]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/nvme/host/pci.c
nvmet_fc: Accept variable pad lengths on Create Association LS
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
ff5350a8 20#include <linux/dmi.h>
b60503ba
MW
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
b60503ba
MW
24#include <linux/mm.h>
25#include <linux/module.h>
77bf25ea 26#include <linux/mutex.h>
b60503ba 27#include <linux/pci.h>
be7b6275 28#include <linux/poison.h>
e1e5e564 29#include <linux/t10-pi.h>
2d55cd5f 30#include <linux/timer.h>
b60503ba 31#include <linux/types.h>
2f8e2c87 32#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 33#include <asm/unaligned.h>
a98e58e5 34#include <linux/sed-opal.h>
797a796a 35
f11bb3e2
CH
36#include "nvme.h"
37
9d43cf64 38#define NVME_Q_DEPTH 1024
b60503ba
MW
39#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
40#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 41
adf68f21
CH
42/*
43 * We handle AEN commands ourselves and don't even let the
44 * block layer know about them.
45 */
f866fc42 46#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 47
58ffacb5
MW
48static int use_threaded_interrupts;
49module_param(use_threaded_interrupts, int, 0);
50
8ffaadf7
JD
51static bool use_cmb_sqes = true;
52module_param(use_cmb_sqes, bool, 0644);
53MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
87ad72a5
CH
55static unsigned int max_host_mem_size_mb = 128;
56module_param(max_host_mem_size_mb, uint, 0444);
57MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
1c63dc66
CH
60struct nvme_dev;
61struct nvme_queue;
b3fffdef 62
a0fa9647 63static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 64static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 65
1c63dc66
CH
66/*
67 * Represents an NVM Express device. Each nvme_dev is a PCI function.
68 */
69struct nvme_dev {
1c63dc66
CH
70 struct nvme_queue **queues;
71 struct blk_mq_tag_set tagset;
72 struct blk_mq_tag_set admin_tagset;
73 u32 __iomem *dbs;
74 struct device *dev;
75 struct dma_pool *prp_page_pool;
76 struct dma_pool *prp_small_pool;
1c63dc66
CH
77 unsigned online_queues;
78 unsigned max_qid;
79 int q_depth;
80 u32 db_stride;
1c63dc66 81 void __iomem *bar;
97f6ef64 82 unsigned long bar_mapped_size;
5c8809e6 83 struct work_struct remove_work;
77bf25ea 84 struct mutex shutdown_lock;
1c63dc66 85 bool subsystem;
1c63dc66
CH
86 void __iomem *cmb;
87 dma_addr_t cmb_dma_addr;
88 u64 cmb_size;
89 u32 cmbsz;
202021c1 90 u32 cmbloc;
1c63dc66 91 struct nvme_ctrl ctrl;
db3cbfff 92 struct completion ioq_wait;
87ad72a5
CH
93
94 /* shadow doorbell buffer support: */
f9f38e33
HK
95 u32 *dbbuf_dbs;
96 dma_addr_t dbbuf_dbs_dma_addr;
97 u32 *dbbuf_eis;
98 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
99
100 /* host memory buffer support: */
101 u64 host_mem_size;
102 u32 nr_host_mem_descs;
103 struct nvme_host_mem_buf_desc *host_mem_descs;
104 void **host_mem_desc_bufs;
4d115420 105};
1fa6aead 106
f9f38e33
HK
107static inline unsigned int sq_idx(unsigned int qid, u32 stride)
108{
109 return qid * 2 * stride;
110}
111
112static inline unsigned int cq_idx(unsigned int qid, u32 stride)
113{
114 return (qid * 2 + 1) * stride;
115}
116
1c63dc66
CH
117static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
118{
119 return container_of(ctrl, struct nvme_dev, ctrl);
120}
121
b60503ba
MW
122/*
123 * An NVM Express queue. Each device has at least two (one for admin
124 * commands and one for I/O commands).
125 */
126struct nvme_queue {
127 struct device *q_dmadev;
091b6092 128 struct nvme_dev *dev;
b60503ba
MW
129 spinlock_t q_lock;
130 struct nvme_command *sq_cmds;
8ffaadf7 131 struct nvme_command __iomem *sq_cmds_io;
b60503ba 132 volatile struct nvme_completion *cqes;
42483228 133 struct blk_mq_tags **tags;
b60503ba
MW
134 dma_addr_t sq_dma_addr;
135 dma_addr_t cq_dma_addr;
b60503ba
MW
136 u32 __iomem *q_db;
137 u16 q_depth;
6222d172 138 s16 cq_vector;
b60503ba
MW
139 u16 sq_tail;
140 u16 cq_head;
c30341dc 141 u16 qid;
e9539f47
MW
142 u8 cq_phase;
143 u8 cqe_seen;
f9f38e33
HK
144 u32 *dbbuf_sq_db;
145 u32 *dbbuf_cq_db;
146 u32 *dbbuf_sq_ei;
147 u32 *dbbuf_cq_ei;
b60503ba
MW
148};
149
71bd150c
CH
150/*
151 * The nvme_iod describes the data in an I/O, including the list of PRP
152 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 153 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
154 * allocated to store the PRP list.
155 */
156struct nvme_iod {
d49187e9 157 struct nvme_request req;
f4800d6d
CH
158 struct nvme_queue *nvmeq;
159 int aborted;
71bd150c 160 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
161 int nents; /* Used in scatterlist */
162 int length; /* Of data, in bytes */
163 dma_addr_t first_dma;
bf684057 164 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
165 struct scatterlist *sg;
166 struct scatterlist inline_sg[0];
b60503ba
MW
167};
168
169/*
170 * Check we didin't inadvertently grow the command struct
171 */
172static inline void _nvme_check_size(void)
173{
174 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
175 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
176 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
177 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
178 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 179 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 180 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba 181 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
0add5e8e
JT
182 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
183 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
b60503ba 184 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 185 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
f9f38e33
HK
186 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
187}
188
189static inline unsigned int nvme_dbbuf_size(u32 stride)
190{
191 return ((num_possible_cpus() + 1) * 8 * stride);
192}
193
194static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
195{
196 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
197
198 if (dev->dbbuf_dbs)
199 return 0;
200
201 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
202 &dev->dbbuf_dbs_dma_addr,
203 GFP_KERNEL);
204 if (!dev->dbbuf_dbs)
205 return -ENOMEM;
206 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
207 &dev->dbbuf_eis_dma_addr,
208 GFP_KERNEL);
209 if (!dev->dbbuf_eis) {
210 dma_free_coherent(dev->dev, mem_size,
211 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
212 dev->dbbuf_dbs = NULL;
213 return -ENOMEM;
214 }
215
216 return 0;
217}
218
219static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
220{
221 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
222
223 if (dev->dbbuf_dbs) {
224 dma_free_coherent(dev->dev, mem_size,
225 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
226 dev->dbbuf_dbs = NULL;
227 }
228 if (dev->dbbuf_eis) {
229 dma_free_coherent(dev->dev, mem_size,
230 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
231 dev->dbbuf_eis = NULL;
232 }
233}
234
235static void nvme_dbbuf_init(struct nvme_dev *dev,
236 struct nvme_queue *nvmeq, int qid)
237{
238 if (!dev->dbbuf_dbs || !qid)
239 return;
240
241 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
242 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
243 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
244 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
245}
246
247static void nvme_dbbuf_set(struct nvme_dev *dev)
248{
249 struct nvme_command c;
250
251 if (!dev->dbbuf_dbs)
252 return;
253
254 memset(&c, 0, sizeof(c));
255 c.dbbuf.opcode = nvme_admin_dbbuf;
256 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
257 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
258
259 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 260 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
261 /* Free memory and continue on */
262 nvme_dbbuf_dma_free(dev);
263 }
264}
265
266static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
267{
268 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
269}
270
271/* Update dbbuf and return true if an MMIO is required */
272static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
273 volatile u32 *dbbuf_ei)
274{
275 if (dbbuf_db) {
276 u16 old_value;
277
278 /*
279 * Ensure that the queue is written before updating
280 * the doorbell in memory
281 */
282 wmb();
283
284 old_value = *dbbuf_db;
285 *dbbuf_db = value;
286
287 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
288 return false;
289 }
290
291 return true;
b60503ba
MW
292}
293
ac3dd5bd
JA
294/*
295 * Max size of iod being embedded in the request payload
296 */
297#define NVME_INT_PAGES 2
5fd4ce1b 298#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
299
300/*
301 * Will slightly overestimate the number of pages needed. This is OK
302 * as it only leads to a small amount of wasted memory for the lifetime of
303 * the I/O.
304 */
305static int nvme_npages(unsigned size, struct nvme_dev *dev)
306{
5fd4ce1b
CH
307 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
308 dev->ctrl.page_size);
ac3dd5bd
JA
309 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
310}
311
f4800d6d
CH
312static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
313 unsigned int size, unsigned int nseg)
ac3dd5bd 314{
f4800d6d
CH
315 return sizeof(__le64 *) * nvme_npages(size, dev) +
316 sizeof(struct scatterlist) * nseg;
317}
ac3dd5bd 318
f4800d6d
CH
319static unsigned int nvme_cmd_size(struct nvme_dev *dev)
320{
321 return sizeof(struct nvme_iod) +
322 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
323}
324
a4aea562
MB
325static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
326 unsigned int hctx_idx)
e85248e5 327{
a4aea562
MB
328 struct nvme_dev *dev = data;
329 struct nvme_queue *nvmeq = dev->queues[0];
330
42483228
KB
331 WARN_ON(hctx_idx != 0);
332 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
333 WARN_ON(nvmeq->tags);
334
a4aea562 335 hctx->driver_data = nvmeq;
42483228 336 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 337 return 0;
e85248e5
MW
338}
339
4af0e21c
KB
340static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
341{
342 struct nvme_queue *nvmeq = hctx->driver_data;
343
344 nvmeq->tags = NULL;
345}
346
a4aea562
MB
347static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
348 unsigned int hctx_idx)
b60503ba 349{
a4aea562 350 struct nvme_dev *dev = data;
42483228 351 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 352
42483228
KB
353 if (!nvmeq->tags)
354 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 355
42483228 356 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
357 hctx->driver_data = nvmeq;
358 return 0;
b60503ba
MW
359}
360
d6296d39
CH
361static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
362 unsigned int hctx_idx, unsigned int numa_node)
b60503ba 363{
d6296d39 364 struct nvme_dev *dev = set->driver_data;
f4800d6d 365 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0350815a
CH
366 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
367 struct nvme_queue *nvmeq = dev->queues[queue_idx];
a4aea562
MB
368
369 BUG_ON(!nvmeq);
f4800d6d 370 iod->nvmeq = nvmeq;
a4aea562
MB
371 return 0;
372}
373
dca51e78
CH
374static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
375{
376 struct nvme_dev *dev = set->driver_data;
377
378 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
379}
380
b60503ba 381/**
adf68f21 382 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
383 * @nvmeq: The queue to use
384 * @cmd: The command to send
385 *
386 * Safe to use from interrupt context
387 */
e3f879bf
SB
388static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
389 struct nvme_command *cmd)
b60503ba 390{
a4aea562
MB
391 u16 tail = nvmeq->sq_tail;
392
8ffaadf7
JD
393 if (nvmeq->sq_cmds_io)
394 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
395 else
396 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
397
b60503ba
MW
398 if (++tail == nvmeq->q_depth)
399 tail = 0;
f9f38e33
HK
400 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
401 nvmeq->dbbuf_sq_ei))
402 writel(tail, nvmeq->q_db);
b60503ba 403 nvmeq->sq_tail = tail;
b60503ba
MW
404}
405
f4800d6d 406static __le64 **iod_list(struct request *req)
b60503ba 407{
f4800d6d 408 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
f9d03f96 409 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
410}
411
fc17b653 412static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 413{
f4800d6d 414 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 415 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 416 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 417
f4800d6d
CH
418 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
419 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
420 if (!iod->sg)
fc17b653 421 return BLK_STS_RESOURCE;
f4800d6d
CH
422 } else {
423 iod->sg = iod->inline_sg;
ac3dd5bd
JA
424 }
425
f4800d6d
CH
426 iod->aborted = 0;
427 iod->npages = -1;
428 iod->nents = 0;
429 iod->length = size;
f80ec966 430
fc17b653 431 return BLK_STS_OK;
ac3dd5bd
JA
432}
433
f4800d6d 434static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 435{
f4800d6d 436 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 437 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 438 int i;
f4800d6d 439 __le64 **list = iod_list(req);
eca18b23
MW
440 dma_addr_t prp_dma = iod->first_dma;
441
442 if (iod->npages == 0)
443 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
444 for (i = 0; i < iod->npages; i++) {
445 __le64 *prp_list = list[i];
446 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
447 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
448 prp_dma = next_prp_dma;
449 }
ac3dd5bd 450
f4800d6d
CH
451 if (iod->sg != iod->inline_sg)
452 kfree(iod->sg);
b4ff9c8d
KB
453}
454
52b68d7e 455#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
456static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
457{
458 if (be32_to_cpu(pi->ref_tag) == v)
459 pi->ref_tag = cpu_to_be32(p);
460}
461
462static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
463{
464 if (be32_to_cpu(pi->ref_tag) == p)
465 pi->ref_tag = cpu_to_be32(v);
466}
467
468/**
469 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
470 *
471 * The virtual start sector is the one that was originally submitted by the
472 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
473 * start sector may be different. Remap protection information to match the
474 * physical LBA on writes, and back to the original seed on reads.
475 *
476 * Type 0 and 3 do not have a ref tag, so no remapping required.
477 */
478static void nvme_dif_remap(struct request *req,
479 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
480{
481 struct nvme_ns *ns = req->rq_disk->private_data;
482 struct bio_integrity_payload *bip;
483 struct t10_pi_tuple *pi;
484 void *p, *pmap;
485 u32 i, nlb, ts, phys, virt;
486
487 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
488 return;
489
490 bip = bio_integrity(req->bio);
491 if (!bip)
492 return;
493
494 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
495
496 p = pmap;
497 virt = bip_get_seed(bip);
498 phys = nvme_block_nr(ns, blk_rq_pos(req));
499 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 500 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
501
502 for (i = 0; i < nlb; i++, virt++, phys++) {
503 pi = (struct t10_pi_tuple *)p;
504 dif_swap(phys, virt, pi);
505 p += ts;
506 }
507 kunmap_atomic(pmap);
508}
52b68d7e
KB
509#else /* CONFIG_BLK_DEV_INTEGRITY */
510static void nvme_dif_remap(struct request *req,
511 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
512{
513}
514static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
515{
516}
517static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
518{
519}
52b68d7e
KB
520#endif
521
b131c61d 522static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
ff22b54f 523{
f4800d6d 524 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 525 struct dma_pool *pool;
b131c61d 526 int length = blk_rq_payload_bytes(req);
eca18b23 527 struct scatterlist *sg = iod->sg;
ff22b54f
MW
528 int dma_len = sg_dma_len(sg);
529 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 530 u32 page_size = dev->ctrl.page_size;
f137e0f1 531 int offset = dma_addr & (page_size - 1);
e025344c 532 __le64 *prp_list;
f4800d6d 533 __le64 **list = iod_list(req);
e025344c 534 dma_addr_t prp_dma;
eca18b23 535 int nprps, i;
ff22b54f 536
1d090624 537 length -= (page_size - offset);
ff22b54f 538 if (length <= 0)
69d2b571 539 return true;
ff22b54f 540
1d090624 541 dma_len -= (page_size - offset);
ff22b54f 542 if (dma_len) {
1d090624 543 dma_addr += (page_size - offset);
ff22b54f
MW
544 } else {
545 sg = sg_next(sg);
546 dma_addr = sg_dma_address(sg);
547 dma_len = sg_dma_len(sg);
548 }
549
1d090624 550 if (length <= page_size) {
edd10d33 551 iod->first_dma = dma_addr;
69d2b571 552 return true;
e025344c
SMM
553 }
554
1d090624 555 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
556 if (nprps <= (256 / 8)) {
557 pool = dev->prp_small_pool;
eca18b23 558 iod->npages = 0;
99802a7a
MW
559 } else {
560 pool = dev->prp_page_pool;
eca18b23 561 iod->npages = 1;
99802a7a
MW
562 }
563
69d2b571 564 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 565 if (!prp_list) {
edd10d33 566 iod->first_dma = dma_addr;
eca18b23 567 iod->npages = -1;
69d2b571 568 return false;
b77954cb 569 }
eca18b23
MW
570 list[0] = prp_list;
571 iod->first_dma = prp_dma;
e025344c
SMM
572 i = 0;
573 for (;;) {
1d090624 574 if (i == page_size >> 3) {
e025344c 575 __le64 *old_prp_list = prp_list;
69d2b571 576 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 577 if (!prp_list)
69d2b571 578 return false;
eca18b23 579 list[iod->npages++] = prp_list;
7523d834
MW
580 prp_list[0] = old_prp_list[i - 1];
581 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
582 i = 1;
e025344c
SMM
583 }
584 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
585 dma_len -= page_size;
586 dma_addr += page_size;
587 length -= page_size;
e025344c
SMM
588 if (length <= 0)
589 break;
590 if (dma_len > 0)
591 continue;
592 BUG_ON(dma_len < 0);
593 sg = sg_next(sg);
594 dma_addr = sg_dma_address(sg);
595 dma_len = sg_dma_len(sg);
ff22b54f
MW
596 }
597
69d2b571 598 return true;
ff22b54f
MW
599}
600
fc17b653 601static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 602 struct nvme_command *cmnd)
d29ec824 603{
f4800d6d 604 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
605 struct request_queue *q = req->q;
606 enum dma_data_direction dma_dir = rq_data_dir(req) ?
607 DMA_TO_DEVICE : DMA_FROM_DEVICE;
fc17b653 608 blk_status_t ret = BLK_STS_IOERR;
d29ec824 609
f9d03f96 610 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
611 iod->nents = blk_rq_map_sg(q, req, iod->sg);
612 if (!iod->nents)
613 goto out;
d29ec824 614
fc17b653 615 ret = BLK_STS_RESOURCE;
2b6b535d
MFO
616 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
617 DMA_ATTR_NO_WARN))
ba1ca37e 618 goto out;
d29ec824 619
b131c61d 620 if (!nvme_setup_prps(dev, req))
ba1ca37e 621 goto out_unmap;
0e5e4f0e 622
fc17b653 623 ret = BLK_STS_IOERR;
ba1ca37e
CH
624 if (blk_integrity_rq(req)) {
625 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
626 goto out_unmap;
0e5e4f0e 627
bf684057
CH
628 sg_init_table(&iod->meta_sg, 1);
629 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 630 goto out_unmap;
0e5e4f0e 631
ba1ca37e
CH
632 if (rq_data_dir(req))
633 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 634
bf684057 635 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 636 goto out_unmap;
d29ec824 637 }
00df5cb4 638
eb793e2c
CH
639 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
640 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 641 if (blk_integrity_rq(req))
bf684057 642 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
fc17b653 643 return BLK_STS_OK;
00df5cb4 644
ba1ca37e
CH
645out_unmap:
646 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
647out:
648 return ret;
00df5cb4
MW
649}
650
f4800d6d 651static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 652{
f4800d6d 653 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
654 enum dma_data_direction dma_dir = rq_data_dir(req) ?
655 DMA_TO_DEVICE : DMA_FROM_DEVICE;
656
657 if (iod->nents) {
658 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
659 if (blk_integrity_rq(req)) {
660 if (!rq_data_dir(req))
661 nvme_dif_remap(req, nvme_dif_complete);
bf684057 662 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 663 }
e19b127f 664 }
e1e5e564 665
f9d03f96 666 nvme_cleanup_cmd(req);
f4800d6d 667 nvme_free_iod(dev, req);
d4f6c3ab 668}
b60503ba 669
d29ec824
CH
670/*
671 * NOTE: ns is NULL when called on the admin queue.
672 */
fc17b653 673static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
a4aea562 674 const struct blk_mq_queue_data *bd)
edd10d33 675{
a4aea562
MB
676 struct nvme_ns *ns = hctx->queue->queuedata;
677 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 678 struct nvme_dev *dev = nvmeq->dev;
a4aea562 679 struct request *req = bd->rq;
ba1ca37e 680 struct nvme_command cmnd;
ebe6d874 681 blk_status_t ret;
e1e5e564 682
f9d03f96 683 ret = nvme_setup_cmd(ns, req, &cmnd);
fc17b653 684 if (ret)
f4800d6d 685 return ret;
a4aea562 686
b131c61d 687 ret = nvme_init_iod(req, dev);
fc17b653 688 if (ret)
f9d03f96 689 goto out_free_cmd;
a4aea562 690
fc17b653 691 if (blk_rq_nr_phys_segments(req)) {
b131c61d 692 ret = nvme_map_data(dev, req, &cmnd);
fc17b653
CH
693 if (ret)
694 goto out_cleanup_iod;
695 }
a4aea562 696
aae239e1 697 blk_mq_start_request(req);
a4aea562 698
ba1ca37e 699 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 700 if (unlikely(nvmeq->cq_vector < 0)) {
fc17b653 701 ret = BLK_STS_IOERR;
ae1fba20 702 spin_unlock_irq(&nvmeq->q_lock);
f9d03f96 703 goto out_cleanup_iod;
ae1fba20 704 }
ba1ca37e 705 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
706 nvme_process_cq(nvmeq);
707 spin_unlock_irq(&nvmeq->q_lock);
fc17b653 708 return BLK_STS_OK;
f9d03f96 709out_cleanup_iod:
f4800d6d 710 nvme_free_iod(dev, req);
f9d03f96
CH
711out_free_cmd:
712 nvme_cleanup_cmd(req);
ba1ca37e 713 return ret;
b60503ba 714}
e1e5e564 715
77f02a7a 716static void nvme_pci_complete_rq(struct request *req)
eee417b0 717{
f4800d6d 718 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562 719
77f02a7a
CH
720 nvme_unmap_data(iod->nvmeq->dev, req);
721 nvme_complete_rq(req);
b60503ba
MW
722}
723
d783e0bd
MR
724/* We read the CQE phase first to check if the rest of the entry is valid */
725static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
726 u16 phase)
727{
728 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
729}
730
eb281c82
SG
731static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
732{
733 u16 head = nvmeq->cq_head;
734
735 if (likely(nvmeq->cq_vector >= 0)) {
736 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
737 nvmeq->dbbuf_cq_ei))
738 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
739 }
740}
741
83a12fb7
SG
742static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
743 struct nvme_completion *cqe)
744{
745 struct request *req;
746
747 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
748 dev_warn(nvmeq->dev->ctrl.device,
749 "invalid id %d completed on queue %d\n",
750 cqe->command_id, le16_to_cpu(cqe->sq_id));
751 return;
752 }
753
754 /*
755 * AEN requests are special as they don't time out and can
756 * survive any kind of queue freeze and often don't respond to
757 * aborts. We don't even bother to allocate a struct request
758 * for them but rather special case them here.
759 */
760 if (unlikely(nvmeq->qid == 0 &&
761 cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
762 nvme_complete_async_event(&nvmeq->dev->ctrl,
763 cqe->status, &cqe->result);
764 return;
765 }
766
767 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
768 nvme_end_request(req, cqe->status, cqe->result);
769}
770
920d13a8
SG
771static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
772 struct nvme_completion *cqe)
b60503ba 773{
920d13a8
SG
774 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
775 *cqe = nvmeq->cqes[nvmeq->cq_head];
adf68f21 776
920d13a8
SG
777 if (++nvmeq->cq_head == nvmeq->q_depth) {
778 nvmeq->cq_head = 0;
779 nvmeq->cq_phase = !nvmeq->cq_phase;
b60503ba 780 }
920d13a8 781 return true;
b60503ba 782 }
920d13a8
SG
783 return false;
784}
b60503ba 785
442e19b7 786static void nvme_process_cq(struct nvme_queue *nvmeq)
920d13a8
SG
787{
788 struct nvme_completion cqe;
789 int consumed = 0;
b60503ba 790
920d13a8
SG
791 while (nvme_read_cqe(nvmeq, &cqe)) {
792 nvme_handle_cqe(nvmeq, &cqe);
793 consumed++;
920d13a8 794 }
eb281c82 795
920d13a8
SG
796 if (consumed) {
797 nvme_ring_cq_doorbell(nvmeq);
798 nvmeq->cqe_seen = 1;
799 }
a0fa9647
JA
800}
801
b60503ba 802static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
803{
804 irqreturn_t result;
805 struct nvme_queue *nvmeq = data;
806 spin_lock(&nvmeq->q_lock);
e9539f47
MW
807 nvme_process_cq(nvmeq);
808 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
809 nvmeq->cqe_seen = 0;
58ffacb5
MW
810 spin_unlock(&nvmeq->q_lock);
811 return result;
812}
813
814static irqreturn_t nvme_irq_check(int irq, void *data)
815{
816 struct nvme_queue *nvmeq = data;
d783e0bd
MR
817 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
818 return IRQ_WAKE_THREAD;
819 return IRQ_NONE;
58ffacb5
MW
820}
821
7776db1c 822static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
a0fa9647 823{
442e19b7
SG
824 struct nvme_completion cqe;
825 int found = 0, consumed = 0;
a0fa9647 826
442e19b7
SG
827 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
828 return 0;
a0fa9647 829
442e19b7
SG
830 spin_lock_irq(&nvmeq->q_lock);
831 while (nvme_read_cqe(nvmeq, &cqe)) {
832 nvme_handle_cqe(nvmeq, &cqe);
833 consumed++;
834
835 if (tag == cqe.command_id) {
836 found = 1;
837 break;
838 }
839 }
840
841 if (consumed)
842 nvme_ring_cq_doorbell(nvmeq);
843 spin_unlock_irq(&nvmeq->q_lock);
844
845 return found;
a0fa9647
JA
846}
847
7776db1c
KB
848static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
849{
850 struct nvme_queue *nvmeq = hctx->driver_data;
851
852 return __nvme_poll(nvmeq, tag);
853}
854
f866fc42 855static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 856{
f866fc42 857 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 858 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 859 struct nvme_command c;
b60503ba 860
a4aea562
MB
861 memset(&c, 0, sizeof(c));
862 c.common.opcode = nvme_admin_async_event;
f866fc42 863 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 864
9396dec9 865 spin_lock_irq(&nvmeq->q_lock);
f866fc42 866 __nvme_submit_cmd(nvmeq, &c);
9396dec9 867 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
868}
869
b60503ba 870static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 871{
b60503ba
MW
872 struct nvme_command c;
873
874 memset(&c, 0, sizeof(c));
875 c.delete_queue.opcode = opcode;
876 c.delete_queue.qid = cpu_to_le16(id);
877
1c63dc66 878 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
879}
880
b60503ba
MW
881static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
882 struct nvme_queue *nvmeq)
883{
b60503ba
MW
884 struct nvme_command c;
885 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
886
d29ec824
CH
887 /*
888 * Note: we (ab)use the fact the the prp fields survive if no data
889 * is attached to the request.
890 */
b60503ba
MW
891 memset(&c, 0, sizeof(c));
892 c.create_cq.opcode = nvme_admin_create_cq;
893 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
894 c.create_cq.cqid = cpu_to_le16(qid);
895 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
896 c.create_cq.cq_flags = cpu_to_le16(flags);
897 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
898
1c63dc66 899 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
900}
901
902static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
903 struct nvme_queue *nvmeq)
904{
b60503ba 905 struct nvme_command c;
81c1cd98 906 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 907
d29ec824
CH
908 /*
909 * Note: we (ab)use the fact the the prp fields survive if no data
910 * is attached to the request.
911 */
b60503ba
MW
912 memset(&c, 0, sizeof(c));
913 c.create_sq.opcode = nvme_admin_create_sq;
914 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
915 c.create_sq.sqid = cpu_to_le16(qid);
916 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
917 c.create_sq.sq_flags = cpu_to_le16(flags);
918 c.create_sq.cqid = cpu_to_le16(qid);
919
1c63dc66 920 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
921}
922
923static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
924{
925 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
926}
927
928static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
929{
930 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
931}
932
2a842aca 933static void abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 934{
f4800d6d
CH
935 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
936 struct nvme_queue *nvmeq = iod->nvmeq;
e44ac588 937
27fa9bc5
CH
938 dev_warn(nvmeq->dev->ctrl.device,
939 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 940 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 941 blk_mq_free_request(req);
bc5fc7e4
MW
942}
943
b2a0eb1a
KB
944static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
945{
946
947 /* If true, indicates loss of adapter communication, possibly by a
948 * NVMe Subsystem reset.
949 */
950 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
951
952 /* If there is a reset ongoing, we shouldn't reset again. */
953 if (dev->ctrl.state == NVME_CTRL_RESETTING)
954 return false;
955
956 /* We shouldn't reset unless the controller is on fatal error state
957 * _or_ if we lost the communication with it.
958 */
959 if (!(csts & NVME_CSTS_CFS) && !nssro)
960 return false;
961
962 /* If PCI error recovery process is happening, we cannot reset or
963 * the recovery mechanism will surely fail.
964 */
965 if (pci_channel_offline(to_pci_dev(dev->dev)))
966 return false;
967
968 return true;
969}
970
971static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
972{
973 /* Read a config register to help see what died. */
974 u16 pci_status;
975 int result;
976
977 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
978 &pci_status);
979 if (result == PCIBIOS_SUCCESSFUL)
980 dev_warn(dev->ctrl.device,
981 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
982 csts, pci_status);
983 else
984 dev_warn(dev->ctrl.device,
985 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
986 csts, result);
987}
988
31c7c7d2 989static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 990{
f4800d6d
CH
991 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
992 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 993 struct nvme_dev *dev = nvmeq->dev;
a4aea562 994 struct request *abort_req;
a4aea562 995 struct nvme_command cmd;
b2a0eb1a
KB
996 u32 csts = readl(dev->bar + NVME_REG_CSTS);
997
998 /*
999 * Reset immediately if the controller is failed
1000 */
1001 if (nvme_should_reset(dev, csts)) {
1002 nvme_warn_reset(dev, csts);
1003 nvme_dev_disable(dev, false);
d86c4d8e 1004 nvme_reset_ctrl(&dev->ctrl);
b2a0eb1a
KB
1005 return BLK_EH_HANDLED;
1006 }
c30341dc 1007
7776db1c
KB
1008 /*
1009 * Did we miss an interrupt?
1010 */
1011 if (__nvme_poll(nvmeq, req->tag)) {
1012 dev_warn(dev->ctrl.device,
1013 "I/O %d QID %d timeout, completion polled\n",
1014 req->tag, nvmeq->qid);
1015 return BLK_EH_HANDLED;
1016 }
1017
31c7c7d2 1018 /*
fd634f41
CH
1019 * Shutdown immediately if controller times out while starting. The
1020 * reset work will see the pci device disabled when it gets the forced
1021 * cancellation error. All outstanding requests are completed on
1022 * shutdown, so we return BLK_EH_HANDLED.
1023 */
bb8d261e 1024 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 1025 dev_warn(dev->ctrl.device,
fd634f41
CH
1026 "I/O %d QID %d timeout, disable controller\n",
1027 req->tag, nvmeq->qid);
a5cdb68c 1028 nvme_dev_disable(dev, false);
27fa9bc5 1029 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
fd634f41 1030 return BLK_EH_HANDLED;
c30341dc
KB
1031 }
1032
fd634f41
CH
1033 /*
1034 * Shutdown the controller immediately and schedule a reset if the
1035 * command was already aborted once before and still hasn't been
1036 * returned to the driver, or if this is the admin queue.
31c7c7d2 1037 */
f4800d6d 1038 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1039 dev_warn(dev->ctrl.device,
e1569a16
KB
1040 "I/O %d QID %d timeout, reset controller\n",
1041 req->tag, nvmeq->qid);
a5cdb68c 1042 nvme_dev_disable(dev, false);
d86c4d8e 1043 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1044
e1569a16
KB
1045 /*
1046 * Mark the request as handled, since the inline shutdown
1047 * forces all outstanding requests to complete.
1048 */
27fa9bc5 1049 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
e1569a16 1050 return BLK_EH_HANDLED;
c30341dc 1051 }
c30341dc 1052
e7a2a87d 1053 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1054 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1055 return BLK_EH_RESET_TIMER;
6bf25d16 1056 }
7bf7d778 1057 iod->aborted = 1;
a4aea562 1058
c30341dc
KB
1059 memset(&cmd, 0, sizeof(cmd));
1060 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1061 cmd.abort.cid = req->tag;
c30341dc 1062 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1063
1b3c47c1
SG
1064 dev_warn(nvmeq->dev->ctrl.device,
1065 "I/O %d QID %d timeout, aborting\n",
1066 req->tag, nvmeq->qid);
e7a2a87d
CH
1067
1068 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 1069 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
1070 if (IS_ERR(abort_req)) {
1071 atomic_inc(&dev->ctrl.abort_limit);
1072 return BLK_EH_RESET_TIMER;
1073 }
1074
1075 abort_req->timeout = ADMIN_TIMEOUT;
1076 abort_req->end_io_data = NULL;
1077 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1078
31c7c7d2
CH
1079 /*
1080 * The aborted req will be completed on receiving the abort req.
1081 * We enable the timer again. If hit twice, it'll cause a device reset,
1082 * as the device then is in a faulty state.
1083 */
1084 return BLK_EH_RESET_TIMER;
c30341dc
KB
1085}
1086
a4aea562
MB
1087static void nvme_free_queue(struct nvme_queue *nvmeq)
1088{
9e866774
MW
1089 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1090 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1091 if (nvmeq->sq_cmds)
1092 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1093 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1094 kfree(nvmeq);
1095}
1096
a1a5ef99 1097static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1098{
1099 int i;
1100
d858e5f0 1101 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
a4aea562 1102 struct nvme_queue *nvmeq = dev->queues[i];
d858e5f0 1103 dev->ctrl.queue_count--;
a4aea562 1104 dev->queues[i] = NULL;
f435c282 1105 nvme_free_queue(nvmeq);
121c7ad4 1106 }
22404274
KB
1107}
1108
4d115420
KB
1109/**
1110 * nvme_suspend_queue - put queue into suspended state
1111 * @nvmeq - queue to suspend
4d115420
KB
1112 */
1113static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1114{
2b25d981 1115 int vector;
b60503ba 1116
a09115b2 1117 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1118 if (nvmeq->cq_vector == -1) {
1119 spin_unlock_irq(&nvmeq->q_lock);
1120 return 1;
1121 }
0ff199cb 1122 vector = nvmeq->cq_vector;
42f61420 1123 nvmeq->dev->online_queues--;
2b25d981 1124 nvmeq->cq_vector = -1;
a09115b2
MW
1125 spin_unlock_irq(&nvmeq->q_lock);
1126
1c63dc66 1127 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
c81545f9 1128 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1129
0ff199cb 1130 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
b60503ba 1131
4d115420
KB
1132 return 0;
1133}
b60503ba 1134
a5cdb68c 1135static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1136{
a5cdb68c 1137 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
1138
1139 if (!nvmeq)
1140 return;
1141 if (nvme_suspend_queue(nvmeq))
1142 return;
1143
a5cdb68c
KB
1144 if (shutdown)
1145 nvme_shutdown_ctrl(&dev->ctrl);
1146 else
20d0dfe6 1147 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
07836e65
KB
1148
1149 spin_lock_irq(&nvmeq->q_lock);
1150 nvme_process_cq(nvmeq);
1151 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1152}
1153
8ffaadf7
JD
1154static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1155 int entry_size)
1156{
1157 int q_depth = dev->q_depth;
5fd4ce1b
CH
1158 unsigned q_size_aligned = roundup(q_depth * entry_size,
1159 dev->ctrl.page_size);
8ffaadf7
JD
1160
1161 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1162 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1163 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1164 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1165
1166 /*
1167 * Ensure the reduced q_depth is above some threshold where it
1168 * would be better to map queues in system memory with the
1169 * original depth
1170 */
1171 if (q_depth < 64)
1172 return -ENOMEM;
1173 }
1174
1175 return q_depth;
1176}
1177
1178static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1179 int qid, int depth)
1180{
1181 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1182 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1183 dev->ctrl.page_size);
8ffaadf7
JD
1184 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1185 nvmeq->sq_cmds_io = dev->cmb + offset;
1186 } else {
1187 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1188 &nvmeq->sq_dma_addr, GFP_KERNEL);
1189 if (!nvmeq->sq_cmds)
1190 return -ENOMEM;
1191 }
1192
1193 return 0;
1194}
1195
b60503ba 1196static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
d3af3ecd 1197 int depth, int node)
b60503ba 1198{
d3af3ecd
SL
1199 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1200 node);
b60503ba
MW
1201 if (!nvmeq)
1202 return NULL;
1203
e75ec752 1204 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1205 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1206 if (!nvmeq->cqes)
1207 goto free_nvmeq;
b60503ba 1208
8ffaadf7 1209 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1210 goto free_cqdma;
1211
e75ec752 1212 nvmeq->q_dmadev = dev->dev;
091b6092 1213 nvmeq->dev = dev;
b60503ba
MW
1214 spin_lock_init(&nvmeq->q_lock);
1215 nvmeq->cq_head = 0;
82123460 1216 nvmeq->cq_phase = 1;
b80d5ccc 1217 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1218 nvmeq->q_depth = depth;
c30341dc 1219 nvmeq->qid = qid;
758dd7fd 1220 nvmeq->cq_vector = -1;
a4aea562 1221 dev->queues[qid] = nvmeq;
d858e5f0 1222 dev->ctrl.queue_count++;
36a7e993 1223
b60503ba
MW
1224 return nvmeq;
1225
1226 free_cqdma:
e75ec752 1227 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1228 nvmeq->cq_dma_addr);
1229 free_nvmeq:
1230 kfree(nvmeq);
1231 return NULL;
1232}
1233
dca51e78 1234static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1235{
0ff199cb
CH
1236 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1237 int nr = nvmeq->dev->ctrl.instance;
1238
1239 if (use_threaded_interrupts) {
1240 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1241 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1242 } else {
1243 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1244 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1245 }
3001082c
MW
1246}
1247
22404274 1248static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1249{
22404274 1250 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1251
7be50e93 1252 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1253 nvmeq->sq_tail = 0;
1254 nvmeq->cq_head = 0;
1255 nvmeq->cq_phase = 1;
b80d5ccc 1256 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1257 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
f9f38e33 1258 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1259 dev->online_queues++;
7be50e93 1260 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1261}
1262
1263static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1264{
1265 struct nvme_dev *dev = nvmeq->dev;
1266 int result;
3f85d50b 1267
2b25d981 1268 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1269 result = adapter_alloc_cq(dev, qid, nvmeq);
1270 if (result < 0)
22404274 1271 return result;
b60503ba
MW
1272
1273 result = adapter_alloc_sq(dev, qid, nvmeq);
1274 if (result < 0)
1275 goto release_cq;
1276
dca51e78 1277 result = queue_request_irq(nvmeq);
b60503ba
MW
1278 if (result < 0)
1279 goto release_sq;
1280
22404274 1281 nvme_init_queue(nvmeq, qid);
22404274 1282 return result;
b60503ba
MW
1283
1284 release_sq:
1285 adapter_delete_sq(dev, qid);
1286 release_cq:
1287 adapter_delete_cq(dev, qid);
22404274 1288 return result;
b60503ba
MW
1289}
1290
f363b089 1291static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1292 .queue_rq = nvme_queue_rq,
77f02a7a 1293 .complete = nvme_pci_complete_rq,
a4aea562 1294 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1295 .exit_hctx = nvme_admin_exit_hctx,
0350815a 1296 .init_request = nvme_init_request,
a4aea562
MB
1297 .timeout = nvme_timeout,
1298};
1299
f363b089 1300static const struct blk_mq_ops nvme_mq_ops = {
a4aea562 1301 .queue_rq = nvme_queue_rq,
77f02a7a 1302 .complete = nvme_pci_complete_rq,
a4aea562
MB
1303 .init_hctx = nvme_init_hctx,
1304 .init_request = nvme_init_request,
dca51e78 1305 .map_queues = nvme_pci_map_queues,
a4aea562 1306 .timeout = nvme_timeout,
a0fa9647 1307 .poll = nvme_poll,
a4aea562
MB
1308};
1309
ea191d2f
KB
1310static void nvme_dev_remove_admin(struct nvme_dev *dev)
1311{
1c63dc66 1312 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1313 /*
1314 * If the controller was reset during removal, it's possible
1315 * user requests may be waiting on a stopped queue. Start the
1316 * queue to flush these to completion.
1317 */
c81545f9 1318 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1c63dc66 1319 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1320 blk_mq_free_tag_set(&dev->admin_tagset);
1321 }
1322}
1323
a4aea562
MB
1324static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1325{
1c63dc66 1326 if (!dev->ctrl.admin_q) {
a4aea562
MB
1327 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1328 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1329
1330 /*
1331 * Subtract one to leave an empty queue entry for 'Full Queue'
1332 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1333 */
1334 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1335 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1336 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1337 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
d3484991 1338 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1339 dev->admin_tagset.driver_data = dev;
1340
1341 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1342 return -ENOMEM;
1343
1c63dc66
CH
1344 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1345 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1346 blk_mq_free_tag_set(&dev->admin_tagset);
1347 return -ENOMEM;
1348 }
1c63dc66 1349 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1350 nvme_dev_remove_admin(dev);
1c63dc66 1351 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1352 return -ENODEV;
1353 }
0fb59cbc 1354 } else
c81545f9 1355 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
a4aea562
MB
1356
1357 return 0;
1358}
1359
97f6ef64
XY
1360static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1361{
1362 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1363}
1364
1365static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1366{
1367 struct pci_dev *pdev = to_pci_dev(dev->dev);
1368
1369 if (size <= dev->bar_mapped_size)
1370 return 0;
1371 if (size > pci_resource_len(pdev, 0))
1372 return -ENOMEM;
1373 if (dev->bar)
1374 iounmap(dev->bar);
1375 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1376 if (!dev->bar) {
1377 dev->bar_mapped_size = 0;
1378 return -ENOMEM;
1379 }
1380 dev->bar_mapped_size = size;
1381 dev->dbs = dev->bar + NVME_REG_DBS;
1382
1383 return 0;
1384}
1385
01ad0990 1386static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1387{
ba47e386 1388 int result;
b60503ba
MW
1389 u32 aqa;
1390 struct nvme_queue *nvmeq;
1391
97f6ef64
XY
1392 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1393 if (result < 0)
1394 return result;
1395
8ef2074d 1396 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
20d0dfe6 1397 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
dfbac8c7 1398
7a67cbea
CH
1399 if (dev->subsystem &&
1400 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1401 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1402
20d0dfe6 1403 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
ba47e386
MW
1404 if (result < 0)
1405 return result;
b60503ba 1406
a4aea562 1407 nvmeq = dev->queues[0];
cd638946 1408 if (!nvmeq) {
d3af3ecd
SL
1409 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1410 dev_to_node(dev->dev));
cd638946
KB
1411 if (!nvmeq)
1412 return -ENOMEM;
cd638946 1413 }
b60503ba
MW
1414
1415 aqa = nvmeq->q_depth - 1;
1416 aqa |= aqa << 16;
1417
7a67cbea
CH
1418 writel(aqa, dev->bar + NVME_REG_AQA);
1419 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1420 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1421
20d0dfe6 1422 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
025c557a 1423 if (result)
d4875622 1424 return result;
a4aea562 1425
2b25d981 1426 nvmeq->cq_vector = 0;
dca51e78 1427 result = queue_request_irq(nvmeq);
758dd7fd
JD
1428 if (result) {
1429 nvmeq->cq_vector = -1;
d4875622 1430 return result;
758dd7fd 1431 }
025c557a 1432
b60503ba
MW
1433 return result;
1434}
1435
749941f2 1436static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1437{
949928c1 1438 unsigned i, max;
749941f2 1439 int ret = 0;
42f61420 1440
d858e5f0 1441 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
d3af3ecd
SL
1442 /* vector == qid - 1, match nvme_create_queue */
1443 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1444 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
749941f2 1445 ret = -ENOMEM;
42f61420 1446 break;
749941f2
CH
1447 }
1448 }
42f61420 1449
d858e5f0 1450 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
949928c1 1451 for (i = dev->online_queues; i <= max; i++) {
749941f2 1452 ret = nvme_create_queue(dev->queues[i], i);
d4875622 1453 if (ret)
42f61420 1454 break;
27e8166c 1455 }
749941f2
CH
1456
1457 /*
1458 * Ignore failing Create SQ/CQ commands, we can continue with less
1459 * than the desired aount of queues, and even a controller without
1460 * I/O queues an still be used to issue admin commands. This might
1461 * be useful to upgrade a buggy firmware for example.
1462 */
1463 return ret >= 0 ? 0 : ret;
b60503ba
MW
1464}
1465
202021c1
SB
1466static ssize_t nvme_cmb_show(struct device *dev,
1467 struct device_attribute *attr,
1468 char *buf)
1469{
1470 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1471
c965809c 1472 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1473 ndev->cmbloc, ndev->cmbsz);
1474}
1475static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1476
8ffaadf7
JD
1477static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1478{
1479 u64 szu, size, offset;
8ffaadf7
JD
1480 resource_size_t bar_size;
1481 struct pci_dev *pdev = to_pci_dev(dev->dev);
1482 void __iomem *cmb;
1483 dma_addr_t dma_addr;
1484
7a67cbea 1485 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1486 if (!(NVME_CMB_SZ(dev->cmbsz)))
1487 return NULL;
202021c1 1488 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1489
202021c1
SB
1490 if (!use_cmb_sqes)
1491 return NULL;
8ffaadf7
JD
1492
1493 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1494 size = szu * NVME_CMB_SZ(dev->cmbsz);
202021c1
SB
1495 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1496 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
8ffaadf7
JD
1497
1498 if (offset > bar_size)
1499 return NULL;
1500
1501 /*
1502 * Controllers may support a CMB size larger than their BAR,
1503 * for example, due to being behind a bridge. Reduce the CMB to
1504 * the reported size of the BAR
1505 */
1506 if (size > bar_size - offset)
1507 size = bar_size - offset;
1508
202021c1 1509 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
8ffaadf7
JD
1510 cmb = ioremap_wc(dma_addr, size);
1511 if (!cmb)
1512 return NULL;
1513
1514 dev->cmb_dma_addr = dma_addr;
1515 dev->cmb_size = size;
1516 return cmb;
1517}
1518
1519static inline void nvme_release_cmb(struct nvme_dev *dev)
1520{
1521 if (dev->cmb) {
1522 iounmap(dev->cmb);
1523 dev->cmb = NULL;
f63572df
JD
1524 if (dev->cmbsz) {
1525 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1526 &dev_attr_cmb.attr, NULL);
1527 dev->cmbsz = 0;
1528 }
8ffaadf7
JD
1529 }
1530}
1531
87ad72a5
CH
1532static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1533{
1534 size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1535 struct nvme_command c;
1536 u64 dma_addr;
1537 int ret;
1538
1539 dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1540 DMA_TO_DEVICE);
1541 if (dma_mapping_error(dev->dev, dma_addr))
1542 return -ENOMEM;
1543
1544 memset(&c, 0, sizeof(c));
1545 c.features.opcode = nvme_admin_set_features;
1546 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1547 c.features.dword11 = cpu_to_le32(bits);
1548 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1549 ilog2(dev->ctrl.page_size));
1550 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1551 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1552 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1553
1554 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1555 if (ret) {
1556 dev_warn(dev->ctrl.device,
1557 "failed to set host mem (err %d, flags %#x).\n",
1558 ret, bits);
1559 }
1560 dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1561 return ret;
1562}
1563
1564static void nvme_free_host_mem(struct nvme_dev *dev)
1565{
1566 int i;
1567
1568 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1569 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1570 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1571
1572 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1573 le64_to_cpu(desc->addr));
1574 }
1575
1576 kfree(dev->host_mem_desc_bufs);
1577 dev->host_mem_desc_bufs = NULL;
1578 kfree(dev->host_mem_descs);
1579 dev->host_mem_descs = NULL;
1580}
1581
1582static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1583{
1584 struct nvme_host_mem_buf_desc *descs;
1585 u32 chunk_size, max_entries, i = 0;
1586 void **bufs;
1587 u64 size, tmp;
1588
1589 /* start big and work our way down */
1590 chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1591retry:
1592 tmp = (preferred + chunk_size - 1);
1593 do_div(tmp, chunk_size);
1594 max_entries = tmp;
1595 descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1596 if (!descs)
1597 goto out;
1598
1599 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1600 if (!bufs)
1601 goto out_free_descs;
1602
1603 for (size = 0; size < preferred; size += chunk_size) {
1604 u32 len = min_t(u64, chunk_size, preferred - size);
1605 dma_addr_t dma_addr;
1606
1607 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1608 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1609 if (!bufs[i])
1610 break;
1611
1612 descs[i].addr = cpu_to_le64(dma_addr);
1613 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1614 i++;
1615 }
1616
1617 if (!size || (min && size < min)) {
1618 dev_warn(dev->ctrl.device,
1619 "failed to allocate host memory buffer.\n");
1620 goto out_free_bufs;
1621 }
1622
1623 dev_info(dev->ctrl.device,
1624 "allocated %lld MiB host memory buffer.\n",
1625 size >> ilog2(SZ_1M));
1626 dev->nr_host_mem_descs = i;
1627 dev->host_mem_size = size;
1628 dev->host_mem_descs = descs;
1629 dev->host_mem_desc_bufs = bufs;
1630 return 0;
1631
1632out_free_bufs:
1633 while (--i >= 0) {
1634 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1635
1636 dma_free_coherent(dev->dev, size, bufs[i],
1637 le64_to_cpu(descs[i].addr));
1638 }
1639
1640 kfree(bufs);
1641out_free_descs:
1642 kfree(descs);
1643out:
1644 /* try a smaller chunk size if we failed early */
1645 if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1646 chunk_size /= 2;
1647 goto retry;
1648 }
1649 dev->host_mem_descs = NULL;
1650 return -ENOMEM;
1651}
1652
1653static void nvme_setup_host_mem(struct nvme_dev *dev)
1654{
1655 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1656 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1657 u64 min = (u64)dev->ctrl.hmmin * 4096;
1658 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1659
1660 preferred = min(preferred, max);
1661 if (min > max) {
1662 dev_warn(dev->ctrl.device,
1663 "min host memory (%lld MiB) above limit (%d MiB).\n",
1664 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1665 nvme_free_host_mem(dev);
1666 return;
1667 }
1668
1669 /*
1670 * If we already have a buffer allocated check if we can reuse it.
1671 */
1672 if (dev->host_mem_descs) {
1673 if (dev->host_mem_size >= min)
1674 enable_bits |= NVME_HOST_MEM_RETURN;
1675 else
1676 nvme_free_host_mem(dev);
1677 }
1678
1679 if (!dev->host_mem_descs) {
1680 if (nvme_alloc_host_mem(dev, min, preferred))
1681 return;
1682 }
1683
1684 if (nvme_set_host_mem(dev, enable_bits))
1685 nvme_free_host_mem(dev);
1686}
1687
8d85fce7 1688static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1689{
a4aea562 1690 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1691 struct pci_dev *pdev = to_pci_dev(dev->dev);
97f6ef64
XY
1692 int result, nr_io_queues;
1693 unsigned long size;
b60503ba 1694
2800b8e7 1695 nr_io_queues = num_online_cpus();
9a0be7ab
CH
1696 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1697 if (result < 0)
1b23484b 1698 return result;
9a0be7ab 1699
f5fa90dc 1700 if (nr_io_queues == 0)
a5229050 1701 return 0;
b60503ba 1702
8ffaadf7
JD
1703 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1704 result = nvme_cmb_qdepth(dev, nr_io_queues,
1705 sizeof(struct nvme_command));
1706 if (result > 0)
1707 dev->q_depth = result;
1708 else
1709 nvme_release_cmb(dev);
1710 }
1711
97f6ef64
XY
1712 do {
1713 size = db_bar_size(dev, nr_io_queues);
1714 result = nvme_remap_bar(dev, size);
1715 if (!result)
1716 break;
1717 if (!--nr_io_queues)
1718 return -ENOMEM;
1719 } while (1);
1720 adminq->q_db = dev->dbs;
f1938f6e 1721
9d713c2b 1722 /* Deregister the admin queue's interrupt */
0ff199cb 1723 pci_free_irq(pdev, 0, adminq);
9d713c2b 1724
e32efbfc
JA
1725 /*
1726 * If we enable msix early due to not intx, disable it again before
1727 * setting up the full range we need.
1728 */
dca51e78
CH
1729 pci_free_irq_vectors(pdev);
1730 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1731 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1732 if (nr_io_queues <= 0)
1733 return -EIO;
1734 dev->max_qid = nr_io_queues;
fa08a396 1735
063a8096
MW
1736 /*
1737 * Should investigate if there's a performance win from allocating
1738 * more queues than interrupt vectors; it might allow the submission
1739 * path to scale better, even if the receive path is limited by the
1740 * number of interrupts.
1741 */
063a8096 1742
dca51e78 1743 result = queue_request_irq(adminq);
758dd7fd
JD
1744 if (result) {
1745 adminq->cq_vector = -1;
d4875622 1746 return result;
758dd7fd 1747 }
749941f2 1748 return nvme_create_io_queues(dev);
b60503ba
MW
1749}
1750
2a842aca 1751static void nvme_del_queue_end(struct request *req, blk_status_t error)
a5768aa8 1752{
db3cbfff 1753 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1754
db3cbfff
KB
1755 blk_mq_free_request(req);
1756 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1757}
1758
2a842aca 1759static void nvme_del_cq_end(struct request *req, blk_status_t error)
a5768aa8 1760{
db3cbfff 1761 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1762
db3cbfff
KB
1763 if (!error) {
1764 unsigned long flags;
1765
2e39e0f6
ML
1766 /*
1767 * We might be called with the AQ q_lock held
1768 * and the I/O queue q_lock should always
1769 * nest inside the AQ one.
1770 */
1771 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1772 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1773 nvme_process_cq(nvmeq);
1774 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1775 }
db3cbfff
KB
1776
1777 nvme_del_queue_end(req, error);
a5768aa8
KB
1778}
1779
db3cbfff 1780static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1781{
db3cbfff
KB
1782 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1783 struct request *req;
1784 struct nvme_command cmd;
bda4e0fb 1785
db3cbfff
KB
1786 memset(&cmd, 0, sizeof(cmd));
1787 cmd.delete_queue.opcode = opcode;
1788 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1789
eb71f435 1790 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1791 if (IS_ERR(req))
1792 return PTR_ERR(req);
bda4e0fb 1793
db3cbfff
KB
1794 req->timeout = ADMIN_TIMEOUT;
1795 req->end_io_data = nvmeq;
1796
1797 blk_execute_rq_nowait(q, NULL, req, false,
1798 opcode == nvme_admin_delete_cq ?
1799 nvme_del_cq_end : nvme_del_queue_end);
1800 return 0;
bda4e0fb
KB
1801}
1802
70659060 1803static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
a5768aa8 1804{
70659060 1805 int pass;
db3cbfff
KB
1806 unsigned long timeout;
1807 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1808
db3cbfff 1809 for (pass = 0; pass < 2; pass++) {
014a0d60 1810 int sent = 0, i = queues;
db3cbfff
KB
1811
1812 reinit_completion(&dev->ioq_wait);
1813 retry:
1814 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1815 for (; i > 0; i--, sent++)
1816 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1817 break;
c21377f8 1818
db3cbfff
KB
1819 while (sent--) {
1820 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1821 if (timeout == 0)
1822 return;
1823 if (i)
1824 goto retry;
1825 }
1826 opcode = nvme_admin_delete_cq;
1827 }
a5768aa8
KB
1828}
1829
422ef0c7
MW
1830/*
1831 * Return: error value if an error occurred setting up the queues or calling
1832 * Identify Device. 0 if these succeeded, even if adding some of the
1833 * namespaces failed. At the moment, these failures are silent. TBD which
1834 * failures should be reported.
1835 */
8d85fce7 1836static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1837{
5bae7f73 1838 if (!dev->ctrl.tagset) {
ffe7704d
KB
1839 dev->tagset.ops = &nvme_mq_ops;
1840 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1841 dev->tagset.timeout = NVME_IO_TIMEOUT;
1842 dev->tagset.numa_node = dev_to_node(dev->dev);
1843 dev->tagset.queue_depth =
a4aea562 1844 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1845 dev->tagset.cmd_size = nvme_cmd_size(dev);
1846 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1847 dev->tagset.driver_data = dev;
b60503ba 1848
ffe7704d
KB
1849 if (blk_mq_alloc_tag_set(&dev->tagset))
1850 return 0;
5bae7f73 1851 dev->ctrl.tagset = &dev->tagset;
f9f38e33
HK
1852
1853 nvme_dbbuf_set(dev);
949928c1
KB
1854 } else {
1855 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1856
1857 /* Free previously allocated queues that are no longer usable */
1858 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1859 }
949928c1 1860
e1e5e564 1861 return 0;
b60503ba
MW
1862}
1863
b00a726a 1864static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1865{
b00a726a 1866 int result = -ENOMEM;
e75ec752 1867 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1868
1869 if (pci_enable_device_mem(pdev))
1870 return result;
1871
0877cb0d 1872 pci_set_master(pdev);
0877cb0d 1873
e75ec752
CH
1874 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1875 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1876 goto disable;
0877cb0d 1877
7a67cbea 1878 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1879 result = -ENODEV;
b00a726a 1880 goto disable;
0e53d180 1881 }
e32efbfc
JA
1882
1883 /*
a5229050
KB
1884 * Some devices and/or platforms don't advertise or work with INTx
1885 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1886 * adjust this later.
e32efbfc 1887 */
dca51e78
CH
1888 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1889 if (result < 0)
1890 return result;
e32efbfc 1891
20d0dfe6 1892 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
7a67cbea 1893
20d0dfe6
SG
1894 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
1895 NVME_Q_DEPTH);
1896 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
7a67cbea 1897 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1898
1899 /*
1900 * Temporary fix for the Apple controller found in the MacBook8,1 and
1901 * some MacBook7,1 to avoid controller resets and data loss.
1902 */
1903 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1904 dev->q_depth = 2;
9bdcfb10
CH
1905 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1906 "set queue depth=%u to work around controller resets\n",
1f390c1f 1907 dev->q_depth);
d554b5e1
MP
1908 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1909 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
20d0dfe6 1910 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
d554b5e1
MP
1911 dev->q_depth = 64;
1912 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1913 "set queue depth=%u\n", dev->q_depth);
1f390c1f
SG
1914 }
1915
202021c1
SB
1916 /*
1917 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1918 * populate sysfs if a CMB is implemented. Note that we add the
1919 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1920 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1921 * NULL as final argument to sysfs_add_file_to_group.
1922 */
1923
8ef2074d 1924 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
8ffaadf7 1925 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1926
202021c1
SB
1927 if (dev->cmbsz) {
1928 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1929 &dev_attr_cmb.attr, NULL))
9bdcfb10 1930 dev_warn(dev->ctrl.device,
202021c1
SB
1931 "failed to add sysfs attribute for CMB\n");
1932 }
1933 }
1934
a0a3408e
KB
1935 pci_enable_pcie_error_reporting(pdev);
1936 pci_save_state(pdev);
0877cb0d
KB
1937 return 0;
1938
1939 disable:
0877cb0d
KB
1940 pci_disable_device(pdev);
1941 return result;
1942}
1943
1944static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1945{
1946 if (dev->bar)
1947 iounmap(dev->bar);
a1f447b3 1948 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1949}
1950
1951static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1952{
e75ec752
CH
1953 struct pci_dev *pdev = to_pci_dev(dev->dev);
1954
f63572df 1955 nvme_release_cmb(dev);
dca51e78 1956 pci_free_irq_vectors(pdev);
0877cb0d 1957
a0a3408e
KB
1958 if (pci_is_enabled(pdev)) {
1959 pci_disable_pcie_error_reporting(pdev);
e75ec752 1960 pci_disable_device(pdev);
4d115420 1961 }
4d115420
KB
1962}
1963
a5cdb68c 1964static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1965{
70659060 1966 int i, queues;
302ad8cc
KB
1967 bool dead = true;
1968 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 1969
77bf25ea 1970 mutex_lock(&dev->shutdown_lock);
302ad8cc
KB
1971 if (pci_is_enabled(pdev)) {
1972 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1973
1974 if (dev->ctrl.state == NVME_CTRL_LIVE)
1975 nvme_start_freeze(&dev->ctrl);
1976 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1977 pdev->error_state != pci_channel_io_normal);
c9d3bf88 1978 }
c21377f8 1979
302ad8cc
KB
1980 /*
1981 * Give the controller a chance to complete all entered requests if
1982 * doing a safe shutdown.
1983 */
87ad72a5
CH
1984 if (!dead) {
1985 if (shutdown)
1986 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1987
1988 /*
1989 * If the controller is still alive tell it to stop using the
1990 * host memory buffer. In theory the shutdown / reset should
1991 * make sure that it doesn't access the host memoery anymore,
1992 * but I'd rather be safe than sorry..
1993 */
1994 if (dev->host_mem_descs)
1995 nvme_set_host_mem(dev, 0);
1996
1997 }
302ad8cc
KB
1998 nvme_stop_queues(&dev->ctrl);
1999
70659060 2000 queues = dev->online_queues - 1;
d858e5f0 2001 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
c21377f8
GKB
2002 nvme_suspend_queue(dev->queues[i]);
2003
302ad8cc 2004 if (dead) {
82469c59
GKB
2005 /* A device might become IO incapable very soon during
2006 * probe, before the admin queue is configured. Thus,
2007 * queue_count can be 0 here.
2008 */
d858e5f0 2009 if (dev->ctrl.queue_count)
82469c59 2010 nvme_suspend_queue(dev->queues[0]);
4d115420 2011 } else {
70659060 2012 nvme_disable_io_queues(dev, queues);
a5cdb68c 2013 nvme_disable_admin_queue(dev, shutdown);
4d115420 2014 }
b00a726a 2015 nvme_pci_disable(dev);
07836e65 2016
e1958e65
ML
2017 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2018 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
302ad8cc
KB
2019
2020 /*
2021 * The driver will not be starting up queues again if shutting down so
2022 * must flush all entered requests to their failed completion to avoid
2023 * deadlocking blk-mq hot-cpu notifier.
2024 */
2025 if (shutdown)
2026 nvme_start_queues(&dev->ctrl);
77bf25ea 2027 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2028}
2029
091b6092
MW
2030static int nvme_setup_prp_pools(struct nvme_dev *dev)
2031{
e75ec752 2032 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2033 PAGE_SIZE, PAGE_SIZE, 0);
2034 if (!dev->prp_page_pool)
2035 return -ENOMEM;
2036
99802a7a 2037 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2038 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2039 256, 256, 0);
2040 if (!dev->prp_small_pool) {
2041 dma_pool_destroy(dev->prp_page_pool);
2042 return -ENOMEM;
2043 }
091b6092
MW
2044 return 0;
2045}
2046
2047static void nvme_release_prp_pools(struct nvme_dev *dev)
2048{
2049 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2050 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2051}
2052
1673f1f0 2053static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2054{
1673f1f0 2055 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2056
f9f38e33 2057 nvme_dbbuf_dma_free(dev);
e75ec752 2058 put_device(dev->dev);
4af0e21c
KB
2059 if (dev->tagset.tags)
2060 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2061 if (dev->ctrl.admin_q)
2062 blk_put_queue(dev->ctrl.admin_q);
5e82e952 2063 kfree(dev->queues);
e286bcfc 2064 free_opal_dev(dev->ctrl.opal_dev);
5e82e952
KB
2065 kfree(dev);
2066}
2067
f58944e2
KB
2068static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2069{
237045fc 2070 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
2071
2072 kref_get(&dev->ctrl.kref);
69d9a99c 2073 nvme_dev_disable(dev, false);
f58944e2
KB
2074 if (!schedule_work(&dev->remove_work))
2075 nvme_put_ctrl(&dev->ctrl);
2076}
2077
fd634f41 2078static void nvme_reset_work(struct work_struct *work)
5e82e952 2079{
d86c4d8e
CH
2080 struct nvme_dev *dev =
2081 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2082 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 2083 int result = -ENODEV;
5e82e952 2084
82b057ca 2085 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
fd634f41 2086 goto out;
5e82e952 2087
fd634f41
CH
2088 /*
2089 * If we're called to reset a live controller first shut it down before
2090 * moving on.
2091 */
b00a726a 2092 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2093 nvme_dev_disable(dev, false);
5e82e952 2094
b00a726a 2095 result = nvme_pci_enable(dev);
f0b50732 2096 if (result)
3cf519b5 2097 goto out;
f0b50732 2098
01ad0990 2099 result = nvme_pci_configure_admin_queue(dev);
f0b50732 2100 if (result)
f58944e2 2101 goto out;
f0b50732 2102
a4aea562 2103 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2104 result = nvme_alloc_admin_tags(dev);
2105 if (result)
f58944e2 2106 goto out;
b9afca3e 2107
ce4541f4
CH
2108 result = nvme_init_identify(&dev->ctrl);
2109 if (result)
f58944e2 2110 goto out;
ce4541f4 2111
e286bcfc
SB
2112 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2113 if (!dev->ctrl.opal_dev)
2114 dev->ctrl.opal_dev =
2115 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2116 else if (was_suspend)
2117 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2118 } else {
2119 free_opal_dev(dev->ctrl.opal_dev);
2120 dev->ctrl.opal_dev = NULL;
4f1244c8 2121 }
a98e58e5 2122
f9f38e33
HK
2123 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2124 result = nvme_dbbuf_dma_alloc(dev);
2125 if (result)
2126 dev_warn(dev->dev,
2127 "unable to allocate dma for dbbuf\n");
2128 }
2129
87ad72a5
CH
2130 if (dev->ctrl.hmpre)
2131 nvme_setup_host_mem(dev);
2132
f0b50732 2133 result = nvme_setup_io_queues(dev);
badc34d4 2134 if (result)
f58944e2 2135 goto out;
f0b50732 2136
2659e57b
CH
2137 /*
2138 * Keep the controller around but remove all namespaces if we don't have
2139 * any working I/O queue.
2140 */
3cf519b5 2141 if (dev->online_queues < 2) {
1b3c47c1 2142 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 2143 nvme_kill_queues(&dev->ctrl);
5bae7f73 2144 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 2145 } else {
25646264 2146 nvme_start_queues(&dev->ctrl);
302ad8cc 2147 nvme_wait_freeze(&dev->ctrl);
3cf519b5 2148 nvme_dev_add(dev);
302ad8cc 2149 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
2150 }
2151
bb8d261e
CH
2152 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2153 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2154 goto out;
2155 }
92911a55 2156
d09f2b45 2157 nvme_start_ctrl(&dev->ctrl);
3cf519b5 2158 return;
f0b50732 2159
3cf519b5 2160 out:
f58944e2 2161 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
2162}
2163
5c8809e6 2164static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2165{
5c8809e6 2166 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2167 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 2168
69d9a99c 2169 nvme_kill_queues(&dev->ctrl);
9a6b9458 2170 if (pci_get_drvdata(pdev))
921920ab 2171 device_release_driver(&pdev->dev);
1673f1f0 2172 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2173}
2174
1c63dc66 2175static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2176{
1c63dc66 2177 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2178 return 0;
9ca97374
TH
2179}
2180
5fd4ce1b 2181static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2182{
5fd4ce1b
CH
2183 writel(val, to_nvme_dev(ctrl)->bar + off);
2184 return 0;
2185}
4cc06521 2186
7fd8930f
CH
2187static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2188{
2189 *val = readq(to_nvme_dev(ctrl)->bar + off);
2190 return 0;
4cc06521
KB
2191}
2192
1c63dc66 2193static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2194 .name = "pcie",
e439bb12 2195 .module = THIS_MODULE,
c81bfba9 2196 .flags = NVME_F_METADATA_SUPPORTED,
1c63dc66 2197 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2198 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2199 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2200 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2201 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 2202};
4cc06521 2203
b00a726a
KB
2204static int nvme_dev_map(struct nvme_dev *dev)
2205{
b00a726a
KB
2206 struct pci_dev *pdev = to_pci_dev(dev->dev);
2207
a1f447b3 2208 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2209 return -ENODEV;
2210
97f6ef64 2211 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
2212 goto release;
2213
9fa196e7 2214 return 0;
b00a726a 2215 release:
9fa196e7
MG
2216 pci_release_mem_regions(pdev);
2217 return -ENODEV;
b00a726a
KB
2218}
2219
ff5350a8
AL
2220static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2221{
2222 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2223 /*
2224 * Several Samsung devices seem to drop off the PCIe bus
2225 * randomly when APST is on and uses the deepest sleep state.
2226 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2227 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2228 * 950 PRO 256GB", but it seems to be restricted to two Dell
2229 * laptops.
2230 */
2231 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2232 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2233 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2234 return NVME_QUIRK_NO_DEEPEST_PS;
2235 }
2236
2237 return 0;
2238}
2239
8d85fce7 2240static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2241{
a4aea562 2242 int node, result = -ENOMEM;
b60503ba 2243 struct nvme_dev *dev;
ff5350a8 2244 unsigned long quirks = id->driver_data;
b60503ba 2245
a4aea562
MB
2246 node = dev_to_node(&pdev->dev);
2247 if (node == NUMA_NO_NODE)
2fa84351 2248 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2249
2250 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2251 if (!dev)
2252 return -ENOMEM;
a4aea562
MB
2253 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2254 GFP_KERNEL, node);
b60503ba
MW
2255 if (!dev->queues)
2256 goto free;
2257
e75ec752 2258 dev->dev = get_device(&pdev->dev);
9a6b9458 2259 pci_set_drvdata(pdev, dev);
1c63dc66 2260
b00a726a
KB
2261 result = nvme_dev_map(dev);
2262 if (result)
2263 goto free;
2264
d86c4d8e 2265 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
5c8809e6 2266 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2267 mutex_init(&dev->shutdown_lock);
db3cbfff 2268 init_completion(&dev->ioq_wait);
b60503ba 2269
091b6092
MW
2270 result = nvme_setup_prp_pools(dev);
2271 if (result)
a96d4f5c 2272 goto put_pci;
4cc06521 2273
ff5350a8
AL
2274 quirks |= check_dell_samsung_bug(pdev);
2275
f3ca80fc 2276 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
ff5350a8 2277 quirks);
4cc06521 2278 if (result)
2e1d8448 2279 goto release_pools;
740216fc 2280
82b057ca 2281 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
1b3c47c1
SG
2282 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2283
d86c4d8e 2284 queue_work(nvme_wq, &dev->ctrl.reset_work);
b60503ba
MW
2285 return 0;
2286
0877cb0d 2287 release_pools:
091b6092 2288 nvme_release_prp_pools(dev);
a96d4f5c 2289 put_pci:
e75ec752 2290 put_device(dev->dev);
b00a726a 2291 nvme_dev_unmap(dev);
b60503ba
MW
2292 free:
2293 kfree(dev->queues);
b60503ba
MW
2294 kfree(dev);
2295 return result;
2296}
2297
f0d54a54
KB
2298static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2299{
a6739479 2300 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2301
a6739479 2302 if (prepare)
a5cdb68c 2303 nvme_dev_disable(dev, false);
a6739479 2304 else
d86c4d8e 2305 nvme_reset_ctrl(&dev->ctrl);
f0d54a54
KB
2306}
2307
09ece142
KB
2308static void nvme_shutdown(struct pci_dev *pdev)
2309{
2310 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2311 nvme_dev_disable(dev, true);
09ece142
KB
2312}
2313
f58944e2
KB
2314/*
2315 * The driver's remove may be called on a device in a partially initialized
2316 * state. This function must not have any dependencies on the device state in
2317 * order to proceed.
2318 */
8d85fce7 2319static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2320{
2321 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2322
bb8d261e
CH
2323 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2324
d86c4d8e 2325 cancel_work_sync(&dev->ctrl.reset_work);
9a6b9458 2326 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2327
6db28eda 2328 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2329 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
6db28eda
KB
2330 nvme_dev_disable(dev, false);
2331 }
0ff9d4e1 2332
d86c4d8e 2333 flush_work(&dev->ctrl.reset_work);
d09f2b45
SG
2334 nvme_stop_ctrl(&dev->ctrl);
2335 nvme_remove_namespaces(&dev->ctrl);
a5cdb68c 2336 nvme_dev_disable(dev, true);
87ad72a5 2337 nvme_free_host_mem(dev);
a4aea562 2338 nvme_dev_remove_admin(dev);
a1a5ef99 2339 nvme_free_queues(dev, 0);
d09f2b45 2340 nvme_uninit_ctrl(&dev->ctrl);
9a6b9458 2341 nvme_release_prp_pools(dev);
b00a726a 2342 nvme_dev_unmap(dev);
1673f1f0 2343 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2344}
2345
13880f5b
KB
2346static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2347{
2348 int ret = 0;
2349
2350 if (numvfs == 0) {
2351 if (pci_vfs_assigned(pdev)) {
2352 dev_warn(&pdev->dev,
2353 "Cannot disable SR-IOV VFs while assigned\n");
2354 return -EPERM;
2355 }
2356 pci_disable_sriov(pdev);
2357 return 0;
2358 }
2359
2360 ret = pci_enable_sriov(pdev, numvfs);
2361 return ret ? ret : numvfs;
2362}
2363
671a6018 2364#ifdef CONFIG_PM_SLEEP
cd638946
KB
2365static int nvme_suspend(struct device *dev)
2366{
2367 struct pci_dev *pdev = to_pci_dev(dev);
2368 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2369
a5cdb68c 2370 nvme_dev_disable(ndev, true);
cd638946
KB
2371 return 0;
2372}
2373
2374static int nvme_resume(struct device *dev)
2375{
2376 struct pci_dev *pdev = to_pci_dev(dev);
2377 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2378
d86c4d8e 2379 nvme_reset_ctrl(&ndev->ctrl);
9a6b9458 2380 return 0;
cd638946 2381}
671a6018 2382#endif
cd638946
KB
2383
2384static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2385
a0a3408e
KB
2386static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2387 pci_channel_state_t state)
2388{
2389 struct nvme_dev *dev = pci_get_drvdata(pdev);
2390
2391 /*
2392 * A frozen channel requires a reset. When detected, this method will
2393 * shutdown the controller to quiesce. The controller will be restarted
2394 * after the slot reset through driver's slot_reset callback.
2395 */
a0a3408e
KB
2396 switch (state) {
2397 case pci_channel_io_normal:
2398 return PCI_ERS_RESULT_CAN_RECOVER;
2399 case pci_channel_io_frozen:
d011fb31
KB
2400 dev_warn(dev->ctrl.device,
2401 "frozen state error detected, reset controller\n");
a5cdb68c 2402 nvme_dev_disable(dev, false);
a0a3408e
KB
2403 return PCI_ERS_RESULT_NEED_RESET;
2404 case pci_channel_io_perm_failure:
d011fb31
KB
2405 dev_warn(dev->ctrl.device,
2406 "failure state error detected, request disconnect\n");
a0a3408e
KB
2407 return PCI_ERS_RESULT_DISCONNECT;
2408 }
2409 return PCI_ERS_RESULT_NEED_RESET;
2410}
2411
2412static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2413{
2414 struct nvme_dev *dev = pci_get_drvdata(pdev);
2415
1b3c47c1 2416 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2417 pci_restore_state(pdev);
d86c4d8e 2418 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
2419 return PCI_ERS_RESULT_RECOVERED;
2420}
2421
2422static void nvme_error_resume(struct pci_dev *pdev)
2423{
2424 pci_cleanup_aer_uncorrect_error_status(pdev);
2425}
2426
1d352035 2427static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2428 .error_detected = nvme_error_detected,
b60503ba
MW
2429 .slot_reset = nvme_slot_reset,
2430 .resume = nvme_error_resume,
f0d54a54 2431 .reset_notify = nvme_reset_notify,
b60503ba
MW
2432};
2433
6eb0d698 2434static const struct pci_device_id nvme_id_table[] = {
106198ed 2435 { PCI_VDEVICE(INTEL, 0x0953),
08095e70 2436 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2437 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2438 { PCI_VDEVICE(INTEL, 0x0a53),
2439 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2440 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2441 { PCI_VDEVICE(INTEL, 0x0a54),
2442 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2443 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0
AL
2444 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2445 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
540c801c
KB
2446 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2447 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2448 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2449 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2450 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2451 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
d554b5e1
MP
2452 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2453 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2454 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2455 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2456 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2457 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
124298bd 2458 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
b60503ba
MW
2459 { 0, }
2460};
2461MODULE_DEVICE_TABLE(pci, nvme_id_table);
2462
2463static struct pci_driver nvme_driver = {
2464 .name = "nvme",
2465 .id_table = nvme_id_table,
2466 .probe = nvme_probe,
8d85fce7 2467 .remove = nvme_remove,
09ece142 2468 .shutdown = nvme_shutdown,
cd638946
KB
2469 .driver = {
2470 .pm = &nvme_dev_pm_ops,
2471 },
13880f5b 2472 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2473 .err_handler = &nvme_err_handler,
2474};
2475
2476static int __init nvme_init(void)
2477{
9a6327d2 2478 return pci_register_driver(&nvme_driver);
b60503ba
MW
2479}
2480
2481static void __exit nvme_exit(void)
2482{
2483 pci_unregister_driver(&nvme_driver);
21bd78bc 2484 _nvme_check_size();
b60503ba
MW
2485}
2486
2487MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2488MODULE_LICENSE("GPL");
c78b4713 2489MODULE_VERSION("1.0");
b60503ba
MW
2490module_init(nvme_init);
2491module_exit(nvme_exit);