]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/nvme/host/pci.c
nvme-pci: disable Write Zeroes on Sandisk Skyhawk
[mirror_ubuntu-jammy-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
5f37396d 1// SPDX-License-Identifier: GPL-2.0
b60503ba
MW
2/*
3 * NVM Express device driver
6eb0d698 4 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
5 */
6
df4f9bc4 7#include <linux/acpi.h>
a0a3408e 8#include <linux/aer.h>
18119775 9#include <linux/async.h>
b60503ba 10#include <linux/blkdev.h>
a4aea562 11#include <linux/blk-mq.h>
dca51e78 12#include <linux/blk-mq-pci.h>
ff5350a8 13#include <linux/dmi.h>
b60503ba
MW
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
b60503ba
MW
17#include <linux/mm.h>
18#include <linux/module.h>
77bf25ea 19#include <linux/mutex.h>
d0877473 20#include <linux/once.h>
b60503ba 21#include <linux/pci.h>
d916b1be 22#include <linux/suspend.h>
e1e5e564 23#include <linux/t10-pi.h>
b60503ba 24#include <linux/types.h>
2f8e2c87 25#include <linux/io-64-nonatomic-lo-hi.h>
a98e58e5 26#include <linux/sed-opal.h>
0f238ff5 27#include <linux/pci-p2pdma.h>
797a796a 28
604c01d5 29#include "trace.h"
f11bb3e2
CH
30#include "nvme.h"
31
c1e0cc7e 32#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
8a1d09a6 33#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
c965809c 34
a7a7cbe3 35#define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
9d43cf64 36
943e942e
JA
37/*
38 * These can be higher, but we need to ensure that any command doesn't
39 * require an sg allocation that needs more than a page of data.
40 */
41#define NVME_MAX_KB_SZ 4096
42#define NVME_MAX_SEGS 127
43
58ffacb5
MW
44static int use_threaded_interrupts;
45module_param(use_threaded_interrupts, int, 0);
46
8ffaadf7 47static bool use_cmb_sqes = true;
69f4eb9f 48module_param(use_cmb_sqes, bool, 0444);
8ffaadf7
JD
49MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
50
87ad72a5
CH
51static unsigned int max_host_mem_size_mb = 128;
52module_param(max_host_mem_size_mb, uint, 0444);
53MODULE_PARM_DESC(max_host_mem_size_mb,
54 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
1fa6aead 55
a7a7cbe3
CK
56static unsigned int sgl_threshold = SZ_32K;
57module_param(sgl_threshold, uint, 0644);
58MODULE_PARM_DESC(sgl_threshold,
59 "Use SGLs when average request segment size is larger or equal to "
60 "this size. Use 0 to disable SGLs.");
61
b27c1e68 62static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
63static const struct kernel_param_ops io_queue_depth_ops = {
64 .set = io_queue_depth_set,
61f3b896 65 .get = param_get_uint,
b27c1e68 66};
67
61f3b896 68static unsigned int io_queue_depth = 1024;
b27c1e68 69module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
70MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
71
9c9e76d5
WZ
72static int io_queue_count_set(const char *val, const struct kernel_param *kp)
73{
74 unsigned int n;
75 int ret;
76
77 ret = kstrtouint(val, 10, &n);
78 if (ret != 0 || n > num_possible_cpus())
79 return -EINVAL;
80 return param_set_uint(val, kp);
81}
82
83static const struct kernel_param_ops io_queue_count_ops = {
84 .set = io_queue_count_set,
85 .get = param_get_uint,
86};
87
3f68baf7 88static unsigned int write_queues;
9c9e76d5 89module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
3b6592f7
JA
90MODULE_PARM_DESC(write_queues,
91 "Number of queues to use for writes. If not set, reads and writes "
92 "will share a queue set.");
93
3f68baf7 94static unsigned int poll_queues;
9c9e76d5 95module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
4b04cc6a
JA
96MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
97
df4f9bc4
DB
98static bool noacpi;
99module_param(noacpi, bool, 0444);
100MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
101
1c63dc66
CH
102struct nvme_dev;
103struct nvme_queue;
b3fffdef 104
a5cdb68c 105static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
8fae268b 106static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
d4b4ff8e 107
1c63dc66
CH
108/*
109 * Represents an NVM Express device. Each nvme_dev is a PCI function.
110 */
111struct nvme_dev {
147b27e4 112 struct nvme_queue *queues;
1c63dc66
CH
113 struct blk_mq_tag_set tagset;
114 struct blk_mq_tag_set admin_tagset;
115 u32 __iomem *dbs;
116 struct device *dev;
117 struct dma_pool *prp_page_pool;
118 struct dma_pool *prp_small_pool;
1c63dc66
CH
119 unsigned online_queues;
120 unsigned max_qid;
e20ba6e1 121 unsigned io_queues[HCTX_MAX_TYPES];
22b55601 122 unsigned int num_vecs;
7442ddce 123 u32 q_depth;
c1e0cc7e 124 int io_sqes;
1c63dc66 125 u32 db_stride;
1c63dc66 126 void __iomem *bar;
97f6ef64 127 unsigned long bar_mapped_size;
5c8809e6 128 struct work_struct remove_work;
77bf25ea 129 struct mutex shutdown_lock;
1c63dc66 130 bool subsystem;
1c63dc66 131 u64 cmb_size;
0f238ff5 132 bool cmb_use_sqes;
1c63dc66 133 u32 cmbsz;
202021c1 134 u32 cmbloc;
1c63dc66 135 struct nvme_ctrl ctrl;
d916b1be 136 u32 last_ps;
87ad72a5 137
943e942e
JA
138 mempool_t *iod_mempool;
139
87ad72a5 140 /* shadow doorbell buffer support: */
f9f38e33
HK
141 u32 *dbbuf_dbs;
142 dma_addr_t dbbuf_dbs_dma_addr;
143 u32 *dbbuf_eis;
144 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
145
146 /* host memory buffer support: */
147 u64 host_mem_size;
148 u32 nr_host_mem_descs;
4033f35d 149 dma_addr_t host_mem_descs_dma;
87ad72a5
CH
150 struct nvme_host_mem_buf_desc *host_mem_descs;
151 void **host_mem_desc_bufs;
2a5bcfdd
WZ
152 unsigned int nr_allocated_queues;
153 unsigned int nr_write_queues;
154 unsigned int nr_poll_queues;
4d115420 155};
1fa6aead 156
b27c1e68 157static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
158{
61f3b896 159 int ret;
7442ddce 160 u32 n;
b27c1e68 161
7442ddce 162 ret = kstrtou32(val, 10, &n);
b27c1e68 163 if (ret != 0 || n < 2)
164 return -EINVAL;
165
7442ddce 166 return param_set_uint(val, kp);
b27c1e68 167}
168
f9f38e33
HK
169static inline unsigned int sq_idx(unsigned int qid, u32 stride)
170{
171 return qid * 2 * stride;
172}
173
174static inline unsigned int cq_idx(unsigned int qid, u32 stride)
175{
176 return (qid * 2 + 1) * stride;
177}
178
1c63dc66
CH
179static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
180{
181 return container_of(ctrl, struct nvme_dev, ctrl);
182}
183
b60503ba
MW
184/*
185 * An NVM Express queue. Each device has at least two (one for admin
186 * commands and one for I/O commands).
187 */
188struct nvme_queue {
091b6092 189 struct nvme_dev *dev;
1ab0cd69 190 spinlock_t sq_lock;
c1e0cc7e 191 void *sq_cmds;
3a7afd8e
CH
192 /* only used for poll queues: */
193 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
74943d45 194 struct nvme_completion *cqes;
b60503ba
MW
195 dma_addr_t sq_dma_addr;
196 dma_addr_t cq_dma_addr;
b60503ba 197 u32 __iomem *q_db;
7442ddce 198 u32 q_depth;
7c349dde 199 u16 cq_vector;
b60503ba
MW
200 u16 sq_tail;
201 u16 cq_head;
c30341dc 202 u16 qid;
e9539f47 203 u8 cq_phase;
c1e0cc7e 204 u8 sqes;
4e224106
CH
205 unsigned long flags;
206#define NVMEQ_ENABLED 0
63223078 207#define NVMEQ_SQ_CMB 1
d1ed6aa1 208#define NVMEQ_DELETE_ERROR 2
7c349dde 209#define NVMEQ_POLLED 3
f9f38e33
HK
210 u32 *dbbuf_sq_db;
211 u32 *dbbuf_cq_db;
212 u32 *dbbuf_sq_ei;
213 u32 *dbbuf_cq_ei;
d1ed6aa1 214 struct completion delete_done;
b60503ba
MW
215};
216
71bd150c 217/*
9b048119
CH
218 * The nvme_iod describes the data in an I/O.
219 *
220 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
221 * to the actual struct scatterlist.
71bd150c
CH
222 */
223struct nvme_iod {
d49187e9 224 struct nvme_request req;
f4800d6d 225 struct nvme_queue *nvmeq;
a7a7cbe3 226 bool use_sgl;
f4800d6d 227 int aborted;
71bd150c 228 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c 229 int nents; /* Used in scatterlist */
71bd150c 230 dma_addr_t first_dma;
dff824b2 231 unsigned int dma_len; /* length of single DMA segment mapping */
783b94bd 232 dma_addr_t meta_dma;
f4800d6d 233 struct scatterlist *sg;
b60503ba
MW
234};
235
2a5bcfdd 236static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
3b6592f7 237{
2a5bcfdd 238 return dev->nr_allocated_queues * 8 * dev->db_stride;
f9f38e33
HK
239}
240
241static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
242{
2a5bcfdd 243 unsigned int mem_size = nvme_dbbuf_size(dev);
f9f38e33
HK
244
245 if (dev->dbbuf_dbs)
246 return 0;
247
248 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
249 &dev->dbbuf_dbs_dma_addr,
250 GFP_KERNEL);
251 if (!dev->dbbuf_dbs)
252 return -ENOMEM;
253 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
254 &dev->dbbuf_eis_dma_addr,
255 GFP_KERNEL);
256 if (!dev->dbbuf_eis) {
257 dma_free_coherent(dev->dev, mem_size,
258 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
259 dev->dbbuf_dbs = NULL;
260 return -ENOMEM;
261 }
262
263 return 0;
264}
265
266static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
267{
2a5bcfdd 268 unsigned int mem_size = nvme_dbbuf_size(dev);
f9f38e33
HK
269
270 if (dev->dbbuf_dbs) {
271 dma_free_coherent(dev->dev, mem_size,
272 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
273 dev->dbbuf_dbs = NULL;
274 }
275 if (dev->dbbuf_eis) {
276 dma_free_coherent(dev->dev, mem_size,
277 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
278 dev->dbbuf_eis = NULL;
279 }
280}
281
282static void nvme_dbbuf_init(struct nvme_dev *dev,
283 struct nvme_queue *nvmeq, int qid)
284{
285 if (!dev->dbbuf_dbs || !qid)
286 return;
287
288 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
289 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
290 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
291 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
292}
293
294static void nvme_dbbuf_set(struct nvme_dev *dev)
295{
296 struct nvme_command c;
297
298 if (!dev->dbbuf_dbs)
299 return;
300
301 memset(&c, 0, sizeof(c));
302 c.dbbuf.opcode = nvme_admin_dbbuf;
303 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
304 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
305
306 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 307 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
308 /* Free memory and continue on */
309 nvme_dbbuf_dma_free(dev);
310 }
311}
312
313static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
314{
315 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
316}
317
318/* Update dbbuf and return true if an MMIO is required */
319static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
320 volatile u32 *dbbuf_ei)
321{
322 if (dbbuf_db) {
323 u16 old_value;
324
325 /*
326 * Ensure that the queue is written before updating
327 * the doorbell in memory
328 */
329 wmb();
330
331 old_value = *dbbuf_db;
332 *dbbuf_db = value;
333
f1ed3df2
MW
334 /*
335 * Ensure that the doorbell is updated before reading the event
336 * index from memory. The controller needs to provide similar
337 * ordering to ensure the envent index is updated before reading
338 * the doorbell.
339 */
340 mb();
341
f9f38e33
HK
342 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
343 return false;
344 }
345
346 return true;
b60503ba
MW
347}
348
ac3dd5bd
JA
349/*
350 * Will slightly overestimate the number of pages needed. This is OK
351 * as it only leads to a small amount of wasted memory for the lifetime of
352 * the I/O.
353 */
b13c6393 354static int nvme_pci_npages_prp(void)
ac3dd5bd 355{
b13c6393 356 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
6c3c05b0 357 NVME_CTRL_PAGE_SIZE);
ac3dd5bd
JA
358 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
359}
360
a7a7cbe3
CK
361/*
362 * Calculates the number of pages needed for the SGL segments. For example a 4k
363 * page can accommodate 256 SGL descriptors.
364 */
b13c6393 365static int nvme_pci_npages_sgl(void)
ac3dd5bd 366{
b13c6393
CK
367 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
368 PAGE_SIZE);
f4800d6d 369}
ac3dd5bd 370
b13c6393 371static size_t nvme_pci_iod_alloc_size(void)
f4800d6d 372{
b13c6393 373 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
a7a7cbe3 374
b13c6393
CK
375 return sizeof(__le64 *) * npages +
376 sizeof(struct scatterlist) * NVME_MAX_SEGS;
f4800d6d 377}
ac3dd5bd 378
a4aea562
MB
379static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
380 unsigned int hctx_idx)
e85248e5 381{
a4aea562 382 struct nvme_dev *dev = data;
147b27e4 383 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 384
42483228
KB
385 WARN_ON(hctx_idx != 0);
386 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
42483228 387
a4aea562
MB
388 hctx->driver_data = nvmeq;
389 return 0;
e85248e5
MW
390}
391
a4aea562
MB
392static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
393 unsigned int hctx_idx)
b60503ba 394{
a4aea562 395 struct nvme_dev *dev = data;
147b27e4 396 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
a4aea562 397
42483228 398 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
399 hctx->driver_data = nvmeq;
400 return 0;
b60503ba
MW
401}
402
d6296d39
CH
403static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
404 unsigned int hctx_idx, unsigned int numa_node)
b60503ba 405{
d6296d39 406 struct nvme_dev *dev = set->driver_data;
f4800d6d 407 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0350815a 408 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
147b27e4 409 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
a4aea562
MB
410
411 BUG_ON(!nvmeq);
f4800d6d 412 iod->nvmeq = nvmeq;
59e29ce6
SG
413
414 nvme_req(req)->ctrl = &dev->ctrl;
a4aea562
MB
415 return 0;
416}
417
3b6592f7
JA
418static int queue_irq_offset(struct nvme_dev *dev)
419{
420 /* if we have more than 1 vec, admin queue offsets us by 1 */
421 if (dev->num_vecs > 1)
422 return 1;
423
424 return 0;
425}
426
dca51e78
CH
427static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
428{
429 struct nvme_dev *dev = set->driver_data;
3b6592f7
JA
430 int i, qoff, offset;
431
432 offset = queue_irq_offset(dev);
433 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
434 struct blk_mq_queue_map *map = &set->map[i];
435
436 map->nr_queues = dev->io_queues[i];
437 if (!map->nr_queues) {
e20ba6e1 438 BUG_ON(i == HCTX_TYPE_DEFAULT);
7e849dd9 439 continue;
3b6592f7
JA
440 }
441
4b04cc6a
JA
442 /*
443 * The poll queue(s) doesn't have an IRQ (and hence IRQ
444 * affinity), so use the regular blk-mq cpu mapping
445 */
3b6592f7 446 map->queue_offset = qoff;
cb9e0e50 447 if (i != HCTX_TYPE_POLL && offset)
4b04cc6a
JA
448 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
449 else
450 blk_mq_map_queues(map);
3b6592f7
JA
451 qoff += map->nr_queues;
452 offset += map->nr_queues;
453 }
454
455 return 0;
dca51e78
CH
456}
457
54b2fcee 458static inline void nvme_write_sq_db(struct nvme_queue *nvmeq)
04f3eafd 459{
04f3eafd
JA
460 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
461 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
462 writel(nvmeq->sq_tail, nvmeq->q_db);
04f3eafd
JA
463}
464
b60503ba 465/**
90ea5ca4 466 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
467 * @nvmeq: The queue to use
468 * @cmd: The command to send
04f3eafd 469 * @write_sq: whether to write to the SQ doorbell
b60503ba 470 */
04f3eafd
JA
471static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
472 bool write_sq)
b60503ba 473{
90ea5ca4 474 spin_lock(&nvmeq->sq_lock);
c1e0cc7e
BH
475 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
476 cmd, sizeof(*cmd));
90ea5ca4
CH
477 if (++nvmeq->sq_tail == nvmeq->q_depth)
478 nvmeq->sq_tail = 0;
54b2fcee
KB
479 if (write_sq)
480 nvme_write_sq_db(nvmeq);
04f3eafd
JA
481 spin_unlock(&nvmeq->sq_lock);
482}
483
484static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
485{
486 struct nvme_queue *nvmeq = hctx->driver_data;
487
488 spin_lock(&nvmeq->sq_lock);
54b2fcee 489 nvme_write_sq_db(nvmeq);
90ea5ca4 490 spin_unlock(&nvmeq->sq_lock);
b60503ba
MW
491}
492
a7a7cbe3 493static void **nvme_pci_iod_list(struct request *req)
b60503ba 494{
f4800d6d 495 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3 496 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
497}
498
955b1b5a
MI
499static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
500{
501 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
20469a37 502 int nseg = blk_rq_nr_phys_segments(req);
955b1b5a
MI
503 unsigned int avg_seg_size;
504
20469a37 505 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
955b1b5a
MI
506
507 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
508 return false;
509 if (!iod->nvmeq->qid)
510 return false;
511 if (!sgl_threshold || avg_seg_size < sgl_threshold)
512 return false;
513 return true;
514}
515
7fe07d14 516static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 517{
f4800d6d 518 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
6c3c05b0 519 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
a7a7cbe3 520 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
eca18b23 521 int i;
eca18b23 522
dff824b2 523 if (iod->dma_len) {
f2fa006f
IR
524 dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
525 rq_dma_dir(req));
dff824b2 526 return;
7fe07d14
CH
527 }
528
dff824b2
CH
529 WARN_ON_ONCE(!iod->nents);
530
7f73eac3
LG
531 if (is_pci_p2pdma_page(sg_page(iod->sg)))
532 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
533 rq_dma_dir(req));
534 else
dff824b2
CH
535 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
536
537
eca18b23 538 if (iod->npages == 0)
a7a7cbe3
CK
539 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
540 dma_addr);
541
eca18b23 542 for (i = 0; i < iod->npages; i++) {
a7a7cbe3
CK
543 void *addr = nvme_pci_iod_list(req)[i];
544
545 if (iod->use_sgl) {
546 struct nvme_sgl_desc *sg_list = addr;
547
548 next_dma_addr =
549 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
550 } else {
551 __le64 *prp_list = addr;
552
553 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
554 }
555
556 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
557 dma_addr = next_dma_addr;
eca18b23 558 }
ac3dd5bd 559
d43f1ccf 560 mempool_free(iod->sg, dev->iod_mempool);
b4ff9c8d
KB
561}
562
d0877473
KB
563static void nvme_print_sgl(struct scatterlist *sgl, int nents)
564{
565 int i;
566 struct scatterlist *sg;
567
568 for_each_sg(sgl, sg, nents, i) {
569 dma_addr_t phys = sg_phys(sg);
570 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
571 "dma_address:%pad dma_length:%d\n",
572 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
573 sg_dma_len(sg));
574 }
575}
576
a7a7cbe3
CK
577static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
578 struct request *req, struct nvme_rw_command *cmnd)
ff22b54f 579{
f4800d6d 580 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 581 struct dma_pool *pool;
b131c61d 582 int length = blk_rq_payload_bytes(req);
eca18b23 583 struct scatterlist *sg = iod->sg;
ff22b54f
MW
584 int dma_len = sg_dma_len(sg);
585 u64 dma_addr = sg_dma_address(sg);
6c3c05b0 586 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
e025344c 587 __le64 *prp_list;
a7a7cbe3 588 void **list = nvme_pci_iod_list(req);
e025344c 589 dma_addr_t prp_dma;
eca18b23 590 int nprps, i;
ff22b54f 591
6c3c05b0 592 length -= (NVME_CTRL_PAGE_SIZE - offset);
5228b328
JS
593 if (length <= 0) {
594 iod->first_dma = 0;
a7a7cbe3 595 goto done;
5228b328 596 }
ff22b54f 597
6c3c05b0 598 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
ff22b54f 599 if (dma_len) {
6c3c05b0 600 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
ff22b54f
MW
601 } else {
602 sg = sg_next(sg);
603 dma_addr = sg_dma_address(sg);
604 dma_len = sg_dma_len(sg);
605 }
606
6c3c05b0 607 if (length <= NVME_CTRL_PAGE_SIZE) {
edd10d33 608 iod->first_dma = dma_addr;
a7a7cbe3 609 goto done;
e025344c
SMM
610 }
611
6c3c05b0 612 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
99802a7a
MW
613 if (nprps <= (256 / 8)) {
614 pool = dev->prp_small_pool;
eca18b23 615 iod->npages = 0;
99802a7a
MW
616 } else {
617 pool = dev->prp_page_pool;
eca18b23 618 iod->npages = 1;
99802a7a
MW
619 }
620
69d2b571 621 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 622 if (!prp_list) {
edd10d33 623 iod->first_dma = dma_addr;
eca18b23 624 iod->npages = -1;
86eea289 625 return BLK_STS_RESOURCE;
b77954cb 626 }
eca18b23
MW
627 list[0] = prp_list;
628 iod->first_dma = prp_dma;
e025344c
SMM
629 i = 0;
630 for (;;) {
6c3c05b0 631 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
e025344c 632 __le64 *old_prp_list = prp_list;
69d2b571 633 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 634 if (!prp_list)
86eea289 635 return BLK_STS_RESOURCE;
eca18b23 636 list[iod->npages++] = prp_list;
7523d834
MW
637 prp_list[0] = old_prp_list[i - 1];
638 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
639 i = 1;
e025344c
SMM
640 }
641 prp_list[i++] = cpu_to_le64(dma_addr);
6c3c05b0
CK
642 dma_len -= NVME_CTRL_PAGE_SIZE;
643 dma_addr += NVME_CTRL_PAGE_SIZE;
644 length -= NVME_CTRL_PAGE_SIZE;
e025344c
SMM
645 if (length <= 0)
646 break;
647 if (dma_len > 0)
648 continue;
86eea289
KB
649 if (unlikely(dma_len < 0))
650 goto bad_sgl;
e025344c
SMM
651 sg = sg_next(sg);
652 dma_addr = sg_dma_address(sg);
653 dma_len = sg_dma_len(sg);
ff22b54f
MW
654 }
655
a7a7cbe3
CK
656done:
657 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
658 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
659
86eea289
KB
660 return BLK_STS_OK;
661
662 bad_sgl:
d0877473
KB
663 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
664 "Invalid SGL for payload:%d nents:%d\n",
665 blk_rq_payload_bytes(req), iod->nents);
86eea289 666 return BLK_STS_IOERR;
ff22b54f
MW
667}
668
a7a7cbe3
CK
669static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
670 struct scatterlist *sg)
671{
672 sge->addr = cpu_to_le64(sg_dma_address(sg));
673 sge->length = cpu_to_le32(sg_dma_len(sg));
674 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
675}
676
677static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
678 dma_addr_t dma_addr, int entries)
679{
680 sge->addr = cpu_to_le64(dma_addr);
681 if (entries < SGES_PER_PAGE) {
682 sge->length = cpu_to_le32(entries * sizeof(*sge));
683 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
684 } else {
685 sge->length = cpu_to_le32(PAGE_SIZE);
686 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
687 }
688}
689
690static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
b0f2853b 691 struct request *req, struct nvme_rw_command *cmd, int entries)
a7a7cbe3
CK
692{
693 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3
CK
694 struct dma_pool *pool;
695 struct nvme_sgl_desc *sg_list;
696 struct scatterlist *sg = iod->sg;
a7a7cbe3 697 dma_addr_t sgl_dma;
b0f2853b 698 int i = 0;
a7a7cbe3 699
a7a7cbe3
CK
700 /* setting the transfer type as SGL */
701 cmd->flags = NVME_CMD_SGL_METABUF;
702
b0f2853b 703 if (entries == 1) {
a7a7cbe3
CK
704 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
705 return BLK_STS_OK;
706 }
707
708 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
709 pool = dev->prp_small_pool;
710 iod->npages = 0;
711 } else {
712 pool = dev->prp_page_pool;
713 iod->npages = 1;
714 }
715
716 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
717 if (!sg_list) {
718 iod->npages = -1;
719 return BLK_STS_RESOURCE;
720 }
721
722 nvme_pci_iod_list(req)[0] = sg_list;
723 iod->first_dma = sgl_dma;
724
725 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
726
727 do {
728 if (i == SGES_PER_PAGE) {
729 struct nvme_sgl_desc *old_sg_desc = sg_list;
730 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
731
732 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
733 if (!sg_list)
734 return BLK_STS_RESOURCE;
735
736 i = 0;
737 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
738 sg_list[i++] = *link;
739 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
740 }
741
742 nvme_pci_sgl_set_data(&sg_list[i++], sg);
a7a7cbe3 743 sg = sg_next(sg);
b0f2853b 744 } while (--entries > 0);
a7a7cbe3 745
a7a7cbe3
CK
746 return BLK_STS_OK;
747}
748
dff824b2
CH
749static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
750 struct request *req, struct nvme_rw_command *cmnd,
751 struct bio_vec *bv)
752{
753 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
6c3c05b0
CK
754 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
755 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
dff824b2
CH
756
757 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
758 if (dma_mapping_error(dev->dev, iod->first_dma))
759 return BLK_STS_RESOURCE;
760 iod->dma_len = bv->bv_len;
761
762 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
763 if (bv->bv_len > first_prp_len)
764 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
359c1f88 765 return BLK_STS_OK;
dff824b2
CH
766}
767
29791057
CH
768static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
769 struct request *req, struct nvme_rw_command *cmnd,
770 struct bio_vec *bv)
771{
772 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
773
774 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
775 if (dma_mapping_error(dev->dev, iod->first_dma))
776 return BLK_STS_RESOURCE;
777 iod->dma_len = bv->bv_len;
778
049bf372 779 cmnd->flags = NVME_CMD_SGL_METABUF;
29791057
CH
780 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
781 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
782 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
359c1f88 783 return BLK_STS_OK;
29791057
CH
784}
785
fc17b653 786static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 787 struct nvme_command *cmnd)
d29ec824 788{
f4800d6d 789 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
70479b71 790 blk_status_t ret = BLK_STS_RESOURCE;
b0f2853b 791 int nr_mapped;
d29ec824 792
dff824b2
CH
793 if (blk_rq_nr_phys_segments(req) == 1) {
794 struct bio_vec bv = req_bvec(req);
795
796 if (!is_pci_p2pdma_page(bv.bv_page)) {
6c3c05b0 797 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
dff824b2
CH
798 return nvme_setup_prp_simple(dev, req,
799 &cmnd->rw, &bv);
29791057
CH
800
801 if (iod->nvmeq->qid &&
802 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
803 return nvme_setup_sgl_simple(dev, req,
804 &cmnd->rw, &bv);
dff824b2
CH
805 }
806 }
807
808 iod->dma_len = 0;
d43f1ccf
CH
809 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
810 if (!iod->sg)
811 return BLK_STS_RESOURCE;
f9d03f96 812 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
70479b71 813 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
ba1ca37e
CH
814 if (!iod->nents)
815 goto out;
d29ec824 816
e0596ab2 817 if (is_pci_p2pdma_page(sg_page(iod->sg)))
2b9f4bb2
LG
818 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
819 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
e0596ab2
LG
820 else
821 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
70479b71 822 rq_dma_dir(req), DMA_ATTR_NO_WARN);
b0f2853b 823 if (!nr_mapped)
ba1ca37e 824 goto out;
d29ec824 825
70479b71 826 iod->use_sgl = nvme_pci_use_sgls(dev, req);
955b1b5a 827 if (iod->use_sgl)
b0f2853b 828 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
a7a7cbe3
CK
829 else
830 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
4aedb705 831out:
86eea289 832 if (ret != BLK_STS_OK)
4aedb705
CH
833 nvme_unmap_data(dev, req);
834 return ret;
835}
3045c0d0 836
4aedb705
CH
837static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
838 struct nvme_command *cmnd)
839{
840 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
00df5cb4 841
4aedb705
CH
842 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
843 rq_dma_dir(req), 0);
844 if (dma_mapping_error(dev->dev, iod->meta_dma))
845 return BLK_STS_IOERR;
846 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
359c1f88 847 return BLK_STS_OK;
00df5cb4
MW
848}
849
d29ec824
CH
850/*
851 * NOTE: ns is NULL when called on the admin queue.
852 */
fc17b653 853static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
a4aea562 854 const struct blk_mq_queue_data *bd)
edd10d33 855{
a4aea562
MB
856 struct nvme_ns *ns = hctx->queue->queuedata;
857 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 858 struct nvme_dev *dev = nvmeq->dev;
a4aea562 859 struct request *req = bd->rq;
9b048119 860 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e 861 struct nvme_command cmnd;
ebe6d874 862 blk_status_t ret;
e1e5e564 863
9b048119
CH
864 iod->aborted = 0;
865 iod->npages = -1;
866 iod->nents = 0;
867
d1f06f4a
JA
868 /*
869 * We should not need to do this, but we're still using this to
870 * ensure we can drain requests on a dying queue.
871 */
4e224106 872 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
d1f06f4a
JA
873 return BLK_STS_IOERR;
874
f9d03f96 875 ret = nvme_setup_cmd(ns, req, &cmnd);
fc17b653 876 if (ret)
f4800d6d 877 return ret;
a4aea562 878
fc17b653 879 if (blk_rq_nr_phys_segments(req)) {
b131c61d 880 ret = nvme_map_data(dev, req, &cmnd);
fc17b653 881 if (ret)
9b048119 882 goto out_free_cmd;
fc17b653 883 }
a4aea562 884
4aedb705
CH
885 if (blk_integrity_rq(req)) {
886 ret = nvme_map_metadata(dev, req, &cmnd);
887 if (ret)
888 goto out_unmap_data;
889 }
890
aae239e1 891 blk_mq_start_request(req);
04f3eafd 892 nvme_submit_cmd(nvmeq, &cmnd, bd->last);
fc17b653 893 return BLK_STS_OK;
4aedb705
CH
894out_unmap_data:
895 nvme_unmap_data(dev, req);
f9d03f96
CH
896out_free_cmd:
897 nvme_cleanup_cmd(req);
ba1ca37e 898 return ret;
b60503ba 899}
e1e5e564 900
77f02a7a 901static void nvme_pci_complete_rq(struct request *req)
eee417b0 902{
f4800d6d 903 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
4aedb705 904 struct nvme_dev *dev = iod->nvmeq->dev;
a4aea562 905
4aedb705
CH
906 if (blk_integrity_rq(req))
907 dma_unmap_page(dev->dev, iod->meta_dma,
908 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
b15c592d 909 if (blk_rq_nr_phys_segments(req))
4aedb705 910 nvme_unmap_data(dev, req);
77f02a7a 911 nvme_complete_rq(req);
b60503ba
MW
912}
913
d783e0bd 914/* We read the CQE phase first to check if the rest of the entry is valid */
750dde44 915static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
d783e0bd 916{
74943d45
KB
917 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
918
919 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
d783e0bd
MR
920}
921
eb281c82 922static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
b60503ba 923{
eb281c82 924 u16 head = nvmeq->cq_head;
adf68f21 925
397c699f
KB
926 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
927 nvmeq->dbbuf_cq_ei))
928 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
eb281c82 929}
aae239e1 930
cfa27356
CH
931static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
932{
933 if (!nvmeq->qid)
934 return nvmeq->dev->admin_tagset.tags[0];
935 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
936}
937
5cb525c8 938static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
83a12fb7 939{
74943d45 940 struct nvme_completion *cqe = &nvmeq->cqes[idx];
83a12fb7 941 struct request *req;
adf68f21 942
83a12fb7
SG
943 /*
944 * AEN requests are special as they don't time out and can
945 * survive any kind of queue freeze and often don't respond to
946 * aborts. We don't even bother to allocate a struct request
947 * for them but rather special case them here.
948 */
58a8df67 949 if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) {
83a12fb7
SG
950 nvme_complete_async_event(&nvmeq->dev->ctrl,
951 cqe->status, &cqe->result);
a0fa9647 952 return;
83a12fb7 953 }
b60503ba 954
cfa27356 955 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id);
50b7c243
XT
956 if (unlikely(!req)) {
957 dev_warn(nvmeq->dev->ctrl.device,
958 "invalid id %d completed on queue %d\n",
959 cqe->command_id, le16_to_cpu(cqe->sq_id));
960 return;
961 }
962
604c01d5 963 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
2eb81a33 964 if (!nvme_try_complete_req(req, cqe->status, cqe->result))
ff029451 965 nvme_pci_complete_rq(req);
83a12fb7 966}
b60503ba 967
5cb525c8
JA
968static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
969{
a8de6639
AD
970 u16 tmp = nvmeq->cq_head + 1;
971
972 if (tmp == nvmeq->q_depth) {
5cb525c8 973 nvmeq->cq_head = 0;
e2a366a4 974 nvmeq->cq_phase ^= 1;
a8de6639
AD
975 } else {
976 nvmeq->cq_head = tmp;
b60503ba 977 }
a0fa9647
JA
978}
979
324b494c 980static inline int nvme_process_cq(struct nvme_queue *nvmeq)
a0fa9647 981{
1052b8ac 982 int found = 0;
b60503ba 983
1052b8ac 984 while (nvme_cqe_pending(nvmeq)) {
bf392a5d 985 found++;
b69e2ef2
KB
986 /*
987 * load-load control dependency between phase and the rest of
988 * the cqe requires a full read memory barrier
989 */
990 dma_rmb();
324b494c 991 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
5cb525c8 992 nvme_update_cq_head(nvmeq);
920d13a8 993 }
eb281c82 994
324b494c 995 if (found)
920d13a8 996 nvme_ring_cq_doorbell(nvmeq);
5cb525c8 997 return found;
b60503ba
MW
998}
999
1000static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5 1001{
58ffacb5 1002 struct nvme_queue *nvmeq = data;
68fa9dbe 1003 irqreturn_t ret = IRQ_NONE;
5cb525c8 1004
3a7afd8e
CH
1005 /*
1006 * The rmb/wmb pair ensures we see all updates from a previous run of
1007 * the irq handler, even if that was on another CPU.
1008 */
1009 rmb();
324b494c
KB
1010 if (nvme_process_cq(nvmeq))
1011 ret = IRQ_HANDLED;
3a7afd8e 1012 wmb();
5cb525c8 1013
68fa9dbe 1014 return ret;
58ffacb5
MW
1015}
1016
1017static irqreturn_t nvme_irq_check(int irq, void *data)
1018{
1019 struct nvme_queue *nvmeq = data;
4e523547 1020
750dde44 1021 if (nvme_cqe_pending(nvmeq))
d783e0bd
MR
1022 return IRQ_WAKE_THREAD;
1023 return IRQ_NONE;
58ffacb5
MW
1024}
1025
0b2a8a9f 1026/*
fa059b85 1027 * Poll for completions for any interrupt driven queue
0b2a8a9f
CH
1028 * Can be called from any context.
1029 */
fa059b85 1030static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
a0fa9647 1031{
3a7afd8e 1032 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
a0fa9647 1033
fa059b85 1034 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
442e19b7 1035
fa059b85
KB
1036 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1037 nvme_process_cq(nvmeq);
1038 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
a0fa9647
JA
1039}
1040
9743139c 1041static int nvme_poll(struct blk_mq_hw_ctx *hctx)
dabcefab
JA
1042{
1043 struct nvme_queue *nvmeq = hctx->driver_data;
dabcefab
JA
1044 bool found;
1045
1046 if (!nvme_cqe_pending(nvmeq))
1047 return 0;
1048
3a7afd8e 1049 spin_lock(&nvmeq->cq_poll_lock);
324b494c 1050 found = nvme_process_cq(nvmeq);
3a7afd8e 1051 spin_unlock(&nvmeq->cq_poll_lock);
dabcefab 1052
dabcefab
JA
1053 return found;
1054}
1055
ad22c355 1056static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
b60503ba 1057{
f866fc42 1058 struct nvme_dev *dev = to_nvme_dev(ctrl);
147b27e4 1059 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 1060 struct nvme_command c;
b60503ba 1061
a4aea562
MB
1062 memset(&c, 0, sizeof(c));
1063 c.common.opcode = nvme_admin_async_event;
ad22c355 1064 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
04f3eafd 1065 nvme_submit_cmd(nvmeq, &c, true);
f705f837
CH
1066}
1067
b60503ba 1068static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 1069{
b60503ba
MW
1070 struct nvme_command c;
1071
1072 memset(&c, 0, sizeof(c));
1073 c.delete_queue.opcode = opcode;
1074 c.delete_queue.qid = cpu_to_le16(id);
1075
1c63dc66 1076 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1077}
1078
b60503ba 1079static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
a8e3e0bb 1080 struct nvme_queue *nvmeq, s16 vector)
b60503ba 1081{
b60503ba 1082 struct nvme_command c;
4b04cc6a
JA
1083 int flags = NVME_QUEUE_PHYS_CONTIG;
1084
7c349dde 1085 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
4b04cc6a 1086 flags |= NVME_CQ_IRQ_ENABLED;
b60503ba 1087
d29ec824 1088 /*
16772ae6 1089 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1090 * is attached to the request.
1091 */
b60503ba
MW
1092 memset(&c, 0, sizeof(c));
1093 c.create_cq.opcode = nvme_admin_create_cq;
1094 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1095 c.create_cq.cqid = cpu_to_le16(qid);
1096 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1097 c.create_cq.cq_flags = cpu_to_le16(flags);
7c349dde 1098 c.create_cq.irq_vector = cpu_to_le16(vector);
b60503ba 1099
1c63dc66 1100 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1101}
1102
1103static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1104 struct nvme_queue *nvmeq)
1105{
9abd68ef 1106 struct nvme_ctrl *ctrl = &dev->ctrl;
b60503ba 1107 struct nvme_command c;
81c1cd98 1108 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 1109
9abd68ef
JA
1110 /*
1111 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1112 * set. Since URGENT priority is zeroes, it makes all queues
1113 * URGENT.
1114 */
1115 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1116 flags |= NVME_SQ_PRIO_MEDIUM;
1117
d29ec824 1118 /*
16772ae6 1119 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1120 * is attached to the request.
1121 */
b60503ba
MW
1122 memset(&c, 0, sizeof(c));
1123 c.create_sq.opcode = nvme_admin_create_sq;
1124 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1125 c.create_sq.sqid = cpu_to_le16(qid);
1126 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1127 c.create_sq.sq_flags = cpu_to_le16(flags);
1128 c.create_sq.cqid = cpu_to_le16(qid);
1129
1c63dc66 1130 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1131}
1132
1133static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1134{
1135 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1136}
1137
1138static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1139{
1140 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1141}
1142
2a842aca 1143static void abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 1144{
f4800d6d
CH
1145 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1146 struct nvme_queue *nvmeq = iod->nvmeq;
e44ac588 1147
27fa9bc5
CH
1148 dev_warn(nvmeq->dev->ctrl.device,
1149 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 1150 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 1151 blk_mq_free_request(req);
bc5fc7e4
MW
1152}
1153
b2a0eb1a
KB
1154static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1155{
b2a0eb1a
KB
1156 /* If true, indicates loss of adapter communication, possibly by a
1157 * NVMe Subsystem reset.
1158 */
1159 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1160
ad70062c
JW
1161 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1162 switch (dev->ctrl.state) {
1163 case NVME_CTRL_RESETTING:
ad6a0a52 1164 case NVME_CTRL_CONNECTING:
b2a0eb1a 1165 return false;
ad70062c
JW
1166 default:
1167 break;
1168 }
b2a0eb1a
KB
1169
1170 /* We shouldn't reset unless the controller is on fatal error state
1171 * _or_ if we lost the communication with it.
1172 */
1173 if (!(csts & NVME_CSTS_CFS) && !nssro)
1174 return false;
1175
b2a0eb1a
KB
1176 return true;
1177}
1178
1179static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1180{
1181 /* Read a config register to help see what died. */
1182 u16 pci_status;
1183 int result;
1184
1185 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1186 &pci_status);
1187 if (result == PCIBIOS_SUCCESSFUL)
1188 dev_warn(dev->ctrl.device,
1189 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1190 csts, pci_status);
1191 else
1192 dev_warn(dev->ctrl.device,
1193 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1194 csts, result);
1195}
1196
31c7c7d2 1197static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 1198{
f4800d6d
CH
1199 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1200 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 1201 struct nvme_dev *dev = nvmeq->dev;
a4aea562 1202 struct request *abort_req;
a4aea562 1203 struct nvme_command cmd;
b2a0eb1a
KB
1204 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1205
651438bb
WX
1206 /* If PCI error recovery process is happening, we cannot reset or
1207 * the recovery mechanism will surely fail.
1208 */
1209 mb();
1210 if (pci_channel_offline(to_pci_dev(dev->dev)))
1211 return BLK_EH_RESET_TIMER;
1212
b2a0eb1a
KB
1213 /*
1214 * Reset immediately if the controller is failed
1215 */
1216 if (nvme_should_reset(dev, csts)) {
1217 nvme_warn_reset(dev, csts);
1218 nvme_dev_disable(dev, false);
d86c4d8e 1219 nvme_reset_ctrl(&dev->ctrl);
db8c48e4 1220 return BLK_EH_DONE;
b2a0eb1a 1221 }
c30341dc 1222
7776db1c
KB
1223 /*
1224 * Did we miss an interrupt?
1225 */
fa059b85
KB
1226 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1227 nvme_poll(req->mq_hctx);
1228 else
1229 nvme_poll_irqdisable(nvmeq);
1230
bf392a5d 1231 if (blk_mq_request_completed(req)) {
7776db1c
KB
1232 dev_warn(dev->ctrl.device,
1233 "I/O %d QID %d timeout, completion polled\n",
1234 req->tag, nvmeq->qid);
db8c48e4 1235 return BLK_EH_DONE;
7776db1c
KB
1236 }
1237
31c7c7d2 1238 /*
fd634f41
CH
1239 * Shutdown immediately if controller times out while starting. The
1240 * reset work will see the pci device disabled when it gets the forced
1241 * cancellation error. All outstanding requests are completed on
db8c48e4 1242 * shutdown, so we return BLK_EH_DONE.
fd634f41 1243 */
4244140d
KB
1244 switch (dev->ctrl.state) {
1245 case NVME_CTRL_CONNECTING:
2036f726 1246 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
df561f66 1247 fallthrough;
2036f726 1248 case NVME_CTRL_DELETING:
b9cac43c 1249 dev_warn_ratelimited(dev->ctrl.device,
fd634f41
CH
1250 "I/O %d QID %d timeout, disable controller\n",
1251 req->tag, nvmeq->qid);
27fa9bc5 1252 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
7ad92f65 1253 nvme_dev_disable(dev, true);
db8c48e4 1254 return BLK_EH_DONE;
39a9dd81
KB
1255 case NVME_CTRL_RESETTING:
1256 return BLK_EH_RESET_TIMER;
4244140d
KB
1257 default:
1258 break;
c30341dc
KB
1259 }
1260
fd634f41 1261 /*
ee0d96d3
BW
1262 * Shutdown the controller immediately and schedule a reset if the
1263 * command was already aborted once before and still hasn't been
1264 * returned to the driver, or if this is the admin queue.
31c7c7d2 1265 */
f4800d6d 1266 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1267 dev_warn(dev->ctrl.device,
e1569a16
KB
1268 "I/O %d QID %d timeout, reset controller\n",
1269 req->tag, nvmeq->qid);
7ad92f65 1270 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
a5cdb68c 1271 nvme_dev_disable(dev, false);
d86c4d8e 1272 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1273
db8c48e4 1274 return BLK_EH_DONE;
c30341dc 1275 }
c30341dc 1276
e7a2a87d 1277 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1278 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1279 return BLK_EH_RESET_TIMER;
6bf25d16 1280 }
7bf7d778 1281 iod->aborted = 1;
a4aea562 1282
c30341dc
KB
1283 memset(&cmd, 0, sizeof(cmd));
1284 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1285 cmd.abort.cid = req->tag;
c30341dc 1286 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1287
1b3c47c1
SG
1288 dev_warn(nvmeq->dev->ctrl.device,
1289 "I/O %d QID %d timeout, aborting\n",
1290 req->tag, nvmeq->qid);
e7a2a87d
CH
1291
1292 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 1293 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
1294 if (IS_ERR(abort_req)) {
1295 atomic_inc(&dev->ctrl.abort_limit);
1296 return BLK_EH_RESET_TIMER;
1297 }
1298
1299 abort_req->timeout = ADMIN_TIMEOUT;
1300 abort_req->end_io_data = NULL;
1301 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1302
31c7c7d2
CH
1303 /*
1304 * The aborted req will be completed on receiving the abort req.
1305 * We enable the timer again. If hit twice, it'll cause a device reset,
1306 * as the device then is in a faulty state.
1307 */
1308 return BLK_EH_RESET_TIMER;
c30341dc
KB
1309}
1310
a4aea562
MB
1311static void nvme_free_queue(struct nvme_queue *nvmeq)
1312{
8a1d09a6 1313 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
9e866774 1314 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
63223078
CH
1315 if (!nvmeq->sq_cmds)
1316 return;
0f238ff5 1317
63223078 1318 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
88a041f4 1319 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
8a1d09a6 1320 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
63223078 1321 } else {
8a1d09a6 1322 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
63223078 1323 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
0f238ff5 1324 }
9e866774
MW
1325}
1326
a1a5ef99 1327static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1328{
1329 int i;
1330
d858e5f0 1331 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
d858e5f0 1332 dev->ctrl.queue_count--;
147b27e4 1333 nvme_free_queue(&dev->queues[i]);
121c7ad4 1334 }
22404274
KB
1335}
1336
4d115420
KB
1337/**
1338 * nvme_suspend_queue - put queue into suspended state
40581d1a 1339 * @nvmeq: queue to suspend
4d115420
KB
1340 */
1341static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1342{
4e224106 1343 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
2b25d981 1344 return 1;
a09115b2 1345
4e224106 1346 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
d1f06f4a 1347 mb();
a09115b2 1348
4e224106 1349 nvmeq->dev->online_queues--;
1c63dc66 1350 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
c81545f9 1351 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
7c349dde
KB
1352 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1353 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
4d115420
KB
1354 return 0;
1355}
b60503ba 1356
8fae268b
KB
1357static void nvme_suspend_io_queues(struct nvme_dev *dev)
1358{
1359 int i;
1360
1361 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1362 nvme_suspend_queue(&dev->queues[i]);
1363}
1364
a5cdb68c 1365static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1366{
147b27e4 1367 struct nvme_queue *nvmeq = &dev->queues[0];
4d115420 1368
a5cdb68c
KB
1369 if (shutdown)
1370 nvme_shutdown_ctrl(&dev->ctrl);
1371 else
b5b05048 1372 nvme_disable_ctrl(&dev->ctrl);
07836e65 1373
bf392a5d 1374 nvme_poll_irqdisable(nvmeq);
b60503ba
MW
1375}
1376
fa46c6fb
KB
1377/*
1378 * Called only on a device that has been disabled and after all other threads
9210c075
DZ
1379 * that can check this device's completion queues have synced, except
1380 * nvme_poll(). This is the last chance for the driver to see a natural
1381 * completion before nvme_cancel_request() terminates all incomplete requests.
fa46c6fb
KB
1382 */
1383static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1384{
fa46c6fb
KB
1385 int i;
1386
9210c075
DZ
1387 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1388 spin_lock(&dev->queues[i].cq_poll_lock);
324b494c 1389 nvme_process_cq(&dev->queues[i]);
9210c075
DZ
1390 spin_unlock(&dev->queues[i].cq_poll_lock);
1391 }
fa46c6fb
KB
1392}
1393
8ffaadf7
JD
1394static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1395 int entry_size)
1396{
1397 int q_depth = dev->q_depth;
5fd4ce1b 1398 unsigned q_size_aligned = roundup(q_depth * entry_size,
6c3c05b0 1399 NVME_CTRL_PAGE_SIZE);
8ffaadf7
JD
1400
1401 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1402 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
4e523547 1403
6c3c05b0 1404 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
c45f5c99 1405 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1406
1407 /*
1408 * Ensure the reduced q_depth is above some threshold where it
1409 * would be better to map queues in system memory with the
1410 * original depth
1411 */
1412 if (q_depth < 64)
1413 return -ENOMEM;
1414 }
1415
1416 return q_depth;
1417}
1418
1419static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
8a1d09a6 1420 int qid)
8ffaadf7 1421{
0f238ff5
LG
1422 struct pci_dev *pdev = to_pci_dev(dev->dev);
1423
1424 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
8a1d09a6 1425 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
bfac8e9f
AM
1426 if (nvmeq->sq_cmds) {
1427 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1428 nvmeq->sq_cmds);
1429 if (nvmeq->sq_dma_addr) {
1430 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1431 return 0;
1432 }
1433
8a1d09a6 1434 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
63223078 1435 }
0f238ff5 1436 }
8ffaadf7 1437
8a1d09a6 1438 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
63223078 1439 &nvmeq->sq_dma_addr, GFP_KERNEL);
815c6704
KB
1440 if (!nvmeq->sq_cmds)
1441 return -ENOMEM;
8ffaadf7
JD
1442 return 0;
1443}
1444
a6ff7262 1445static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
b60503ba 1446{
147b27e4 1447 struct nvme_queue *nvmeq = &dev->queues[qid];
b60503ba 1448
62314e40
KB
1449 if (dev->ctrl.queue_count > qid)
1450 return 0;
b60503ba 1451
c1e0cc7e 1452 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
8a1d09a6
BH
1453 nvmeq->q_depth = depth;
1454 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
750afb08 1455 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1456 if (!nvmeq->cqes)
1457 goto free_nvmeq;
b60503ba 1458
8a1d09a6 1459 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
b60503ba
MW
1460 goto free_cqdma;
1461
091b6092 1462 nvmeq->dev = dev;
1ab0cd69 1463 spin_lock_init(&nvmeq->sq_lock);
3a7afd8e 1464 spin_lock_init(&nvmeq->cq_poll_lock);
b60503ba 1465 nvmeq->cq_head = 0;
82123460 1466 nvmeq->cq_phase = 1;
b80d5ccc 1467 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
c30341dc 1468 nvmeq->qid = qid;
d858e5f0 1469 dev->ctrl.queue_count++;
36a7e993 1470
147b27e4 1471 return 0;
b60503ba
MW
1472
1473 free_cqdma:
8a1d09a6
BH
1474 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1475 nvmeq->cq_dma_addr);
b60503ba 1476 free_nvmeq:
147b27e4 1477 return -ENOMEM;
b60503ba
MW
1478}
1479
dca51e78 1480static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1481{
0ff199cb
CH
1482 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1483 int nr = nvmeq->dev->ctrl.instance;
1484
1485 if (use_threaded_interrupts) {
1486 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1487 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1488 } else {
1489 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1490 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1491 }
3001082c
MW
1492}
1493
22404274 1494static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1495{
22404274 1496 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1497
22404274
KB
1498 nvmeq->sq_tail = 0;
1499 nvmeq->cq_head = 0;
1500 nvmeq->cq_phase = 1;
b80d5ccc 1501 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
8a1d09a6 1502 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
f9f38e33 1503 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1504 dev->online_queues++;
3a7afd8e 1505 wmb(); /* ensure the first interrupt sees the initialization */
22404274
KB
1506}
1507
4b04cc6a 1508static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
22404274
KB
1509{
1510 struct nvme_dev *dev = nvmeq->dev;
1511 int result;
7c349dde 1512 u16 vector = 0;
3f85d50b 1513
d1ed6aa1
CH
1514 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1515
22b55601
KB
1516 /*
1517 * A queue's vector matches the queue identifier unless the controller
1518 * has only one vector available.
1519 */
4b04cc6a
JA
1520 if (!polled)
1521 vector = dev->num_vecs == 1 ? 0 : qid;
1522 else
7c349dde 1523 set_bit(NVMEQ_POLLED, &nvmeq->flags);
4b04cc6a 1524
a8e3e0bb 1525 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
ded45505
KB
1526 if (result)
1527 return result;
b60503ba
MW
1528
1529 result = adapter_alloc_sq(dev, qid, nvmeq);
1530 if (result < 0)
ded45505 1531 return result;
c80b36cd 1532 if (result)
b60503ba
MW
1533 goto release_cq;
1534
a8e3e0bb 1535 nvmeq->cq_vector = vector;
161b8be2 1536 nvme_init_queue(nvmeq, qid);
4b04cc6a 1537
7c349dde 1538 if (!polled) {
4b04cc6a
JA
1539 result = queue_request_irq(nvmeq);
1540 if (result < 0)
1541 goto release_sq;
1542 }
b60503ba 1543
4e224106 1544 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
22404274 1545 return result;
b60503ba 1546
a8e3e0bb 1547release_sq:
f25a2dfc 1548 dev->online_queues--;
b60503ba 1549 adapter_delete_sq(dev, qid);
a8e3e0bb 1550release_cq:
b60503ba 1551 adapter_delete_cq(dev, qid);
22404274 1552 return result;
b60503ba
MW
1553}
1554
f363b089 1555static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1556 .queue_rq = nvme_queue_rq,
77f02a7a 1557 .complete = nvme_pci_complete_rq,
a4aea562 1558 .init_hctx = nvme_admin_init_hctx,
0350815a 1559 .init_request = nvme_init_request,
a4aea562
MB
1560 .timeout = nvme_timeout,
1561};
1562
f363b089 1563static const struct blk_mq_ops nvme_mq_ops = {
376f7ef8
CH
1564 .queue_rq = nvme_queue_rq,
1565 .complete = nvme_pci_complete_rq,
1566 .commit_rqs = nvme_commit_rqs,
1567 .init_hctx = nvme_init_hctx,
1568 .init_request = nvme_init_request,
1569 .map_queues = nvme_pci_map_queues,
1570 .timeout = nvme_timeout,
1571 .poll = nvme_poll,
dabcefab
JA
1572};
1573
ea191d2f
KB
1574static void nvme_dev_remove_admin(struct nvme_dev *dev)
1575{
1c63dc66 1576 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1577 /*
1578 * If the controller was reset during removal, it's possible
1579 * user requests may be waiting on a stopped queue. Start the
1580 * queue to flush these to completion.
1581 */
c81545f9 1582 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1c63dc66 1583 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1584 blk_mq_free_tag_set(&dev->admin_tagset);
1585 }
1586}
1587
a4aea562
MB
1588static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1589{
1c63dc66 1590 if (!dev->ctrl.admin_q) {
a4aea562
MB
1591 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1592 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c 1593
38dabe21 1594 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
a4aea562 1595 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
d4ec47f1 1596 dev->admin_tagset.numa_node = dev->ctrl.numa_node;
d43f1ccf 1597 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
d3484991 1598 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1599 dev->admin_tagset.driver_data = dev;
1600
1601 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1602 return -ENOMEM;
34b6c231 1603 dev->ctrl.admin_tagset = &dev->admin_tagset;
a4aea562 1604
1c63dc66
CH
1605 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1606 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1607 blk_mq_free_tag_set(&dev->admin_tagset);
1608 return -ENOMEM;
1609 }
1c63dc66 1610 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1611 nvme_dev_remove_admin(dev);
1c63dc66 1612 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1613 return -ENODEV;
1614 }
0fb59cbc 1615 } else
c81545f9 1616 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
a4aea562
MB
1617
1618 return 0;
1619}
1620
97f6ef64
XY
1621static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1622{
1623 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1624}
1625
1626static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1627{
1628 struct pci_dev *pdev = to_pci_dev(dev->dev);
1629
1630 if (size <= dev->bar_mapped_size)
1631 return 0;
1632 if (size > pci_resource_len(pdev, 0))
1633 return -ENOMEM;
1634 if (dev->bar)
1635 iounmap(dev->bar);
1636 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1637 if (!dev->bar) {
1638 dev->bar_mapped_size = 0;
1639 return -ENOMEM;
1640 }
1641 dev->bar_mapped_size = size;
1642 dev->dbs = dev->bar + NVME_REG_DBS;
1643
1644 return 0;
1645}
1646
01ad0990 1647static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1648{
ba47e386 1649 int result;
b60503ba
MW
1650 u32 aqa;
1651 struct nvme_queue *nvmeq;
1652
97f6ef64
XY
1653 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1654 if (result < 0)
1655 return result;
1656
8ef2074d 1657 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
20d0dfe6 1658 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
dfbac8c7 1659
7a67cbea
CH
1660 if (dev->subsystem &&
1661 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1662 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1663
b5b05048 1664 result = nvme_disable_ctrl(&dev->ctrl);
ba47e386
MW
1665 if (result < 0)
1666 return result;
b60503ba 1667
a6ff7262 1668 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
147b27e4
SG
1669 if (result)
1670 return result;
b60503ba 1671
635333e4
MG
1672 dev->ctrl.numa_node = dev_to_node(dev->dev);
1673
147b27e4 1674 nvmeq = &dev->queues[0];
b60503ba
MW
1675 aqa = nvmeq->q_depth - 1;
1676 aqa |= aqa << 16;
1677
7a67cbea
CH
1678 writel(aqa, dev->bar + NVME_REG_AQA);
1679 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1680 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1681
c0f2f45b 1682 result = nvme_enable_ctrl(&dev->ctrl);
025c557a 1683 if (result)
d4875622 1684 return result;
a4aea562 1685
2b25d981 1686 nvmeq->cq_vector = 0;
161b8be2 1687 nvme_init_queue(nvmeq, 0);
dca51e78 1688 result = queue_request_irq(nvmeq);
758dd7fd 1689 if (result) {
7c349dde 1690 dev->online_queues--;
d4875622 1691 return result;
758dd7fd 1692 }
025c557a 1693
4e224106 1694 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
b60503ba
MW
1695 return result;
1696}
1697
749941f2 1698static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1699{
4b04cc6a 1700 unsigned i, max, rw_queues;
749941f2 1701 int ret = 0;
42f61420 1702
d858e5f0 1703 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
a6ff7262 1704 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
749941f2 1705 ret = -ENOMEM;
42f61420 1706 break;
749941f2
CH
1707 }
1708 }
42f61420 1709
d858e5f0 1710 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
e20ba6e1
CH
1711 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1712 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1713 dev->io_queues[HCTX_TYPE_READ];
4b04cc6a
JA
1714 } else {
1715 rw_queues = max;
1716 }
1717
949928c1 1718 for (i = dev->online_queues; i <= max; i++) {
4b04cc6a
JA
1719 bool polled = i > rw_queues;
1720
1721 ret = nvme_create_queue(&dev->queues[i], i, polled);
d4875622 1722 if (ret)
42f61420 1723 break;
27e8166c 1724 }
749941f2
CH
1725
1726 /*
1727 * Ignore failing Create SQ/CQ commands, we can continue with less
8adb8c14
MI
1728 * than the desired amount of queues, and even a controller without
1729 * I/O queues can still be used to issue admin commands. This might
749941f2
CH
1730 * be useful to upgrade a buggy firmware for example.
1731 */
1732 return ret >= 0 ? 0 : ret;
b60503ba
MW
1733}
1734
202021c1
SB
1735static ssize_t nvme_cmb_show(struct device *dev,
1736 struct device_attribute *attr,
1737 char *buf)
1738{
1739 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1740
c965809c 1741 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1742 ndev->cmbloc, ndev->cmbsz);
1743}
1744static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1745
88de4598 1746static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
8ffaadf7 1747{
88de4598
CH
1748 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1749
1750 return 1ULL << (12 + 4 * szu);
1751}
1752
1753static u32 nvme_cmb_size(struct nvme_dev *dev)
1754{
1755 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1756}
1757
f65efd6d 1758static void nvme_map_cmb(struct nvme_dev *dev)
8ffaadf7 1759{
88de4598 1760 u64 size, offset;
8ffaadf7
JD
1761 resource_size_t bar_size;
1762 struct pci_dev *pdev = to_pci_dev(dev->dev);
8969f1f8 1763 int bar;
8ffaadf7 1764
9fe5c59f
KB
1765 if (dev->cmb_size)
1766 return;
1767
7a67cbea 1768 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
f65efd6d
CH
1769 if (!dev->cmbsz)
1770 return;
202021c1 1771 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1772
88de4598
CH
1773 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1774 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
8969f1f8
CH
1775 bar = NVME_CMB_BIR(dev->cmbloc);
1776 bar_size = pci_resource_len(pdev, bar);
8ffaadf7
JD
1777
1778 if (offset > bar_size)
f65efd6d 1779 return;
8ffaadf7
JD
1780
1781 /*
1782 * Controllers may support a CMB size larger than their BAR,
1783 * for example, due to being behind a bridge. Reduce the CMB to
1784 * the reported size of the BAR
1785 */
1786 if (size > bar_size - offset)
1787 size = bar_size - offset;
1788
0f238ff5
LG
1789 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1790 dev_warn(dev->ctrl.device,
1791 "failed to register the CMB\n");
f65efd6d 1792 return;
0f238ff5
LG
1793 }
1794
8ffaadf7 1795 dev->cmb_size = size;
0f238ff5
LG
1796 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1797
1798 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1799 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1800 pci_p2pmem_publish(pdev, true);
f65efd6d
CH
1801
1802 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1803 &dev_attr_cmb.attr, NULL))
1804 dev_warn(dev->ctrl.device,
1805 "failed to add sysfs attribute for CMB\n");
8ffaadf7
JD
1806}
1807
1808static inline void nvme_release_cmb(struct nvme_dev *dev)
1809{
0f238ff5 1810 if (dev->cmb_size) {
1c78f773
MG
1811 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1812 &dev_attr_cmb.attr, NULL);
0f238ff5 1813 dev->cmb_size = 0;
8ffaadf7
JD
1814 }
1815}
1816
87ad72a5
CH
1817static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1818{
6c3c05b0 1819 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
4033f35d 1820 u64 dma_addr = dev->host_mem_descs_dma;
87ad72a5 1821 struct nvme_command c;
87ad72a5
CH
1822 int ret;
1823
87ad72a5
CH
1824 memset(&c, 0, sizeof(c));
1825 c.features.opcode = nvme_admin_set_features;
1826 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1827 c.features.dword11 = cpu_to_le32(bits);
6c3c05b0 1828 c.features.dword12 = cpu_to_le32(host_mem_size);
87ad72a5
CH
1829 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1830 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1831 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1832
1833 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1834 if (ret) {
1835 dev_warn(dev->ctrl.device,
1836 "failed to set host mem (err %d, flags %#x).\n",
1837 ret, bits);
1838 }
87ad72a5
CH
1839 return ret;
1840}
1841
1842static void nvme_free_host_mem(struct nvme_dev *dev)
1843{
1844 int i;
1845
1846 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1847 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
6c3c05b0 1848 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
87ad72a5 1849
cc667f6d
LD
1850 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1851 le64_to_cpu(desc->addr),
1852 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
87ad72a5
CH
1853 }
1854
1855 kfree(dev->host_mem_desc_bufs);
1856 dev->host_mem_desc_bufs = NULL;
4033f35d
CH
1857 dma_free_coherent(dev->dev,
1858 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1859 dev->host_mem_descs, dev->host_mem_descs_dma);
87ad72a5 1860 dev->host_mem_descs = NULL;
7e5dd57e 1861 dev->nr_host_mem_descs = 0;
87ad72a5
CH
1862}
1863
92dc6895
CH
1864static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1865 u32 chunk_size)
9d713c2b 1866{
87ad72a5 1867 struct nvme_host_mem_buf_desc *descs;
92dc6895 1868 u32 max_entries, len;
4033f35d 1869 dma_addr_t descs_dma;
2ee0e4ed 1870 int i = 0;
87ad72a5 1871 void **bufs;
6fbcde66 1872 u64 size, tmp;
87ad72a5 1873
87ad72a5
CH
1874 tmp = (preferred + chunk_size - 1);
1875 do_div(tmp, chunk_size);
1876 max_entries = tmp;
044a9df1
CH
1877
1878 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1879 max_entries = dev->ctrl.hmmaxd;
1880
750afb08
LC
1881 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1882 &descs_dma, GFP_KERNEL);
87ad72a5
CH
1883 if (!descs)
1884 goto out;
1885
1886 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1887 if (!bufs)
1888 goto out_free_descs;
1889
244a8fe4 1890 for (size = 0; size < preferred && i < max_entries; size += len) {
87ad72a5
CH
1891 dma_addr_t dma_addr;
1892
50cdb7c6 1893 len = min_t(u64, chunk_size, preferred - size);
87ad72a5
CH
1894 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1895 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1896 if (!bufs[i])
1897 break;
1898
1899 descs[i].addr = cpu_to_le64(dma_addr);
6c3c05b0 1900 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
87ad72a5
CH
1901 i++;
1902 }
1903
92dc6895 1904 if (!size)
87ad72a5 1905 goto out_free_bufs;
87ad72a5 1906
87ad72a5
CH
1907 dev->nr_host_mem_descs = i;
1908 dev->host_mem_size = size;
1909 dev->host_mem_descs = descs;
4033f35d 1910 dev->host_mem_descs_dma = descs_dma;
87ad72a5
CH
1911 dev->host_mem_desc_bufs = bufs;
1912 return 0;
1913
1914out_free_bufs:
1915 while (--i >= 0) {
6c3c05b0 1916 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
87ad72a5 1917
cc667f6d
LD
1918 dma_free_attrs(dev->dev, size, bufs[i],
1919 le64_to_cpu(descs[i].addr),
1920 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
87ad72a5
CH
1921 }
1922
1923 kfree(bufs);
1924out_free_descs:
4033f35d
CH
1925 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1926 descs_dma);
87ad72a5 1927out:
87ad72a5
CH
1928 dev->host_mem_descs = NULL;
1929 return -ENOMEM;
1930}
1931
92dc6895
CH
1932static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1933{
9dc54a0d
CK
1934 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1935 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1936 u64 chunk_size;
92dc6895
CH
1937
1938 /* start big and work our way down */
9dc54a0d 1939 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
92dc6895
CH
1940 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1941 if (!min || dev->host_mem_size >= min)
1942 return 0;
1943 nvme_free_host_mem(dev);
1944 }
1945 }
1946
1947 return -ENOMEM;
1948}
1949
9620cfba 1950static int nvme_setup_host_mem(struct nvme_dev *dev)
87ad72a5
CH
1951{
1952 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1953 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1954 u64 min = (u64)dev->ctrl.hmmin * 4096;
1955 u32 enable_bits = NVME_HOST_MEM_ENABLE;
6fbcde66 1956 int ret;
87ad72a5
CH
1957
1958 preferred = min(preferred, max);
1959 if (min > max) {
1960 dev_warn(dev->ctrl.device,
1961 "min host memory (%lld MiB) above limit (%d MiB).\n",
1962 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1963 nvme_free_host_mem(dev);
9620cfba 1964 return 0;
87ad72a5
CH
1965 }
1966
1967 /*
1968 * If we already have a buffer allocated check if we can reuse it.
1969 */
1970 if (dev->host_mem_descs) {
1971 if (dev->host_mem_size >= min)
1972 enable_bits |= NVME_HOST_MEM_RETURN;
1973 else
1974 nvme_free_host_mem(dev);
1975 }
1976
1977 if (!dev->host_mem_descs) {
92dc6895
CH
1978 if (nvme_alloc_host_mem(dev, min, preferred)) {
1979 dev_warn(dev->ctrl.device,
1980 "failed to allocate host memory buffer.\n");
9620cfba 1981 return 0; /* controller must work without HMB */
92dc6895
CH
1982 }
1983
1984 dev_info(dev->ctrl.device,
1985 "allocated %lld MiB host memory buffer.\n",
1986 dev->host_mem_size >> ilog2(SZ_1M));
87ad72a5
CH
1987 }
1988
9620cfba
CH
1989 ret = nvme_set_host_mem(dev, enable_bits);
1990 if (ret)
87ad72a5 1991 nvme_free_host_mem(dev);
9620cfba 1992 return ret;
9d713c2b
KB
1993}
1994
612b7286
ML
1995/*
1996 * nirqs is the number of interrupts available for write and read
1997 * queues. The core already reserved an interrupt for the admin queue.
1998 */
1999static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
3b6592f7 2000{
612b7286 2001 struct nvme_dev *dev = affd->priv;
2a5bcfdd 2002 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
3b6592f7
JA
2003
2004 /*
ee0d96d3 2005 * If there is no interrupt available for queues, ensure that
612b7286
ML
2006 * the default queue is set to 1. The affinity set size is
2007 * also set to one, but the irq core ignores it for this case.
2008 *
2009 * If only one interrupt is available or 'write_queue' == 0, combine
2010 * write and read queues.
2011 *
2012 * If 'write_queues' > 0, ensure it leaves room for at least one read
2013 * queue.
3b6592f7 2014 */
612b7286
ML
2015 if (!nrirqs) {
2016 nrirqs = 1;
2017 nr_read_queues = 0;
2a5bcfdd 2018 } else if (nrirqs == 1 || !nr_write_queues) {
612b7286 2019 nr_read_queues = 0;
2a5bcfdd 2020 } else if (nr_write_queues >= nrirqs) {
612b7286 2021 nr_read_queues = 1;
3b6592f7 2022 } else {
2a5bcfdd 2023 nr_read_queues = nrirqs - nr_write_queues;
3b6592f7 2024 }
612b7286
ML
2025
2026 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2027 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2028 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2029 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2030 affd->nr_sets = nr_read_queues ? 2 : 1;
3b6592f7
JA
2031}
2032
6451fe73 2033static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
3b6592f7
JA
2034{
2035 struct pci_dev *pdev = to_pci_dev(dev->dev);
3b6592f7 2036 struct irq_affinity affd = {
9cfef55b 2037 .pre_vectors = 1,
612b7286
ML
2038 .calc_sets = nvme_calc_irq_sets,
2039 .priv = dev,
3b6592f7 2040 };
21cc2f3f 2041 unsigned int irq_queues, poll_queues;
6451fe73
JA
2042
2043 /*
21cc2f3f
JX
2044 * Poll queues don't need interrupts, but we need at least one I/O queue
2045 * left over for non-polled I/O.
6451fe73 2046 */
21cc2f3f
JX
2047 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2048 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
3b6592f7 2049
21cc2f3f
JX
2050 /*
2051 * Initialize for the single interrupt case, will be updated in
2052 * nvme_calc_irq_sets().
2053 */
612b7286
ML
2054 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2055 dev->io_queues[HCTX_TYPE_READ] = 0;
3b6592f7 2056
66341331 2057 /*
21cc2f3f
JX
2058 * We need interrupts for the admin queue and each non-polled I/O queue,
2059 * but some Apple controllers require all queues to use the first
2060 * vector.
66341331 2061 */
21cc2f3f
JX
2062 irq_queues = 1;
2063 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2064 irq_queues += (nr_io_queues - poll_queues);
612b7286
ML
2065 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2066 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
3b6592f7
JA
2067}
2068
8fae268b
KB
2069static void nvme_disable_io_queues(struct nvme_dev *dev)
2070{
2071 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2072 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2073}
2074
2a5bcfdd
WZ
2075static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2076{
2077 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2078}
2079
8d85fce7 2080static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2081{
147b27e4 2082 struct nvme_queue *adminq = &dev->queues[0];
e75ec752 2083 struct pci_dev *pdev = to_pci_dev(dev->dev);
2a5bcfdd 2084 unsigned int nr_io_queues;
97f6ef64 2085 unsigned long size;
2a5bcfdd 2086 int result;
b60503ba 2087
2a5bcfdd
WZ
2088 /*
2089 * Sample the module parameters once at reset time so that we have
2090 * stable values to work with.
2091 */
2092 dev->nr_write_queues = write_queues;
2093 dev->nr_poll_queues = poll_queues;
d38e9f04
BH
2094
2095 /*
2096 * If tags are shared with admin queue (Apple bug), then
2097 * make sure we only use one IO queue.
2098 */
2099 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2100 nr_io_queues = 1;
2a5bcfdd
WZ
2101 else
2102 nr_io_queues = min(nvme_max_io_queues(dev),
2103 dev->nr_allocated_queues - 1);
d38e9f04 2104
9a0be7ab
CH
2105 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2106 if (result < 0)
1b23484b 2107 return result;
9a0be7ab 2108
f5fa90dc 2109 if (nr_io_queues == 0)
a5229050 2110 return 0;
4e224106
CH
2111
2112 clear_bit(NVMEQ_ENABLED, &adminq->flags);
b60503ba 2113
0f238ff5 2114 if (dev->cmb_use_sqes) {
8ffaadf7
JD
2115 result = nvme_cmb_qdepth(dev, nr_io_queues,
2116 sizeof(struct nvme_command));
2117 if (result > 0)
2118 dev->q_depth = result;
2119 else
0f238ff5 2120 dev->cmb_use_sqes = false;
8ffaadf7
JD
2121 }
2122
97f6ef64
XY
2123 do {
2124 size = db_bar_size(dev, nr_io_queues);
2125 result = nvme_remap_bar(dev, size);
2126 if (!result)
2127 break;
2128 if (!--nr_io_queues)
2129 return -ENOMEM;
2130 } while (1);
2131 adminq->q_db = dev->dbs;
f1938f6e 2132
8fae268b 2133 retry:
9d713c2b 2134 /* Deregister the admin queue's interrupt */
0ff199cb 2135 pci_free_irq(pdev, 0, adminq);
9d713c2b 2136
e32efbfc
JA
2137 /*
2138 * If we enable msix early due to not intx, disable it again before
2139 * setting up the full range we need.
2140 */
dca51e78 2141 pci_free_irq_vectors(pdev);
3b6592f7
JA
2142
2143 result = nvme_setup_irqs(dev, nr_io_queues);
22b55601 2144 if (result <= 0)
dca51e78 2145 return -EIO;
3b6592f7 2146
22b55601 2147 dev->num_vecs = result;
4b04cc6a 2148 result = max(result - 1, 1);
e20ba6e1 2149 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
fa08a396 2150
063a8096
MW
2151 /*
2152 * Should investigate if there's a performance win from allocating
2153 * more queues than interrupt vectors; it might allow the submission
2154 * path to scale better, even if the receive path is limited by the
2155 * number of interrupts.
2156 */
dca51e78 2157 result = queue_request_irq(adminq);
7c349dde 2158 if (result)
d4875622 2159 return result;
4e224106 2160 set_bit(NVMEQ_ENABLED, &adminq->flags);
8fae268b
KB
2161
2162 result = nvme_create_io_queues(dev);
2163 if (result || dev->online_queues < 2)
2164 return result;
2165
2166 if (dev->online_queues - 1 < dev->max_qid) {
2167 nr_io_queues = dev->online_queues - 1;
2168 nvme_disable_io_queues(dev);
2169 nvme_suspend_io_queues(dev);
2170 goto retry;
2171 }
2172 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2173 dev->io_queues[HCTX_TYPE_DEFAULT],
2174 dev->io_queues[HCTX_TYPE_READ],
2175 dev->io_queues[HCTX_TYPE_POLL]);
2176 return 0;
b60503ba
MW
2177}
2178
2a842aca 2179static void nvme_del_queue_end(struct request *req, blk_status_t error)
a5768aa8 2180{
db3cbfff 2181 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 2182
db3cbfff 2183 blk_mq_free_request(req);
d1ed6aa1 2184 complete(&nvmeq->delete_done);
a5768aa8
KB
2185}
2186
2a842aca 2187static void nvme_del_cq_end(struct request *req, blk_status_t error)
a5768aa8 2188{
db3cbfff 2189 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 2190
d1ed6aa1
CH
2191 if (error)
2192 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
db3cbfff
KB
2193
2194 nvme_del_queue_end(req, error);
a5768aa8
KB
2195}
2196
db3cbfff 2197static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 2198{
db3cbfff
KB
2199 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2200 struct request *req;
2201 struct nvme_command cmd;
bda4e0fb 2202
db3cbfff
KB
2203 memset(&cmd, 0, sizeof(cmd));
2204 cmd.delete_queue.opcode = opcode;
2205 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 2206
eb71f435 2207 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
2208 if (IS_ERR(req))
2209 return PTR_ERR(req);
bda4e0fb 2210
db3cbfff
KB
2211 req->timeout = ADMIN_TIMEOUT;
2212 req->end_io_data = nvmeq;
2213
d1ed6aa1 2214 init_completion(&nvmeq->delete_done);
db3cbfff
KB
2215 blk_execute_rq_nowait(q, NULL, req, false,
2216 opcode == nvme_admin_delete_cq ?
2217 nvme_del_cq_end : nvme_del_queue_end);
2218 return 0;
bda4e0fb
KB
2219}
2220
8fae268b 2221static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
a5768aa8 2222{
5271edd4 2223 int nr_queues = dev->online_queues - 1, sent = 0;
db3cbfff 2224 unsigned long timeout;
a5768aa8 2225
db3cbfff 2226 retry:
5271edd4
CH
2227 timeout = ADMIN_TIMEOUT;
2228 while (nr_queues > 0) {
2229 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2230 break;
2231 nr_queues--;
2232 sent++;
db3cbfff 2233 }
d1ed6aa1
CH
2234 while (sent) {
2235 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2236
2237 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
5271edd4
CH
2238 timeout);
2239 if (timeout == 0)
2240 return false;
d1ed6aa1 2241
d1ed6aa1 2242 sent--;
5271edd4
CH
2243 if (nr_queues)
2244 goto retry;
2245 }
2246 return true;
a5768aa8
KB
2247}
2248
5d02a5c1 2249static void nvme_dev_add(struct nvme_dev *dev)
b60503ba 2250{
2b1b7e78
JW
2251 int ret;
2252
5bae7f73 2253 if (!dev->ctrl.tagset) {
376f7ef8 2254 dev->tagset.ops = &nvme_mq_ops;
ffe7704d 2255 dev->tagset.nr_hw_queues = dev->online_queues - 1;
8fe34be1 2256 dev->tagset.nr_maps = 2; /* default + read */
ed92ad37
CH
2257 if (dev->io_queues[HCTX_TYPE_POLL])
2258 dev->tagset.nr_maps++;
ffe7704d 2259 dev->tagset.timeout = NVME_IO_TIMEOUT;
d4ec47f1 2260 dev->tagset.numa_node = dev->ctrl.numa_node;
61f3b896
CK
2261 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2262 BLK_MQ_MAX_DEPTH) - 1;
d43f1ccf 2263 dev->tagset.cmd_size = sizeof(struct nvme_iod);
ffe7704d
KB
2264 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2265 dev->tagset.driver_data = dev;
b60503ba 2266
d38e9f04
BH
2267 /*
2268 * Some Apple controllers requires tags to be unique
2269 * across admin and IO queue, so reserve the first 32
2270 * tags of the IO queue.
2271 */
2272 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2273 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2274
2b1b7e78
JW
2275 ret = blk_mq_alloc_tag_set(&dev->tagset);
2276 if (ret) {
2277 dev_warn(dev->ctrl.device,
2278 "IO queues tagset allocation failed %d\n", ret);
5d02a5c1 2279 return;
2b1b7e78 2280 }
5bae7f73 2281 dev->ctrl.tagset = &dev->tagset;
949928c1
KB
2282 } else {
2283 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2284
2285 /* Free previously allocated queues that are no longer usable */
2286 nvme_free_queues(dev, dev->online_queues);
ffe7704d 2287 }
949928c1 2288
e8fd41bb 2289 nvme_dbbuf_set(dev);
b60503ba
MW
2290}
2291
b00a726a 2292static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 2293{
b00a726a 2294 int result = -ENOMEM;
e75ec752 2295 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
2296
2297 if (pci_enable_device_mem(pdev))
2298 return result;
2299
0877cb0d 2300 pci_set_master(pdev);
0877cb0d 2301
4fe06923 2302 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
052d0efa 2303 goto disable;
0877cb0d 2304
7a67cbea 2305 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 2306 result = -ENODEV;
b00a726a 2307 goto disable;
0e53d180 2308 }
e32efbfc
JA
2309
2310 /*
a5229050
KB
2311 * Some devices and/or platforms don't advertise or work with INTx
2312 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2313 * adjust this later.
e32efbfc 2314 */
dca51e78
CH
2315 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2316 if (result < 0)
2317 return result;
e32efbfc 2318
20d0dfe6 2319 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
7a67cbea 2320
7442ddce 2321 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
b27c1e68 2322 io_queue_depth);
aa22c8e6 2323 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
20d0dfe6 2324 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
7a67cbea 2325 dev->dbs = dev->bar + 4096;
1f390c1f 2326
66341331
BH
2327 /*
2328 * Some Apple controllers require a non-standard SQE size.
2329 * Interestingly they also seem to ignore the CC:IOSQES register
2330 * so we don't bother updating it here.
2331 */
2332 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2333 dev->io_sqes = 7;
2334 else
2335 dev->io_sqes = NVME_NVM_IOSQES;
1f390c1f
SG
2336
2337 /*
2338 * Temporary fix for the Apple controller found in the MacBook8,1 and
2339 * some MacBook7,1 to avoid controller resets and data loss.
2340 */
2341 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2342 dev->q_depth = 2;
9bdcfb10
CH
2343 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2344 "set queue depth=%u to work around controller resets\n",
1f390c1f 2345 dev->q_depth);
d554b5e1
MP
2346 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2347 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
20d0dfe6 2348 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
d554b5e1
MP
2349 dev->q_depth = 64;
2350 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2351 "set queue depth=%u\n", dev->q_depth);
1f390c1f
SG
2352 }
2353
d38e9f04
BH
2354 /*
2355 * Controllers with the shared tags quirk need the IO queue to be
2356 * big enough so that we get 32 tags for the admin queue
2357 */
2358 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2359 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2360 dev->q_depth = NVME_AQ_DEPTH + 2;
2361 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2362 dev->q_depth);
2363 }
2364
2365
f65efd6d 2366 nvme_map_cmb(dev);
202021c1 2367
a0a3408e
KB
2368 pci_enable_pcie_error_reporting(pdev);
2369 pci_save_state(pdev);
0877cb0d
KB
2370 return 0;
2371
2372 disable:
0877cb0d
KB
2373 pci_disable_device(pdev);
2374 return result;
2375}
2376
2377static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
2378{
2379 if (dev->bar)
2380 iounmap(dev->bar);
a1f447b3 2381 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
2382}
2383
2384static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 2385{
e75ec752
CH
2386 struct pci_dev *pdev = to_pci_dev(dev->dev);
2387
dca51e78 2388 pci_free_irq_vectors(pdev);
0877cb0d 2389
a0a3408e
KB
2390 if (pci_is_enabled(pdev)) {
2391 pci_disable_pcie_error_reporting(pdev);
e75ec752 2392 pci_disable_device(pdev);
4d115420 2393 }
4d115420
KB
2394}
2395
a5cdb68c 2396static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 2397{
e43269e6 2398 bool dead = true, freeze = false;
302ad8cc 2399 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 2400
77bf25ea 2401 mutex_lock(&dev->shutdown_lock);
302ad8cc
KB
2402 if (pci_is_enabled(pdev)) {
2403 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2404
ebef7368 2405 if (dev->ctrl.state == NVME_CTRL_LIVE ||
e43269e6
KB
2406 dev->ctrl.state == NVME_CTRL_RESETTING) {
2407 freeze = true;
302ad8cc 2408 nvme_start_freeze(&dev->ctrl);
e43269e6 2409 }
302ad8cc
KB
2410 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2411 pdev->error_state != pci_channel_io_normal);
c9d3bf88 2412 }
c21377f8 2413
302ad8cc
KB
2414 /*
2415 * Give the controller a chance to complete all entered requests if
2416 * doing a safe shutdown.
2417 */
e43269e6
KB
2418 if (!dead && shutdown && freeze)
2419 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
9a915a5b
JW
2420
2421 nvme_stop_queues(&dev->ctrl);
87ad72a5 2422
64ee0ac0 2423 if (!dead && dev->ctrl.queue_count > 0) {
8fae268b 2424 nvme_disable_io_queues(dev);
a5cdb68c 2425 nvme_disable_admin_queue(dev, shutdown);
4d115420 2426 }
8fae268b
KB
2427 nvme_suspend_io_queues(dev);
2428 nvme_suspend_queue(&dev->queues[0]);
b00a726a 2429 nvme_pci_disable(dev);
fa46c6fb 2430 nvme_reap_pending_cqes(dev);
07836e65 2431
e1958e65
ML
2432 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2433 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
622b8b68
ML
2434 blk_mq_tagset_wait_completed_request(&dev->tagset);
2435 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
302ad8cc
KB
2436
2437 /*
2438 * The driver will not be starting up queues again if shutting down so
2439 * must flush all entered requests to their failed completion to avoid
2440 * deadlocking blk-mq hot-cpu notifier.
2441 */
c8e9e9b7 2442 if (shutdown) {
302ad8cc 2443 nvme_start_queues(&dev->ctrl);
c8e9e9b7
KB
2444 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2445 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2446 }
77bf25ea 2447 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2448}
2449
c1ac9a4b
KB
2450static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2451{
2452 if (!nvme_wait_reset(&dev->ctrl))
2453 return -EBUSY;
2454 nvme_dev_disable(dev, shutdown);
2455 return 0;
2456}
2457
091b6092
MW
2458static int nvme_setup_prp_pools(struct nvme_dev *dev)
2459{
e75ec752 2460 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
c61b82c7
CH
2461 NVME_CTRL_PAGE_SIZE,
2462 NVME_CTRL_PAGE_SIZE, 0);
091b6092
MW
2463 if (!dev->prp_page_pool)
2464 return -ENOMEM;
2465
99802a7a 2466 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2467 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2468 256, 256, 0);
2469 if (!dev->prp_small_pool) {
2470 dma_pool_destroy(dev->prp_page_pool);
2471 return -ENOMEM;
2472 }
091b6092
MW
2473 return 0;
2474}
2475
2476static void nvme_release_prp_pools(struct nvme_dev *dev)
2477{
2478 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2479 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2480}
2481
770597ec
KB
2482static void nvme_free_tagset(struct nvme_dev *dev)
2483{
2484 if (dev->tagset.tags)
2485 blk_mq_free_tag_set(&dev->tagset);
2486 dev->ctrl.tagset = NULL;
2487}
2488
1673f1f0 2489static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2490{
1673f1f0 2491 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2492
f9f38e33 2493 nvme_dbbuf_dma_free(dev);
770597ec 2494 nvme_free_tagset(dev);
1c63dc66
CH
2495 if (dev->ctrl.admin_q)
2496 blk_put_queue(dev->ctrl.admin_q);
e286bcfc 2497 free_opal_dev(dev->ctrl.opal_dev);
943e942e 2498 mempool_destroy(dev->iod_mempool);
253fd4ac
IR
2499 put_device(dev->dev);
2500 kfree(dev->queues);
5e82e952
KB
2501 kfree(dev);
2502}
2503
7c1ce408 2504static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
f58944e2 2505{
c1ac9a4b
KB
2506 /*
2507 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2508 * may be holding this pci_dev's device lock.
2509 */
2510 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
d22524a4 2511 nvme_get_ctrl(&dev->ctrl);
69d9a99c 2512 nvme_dev_disable(dev, false);
9f9cafc1 2513 nvme_kill_queues(&dev->ctrl);
03e0f3a6 2514 if (!queue_work(nvme_wq, &dev->remove_work))
f58944e2
KB
2515 nvme_put_ctrl(&dev->ctrl);
2516}
2517
fd634f41 2518static void nvme_reset_work(struct work_struct *work)
5e82e952 2519{
d86c4d8e
CH
2520 struct nvme_dev *dev =
2521 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2522 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
e71afda4 2523 int result;
5e82e952 2524
e71afda4
CK
2525 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2526 result = -ENODEV;
fd634f41 2527 goto out;
e71afda4 2528 }
5e82e952 2529
fd634f41
CH
2530 /*
2531 * If we're called to reset a live controller first shut it down before
2532 * moving on.
2533 */
b00a726a 2534 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2535 nvme_dev_disable(dev, false);
d6135c3a 2536 nvme_sync_queues(&dev->ctrl);
5e82e952 2537
5c959d73 2538 mutex_lock(&dev->shutdown_lock);
b00a726a 2539 result = nvme_pci_enable(dev);
f0b50732 2540 if (result)
4726bcf3 2541 goto out_unlock;
f0b50732 2542
01ad0990 2543 result = nvme_pci_configure_admin_queue(dev);
f0b50732 2544 if (result)
4726bcf3 2545 goto out_unlock;
f0b50732 2546
0fb59cbc
KB
2547 result = nvme_alloc_admin_tags(dev);
2548 if (result)
4726bcf3 2549 goto out_unlock;
b9afca3e 2550
943e942e
JA
2551 /*
2552 * Limit the max command size to prevent iod->sg allocations going
2553 * over a single page.
2554 */
7637de31
CH
2555 dev->ctrl.max_hw_sectors = min_t(u32,
2556 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
943e942e 2557 dev->ctrl.max_segments = NVME_MAX_SEGS;
a48bc520
CH
2558
2559 /*
2560 * Don't limit the IOMMU merged segment size.
2561 */
2562 dma_set_max_seg_size(dev->dev, 0xffffffff);
2563
5c959d73
KB
2564 mutex_unlock(&dev->shutdown_lock);
2565
2566 /*
2567 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2568 * initializing procedure here.
2569 */
2570 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2571 dev_warn(dev->ctrl.device,
2572 "failed to mark controller CONNECTING\n");
cee6c269 2573 result = -EBUSY;
5c959d73
KB
2574 goto out;
2575 }
943e942e 2576
95093350
MG
2577 /*
2578 * We do not support an SGL for metadata (yet), so we are limited to a
2579 * single integrity segment for the separate metadata pointer.
2580 */
2581 dev->ctrl.max_integrity_segments = 1;
2582
ce4541f4
CH
2583 result = nvme_init_identify(&dev->ctrl);
2584 if (result)
f58944e2 2585 goto out;
ce4541f4 2586
e286bcfc
SB
2587 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2588 if (!dev->ctrl.opal_dev)
2589 dev->ctrl.opal_dev =
2590 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2591 else if (was_suspend)
2592 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2593 } else {
2594 free_opal_dev(dev->ctrl.opal_dev);
2595 dev->ctrl.opal_dev = NULL;
4f1244c8 2596 }
a98e58e5 2597
f9f38e33
HK
2598 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2599 result = nvme_dbbuf_dma_alloc(dev);
2600 if (result)
2601 dev_warn(dev->dev,
2602 "unable to allocate dma for dbbuf\n");
2603 }
2604
9620cfba
CH
2605 if (dev->ctrl.hmpre) {
2606 result = nvme_setup_host_mem(dev);
2607 if (result < 0)
2608 goto out;
2609 }
87ad72a5 2610
f0b50732 2611 result = nvme_setup_io_queues(dev);
badc34d4 2612 if (result)
f58944e2 2613 goto out;
f0b50732 2614
2659e57b
CH
2615 /*
2616 * Keep the controller around but remove all namespaces if we don't have
2617 * any working I/O queue.
2618 */
3cf519b5 2619 if (dev->online_queues < 2) {
1b3c47c1 2620 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 2621 nvme_kill_queues(&dev->ctrl);
5bae7f73 2622 nvme_remove_namespaces(&dev->ctrl);
770597ec 2623 nvme_free_tagset(dev);
3cf519b5 2624 } else {
25646264 2625 nvme_start_queues(&dev->ctrl);
302ad8cc 2626 nvme_wait_freeze(&dev->ctrl);
5d02a5c1 2627 nvme_dev_add(dev);
302ad8cc 2628 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
2629 }
2630
2b1b7e78
JW
2631 /*
2632 * If only admin queue live, keep it to do further investigation or
2633 * recovery.
2634 */
5d02a5c1 2635 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2b1b7e78 2636 dev_warn(dev->ctrl.device,
5d02a5c1 2637 "failed to mark controller live state\n");
e71afda4 2638 result = -ENODEV;
bb8d261e
CH
2639 goto out;
2640 }
92911a55 2641
d09f2b45 2642 nvme_start_ctrl(&dev->ctrl);
3cf519b5 2643 return;
f0b50732 2644
4726bcf3
KB
2645 out_unlock:
2646 mutex_unlock(&dev->shutdown_lock);
3cf519b5 2647 out:
7c1ce408
CK
2648 if (result)
2649 dev_warn(dev->ctrl.device,
2650 "Removing after probe failure status: %d\n", result);
2651 nvme_remove_dead_ctrl(dev);
f0b50732
KB
2652}
2653
5c8809e6 2654static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2655{
5c8809e6 2656 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2657 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2658
2659 if (pci_get_drvdata(pdev))
921920ab 2660 device_release_driver(&pdev->dev);
1673f1f0 2661 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2662}
2663
1c63dc66 2664static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2665{
1c63dc66 2666 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2667 return 0;
9ca97374
TH
2668}
2669
5fd4ce1b 2670static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2671{
5fd4ce1b
CH
2672 writel(val, to_nvme_dev(ctrl)->bar + off);
2673 return 0;
2674}
4cc06521 2675
7fd8930f
CH
2676static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2677{
3a8ecc93 2678 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
7fd8930f 2679 return 0;
4cc06521
KB
2680}
2681
97c12223
KB
2682static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2683{
2684 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2685
2db24e4a 2686 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
97c12223
KB
2687}
2688
1c63dc66 2689static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2690 .name = "pcie",
e439bb12 2691 .module = THIS_MODULE,
e0596ab2
LG
2692 .flags = NVME_F_METADATA_SUPPORTED |
2693 NVME_F_PCI_P2PDMA,
1c63dc66 2694 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2695 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2696 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2697 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2698 .submit_async_event = nvme_pci_submit_async_event,
97c12223 2699 .get_address = nvme_pci_get_address,
1c63dc66 2700};
4cc06521 2701
b00a726a
KB
2702static int nvme_dev_map(struct nvme_dev *dev)
2703{
b00a726a
KB
2704 struct pci_dev *pdev = to_pci_dev(dev->dev);
2705
a1f447b3 2706 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2707 return -ENODEV;
2708
97f6ef64 2709 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
2710 goto release;
2711
9fa196e7 2712 return 0;
b00a726a 2713 release:
9fa196e7
MG
2714 pci_release_mem_regions(pdev);
2715 return -ENODEV;
b00a726a
KB
2716}
2717
8427bbc2 2718static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
ff5350a8
AL
2719{
2720 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2721 /*
2722 * Several Samsung devices seem to drop off the PCIe bus
2723 * randomly when APST is on and uses the deepest sleep state.
2724 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2725 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2726 * 950 PRO 256GB", but it seems to be restricted to two Dell
2727 * laptops.
2728 */
2729 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2730 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2731 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2732 return NVME_QUIRK_NO_DEEPEST_PS;
8427bbc2
KHF
2733 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2734 /*
2735 * Samsung SSD 960 EVO drops off the PCIe bus after system
467c77d4
JJ
2736 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2737 * within few minutes after bootup on a Coffee Lake board -
2738 * ASUS PRIME Z370-A
8427bbc2
KHF
2739 */
2740 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
467c77d4
JJ
2741 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2742 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
8427bbc2 2743 return NVME_QUIRK_NO_APST;
1fae37ac
S
2744 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2745 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2746 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2747 /*
2748 * Forcing to use host managed nvme power settings for
2749 * lowest idle power with quick resume latency on
2750 * Samsung and Toshiba SSDs based on suspend behavior
2751 * on Coffee Lake board for LENOVO C640
2752 */
2753 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2754 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2755 return NVME_QUIRK_SIMPLE_SUSPEND;
ff5350a8
AL
2756 }
2757
2758 return 0;
2759}
2760
df4f9bc4
DB
2761#ifdef CONFIG_ACPI
2762static bool nvme_acpi_storage_d3(struct pci_dev *dev)
2763{
2764 struct acpi_device *adev;
2765 struct pci_dev *root;
2766 acpi_handle handle;
2767 acpi_status status;
2768 u8 val;
2769
2770 /*
2771 * Look for _DSD property specifying that the storage device on the port
2772 * must use D3 to support deep platform power savings during
2773 * suspend-to-idle.
2774 */
2775 root = pcie_find_root_port(dev);
2776 if (!root)
2777 return false;
2778
2779 adev = ACPI_COMPANION(&root->dev);
2780 if (!adev)
2781 return false;
2782
2783 /*
2784 * The property is defined in the PXSX device for South complex ports
2785 * and in the PEGP device for North complex ports.
2786 */
2787 status = acpi_get_handle(adev->handle, "PXSX", &handle);
2788 if (ACPI_FAILURE(status)) {
2789 status = acpi_get_handle(adev->handle, "PEGP", &handle);
2790 if (ACPI_FAILURE(status))
2791 return false;
2792 }
2793
2794 if (acpi_bus_get_device(handle, &adev))
2795 return false;
2796
2797 if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
2798 &val))
2799 return false;
2800 return val == 1;
2801}
2802#else
2803static inline bool nvme_acpi_storage_d3(struct pci_dev *dev)
2804{
2805 return false;
2806}
2807#endif /* CONFIG_ACPI */
2808
18119775
KB
2809static void nvme_async_probe(void *data, async_cookie_t cookie)
2810{
2811 struct nvme_dev *dev = data;
80f513b5 2812
bd46a906 2813 flush_work(&dev->ctrl.reset_work);
18119775 2814 flush_work(&dev->ctrl.scan_work);
80f513b5 2815 nvme_put_ctrl(&dev->ctrl);
18119775
KB
2816}
2817
8d85fce7 2818static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2819{
a4aea562 2820 int node, result = -ENOMEM;
b60503ba 2821 struct nvme_dev *dev;
ff5350a8 2822 unsigned long quirks = id->driver_data;
943e942e 2823 size_t alloc_size;
b60503ba 2824
a4aea562
MB
2825 node = dev_to_node(&pdev->dev);
2826 if (node == NUMA_NO_NODE)
2fa84351 2827 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2828
2829 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2830 if (!dev)
2831 return -ENOMEM;
147b27e4 2832
2a5bcfdd
WZ
2833 dev->nr_write_queues = write_queues;
2834 dev->nr_poll_queues = poll_queues;
2835 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2836 dev->queues = kcalloc_node(dev->nr_allocated_queues,
2837 sizeof(struct nvme_queue), GFP_KERNEL, node);
b60503ba
MW
2838 if (!dev->queues)
2839 goto free;
2840
e75ec752 2841 dev->dev = get_device(&pdev->dev);
9a6b9458 2842 pci_set_drvdata(pdev, dev);
1c63dc66 2843
b00a726a
KB
2844 result = nvme_dev_map(dev);
2845 if (result)
b00c9b7a 2846 goto put_pci;
b00a726a 2847
d86c4d8e 2848 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
5c8809e6 2849 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2850 mutex_init(&dev->shutdown_lock);
b60503ba 2851
091b6092
MW
2852 result = nvme_setup_prp_pools(dev);
2853 if (result)
b00c9b7a 2854 goto unmap;
4cc06521 2855
8427bbc2 2856 quirks |= check_vendor_combination_bug(pdev);
ff5350a8 2857
df4f9bc4
DB
2858 if (!noacpi && nvme_acpi_storage_d3(pdev)) {
2859 /*
2860 * Some systems use a bios work around to ask for D3 on
2861 * platforms that support kernel managed suspend.
2862 */
2863 dev_info(&pdev->dev,
2864 "platform quirk: setting simple suspend\n");
2865 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2866 }
2867
943e942e
JA
2868 /*
2869 * Double check that our mempool alloc size will cover the biggest
2870 * command we support.
2871 */
b13c6393 2872 alloc_size = nvme_pci_iod_alloc_size();
943e942e
JA
2873 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2874
2875 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2876 mempool_kfree,
2877 (void *) alloc_size,
2878 GFP_KERNEL, node);
2879 if (!dev->iod_mempool) {
2880 result = -ENOMEM;
2881 goto release_pools;
2882 }
2883
b6e44b4c
KB
2884 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2885 quirks);
2886 if (result)
2887 goto release_mempool;
2888
1b3c47c1
SG
2889 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2890
bd46a906 2891 nvme_reset_ctrl(&dev->ctrl);
18119775 2892 async_schedule(nvme_async_probe, dev);
4caff8fc 2893
b60503ba
MW
2894 return 0;
2895
b6e44b4c
KB
2896 release_mempool:
2897 mempool_destroy(dev->iod_mempool);
0877cb0d 2898 release_pools:
091b6092 2899 nvme_release_prp_pools(dev);
b00c9b7a
CJ
2900 unmap:
2901 nvme_dev_unmap(dev);
a96d4f5c 2902 put_pci:
e75ec752 2903 put_device(dev->dev);
b60503ba
MW
2904 free:
2905 kfree(dev->queues);
b60503ba
MW
2906 kfree(dev);
2907 return result;
2908}
2909
775755ed 2910static void nvme_reset_prepare(struct pci_dev *pdev)
f0d54a54 2911{
a6739479 2912 struct nvme_dev *dev = pci_get_drvdata(pdev);
c1ac9a4b
KB
2913
2914 /*
2915 * We don't need to check the return value from waiting for the reset
2916 * state as pci_dev device lock is held, making it impossible to race
2917 * with ->remove().
2918 */
2919 nvme_disable_prepare_reset(dev, false);
2920 nvme_sync_queues(&dev->ctrl);
775755ed 2921}
f0d54a54 2922
775755ed
CH
2923static void nvme_reset_done(struct pci_dev *pdev)
2924{
f263fbb8 2925 struct nvme_dev *dev = pci_get_drvdata(pdev);
c1ac9a4b
KB
2926
2927 if (!nvme_try_sched_reset(&dev->ctrl))
2928 flush_work(&dev->ctrl.reset_work);
f0d54a54
KB
2929}
2930
09ece142
KB
2931static void nvme_shutdown(struct pci_dev *pdev)
2932{
2933 struct nvme_dev *dev = pci_get_drvdata(pdev);
4e523547 2934
c1ac9a4b 2935 nvme_disable_prepare_reset(dev, true);
09ece142
KB
2936}
2937
f58944e2
KB
2938/*
2939 * The driver's remove may be called on a device in a partially initialized
2940 * state. This function must not have any dependencies on the device state in
2941 * order to proceed.
2942 */
8d85fce7 2943static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2944{
2945 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2946
bb8d261e 2947 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
9a6b9458 2948 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2949
6db28eda 2950 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2951 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1d39e692 2952 nvme_dev_disable(dev, true);
cb4bfda6 2953 nvme_dev_remove_admin(dev);
6db28eda 2954 }
0ff9d4e1 2955
d86c4d8e 2956 flush_work(&dev->ctrl.reset_work);
d09f2b45
SG
2957 nvme_stop_ctrl(&dev->ctrl);
2958 nvme_remove_namespaces(&dev->ctrl);
a5cdb68c 2959 nvme_dev_disable(dev, true);
9fe5c59f 2960 nvme_release_cmb(dev);
87ad72a5 2961 nvme_free_host_mem(dev);
a4aea562 2962 nvme_dev_remove_admin(dev);
a1a5ef99 2963 nvme_free_queues(dev, 0);
9a6b9458 2964 nvme_release_prp_pools(dev);
b00a726a 2965 nvme_dev_unmap(dev);
726612b6 2966 nvme_uninit_ctrl(&dev->ctrl);
b60503ba
MW
2967}
2968
671a6018 2969#ifdef CONFIG_PM_SLEEP
d916b1be
KB
2970static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2971{
2972 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2973}
2974
2975static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2976{
2977 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2978}
2979
2980static int nvme_resume(struct device *dev)
2981{
2982 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2983 struct nvme_ctrl *ctrl = &ndev->ctrl;
2984
4eaefe8c 2985 if (ndev->last_ps == U32_MAX ||
d916b1be 2986 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
c1ac9a4b 2987 return nvme_try_sched_reset(&ndev->ctrl);
d916b1be
KB
2988 return 0;
2989}
2990
cd638946
KB
2991static int nvme_suspend(struct device *dev)
2992{
2993 struct pci_dev *pdev = to_pci_dev(dev);
2994 struct nvme_dev *ndev = pci_get_drvdata(pdev);
d916b1be
KB
2995 struct nvme_ctrl *ctrl = &ndev->ctrl;
2996 int ret = -EBUSY;
2997
4eaefe8c
RW
2998 ndev->last_ps = U32_MAX;
2999
d916b1be
KB
3000 /*
3001 * The platform does not remove power for a kernel managed suspend so
3002 * use host managed nvme power settings for lowest idle power if
3003 * possible. This should have quicker resume latency than a full device
3004 * shutdown. But if the firmware is involved after the suspend or the
3005 * device does not support any non-default power states, shut down the
3006 * device fully.
4eaefe8c
RW
3007 *
3008 * If ASPM is not enabled for the device, shut down the device and allow
3009 * the PCI bus layer to put it into D3 in order to take the PCIe link
3010 * down, so as to allow the platform to achieve its minimum low-power
3011 * state (which may not be possible if the link is up).
b97120b1
CH
3012 *
3013 * If a host memory buffer is enabled, shut down the device as the NVMe
3014 * specification allows the device to access the host memory buffer in
3015 * host DRAM from all power states, but hosts will fail access to DRAM
3016 * during S3.
d916b1be 3017 */
4eaefe8c 3018 if (pm_suspend_via_firmware() || !ctrl->npss ||
cb32de1b 3019 !pcie_aspm_enabled(pdev) ||
b97120b1 3020 ndev->nr_host_mem_descs ||
c1ac9a4b
KB
3021 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3022 return nvme_disable_prepare_reset(ndev, true);
d916b1be
KB
3023
3024 nvme_start_freeze(ctrl);
3025 nvme_wait_freeze(ctrl);
3026 nvme_sync_queues(ctrl);
3027
5d02a5c1 3028 if (ctrl->state != NVME_CTRL_LIVE)
d916b1be
KB
3029 goto unfreeze;
3030
d916b1be
KB
3031 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3032 if (ret < 0)
3033 goto unfreeze;
3034
7cbb5c6f
ML
3035 /*
3036 * A saved state prevents pci pm from generically controlling the
3037 * device's power. If we're using protocol specific settings, we don't
3038 * want pci interfering.
3039 */
3040 pci_save_state(pdev);
3041
d916b1be
KB
3042 ret = nvme_set_power_state(ctrl, ctrl->npss);
3043 if (ret < 0)
3044 goto unfreeze;
3045
3046 if (ret) {
7cbb5c6f
ML
3047 /* discard the saved state */
3048 pci_load_saved_state(pdev, NULL);
3049
d916b1be
KB
3050 /*
3051 * Clearing npss forces a controller reset on resume. The
05d3046f 3052 * correct value will be rediscovered then.
d916b1be 3053 */
c1ac9a4b 3054 ret = nvme_disable_prepare_reset(ndev, true);
d916b1be 3055 ctrl->npss = 0;
d916b1be 3056 }
d916b1be
KB
3057unfreeze:
3058 nvme_unfreeze(ctrl);
3059 return ret;
3060}
3061
3062static int nvme_simple_suspend(struct device *dev)
3063{
3064 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
4e523547 3065
c1ac9a4b 3066 return nvme_disable_prepare_reset(ndev, true);
cd638946
KB
3067}
3068
d916b1be 3069static int nvme_simple_resume(struct device *dev)
cd638946
KB
3070{
3071 struct pci_dev *pdev = to_pci_dev(dev);
3072 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 3073
c1ac9a4b 3074 return nvme_try_sched_reset(&ndev->ctrl);
cd638946
KB
3075}
3076
21774222 3077static const struct dev_pm_ops nvme_dev_pm_ops = {
d916b1be
KB
3078 .suspend = nvme_suspend,
3079 .resume = nvme_resume,
3080 .freeze = nvme_simple_suspend,
3081 .thaw = nvme_simple_resume,
3082 .poweroff = nvme_simple_suspend,
3083 .restore = nvme_simple_resume,
3084};
3085#endif /* CONFIG_PM_SLEEP */
b60503ba 3086
a0a3408e
KB
3087static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3088 pci_channel_state_t state)
3089{
3090 struct nvme_dev *dev = pci_get_drvdata(pdev);
3091
3092 /*
3093 * A frozen channel requires a reset. When detected, this method will
3094 * shutdown the controller to quiesce. The controller will be restarted
3095 * after the slot reset through driver's slot_reset callback.
3096 */
a0a3408e
KB
3097 switch (state) {
3098 case pci_channel_io_normal:
3099 return PCI_ERS_RESULT_CAN_RECOVER;
3100 case pci_channel_io_frozen:
d011fb31
KB
3101 dev_warn(dev->ctrl.device,
3102 "frozen state error detected, reset controller\n");
a5cdb68c 3103 nvme_dev_disable(dev, false);
a0a3408e
KB
3104 return PCI_ERS_RESULT_NEED_RESET;
3105 case pci_channel_io_perm_failure:
d011fb31
KB
3106 dev_warn(dev->ctrl.device,
3107 "failure state error detected, request disconnect\n");
a0a3408e
KB
3108 return PCI_ERS_RESULT_DISCONNECT;
3109 }
3110 return PCI_ERS_RESULT_NEED_RESET;
3111}
3112
3113static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3114{
3115 struct nvme_dev *dev = pci_get_drvdata(pdev);
3116
1b3c47c1 3117 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 3118 pci_restore_state(pdev);
d86c4d8e 3119 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
3120 return PCI_ERS_RESULT_RECOVERED;
3121}
3122
3123static void nvme_error_resume(struct pci_dev *pdev)
3124{
72cd4cc2
KB
3125 struct nvme_dev *dev = pci_get_drvdata(pdev);
3126
3127 flush_work(&dev->ctrl.reset_work);
a0a3408e
KB
3128}
3129
1d352035 3130static const struct pci_error_handlers nvme_err_handler = {
b60503ba 3131 .error_detected = nvme_error_detected,
b60503ba
MW
3132 .slot_reset = nvme_slot_reset,
3133 .resume = nvme_error_resume,
775755ed
CH
3134 .reset_prepare = nvme_reset_prepare,
3135 .reset_done = nvme_reset_done,
b60503ba
MW
3136};
3137
6eb0d698 3138static const struct pci_device_id nvme_id_table[] = {
972b13e2 3139 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
08095e70 3140 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 3141 NVME_QUIRK_DEALLOCATE_ZEROES, },
972b13e2 3142 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
99466e70 3143 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 3144 NVME_QUIRK_DEALLOCATE_ZEROES, },
972b13e2 3145 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
99466e70 3146 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 3147 NVME_QUIRK_DEALLOCATE_ZEROES, },
972b13e2 3148 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
f99cb7af
DWF
3149 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3150 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0 3151 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
9abd68ef 3152 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
6c6aa2f2 3153 NVME_QUIRK_MEDIUM_PRIO_SQ |
ce4cc313
DM
3154 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3155 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
6299358d
JD
3156 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3157 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
540c801c 3158 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
7b210e4e
CH
3159 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3160 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
5bedd3af
CH
3161 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3162 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
0302ae60
MP
3163 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3164 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
54adc010
GP
3165 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3166 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
8c97eecc
JL
3167 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3168 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
3169 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3170 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
d554b5e1
MP
3171 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3172 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3173 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3174 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
608cc4b1
CH
3175 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3176 .driver_data = NVME_QUIRK_LIGHTNVM, },
3177 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3178 .driver_data = NVME_QUIRK_LIGHTNVM, },
ea48e877
WX
3179 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3180 .driver_data = NVME_QUIRK_LIGHTNVM, },
08b903b5
MN
3181 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3182 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
f03e42c6
GC
3183 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3184 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3185 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
5611ec2b
KHF
3186 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3187 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
02ca079c
KHF
3188 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3189 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
98f7b86a
AS
3190 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3191 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
124298bd 3192 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
66341331
BH
3193 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3194 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
d38e9f04
BH
3195 NVME_QUIRK_128_BYTES_SQES |
3196 NVME_QUIRK_SHARED_TAGS },
0b85f59d
AS
3197
3198 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
b60503ba
MW
3199 { 0, }
3200};
3201MODULE_DEVICE_TABLE(pci, nvme_id_table);
3202
3203static struct pci_driver nvme_driver = {
3204 .name = "nvme",
3205 .id_table = nvme_id_table,
3206 .probe = nvme_probe,
8d85fce7 3207 .remove = nvme_remove,
09ece142 3208 .shutdown = nvme_shutdown,
d916b1be 3209#ifdef CONFIG_PM_SLEEP
cd638946
KB
3210 .driver = {
3211 .pm = &nvme_dev_pm_ops,
3212 },
d916b1be 3213#endif
74d986ab 3214 .sriov_configure = pci_sriov_configure_simple,
b60503ba
MW
3215 .err_handler = &nvme_err_handler,
3216};
3217
3218static int __init nvme_init(void)
3219{
81101540
CH
3220 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3221 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3222 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
612b7286 3223 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
17c33167 3224
9a6327d2 3225 return pci_register_driver(&nvme_driver);
b60503ba
MW
3226}
3227
3228static void __exit nvme_exit(void)
3229{
3230 pci_unregister_driver(&nvme_driver);
03e0f3a6 3231 flush_workqueue(nvme_wq);
b60503ba
MW
3232}
3233
3234MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3235MODULE_LICENSE("GPL");
c78b4713 3236MODULE_VERSION("1.0");
b60503ba
MW
3237module_init(nvme_init);
3238module_exit(nvme_exit);