_LEN;
1020 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1021 fcret = VERR_CR_CONN;
1022 else if (conn_acc->connectid.desc_tag !=
1023 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1024 fcret = VERR_CONN_ID;
1025 else if (conn_acc->connectid.desc_len !=
1026 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1027 fcret = VERR_CONN_ID_LEN;
1028
1029 if (fcret) {
1030 ret = -EBADF;
1031 dev_err(ctrl->dev,
1032 "q %d connect failed: %s\n",
1033 queue->qnum, validation_errors[fcret]);
1034 } else {
1035 queue->connection_id =
1036 be64_to_cpu(conn_acc->connectid.connection_id);
1037 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1038 }
1039
1040out_free_buffer:
1041 kfree(lsop);
1042out_no_memory:
1043 if (ret)
1044 dev_err(ctrl->dev,
1045 "queue %d connect command failed (%d).\n",
1046 queue->qnum, ret);
1047 return ret;
1048}
1049
1050static void
1051nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1052{
1053 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
e399441d 1054
c913a8b0 1055 __nvme_fc_finish_ls_req(lsop);
e399441d
JS
1056
1057 /* fc-nvme iniator doesn't care about success or failure of cmd */
1058
1059 kfree(lsop);
1060}
1061
1062/*
1063 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1064 * the FC-NVME Association. Terminating the association also
1065 * terminates the FC-NVME connections (per queue, both admin and io
1066 * queues) that are part of the association. E.g. things are torn
1067 * down, and the related FC-NVME Association ID and Connection IDs
1068 * become invalid.
1069 *
1070 * The behavior of the fc-nvme initiator is such that it's
1071 * understanding of the association and connections will implicitly
1072 * be torn down. The action is implicit as it may be due to a loss of
1073 * connectivity with the fc-nvme target, so you may never get a
1074 * response even if you tried. As such, the action of this routine
1075 * is to asynchronously send the LS, ignore any results of the LS, and
1076 * continue on with terminating the association. If the fc-nvme target
1077 * is present and receives the LS, it too can tear down.
1078 */
1079static void
1080nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1081{
1082 struct fcnvme_ls_disconnect_rqst *discon_rqst;
1083 struct fcnvme_ls_disconnect_acc *discon_acc;
1084 struct nvmefc_ls_req_op *lsop;
1085 struct nvmefc_ls_req *lsreq;
c913a8b0 1086 int ret;
e399441d
JS
1087
1088 lsop = kzalloc((sizeof(*lsop) +
1089 ctrl->lport->ops->lsrqst_priv_sz +
1090 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1091 GFP_KERNEL);
1092 if (!lsop)
1093 /* couldn't sent it... too bad */
1094 return;
1095
1096 lsreq = &lsop->ls_req;
1097
1098 lsreq->private = (void *)&lsop[1];
1099 discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1100 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1101 discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1102
1103 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1104 discon_rqst->desc_list_len = cpu_to_be32(
1105 sizeof(struct fcnvme_lsdesc_assoc_id) +
1106 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1107
1108 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1109 discon_rqst->associd.desc_len =
1110 fcnvme_lsdesc_len(
1111 sizeof(struct fcnvme_lsdesc_assoc_id));
1112
1113 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1114
1115 discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1116 FCNVME_LSDESC_DISCONN_CMD);
1117 discon_rqst->discon_cmd.desc_len =
1118 fcnvme_lsdesc_len(
1119 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1120 discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1121 discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1122
1123 lsreq->rqstaddr = discon_rqst;
1124 lsreq->rqstlen = sizeof(*discon_rqst);
1125 lsreq->rspaddr = discon_acc;
1126 lsreq->rsplen = sizeof(*discon_acc);
1127 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1128
c913a8b0
JS
1129 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1130 nvme_fc_disconnect_assoc_done);
1131 if (ret)
1132 kfree(lsop);
e399441d
JS
1133
1134 /* only meaningful part to terminating the association */
1135 ctrl->association_id = 0;
1136}
1137
1138
1139/* *********************** NVME Ctrl Routines **************************** */
1140
78a7ac26 1141static void __nvme_fc_final_op_cleanup(struct request *rq);
f874d5d0 1142static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
e399441d
JS
1143
1144static int
1145nvme_fc_reinit_request(void *data, struct request *rq)
1146{
1147 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1148 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1149
1150 memset(cmdiu, 0, sizeof(*cmdiu));
1151 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1152 cmdiu->fc_id = NVME_CMD_FC_ID;
1153 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1154 memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1155
1156 return 0;
1157}
1158
1159static void
1160__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1161 struct nvme_fc_fcp_op *op)
1162{
1163 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1164 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1165 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1166 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1167
1168 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1169}
1170
1171static void
d6296d39
CH
1172nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1173 unsigned int hctx_idx)
e399441d
JS
1174{
1175 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1176
d6296d39 1177 return __nvme_fc_exit_request(set->driver_data, op);
e399441d
JS
1178}
1179
78a7ac26
JS
1180static int
1181__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1182{
1183 int state;
1184
1185 state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1186 if (state != FCPOP_STATE_ACTIVE) {
1187 atomic_set(&op->state, state);
1188 return -ECANCELED;
1189 }
1190
1191 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1192 &ctrl->rport->remoteport,
1193 op->queue->lldd_handle,
1194 &op->fcp_req);
1195
1196 return 0;
1197}
1198
e399441d 1199static void
78a7ac26 1200nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
e399441d
JS
1201{
1202 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
78a7ac26
JS
1203 unsigned long flags;
1204 int i, ret;
e399441d
JS
1205
1206 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
78a7ac26 1207 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
e399441d 1208 continue;
78a7ac26
JS
1209
1210 spin_lock_irqsave(&ctrl->lock, flags);
61bff8ef
JS
1211 if (ctrl->flags & FCCTRL_TERMIO) {
1212 ctrl->iocnt++;
1213 aen_op->flags |= FCOP_FLAGS_TERMIO;
1214 }
78a7ac26
JS
1215 spin_unlock_irqrestore(&ctrl->lock, flags);
1216
1217 ret = __nvme_fc_abort_op(ctrl, aen_op);
1218 if (ret) {
1219 /*
1220 * if __nvme_fc_abort_op failed the io wasn't
1221 * active. Thus this call path is running in
1222 * parallel to the io complete. Treat as non-error.
1223 */
1224
1225 /* back out the flags/counters */
1226 spin_lock_irqsave(&ctrl->lock, flags);
61bff8ef
JS
1227 if (ctrl->flags & FCCTRL_TERMIO)
1228 ctrl->iocnt--;
78a7ac26
JS
1229 aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1230 spin_unlock_irqrestore(&ctrl->lock, flags);
1231 return;
1232 }
e399441d
JS
1233 }
1234}
1235
78a7ac26
JS
1236static inline int
1237__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1238 struct nvme_fc_fcp_op *op)
1239{
1240 unsigned long flags;
1241 bool complete_rq = false;
1242
1243 spin_lock_irqsave(&ctrl->lock, flags);
61bff8ef
JS
1244 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1245 if (ctrl->flags & FCCTRL_TERMIO)
1246 ctrl->iocnt--;
1247 }
78a7ac26
JS
1248 if (op->flags & FCOP_FLAGS_RELEASED)
1249 complete_rq = true;
1250 else
1251 op->flags |= FCOP_FLAGS_COMPLETE;
1252 spin_unlock_irqrestore(&ctrl->lock, flags);
1253
1254 return complete_rq;
1255}
1256
baee29ac 1257static void
e399441d
JS
1258nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1259{
1260 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1261 struct request *rq = op->rq;
1262 struct nvmefc_fcp_req *freq = &op->fcp_req;
1263 struct nvme_fc_ctrl *ctrl = op->ctrl;
1264 struct nvme_fc_queue *queue = op->queue;
1265 struct nvme_completion *cqe = &op->rsp_iu.cqe;
458f280d 1266 struct nvme_command *sqe = &op->cmd_iu.sqe;
d663b69f 1267 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
27fa9bc5 1268 union nvme_result result;
f874d5d0 1269 bool complete_rq, terminate_assoc = true;
e399441d
JS
1270
1271 /*
1272 * WARNING:
1273 * The current linux implementation of a nvme controller
1274 * allocates a single tag set for all io queues and sizes
1275 * the io queues to fully hold all possible tags. Thus, the
1276 * implementation does not reference or care about the sqhd
1277 * value as it never needs to use the sqhd/sqtail pointers
1278 * for submission pacing.
1279 *
1280 * This affects the FC-NVME implementation in two ways:
1281 * 1) As the value doesn't matter, we don't need to waste
1282 * cycles extracting it from ERSPs and stamping it in the
1283 * cases where the transport fabricates CQEs on successful
1284 * completions.
1285 * 2) The FC-NVME implementation requires that delivery of
1286 * ERSP completions are to go back to the nvme layer in order
1287 * relative to the rsn, such that the sqhd value will always
1288 * be "in order" for the nvme layer. As the nvme layer in
1289 * linux doesn't care about sqhd, there's no need to return
1290 * them in order.
1291 *
1292 * Additionally:
1293 * As the core nvme layer in linux currently does not look at
1294 * every field in the cqe - in cases where the FC transport must
1295 * fabricate a CQE, the following fields will not be set as they
1296 * are not referenced:
1297 * cqe.sqid, cqe.sqhd, cqe.command_id
f874d5d0
JS
1298 *
1299 * Failure or error of an individual i/o, in a transport
1300 * detected fashion unrelated to the nvme completion status,
1301 * potentially cause the initiator and target sides to get out
1302 * of sync on SQ head/tail (aka outstanding io count allowed).
1303 * Per FC-NVME spec, failure of an individual command requires
1304 * the connection to be terminated, which in turn requires the
1305 * association to be terminated.
e399441d
JS
1306 */
1307
1308 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1309 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1310
1311 if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
d663b69f 1312 status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
62eeacb0 1313 else if (freq->status)
d663b69f 1314 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
e399441d
JS
1315
1316 /*
1317 * For the linux implementation, if we have an unsuccesful
1318 * status, they blk-mq layer can typically be called with the
1319 * non-zero status and the content of the cqe isn't important.
1320 */
1321 if (status)
1322 goto done;
1323
1324 /*
1325 * command completed successfully relative to the wire
1326 * protocol. However, validate anything received and
1327 * extract the status and result from the cqe (create it
1328 * where necessary).
1329 */
1330
1331 switch (freq->rcv_rsplen) {
1332
1333 case 0:
1334 case NVME_FC_SIZEOF_ZEROS_RSP:
1335 /*
1336 * No response payload or 12 bytes of payload (which
1337 * should all be zeros) are considered successful and
1338 * no payload in the CQE by the transport.
1339 */
1340 if (freq->transferred_length !=
1341 be32_to_cpu(op->cmd_iu.data_len)) {
d663b69f 1342 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
e399441d
JS
1343 goto done;
1344 }
27fa9bc5 1345 result.u64 = 0;
e399441d
JS
1346 break;
1347
1348 case sizeof(struct nvme_fc_ersp_iu):
1349 /*
1350 * The ERSP IU contains a full completion with CQE.
1351 * Validate ERSP IU and look at cqe.
1352 */
1353 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1354 (freq->rcv_rsplen / 4) ||
1355 be32_to_cpu(op->rsp_iu.xfrd_len) !=
1356 freq->transferred_length ||
726a1080 1357 op->rsp_iu.status_code ||
458f280d 1358 sqe->common.command_id != cqe->command_id)) {
d663b69f 1359 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
e399441d
JS
1360 goto done;
1361 }
27fa9bc5 1362 result = cqe->result;
d663b69f 1363 status = cqe->status;
e399441d
JS
1364 break;
1365
1366 default:
d663b69f 1367 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
e399441d
JS
1368 goto done;
1369 }
1370
f874d5d0
JS
1371 terminate_assoc = false;
1372
e399441d 1373done:
78a7ac26 1374 if (op->flags & FCOP_FLAGS_AEN) {
27fa9bc5 1375 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
78a7ac26
JS
1376 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1377 atomic_set(&op->state, FCPOP_STATE_IDLE);
1378 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
e399441d 1379 nvme_fc_ctrl_put(ctrl);
f874d5d0 1380 goto check_error;
e399441d
JS
1381 }
1382
78a7ac26
JS
1383 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1384 if (!complete_rq) {
1385 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
e392e1f1 1386 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
78a7ac26 1387 if (blk_queue_dying(rq->q))
e392e1f1 1388 status |= cpu_to_le16(NVME_SC_DNR << 1);
78a7ac26
JS
1389 }
1390 nvme_end_request(rq, status, result);
1391 } else
1392 __nvme_fc_final_op_cleanup(rq);
f874d5d0
JS
1393
1394check_error:
1395 if (terminate_assoc)
1396 nvme_fc_error_recovery(ctrl, "transport detected io error");
e399441d
JS
1397}
1398
1399static int
1400__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1401 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1402 struct request *rq, u32 rqno)
1403{
1404 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1405 int ret = 0;
1406
1407 memset(op, 0, sizeof(*op));
1408 op->fcp_req.cmdaddr = &op->cmd_iu;
1409 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1410 op->fcp_req.rspaddr = &op->rsp_iu;
1411 op->fcp_req.rsplen = sizeof(op->rsp_iu);
1412 op->fcp_req.done = nvme_fc_fcpio_done;
1413 op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1414 op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1415 op->ctrl = ctrl;
1416 op->queue = queue;
1417 op->rq = rq;
1418 op->rqno = rqno;
1419
1420 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1421 cmdiu->fc_id = NVME_CMD_FC_ID;
1422 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1423
1424 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1425 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1426 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1427 dev_err(ctrl->dev,
1428 "FCP Op failed - cmdiu dma mapping failed.\n");
1429 ret = EFAULT;
1430 goto out_on_error;
1431 }
1432
1433 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1434 &op->rsp_iu, sizeof(op->rsp_iu),
1435 DMA_FROM_DEVICE);
1436 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1437 dev_err(ctrl->dev,
1438 "FCP Op failed - rspiu dma mapping failed.\n");
1439 ret = EFAULT;
1440 }
1441
1442 atomic_set(&op->state, FCPOP_STATE_IDLE);
1443out_on_error:
1444 return ret;
1445}
1446
1447static int
d6296d39
CH
1448nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1449 unsigned int hctx_idx, unsigned int numa_node)
e399441d 1450{
d6296d39 1451 struct nvme_fc_ctrl *ctrl = set->driver_data;
e399441d
JS
1452 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1453 struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1];
1454
1455 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1456}
1457
1458static int
d6296d39
CH
1459nvme_fc_init_admin_request(struct blk_mq_tag_set *set, struct request *rq,
1460 unsigned int hctx_idx, unsigned int numa_node)
e399441d 1461{
d6296d39 1462 struct nvme_fc_ctrl *ctrl = set->driver_data;
e399441d
JS
1463 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1464 struct nvme_fc_queue *queue = &ctrl->queues[0];
1465
1466 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1467}
1468
1469static int
1470nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1471{
1472 struct nvme_fc_fcp_op *aen_op;
1473 struct nvme_fc_cmd_iu *cmdiu;
1474 struct nvme_command *sqe;
61bff8ef 1475 void *private;
e399441d
JS
1476 int i, ret;
1477
1478 aen_op = ctrl->aen_ops;
1479 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
61bff8ef
JS
1480 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1481 GFP_KERNEL);
1482 if (!private)
1483 return -ENOMEM;
1484
e399441d
JS
1485 cmdiu = &aen_op->cmd_iu;
1486 sqe = &cmdiu->sqe;
1487 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1488 aen_op, (struct request *)NULL,
1489 (AEN_CMDID_BASE + i));
61bff8ef
JS
1490 if (ret) {
1491 kfree(private);
e399441d 1492 return ret;
61bff8ef 1493 }
e399441d 1494
78a7ac26 1495 aen_op->flags = FCOP_FLAGS_AEN;
61bff8ef
JS
1496 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1497 aen_op->fcp_req.private = private;
78a7ac26 1498
e399441d
JS
1499 memset(sqe, 0, sizeof(*sqe));
1500 sqe->common.opcode = nvme_admin_async_event;
78a7ac26 1501 /* Note: core layer may overwrite the sqe.command_id value */
e399441d
JS
1502 sqe->common.command_id = AEN_CMDID_BASE + i;
1503 }
1504 return 0;
1505}
1506
61bff8ef
JS
1507static void
1508nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1509{
1510 struct nvme_fc_fcp_op *aen_op;
1511 int i;
1512
1513 aen_op = ctrl->aen_ops;
1514 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1515 if (!aen_op->fcp_req.private)
1516 continue;
1517
1518 __nvme_fc_exit_request(ctrl, aen_op);
1519
1520 kfree(aen_op->fcp_req.private);
1521 aen_op->fcp_req.private = NULL;
1522 }
1523}
e399441d
JS
1524
1525static inline void
1526__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1527 unsigned int qidx)
1528{
1529 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1530
1531 hctx->driver_data = queue;
1532 queue->hctx = hctx;
1533}
1534
1535static int
1536nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1537 unsigned int hctx_idx)
1538{
1539 struct nvme_fc_ctrl *ctrl = data;
1540
1541 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1542
1543 return 0;
1544}
1545
1546static int
1547nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1548 unsigned int hctx_idx)
1549{
1550 struct nvme_fc_ctrl *ctrl = data;
1551
1552 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1553
1554 return 0;
1555}
1556
1557static void
1558nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1559{
1560 struct nvme_fc_queue *queue;
1561
1562 queue = &ctrl->queues[idx];
1563 memset(queue, 0, sizeof(*queue));
1564 queue->ctrl = ctrl;
1565 queue->qnum = idx;
1566 atomic_set(&queue->csn, 1);
1567 queue->dev = ctrl->dev;
1568
1569 if (idx > 0)
1570 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1571 else
1572 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1573
1574 queue->queue_size = queue_size;
1575
1576 /*
1577 * Considered whether we should allocate buffers for all SQEs
1578 * and CQEs and dma map them - mapping their respective entries
1579 * into the request structures (kernel vm addr and dma address)
1580 * thus the driver could use the buffers/mappings directly.
1581 * It only makes sense if the LLDD would use them for its
1582 * messaging api. It's very unlikely most adapter api's would use
1583 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1584 * structures were used instead.
1585 */
1586}
1587
1588/*
1589 * This routine terminates a queue at the transport level.
1590 * The transport has already ensured that all outstanding ios on
1591 * the queue have been terminated.
1592 * The transport will send a Disconnect LS request to terminate
1593 * the queue's connection. Termination of the admin queue will also
1594 * terminate the association at the target.
1595 */
1596static void
1597nvme_fc_free_queue(struct nvme_fc_queue *queue)
1598{
1599 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1600 return;
1601
1602 /*
1603 * Current implementation never disconnects a single queue.
1604 * It always terminates a whole association. So there is never
1605 * a disconnect(queue) LS sent to the target.
1606 */
1607
1608 queue->connection_id = 0;
1609 clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1610}
1611
1612static void
1613__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1614 struct nvme_fc_queue *queue, unsigned int qidx)
1615{
1616 if (ctrl->lport->ops->delete_queue)
1617 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1618 queue->lldd_handle);
1619 queue->lldd_handle = NULL;
1620}
1621
e399441d
JS
1622static void
1623nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1624{
1625 int i;
1626
1627 for (i = 1; i < ctrl->queue_count; i++)
1628 nvme_fc_free_queue(&ctrl->queues[i]);
1629}
1630
1631static int
1632__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1633 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1634{
1635 int ret = 0;
1636
1637 queue->lldd_handle = NULL;
1638 if (ctrl->lport->ops->create_queue)
1639 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1640 qidx, qsize, &queue->lldd_handle);
1641
1642 return ret;
1643}
1644
1645static void
1646nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1647{
1648 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
1649 int i;
1650
1651 for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
1652 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1653}
1654
1655static int
1656nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1657{
1658 struct nvme_fc_queue *queue = &ctrl->queues[1];
17a1ec08 1659 int i, ret;
e399441d
JS
1660
1661 for (i = 1; i < ctrl->queue_count; i++, queue++) {
1662 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
17a1ec08
JT
1663 if (ret)
1664 goto delete_queues;
e399441d
JS
1665 }
1666
1667 return 0;
17a1ec08
JT
1668
1669delete_queues:
1670 for (; i >= 0; i--)
1671 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1672 return ret;
e399441d
JS
1673}
1674
1675static int
1676nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1677{
1678 int i, ret = 0;
1679
1680 for (i = 1; i < ctrl->queue_count; i++) {
1681 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1682 (qsize / 5));
1683 if (ret)
1684 break;
1685 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1686 if (ret)
1687 break;
1688 }
1689
1690 return ret;
1691}
1692
1693static void
1694nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1695{
1696 int i;
1697
1698 for (i = 1; i < ctrl->queue_count; i++)
1699 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1700}
1701
1702static void
1703nvme_fc_ctrl_free(struct kref *ref)
1704{
1705 struct nvme_fc_ctrl *ctrl =
1706 container_of(ref, struct nvme_fc_ctrl, ref);
1707 unsigned long flags;
1708
61bff8ef
JS
1709 if (ctrl->ctrl.tagset) {
1710 blk_cleanup_queue(ctrl->ctrl.connect_q);
1711 blk_mq_free_tag_set(&ctrl->tag_set);
e399441d
JS
1712 }
1713
61bff8ef
JS
1714 /* remove from rport list */
1715 spin_lock_irqsave(&ctrl->rport->lock, flags);
1716 list_del(&ctrl->ctrl_list);
1717 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1718
1719 blk_cleanup_queue(ctrl->ctrl.admin_q);
1720 blk_mq_free_tag_set(&ctrl->admin_tag_set);
1721
1722 kfree(ctrl->queues);
1723
e399441d
JS
1724 put_device(ctrl->dev);
1725 nvme_fc_rport_put(ctrl->rport);
1726
e399441d 1727 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
de41447a
EM
1728 if (ctrl->ctrl.opts)
1729 nvmf_free_options(ctrl->ctrl.opts);
e399441d
JS
1730 kfree(ctrl);
1731}
1732
1733static void
1734nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1735{
1736 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1737}
1738
1739static int
1740nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1741{
1742 return kref_get_unless_zero(&ctrl->ref);
1743}
1744
1745/*
1746 * All accesses from nvme core layer done - can now free the
1747 * controller. Called after last nvme_put_ctrl() call
1748 */
1749static void
61bff8ef 1750nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
e399441d
JS
1751{
1752 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1753
1754 WARN_ON(nctrl != &ctrl->ctrl);
1755
61bff8ef
JS
1756 nvme_fc_ctrl_put(ctrl);
1757}
e399441d 1758
61bff8ef
JS
1759static void
1760nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1761{
1762 dev_warn(ctrl->ctrl.device,
1763 "NVME-FC{%d}: transport association error detected: %s\n",
1764 ctrl->cnum, errmsg);
589ff775 1765 dev_warn(ctrl->ctrl.device,
61bff8ef 1766 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
e399441d 1767
2952a879
JS
1768 /* stop the queues on error, cleanup is in reset thread */
1769 if (ctrl->queue_count > 1)
1770 nvme_stop_queues(&ctrl->ctrl);
1771
61bff8ef
JS
1772 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1773 dev_err(ctrl->ctrl.device,
1774 "NVME-FC{%d}: error_recovery: Couldn't change state "
1775 "to RECONNECTING\n", ctrl->cnum);
1776 return;
e399441d
JS
1777 }
1778
61bff8ef
JS
1779 if (!queue_work(nvme_fc_wq, &ctrl->reset_work))
1780 dev_err(ctrl->ctrl.device,
1781 "NVME-FC{%d}: error_recovery: Failed to schedule "
1782 "reset work\n", ctrl->cnum);
e399441d
JS
1783}
1784
baee29ac 1785static enum blk_eh_timer_return
e399441d
JS
1786nvme_fc_timeout(struct request *rq, bool reserved)
1787{
1788 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1789 struct nvme_fc_ctrl *ctrl = op->ctrl;
1790 int ret;
1791
1792 if (reserved)
1793 return BLK_EH_RESET_TIMER;
1794
1795 ret = __nvme_fc_abort_op(ctrl, op);
1796 if (ret)
1797 /* io wasn't active to abort consider it done */
1798 return BLK_EH_HANDLED;
1799
1800 /*
61bff8ef
JS
1801 * we can't individually ABTS an io without affecting the queue,
1802 * thus killing the queue, adn thus the association.
1803 * So resolve by performing a controller reset, which will stop
1804 * the host/io stack, terminate the association on the link,
1805 * and recreate an association on the link.
e399441d 1806 */
61bff8ef 1807 nvme_fc_error_recovery(ctrl, "io timeout error");
e399441d
JS
1808
1809 return BLK_EH_HANDLED;
1810}
1811
1812static int
1813nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1814 struct nvme_fc_fcp_op *op)
1815{
1816 struct nvmefc_fcp_req *freq = &op->fcp_req;
e399441d
JS
1817 enum dma_data_direction dir;
1818 int ret;
1819
1820 freq->sg_cnt = 0;
1821
b131c61d 1822 if (!blk_rq_payload_bytes(rq))
e399441d
JS
1823 return 0;
1824
1825 freq->sg_table.sgl = freq->first_sgl;
19e420bb
CH
1826 ret = sg_alloc_table_chained(&freq->sg_table,
1827 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
e399441d
JS
1828 if (ret)
1829 return -ENOMEM;
1830
1831 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
19e420bb 1832 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
e399441d
JS
1833 dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1834 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1835 op->nents, dir);
1836 if (unlikely(freq->sg_cnt <= 0)) {
1837 sg_free_table_chained(&freq->sg_table, true);
1838 freq->sg_cnt = 0;
1839 return -EFAULT;
1840 }
1841
1842 /*
1843 * TODO: blk_integrity_rq(rq) for DIF
1844 */
1845 return 0;
1846}
1847
1848static void
1849nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1850 struct nvme_fc_fcp_op *op)
1851{
1852 struct nvmefc_fcp_req *freq = &op->fcp_req;
1853
1854 if (!freq->sg_cnt)
1855 return;
1856
1857 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1858 ((rq_data_dir(rq) == WRITE) ?
1859 DMA_TO_DEVICE : DMA_FROM_DEVICE));
1860
1861 nvme_cleanup_cmd(rq);
1862
1863 sg_free_table_chained(&freq->sg_table, true);
1864
1865 freq->sg_cnt = 0;
1866}
1867
1868/*
1869 * In FC, the queue is a logical thing. At transport connect, the target
1870 * creates its "queue" and returns a handle that is to be given to the
1871 * target whenever it posts something to the corresponding SQ. When an
1872 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1873 * command contained within the SQE, an io, and assigns a FC exchange
1874 * to it. The SQE and the associated SQ handle are sent in the initial
1875 * CMD IU sents on the exchange. All transfers relative to the io occur
1876 * as part of the exchange. The CQE is the last thing for the io,
1877 * which is transferred (explicitly or implicitly) with the RSP IU
1878 * sent on the exchange. After the CQE is received, the FC exchange is
1879 * terminaed and the Exchange may be used on a different io.
1880 *
1881 * The transport to LLDD api has the transport making a request for a
1882 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1883 * resource and transfers the command. The LLDD will then process all
1884 * steps to complete the io. Upon completion, the transport done routine
1885 * is called.
1886 *
1887 * So - while the operation is outstanding to the LLDD, there is a link
1888 * level FC exchange resource that is also outstanding. This must be
1889 * considered in all cleanup operations.
1890 */
1891static int
1892nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1893 struct nvme_fc_fcp_op *op, u32 data_len,
1894 enum nvmefc_fcp_datadir io_dir)
1895{
1896 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1897 struct nvme_command *sqe = &cmdiu->sqe;
1898 u32 csn;
1899 int ret;
1900
61bff8ef
JS
1901 /*
1902 * before attempting to send the io, check to see if we believe
1903 * the target device is present
1904 */
1905 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1906 return BLK_MQ_RQ_QUEUE_ERROR;
1907
e399441d
JS
1908 if (!nvme_fc_ctrl_get(ctrl))
1909 return BLK_MQ_RQ_QUEUE_ERROR;
1910
1911 /* format the FC-NVME CMD IU and fcp_req */
1912 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1913 csn = atomic_inc_return(&queue->csn);
1914 cmdiu->csn = cpu_to_be32(csn);
1915 cmdiu->data_len = cpu_to_be32(data_len);
1916 switch (io_dir) {
1917 case NVMEFC_FCP_WRITE:
1918 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1919 break;
1920 case NVMEFC_FCP_READ:
1921 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1922 break;
1923 case NVMEFC_FCP_NODATA:
1924 cmdiu->flags = 0;
1925 break;
1926 }
1927 op->fcp_req.payload_length = data_len;
1928 op->fcp_req.io_dir = io_dir;
1929 op->fcp_req.transferred_length = 0;
1930 op->fcp_req.rcv_rsplen = 0;
62eeacb0 1931 op->fcp_req.status = NVME_SC_SUCCESS;
e399441d
JS
1932 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1933
1934 /*
1935 * validate per fabric rules, set fields mandated by fabric spec
1936 * as well as those by FC-NVME spec.
1937 */
1938 WARN_ON_ONCE(sqe->common.metadata);
1939 WARN_ON_ONCE(sqe->common.dptr.prp1);
1940 WARN_ON_ONCE(sqe->common.dptr.prp2);
1941 sqe->common.flags |= NVME_CMD_SGL_METABUF;
1942
1943 /*
1944 * format SQE DPTR field per FC-NVME rules
1945 * type=data block descr; subtype=offset;
1946 * offset is currently 0.
1947 */
1948 sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1949 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1950 sqe->rw.dptr.sgl.addr = 0;
1951
78a7ac26 1952 if (!(op->flags & FCOP_FLAGS_AEN)) {
e399441d
JS
1953 ret = nvme_fc_map_data(ctrl, op->rq, op);
1954 if (ret < 0) {
e399441d
JS
1955 nvme_cleanup_cmd(op->rq);
1956 nvme_fc_ctrl_put(ctrl);
1957 return (ret == -ENOMEM || ret == -EAGAIN) ?
1958 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1959 }
1960 }
1961
1962 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1963 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1964
1965 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1966
78a7ac26 1967 if (!(op->flags & FCOP_FLAGS_AEN))
e399441d
JS
1968 blk_mq_start_request(op->rq);
1969
1970 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1971 &ctrl->rport->remoteport,
1972 queue->lldd_handle, &op->fcp_req);
1973
1974 if (ret) {
e399441d
JS
1975 if (op->rq) { /* normal request */
1976 nvme_fc_unmap_data(ctrl, op->rq, op);
1977 nvme_cleanup_cmd(op->rq);
1978 }
1979 /* else - aen. no cleanup needed */
1980
1981 nvme_fc_ctrl_put(ctrl);
1982
1983 if (ret != -EBUSY)
1984 return BLK_MQ_RQ_QUEUE_ERROR;
1985
1986 if (op->rq) {
1987 blk_mq_stop_hw_queues(op->rq->q);
1988 blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1989 }
1990 return BLK_MQ_RQ_QUEUE_BUSY;
1991 }
1992
1993 return BLK_MQ_RQ_QUEUE_OK;
1994}
1995
1996static int
1997nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1998 const struct blk_mq_queue_data *bd)
1999{
2000 struct nvme_ns *ns = hctx->queue->queuedata;
2001 struct nvme_fc_queue *queue = hctx->driver_data;
2002 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2003 struct request *rq = bd->rq;
2004 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2005 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2006 struct nvme_command *sqe = &cmdiu->sqe;
2007 enum nvmefc_fcp_datadir io_dir;
2008 u32 data_len;
2009 int ret;
2010
2011 ret = nvme_setup_cmd(ns, rq, sqe);
2012 if (ret)
2013 return ret;
2014
b131c61d 2015 data_len = blk_rq_payload_bytes(rq);
e399441d
JS
2016 if (data_len)
2017 io_dir = ((rq_data_dir(rq) == WRITE) ?
2018 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2019 else
2020 io_dir = NVMEFC_FCP_NODATA;
2021
2022 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2023}
2024
2025static struct blk_mq_tags *
2026nvme_fc_tagset(struct nvme_fc_queue *queue)
2027{
2028 if (queue->qnum == 0)
2029 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2030
2031 return queue->ctrl->tag_set.tags[queue->qnum - 1];
2032}
2033
2034static int
2035nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2036
2037{
2038 struct nvme_fc_queue *queue = hctx->driver_data;
2039 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2040 struct request *req;
2041 struct nvme_fc_fcp_op *op;
2042
2043 req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
61bff8ef 2044 if (!req)
e399441d 2045 return 0;
e399441d
JS
2046
2047 op = blk_mq_rq_to_pdu(req);
2048
2049 if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2050 (ctrl->lport->ops->poll_queue))
2051 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2052 queue->lldd_handle);
2053
2054 return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2055}
2056
2057static void
2058nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2059{
2060 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2061 struct nvme_fc_fcp_op *aen_op;
61bff8ef
JS
2062 unsigned long flags;
2063 bool terminating = false;
e399441d
JS
2064 int ret;
2065
2066 if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2067 return;
2068
61bff8ef
JS
2069 spin_lock_irqsave(&ctrl->lock, flags);
2070 if (ctrl->flags & FCCTRL_TERMIO)
2071 terminating = true;
2072 spin_unlock_irqrestore(&ctrl->lock, flags);
2073
2074 if (terminating)
2075 return;
2076
e399441d
JS
2077 aen_op = &ctrl->aen_ops[aer_idx];
2078
2079 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2080 NVMEFC_FCP_NODATA);
2081 if (ret)
2082 dev_err(ctrl->ctrl.device,
2083 "failed async event work [%d]\n", aer_idx);
2084}
2085
2086static void
78a7ac26 2087__nvme_fc_final_op_cleanup(struct request *rq)
e399441d
JS
2088{
2089 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2090 struct nvme_fc_ctrl *ctrl = op->ctrl;
e399441d 2091
78a7ac26
JS
2092 atomic_set(&op->state, FCPOP_STATE_IDLE);
2093 op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2094 FCOP_FLAGS_COMPLETE);
e399441d
JS
2095
2096 nvme_cleanup_cmd(rq);
e399441d 2097 nvme_fc_unmap_data(ctrl, rq, op);
77f02a7a 2098 nvme_complete_rq(rq);
e399441d
JS
2099 nvme_fc_ctrl_put(ctrl);
2100
e399441d
JS
2101}
2102
78a7ac26
JS
2103static void
2104nvme_fc_complete_rq(struct request *rq)
2105{
2106 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2107 struct nvme_fc_ctrl *ctrl = op->ctrl;
2108 unsigned long flags;
2109 bool completed = false;
2110
2111 /*
2112 * the core layer, on controller resets after calling
2113 * nvme_shutdown_ctrl(), calls complete_rq without our
2114 * calling blk_mq_complete_request(), thus there may still
2115 * be live i/o outstanding with the LLDD. Means transport has
2116 * to track complete calls vs fcpio_done calls to know what
2117 * path to take on completes and dones.
2118 */
2119 spin_lock_irqsave(&ctrl->lock, flags);
2120 if (op->flags & FCOP_FLAGS_COMPLETE)
2121 completed = true;
2122 else
2123 op->flags |= FCOP_FLAGS_RELEASED;
2124 spin_unlock_irqrestore(&ctrl->lock, flags);
2125
2126 if (completed)
2127 __nvme_fc_final_op_cleanup(rq);
2128}
2129
e399441d
JS
2130/*
2131 * This routine is used by the transport when it needs to find active
2132 * io on a queue that is to be terminated. The transport uses
2133 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2134 * this routine to kill them on a 1 by 1 basis.
2135 *
2136 * As FC allocates FC exchange for each io, the transport must contact
2137 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2138 * After terminating the exchange the LLDD will call the transport's
2139 * normal io done path for the request, but it will have an aborted
2140 * status. The done path will return the io request back to the block
2141 * layer with an error status.
2142 */
2143static void
2144nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2145{
2146 struct nvme_ctrl *nctrl = data;
2147 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2148 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
78a7ac26
JS
2149 unsigned long flags;
2150 int status;
e399441d
JS
2151
2152 if (!blk_mq_request_started(req))
2153 return;
2154
78a7ac26 2155 spin_lock_irqsave(&ctrl->lock, flags);
61bff8ef
JS
2156 if (ctrl->flags & FCCTRL_TERMIO) {
2157 ctrl->iocnt++;
2158 op->flags |= FCOP_FLAGS_TERMIO;
2159 }
78a7ac26
JS
2160 spin_unlock_irqrestore(&ctrl->lock, flags);
2161
e399441d 2162 status = __nvme_fc_abort_op(ctrl, op);
78a7ac26
JS
2163 if (status) {
2164 /*
2165 * if __nvme_fc_abort_op failed the io wasn't
2166 * active. Thus this call path is running in
2167 * parallel to the io complete. Treat as non-error.
2168 */
2169
2170 /* back out the flags/counters */
2171 spin_lock_irqsave(&ctrl->lock, flags);
61bff8ef
JS
2172 if (ctrl->flags & FCCTRL_TERMIO)
2173 ctrl->iocnt--;
78a7ac26
JS
2174 op->flags &= ~FCOP_FLAGS_TERMIO;
2175 spin_unlock_irqrestore(&ctrl->lock, flags);
e399441d 2176 return;
78a7ac26 2177 }
e399441d
JS
2178}
2179
78a7ac26 2180
61bff8ef
JS
2181static const struct blk_mq_ops nvme_fc_mq_ops = {
2182 .queue_rq = nvme_fc_queue_rq,
2183 .complete = nvme_fc_complete_rq,
2184 .init_request = nvme_fc_init_request,
2185 .exit_request = nvme_fc_exit_request,
2186 .reinit_request = nvme_fc_reinit_request,
2187 .init_hctx = nvme_fc_init_hctx,
2188 .poll = nvme_fc_poll,
2189 .timeout = nvme_fc_timeout,
2190};
e399441d 2191
61bff8ef
JS
2192static int
2193nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
e399441d 2194{
61bff8ef
JS
2195 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2196 int ret;
e399441d 2197
61bff8ef
JS
2198 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2199 if (ret) {
2200 dev_info(ctrl->ctrl.device,
2201 "set_queue_count failed: %d\n", ret);
2202 return ret;
2203 }
e399441d 2204
61bff8ef
JS
2205 ctrl->queue_count = opts->nr_io_queues + 1;
2206 if (!opts->nr_io_queues)
2207 return 0;
e399441d 2208
61bff8ef 2209 nvme_fc_init_io_queues(ctrl);
e399441d 2210
61bff8ef
JS
2211 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2212 ctrl->tag_set.ops = &nvme_fc_mq_ops;
2213 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2214 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2215 ctrl->tag_set.numa_node = NUMA_NO_NODE;
2216 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2217 ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2218 (SG_CHUNK_SIZE *
2219 sizeof(struct scatterlist)) +
2220 ctrl->lport->ops->fcprqst_priv_sz;
2221 ctrl->tag_set.driver_data = ctrl;
2222 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
2223 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
e399441d 2224
61bff8ef
JS
2225 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2226 if (ret)
2227 return ret;
e399441d 2228
61bff8ef 2229 ctrl->ctrl.tagset = &ctrl->tag_set;
e399441d 2230
61bff8ef
JS
2231 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2232 if (IS_ERR(ctrl->ctrl.connect_q)) {
2233 ret = PTR_ERR(ctrl->ctrl.connect_q);
2234 goto out_free_tag_set;
2235 }
e399441d 2236
61bff8ef 2237 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
e399441d 2238 if (ret)
61bff8ef 2239 goto out_cleanup_blk_queue;
e399441d 2240
61bff8ef
JS
2241 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2242 if (ret)
2243 goto out_delete_hw_queues;
e399441d
JS
2244
2245 return 0;
e399441d 2246
61bff8ef
JS
2247out_delete_hw_queues:
2248 nvme_fc_delete_hw_io_queues(ctrl);
2249out_cleanup_blk_queue:
2250 nvme_stop_keep_alive(&ctrl->ctrl);
2251 blk_cleanup_queue(ctrl->ctrl.connect_q);
2252out_free_tag_set:
2253 blk_mq_free_tag_set(&ctrl->tag_set);
2254 nvme_fc_free_io_queues(ctrl);
e399441d 2255
61bff8ef
JS
2256 /* force put free routine to ignore io queues */
2257 ctrl->ctrl.tagset = NULL;
2258
2259 return ret;
2260}
e399441d
JS
2261
2262static int
61bff8ef 2263nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
e399441d
JS
2264{
2265 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2266 int ret;
2267
2268 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2269 if (ret) {
2270 dev_info(ctrl->ctrl.device,
2271 "set_queue_count failed: %d\n", ret);
2272 return ret;
2273 }
2274
61bff8ef
JS
2275 /* check for io queues existing */
2276 if (ctrl->queue_count == 1)
e399441d
JS
2277 return 0;
2278
e399441d
JS
2279 nvme_fc_init_io_queues(ctrl);
2280
61bff8ef 2281 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
e399441d 2282 if (ret)
61bff8ef 2283 goto out_free_io_queues;
e399441d
JS
2284
2285 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2286 if (ret)
61bff8ef 2287 goto out_free_io_queues;
e399441d
JS
2288
2289 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2290 if (ret)
2291 goto out_delete_hw_queues;
2292
2293 return 0;
2294
2295out_delete_hw_queues:
2296 nvme_fc_delete_hw_io_queues(ctrl);
61bff8ef 2297out_free_io_queues:
e399441d 2298 nvme_fc_free_io_queues(ctrl);
61bff8ef
JS
2299 return ret;
2300}
e399441d 2301
61bff8ef
JS
2302/*
2303 * This routine restarts the controller on the host side, and
2304 * on the link side, recreates the controller association.
2305 */
2306static int
2307nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2308{
2309 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2310 u32 segs;
2311 int ret;
2312 bool changed;
2313
5bbecdbc 2314 ++ctrl->ctrl.opts->nr_reconnects;
61bff8ef
JS
2315
2316 /*
2317 * Create the admin queue
2318 */
2319
2320 nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2321
2322 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2323 NVME_FC_AQ_BLKMQ_DEPTH);
2324 if (ret)
2325 goto out_free_queue;
2326
2327 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2328 NVME_FC_AQ_BLKMQ_DEPTH,
2329 (NVME_FC_AQ_BLKMQ_DEPTH / 4));
2330 if (ret)
2331 goto out_delete_hw_queue;
2332
2333 if (ctrl->ctrl.state != NVME_CTRL_NEW)
2334 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
2335
2336 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2337 if (ret)
2338 goto out_disconnect_admin_queue;
2339
2340 /*
2341 * Check controller capabilities
2342 *
2343 * todo:- add code to check if ctrl attributes changed from
2344 * prior connection values
2345 */
2346
2347 ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
2348 if (ret) {
2349 dev_err(ctrl->ctrl.device,
2350 "prop_get NVME_REG_CAP failed\n");
2351 goto out_disconnect_admin_queue;
2352 }
2353
2354 ctrl->ctrl.sqsize =
2355 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
2356
2357 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
2358 if (ret)
2359 goto out_disconnect_admin_queue;
2360
2361 segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2362 ctrl->lport->ops->max_sgl_segments);
2363 ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2364
2365 ret = nvme_init_identify(&ctrl->ctrl);
2366 if (ret)
2367 goto out_disconnect_admin_queue;
2368
2369 /* sanity checks */
2370
2371 /* FC-NVME does not have other data in the capsule */
2372 if (ctrl->ctrl.icdoff) {
2373 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2374 ctrl->ctrl.icdoff);
2375 goto out_disconnect_admin_queue;
2376 }
2377
2378 nvme_start_keep_alive(&ctrl->ctrl);
2379
2380 /* FC-NVME supports normal SGL Data Block Descriptors */
2381
2382 if (opts->queue_size > ctrl->ctrl.maxcmd) {
2383 /* warn if maxcmd is lower than queue_size */
2384 dev_warn(ctrl->ctrl.device,
2385 "queue_size %zu > ctrl maxcmd %u, reducing "
2386 "to queue_size\n",
2387 opts->queue_size, ctrl->ctrl.maxcmd);
2388 opts->queue_size = ctrl->ctrl.maxcmd;
2389 }
2390
2391 ret = nvme_fc_init_aen_ops(ctrl);
2392 if (ret)
2393 goto out_term_aen_ops;
2394
2395 /*
2396 * Create the io queues
2397 */
2398
2399 if (ctrl->queue_count > 1) {
2400 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2401 ret = nvme_fc_create_io_queues(ctrl);
2402 else
2403 ret = nvme_fc_reinit_io_queues(ctrl);
2404 if (ret)
2405 goto out_term_aen_ops;
2406 }
2407
2408 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2409 WARN_ON_ONCE(!changed);
2410
5bbecdbc 2411 ctrl->ctrl.opts->nr_reconnects = 0;
61bff8ef 2412
61bff8ef
JS
2413 if (ctrl->queue_count > 1) {
2414 nvme_start_queues(&ctrl->ctrl);
2415 nvme_queue_scan(&ctrl->ctrl);
2416 nvme_queue_async_events(&ctrl->ctrl);
2417 }
2418
2419 return 0; /* Success */
2420
2421out_term_aen_ops:
2422 nvme_fc_term_aen_ops(ctrl);
2423 nvme_stop_keep_alive(&ctrl->ctrl);
2424out_disconnect_admin_queue:
2425 /* send a Disconnect(association) LS to fc-nvme target */
2426 nvme_fc_xmt_disconnect_assoc(ctrl);
2427out_delete_hw_queue:
2428 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2429out_free_queue:
2430 nvme_fc_free_queue(&ctrl->queues[0]);
e399441d
JS
2431
2432 return ret;
2433}
2434
61bff8ef
JS
2435/*
2436 * This routine stops operation of the controller on the host side.
2437 * On the host os stack side: Admin and IO queues are stopped,
2438 * outstanding ios on them terminated via FC ABTS.
2439 * On the link side: the association is terminated.
2440 */
2441static void
2442nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2443{
2444 unsigned long flags;
2445
2446 nvme_stop_keep_alive(&ctrl->ctrl);
2447
2448 spin_lock_irqsave(&ctrl->lock, flags);
2449 ctrl->flags |= FCCTRL_TERMIO;
2450 ctrl->iocnt = 0;
2451 spin_unlock_irqrestore(&ctrl->lock, flags);
2452
2453 /*
2454 * If io queues are present, stop them and terminate all outstanding
2455 * ios on them. As FC allocates FC exchange for each io, the
2456 * transport must contact the LLDD to terminate the exchange,
2457 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2458 * to tell us what io's are busy and invoke a transport routine
2459 * to kill them with the LLDD. After terminating the exchange
2460 * the LLDD will call the transport's normal io done path, but it
2461 * will have an aborted status. The done path will return the
2462 * io requests back to the block layer as part of normal completions
2463 * (but with error status).
2464 */
2465 if (ctrl->queue_count > 1) {
2466 nvme_stop_queues(&ctrl->ctrl);
2467 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2468 nvme_fc_terminate_exchange, &ctrl->ctrl);
2469 }
2470
2471 /*
2472 * Other transports, which don't have link-level contexts bound
2473 * to sqe's, would try to gracefully shutdown the controller by
2474 * writing the registers for shutdown and polling (call
2475 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2476 * just aborted and we will wait on those contexts, and given
2477 * there was no indication of how live the controlelr is on the
2478 * link, don't send more io to create more contexts for the
2479 * shutdown. Let the controller fail via keepalive failure if
2480 * its still present.
2481 */
2482
2483 /*
2484 * clean up the admin queue. Same thing as above.
2485 * use blk_mq_tagset_busy_itr() and the transport routine to
2486 * terminate the exchanges.
2487 */
2488 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
2489 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2490 nvme_fc_terminate_exchange, &ctrl->ctrl);
2491
2492 /* kill the aens as they are a separate path */
2493 nvme_fc_abort_aen_ops(ctrl);
2494
2495 /* wait for all io that had to be aborted */
2496 spin_lock_irqsave(&ctrl->lock, flags);
2497 while (ctrl->iocnt) {
2498 spin_unlock_irqrestore(&ctrl->lock, flags);
2499 msleep(1000);
2500 spin_lock_irqsave(&ctrl->lock, flags);
2501 }
2502 ctrl->flags &= ~FCCTRL_TERMIO;
2503 spin_unlock_irqrestore(&ctrl->lock, flags);
2504
2505 nvme_fc_term_aen_ops(ctrl);
2506
2507 /*
2508 * send a Disconnect(association) LS to fc-nvme target
2509 * Note: could have been sent at top of process, but
2510 * cleaner on link traffic if after the aborts complete.
2511 * Note: if association doesn't exist, association_id will be 0
2512 */
2513 if (ctrl->association_id)
2514 nvme_fc_xmt_disconnect_assoc(ctrl);
2515
2516 if (ctrl->ctrl.tagset) {
2517 nvme_fc_delete_hw_io_queues(ctrl);
2518 nvme_fc_free_io_queues(ctrl);
2519 }
2520
2521 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2522 nvme_fc_free_queue(&ctrl->queues[0]);
2523}
2524
2525static void
2526nvme_fc_delete_ctrl_work(struct work_struct *work)
2527{
2528 struct nvme_fc_ctrl *ctrl =
2529 container_of(work, struct nvme_fc_ctrl, delete_work);
2530
2531 cancel_work_sync(&ctrl->reset_work);
2532 cancel_delayed_work_sync(&ctrl->connect_work);
2533
2534 /*
2535 * kill the association on the link side. this will block
2536 * waiting for io to terminate
2537 */
2538 nvme_fc_delete_association(ctrl);
2539
2540 /*
2541 * tear down the controller
a5321aa5
JS
2542 * After the last reference on the nvme ctrl is removed,
2543 * the transport nvme_fc_nvme_ctrl_freed() callback will be
2544 * invoked. From there, the transport will tear down it's
2545 * logical queues and association.
61bff8ef
JS
2546 */
2547 nvme_uninit_ctrl(&ctrl->ctrl);
2548
2549 nvme_put_ctrl(&ctrl->ctrl);
2550}
2551
5bbecdbc
JS
2552static bool
2553__nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl)
61bff8ef
JS
2554{
2555 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
5bbecdbc 2556 return true;
61bff8ef
JS
2557
2558 if (!queue_work(nvme_fc_wq, &ctrl->delete_work))
5bbecdbc 2559 return true;
61bff8ef 2560
5bbecdbc
JS
2561 return false;
2562}
2563
2564static int
2565__nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2566{
2567 return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0;
61bff8ef
JS
2568}
2569
2570/*
2571 * Request from nvme core layer to delete the controller
2572 */
2573static int
2574nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2575{
2576 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2577 int ret;
2578
2579 if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2580 return -EBUSY;
2581
2582 ret = __nvme_fc_del_ctrl(ctrl);
2583
2584 if (!ret)
2585 flush_workqueue(nvme_fc_wq);
2586
2587 nvme_put_ctrl(&ctrl->ctrl);
2588
2589 return ret;
2590}
2591
5bbecdbc
JS
2592static void
2593nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2594{
2595 /* If we are resetting/deleting then do nothing */
2596 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
2597 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
2598 ctrl->ctrl.state == NVME_CTRL_LIVE);
2599 return;
2600 }
2601
589ff775 2602 dev_info(ctrl->ctrl.device,
5bbecdbc
JS
2603 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2604 ctrl->cnum, status);
2605
2606 if (nvmf_should_reconnect(&ctrl->ctrl)) {
2607 dev_info(ctrl->ctrl.device,
2608 "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2609 ctrl->cnum, ctrl->ctrl.opts->reconnect_delay);
2610 queue_delayed_work(nvme_fc_wq, &ctrl->connect_work,
2611 ctrl->ctrl.opts->reconnect_delay * HZ);
2612 } else {
589ff775 2613 dev_warn(ctrl->ctrl.device,
5bbecdbc
JS
2614 "NVME-FC{%d}: Max reconnect attempts (%d) "
2615 "reached. Removing controller\n",
2616 ctrl->cnum, ctrl->ctrl.opts->nr_reconnects);
2617 WARN_ON(__nvme_fc_schedule_delete_work(ctrl));
2618 }
2619}
2620
61bff8ef
JS
2621static void
2622nvme_fc_reset_ctrl_work(struct work_struct *work)
2623{
2624 struct nvme_fc_ctrl *ctrl =
2625 container_of(work, struct nvme_fc_ctrl, reset_work);
2626 int ret;
2627
2628 /* will block will waiting for io to terminate */
2629 nvme_fc_delete_association(ctrl);
2630
2631 ret = nvme_fc_create_association(ctrl);
5bbecdbc
JS
2632 if (ret)
2633 nvme_fc_reconnect_or_delete(ctrl, ret);
2634 else
61bff8ef
JS
2635 dev_info(ctrl->ctrl.device,
2636 "NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2637}
2638
2639/*
2640 * called by the nvme core layer, for sysfs interface that requests
2641 * a reset of the nvme controller
2642 */
2643static int
2644nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl)
2645{
2646 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2647
589ff775 2648 dev_info(ctrl->ctrl.device,
61bff8ef
JS
2649 "NVME-FC{%d}: admin requested controller reset\n", ctrl->cnum);
2650
2651 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
2652 return -EBUSY;
2653
2654 if (!queue_work(nvme_fc_wq, &ctrl->reset_work))
2655 return -EBUSY;
2656
2657 flush_work(&ctrl->reset_work);
2658
2659 return 0;
2660}
2661
2662static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2663 .name = "fc",
2664 .module = THIS_MODULE,
d3d5b87d 2665 .flags = NVME_F_FABRICS,
61bff8ef
JS
2666 .reg_read32 = nvmf_reg_read32,
2667 .reg_read64 = nvmf_reg_read64,
2668 .reg_write32 = nvmf_reg_write32,
2669 .reset_ctrl = nvme_fc_reset_nvme_ctrl,
2670 .free_ctrl = nvme_fc_nvme_ctrl_freed,
2671 .submit_async_event = nvme_fc_submit_async_event,
2672 .delete_ctrl = nvme_fc_del_nvme_ctrl,
2673 .get_subsysnqn = nvmf_get_subsysnqn,
2674 .get_address = nvmf_get_address,
2675};
2676
2677static void
2678nvme_fc_connect_ctrl_work(struct work_struct *work)
2679{
2680 int ret;
2681
2682 struct nvme_fc_ctrl *ctrl =
2683 container_of(to_delayed_work(work),
2684 struct nvme_fc_ctrl, connect_work);
2685
2686 ret = nvme_fc_create_association(ctrl);
5bbecdbc
JS
2687 if (ret)
2688 nvme_fc_reconnect_or_delete(ctrl, ret);
2689 else
61bff8ef
JS
2690 dev_info(ctrl->ctrl.device,
2691 "NVME-FC{%d}: controller reconnect complete\n",
2692 ctrl->cnum);
2693}
2694
2695
2696static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2697 .queue_rq = nvme_fc_queue_rq,
2698 .complete = nvme_fc_complete_rq,
2699 .init_request = nvme_fc_init_admin_request,
2700 .exit_request = nvme_fc_exit_request,
2701 .reinit_request = nvme_fc_reinit_request,
2702 .init_hctx = nvme_fc_init_admin_hctx,
2703 .timeout = nvme_fc_timeout,
2704};
2705
e399441d
JS
2706
2707static struct nvme_ctrl *
61bff8ef 2708nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
e399441d
JS
2709 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2710{
2711 struct nvme_fc_ctrl *ctrl;
2712 unsigned long flags;
2713 int ret, idx;
e399441d 2714
85e6a6ad
JS
2715 if (!(rport->remoteport.port_role &
2716 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2717 ret = -EBADR;
2718 goto out_fail;
2719 }
2720
e399441d
JS
2721 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2722 if (!ctrl) {
2723 ret = -ENOMEM;
2724 goto out_fail;
2725 }
2726
2727 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2728 if (idx < 0) {
2729 ret = -ENOSPC;
2730 goto out_free_ctrl;
2731 }
2732
2733 ctrl->ctrl.opts = opts;
2734 INIT_LIST_HEAD(&ctrl->ctrl_list);
e399441d
JS
2735 ctrl->lport = lport;
2736 ctrl->rport = rport;
2737 ctrl->dev = lport->dev;
e399441d
JS
2738 ctrl->cnum = idx;
2739
e399441d
JS
2740 get_device(ctrl->dev);
2741 kref_init(&ctrl->ref);
2742
61bff8ef
JS
2743 INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
2744 INIT_WORK(&ctrl->reset_work, nvme_fc_reset_ctrl_work);
2745 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
e399441d
JS
2746 spin_lock_init(&ctrl->lock);
2747
2748 /* io queue count */
2749 ctrl->queue_count = min_t(unsigned int,
2750 opts->nr_io_queues,
2751 lport->ops->max_hw_queues);
2752 opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */
2753 ctrl->queue_count++; /* +1 for admin queue */
2754
2755 ctrl->ctrl.sqsize = opts->queue_size - 1;
2756 ctrl->ctrl.kato = opts->kato;
2757
2758 ret = -ENOMEM;
2759 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
2760 GFP_KERNEL);
2761 if (!ctrl->queues)
61bff8ef 2762 goto out_free_ida;
e399441d 2763
61bff8ef
JS
2764 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2765 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2766 ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2767 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2768 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2769 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2770 (SG_CHUNK_SIZE *
2771 sizeof(struct scatterlist)) +
2772 ctrl->lport->ops->fcprqst_priv_sz;
2773 ctrl->admin_tag_set.driver_data = ctrl;
2774 ctrl->admin_tag_set.nr_hw_queues = 1;
2775 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
e399441d 2776
61bff8ef 2777 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
e399441d 2778 if (ret)
61bff8ef 2779 goto out_free_queues;
e399441d 2780
61bff8ef
JS
2781 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2782 if (IS_ERR(ctrl->ctrl.admin_q)) {
2783 ret = PTR_ERR(ctrl->ctrl.admin_q);
2784 goto out_free_admin_tag_set;
e399441d
JS
2785 }
2786
61bff8ef
JS
2787 /*
2788 * Would have been nice to init io queues tag set as well.
2789 * However, we require interaction from the controller
2790 * for max io queue count before we can do so.
2791 * Defer this to the connect path.
2792 */
e399441d 2793
61bff8ef
JS
2794 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2795 if (ret)
2796 goto out_cleanup_admin_q;
e399441d 2797
61bff8ef 2798 /* at this point, teardown path changes to ref counting on nvme ctrl */
e399441d
JS
2799
2800 spin_lock_irqsave(&rport->lock, flags);
2801 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2802 spin_unlock_irqrestore(&rport->lock, flags);
2803
61bff8ef
JS
2804 ret = nvme_fc_create_association(ctrl);
2805 if (ret) {
de41447a 2806 ctrl->ctrl.opts = NULL;
61bff8ef
JS
2807 /* initiate nvme ctrl ref counting teardown */
2808 nvme_uninit_ctrl(&ctrl->ctrl);
24b7f059 2809 nvme_put_ctrl(&ctrl->ctrl);
61bff8ef
JS
2810
2811 /* as we're past the point where we transition to the ref
2812 * counting teardown path, if we return a bad pointer here,
2813 * the calling routine, thinking it's prior to the
2814 * transition, will do an rport put. Since the teardown
2815 * path also does a rport put, we do an extra get here to
2816 * so proper order/teardown happens.
2817 */
2818 nvme_fc_rport_get(rport);
2819
2820 if (ret > 0)
2821 ret = -EIO;
2822 return ERR_PTR(ret);
e399441d
JS
2823 }
2824
2cb657bc
JS
2825 kref_get(&ctrl->ctrl.kref);
2826
61bff8ef
JS
2827 dev_info(ctrl->ctrl.device,
2828 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2829 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
e399441d 2830
61bff8ef 2831 return &ctrl->ctrl;
e399441d 2832
61bff8ef
JS
2833out_cleanup_admin_q:
2834 blk_cleanup_queue(ctrl->ctrl.admin_q);
2835out_free_admin_tag_set:
2836 blk_mq_free_tag_set(&ctrl->admin_tag_set);
2837out_free_queues:
2838 kfree(ctrl->queues);
e399441d 2839out_free_ida:
61bff8ef 2840 put_device(ctrl->dev);
e399441d
JS
2841 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2842out_free_ctrl:
2843 kfree(ctrl);
2844out_fail:
e399441d
JS
2845 /* exit via here doesn't follow ctlr ref points */
2846 return ERR_PTR(ret);
2847}
2848
2849enum {
2850 FCT_TRADDR_ERR = 0,
2851 FCT_TRADDR_WWNN = 1 << 0,
2852 FCT_TRADDR_WWPN = 1 << 1,
2853};
2854
2855struct nvmet_fc_traddr {
2856 u64 nn;
2857 u64 pn;
2858};
2859
2860static const match_table_t traddr_opt_tokens = {
2861 { FCT_TRADDR_WWNN, "nn-%s" },
2862 { FCT_TRADDR_WWPN, "pn-%s" },
2863 { FCT_TRADDR_ERR, NULL }
2864};
2865
2866static int
2867nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2868{
2869 substring_t args[MAX_OPT_ARGS];
2870 char *options, *o, *p;
2871 int token, ret = 0;
2872 u64 token64;
2873
2874 options = o = kstrdup(buf, GFP_KERNEL);
2875 if (!options)
2876 return -ENOMEM;
2877
2878 while ((p = strsep(&o, ":\n")) != NULL) {
2879 if (!*p)
2880 continue;
2881
2882 token = match_token(p, traddr_opt_tokens, args);
2883 switch (token) {
2884 case FCT_TRADDR_WWNN:
2885 if (match_u64(args, &token64)) {
2886 ret = -EINVAL;
2887 goto out;
2888 }
2889 traddr->nn = token64;
2890 break;
2891 case FCT_TRADDR_WWPN:
2892 if (match_u64(args, &token64)) {
2893 ret = -EINVAL;
2894 goto out;
2895 }
2896 traddr->pn = token64;
2897 break;
2898 default:
2899 pr_warn("unknown traddr token or missing value '%s'\n",
2900 p);
2901 ret = -EINVAL;
2902 goto out;
2903 }
2904 }
2905
2906out:
2907 kfree(options);
2908 return ret;
2909}
2910
2911static struct nvme_ctrl *
2912nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2913{
2914 struct nvme_fc_lport *lport;
2915 struct nvme_fc_rport *rport;
61bff8ef 2916 struct nvme_ctrl *ctrl;
e399441d
JS
2917 struct nvmet_fc_traddr laddr = { 0L, 0L };
2918 struct nvmet_fc_traddr raddr = { 0L, 0L };
2919 unsigned long flags;
2920 int ret;
2921
2922 ret = nvme_fc_parse_address(&raddr, opts->traddr);
2923 if (ret || !raddr.nn || !raddr.pn)
2924 return ERR_PTR(-EINVAL);
2925
2926 ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2927 if (ret || !laddr.nn || !laddr.pn)
2928 return ERR_PTR(-EINVAL);
2929
2930 /* find the host and remote ports to connect together */
2931 spin_lock_irqsave(&nvme_fc_lock, flags);
2932 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2933 if (lport->localport.node_name != laddr.nn ||
2934 lport->localport.port_name != laddr.pn)
2935 continue;
2936
2937 list_for_each_entry(rport, &lport->endp_list, endp_list) {
2938 if (rport->remoteport.node_name != raddr.nn ||
2939 rport->remoteport.port_name != raddr.pn)
2940 continue;
2941
2942 /* if fail to get reference fall through. Will error */
2943 if (!nvme_fc_rport_get(rport))
2944 break;
2945
2946 spin_unlock_irqrestore(&nvme_fc_lock, flags);
2947
61bff8ef
JS
2948 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
2949 if (IS_ERR(ctrl))
2950 nvme_fc_rport_put(rport);
2951 return ctrl;
e399441d
JS
2952 }
2953 }
2954 spin_unlock_irqrestore(&nvme_fc_lock, flags);
2955
2956 return ERR_PTR(-ENOENT);
2957}
2958
2959
2960static struct nvmf_transport_ops nvme_fc_transport = {
2961 .name = "fc",
2962 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
5bbecdbc 2963 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
e399441d
JS
2964 .create_ctrl = nvme_fc_create_ctrl,
2965};
2966
2967static int __init nvme_fc_init_module(void)
2968{
c0e4a6f5
SG
2969 int ret;
2970
e399441d
JS
2971 nvme_fc_wq = create_workqueue("nvme_fc_wq");
2972 if (!nvme_fc_wq)
2973 return -ENOMEM;
2974
c0e4a6f5
SG
2975 ret = nvmf_register_transport(&nvme_fc_transport);
2976 if (ret)
2977 goto err;
2978
2979 return 0;
2980err:
2981 destroy_workqueue(nvme_fc_wq);
2982 return ret;
e399441d
JS
2983}
2984
2985static void __exit nvme_fc_exit_module(void)
2986{
2987 /* sanity check - all lports should be removed */
2988 if (!list_empty(&nvme_fc_lport_list))
2989 pr_warn("%s: localport list not empty\n", __func__);
2990
2991 nvmf_unregister_transport(&nvme_fc_transport);
2992
2993 destroy_workqueue(nvme_fc_wq);
2994
2995 ida_destroy(&nvme_fc_local_port_cnt);
2996 ida_destroy(&nvme_fc_ctrl_cnt);
2997}
2998
2999module_init(nvme_fc_init_module);
3000module_exit(nvme_fc_exit_module);
3001
3002MODULE_LICENSE("GPL v2");