]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/nvme/host/pci.c
UBUNTU: SAUCE: nvme: improve performance for virtual NVMe devices
[mirror_ubuntu-zesty-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
42f61420 20#include <linux/cpu.h>
fd63e9ce 21#include <linux/delay.h>
b60503ba
MW
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
4cc09e2d 25#include <linux/hdreg.h>
5aff9382 26#include <linux/idr.h>
b60503ba
MW
27#include <linux/init.h>
28#include <linux/interrupt.h>
29#include <linux/io.h>
30#include <linux/kdev_t.h>
31#include <linux/kernel.h>
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
77bf25ea 35#include <linux/mutex.h>
b60503ba 36#include <linux/pci.h>
be7b6275 37#include <linux/poison.h>
c3bfe717 38#include <linux/ptrace.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
e1e5e564 41#include <linux/t10-pi.h>
2d55cd5f 42#include <linux/timer.h>
b60503ba 43#include <linux/types.h>
2f8e2c87 44#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 45#include <asm/unaligned.h>
797a796a 46
f11bb3e2
CH
47#include "nvme.h"
48
9d43cf64 49#define NVME_Q_DEPTH 1024
d31af0a3 50#define NVME_AQ_DEPTH 256
b60503ba
MW
51#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
52#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 53
12e6f749
RN
54/* Google Vendor ID is not in include/linux/pci_ids.h */
55#define PCI_VENDOR_ID_GOOGLE 0x1AE0
56
adf68f21
CH
57/*
58 * We handle AEN commands ourselves and don't even let the
59 * block layer know about them.
60 */
f866fc42 61#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 62
58ffacb5
MW
63static int use_threaded_interrupts;
64module_param(use_threaded_interrupts, int, 0);
65
8ffaadf7
JD
66static bool use_cmb_sqes = true;
67module_param(use_cmb_sqes, bool, 0644);
68MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
69
9a6b9458 70static struct workqueue_struct *nvme_workq;
1fa6aead 71
1c63dc66
CH
72struct nvme_dev;
73struct nvme_queue;
b3fffdef 74
4cc06521 75static int nvme_reset(struct nvme_dev *dev);
a0fa9647 76static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 77static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 78
1c63dc66
CH
79/*
80 * Represents an NVM Express device. Each nvme_dev is a PCI function.
81 */
82struct nvme_dev {
1c63dc66
CH
83 struct nvme_queue **queues;
84 struct blk_mq_tag_set tagset;
85 struct blk_mq_tag_set admin_tagset;
86 u32 __iomem *dbs;
87 struct device *dev;
88 struct dma_pool *prp_page_pool;
89 struct dma_pool *prp_small_pool;
90 unsigned queue_count;
91 unsigned online_queues;
92 unsigned max_qid;
93 int q_depth;
94 u32 db_stride;
1c63dc66 95 void __iomem *bar;
1c63dc66 96 struct work_struct reset_work;
5c8809e6 97 struct work_struct remove_work;
2d55cd5f 98 struct timer_list watchdog_timer;
77bf25ea 99 struct mutex shutdown_lock;
1c63dc66 100 bool subsystem;
1c63dc66
CH
101 void __iomem *cmb;
102 dma_addr_t cmb_dma_addr;
103 u64 cmb_size;
104 u32 cmbsz;
202021c1 105 u32 cmbloc;
1c63dc66 106 struct nvme_ctrl ctrl;
db3cbfff 107 struct completion ioq_wait;
12e6f749
RN
108#ifdef CONFIG_NVME_VENDOR_EXT_GOOGLE
109 u32 *db_mem;
110 dma_addr_t doorbell;
111 u32 *ei_mem;
112 dma_addr_t eventidx;
113#endif
4d115420 114};
1fa6aead 115
1c63dc66
CH
116static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
117{
118 return container_of(ctrl, struct nvme_dev, ctrl);
119}
120
b60503ba
MW
121/*
122 * An NVM Express queue. Each device has at least two (one for admin
123 * commands and one for I/O commands).
124 */
125struct nvme_queue {
126 struct device *q_dmadev;
091b6092 127 struct nvme_dev *dev;
3193f07b 128 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
129 spinlock_t q_lock;
130 struct nvme_command *sq_cmds;
8ffaadf7 131 struct nvme_command __iomem *sq_cmds_io;
b60503ba 132 volatile struct nvme_completion *cqes;
42483228 133 struct blk_mq_tags **tags;
b60503ba
MW
134 dma_addr_t sq_dma_addr;
135 dma_addr_t cq_dma_addr;
b60503ba
MW
136 u32 __iomem *q_db;
137 u16 q_depth;
6222d172 138 s16 cq_vector;
b60503ba
MW
139 u16 sq_tail;
140 u16 cq_head;
c30341dc 141 u16 qid;
e9539f47
MW
142 u8 cq_phase;
143 u8 cqe_seen;
12e6f749
RN
144#ifdef CONFIG_NVME_VENDOR_EXT_GOOGLE
145 u32 *sq_doorbell_addr;
146 u32 *sq_eventidx_addr;
147 u32 *cq_doorbell_addr;
148 u32 *cq_eventidx_addr;
149#endif
b60503ba
MW
150};
151
71bd150c
CH
152/*
153 * The nvme_iod describes the data in an I/O, including the list of PRP
154 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 155 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
156 * allocated to store the PRP list.
157 */
158struct nvme_iod {
d49187e9 159 struct nvme_request req;
f4800d6d
CH
160 struct nvme_queue *nvmeq;
161 int aborted;
71bd150c 162 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
163 int nents; /* Used in scatterlist */
164 int length; /* Of data, in bytes */
165 dma_addr_t first_dma;
bf684057 166 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
167 struct scatterlist *sg;
168 struct scatterlist inline_sg[0];
b60503ba
MW
169};
170
171/*
172 * Check we didin't inadvertently grow the command struct
173 */
174static inline void _nvme_check_size(void)
175{
176 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
177 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
178 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
179 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
180 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 181 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 182 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
183 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
185 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
186 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 187 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
12e6f749
RN
188#ifdef CONFIG_NVME_VENDOR_EXT_GOOGLE
189 BUILD_BUG_ON(sizeof(struct nvme_doorbell_memory) != 64);
190#endif
b60503ba
MW
191}
192
ac3dd5bd
JA
193/*
194 * Max size of iod being embedded in the request payload
195 */
196#define NVME_INT_PAGES 2
5fd4ce1b 197#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
198
199/*
200 * Will slightly overestimate the number of pages needed. This is OK
201 * as it only leads to a small amount of wasted memory for the lifetime of
202 * the I/O.
203 */
204static int nvme_npages(unsigned size, struct nvme_dev *dev)
205{
5fd4ce1b
CH
206 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
207 dev->ctrl.page_size);
ac3dd5bd
JA
208 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
209}
210
f4800d6d
CH
211static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
212 unsigned int size, unsigned int nseg)
ac3dd5bd 213{
f4800d6d
CH
214 return sizeof(__le64 *) * nvme_npages(size, dev) +
215 sizeof(struct scatterlist) * nseg;
216}
ac3dd5bd 217
f4800d6d
CH
218static unsigned int nvme_cmd_size(struct nvme_dev *dev)
219{
220 return sizeof(struct nvme_iod) +
221 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
222}
223
dca51e78
CH
224static int nvmeq_irq(struct nvme_queue *nvmeq)
225{
226 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
227}
228
a4aea562
MB
229static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
230 unsigned int hctx_idx)
e85248e5 231{
a4aea562
MB
232 struct nvme_dev *dev = data;
233 struct nvme_queue *nvmeq = dev->queues[0];
234
42483228
KB
235 WARN_ON(hctx_idx != 0);
236 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
237 WARN_ON(nvmeq->tags);
238
a4aea562 239 hctx->driver_data = nvmeq;
42483228 240 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 241 return 0;
e85248e5
MW
242}
243
4af0e21c
KB
244static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
245{
246 struct nvme_queue *nvmeq = hctx->driver_data;
247
248 nvmeq->tags = NULL;
249}
250
a4aea562
MB
251static int nvme_admin_init_request(void *data, struct request *req,
252 unsigned int hctx_idx, unsigned int rq_idx,
253 unsigned int numa_node)
22404274 254{
a4aea562 255 struct nvme_dev *dev = data;
f4800d6d 256 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
257 struct nvme_queue *nvmeq = dev->queues[0];
258
259 BUG_ON(!nvmeq);
f4800d6d 260 iod->nvmeq = nvmeq;
a4aea562 261 return 0;
22404274
KB
262}
263
a4aea562
MB
264static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
265 unsigned int hctx_idx)
b60503ba 266{
a4aea562 267 struct nvme_dev *dev = data;
42483228 268 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 269
42483228
KB
270 if (!nvmeq->tags)
271 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 272
42483228 273 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
274 hctx->driver_data = nvmeq;
275 return 0;
b60503ba
MW
276}
277
a4aea562
MB
278static int nvme_init_request(void *data, struct request *req,
279 unsigned int hctx_idx, unsigned int rq_idx,
280 unsigned int numa_node)
b60503ba 281{
a4aea562 282 struct nvme_dev *dev = data;
f4800d6d 283 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
284 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
285
286 BUG_ON(!nvmeq);
f4800d6d 287 iod->nvmeq = nvmeq;
a4aea562
MB
288 return 0;
289}
290
dca51e78
CH
291static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
292{
293 struct nvme_dev *dev = set->driver_data;
294
295 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
296}
297
12e6f749
RN
298#ifdef CONFIG_NVME_VENDOR_EXT_GOOGLE
299static int nvme_vendor_memory_size(struct nvme_dev *dev)
300{
301 return ((num_possible_cpus() + 1) * 8 * dev->db_stride);
302}
303
304static int nvme_set_doorbell_memory(struct nvme_dev *dev)
305{
306 struct nvme_command c;
307
308 memset(&c, 0, sizeof(c));
309 c.doorbell_memory.opcode = nvme_admin_doorbell_memory;
310 c.doorbell_memory.prp1 = cpu_to_le64(dev->doorbell);
311 c.doorbell_memory.prp2 = cpu_to_le64(dev->eventidx);
312
313 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
314}
315
316static inline int nvme_ext_need_event(u16 event_idx, u16 new_idx, u16 old)
317{
318 /* Borrowed from vring_need_event */
319 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
320}
321
322static void nvme_ext_write_doorbell(u16 value, u32 __iomem* q_db,
323 u32* db_addr, volatile u32* event_idx)
324{
325 u16 old_value;
326 if (!db_addr)
327 goto ring_doorbell;
328
329 old_value = *db_addr;
330 *db_addr = value;
331
332 rmb();
333 if (!nvme_ext_need_event(*event_idx, value, old_value))
334 goto no_doorbell;
335
336ring_doorbell:
337 writel(value, q_db);
338no_doorbell:
339 return;
340}
341#endif
342
b60503ba 343/**
adf68f21 344 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
345 * @nvmeq: The queue to use
346 * @cmd: The command to send
347 *
348 * Safe to use from interrupt context
349 */
e3f879bf
SB
350static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
351 struct nvme_command *cmd)
b60503ba 352{
a4aea562
MB
353 u16 tail = nvmeq->sq_tail;
354
8ffaadf7
JD
355 if (nvmeq->sq_cmds_io)
356 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
357 else
358 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
359
12e6f749
RN
360#ifdef CONFIG_NVME_VENDOR_EXT_GOOGLE
361 if (nvmeq->sq_doorbell_addr)
362 wmb();
363#endif
364
b60503ba
MW
365 if (++tail == nvmeq->q_depth)
366 tail = 0;
12e6f749
RN
367#ifdef CONFIG_NVME_VENDOR_EXT_GOOGLE
368 nvme_ext_write_doorbell(tail, nvmeq->q_db,
369 nvmeq->sq_doorbell_addr, nvmeq->sq_eventidx_addr);
370#else
7547881d 371 writel(tail, nvmeq->q_db);
12e6f749 372#endif
b60503ba 373 nvmeq->sq_tail = tail;
b60503ba
MW
374}
375
f4800d6d 376static __le64 **iod_list(struct request *req)
b60503ba 377{
f4800d6d 378 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
f9d03f96 379 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
380}
381
b131c61d 382static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 383{
f4800d6d 384 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 385 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 386 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 387
f4800d6d
CH
388 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
389 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
390 if (!iod->sg)
391 return BLK_MQ_RQ_QUEUE_BUSY;
392 } else {
393 iod->sg = iod->inline_sg;
ac3dd5bd
JA
394 }
395
f4800d6d
CH
396 iod->aborted = 0;
397 iod->npages = -1;
398 iod->nents = 0;
399 iod->length = size;
f80ec966 400
e8064021 401 if (!(rq->rq_flags & RQF_DONTPREP)) {
f80ec966 402 rq->retries = 0;
e8064021 403 rq->rq_flags |= RQF_DONTPREP;
f80ec966 404 }
bac0000a 405 return BLK_MQ_RQ_QUEUE_OK;
ac3dd5bd
JA
406}
407
f4800d6d 408static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 409{
f4800d6d 410 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 411 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 412 int i;
f4800d6d 413 __le64 **list = iod_list(req);
eca18b23
MW
414 dma_addr_t prp_dma = iod->first_dma;
415
416 if (iod->npages == 0)
417 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
418 for (i = 0; i < iod->npages; i++) {
419 __le64 *prp_list = list[i];
420 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
421 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
422 prp_dma = next_prp_dma;
423 }
ac3dd5bd 424
f4800d6d
CH
425 if (iod->sg != iod->inline_sg)
426 kfree(iod->sg);
b4ff9c8d
KB
427}
428
52b68d7e 429#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
430static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
431{
432 if (be32_to_cpu(pi->ref_tag) == v)
433 pi->ref_tag = cpu_to_be32(p);
434}
435
436static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
437{
438 if (be32_to_cpu(pi->ref_tag) == p)
439 pi->ref_tag = cpu_to_be32(v);
440}
441
442/**
443 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
444 *
445 * The virtual start sector is the one that was originally submitted by the
446 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
447 * start sector may be different. Remap protection information to match the
448 * physical LBA on writes, and back to the original seed on reads.
449 *
450 * Type 0 and 3 do not have a ref tag, so no remapping required.
451 */
452static void nvme_dif_remap(struct request *req,
453 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
454{
455 struct nvme_ns *ns = req->rq_disk->private_data;
456 struct bio_integrity_payload *bip;
457 struct t10_pi_tuple *pi;
458 void *p, *pmap;
459 u32 i, nlb, ts, phys, virt;
460
461 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
462 return;
463
464 bip = bio_integrity(req->bio);
465 if (!bip)
466 return;
467
468 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
469
470 p = pmap;
471 virt = bip_get_seed(bip);
472 phys = nvme_block_nr(ns, blk_rq_pos(req));
473 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 474 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
475
476 for (i = 0; i < nlb; i++, virt++, phys++) {
477 pi = (struct t10_pi_tuple *)p;
478 dif_swap(phys, virt, pi);
479 p += ts;
480 }
481 kunmap_atomic(pmap);
482}
52b68d7e
KB
483#else /* CONFIG_BLK_DEV_INTEGRITY */
484static void nvme_dif_remap(struct request *req,
485 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
486{
487}
488static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
489{
490}
491static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
492{
493}
52b68d7e
KB
494#endif
495
b131c61d 496static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
ff22b54f 497{
f4800d6d 498 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 499 struct dma_pool *pool;
b131c61d 500 int length = blk_rq_payload_bytes(req);
eca18b23 501 struct scatterlist *sg = iod->sg;
ff22b54f
MW
502 int dma_len = sg_dma_len(sg);
503 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 504 u32 page_size = dev->ctrl.page_size;
f137e0f1 505 int offset = dma_addr & (page_size - 1);
e025344c 506 __le64 *prp_list;
f4800d6d 507 __le64 **list = iod_list(req);
e025344c 508 dma_addr_t prp_dma;
eca18b23 509 int nprps, i;
ff22b54f 510
1d090624 511 length -= (page_size - offset);
ff22b54f 512 if (length <= 0)
69d2b571 513 return true;
ff22b54f 514
1d090624 515 dma_len -= (page_size - offset);
ff22b54f 516 if (dma_len) {
1d090624 517 dma_addr += (page_size - offset);
ff22b54f
MW
518 } else {
519 sg = sg_next(sg);
520 dma_addr = sg_dma_address(sg);
521 dma_len = sg_dma_len(sg);
522 }
523
1d090624 524 if (length <= page_size) {
edd10d33 525 iod->first_dma = dma_addr;
69d2b571 526 return true;
e025344c
SMM
527 }
528
1d090624 529 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
530 if (nprps <= (256 / 8)) {
531 pool = dev->prp_small_pool;
eca18b23 532 iod->npages = 0;
99802a7a
MW
533 } else {
534 pool = dev->prp_page_pool;
eca18b23 535 iod->npages = 1;
99802a7a
MW
536 }
537
69d2b571 538 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 539 if (!prp_list) {
edd10d33 540 iod->first_dma = dma_addr;
eca18b23 541 iod->npages = -1;
69d2b571 542 return false;
b77954cb 543 }
eca18b23
MW
544 list[0] = prp_list;
545 iod->first_dma = prp_dma;
e025344c
SMM
546 i = 0;
547 for (;;) {
1d090624 548 if (i == page_size >> 3) {
e025344c 549 __le64 *old_prp_list = prp_list;
69d2b571 550 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 551 if (!prp_list)
69d2b571 552 return false;
eca18b23 553 list[iod->npages++] = prp_list;
7523d834
MW
554 prp_list[0] = old_prp_list[i - 1];
555 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
556 i = 1;
e025344c
SMM
557 }
558 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
559 dma_len -= page_size;
560 dma_addr += page_size;
561 length -= page_size;
e025344c
SMM
562 if (length <= 0)
563 break;
564 if (dma_len > 0)
565 continue;
566 BUG_ON(dma_len < 0);
567 sg = sg_next(sg);
568 dma_addr = sg_dma_address(sg);
569 dma_len = sg_dma_len(sg);
ff22b54f
MW
570 }
571
69d2b571 572 return true;
ff22b54f
MW
573}
574
f4800d6d 575static int nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 576 struct nvme_command *cmnd)
d29ec824 577{
f4800d6d 578 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
579 struct request_queue *q = req->q;
580 enum dma_data_direction dma_dir = rq_data_dir(req) ?
581 DMA_TO_DEVICE : DMA_FROM_DEVICE;
582 int ret = BLK_MQ_RQ_QUEUE_ERROR;
d29ec824 583
f9d03f96 584 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
585 iod->nents = blk_rq_map_sg(q, req, iod->sg);
586 if (!iod->nents)
587 goto out;
d29ec824 588
ba1ca37e 589 ret = BLK_MQ_RQ_QUEUE_BUSY;
2b6b535d
MFO
590 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
591 DMA_ATTR_NO_WARN))
ba1ca37e 592 goto out;
d29ec824 593
b131c61d 594 if (!nvme_setup_prps(dev, req))
ba1ca37e 595 goto out_unmap;
0e5e4f0e 596
ba1ca37e
CH
597 ret = BLK_MQ_RQ_QUEUE_ERROR;
598 if (blk_integrity_rq(req)) {
599 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
600 goto out_unmap;
0e5e4f0e 601
bf684057
CH
602 sg_init_table(&iod->meta_sg, 1);
603 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 604 goto out_unmap;
0e5e4f0e 605
ba1ca37e
CH
606 if (rq_data_dir(req))
607 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 608
bf684057 609 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 610 goto out_unmap;
d29ec824 611 }
00df5cb4 612
eb793e2c
CH
613 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
614 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 615 if (blk_integrity_rq(req))
bf684057 616 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e 617 return BLK_MQ_RQ_QUEUE_OK;
00df5cb4 618
ba1ca37e
CH
619out_unmap:
620 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
621out:
622 return ret;
00df5cb4
MW
623}
624
f4800d6d 625static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 626{
f4800d6d 627 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
628 enum dma_data_direction dma_dir = rq_data_dir(req) ?
629 DMA_TO_DEVICE : DMA_FROM_DEVICE;
630
631 if (iod->nents) {
632 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
633 if (blk_integrity_rq(req)) {
634 if (!rq_data_dir(req))
635 nvme_dif_remap(req, nvme_dif_complete);
bf684057 636 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 637 }
e19b127f 638 }
e1e5e564 639
f9d03f96 640 nvme_cleanup_cmd(req);
f4800d6d 641 nvme_free_iod(dev, req);
d4f6c3ab 642}
b60503ba 643
d29ec824
CH
644/*
645 * NOTE: ns is NULL when called on the admin queue.
646 */
a4aea562
MB
647static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
648 const struct blk_mq_queue_data *bd)
edd10d33 649{
a4aea562
MB
650 struct nvme_ns *ns = hctx->queue->queuedata;
651 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 652 struct nvme_dev *dev = nvmeq->dev;
a4aea562 653 struct request *req = bd->rq;
ba1ca37e
CH
654 struct nvme_command cmnd;
655 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 656
e1e5e564
KB
657 /*
658 * If formated with metadata, require the block layer provide a buffer
659 * unless this namespace is formated such that the metadata can be
660 * stripped/generated by the controller with PRACT=1.
661 */
d29ec824 662 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
663 if (!(ns->pi_type && ns->ms == 8) &&
664 req->cmd_type != REQ_TYPE_DRV_PRIV) {
eee417b0 665 blk_mq_end_request(req, -EFAULT);
e1e5e564
KB
666 return BLK_MQ_RQ_QUEUE_OK;
667 }
668 }
669
f9d03f96 670 ret = nvme_setup_cmd(ns, req, &cmnd);
bac0000a 671 if (ret != BLK_MQ_RQ_QUEUE_OK)
f4800d6d 672 return ret;
a4aea562 673
b131c61d 674 ret = nvme_init_iod(req, dev);
bac0000a 675 if (ret != BLK_MQ_RQ_QUEUE_OK)
f9d03f96 676 goto out_free_cmd;
a4aea562 677
f9d03f96 678 if (blk_rq_nr_phys_segments(req))
b131c61d 679 ret = nvme_map_data(dev, req, &cmnd);
a4aea562 680
bac0000a 681 if (ret != BLK_MQ_RQ_QUEUE_OK)
f9d03f96 682 goto out_cleanup_iod;
a4aea562 683
aae239e1 684 blk_mq_start_request(req);
a4aea562 685
ba1ca37e 686 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 687 if (unlikely(nvmeq->cq_vector < 0)) {
69d9a99c
KB
688 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
689 ret = BLK_MQ_RQ_QUEUE_BUSY;
690 else
691 ret = BLK_MQ_RQ_QUEUE_ERROR;
ae1fba20 692 spin_unlock_irq(&nvmeq->q_lock);
f9d03f96 693 goto out_cleanup_iod;
ae1fba20 694 }
ba1ca37e 695 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
696 nvme_process_cq(nvmeq);
697 spin_unlock_irq(&nvmeq->q_lock);
698 return BLK_MQ_RQ_QUEUE_OK;
f9d03f96 699out_cleanup_iod:
f4800d6d 700 nvme_free_iod(dev, req);
f9d03f96
CH
701out_free_cmd:
702 nvme_cleanup_cmd(req);
ba1ca37e 703 return ret;
b60503ba 704}
e1e5e564 705
eee417b0
CH
706static void nvme_complete_rq(struct request *req)
707{
f4800d6d
CH
708 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
709 struct nvme_dev *dev = iod->nvmeq->dev;
eee417b0 710 int error = 0;
e1e5e564 711
f4800d6d 712 nvme_unmap_data(dev, req);
e1e5e564 713
eee417b0
CH
714 if (unlikely(req->errors)) {
715 if (nvme_req_needs_retry(req, req->errors)) {
f80ec966 716 req->retries++;
eee417b0
CH
717 nvme_requeue_req(req);
718 return;
e1e5e564 719 }
1974b1ae 720
eee417b0
CH
721 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
722 error = req->errors;
723 else
724 error = nvme_error_status(req->errors);
725 }
a4aea562 726
f4800d6d 727 if (unlikely(iod->aborted)) {
1b3c47c1 728 dev_warn(dev->ctrl.device,
eee417b0
CH
729 "completing aborted command with status: %04x\n",
730 req->errors);
731 }
a4aea562 732
eee417b0 733 blk_mq_end_request(req, error);
b60503ba
MW
734}
735
d783e0bd
MR
736/* We read the CQE phase first to check if the rest of the entry is valid */
737static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
738 u16 phase)
739{
740 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
741}
742
a0fa9647 743static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 744{
82123460 745 u16 head, phase;
b60503ba 746
b60503ba 747 head = nvmeq->cq_head;
82123460 748 phase = nvmeq->cq_phase;
b60503ba 749
d783e0bd 750 while (nvme_cqe_valid(nvmeq, head, phase)) {
b60503ba 751 struct nvme_completion cqe = nvmeq->cqes[head];
eee417b0 752 struct request *req;
adf68f21 753
12e6f749
RN
754#ifdef CONFIG_NVME_VENDOR_EXT_GOOGLE
755 if (to_pci_dev(nvmeq->dev->dev)->vendor == PCI_VENDOR_ID_GOOGLE)
756 rmb();
757#endif
b60503ba
MW
758 if (++head == nvmeq->q_depth) {
759 head = 0;
82123460 760 phase = !phase;
b60503ba 761 }
adf68f21 762
a0fa9647
JA
763 if (tag && *tag == cqe.command_id)
764 *tag = -1;
adf68f21 765
aae239e1 766 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
1b3c47c1 767 dev_warn(nvmeq->dev->ctrl.device,
aae239e1
CH
768 "invalid id %d completed on queue %d\n",
769 cqe.command_id, le16_to_cpu(cqe.sq_id));
770 continue;
771 }
772
adf68f21
CH
773 /*
774 * AEN requests are special as they don't time out and can
775 * survive any kind of queue freeze and often don't respond to
776 * aborts. We don't even bother to allocate a struct request
777 * for them but rather special case them here.
778 */
779 if (unlikely(nvmeq->qid == 0 &&
780 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
7bf58533
CH
781 nvme_complete_async_event(&nvmeq->dev->ctrl,
782 cqe.status, &cqe.result);
adf68f21
CH
783 continue;
784 }
785
eee417b0 786 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
d49187e9 787 nvme_req(req)->result = cqe.result;
d783e0bd 788 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
b60503ba
MW
789 }
790
82123460 791 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 792 return;
b60503ba 793
604e8c8d 794 if (likely(nvmeq->cq_vector >= 0))
12e6f749
RN
795#ifdef CONFIG_NVME_VENDOR_EXT_GOOGLE
796 nvme_ext_write_doorbell(head,
797 nvmeq->q_db + nvmeq->dev->db_stride,
798 nvmeq->cq_doorbell_addr,
799 nvmeq->cq_eventidx_addr);
800#else
604e8c8d 801 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
12e6f749 802#endif
b60503ba 803 nvmeq->cq_head = head;
82123460 804 nvmeq->cq_phase = phase;
b60503ba 805
e9539f47 806 nvmeq->cqe_seen = 1;
a0fa9647
JA
807}
808
809static void nvme_process_cq(struct nvme_queue *nvmeq)
810{
811 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
812}
813
814static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
815{
816 irqreturn_t result;
817 struct nvme_queue *nvmeq = data;
818 spin_lock(&nvmeq->q_lock);
e9539f47
MW
819 nvme_process_cq(nvmeq);
820 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
821 nvmeq->cqe_seen = 0;
58ffacb5
MW
822 spin_unlock(&nvmeq->q_lock);
823 return result;
824}
825
826static irqreturn_t nvme_irq_check(int irq, void *data)
827{
828 struct nvme_queue *nvmeq = data;
d783e0bd
MR
829 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
830 return IRQ_WAKE_THREAD;
831 return IRQ_NONE;
58ffacb5
MW
832}
833
a0fa9647
JA
834static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
835{
836 struct nvme_queue *nvmeq = hctx->driver_data;
837
d783e0bd 838 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
a0fa9647
JA
839 spin_lock_irq(&nvmeq->q_lock);
840 __nvme_process_cq(nvmeq, &tag);
841 spin_unlock_irq(&nvmeq->q_lock);
842
843 if (tag == -1)
844 return 1;
845 }
846
847 return 0;
848}
849
f866fc42 850static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 851{
f866fc42 852 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 853 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 854 struct nvme_command c;
b60503ba 855
a4aea562
MB
856 memset(&c, 0, sizeof(c));
857 c.common.opcode = nvme_admin_async_event;
f866fc42 858 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 859
9396dec9 860 spin_lock_irq(&nvmeq->q_lock);
f866fc42 861 __nvme_submit_cmd(nvmeq, &c);
9396dec9 862 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
863}
864
b60503ba 865static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 866{
b60503ba
MW
867 struct nvme_command c;
868
869 memset(&c, 0, sizeof(c));
870 c.delete_queue.opcode = opcode;
871 c.delete_queue.qid = cpu_to_le16(id);
872
1c63dc66 873 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
874}
875
b60503ba
MW
876static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
877 struct nvme_queue *nvmeq)
878{
b60503ba
MW
879 struct nvme_command c;
880 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
881
d29ec824
CH
882 /*
883 * Note: we (ab)use the fact the the prp fields survive if no data
884 * is attached to the request.
885 */
b60503ba
MW
886 memset(&c, 0, sizeof(c));
887 c.create_cq.opcode = nvme_admin_create_cq;
888 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
889 c.create_cq.cqid = cpu_to_le16(qid);
890 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
891 c.create_cq.cq_flags = cpu_to_le16(flags);
892 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
893
1c63dc66 894 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
895}
896
897static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
898 struct nvme_queue *nvmeq)
899{
b60503ba
MW
900 struct nvme_command c;
901 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
902
d29ec824
CH
903 /*
904 * Note: we (ab)use the fact the the prp fields survive if no data
905 * is attached to the request.
906 */
b60503ba
MW
907 memset(&c, 0, sizeof(c));
908 c.create_sq.opcode = nvme_admin_create_sq;
909 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
910 c.create_sq.sqid = cpu_to_le16(qid);
911 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
912 c.create_sq.sq_flags = cpu_to_le16(flags);
913 c.create_sq.cqid = cpu_to_le16(qid);
914
1c63dc66 915 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
916}
917
918static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
919{
920 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
921}
922
923static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
924{
925 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
926}
927
e7a2a87d 928static void abort_endio(struct request *req, int error)
bc5fc7e4 929{
f4800d6d
CH
930 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
931 struct nvme_queue *nvmeq = iod->nvmeq;
e7a2a87d 932 u16 status = req->errors;
e44ac588 933
1cb3cce5 934 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
e7a2a87d 935 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 936 blk_mq_free_request(req);
bc5fc7e4
MW
937}
938
31c7c7d2 939static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 940{
f4800d6d
CH
941 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
942 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 943 struct nvme_dev *dev = nvmeq->dev;
a4aea562 944 struct request *abort_req;
a4aea562 945 struct nvme_command cmd;
c30341dc 946
31c7c7d2 947 /*
fd634f41
CH
948 * Shutdown immediately if controller times out while starting. The
949 * reset work will see the pci device disabled when it gets the forced
950 * cancellation error. All outstanding requests are completed on
951 * shutdown, so we return BLK_EH_HANDLED.
952 */
bb8d261e 953 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 954 dev_warn(dev->ctrl.device,
fd634f41
CH
955 "I/O %d QID %d timeout, disable controller\n",
956 req->tag, nvmeq->qid);
a5cdb68c 957 nvme_dev_disable(dev, false);
fd634f41
CH
958 req->errors = NVME_SC_CANCELLED;
959 return BLK_EH_HANDLED;
c30341dc
KB
960 }
961
fd634f41
CH
962 /*
963 * Shutdown the controller immediately and schedule a reset if the
964 * command was already aborted once before and still hasn't been
965 * returned to the driver, or if this is the admin queue.
31c7c7d2 966 */
f4800d6d 967 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 968 dev_warn(dev->ctrl.device,
e1569a16
KB
969 "I/O %d QID %d timeout, reset controller\n",
970 req->tag, nvmeq->qid);
a5cdb68c 971 nvme_dev_disable(dev, false);
c5f6ce97 972 nvme_reset(dev);
c30341dc 973
e1569a16
KB
974 /*
975 * Mark the request as handled, since the inline shutdown
976 * forces all outstanding requests to complete.
977 */
978 req->errors = NVME_SC_CANCELLED;
979 return BLK_EH_HANDLED;
c30341dc 980 }
c30341dc 981
f4800d6d 982 iod->aborted = 1;
c30341dc 983
e7a2a87d 984 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 985 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 986 return BLK_EH_RESET_TIMER;
6bf25d16 987 }
a4aea562 988
c30341dc
KB
989 memset(&cmd, 0, sizeof(cmd));
990 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 991 cmd.abort.cid = req->tag;
c30341dc 992 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 993
1b3c47c1
SG
994 dev_warn(nvmeq->dev->ctrl.device,
995 "I/O %d QID %d timeout, aborting\n",
996 req->tag, nvmeq->qid);
e7a2a87d
CH
997
998 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 999 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
1000 if (IS_ERR(abort_req)) {
1001 atomic_inc(&dev->ctrl.abort_limit);
1002 return BLK_EH_RESET_TIMER;
1003 }
1004
1005 abort_req->timeout = ADMIN_TIMEOUT;
1006 abort_req->end_io_data = NULL;
1007 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1008
31c7c7d2
CH
1009 /*
1010 * The aborted req will be completed on receiving the abort req.
1011 * We enable the timer again. If hit twice, it'll cause a device reset,
1012 * as the device then is in a faulty state.
1013 */
1014 return BLK_EH_RESET_TIMER;
c30341dc
KB
1015}
1016
a4aea562
MB
1017static void nvme_free_queue(struct nvme_queue *nvmeq)
1018{
9e866774
MW
1019 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1020 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1021 if (nvmeq->sq_cmds)
1022 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1023 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1024 kfree(nvmeq);
1025}
1026
a1a5ef99 1027static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1028{
1029 int i;
1030
a1a5ef99 1031 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1032 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1033 dev->queue_count--;
a4aea562 1034 dev->queues[i] = NULL;
f435c282 1035 nvme_free_queue(nvmeq);
121c7ad4 1036 }
22404274
KB
1037}
1038
4d115420
KB
1039/**
1040 * nvme_suspend_queue - put queue into suspended state
1041 * @nvmeq - queue to suspend
4d115420
KB
1042 */
1043static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1044{
2b25d981 1045 int vector;
b60503ba 1046
a09115b2 1047 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1048 if (nvmeq->cq_vector == -1) {
1049 spin_unlock_irq(&nvmeq->q_lock);
1050 return 1;
1051 }
dca51e78 1052 vector = nvmeq_irq(nvmeq);
42f61420 1053 nvmeq->dev->online_queues--;
2b25d981 1054 nvmeq->cq_vector = -1;
a09115b2
MW
1055 spin_unlock_irq(&nvmeq->q_lock);
1056
1c63dc66 1057 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 1058 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1059
aba2080f 1060 free_irq(vector, nvmeq);
b60503ba 1061
4d115420
KB
1062 return 0;
1063}
b60503ba 1064
a5cdb68c 1065static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1066{
a5cdb68c 1067 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
1068
1069 if (!nvmeq)
1070 return;
1071 if (nvme_suspend_queue(nvmeq))
1072 return;
1073
a5cdb68c
KB
1074 if (shutdown)
1075 nvme_shutdown_ctrl(&dev->ctrl);
1076 else
1077 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1078 dev->bar + NVME_REG_CAP));
07836e65
KB
1079
1080 spin_lock_irq(&nvmeq->q_lock);
1081 nvme_process_cq(nvmeq);
1082 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1083}
1084
8ffaadf7
JD
1085static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1086 int entry_size)
1087{
1088 int q_depth = dev->q_depth;
5fd4ce1b
CH
1089 unsigned q_size_aligned = roundup(q_depth * entry_size,
1090 dev->ctrl.page_size);
8ffaadf7
JD
1091
1092 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1093 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1094 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1095 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1096
1097 /*
1098 * Ensure the reduced q_depth is above some threshold where it
1099 * would be better to map queues in system memory with the
1100 * original depth
1101 */
1102 if (q_depth < 64)
1103 return -ENOMEM;
1104 }
1105
1106 return q_depth;
1107}
1108
1109static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1110 int qid, int depth)
1111{
1112 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1113 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1114 dev->ctrl.page_size);
8ffaadf7
JD
1115 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1116 nvmeq->sq_cmds_io = dev->cmb + offset;
1117 } else {
1118 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1119 &nvmeq->sq_dma_addr, GFP_KERNEL);
1120 if (!nvmeq->sq_cmds)
1121 return -ENOMEM;
1122 }
1123
1124 return 0;
1125}
1126
b60503ba 1127static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1128 int depth)
b60503ba 1129{
a4aea562 1130 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1131 if (!nvmeq)
1132 return NULL;
1133
e75ec752 1134 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1135 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1136 if (!nvmeq->cqes)
1137 goto free_nvmeq;
b60503ba 1138
8ffaadf7 1139 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1140 goto free_cqdma;
1141
e75ec752 1142 nvmeq->q_dmadev = dev->dev;
091b6092 1143 nvmeq->dev = dev;
3193f07b 1144 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1145 dev->ctrl.instance, qid);
b60503ba
MW
1146 spin_lock_init(&nvmeq->q_lock);
1147 nvmeq->cq_head = 0;
82123460 1148 nvmeq->cq_phase = 1;
b80d5ccc 1149 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1150 nvmeq->q_depth = depth;
c30341dc 1151 nvmeq->qid = qid;
758dd7fd 1152 nvmeq->cq_vector = -1;
a4aea562 1153 dev->queues[qid] = nvmeq;
36a7e993
JD
1154 dev->queue_count++;
1155
12e6f749
RN
1156#ifdef CONFIG_NVME_VENDOR_EXT_GOOGLE
1157 if (dev->db_mem && dev->ei_mem && qid != 0) {
1158 nvmeq->sq_doorbell_addr = &dev->db_mem[qid * 2 * dev->db_stride];
1159 nvmeq->cq_doorbell_addr =
1160 &dev->db_mem[(qid * 2 + 1) * dev->db_stride];
1161 nvmeq->sq_eventidx_addr = &dev->ei_mem[qid * 2 * dev->db_stride];
1162 nvmeq->cq_eventidx_addr =
1163 &dev->ei_mem[(qid * 2 + 1) * dev->db_stride];
1164 }
1165#endif
1166
b60503ba
MW
1167 return nvmeq;
1168
1169 free_cqdma:
e75ec752 1170 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1171 nvmeq->cq_dma_addr);
1172 free_nvmeq:
1173 kfree(nvmeq);
1174 return NULL;
1175}
1176
dca51e78 1177static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1178{
58ffacb5 1179 if (use_threaded_interrupts)
dca51e78
CH
1180 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1181 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1182 else
1183 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1184 nvmeq->irqname, nvmeq);
3001082c
MW
1185}
1186
22404274 1187static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1188{
22404274 1189 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1190
7be50e93 1191 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1192 nvmeq->sq_tail = 0;
1193 nvmeq->cq_head = 0;
1194 nvmeq->cq_phase = 1;
b80d5ccc 1195 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
12e6f749
RN
1196#ifdef CONFIG_NVME_VENDOR_EXT_GOOGLE
1197 if (to_pci_dev(dev->dev)->vendor == PCI_VENDOR_ID_GOOGLE && qid != 0) {
1198 nvmeq->sq_doorbell_addr = &dev->db_mem[qid * 2 * dev->db_stride];
1199 nvmeq->cq_doorbell_addr =
1200 &dev->db_mem[(qid * 2 + 1) * dev->db_stride];
1201 nvmeq->sq_eventidx_addr = &dev->ei_mem[qid * 2 * dev->db_stride];
1202 nvmeq->cq_eventidx_addr =
1203 &dev->ei_mem[(qid * 2 + 1) * dev->db_stride];
1204 }
1205#endif
22404274 1206 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1207 dev->online_queues++;
7be50e93 1208 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1209}
1210
1211static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1212{
1213 struct nvme_dev *dev = nvmeq->dev;
1214 int result;
3f85d50b 1215
2b25d981 1216 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1217 result = adapter_alloc_cq(dev, qid, nvmeq);
1218 if (result < 0)
22404274 1219 return result;
b60503ba
MW
1220
1221 result = adapter_alloc_sq(dev, qid, nvmeq);
1222 if (result < 0)
1223 goto release_cq;
1224
dca51e78 1225 result = queue_request_irq(nvmeq);
b60503ba
MW
1226 if (result < 0)
1227 goto release_sq;
1228
22404274 1229 nvme_init_queue(nvmeq, qid);
22404274 1230 return result;
b60503ba
MW
1231
1232 release_sq:
1233 adapter_delete_sq(dev, qid);
1234 release_cq:
1235 adapter_delete_cq(dev, qid);
22404274 1236 return result;
b60503ba
MW
1237}
1238
a4aea562 1239static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1240 .queue_rq = nvme_queue_rq,
eee417b0 1241 .complete = nvme_complete_rq,
a4aea562 1242 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1243 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1244 .init_request = nvme_admin_init_request,
1245 .timeout = nvme_timeout,
1246};
1247
1248static struct blk_mq_ops nvme_mq_ops = {
1249 .queue_rq = nvme_queue_rq,
eee417b0 1250 .complete = nvme_complete_rq,
a4aea562
MB
1251 .init_hctx = nvme_init_hctx,
1252 .init_request = nvme_init_request,
dca51e78 1253 .map_queues = nvme_pci_map_queues,
a4aea562 1254 .timeout = nvme_timeout,
a0fa9647 1255 .poll = nvme_poll,
a4aea562
MB
1256};
1257
ea191d2f
KB
1258static void nvme_dev_remove_admin(struct nvme_dev *dev)
1259{
1c63dc66 1260 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1261 /*
1262 * If the controller was reset during removal, it's possible
1263 * user requests may be waiting on a stopped queue. Start the
1264 * queue to flush these to completion.
1265 */
1266 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1267 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1268 blk_mq_free_tag_set(&dev->admin_tagset);
1269 }
1270}
1271
a4aea562
MB
1272static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1273{
1c63dc66 1274 if (!dev->ctrl.admin_q) {
a4aea562
MB
1275 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1276 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1277
1278 /*
1279 * Subtract one to leave an empty queue entry for 'Full Queue'
1280 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1281 */
1282 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1283 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1284 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1285 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1286 dev->admin_tagset.driver_data = dev;
1287
1288 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1289 return -ENOMEM;
1290
1c63dc66
CH
1291 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1292 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1293 blk_mq_free_tag_set(&dev->admin_tagset);
1294 return -ENOMEM;
1295 }
1c63dc66 1296 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1297 nvme_dev_remove_admin(dev);
1c63dc66 1298 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1299 return -ENODEV;
1300 }
0fb59cbc 1301 } else
25646264 1302 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1303
1304 return 0;
1305}
1306
8d85fce7 1307static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1308{
ba47e386 1309 int result;
b60503ba 1310 u32 aqa;
7a67cbea 1311 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1312 struct nvme_queue *nvmeq;
1313
8ef2074d 1314 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
dfbac8c7
KB
1315 NVME_CAP_NSSRC(cap) : 0;
1316
7a67cbea
CH
1317 if (dev->subsystem &&
1318 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1319 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1320
5fd4ce1b 1321 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1322 if (result < 0)
1323 return result;
b60503ba 1324
a4aea562 1325 nvmeq = dev->queues[0];
cd638946 1326 if (!nvmeq) {
2b25d981 1327 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1328 if (!nvmeq)
1329 return -ENOMEM;
cd638946 1330 }
b60503ba
MW
1331
1332 aqa = nvmeq->q_depth - 1;
1333 aqa |= aqa << 16;
1334
7a67cbea
CH
1335 writel(aqa, dev->bar + NVME_REG_AQA);
1336 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1337 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1338
5fd4ce1b 1339 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1340 if (result)
d4875622 1341 return result;
a4aea562 1342
2b25d981 1343 nvmeq->cq_vector = 0;
dca51e78 1344 result = queue_request_irq(nvmeq);
758dd7fd
JD
1345 if (result) {
1346 nvmeq->cq_vector = -1;
d4875622 1347 return result;
758dd7fd 1348 }
025c557a 1349
b60503ba
MW
1350 return result;
1351}
1352
c875a709
GP
1353static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1354{
1355
1356 /* If true, indicates loss of adapter communication, possibly by a
1357 * NVMe Subsystem reset.
1358 */
1359 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1360
1361 /* If there is a reset ongoing, we shouldn't reset again. */
1362 if (work_busy(&dev->reset_work))
1363 return false;
1364
1365 /* We shouldn't reset unless the controller is on fatal error state
1366 * _or_ if we lost the communication with it.
1367 */
1368 if (!(csts & NVME_CSTS_CFS) && !nssro)
1369 return false;
1370
1371 /* If PCI error recovery process is happening, we cannot reset or
1372 * the recovery mechanism will surely fail.
1373 */
1374 if (pci_channel_offline(to_pci_dev(dev->dev)))
1375 return false;
1376
1377 return true;
1378}
1379
d2a61918
AL
1380static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1381{
1382 /* Read a config register to help see what died. */
1383 u16 pci_status;
1384 int result;
1385
1386 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1387 &pci_status);
1388 if (result == PCIBIOS_SUCCESSFUL)
1389 dev_warn(dev->dev,
1390 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1391 csts, pci_status);
1392 else
1393 dev_warn(dev->dev,
1394 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1395 csts, result);
1396}
1397
2d55cd5f 1398static void nvme_watchdog_timer(unsigned long data)
1fa6aead 1399{
2d55cd5f
CH
1400 struct nvme_dev *dev = (struct nvme_dev *)data;
1401 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1fa6aead 1402
c875a709
GP
1403 /* Skip controllers under certain specific conditions. */
1404 if (nvme_should_reset(dev, csts)) {
c5f6ce97 1405 if (!nvme_reset(dev))
d2a61918 1406 nvme_warn_reset(dev, csts);
2d55cd5f 1407 return;
1fa6aead 1408 }
2d55cd5f
CH
1409
1410 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1fa6aead
MW
1411}
1412
749941f2 1413static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1414{
949928c1 1415 unsigned i, max;
749941f2 1416 int ret = 0;
42f61420 1417
749941f2
CH
1418 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1419 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1420 ret = -ENOMEM;
42f61420 1421 break;
749941f2
CH
1422 }
1423 }
42f61420 1424
949928c1
KB
1425 max = min(dev->max_qid, dev->queue_count - 1);
1426 for (i = dev->online_queues; i <= max; i++) {
749941f2 1427 ret = nvme_create_queue(dev->queues[i], i);
d4875622 1428 if (ret)
42f61420 1429 break;
27e8166c 1430 }
749941f2
CH
1431
1432 /*
1433 * Ignore failing Create SQ/CQ commands, we can continue with less
1434 * than the desired aount of queues, and even a controller without
1435 * I/O queues an still be used to issue admin commands. This might
1436 * be useful to upgrade a buggy firmware for example.
1437 */
1438 return ret >= 0 ? 0 : ret;
b60503ba
MW
1439}
1440
202021c1
SB
1441static ssize_t nvme_cmb_show(struct device *dev,
1442 struct device_attribute *attr,
1443 char *buf)
1444{
1445 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1446
c965809c 1447 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1448 ndev->cmbloc, ndev->cmbsz);
1449}
1450static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1451
8ffaadf7
JD
1452static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1453{
1454 u64 szu, size, offset;
8ffaadf7
JD
1455 resource_size_t bar_size;
1456 struct pci_dev *pdev = to_pci_dev(dev->dev);
1457 void __iomem *cmb;
1458 dma_addr_t dma_addr;
1459
7a67cbea 1460 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1461 if (!(NVME_CMB_SZ(dev->cmbsz)))
1462 return NULL;
202021c1 1463 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1464
202021c1
SB
1465 if (!use_cmb_sqes)
1466 return NULL;
8ffaadf7
JD
1467
1468 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1469 size = szu * NVME_CMB_SZ(dev->cmbsz);
202021c1
SB
1470 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1471 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
8ffaadf7
JD
1472
1473 if (offset > bar_size)
1474 return NULL;
1475
1476 /*
1477 * Controllers may support a CMB size larger than their BAR,
1478 * for example, due to being behind a bridge. Reduce the CMB to
1479 * the reported size of the BAR
1480 */
1481 if (size > bar_size - offset)
1482 size = bar_size - offset;
1483
202021c1 1484 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
8ffaadf7
JD
1485 cmb = ioremap_wc(dma_addr, size);
1486 if (!cmb)
1487 return NULL;
1488
1489 dev->cmb_dma_addr = dma_addr;
1490 dev->cmb_size = size;
1491 return cmb;
1492}
1493
1494static inline void nvme_release_cmb(struct nvme_dev *dev)
1495{
1496 if (dev->cmb) {
1497 iounmap(dev->cmb);
1498 dev->cmb = NULL;
1499 }
1500}
1501
9d713c2b
KB
1502static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1503{
b80d5ccc 1504 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1505}
1506
8d85fce7 1507static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1508{
a4aea562 1509 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1510 struct pci_dev *pdev = to_pci_dev(dev->dev);
dca51e78 1511 int result, nr_io_queues, size;
b60503ba 1512
2800b8e7 1513 nr_io_queues = num_online_cpus();
9a0be7ab
CH
1514 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1515 if (result < 0)
1b23484b 1516 return result;
9a0be7ab 1517
f5fa90dc 1518 if (nr_io_queues == 0)
a5229050 1519 return 0;
b60503ba 1520
8ffaadf7
JD
1521 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1522 result = nvme_cmb_qdepth(dev, nr_io_queues,
1523 sizeof(struct nvme_command));
1524 if (result > 0)
1525 dev->q_depth = result;
1526 else
1527 nvme_release_cmb(dev);
1528 }
1529
9d713c2b
KB
1530 size = db_bar_size(dev, nr_io_queues);
1531 if (size > 8192) {
f1938f6e 1532 iounmap(dev->bar);
9d713c2b
KB
1533 do {
1534 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1535 if (dev->bar)
1536 break;
1537 if (!--nr_io_queues)
1538 return -ENOMEM;
1539 size = db_bar_size(dev, nr_io_queues);
1540 } while (1);
7a67cbea 1541 dev->dbs = dev->bar + 4096;
5a92e700 1542 adminq->q_db = dev->dbs;
f1938f6e
MW
1543 }
1544
9d713c2b 1545 /* Deregister the admin queue's interrupt */
dca51e78 1546 free_irq(pci_irq_vector(pdev, 0), adminq);
9d713c2b 1547
e32efbfc
JA
1548 /*
1549 * If we enable msix early due to not intx, disable it again before
1550 * setting up the full range we need.
1551 */
dca51e78
CH
1552 pci_free_irq_vectors(pdev);
1553 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1554 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1555 if (nr_io_queues <= 0)
1556 return -EIO;
1557 dev->max_qid = nr_io_queues;
fa08a396 1558
063a8096
MW
1559 /*
1560 * Should investigate if there's a performance win from allocating
1561 * more queues than interrupt vectors; it might allow the submission
1562 * path to scale better, even if the receive path is limited by the
1563 * number of interrupts.
1564 */
063a8096 1565
dca51e78 1566 result = queue_request_irq(adminq);
758dd7fd
JD
1567 if (result) {
1568 adminq->cq_vector = -1;
d4875622 1569 return result;
758dd7fd 1570 }
749941f2 1571 return nvme_create_io_queues(dev);
b60503ba
MW
1572}
1573
db3cbfff 1574static void nvme_del_queue_end(struct request *req, int error)
a5768aa8 1575{
db3cbfff 1576 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1577
db3cbfff
KB
1578 blk_mq_free_request(req);
1579 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1580}
1581
db3cbfff 1582static void nvme_del_cq_end(struct request *req, int error)
a5768aa8 1583{
db3cbfff 1584 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1585
db3cbfff
KB
1586 if (!error) {
1587 unsigned long flags;
1588
2e39e0f6
ML
1589 /*
1590 * We might be called with the AQ q_lock held
1591 * and the I/O queue q_lock should always
1592 * nest inside the AQ one.
1593 */
1594 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1595 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1596 nvme_process_cq(nvmeq);
1597 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1598 }
db3cbfff
KB
1599
1600 nvme_del_queue_end(req, error);
a5768aa8
KB
1601}
1602
db3cbfff 1603static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1604{
db3cbfff
KB
1605 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1606 struct request *req;
1607 struct nvme_command cmd;
bda4e0fb 1608
db3cbfff
KB
1609 memset(&cmd, 0, sizeof(cmd));
1610 cmd.delete_queue.opcode = opcode;
1611 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1612
eb71f435 1613 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1614 if (IS_ERR(req))
1615 return PTR_ERR(req);
bda4e0fb 1616
db3cbfff
KB
1617 req->timeout = ADMIN_TIMEOUT;
1618 req->end_io_data = nvmeq;
1619
1620 blk_execute_rq_nowait(q, NULL, req, false,
1621 opcode == nvme_admin_delete_cq ?
1622 nvme_del_cq_end : nvme_del_queue_end);
1623 return 0;
bda4e0fb
KB
1624}
1625
70659060 1626static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
a5768aa8 1627{
70659060 1628 int pass;
db3cbfff
KB
1629 unsigned long timeout;
1630 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1631
db3cbfff 1632 for (pass = 0; pass < 2; pass++) {
014a0d60 1633 int sent = 0, i = queues;
db3cbfff
KB
1634
1635 reinit_completion(&dev->ioq_wait);
1636 retry:
1637 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1638 for (; i > 0; i--, sent++)
1639 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1640 break;
c21377f8 1641
db3cbfff
KB
1642 while (sent--) {
1643 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1644 if (timeout == 0)
1645 return;
1646 if (i)
1647 goto retry;
1648 }
1649 opcode = nvme_admin_delete_cq;
1650 }
a5768aa8
KB
1651}
1652
422ef0c7
MW
1653/*
1654 * Return: error value if an error occurred setting up the queues or calling
1655 * Identify Device. 0 if these succeeded, even if adding some of the
1656 * namespaces failed. At the moment, these failures are silent. TBD which
1657 * failures should be reported.
1658 */
8d85fce7 1659static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1660{
5bae7f73 1661 if (!dev->ctrl.tagset) {
ffe7704d
KB
1662 dev->tagset.ops = &nvme_mq_ops;
1663 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1664 dev->tagset.timeout = NVME_IO_TIMEOUT;
1665 dev->tagset.numa_node = dev_to_node(dev->dev);
1666 dev->tagset.queue_depth =
a4aea562 1667 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1668 dev->tagset.cmd_size = nvme_cmd_size(dev);
1669 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1670 dev->tagset.driver_data = dev;
b60503ba 1671
ffe7704d
KB
1672 if (blk_mq_alloc_tag_set(&dev->tagset))
1673 return 0;
5bae7f73 1674 dev->ctrl.tagset = &dev->tagset;
12e6f749
RN
1675
1676#ifdef CONFIG_NVME_VENDOR_EXT_GOOGLE
1677 if (to_pci_dev(dev->dev)->vendor == PCI_VENDOR_ID_GOOGLE) {
1678 int res = nvme_set_doorbell_memory(dev);
1679 if (res) {
1680 // Free memory and continue on.
1681 dma_free_coherent(dev->dev, 8192, dev->db_mem, dev->doorbell);
1682 dma_free_coherent(dev->dev, 8192, dev->ei_mem, dev->doorbell);
1683 dev->db_mem = 0;
1684 dev->ei_mem = 0;
1685 }
1686 }
1687#endif
949928c1
KB
1688 } else {
1689 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1690
1691 /* Free previously allocated queues that are no longer usable */
1692 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1693 }
949928c1 1694
e1e5e564 1695 return 0;
b60503ba
MW
1696}
1697
b00a726a 1698static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1699{
42f61420 1700 u64 cap;
b00a726a 1701 int result = -ENOMEM;
e75ec752 1702 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1703
1704 if (pci_enable_device_mem(pdev))
1705 return result;
1706
0877cb0d 1707 pci_set_master(pdev);
0877cb0d 1708
e75ec752
CH
1709 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1710 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1711 goto disable;
0877cb0d 1712
7a67cbea 1713 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1714 result = -ENODEV;
b00a726a 1715 goto disable;
0e53d180 1716 }
e32efbfc
JA
1717
1718 /*
a5229050
KB
1719 * Some devices and/or platforms don't advertise or work with INTx
1720 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1721 * adjust this later.
e32efbfc 1722 */
dca51e78
CH
1723 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1724 if (result < 0)
1725 return result;
e32efbfc 1726
7a67cbea
CH
1727 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1728
42f61420
KB
1729 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1730 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1731 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1732
1733 /*
1734 * Temporary fix for the Apple controller found in the MacBook8,1 and
1735 * some MacBook7,1 to avoid controller resets and data loss.
1736 */
1737 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1738 dev->q_depth = 2;
1739 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1740 "queue depth=%u to work around controller resets\n",
1741 dev->q_depth);
1742 }
1743
202021c1
SB
1744 /*
1745 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1746 * populate sysfs if a CMB is implemented. Note that we add the
1747 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1748 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1749 * NULL as final argument to sysfs_add_file_to_group.
1750 */
1751
8ef2074d 1752 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
8ffaadf7 1753 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1754
202021c1
SB
1755 if (dev->cmbsz) {
1756 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1757 &dev_attr_cmb.attr, NULL))
1758 dev_warn(dev->dev,
1759 "failed to add sysfs attribute for CMB\n");
1760 }
1761 }
1762
a0a3408e
KB
1763 pci_enable_pcie_error_reporting(pdev);
1764 pci_save_state(pdev);
12e6f749
RN
1765
1766#ifdef CONFIG_NVME_VENDOR_EXT_GOOGLE
1767 if (pdev->vendor == PCI_VENDOR_ID_GOOGLE) {
1768 int mem_size = nvme_vendor_memory_size(dev);
1769 dev->db_mem = dma_alloc_coherent(&pdev->dev, mem_size, &dev->doorbell, GFP_KERNEL);
1770 if (!dev->db_mem) {
1771 result = -ENOMEM;
1772 goto disable;
1773 }
1774 dev->ei_mem = dma_alloc_coherent(&pdev->dev, mem_size, &dev->eventidx, GFP_KERNEL);
1775 if (!dev->ei_mem) {
1776 result = -ENOMEM;
1777 goto dma_free;
1778 }
1779 }
1780#endif
1781
0877cb0d
KB
1782 return 0;
1783
12e6f749
RN
1784#ifdef CONFIG_NVME_VENDOR_EXT_GOOGLE
1785 dma_free:
1786 dma_free_coherent(&pdev->dev, nvme_vendor_memory_size(dev), dev->db_mem, dev->doorbell);
1787 dev->db_mem = 0;
1788#endif
1789
0877cb0d 1790 disable:
0877cb0d
KB
1791 pci_disable_device(pdev);
1792 return result;
1793}
1794
1795static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1796{
1797 if (dev->bar)
1798 iounmap(dev->bar);
a1f447b3 1799 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1800}
1801
1802static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1803{
e75ec752 1804 struct pci_dev *pdev = to_pci_dev(dev->dev);
12e6f749
RN
1805#ifdef CONFIG_NVME_VENDOR_EXT_GOOGLE
1806 int mem_size = nvme_vendor_memory_size(dev);
1807
1808 if (dev->db_mem)
1809 dma_free_coherent(&pdev->dev, mem_size, dev->db_mem, dev->doorbell);
1810 if (dev->ei_mem)
1811 dma_free_coherent(&pdev->dev, mem_size, dev->ei_mem, dev->eventidx);
1812#endif
e75ec752 1813
dca51e78 1814 pci_free_irq_vectors(pdev);
0877cb0d 1815
a0a3408e
KB
1816 if (pci_is_enabled(pdev)) {
1817 pci_disable_pcie_error_reporting(pdev);
e75ec752 1818 pci_disable_device(pdev);
4d115420 1819 }
4d115420
KB
1820}
1821
a5cdb68c 1822static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1823{
70659060 1824 int i, queues;
7c1b2450 1825 u32 csts = -1;
22404274 1826
2d55cd5f 1827 del_timer_sync(&dev->watchdog_timer);
1fa6aead 1828
77bf25ea 1829 mutex_lock(&dev->shutdown_lock);
b00a726a 1830 if (pci_is_enabled(to_pci_dev(dev->dev))) {
25646264 1831 nvme_stop_queues(&dev->ctrl);
7a67cbea 1832 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 1833 }
c21377f8 1834
70659060 1835 queues = dev->online_queues - 1;
c21377f8
GKB
1836 for (i = dev->queue_count - 1; i > 0; i--)
1837 nvme_suspend_queue(dev->queues[i]);
1838
7c1b2450 1839 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
82469c59
GKB
1840 /* A device might become IO incapable very soon during
1841 * probe, before the admin queue is configured. Thus,
1842 * queue_count can be 0 here.
1843 */
1844 if (dev->queue_count)
1845 nvme_suspend_queue(dev->queues[0]);
4d115420 1846 } else {
70659060 1847 nvme_disable_io_queues(dev, queues);
a5cdb68c 1848 nvme_disable_admin_queue(dev, shutdown);
4d115420 1849 }
b00a726a 1850 nvme_pci_disable(dev);
07836e65 1851
e1958e65
ML
1852 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1853 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
77bf25ea 1854 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
1855}
1856
091b6092
MW
1857static int nvme_setup_prp_pools(struct nvme_dev *dev)
1858{
e75ec752 1859 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1860 PAGE_SIZE, PAGE_SIZE, 0);
1861 if (!dev->prp_page_pool)
1862 return -ENOMEM;
1863
99802a7a 1864 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1865 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1866 256, 256, 0);
1867 if (!dev->prp_small_pool) {
1868 dma_pool_destroy(dev->prp_page_pool);
1869 return -ENOMEM;
1870 }
091b6092
MW
1871 return 0;
1872}
1873
1874static void nvme_release_prp_pools(struct nvme_dev *dev)
1875{
1876 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1877 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1878}
1879
1673f1f0 1880static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1881{
1673f1f0 1882 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1883
e75ec752 1884 put_device(dev->dev);
4af0e21c
KB
1885 if (dev->tagset.tags)
1886 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1887 if (dev->ctrl.admin_q)
1888 blk_put_queue(dev->ctrl.admin_q);
5e82e952 1889 kfree(dev->queues);
5e82e952
KB
1890 kfree(dev);
1891}
1892
f58944e2
KB
1893static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1894{
237045fc 1895 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
1896
1897 kref_get(&dev->ctrl.kref);
69d9a99c 1898 nvme_dev_disable(dev, false);
f58944e2
KB
1899 if (!schedule_work(&dev->remove_work))
1900 nvme_put_ctrl(&dev->ctrl);
1901}
1902
fd634f41 1903static void nvme_reset_work(struct work_struct *work)
5e82e952 1904{
fd634f41 1905 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
f58944e2 1906 int result = -ENODEV;
5e82e952 1907
bb8d261e 1908 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
fd634f41 1909 goto out;
5e82e952 1910
fd634f41
CH
1911 /*
1912 * If we're called to reset a live controller first shut it down before
1913 * moving on.
1914 */
b00a726a 1915 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 1916 nvme_dev_disable(dev, false);
5e82e952 1917
bb8d261e 1918 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
9bf2b972
KB
1919 goto out;
1920
b00a726a 1921 result = nvme_pci_enable(dev);
f0b50732 1922 if (result)
3cf519b5 1923 goto out;
f0b50732
KB
1924
1925 result = nvme_configure_admin_queue(dev);
1926 if (result)
f58944e2 1927 goto out;
f0b50732 1928
a4aea562 1929 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
1930 result = nvme_alloc_admin_tags(dev);
1931 if (result)
f58944e2 1932 goto out;
b9afca3e 1933
ce4541f4
CH
1934 result = nvme_init_identify(&dev->ctrl);
1935 if (result)
f58944e2 1936 goto out;
ce4541f4 1937
f0b50732 1938 result = nvme_setup_io_queues(dev);
badc34d4 1939 if (result)
f58944e2 1940 goto out;
f0b50732 1941
21f033f7
KB
1942 /*
1943 * A controller that can not execute IO typically requires user
1944 * intervention to correct. For such degraded controllers, the driver
1945 * should not submit commands the user did not request, so skip
1946 * registering for asynchronous event notification on this condition.
1947 */
f866fc42
CH
1948 if (dev->online_queues > 1)
1949 nvme_queue_async_events(&dev->ctrl);
3cf519b5 1950
2d55cd5f 1951 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
3cf519b5 1952
2659e57b
CH
1953 /*
1954 * Keep the controller around but remove all namespaces if we don't have
1955 * any working I/O queue.
1956 */
3cf519b5 1957 if (dev->online_queues < 2) {
1b3c47c1 1958 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 1959 nvme_kill_queues(&dev->ctrl);
5bae7f73 1960 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 1961 } else {
25646264 1962 nvme_start_queues(&dev->ctrl);
3cf519b5
CH
1963 nvme_dev_add(dev);
1964 }
1965
bb8d261e
CH
1966 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1967 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1968 goto out;
1969 }
92911a55
CH
1970
1971 if (dev->online_queues > 1)
5955be21 1972 nvme_queue_scan(&dev->ctrl);
3cf519b5 1973 return;
f0b50732 1974
3cf519b5 1975 out:
f58944e2 1976 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
1977}
1978
5c8809e6 1979static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 1980{
5c8809e6 1981 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 1982 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 1983
69d9a99c 1984 nvme_kill_queues(&dev->ctrl);
9a6b9458 1985 if (pci_get_drvdata(pdev))
921920ab 1986 device_release_driver(&pdev->dev);
1673f1f0 1987 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
1988}
1989
4cc06521 1990static int nvme_reset(struct nvme_dev *dev)
9a6b9458 1991{
1c63dc66 1992 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521 1993 return -ENODEV;
c5f6ce97
KB
1994 if (work_busy(&dev->reset_work))
1995 return -ENODEV;
846cc05f
CH
1996 if (!queue_work(nvme_workq, &dev->reset_work))
1997 return -EBUSY;
846cc05f 1998 return 0;
9a6b9458
KB
1999}
2000
1c63dc66 2001static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2002{
1c63dc66 2003 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2004 return 0;
9ca97374
TH
2005}
2006
5fd4ce1b 2007static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2008{
5fd4ce1b
CH
2009 writel(val, to_nvme_dev(ctrl)->bar + off);
2010 return 0;
2011}
4cc06521 2012
7fd8930f
CH
2013static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2014{
2015 *val = readq(to_nvme_dev(ctrl)->bar + off);
2016 return 0;
4cc06521
KB
2017}
2018
f3ca80fc
CH
2019static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2020{
c5f6ce97
KB
2021 struct nvme_dev *dev = to_nvme_dev(ctrl);
2022 int ret = nvme_reset(dev);
2023
2024 if (!ret)
2025 flush_work(&dev->reset_work);
2026 return ret;
4cc06521 2027}
f3ca80fc 2028
1c63dc66 2029static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2030 .name = "pcie",
e439bb12 2031 .module = THIS_MODULE,
1c63dc66 2032 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2033 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2034 .reg_read64 = nvme_pci_reg_read64,
f3ca80fc 2035 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 2036 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2037 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 2038};
4cc06521 2039
b00a726a
KB
2040static int nvme_dev_map(struct nvme_dev *dev)
2041{
b00a726a
KB
2042 struct pci_dev *pdev = to_pci_dev(dev->dev);
2043
a1f447b3 2044 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2045 return -ENODEV;
2046
2047 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2048 if (!dev->bar)
2049 goto release;
2050
9fa196e7 2051 return 0;
b00a726a 2052 release:
9fa196e7
MG
2053 pci_release_mem_regions(pdev);
2054 return -ENODEV;
b00a726a
KB
2055}
2056
8d85fce7 2057static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2058{
a4aea562 2059 int node, result = -ENOMEM;
b60503ba
MW
2060 struct nvme_dev *dev;
2061
a4aea562
MB
2062 node = dev_to_node(&pdev->dev);
2063 if (node == NUMA_NO_NODE)
2fa84351 2064 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2065
2066 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2067 if (!dev)
2068 return -ENOMEM;
a4aea562
MB
2069 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2070 GFP_KERNEL, node);
b60503ba
MW
2071 if (!dev->queues)
2072 goto free;
2073
e75ec752 2074 dev->dev = get_device(&pdev->dev);
9a6b9458 2075 pci_set_drvdata(pdev, dev);
1c63dc66 2076
b00a726a
KB
2077 result = nvme_dev_map(dev);
2078 if (result)
2079 goto free;
2080
f3ca80fc 2081 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 2082 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2d55cd5f
CH
2083 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2084 (unsigned long)dev);
77bf25ea 2085 mutex_init(&dev->shutdown_lock);
db3cbfff 2086 init_completion(&dev->ioq_wait);
b60503ba 2087
091b6092
MW
2088 result = nvme_setup_prp_pools(dev);
2089 if (result)
a96d4f5c 2090 goto put_pci;
4cc06521 2091
f3ca80fc
CH
2092 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2093 id->driver_data);
4cc06521 2094 if (result)
2e1d8448 2095 goto release_pools;
740216fc 2096
1b3c47c1
SG
2097 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2098
92f7a162 2099 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
2100 return 0;
2101
0877cb0d 2102 release_pools:
091b6092 2103 nvme_release_prp_pools(dev);
a96d4f5c 2104 put_pci:
e75ec752 2105 put_device(dev->dev);
b00a726a 2106 nvme_dev_unmap(dev);
b60503ba
MW
2107 free:
2108 kfree(dev->queues);
b60503ba
MW
2109 kfree(dev);
2110 return result;
2111}
2112
f0d54a54
KB
2113static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2114{
a6739479 2115 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2116
a6739479 2117 if (prepare)
a5cdb68c 2118 nvme_dev_disable(dev, false);
a6739479 2119 else
c5f6ce97 2120 nvme_reset(dev);
f0d54a54
KB
2121}
2122
09ece142
KB
2123static void nvme_shutdown(struct pci_dev *pdev)
2124{
2125 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2126 nvme_dev_disable(dev, true);
09ece142
KB
2127}
2128
f58944e2
KB
2129/*
2130 * The driver's remove may be called on a device in a partially initialized
2131 * state. This function must not have any dependencies on the device state in
2132 * order to proceed.
2133 */
8d85fce7 2134static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2135{
2136 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2137
bb8d261e
CH
2138 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2139
9a6b9458 2140 pci_set_drvdata(pdev, NULL);
0ff9d4e1
KB
2141
2142 if (!pci_device_is_present(pdev))
2143 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2144
9bf2b972 2145 flush_work(&dev->reset_work);
53029b04 2146 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2147 nvme_dev_disable(dev, true);
a4aea562 2148 nvme_dev_remove_admin(dev);
a1a5ef99 2149 nvme_free_queues(dev, 0);
8ffaadf7 2150 nvme_release_cmb(dev);
9a6b9458 2151 nvme_release_prp_pools(dev);
b00a726a 2152 nvme_dev_unmap(dev);
1673f1f0 2153 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2154}
2155
13880f5b
KB
2156static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2157{
2158 int ret = 0;
2159
2160 if (numvfs == 0) {
2161 if (pci_vfs_assigned(pdev)) {
2162 dev_warn(&pdev->dev,
2163 "Cannot disable SR-IOV VFs while assigned\n");
2164 return -EPERM;
2165 }
2166 pci_disable_sriov(pdev);
2167 return 0;
2168 }
2169
2170 ret = pci_enable_sriov(pdev, numvfs);
2171 return ret ? ret : numvfs;
2172}
2173
671a6018 2174#ifdef CONFIG_PM_SLEEP
cd638946
KB
2175static int nvme_suspend(struct device *dev)
2176{
2177 struct pci_dev *pdev = to_pci_dev(dev);
2178 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2179
a5cdb68c 2180 nvme_dev_disable(ndev, true);
cd638946
KB
2181 return 0;
2182}
2183
2184static int nvme_resume(struct device *dev)
2185{
2186 struct pci_dev *pdev = to_pci_dev(dev);
2187 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2188
c5f6ce97 2189 nvme_reset(ndev);
9a6b9458 2190 return 0;
cd638946 2191}
671a6018 2192#endif
cd638946
KB
2193
2194static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2195
a0a3408e
KB
2196static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2197 pci_channel_state_t state)
2198{
2199 struct nvme_dev *dev = pci_get_drvdata(pdev);
2200
2201 /*
2202 * A frozen channel requires a reset. When detected, this method will
2203 * shutdown the controller to quiesce. The controller will be restarted
2204 * after the slot reset through driver's slot_reset callback.
2205 */
a0a3408e
KB
2206 switch (state) {
2207 case pci_channel_io_normal:
2208 return PCI_ERS_RESULT_CAN_RECOVER;
2209 case pci_channel_io_frozen:
d011fb31
KB
2210 dev_warn(dev->ctrl.device,
2211 "frozen state error detected, reset controller\n");
a5cdb68c 2212 nvme_dev_disable(dev, false);
a0a3408e
KB
2213 return PCI_ERS_RESULT_NEED_RESET;
2214 case pci_channel_io_perm_failure:
d011fb31
KB
2215 dev_warn(dev->ctrl.device,
2216 "failure state error detected, request disconnect\n");
a0a3408e
KB
2217 return PCI_ERS_RESULT_DISCONNECT;
2218 }
2219 return PCI_ERS_RESULT_NEED_RESET;
2220}
2221
2222static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2223{
2224 struct nvme_dev *dev = pci_get_drvdata(pdev);
2225
1b3c47c1 2226 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2227 pci_restore_state(pdev);
c5f6ce97 2228 nvme_reset(dev);
a0a3408e
KB
2229 return PCI_ERS_RESULT_RECOVERED;
2230}
2231
2232static void nvme_error_resume(struct pci_dev *pdev)
2233{
2234 pci_cleanup_aer_uncorrect_error_status(pdev);
2235}
2236
1d352035 2237static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2238 .error_detected = nvme_error_detected,
b60503ba
MW
2239 .slot_reset = nvme_slot_reset,
2240 .resume = nvme_error_resume,
f0d54a54 2241 .reset_notify = nvme_reset_notify,
b60503ba
MW
2242};
2243
6eb0d698 2244static const struct pci_device_id nvme_id_table[] = {
106198ed 2245 { PCI_VDEVICE(INTEL, 0x0953),
08095e70
KB
2246 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2247 NVME_QUIRK_DISCARD_ZEROES, },
99466e70
KB
2248 { PCI_VDEVICE(INTEL, 0x0a53),
2249 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2250 NVME_QUIRK_DISCARD_ZEROES, },
2251 { PCI_VDEVICE(INTEL, 0x0a54),
2252 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2253 NVME_QUIRK_DISCARD_ZEROES, },
540c801c
KB
2254 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2255 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2256 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2257 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2258 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2259 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2260 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2261 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2262 { 0, }
2263};
2264MODULE_DEVICE_TABLE(pci, nvme_id_table);
2265
2266static struct pci_driver nvme_driver = {
2267 .name = "nvme",
2268 .id_table = nvme_id_table,
2269 .probe = nvme_probe,
8d85fce7 2270 .remove = nvme_remove,
09ece142 2271 .shutdown = nvme_shutdown,
cd638946
KB
2272 .driver = {
2273 .pm = &nvme_dev_pm_ops,
2274 },
13880f5b 2275 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2276 .err_handler = &nvme_err_handler,
2277};
2278
2279static int __init nvme_init(void)
2280{
0ac13140 2281 int result;
1fa6aead 2282
92f7a162 2283 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2284 if (!nvme_workq)
b9afca3e 2285 return -ENOMEM;
9a6b9458 2286
f3db22fe
KB
2287 result = pci_register_driver(&nvme_driver);
2288 if (result)
576d55d6 2289 destroy_workqueue(nvme_workq);
b60503ba
MW
2290 return result;
2291}
2292
2293static void __exit nvme_exit(void)
2294{
2295 pci_unregister_driver(&nvme_driver);
9a6b9458 2296 destroy_workqueue(nvme_workq);
21bd78bc 2297 _nvme_check_size();
b60503ba
MW
2298}
2299
2300MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2301MODULE_LICENSE("GPL");
c78b4713 2302MODULE_VERSION("1.0");
b60503ba
MW
2303module_init(nvme_init);
2304module_exit(nvme_exit);