]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/nvme/host/pci.c
nvme: Make controller state visible via sysfs
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
42f61420 20#include <linux/cpu.h>
fd63e9ce 21#include <linux/delay.h>
b60503ba
MW
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
4cc09e2d 25#include <linux/hdreg.h>
5aff9382 26#include <linux/idr.h>
b60503ba
MW
27#include <linux/init.h>
28#include <linux/interrupt.h>
29#include <linux/io.h>
30#include <linux/kdev_t.h>
31#include <linux/kernel.h>
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
77bf25ea 35#include <linux/mutex.h>
b60503ba 36#include <linux/pci.h>
be7b6275 37#include <linux/poison.h>
c3bfe717 38#include <linux/ptrace.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
e1e5e564 41#include <linux/t10-pi.h>
2d55cd5f 42#include <linux/timer.h>
b60503ba 43#include <linux/types.h>
2f8e2c87 44#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 45#include <asm/unaligned.h>
a98e58e5 46#include <linux/sed-opal.h>
797a796a 47
f11bb3e2
CH
48#include "nvme.h"
49
9d43cf64 50#define NVME_Q_DEPTH 1024
d31af0a3 51#define NVME_AQ_DEPTH 256
b60503ba
MW
52#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
53#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 54
adf68f21
CH
55/*
56 * We handle AEN commands ourselves and don't even let the
57 * block layer know about them.
58 */
f866fc42 59#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 60
58ffacb5
MW
61static int use_threaded_interrupts;
62module_param(use_threaded_interrupts, int, 0);
63
8ffaadf7
JD
64static bool use_cmb_sqes = true;
65module_param(use_cmb_sqes, bool, 0644);
66MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
67
9a6b9458 68static struct workqueue_struct *nvme_workq;
1fa6aead 69
1c63dc66
CH
70struct nvme_dev;
71struct nvme_queue;
b3fffdef 72
4cc06521 73static int nvme_reset(struct nvme_dev *dev);
a0fa9647 74static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 75static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 76
1c63dc66
CH
77/*
78 * Represents an NVM Express device. Each nvme_dev is a PCI function.
79 */
80struct nvme_dev {
1c63dc66
CH
81 struct nvme_queue **queues;
82 struct blk_mq_tag_set tagset;
83 struct blk_mq_tag_set admin_tagset;
84 u32 __iomem *dbs;
85 struct device *dev;
86 struct dma_pool *prp_page_pool;
87 struct dma_pool *prp_small_pool;
88 unsigned queue_count;
89 unsigned online_queues;
90 unsigned max_qid;
91 int q_depth;
92 u32 db_stride;
1c63dc66 93 void __iomem *bar;
1c63dc66 94 struct work_struct reset_work;
5c8809e6 95 struct work_struct remove_work;
2d55cd5f 96 struct timer_list watchdog_timer;
77bf25ea 97 struct mutex shutdown_lock;
1c63dc66 98 bool subsystem;
1c63dc66
CH
99 void __iomem *cmb;
100 dma_addr_t cmb_dma_addr;
101 u64 cmb_size;
102 u32 cmbsz;
202021c1 103 u32 cmbloc;
1c63dc66 104 struct nvme_ctrl ctrl;
db3cbfff 105 struct completion ioq_wait;
4d115420 106};
1fa6aead 107
1c63dc66
CH
108static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
109{
110 return container_of(ctrl, struct nvme_dev, ctrl);
111}
112
b60503ba
MW
113/*
114 * An NVM Express queue. Each device has at least two (one for admin
115 * commands and one for I/O commands).
116 */
117struct nvme_queue {
118 struct device *q_dmadev;
091b6092 119 struct nvme_dev *dev;
3193f07b 120 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
121 spinlock_t q_lock;
122 struct nvme_command *sq_cmds;
8ffaadf7 123 struct nvme_command __iomem *sq_cmds_io;
b60503ba 124 volatile struct nvme_completion *cqes;
42483228 125 struct blk_mq_tags **tags;
b60503ba
MW
126 dma_addr_t sq_dma_addr;
127 dma_addr_t cq_dma_addr;
b60503ba
MW
128 u32 __iomem *q_db;
129 u16 q_depth;
6222d172 130 s16 cq_vector;
b60503ba
MW
131 u16 sq_tail;
132 u16 cq_head;
c30341dc 133 u16 qid;
e9539f47
MW
134 u8 cq_phase;
135 u8 cqe_seen;
b60503ba
MW
136};
137
71bd150c
CH
138/*
139 * The nvme_iod describes the data in an I/O, including the list of PRP
140 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 141 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
142 * allocated to store the PRP list.
143 */
144struct nvme_iod {
d49187e9 145 struct nvme_request req;
f4800d6d
CH
146 struct nvme_queue *nvmeq;
147 int aborted;
71bd150c 148 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
149 int nents; /* Used in scatterlist */
150 int length; /* Of data, in bytes */
151 dma_addr_t first_dma;
bf684057 152 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
153 struct scatterlist *sg;
154 struct scatterlist inline_sg[0];
b60503ba
MW
155};
156
157/*
158 * Check we didin't inadvertently grow the command struct
159 */
160static inline void _nvme_check_size(void)
161{
162 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 167 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 168 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
169 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
171 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
172 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 173 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
174}
175
ac3dd5bd
JA
176/*
177 * Max size of iod being embedded in the request payload
178 */
179#define NVME_INT_PAGES 2
5fd4ce1b 180#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
181
182/*
183 * Will slightly overestimate the number of pages needed. This is OK
184 * as it only leads to a small amount of wasted memory for the lifetime of
185 * the I/O.
186 */
187static int nvme_npages(unsigned size, struct nvme_dev *dev)
188{
5fd4ce1b
CH
189 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
190 dev->ctrl.page_size);
ac3dd5bd
JA
191 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
192}
193
f4800d6d
CH
194static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
195 unsigned int size, unsigned int nseg)
ac3dd5bd 196{
f4800d6d
CH
197 return sizeof(__le64 *) * nvme_npages(size, dev) +
198 sizeof(struct scatterlist) * nseg;
199}
ac3dd5bd 200
f4800d6d
CH
201static unsigned int nvme_cmd_size(struct nvme_dev *dev)
202{
203 return sizeof(struct nvme_iod) +
204 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
205}
206
dca51e78
CH
207static int nvmeq_irq(struct nvme_queue *nvmeq)
208{
209 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
210}
211
a4aea562
MB
212static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213 unsigned int hctx_idx)
e85248e5 214{
a4aea562
MB
215 struct nvme_dev *dev = data;
216 struct nvme_queue *nvmeq = dev->queues[0];
217
42483228
KB
218 WARN_ON(hctx_idx != 0);
219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220 WARN_ON(nvmeq->tags);
221
a4aea562 222 hctx->driver_data = nvmeq;
42483228 223 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 224 return 0;
e85248e5
MW
225}
226
4af0e21c
KB
227static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228{
229 struct nvme_queue *nvmeq = hctx->driver_data;
230
231 nvmeq->tags = NULL;
232}
233
a4aea562
MB
234static int nvme_admin_init_request(void *data, struct request *req,
235 unsigned int hctx_idx, unsigned int rq_idx,
236 unsigned int numa_node)
22404274 237{
a4aea562 238 struct nvme_dev *dev = data;
f4800d6d 239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
240 struct nvme_queue *nvmeq = dev->queues[0];
241
242 BUG_ON(!nvmeq);
f4800d6d 243 iod->nvmeq = nvmeq;
a4aea562 244 return 0;
22404274
KB
245}
246
a4aea562
MB
247static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248 unsigned int hctx_idx)
b60503ba 249{
a4aea562 250 struct nvme_dev *dev = data;
42483228 251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 252
42483228
KB
253 if (!nvmeq->tags)
254 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 255
42483228 256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
257 hctx->driver_data = nvmeq;
258 return 0;
b60503ba
MW
259}
260
a4aea562
MB
261static int nvme_init_request(void *data, struct request *req,
262 unsigned int hctx_idx, unsigned int rq_idx,
263 unsigned int numa_node)
b60503ba 264{
a4aea562 265 struct nvme_dev *dev = data;
f4800d6d 266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269 BUG_ON(!nvmeq);
f4800d6d 270 iod->nvmeq = nvmeq;
a4aea562
MB
271 return 0;
272}
273
dca51e78
CH
274static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
275{
276 struct nvme_dev *dev = set->driver_data;
277
278 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
279}
280
b60503ba 281/**
adf68f21 282 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
283 * @nvmeq: The queue to use
284 * @cmd: The command to send
285 *
286 * Safe to use from interrupt context
287 */
e3f879bf
SB
288static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
289 struct nvme_command *cmd)
b60503ba 290{
a4aea562
MB
291 u16 tail = nvmeq->sq_tail;
292
8ffaadf7
JD
293 if (nvmeq->sq_cmds_io)
294 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
295 else
296 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
297
b60503ba
MW
298 if (++tail == nvmeq->q_depth)
299 tail = 0;
7547881d 300 writel(tail, nvmeq->q_db);
b60503ba 301 nvmeq->sq_tail = tail;
b60503ba
MW
302}
303
f4800d6d 304static __le64 **iod_list(struct request *req)
b60503ba 305{
f4800d6d 306 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
f9d03f96 307 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
308}
309
b131c61d 310static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 311{
f4800d6d 312 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 313 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 314 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 315
f4800d6d
CH
316 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
317 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
318 if (!iod->sg)
319 return BLK_MQ_RQ_QUEUE_BUSY;
320 } else {
321 iod->sg = iod->inline_sg;
ac3dd5bd
JA
322 }
323
f4800d6d
CH
324 iod->aborted = 0;
325 iod->npages = -1;
326 iod->nents = 0;
327 iod->length = size;
f80ec966 328
e8064021 329 if (!(rq->rq_flags & RQF_DONTPREP)) {
f80ec966 330 rq->retries = 0;
e8064021 331 rq->rq_flags |= RQF_DONTPREP;
f80ec966 332 }
bac0000a 333 return BLK_MQ_RQ_QUEUE_OK;
ac3dd5bd
JA
334}
335
f4800d6d 336static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 337{
f4800d6d 338 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 339 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 340 int i;
f4800d6d 341 __le64 **list = iod_list(req);
eca18b23
MW
342 dma_addr_t prp_dma = iod->first_dma;
343
344 if (iod->npages == 0)
345 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
346 for (i = 0; i < iod->npages; i++) {
347 __le64 *prp_list = list[i];
348 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
349 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
350 prp_dma = next_prp_dma;
351 }
ac3dd5bd 352
f4800d6d
CH
353 if (iod->sg != iod->inline_sg)
354 kfree(iod->sg);
b4ff9c8d
KB
355}
356
52b68d7e 357#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
358static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
359{
360 if (be32_to_cpu(pi->ref_tag) == v)
361 pi->ref_tag = cpu_to_be32(p);
362}
363
364static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
365{
366 if (be32_to_cpu(pi->ref_tag) == p)
367 pi->ref_tag = cpu_to_be32(v);
368}
369
370/**
371 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
372 *
373 * The virtual start sector is the one that was originally submitted by the
374 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
375 * start sector may be different. Remap protection information to match the
376 * physical LBA on writes, and back to the original seed on reads.
377 *
378 * Type 0 and 3 do not have a ref tag, so no remapping required.
379 */
380static void nvme_dif_remap(struct request *req,
381 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
382{
383 struct nvme_ns *ns = req->rq_disk->private_data;
384 struct bio_integrity_payload *bip;
385 struct t10_pi_tuple *pi;
386 void *p, *pmap;
387 u32 i, nlb, ts, phys, virt;
388
389 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
390 return;
391
392 bip = bio_integrity(req->bio);
393 if (!bip)
394 return;
395
396 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
397
398 p = pmap;
399 virt = bip_get_seed(bip);
400 phys = nvme_block_nr(ns, blk_rq_pos(req));
401 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 402 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
403
404 for (i = 0; i < nlb; i++, virt++, phys++) {
405 pi = (struct t10_pi_tuple *)p;
406 dif_swap(phys, virt, pi);
407 p += ts;
408 }
409 kunmap_atomic(pmap);
410}
52b68d7e
KB
411#else /* CONFIG_BLK_DEV_INTEGRITY */
412static void nvme_dif_remap(struct request *req,
413 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
414{
415}
416static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
417{
418}
419static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
420{
421}
52b68d7e
KB
422#endif
423
b131c61d 424static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
ff22b54f 425{
f4800d6d 426 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 427 struct dma_pool *pool;
b131c61d 428 int length = blk_rq_payload_bytes(req);
eca18b23 429 struct scatterlist *sg = iod->sg;
ff22b54f
MW
430 int dma_len = sg_dma_len(sg);
431 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 432 u32 page_size = dev->ctrl.page_size;
f137e0f1 433 int offset = dma_addr & (page_size - 1);
e025344c 434 __le64 *prp_list;
f4800d6d 435 __le64 **list = iod_list(req);
e025344c 436 dma_addr_t prp_dma;
eca18b23 437 int nprps, i;
ff22b54f 438
1d090624 439 length -= (page_size - offset);
ff22b54f 440 if (length <= 0)
69d2b571 441 return true;
ff22b54f 442
1d090624 443 dma_len -= (page_size - offset);
ff22b54f 444 if (dma_len) {
1d090624 445 dma_addr += (page_size - offset);
ff22b54f
MW
446 } else {
447 sg = sg_next(sg);
448 dma_addr = sg_dma_address(sg);
449 dma_len = sg_dma_len(sg);
450 }
451
1d090624 452 if (length <= page_size) {
edd10d33 453 iod->first_dma = dma_addr;
69d2b571 454 return true;
e025344c
SMM
455 }
456
1d090624 457 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
458 if (nprps <= (256 / 8)) {
459 pool = dev->prp_small_pool;
eca18b23 460 iod->npages = 0;
99802a7a
MW
461 } else {
462 pool = dev->prp_page_pool;
eca18b23 463 iod->npages = 1;
99802a7a
MW
464 }
465
69d2b571 466 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 467 if (!prp_list) {
edd10d33 468 iod->first_dma = dma_addr;
eca18b23 469 iod->npages = -1;
69d2b571 470 return false;
b77954cb 471 }
eca18b23
MW
472 list[0] = prp_list;
473 iod->first_dma = prp_dma;
e025344c
SMM
474 i = 0;
475 for (;;) {
1d090624 476 if (i == page_size >> 3) {
e025344c 477 __le64 *old_prp_list = prp_list;
69d2b571 478 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 479 if (!prp_list)
69d2b571 480 return false;
eca18b23 481 list[iod->npages++] = prp_list;
7523d834
MW
482 prp_list[0] = old_prp_list[i - 1];
483 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
484 i = 1;
e025344c
SMM
485 }
486 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
487 dma_len -= page_size;
488 dma_addr += page_size;
489 length -= page_size;
e025344c
SMM
490 if (length <= 0)
491 break;
492 if (dma_len > 0)
493 continue;
494 BUG_ON(dma_len < 0);
495 sg = sg_next(sg);
496 dma_addr = sg_dma_address(sg);
497 dma_len = sg_dma_len(sg);
ff22b54f
MW
498 }
499
69d2b571 500 return true;
ff22b54f
MW
501}
502
f4800d6d 503static int nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 504 struct nvme_command *cmnd)
d29ec824 505{
f4800d6d 506 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
507 struct request_queue *q = req->q;
508 enum dma_data_direction dma_dir = rq_data_dir(req) ?
509 DMA_TO_DEVICE : DMA_FROM_DEVICE;
510 int ret = BLK_MQ_RQ_QUEUE_ERROR;
d29ec824 511
f9d03f96 512 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
513 iod->nents = blk_rq_map_sg(q, req, iod->sg);
514 if (!iod->nents)
515 goto out;
d29ec824 516
ba1ca37e 517 ret = BLK_MQ_RQ_QUEUE_BUSY;
2b6b535d
MFO
518 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
519 DMA_ATTR_NO_WARN))
ba1ca37e 520 goto out;
d29ec824 521
b131c61d 522 if (!nvme_setup_prps(dev, req))
ba1ca37e 523 goto out_unmap;
0e5e4f0e 524
ba1ca37e
CH
525 ret = BLK_MQ_RQ_QUEUE_ERROR;
526 if (blk_integrity_rq(req)) {
527 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
528 goto out_unmap;
0e5e4f0e 529
bf684057
CH
530 sg_init_table(&iod->meta_sg, 1);
531 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 532 goto out_unmap;
0e5e4f0e 533
ba1ca37e
CH
534 if (rq_data_dir(req))
535 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 536
bf684057 537 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 538 goto out_unmap;
d29ec824 539 }
00df5cb4 540
eb793e2c
CH
541 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
542 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 543 if (blk_integrity_rq(req))
bf684057 544 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e 545 return BLK_MQ_RQ_QUEUE_OK;
00df5cb4 546
ba1ca37e
CH
547out_unmap:
548 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
549out:
550 return ret;
00df5cb4
MW
551}
552
f4800d6d 553static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 554{
f4800d6d 555 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
556 enum dma_data_direction dma_dir = rq_data_dir(req) ?
557 DMA_TO_DEVICE : DMA_FROM_DEVICE;
558
559 if (iod->nents) {
560 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
561 if (blk_integrity_rq(req)) {
562 if (!rq_data_dir(req))
563 nvme_dif_remap(req, nvme_dif_complete);
bf684057 564 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 565 }
e19b127f 566 }
e1e5e564 567
f9d03f96 568 nvme_cleanup_cmd(req);
f4800d6d 569 nvme_free_iod(dev, req);
d4f6c3ab 570}
b60503ba 571
d29ec824
CH
572/*
573 * NOTE: ns is NULL when called on the admin queue.
574 */
a4aea562
MB
575static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
576 const struct blk_mq_queue_data *bd)
edd10d33 577{
a4aea562
MB
578 struct nvme_ns *ns = hctx->queue->queuedata;
579 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 580 struct nvme_dev *dev = nvmeq->dev;
a4aea562 581 struct request *req = bd->rq;
ba1ca37e
CH
582 struct nvme_command cmnd;
583 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 584
e1e5e564
KB
585 /*
586 * If formated with metadata, require the block layer provide a buffer
587 * unless this namespace is formated such that the metadata can be
588 * stripped/generated by the controller with PRACT=1.
589 */
d29ec824 590 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364 591 if (!(ns->pi_type && ns->ms == 8) &&
57292b58 592 !blk_rq_is_passthrough(req)) {
eee417b0 593 blk_mq_end_request(req, -EFAULT);
e1e5e564
KB
594 return BLK_MQ_RQ_QUEUE_OK;
595 }
596 }
597
f9d03f96 598 ret = nvme_setup_cmd(ns, req, &cmnd);
bac0000a 599 if (ret != BLK_MQ_RQ_QUEUE_OK)
f4800d6d 600 return ret;
a4aea562 601
b131c61d 602 ret = nvme_init_iod(req, dev);
bac0000a 603 if (ret != BLK_MQ_RQ_QUEUE_OK)
f9d03f96 604 goto out_free_cmd;
a4aea562 605
f9d03f96 606 if (blk_rq_nr_phys_segments(req))
b131c61d 607 ret = nvme_map_data(dev, req, &cmnd);
a4aea562 608
bac0000a 609 if (ret != BLK_MQ_RQ_QUEUE_OK)
f9d03f96 610 goto out_cleanup_iod;
a4aea562 611
aae239e1 612 blk_mq_start_request(req);
a4aea562 613
ba1ca37e 614 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 615 if (unlikely(nvmeq->cq_vector < 0)) {
69d9a99c
KB
616 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
617 ret = BLK_MQ_RQ_QUEUE_BUSY;
618 else
619 ret = BLK_MQ_RQ_QUEUE_ERROR;
ae1fba20 620 spin_unlock_irq(&nvmeq->q_lock);
f9d03f96 621 goto out_cleanup_iod;
ae1fba20 622 }
ba1ca37e 623 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
624 nvme_process_cq(nvmeq);
625 spin_unlock_irq(&nvmeq->q_lock);
626 return BLK_MQ_RQ_QUEUE_OK;
f9d03f96 627out_cleanup_iod:
f4800d6d 628 nvme_free_iod(dev, req);
f9d03f96
CH
629out_free_cmd:
630 nvme_cleanup_cmd(req);
ba1ca37e 631 return ret;
b60503ba 632}
e1e5e564 633
eee417b0
CH
634static void nvme_complete_rq(struct request *req)
635{
f4800d6d
CH
636 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
637 struct nvme_dev *dev = iod->nvmeq->dev;
eee417b0 638 int error = 0;
e1e5e564 639
f4800d6d 640 nvme_unmap_data(dev, req);
e1e5e564 641
eee417b0
CH
642 if (unlikely(req->errors)) {
643 if (nvme_req_needs_retry(req, req->errors)) {
f80ec966 644 req->retries++;
eee417b0
CH
645 nvme_requeue_req(req);
646 return;
e1e5e564 647 }
1974b1ae 648
57292b58 649 if (blk_rq_is_passthrough(req))
eee417b0
CH
650 error = req->errors;
651 else
652 error = nvme_error_status(req->errors);
653 }
a4aea562 654
f4800d6d 655 if (unlikely(iod->aborted)) {
1b3c47c1 656 dev_warn(dev->ctrl.device,
eee417b0
CH
657 "completing aborted command with status: %04x\n",
658 req->errors);
659 }
a4aea562 660
eee417b0 661 blk_mq_end_request(req, error);
b60503ba
MW
662}
663
d783e0bd
MR
664/* We read the CQE phase first to check if the rest of the entry is valid */
665static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
666 u16 phase)
667{
668 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
669}
670
a0fa9647 671static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 672{
82123460 673 u16 head, phase;
b60503ba 674
b60503ba 675 head = nvmeq->cq_head;
82123460 676 phase = nvmeq->cq_phase;
b60503ba 677
d783e0bd 678 while (nvme_cqe_valid(nvmeq, head, phase)) {
b60503ba 679 struct nvme_completion cqe = nvmeq->cqes[head];
eee417b0 680 struct request *req;
adf68f21 681
b60503ba
MW
682 if (++head == nvmeq->q_depth) {
683 head = 0;
82123460 684 phase = !phase;
b60503ba 685 }
adf68f21 686
a0fa9647
JA
687 if (tag && *tag == cqe.command_id)
688 *tag = -1;
adf68f21 689
aae239e1 690 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
1b3c47c1 691 dev_warn(nvmeq->dev->ctrl.device,
aae239e1
CH
692 "invalid id %d completed on queue %d\n",
693 cqe.command_id, le16_to_cpu(cqe.sq_id));
694 continue;
695 }
696
adf68f21
CH
697 /*
698 * AEN requests are special as they don't time out and can
699 * survive any kind of queue freeze and often don't respond to
700 * aborts. We don't even bother to allocate a struct request
701 * for them but rather special case them here.
702 */
703 if (unlikely(nvmeq->qid == 0 &&
704 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
7bf58533
CH
705 nvme_complete_async_event(&nvmeq->dev->ctrl,
706 cqe.status, &cqe.result);
adf68f21
CH
707 continue;
708 }
709
eee417b0 710 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
d49187e9 711 nvme_req(req)->result = cqe.result;
d783e0bd 712 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
b60503ba
MW
713 }
714
82123460 715 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 716 return;
b60503ba 717
604e8c8d
KB
718 if (likely(nvmeq->cq_vector >= 0))
719 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 720 nvmeq->cq_head = head;
82123460 721 nvmeq->cq_phase = phase;
b60503ba 722
e9539f47 723 nvmeq->cqe_seen = 1;
a0fa9647
JA
724}
725
726static void nvme_process_cq(struct nvme_queue *nvmeq)
727{
728 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
729}
730
731static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
732{
733 irqreturn_t result;
734 struct nvme_queue *nvmeq = data;
735 spin_lock(&nvmeq->q_lock);
e9539f47
MW
736 nvme_process_cq(nvmeq);
737 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
738 nvmeq->cqe_seen = 0;
58ffacb5
MW
739 spin_unlock(&nvmeq->q_lock);
740 return result;
741}
742
743static irqreturn_t nvme_irq_check(int irq, void *data)
744{
745 struct nvme_queue *nvmeq = data;
d783e0bd
MR
746 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
747 return IRQ_WAKE_THREAD;
748 return IRQ_NONE;
58ffacb5
MW
749}
750
a0fa9647
JA
751static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
752{
753 struct nvme_queue *nvmeq = hctx->driver_data;
754
d783e0bd 755 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
a0fa9647
JA
756 spin_lock_irq(&nvmeq->q_lock);
757 __nvme_process_cq(nvmeq, &tag);
758 spin_unlock_irq(&nvmeq->q_lock);
759
760 if (tag == -1)
761 return 1;
762 }
763
764 return 0;
765}
766
f866fc42 767static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 768{
f866fc42 769 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 770 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 771 struct nvme_command c;
b60503ba 772
a4aea562
MB
773 memset(&c, 0, sizeof(c));
774 c.common.opcode = nvme_admin_async_event;
f866fc42 775 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 776
9396dec9 777 spin_lock_irq(&nvmeq->q_lock);
f866fc42 778 __nvme_submit_cmd(nvmeq, &c);
9396dec9 779 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
780}
781
b60503ba 782static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 783{
b60503ba
MW
784 struct nvme_command c;
785
786 memset(&c, 0, sizeof(c));
787 c.delete_queue.opcode = opcode;
788 c.delete_queue.qid = cpu_to_le16(id);
789
1c63dc66 790 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
791}
792
b60503ba
MW
793static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
794 struct nvme_queue *nvmeq)
795{
b60503ba
MW
796 struct nvme_command c;
797 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
798
d29ec824
CH
799 /*
800 * Note: we (ab)use the fact the the prp fields survive if no data
801 * is attached to the request.
802 */
b60503ba
MW
803 memset(&c, 0, sizeof(c));
804 c.create_cq.opcode = nvme_admin_create_cq;
805 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
806 c.create_cq.cqid = cpu_to_le16(qid);
807 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
808 c.create_cq.cq_flags = cpu_to_le16(flags);
809 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
810
1c63dc66 811 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
812}
813
814static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
815 struct nvme_queue *nvmeq)
816{
b60503ba
MW
817 struct nvme_command c;
818 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
819
d29ec824
CH
820 /*
821 * Note: we (ab)use the fact the the prp fields survive if no data
822 * is attached to the request.
823 */
b60503ba
MW
824 memset(&c, 0, sizeof(c));
825 c.create_sq.opcode = nvme_admin_create_sq;
826 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
827 c.create_sq.sqid = cpu_to_le16(qid);
828 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
829 c.create_sq.sq_flags = cpu_to_le16(flags);
830 c.create_sq.cqid = cpu_to_le16(qid);
831
1c63dc66 832 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
833}
834
835static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
836{
837 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
838}
839
840static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
841{
842 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
843}
844
e7a2a87d 845static void abort_endio(struct request *req, int error)
bc5fc7e4 846{
f4800d6d
CH
847 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
848 struct nvme_queue *nvmeq = iod->nvmeq;
e7a2a87d 849 u16 status = req->errors;
e44ac588 850
1cb3cce5 851 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
e7a2a87d 852 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 853 blk_mq_free_request(req);
bc5fc7e4
MW
854}
855
31c7c7d2 856static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 857{
f4800d6d
CH
858 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
859 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 860 struct nvme_dev *dev = nvmeq->dev;
a4aea562 861 struct request *abort_req;
a4aea562 862 struct nvme_command cmd;
c30341dc 863
31c7c7d2 864 /*
fd634f41
CH
865 * Shutdown immediately if controller times out while starting. The
866 * reset work will see the pci device disabled when it gets the forced
867 * cancellation error. All outstanding requests are completed on
868 * shutdown, so we return BLK_EH_HANDLED.
869 */
bb8d261e 870 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 871 dev_warn(dev->ctrl.device,
fd634f41
CH
872 "I/O %d QID %d timeout, disable controller\n",
873 req->tag, nvmeq->qid);
a5cdb68c 874 nvme_dev_disable(dev, false);
fd634f41
CH
875 req->errors = NVME_SC_CANCELLED;
876 return BLK_EH_HANDLED;
c30341dc
KB
877 }
878
fd634f41
CH
879 /*
880 * Shutdown the controller immediately and schedule a reset if the
881 * command was already aborted once before and still hasn't been
882 * returned to the driver, or if this is the admin queue.
31c7c7d2 883 */
f4800d6d 884 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 885 dev_warn(dev->ctrl.device,
e1569a16
KB
886 "I/O %d QID %d timeout, reset controller\n",
887 req->tag, nvmeq->qid);
a5cdb68c 888 nvme_dev_disable(dev, false);
c5f6ce97 889 nvme_reset(dev);
c30341dc 890
e1569a16
KB
891 /*
892 * Mark the request as handled, since the inline shutdown
893 * forces all outstanding requests to complete.
894 */
895 req->errors = NVME_SC_CANCELLED;
896 return BLK_EH_HANDLED;
c30341dc 897 }
c30341dc 898
e7a2a87d 899 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 900 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 901 return BLK_EH_RESET_TIMER;
6bf25d16 902 }
7bf7d778 903 iod->aborted = 1;
a4aea562 904
c30341dc
KB
905 memset(&cmd, 0, sizeof(cmd));
906 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 907 cmd.abort.cid = req->tag;
c30341dc 908 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 909
1b3c47c1
SG
910 dev_warn(nvmeq->dev->ctrl.device,
911 "I/O %d QID %d timeout, aborting\n",
912 req->tag, nvmeq->qid);
e7a2a87d
CH
913
914 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 915 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
916 if (IS_ERR(abort_req)) {
917 atomic_inc(&dev->ctrl.abort_limit);
918 return BLK_EH_RESET_TIMER;
919 }
920
921 abort_req->timeout = ADMIN_TIMEOUT;
922 abort_req->end_io_data = NULL;
923 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 924
31c7c7d2
CH
925 /*
926 * The aborted req will be completed on receiving the abort req.
927 * We enable the timer again. If hit twice, it'll cause a device reset,
928 * as the device then is in a faulty state.
929 */
930 return BLK_EH_RESET_TIMER;
c30341dc
KB
931}
932
a4aea562
MB
933static void nvme_free_queue(struct nvme_queue *nvmeq)
934{
9e866774
MW
935 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
936 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
937 if (nvmeq->sq_cmds)
938 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
939 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
940 kfree(nvmeq);
941}
942
a1a5ef99 943static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
944{
945 int i;
946
a1a5ef99 947 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 948 struct nvme_queue *nvmeq = dev->queues[i];
22404274 949 dev->queue_count--;
a4aea562 950 dev->queues[i] = NULL;
f435c282 951 nvme_free_queue(nvmeq);
121c7ad4 952 }
22404274
KB
953}
954
4d115420
KB
955/**
956 * nvme_suspend_queue - put queue into suspended state
957 * @nvmeq - queue to suspend
4d115420
KB
958 */
959static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 960{
2b25d981 961 int vector;
b60503ba 962
a09115b2 963 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
964 if (nvmeq->cq_vector == -1) {
965 spin_unlock_irq(&nvmeq->q_lock);
966 return 1;
967 }
dca51e78 968 vector = nvmeq_irq(nvmeq);
42f61420 969 nvmeq->dev->online_queues--;
2b25d981 970 nvmeq->cq_vector = -1;
a09115b2
MW
971 spin_unlock_irq(&nvmeq->q_lock);
972
1c63dc66 973 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 974 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 975
aba2080f 976 free_irq(vector, nvmeq);
b60503ba 977
4d115420
KB
978 return 0;
979}
b60503ba 980
a5cdb68c 981static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 982{
a5cdb68c 983 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
984
985 if (!nvmeq)
986 return;
987 if (nvme_suspend_queue(nvmeq))
988 return;
989
a5cdb68c
KB
990 if (shutdown)
991 nvme_shutdown_ctrl(&dev->ctrl);
992 else
993 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
994 dev->bar + NVME_REG_CAP));
07836e65
KB
995
996 spin_lock_irq(&nvmeq->q_lock);
997 nvme_process_cq(nvmeq);
998 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
999}
1000
8ffaadf7
JD
1001static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1002 int entry_size)
1003{
1004 int q_depth = dev->q_depth;
5fd4ce1b
CH
1005 unsigned q_size_aligned = roundup(q_depth * entry_size,
1006 dev->ctrl.page_size);
8ffaadf7
JD
1007
1008 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1009 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1010 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1011 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1012
1013 /*
1014 * Ensure the reduced q_depth is above some threshold where it
1015 * would be better to map queues in system memory with the
1016 * original depth
1017 */
1018 if (q_depth < 64)
1019 return -ENOMEM;
1020 }
1021
1022 return q_depth;
1023}
1024
1025static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1026 int qid, int depth)
1027{
1028 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1029 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1030 dev->ctrl.page_size);
8ffaadf7
JD
1031 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1032 nvmeq->sq_cmds_io = dev->cmb + offset;
1033 } else {
1034 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1035 &nvmeq->sq_dma_addr, GFP_KERNEL);
1036 if (!nvmeq->sq_cmds)
1037 return -ENOMEM;
1038 }
1039
1040 return 0;
1041}
1042
b60503ba 1043static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1044 int depth)
b60503ba 1045{
a4aea562 1046 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1047 if (!nvmeq)
1048 return NULL;
1049
e75ec752 1050 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1051 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1052 if (!nvmeq->cqes)
1053 goto free_nvmeq;
b60503ba 1054
8ffaadf7 1055 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1056 goto free_cqdma;
1057
e75ec752 1058 nvmeq->q_dmadev = dev->dev;
091b6092 1059 nvmeq->dev = dev;
3193f07b 1060 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1061 dev->ctrl.instance, qid);
b60503ba
MW
1062 spin_lock_init(&nvmeq->q_lock);
1063 nvmeq->cq_head = 0;
82123460 1064 nvmeq->cq_phase = 1;
b80d5ccc 1065 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1066 nvmeq->q_depth = depth;
c30341dc 1067 nvmeq->qid = qid;
758dd7fd 1068 nvmeq->cq_vector = -1;
a4aea562 1069 dev->queues[qid] = nvmeq;
36a7e993
JD
1070 dev->queue_count++;
1071
b60503ba
MW
1072 return nvmeq;
1073
1074 free_cqdma:
e75ec752 1075 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1076 nvmeq->cq_dma_addr);
1077 free_nvmeq:
1078 kfree(nvmeq);
1079 return NULL;
1080}
1081
dca51e78 1082static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1083{
58ffacb5 1084 if (use_threaded_interrupts)
dca51e78
CH
1085 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1086 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1087 else
1088 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1089 nvmeq->irqname, nvmeq);
3001082c
MW
1090}
1091
22404274 1092static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1093{
22404274 1094 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1095
7be50e93 1096 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1097 nvmeq->sq_tail = 0;
1098 nvmeq->cq_head = 0;
1099 nvmeq->cq_phase = 1;
b80d5ccc 1100 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1101 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1102 dev->online_queues++;
7be50e93 1103 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1104}
1105
1106static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1107{
1108 struct nvme_dev *dev = nvmeq->dev;
1109 int result;
3f85d50b 1110
2b25d981 1111 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1112 result = adapter_alloc_cq(dev, qid, nvmeq);
1113 if (result < 0)
22404274 1114 return result;
b60503ba
MW
1115
1116 result = adapter_alloc_sq(dev, qid, nvmeq);
1117 if (result < 0)
1118 goto release_cq;
1119
dca51e78 1120 result = queue_request_irq(nvmeq);
b60503ba
MW
1121 if (result < 0)
1122 goto release_sq;
1123
22404274 1124 nvme_init_queue(nvmeq, qid);
22404274 1125 return result;
b60503ba
MW
1126
1127 release_sq:
1128 adapter_delete_sq(dev, qid);
1129 release_cq:
1130 adapter_delete_cq(dev, qid);
22404274 1131 return result;
b60503ba
MW
1132}
1133
a4aea562 1134static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1135 .queue_rq = nvme_queue_rq,
eee417b0 1136 .complete = nvme_complete_rq,
a4aea562 1137 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1138 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1139 .init_request = nvme_admin_init_request,
1140 .timeout = nvme_timeout,
1141};
1142
1143static struct blk_mq_ops nvme_mq_ops = {
1144 .queue_rq = nvme_queue_rq,
eee417b0 1145 .complete = nvme_complete_rq,
a4aea562
MB
1146 .init_hctx = nvme_init_hctx,
1147 .init_request = nvme_init_request,
dca51e78 1148 .map_queues = nvme_pci_map_queues,
a4aea562 1149 .timeout = nvme_timeout,
a0fa9647 1150 .poll = nvme_poll,
a4aea562
MB
1151};
1152
ea191d2f
KB
1153static void nvme_dev_remove_admin(struct nvme_dev *dev)
1154{
1c63dc66 1155 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1156 /*
1157 * If the controller was reset during removal, it's possible
1158 * user requests may be waiting on a stopped queue. Start the
1159 * queue to flush these to completion.
1160 */
1161 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1162 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1163 blk_mq_free_tag_set(&dev->admin_tagset);
1164 }
1165}
1166
a4aea562
MB
1167static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1168{
1c63dc66 1169 if (!dev->ctrl.admin_q) {
a4aea562
MB
1170 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1171 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1172
1173 /*
1174 * Subtract one to leave an empty queue entry for 'Full Queue'
1175 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1176 */
1177 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1178 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1179 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1180 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
d3484991 1181 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1182 dev->admin_tagset.driver_data = dev;
1183
1184 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1185 return -ENOMEM;
1186
1c63dc66
CH
1187 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1188 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1189 blk_mq_free_tag_set(&dev->admin_tagset);
1190 return -ENOMEM;
1191 }
1c63dc66 1192 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1193 nvme_dev_remove_admin(dev);
1c63dc66 1194 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1195 return -ENODEV;
1196 }
0fb59cbc 1197 } else
25646264 1198 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1199
1200 return 0;
1201}
1202
8d85fce7 1203static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1204{
ba47e386 1205 int result;
b60503ba 1206 u32 aqa;
7a67cbea 1207 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1208 struct nvme_queue *nvmeq;
1209
8ef2074d 1210 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
dfbac8c7
KB
1211 NVME_CAP_NSSRC(cap) : 0;
1212
7a67cbea
CH
1213 if (dev->subsystem &&
1214 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1215 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1216
5fd4ce1b 1217 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1218 if (result < 0)
1219 return result;
b60503ba 1220
a4aea562 1221 nvmeq = dev->queues[0];
cd638946 1222 if (!nvmeq) {
2b25d981 1223 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1224 if (!nvmeq)
1225 return -ENOMEM;
cd638946 1226 }
b60503ba
MW
1227
1228 aqa = nvmeq->q_depth - 1;
1229 aqa |= aqa << 16;
1230
7a67cbea
CH
1231 writel(aqa, dev->bar + NVME_REG_AQA);
1232 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1233 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1234
5fd4ce1b 1235 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1236 if (result)
d4875622 1237 return result;
a4aea562 1238
2b25d981 1239 nvmeq->cq_vector = 0;
dca51e78 1240 result = queue_request_irq(nvmeq);
758dd7fd
JD
1241 if (result) {
1242 nvmeq->cq_vector = -1;
d4875622 1243 return result;
758dd7fd 1244 }
025c557a 1245
b60503ba
MW
1246 return result;
1247}
1248
c875a709
GP
1249static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1250{
1251
1252 /* If true, indicates loss of adapter communication, possibly by a
1253 * NVMe Subsystem reset.
1254 */
1255 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1256
1257 /* If there is a reset ongoing, we shouldn't reset again. */
1258 if (work_busy(&dev->reset_work))
1259 return false;
1260
1261 /* We shouldn't reset unless the controller is on fatal error state
1262 * _or_ if we lost the communication with it.
1263 */
1264 if (!(csts & NVME_CSTS_CFS) && !nssro)
1265 return false;
1266
1267 /* If PCI error recovery process is happening, we cannot reset or
1268 * the recovery mechanism will surely fail.
1269 */
1270 if (pci_channel_offline(to_pci_dev(dev->dev)))
1271 return false;
1272
1273 return true;
1274}
1275
d2a61918
AL
1276static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1277{
1278 /* Read a config register to help see what died. */
1279 u16 pci_status;
1280 int result;
1281
1282 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1283 &pci_status);
1284 if (result == PCIBIOS_SUCCESSFUL)
1285 dev_warn(dev->dev,
1286 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1287 csts, pci_status);
1288 else
1289 dev_warn(dev->dev,
1290 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1291 csts, result);
1292}
1293
2d55cd5f 1294static void nvme_watchdog_timer(unsigned long data)
1fa6aead 1295{
2d55cd5f
CH
1296 struct nvme_dev *dev = (struct nvme_dev *)data;
1297 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1fa6aead 1298
c875a709
GP
1299 /* Skip controllers under certain specific conditions. */
1300 if (nvme_should_reset(dev, csts)) {
c5f6ce97 1301 if (!nvme_reset(dev))
d2a61918 1302 nvme_warn_reset(dev, csts);
2d55cd5f 1303 return;
1fa6aead 1304 }
2d55cd5f
CH
1305
1306 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1fa6aead
MW
1307}
1308
749941f2 1309static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1310{
949928c1 1311 unsigned i, max;
749941f2 1312 int ret = 0;
42f61420 1313
749941f2
CH
1314 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1315 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1316 ret = -ENOMEM;
42f61420 1317 break;
749941f2
CH
1318 }
1319 }
42f61420 1320
949928c1
KB
1321 max = min(dev->max_qid, dev->queue_count - 1);
1322 for (i = dev->online_queues; i <= max; i++) {
749941f2 1323 ret = nvme_create_queue(dev->queues[i], i);
d4875622 1324 if (ret)
42f61420 1325 break;
27e8166c 1326 }
749941f2
CH
1327
1328 /*
1329 * Ignore failing Create SQ/CQ commands, we can continue with less
1330 * than the desired aount of queues, and even a controller without
1331 * I/O queues an still be used to issue admin commands. This might
1332 * be useful to upgrade a buggy firmware for example.
1333 */
1334 return ret >= 0 ? 0 : ret;
b60503ba
MW
1335}
1336
202021c1
SB
1337static ssize_t nvme_cmb_show(struct device *dev,
1338 struct device_attribute *attr,
1339 char *buf)
1340{
1341 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1342
c965809c 1343 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1344 ndev->cmbloc, ndev->cmbsz);
1345}
1346static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1347
8ffaadf7
JD
1348static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1349{
1350 u64 szu, size, offset;
8ffaadf7
JD
1351 resource_size_t bar_size;
1352 struct pci_dev *pdev = to_pci_dev(dev->dev);
1353 void __iomem *cmb;
1354 dma_addr_t dma_addr;
1355
7a67cbea 1356 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1357 if (!(NVME_CMB_SZ(dev->cmbsz)))
1358 return NULL;
202021c1 1359 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1360
202021c1
SB
1361 if (!use_cmb_sqes)
1362 return NULL;
8ffaadf7
JD
1363
1364 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1365 size = szu * NVME_CMB_SZ(dev->cmbsz);
202021c1
SB
1366 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1367 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
8ffaadf7
JD
1368
1369 if (offset > bar_size)
1370 return NULL;
1371
1372 /*
1373 * Controllers may support a CMB size larger than their BAR,
1374 * for example, due to being behind a bridge. Reduce the CMB to
1375 * the reported size of the BAR
1376 */
1377 if (size > bar_size - offset)
1378 size = bar_size - offset;
1379
202021c1 1380 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
8ffaadf7
JD
1381 cmb = ioremap_wc(dma_addr, size);
1382 if (!cmb)
1383 return NULL;
1384
1385 dev->cmb_dma_addr = dma_addr;
1386 dev->cmb_size = size;
1387 return cmb;
1388}
1389
1390static inline void nvme_release_cmb(struct nvme_dev *dev)
1391{
1392 if (dev->cmb) {
1393 iounmap(dev->cmb);
1394 dev->cmb = NULL;
1395 }
1396}
1397
9d713c2b
KB
1398static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1399{
b80d5ccc 1400 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1401}
1402
8d85fce7 1403static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1404{
a4aea562 1405 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1406 struct pci_dev *pdev = to_pci_dev(dev->dev);
dca51e78 1407 int result, nr_io_queues, size;
b60503ba 1408
2800b8e7 1409 nr_io_queues = num_online_cpus();
9a0be7ab
CH
1410 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1411 if (result < 0)
1b23484b 1412 return result;
9a0be7ab 1413
f5fa90dc 1414 if (nr_io_queues == 0)
a5229050 1415 return 0;
b60503ba 1416
8ffaadf7
JD
1417 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1418 result = nvme_cmb_qdepth(dev, nr_io_queues,
1419 sizeof(struct nvme_command));
1420 if (result > 0)
1421 dev->q_depth = result;
1422 else
1423 nvme_release_cmb(dev);
1424 }
1425
9d713c2b
KB
1426 size = db_bar_size(dev, nr_io_queues);
1427 if (size > 8192) {
f1938f6e 1428 iounmap(dev->bar);
9d713c2b
KB
1429 do {
1430 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1431 if (dev->bar)
1432 break;
1433 if (!--nr_io_queues)
1434 return -ENOMEM;
1435 size = db_bar_size(dev, nr_io_queues);
1436 } while (1);
7a67cbea 1437 dev->dbs = dev->bar + 4096;
5a92e700 1438 adminq->q_db = dev->dbs;
f1938f6e
MW
1439 }
1440
9d713c2b 1441 /* Deregister the admin queue's interrupt */
dca51e78 1442 free_irq(pci_irq_vector(pdev, 0), adminq);
9d713c2b 1443
e32efbfc
JA
1444 /*
1445 * If we enable msix early due to not intx, disable it again before
1446 * setting up the full range we need.
1447 */
dca51e78
CH
1448 pci_free_irq_vectors(pdev);
1449 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1450 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1451 if (nr_io_queues <= 0)
1452 return -EIO;
1453 dev->max_qid = nr_io_queues;
fa08a396 1454
063a8096
MW
1455 /*
1456 * Should investigate if there's a performance win from allocating
1457 * more queues than interrupt vectors; it might allow the submission
1458 * path to scale better, even if the receive path is limited by the
1459 * number of interrupts.
1460 */
063a8096 1461
dca51e78 1462 result = queue_request_irq(adminq);
758dd7fd
JD
1463 if (result) {
1464 adminq->cq_vector = -1;
d4875622 1465 return result;
758dd7fd 1466 }
749941f2 1467 return nvme_create_io_queues(dev);
b60503ba
MW
1468}
1469
db3cbfff 1470static void nvme_del_queue_end(struct request *req, int error)
a5768aa8 1471{
db3cbfff 1472 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1473
db3cbfff
KB
1474 blk_mq_free_request(req);
1475 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1476}
1477
db3cbfff 1478static void nvme_del_cq_end(struct request *req, int error)
a5768aa8 1479{
db3cbfff 1480 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1481
db3cbfff
KB
1482 if (!error) {
1483 unsigned long flags;
1484
2e39e0f6
ML
1485 /*
1486 * We might be called with the AQ q_lock held
1487 * and the I/O queue q_lock should always
1488 * nest inside the AQ one.
1489 */
1490 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1491 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1492 nvme_process_cq(nvmeq);
1493 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1494 }
db3cbfff
KB
1495
1496 nvme_del_queue_end(req, error);
a5768aa8
KB
1497}
1498
db3cbfff 1499static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1500{
db3cbfff
KB
1501 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1502 struct request *req;
1503 struct nvme_command cmd;
bda4e0fb 1504
db3cbfff
KB
1505 memset(&cmd, 0, sizeof(cmd));
1506 cmd.delete_queue.opcode = opcode;
1507 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1508
eb71f435 1509 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1510 if (IS_ERR(req))
1511 return PTR_ERR(req);
bda4e0fb 1512
db3cbfff
KB
1513 req->timeout = ADMIN_TIMEOUT;
1514 req->end_io_data = nvmeq;
1515
1516 blk_execute_rq_nowait(q, NULL, req, false,
1517 opcode == nvme_admin_delete_cq ?
1518 nvme_del_cq_end : nvme_del_queue_end);
1519 return 0;
bda4e0fb
KB
1520}
1521
70659060 1522static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
a5768aa8 1523{
70659060 1524 int pass;
db3cbfff
KB
1525 unsigned long timeout;
1526 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1527
db3cbfff 1528 for (pass = 0; pass < 2; pass++) {
014a0d60 1529 int sent = 0, i = queues;
db3cbfff
KB
1530
1531 reinit_completion(&dev->ioq_wait);
1532 retry:
1533 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1534 for (; i > 0; i--, sent++)
1535 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1536 break;
c21377f8 1537
db3cbfff
KB
1538 while (sent--) {
1539 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1540 if (timeout == 0)
1541 return;
1542 if (i)
1543 goto retry;
1544 }
1545 opcode = nvme_admin_delete_cq;
1546 }
a5768aa8
KB
1547}
1548
422ef0c7
MW
1549/*
1550 * Return: error value if an error occurred setting up the queues or calling
1551 * Identify Device. 0 if these succeeded, even if adding some of the
1552 * namespaces failed. At the moment, these failures are silent. TBD which
1553 * failures should be reported.
1554 */
8d85fce7 1555static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1556{
5bae7f73 1557 if (!dev->ctrl.tagset) {
ffe7704d
KB
1558 dev->tagset.ops = &nvme_mq_ops;
1559 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1560 dev->tagset.timeout = NVME_IO_TIMEOUT;
1561 dev->tagset.numa_node = dev_to_node(dev->dev);
1562 dev->tagset.queue_depth =
a4aea562 1563 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1564 dev->tagset.cmd_size = nvme_cmd_size(dev);
1565 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1566 dev->tagset.driver_data = dev;
b60503ba 1567
ffe7704d
KB
1568 if (blk_mq_alloc_tag_set(&dev->tagset))
1569 return 0;
5bae7f73 1570 dev->ctrl.tagset = &dev->tagset;
949928c1
KB
1571 } else {
1572 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1573
1574 /* Free previously allocated queues that are no longer usable */
1575 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1576 }
949928c1 1577
e1e5e564 1578 return 0;
b60503ba
MW
1579}
1580
b00a726a 1581static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1582{
42f61420 1583 u64 cap;
b00a726a 1584 int result = -ENOMEM;
e75ec752 1585 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1586
1587 if (pci_enable_device_mem(pdev))
1588 return result;
1589
0877cb0d 1590 pci_set_master(pdev);
0877cb0d 1591
e75ec752
CH
1592 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1593 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1594 goto disable;
0877cb0d 1595
7a67cbea 1596 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1597 result = -ENODEV;
b00a726a 1598 goto disable;
0e53d180 1599 }
e32efbfc
JA
1600
1601 /*
a5229050
KB
1602 * Some devices and/or platforms don't advertise or work with INTx
1603 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1604 * adjust this later.
e32efbfc 1605 */
dca51e78
CH
1606 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1607 if (result < 0)
1608 return result;
e32efbfc 1609
7a67cbea
CH
1610 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1611
42f61420
KB
1612 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1613 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1614 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1615
1616 /*
1617 * Temporary fix for the Apple controller found in the MacBook8,1 and
1618 * some MacBook7,1 to avoid controller resets and data loss.
1619 */
1620 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1621 dev->q_depth = 2;
1622 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1623 "queue depth=%u to work around controller resets\n",
1624 dev->q_depth);
1625 }
1626
202021c1
SB
1627 /*
1628 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1629 * populate sysfs if a CMB is implemented. Note that we add the
1630 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1631 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1632 * NULL as final argument to sysfs_add_file_to_group.
1633 */
1634
8ef2074d 1635 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
8ffaadf7 1636 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1637
202021c1
SB
1638 if (dev->cmbsz) {
1639 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1640 &dev_attr_cmb.attr, NULL))
1641 dev_warn(dev->dev,
1642 "failed to add sysfs attribute for CMB\n");
1643 }
1644 }
1645
a0a3408e
KB
1646 pci_enable_pcie_error_reporting(pdev);
1647 pci_save_state(pdev);
0877cb0d
KB
1648 return 0;
1649
1650 disable:
0877cb0d
KB
1651 pci_disable_device(pdev);
1652 return result;
1653}
1654
1655static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1656{
1657 if (dev->bar)
1658 iounmap(dev->bar);
a1f447b3 1659 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1660}
1661
1662static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1663{
e75ec752
CH
1664 struct pci_dev *pdev = to_pci_dev(dev->dev);
1665
dca51e78 1666 pci_free_irq_vectors(pdev);
0877cb0d 1667
a0a3408e
KB
1668 if (pci_is_enabled(pdev)) {
1669 pci_disable_pcie_error_reporting(pdev);
e75ec752 1670 pci_disable_device(pdev);
4d115420 1671 }
4d115420
KB
1672}
1673
a5cdb68c 1674static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1675{
70659060 1676 int i, queues;
7c1b2450 1677 u32 csts = -1;
22404274 1678
2d55cd5f 1679 del_timer_sync(&dev->watchdog_timer);
1fa6aead 1680
77bf25ea 1681 mutex_lock(&dev->shutdown_lock);
b00a726a 1682 if (pci_is_enabled(to_pci_dev(dev->dev))) {
25646264 1683 nvme_stop_queues(&dev->ctrl);
7a67cbea 1684 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 1685 }
c21377f8 1686
70659060 1687 queues = dev->online_queues - 1;
c21377f8
GKB
1688 for (i = dev->queue_count - 1; i > 0; i--)
1689 nvme_suspend_queue(dev->queues[i]);
1690
7c1b2450 1691 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
82469c59
GKB
1692 /* A device might become IO incapable very soon during
1693 * probe, before the admin queue is configured. Thus,
1694 * queue_count can be 0 here.
1695 */
1696 if (dev->queue_count)
1697 nvme_suspend_queue(dev->queues[0]);
4d115420 1698 } else {
70659060 1699 nvme_disable_io_queues(dev, queues);
a5cdb68c 1700 nvme_disable_admin_queue(dev, shutdown);
4d115420 1701 }
b00a726a 1702 nvme_pci_disable(dev);
07836e65 1703
e1958e65
ML
1704 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1705 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
77bf25ea 1706 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
1707}
1708
091b6092
MW
1709static int nvme_setup_prp_pools(struct nvme_dev *dev)
1710{
e75ec752 1711 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1712 PAGE_SIZE, PAGE_SIZE, 0);
1713 if (!dev->prp_page_pool)
1714 return -ENOMEM;
1715
99802a7a 1716 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1717 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1718 256, 256, 0);
1719 if (!dev->prp_small_pool) {
1720 dma_pool_destroy(dev->prp_page_pool);
1721 return -ENOMEM;
1722 }
091b6092
MW
1723 return 0;
1724}
1725
1726static void nvme_release_prp_pools(struct nvme_dev *dev)
1727{
1728 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1729 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1730}
1731
1673f1f0 1732static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1733{
1673f1f0 1734 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1735
e75ec752 1736 put_device(dev->dev);
4af0e21c
KB
1737 if (dev->tagset.tags)
1738 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1739 if (dev->ctrl.admin_q)
1740 blk_put_queue(dev->ctrl.admin_q);
5e82e952 1741 kfree(dev->queues);
4f1244c8 1742 kfree(dev->ctrl.opal_dev);
5e82e952
KB
1743 kfree(dev);
1744}
1745
f58944e2
KB
1746static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1747{
237045fc 1748 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
1749
1750 kref_get(&dev->ctrl.kref);
69d9a99c 1751 nvme_dev_disable(dev, false);
f58944e2
KB
1752 if (!schedule_work(&dev->remove_work))
1753 nvme_put_ctrl(&dev->ctrl);
1754}
1755
fd634f41 1756static void nvme_reset_work(struct work_struct *work)
5e82e952 1757{
fd634f41 1758 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
a98e58e5 1759 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 1760 int result = -ENODEV;
5e82e952 1761
bb8d261e 1762 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
fd634f41 1763 goto out;
5e82e952 1764
fd634f41
CH
1765 /*
1766 * If we're called to reset a live controller first shut it down before
1767 * moving on.
1768 */
b00a726a 1769 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 1770 nvme_dev_disable(dev, false);
5e82e952 1771
bb8d261e 1772 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
9bf2b972
KB
1773 goto out;
1774
b00a726a 1775 result = nvme_pci_enable(dev);
f0b50732 1776 if (result)
3cf519b5 1777 goto out;
f0b50732
KB
1778
1779 result = nvme_configure_admin_queue(dev);
1780 if (result)
f58944e2 1781 goto out;
f0b50732 1782
a4aea562 1783 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
1784 result = nvme_alloc_admin_tags(dev);
1785 if (result)
f58944e2 1786 goto out;
b9afca3e 1787
ce4541f4
CH
1788 result = nvme_init_identify(&dev->ctrl);
1789 if (result)
f58944e2 1790 goto out;
ce4541f4 1791
8a9ae523 1792 if ((dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) && !dev->ctrl.opal_dev) {
4f1244c8
CH
1793 dev->ctrl.opal_dev =
1794 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1795 }
a98e58e5
SB
1796
1797 if (was_suspend)
4f1244c8 1798 opal_unlock_from_suspend(dev->ctrl.opal_dev);
a98e58e5 1799
f0b50732 1800 result = nvme_setup_io_queues(dev);
badc34d4 1801 if (result)
f58944e2 1802 goto out;
f0b50732 1803
21f033f7
KB
1804 /*
1805 * A controller that can not execute IO typically requires user
1806 * intervention to correct. For such degraded controllers, the driver
1807 * should not submit commands the user did not request, so skip
1808 * registering for asynchronous event notification on this condition.
1809 */
f866fc42
CH
1810 if (dev->online_queues > 1)
1811 nvme_queue_async_events(&dev->ctrl);
3cf519b5 1812
2d55cd5f 1813 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
3cf519b5 1814
2659e57b
CH
1815 /*
1816 * Keep the controller around but remove all namespaces if we don't have
1817 * any working I/O queue.
1818 */
3cf519b5 1819 if (dev->online_queues < 2) {
1b3c47c1 1820 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 1821 nvme_kill_queues(&dev->ctrl);
5bae7f73 1822 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 1823 } else {
25646264 1824 nvme_start_queues(&dev->ctrl);
3cf519b5
CH
1825 nvme_dev_add(dev);
1826 }
1827
bb8d261e
CH
1828 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1829 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1830 goto out;
1831 }
92911a55
CH
1832
1833 if (dev->online_queues > 1)
5955be21 1834 nvme_queue_scan(&dev->ctrl);
3cf519b5 1835 return;
f0b50732 1836
3cf519b5 1837 out:
f58944e2 1838 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
1839}
1840
5c8809e6 1841static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 1842{
5c8809e6 1843 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 1844 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 1845
69d9a99c 1846 nvme_kill_queues(&dev->ctrl);
9a6b9458 1847 if (pci_get_drvdata(pdev))
921920ab 1848 device_release_driver(&pdev->dev);
1673f1f0 1849 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
1850}
1851
4cc06521 1852static int nvme_reset(struct nvme_dev *dev)
9a6b9458 1853{
1c63dc66 1854 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521 1855 return -ENODEV;
c5f6ce97
KB
1856 if (work_busy(&dev->reset_work))
1857 return -ENODEV;
846cc05f
CH
1858 if (!queue_work(nvme_workq, &dev->reset_work))
1859 return -EBUSY;
846cc05f 1860 return 0;
9a6b9458
KB
1861}
1862
1c63dc66 1863static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 1864{
1c63dc66 1865 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 1866 return 0;
9ca97374
TH
1867}
1868
5fd4ce1b 1869static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 1870{
5fd4ce1b
CH
1871 writel(val, to_nvme_dev(ctrl)->bar + off);
1872 return 0;
1873}
4cc06521 1874
7fd8930f
CH
1875static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1876{
1877 *val = readq(to_nvme_dev(ctrl)->bar + off);
1878 return 0;
4cc06521
KB
1879}
1880
f3ca80fc
CH
1881static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1882{
c5f6ce97
KB
1883 struct nvme_dev *dev = to_nvme_dev(ctrl);
1884 int ret = nvme_reset(dev);
1885
1886 if (!ret)
1887 flush_work(&dev->reset_work);
1888 return ret;
4cc06521 1889}
f3ca80fc 1890
1c63dc66 1891static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 1892 .name = "pcie",
e439bb12 1893 .module = THIS_MODULE,
1c63dc66 1894 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 1895 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 1896 .reg_read64 = nvme_pci_reg_read64,
f3ca80fc 1897 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 1898 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 1899 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 1900};
4cc06521 1901
b00a726a
KB
1902static int nvme_dev_map(struct nvme_dev *dev)
1903{
b00a726a
KB
1904 struct pci_dev *pdev = to_pci_dev(dev->dev);
1905
a1f447b3 1906 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
1907 return -ENODEV;
1908
1909 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1910 if (!dev->bar)
1911 goto release;
1912
9fa196e7 1913 return 0;
b00a726a 1914 release:
9fa196e7
MG
1915 pci_release_mem_regions(pdev);
1916 return -ENODEV;
b00a726a
KB
1917}
1918
8d85fce7 1919static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 1920{
a4aea562 1921 int node, result = -ENOMEM;
b60503ba
MW
1922 struct nvme_dev *dev;
1923
a4aea562
MB
1924 node = dev_to_node(&pdev->dev);
1925 if (node == NUMA_NO_NODE)
2fa84351 1926 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
1927
1928 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
1929 if (!dev)
1930 return -ENOMEM;
a4aea562
MB
1931 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1932 GFP_KERNEL, node);
b60503ba
MW
1933 if (!dev->queues)
1934 goto free;
1935
e75ec752 1936 dev->dev = get_device(&pdev->dev);
9a6b9458 1937 pci_set_drvdata(pdev, dev);
1c63dc66 1938
b00a726a
KB
1939 result = nvme_dev_map(dev);
1940 if (result)
1941 goto free;
1942
f3ca80fc 1943 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 1944 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2d55cd5f
CH
1945 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1946 (unsigned long)dev);
77bf25ea 1947 mutex_init(&dev->shutdown_lock);
db3cbfff 1948 init_completion(&dev->ioq_wait);
b60503ba 1949
091b6092
MW
1950 result = nvme_setup_prp_pools(dev);
1951 if (result)
a96d4f5c 1952 goto put_pci;
4cc06521 1953
f3ca80fc
CH
1954 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1955 id->driver_data);
4cc06521 1956 if (result)
2e1d8448 1957 goto release_pools;
740216fc 1958
1b3c47c1
SG
1959 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1960
92f7a162 1961 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
1962 return 0;
1963
0877cb0d 1964 release_pools:
091b6092 1965 nvme_release_prp_pools(dev);
a96d4f5c 1966 put_pci:
e75ec752 1967 put_device(dev->dev);
b00a726a 1968 nvme_dev_unmap(dev);
b60503ba
MW
1969 free:
1970 kfree(dev->queues);
b60503ba
MW
1971 kfree(dev);
1972 return result;
1973}
1974
f0d54a54
KB
1975static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1976{
a6739479 1977 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 1978
a6739479 1979 if (prepare)
a5cdb68c 1980 nvme_dev_disable(dev, false);
a6739479 1981 else
c5f6ce97 1982 nvme_reset(dev);
f0d54a54
KB
1983}
1984
09ece142
KB
1985static void nvme_shutdown(struct pci_dev *pdev)
1986{
1987 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 1988 nvme_dev_disable(dev, true);
09ece142
KB
1989}
1990
f58944e2
KB
1991/*
1992 * The driver's remove may be called on a device in a partially initialized
1993 * state. This function must not have any dependencies on the device state in
1994 * order to proceed.
1995 */
8d85fce7 1996static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
1997{
1998 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 1999
bb8d261e
CH
2000 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2001
9a6b9458 2002 pci_set_drvdata(pdev, NULL);
0ff9d4e1
KB
2003
2004 if (!pci_device_is_present(pdev))
2005 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2006
9bf2b972 2007 flush_work(&dev->reset_work);
53029b04 2008 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2009 nvme_dev_disable(dev, true);
a4aea562 2010 nvme_dev_remove_admin(dev);
a1a5ef99 2011 nvme_free_queues(dev, 0);
8ffaadf7 2012 nvme_release_cmb(dev);
9a6b9458 2013 nvme_release_prp_pools(dev);
b00a726a 2014 nvme_dev_unmap(dev);
1673f1f0 2015 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2016}
2017
13880f5b
KB
2018static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2019{
2020 int ret = 0;
2021
2022 if (numvfs == 0) {
2023 if (pci_vfs_assigned(pdev)) {
2024 dev_warn(&pdev->dev,
2025 "Cannot disable SR-IOV VFs while assigned\n");
2026 return -EPERM;
2027 }
2028 pci_disable_sriov(pdev);
2029 return 0;
2030 }
2031
2032 ret = pci_enable_sriov(pdev, numvfs);
2033 return ret ? ret : numvfs;
2034}
2035
671a6018 2036#ifdef CONFIG_PM_SLEEP
cd638946
KB
2037static int nvme_suspend(struct device *dev)
2038{
2039 struct pci_dev *pdev = to_pci_dev(dev);
2040 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2041
a5cdb68c 2042 nvme_dev_disable(ndev, true);
cd638946
KB
2043 return 0;
2044}
2045
2046static int nvme_resume(struct device *dev)
2047{
2048 struct pci_dev *pdev = to_pci_dev(dev);
2049 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2050
c5f6ce97 2051 nvme_reset(ndev);
9a6b9458 2052 return 0;
cd638946 2053}
671a6018 2054#endif
cd638946
KB
2055
2056static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2057
a0a3408e
KB
2058static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2059 pci_channel_state_t state)
2060{
2061 struct nvme_dev *dev = pci_get_drvdata(pdev);
2062
2063 /*
2064 * A frozen channel requires a reset. When detected, this method will
2065 * shutdown the controller to quiesce. The controller will be restarted
2066 * after the slot reset through driver's slot_reset callback.
2067 */
a0a3408e
KB
2068 switch (state) {
2069 case pci_channel_io_normal:
2070 return PCI_ERS_RESULT_CAN_RECOVER;
2071 case pci_channel_io_frozen:
d011fb31
KB
2072 dev_warn(dev->ctrl.device,
2073 "frozen state error detected, reset controller\n");
a5cdb68c 2074 nvme_dev_disable(dev, false);
a0a3408e
KB
2075 return PCI_ERS_RESULT_NEED_RESET;
2076 case pci_channel_io_perm_failure:
d011fb31
KB
2077 dev_warn(dev->ctrl.device,
2078 "failure state error detected, request disconnect\n");
a0a3408e
KB
2079 return PCI_ERS_RESULT_DISCONNECT;
2080 }
2081 return PCI_ERS_RESULT_NEED_RESET;
2082}
2083
2084static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2085{
2086 struct nvme_dev *dev = pci_get_drvdata(pdev);
2087
1b3c47c1 2088 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2089 pci_restore_state(pdev);
c5f6ce97 2090 nvme_reset(dev);
a0a3408e
KB
2091 return PCI_ERS_RESULT_RECOVERED;
2092}
2093
2094static void nvme_error_resume(struct pci_dev *pdev)
2095{
2096 pci_cleanup_aer_uncorrect_error_status(pdev);
2097}
2098
1d352035 2099static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2100 .error_detected = nvme_error_detected,
b60503ba
MW
2101 .slot_reset = nvme_slot_reset,
2102 .resume = nvme_error_resume,
f0d54a54 2103 .reset_notify = nvme_reset_notify,
b60503ba
MW
2104};
2105
6eb0d698 2106static const struct pci_device_id nvme_id_table[] = {
106198ed 2107 { PCI_VDEVICE(INTEL, 0x0953),
08095e70
KB
2108 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2109 NVME_QUIRK_DISCARD_ZEROES, },
99466e70
KB
2110 { PCI_VDEVICE(INTEL, 0x0a53),
2111 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2112 NVME_QUIRK_DISCARD_ZEROES, },
2113 { PCI_VDEVICE(INTEL, 0x0a54),
2114 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2115 NVME_QUIRK_DISCARD_ZEROES, },
540c801c
KB
2116 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2117 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2118 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2119 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2120 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2121 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2122 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2123 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2124 { 0, }
2125};
2126MODULE_DEVICE_TABLE(pci, nvme_id_table);
2127
2128static struct pci_driver nvme_driver = {
2129 .name = "nvme",
2130 .id_table = nvme_id_table,
2131 .probe = nvme_probe,
8d85fce7 2132 .remove = nvme_remove,
09ece142 2133 .shutdown = nvme_shutdown,
cd638946
KB
2134 .driver = {
2135 .pm = &nvme_dev_pm_ops,
2136 },
13880f5b 2137 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2138 .err_handler = &nvme_err_handler,
2139};
2140
2141static int __init nvme_init(void)
2142{
0ac13140 2143 int result;
1fa6aead 2144
92f7a162 2145 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2146 if (!nvme_workq)
b9afca3e 2147 return -ENOMEM;
9a6b9458 2148
f3db22fe
KB
2149 result = pci_register_driver(&nvme_driver);
2150 if (result)
576d55d6 2151 destroy_workqueue(nvme_workq);
b60503ba
MW
2152 return result;
2153}
2154
2155static void __exit nvme_exit(void)
2156{
2157 pci_unregister_driver(&nvme_driver);
9a6b9458 2158 destroy_workqueue(nvme_workq);
21bd78bc 2159 _nvme_check_size();
b60503ba
MW
2160}
2161
2162MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2163MODULE_LICENSE("GPL");
c78b4713 2164MODULE_VERSION("1.0");
b60503ba
MW
2165module_init(nvme_init);
2166module_exit(nvme_exit);