]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/nvme/host/pci.c
block/sed-opal: tone down not supported warnings
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
42f61420 20#include <linux/cpu.h>
fd63e9ce 21#include <linux/delay.h>
b60503ba
MW
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
4cc09e2d 25#include <linux/hdreg.h>
5aff9382 26#include <linux/idr.h>
b60503ba
MW
27#include <linux/init.h>
28#include <linux/interrupt.h>
29#include <linux/io.h>
30#include <linux/kdev_t.h>
31#include <linux/kernel.h>
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
77bf25ea 35#include <linux/mutex.h>
b60503ba 36#include <linux/pci.h>
be7b6275 37#include <linux/poison.h>
c3bfe717 38#include <linux/ptrace.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
e1e5e564 41#include <linux/t10-pi.h>
2d55cd5f 42#include <linux/timer.h>
b60503ba 43#include <linux/types.h>
2f8e2c87 44#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 45#include <asm/unaligned.h>
a98e58e5 46#include <linux/sed-opal.h>
797a796a 47
f11bb3e2
CH
48#include "nvme.h"
49
9d43cf64 50#define NVME_Q_DEPTH 1024
d31af0a3 51#define NVME_AQ_DEPTH 256
b60503ba
MW
52#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
53#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 54
adf68f21
CH
55/*
56 * We handle AEN commands ourselves and don't even let the
57 * block layer know about them.
58 */
f866fc42 59#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 60
58ffacb5
MW
61static int use_threaded_interrupts;
62module_param(use_threaded_interrupts, int, 0);
63
8ffaadf7
JD
64static bool use_cmb_sqes = true;
65module_param(use_cmb_sqes, bool, 0644);
66MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
67
9a6b9458 68static struct workqueue_struct *nvme_workq;
1fa6aead 69
1c63dc66
CH
70struct nvme_dev;
71struct nvme_queue;
b3fffdef 72
4cc06521 73static int nvme_reset(struct nvme_dev *dev);
a0fa9647 74static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 75static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 76
1c63dc66
CH
77/*
78 * Represents an NVM Express device. Each nvme_dev is a PCI function.
79 */
80struct nvme_dev {
1c63dc66
CH
81 struct nvme_queue **queues;
82 struct blk_mq_tag_set tagset;
83 struct blk_mq_tag_set admin_tagset;
84 u32 __iomem *dbs;
85 struct device *dev;
86 struct dma_pool *prp_page_pool;
87 struct dma_pool *prp_small_pool;
88 unsigned queue_count;
89 unsigned online_queues;
90 unsigned max_qid;
91 int q_depth;
92 u32 db_stride;
1c63dc66 93 void __iomem *bar;
1c63dc66 94 struct work_struct reset_work;
5c8809e6 95 struct work_struct remove_work;
2d55cd5f 96 struct timer_list watchdog_timer;
77bf25ea 97 struct mutex shutdown_lock;
1c63dc66 98 bool subsystem;
1c63dc66
CH
99 void __iomem *cmb;
100 dma_addr_t cmb_dma_addr;
101 u64 cmb_size;
102 u32 cmbsz;
202021c1 103 u32 cmbloc;
1c63dc66 104 struct nvme_ctrl ctrl;
db3cbfff 105 struct completion ioq_wait;
4d115420 106};
1fa6aead 107
1c63dc66
CH
108static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
109{
110 return container_of(ctrl, struct nvme_dev, ctrl);
111}
112
b60503ba
MW
113/*
114 * An NVM Express queue. Each device has at least two (one for admin
115 * commands and one for I/O commands).
116 */
117struct nvme_queue {
118 struct device *q_dmadev;
091b6092 119 struct nvme_dev *dev;
3193f07b 120 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
121 spinlock_t q_lock;
122 struct nvme_command *sq_cmds;
8ffaadf7 123 struct nvme_command __iomem *sq_cmds_io;
b60503ba 124 volatile struct nvme_completion *cqes;
42483228 125 struct blk_mq_tags **tags;
b60503ba
MW
126 dma_addr_t sq_dma_addr;
127 dma_addr_t cq_dma_addr;
b60503ba
MW
128 u32 __iomem *q_db;
129 u16 q_depth;
6222d172 130 s16 cq_vector;
b60503ba
MW
131 u16 sq_tail;
132 u16 cq_head;
c30341dc 133 u16 qid;
e9539f47
MW
134 u8 cq_phase;
135 u8 cqe_seen;
b60503ba
MW
136};
137
71bd150c
CH
138/*
139 * The nvme_iod describes the data in an I/O, including the list of PRP
140 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 141 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
142 * allocated to store the PRP list.
143 */
144struct nvme_iod {
d49187e9 145 struct nvme_request req;
f4800d6d
CH
146 struct nvme_queue *nvmeq;
147 int aborted;
71bd150c 148 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
149 int nents; /* Used in scatterlist */
150 int length; /* Of data, in bytes */
151 dma_addr_t first_dma;
bf684057 152 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
153 struct scatterlist *sg;
154 struct scatterlist inline_sg[0];
b60503ba
MW
155};
156
157/*
158 * Check we didin't inadvertently grow the command struct
159 */
160static inline void _nvme_check_size(void)
161{
162 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 167 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 168 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
169 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
171 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
172 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 173 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
174}
175
ac3dd5bd
JA
176/*
177 * Max size of iod being embedded in the request payload
178 */
179#define NVME_INT_PAGES 2
5fd4ce1b 180#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
181
182/*
183 * Will slightly overestimate the number of pages needed. This is OK
184 * as it only leads to a small amount of wasted memory for the lifetime of
185 * the I/O.
186 */
187static int nvme_npages(unsigned size, struct nvme_dev *dev)
188{
5fd4ce1b
CH
189 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
190 dev->ctrl.page_size);
ac3dd5bd
JA
191 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
192}
193
f4800d6d
CH
194static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
195 unsigned int size, unsigned int nseg)
ac3dd5bd 196{
f4800d6d
CH
197 return sizeof(__le64 *) * nvme_npages(size, dev) +
198 sizeof(struct scatterlist) * nseg;
199}
ac3dd5bd 200
f4800d6d
CH
201static unsigned int nvme_cmd_size(struct nvme_dev *dev)
202{
203 return sizeof(struct nvme_iod) +
204 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
205}
206
dca51e78
CH
207static int nvmeq_irq(struct nvme_queue *nvmeq)
208{
209 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
210}
211
a4aea562
MB
212static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213 unsigned int hctx_idx)
e85248e5 214{
a4aea562
MB
215 struct nvme_dev *dev = data;
216 struct nvme_queue *nvmeq = dev->queues[0];
217
42483228
KB
218 WARN_ON(hctx_idx != 0);
219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220 WARN_ON(nvmeq->tags);
221
a4aea562 222 hctx->driver_data = nvmeq;
42483228 223 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 224 return 0;
e85248e5
MW
225}
226
4af0e21c
KB
227static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228{
229 struct nvme_queue *nvmeq = hctx->driver_data;
230
231 nvmeq->tags = NULL;
232}
233
a4aea562
MB
234static int nvme_admin_init_request(void *data, struct request *req,
235 unsigned int hctx_idx, unsigned int rq_idx,
236 unsigned int numa_node)
22404274 237{
a4aea562 238 struct nvme_dev *dev = data;
f4800d6d 239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
240 struct nvme_queue *nvmeq = dev->queues[0];
241
242 BUG_ON(!nvmeq);
f4800d6d 243 iod->nvmeq = nvmeq;
a4aea562 244 return 0;
22404274
KB
245}
246
a4aea562
MB
247static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248 unsigned int hctx_idx)
b60503ba 249{
a4aea562 250 struct nvme_dev *dev = data;
42483228 251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 252
42483228
KB
253 if (!nvmeq->tags)
254 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 255
42483228 256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
257 hctx->driver_data = nvmeq;
258 return 0;
b60503ba
MW
259}
260
a4aea562
MB
261static int nvme_init_request(void *data, struct request *req,
262 unsigned int hctx_idx, unsigned int rq_idx,
263 unsigned int numa_node)
b60503ba 264{
a4aea562 265 struct nvme_dev *dev = data;
f4800d6d 266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269 BUG_ON(!nvmeq);
f4800d6d 270 iod->nvmeq = nvmeq;
a4aea562
MB
271 return 0;
272}
273
dca51e78
CH
274static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
275{
276 struct nvme_dev *dev = set->driver_data;
277
278 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
279}
280
b60503ba 281/**
adf68f21 282 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
283 * @nvmeq: The queue to use
284 * @cmd: The command to send
285 *
286 * Safe to use from interrupt context
287 */
e3f879bf
SB
288static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
289 struct nvme_command *cmd)
b60503ba 290{
a4aea562
MB
291 u16 tail = nvmeq->sq_tail;
292
8ffaadf7
JD
293 if (nvmeq->sq_cmds_io)
294 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
295 else
296 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
297
b60503ba
MW
298 if (++tail == nvmeq->q_depth)
299 tail = 0;
7547881d 300 writel(tail, nvmeq->q_db);
b60503ba 301 nvmeq->sq_tail = tail;
b60503ba
MW
302}
303
f4800d6d 304static __le64 **iod_list(struct request *req)
b60503ba 305{
f4800d6d 306 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
f9d03f96 307 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
308}
309
58b45602
ML
310static int nvme_init_iod(struct request *rq, unsigned size,
311 struct nvme_dev *dev)
ac3dd5bd 312{
f4800d6d 313 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 314 int nseg = blk_rq_nr_phys_segments(rq);
ac3dd5bd 315
f4800d6d
CH
316 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
317 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
318 if (!iod->sg)
319 return BLK_MQ_RQ_QUEUE_BUSY;
320 } else {
321 iod->sg = iod->inline_sg;
ac3dd5bd
JA
322 }
323
f4800d6d
CH
324 iod->aborted = 0;
325 iod->npages = -1;
326 iod->nents = 0;
327 iod->length = size;
f80ec966 328
e8064021 329 if (!(rq->rq_flags & RQF_DONTPREP)) {
f80ec966 330 rq->retries = 0;
e8064021 331 rq->rq_flags |= RQF_DONTPREP;
f80ec966 332 }
bac0000a 333 return BLK_MQ_RQ_QUEUE_OK;
ac3dd5bd
JA
334}
335
f4800d6d 336static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 337{
f4800d6d 338 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 339 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 340 int i;
f4800d6d 341 __le64 **list = iod_list(req);
eca18b23
MW
342 dma_addr_t prp_dma = iod->first_dma;
343
344 if (iod->npages == 0)
345 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
346 for (i = 0; i < iod->npages; i++) {
347 __le64 *prp_list = list[i];
348 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
349 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
350 prp_dma = next_prp_dma;
351 }
ac3dd5bd 352
f4800d6d
CH
353 if (iod->sg != iod->inline_sg)
354 kfree(iod->sg);
b4ff9c8d
KB
355}
356
52b68d7e 357#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
358static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
359{
360 if (be32_to_cpu(pi->ref_tag) == v)
361 pi->ref_tag = cpu_to_be32(p);
362}
363
364static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
365{
366 if (be32_to_cpu(pi->ref_tag) == p)
367 pi->ref_tag = cpu_to_be32(v);
368}
369
370/**
371 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
372 *
373 * The virtual start sector is the one that was originally submitted by the
374 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
375 * start sector may be different. Remap protection information to match the
376 * physical LBA on writes, and back to the original seed on reads.
377 *
378 * Type 0 and 3 do not have a ref tag, so no remapping required.
379 */
380static void nvme_dif_remap(struct request *req,
381 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
382{
383 struct nvme_ns *ns = req->rq_disk->private_data;
384 struct bio_integrity_payload *bip;
385 struct t10_pi_tuple *pi;
386 void *p, *pmap;
387 u32 i, nlb, ts, phys, virt;
388
389 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
390 return;
391
392 bip = bio_integrity(req->bio);
393 if (!bip)
394 return;
395
396 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
397
398 p = pmap;
399 virt = bip_get_seed(bip);
400 phys = nvme_block_nr(ns, blk_rq_pos(req));
401 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 402 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
403
404 for (i = 0; i < nlb; i++, virt++, phys++) {
405 pi = (struct t10_pi_tuple *)p;
406 dif_swap(phys, virt, pi);
407 p += ts;
408 }
409 kunmap_atomic(pmap);
410}
52b68d7e
KB
411#else /* CONFIG_BLK_DEV_INTEGRITY */
412static void nvme_dif_remap(struct request *req,
413 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
414{
415}
416static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
417{
418}
419static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
420{
421}
52b68d7e
KB
422#endif
423
f4800d6d 424static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
69d2b571 425 int total_len)
ff22b54f 426{
f4800d6d 427 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 428 struct dma_pool *pool;
eca18b23
MW
429 int length = total_len;
430 struct scatterlist *sg = iod->sg;
ff22b54f
MW
431 int dma_len = sg_dma_len(sg);
432 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 433 u32 page_size = dev->ctrl.page_size;
f137e0f1 434 int offset = dma_addr & (page_size - 1);
e025344c 435 __le64 *prp_list;
f4800d6d 436 __le64 **list = iod_list(req);
e025344c 437 dma_addr_t prp_dma;
eca18b23 438 int nprps, i;
ff22b54f 439
1d090624 440 length -= (page_size - offset);
ff22b54f 441 if (length <= 0)
69d2b571 442 return true;
ff22b54f 443
1d090624 444 dma_len -= (page_size - offset);
ff22b54f 445 if (dma_len) {
1d090624 446 dma_addr += (page_size - offset);
ff22b54f
MW
447 } else {
448 sg = sg_next(sg);
449 dma_addr = sg_dma_address(sg);
450 dma_len = sg_dma_len(sg);
451 }
452
1d090624 453 if (length <= page_size) {
edd10d33 454 iod->first_dma = dma_addr;
69d2b571 455 return true;
e025344c
SMM
456 }
457
1d090624 458 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
459 if (nprps <= (256 / 8)) {
460 pool = dev->prp_small_pool;
eca18b23 461 iod->npages = 0;
99802a7a
MW
462 } else {
463 pool = dev->prp_page_pool;
eca18b23 464 iod->npages = 1;
99802a7a
MW
465 }
466
69d2b571 467 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 468 if (!prp_list) {
edd10d33 469 iod->first_dma = dma_addr;
eca18b23 470 iod->npages = -1;
69d2b571 471 return false;
b77954cb 472 }
eca18b23
MW
473 list[0] = prp_list;
474 iod->first_dma = prp_dma;
e025344c
SMM
475 i = 0;
476 for (;;) {
1d090624 477 if (i == page_size >> 3) {
e025344c 478 __le64 *old_prp_list = prp_list;
69d2b571 479 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 480 if (!prp_list)
69d2b571 481 return false;
eca18b23 482 list[iod->npages++] = prp_list;
7523d834
MW
483 prp_list[0] = old_prp_list[i - 1];
484 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
485 i = 1;
e025344c
SMM
486 }
487 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
488 dma_len -= page_size;
489 dma_addr += page_size;
490 length -= page_size;
e025344c
SMM
491 if (length <= 0)
492 break;
493 if (dma_len > 0)
494 continue;
495 BUG_ON(dma_len < 0);
496 sg = sg_next(sg);
497 dma_addr = sg_dma_address(sg);
498 dma_len = sg_dma_len(sg);
ff22b54f
MW
499 }
500
69d2b571 501 return true;
ff22b54f
MW
502}
503
f4800d6d 504static int nvme_map_data(struct nvme_dev *dev, struct request *req,
03b5929e 505 unsigned size, struct nvme_command *cmnd)
d29ec824 506{
f4800d6d 507 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
508 struct request_queue *q = req->q;
509 enum dma_data_direction dma_dir = rq_data_dir(req) ?
510 DMA_TO_DEVICE : DMA_FROM_DEVICE;
511 int ret = BLK_MQ_RQ_QUEUE_ERROR;
d29ec824 512
f9d03f96 513 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
514 iod->nents = blk_rq_map_sg(q, req, iod->sg);
515 if (!iod->nents)
516 goto out;
d29ec824 517
ba1ca37e 518 ret = BLK_MQ_RQ_QUEUE_BUSY;
2b6b535d
MFO
519 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
520 DMA_ATTR_NO_WARN))
ba1ca37e 521 goto out;
d29ec824 522
03b5929e 523 if (!nvme_setup_prps(dev, req, size))
ba1ca37e 524 goto out_unmap;
0e5e4f0e 525
ba1ca37e
CH
526 ret = BLK_MQ_RQ_QUEUE_ERROR;
527 if (blk_integrity_rq(req)) {
528 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
529 goto out_unmap;
0e5e4f0e 530
bf684057
CH
531 sg_init_table(&iod->meta_sg, 1);
532 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 533 goto out_unmap;
0e5e4f0e 534
ba1ca37e
CH
535 if (rq_data_dir(req))
536 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 537
bf684057 538 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 539 goto out_unmap;
d29ec824 540 }
00df5cb4 541
eb793e2c
CH
542 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
543 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 544 if (blk_integrity_rq(req))
bf684057 545 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e 546 return BLK_MQ_RQ_QUEUE_OK;
00df5cb4 547
ba1ca37e
CH
548out_unmap:
549 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
550out:
551 return ret;
00df5cb4
MW
552}
553
f4800d6d 554static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 555{
f4800d6d 556 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
557 enum dma_data_direction dma_dir = rq_data_dir(req) ?
558 DMA_TO_DEVICE : DMA_FROM_DEVICE;
559
560 if (iod->nents) {
561 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
562 if (blk_integrity_rq(req)) {
563 if (!rq_data_dir(req))
564 nvme_dif_remap(req, nvme_dif_complete);
bf684057 565 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 566 }
e19b127f 567 }
e1e5e564 568
f9d03f96 569 nvme_cleanup_cmd(req);
f4800d6d 570 nvme_free_iod(dev, req);
d4f6c3ab 571}
b60503ba 572
d29ec824
CH
573/*
574 * NOTE: ns is NULL when called on the admin queue.
575 */
a4aea562
MB
576static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
577 const struct blk_mq_queue_data *bd)
edd10d33 578{
a4aea562
MB
579 struct nvme_ns *ns = hctx->queue->queuedata;
580 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 581 struct nvme_dev *dev = nvmeq->dev;
a4aea562 582 struct request *req = bd->rq;
ba1ca37e 583 struct nvme_command cmnd;
58b45602 584 unsigned map_len;
ba1ca37e 585 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 586
e1e5e564
KB
587 /*
588 * If formated with metadata, require the block layer provide a buffer
589 * unless this namespace is formated such that the metadata can be
590 * stripped/generated by the controller with PRACT=1.
591 */
d29ec824 592 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
593 if (!(ns->pi_type && ns->ms == 8) &&
594 req->cmd_type != REQ_TYPE_DRV_PRIV) {
eee417b0 595 blk_mq_end_request(req, -EFAULT);
e1e5e564
KB
596 return BLK_MQ_RQ_QUEUE_OK;
597 }
598 }
599
f9d03f96 600 ret = nvme_setup_cmd(ns, req, &cmnd);
bac0000a 601 if (ret != BLK_MQ_RQ_QUEUE_OK)
f4800d6d 602 return ret;
a4aea562 603
f9d03f96
CH
604 map_len = nvme_map_len(req);
605 ret = nvme_init_iod(req, map_len, dev);
bac0000a 606 if (ret != BLK_MQ_RQ_QUEUE_OK)
f9d03f96 607 goto out_free_cmd;
a4aea562 608
f9d03f96 609 if (blk_rq_nr_phys_segments(req))
03b5929e 610 ret = nvme_map_data(dev, req, map_len, &cmnd);
a4aea562 611
bac0000a 612 if (ret != BLK_MQ_RQ_QUEUE_OK)
f9d03f96 613 goto out_cleanup_iod;
a4aea562 614
aae239e1 615 blk_mq_start_request(req);
a4aea562 616
ba1ca37e 617 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 618 if (unlikely(nvmeq->cq_vector < 0)) {
69d9a99c
KB
619 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
620 ret = BLK_MQ_RQ_QUEUE_BUSY;
621 else
622 ret = BLK_MQ_RQ_QUEUE_ERROR;
ae1fba20 623 spin_unlock_irq(&nvmeq->q_lock);
f9d03f96 624 goto out_cleanup_iod;
ae1fba20 625 }
ba1ca37e 626 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
627 nvme_process_cq(nvmeq);
628 spin_unlock_irq(&nvmeq->q_lock);
629 return BLK_MQ_RQ_QUEUE_OK;
f9d03f96 630out_cleanup_iod:
f4800d6d 631 nvme_free_iod(dev, req);
f9d03f96
CH
632out_free_cmd:
633 nvme_cleanup_cmd(req);
ba1ca37e 634 return ret;
b60503ba 635}
e1e5e564 636
eee417b0
CH
637static void nvme_complete_rq(struct request *req)
638{
f4800d6d
CH
639 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
640 struct nvme_dev *dev = iod->nvmeq->dev;
eee417b0 641 int error = 0;
e1e5e564 642
f4800d6d 643 nvme_unmap_data(dev, req);
e1e5e564 644
eee417b0
CH
645 if (unlikely(req->errors)) {
646 if (nvme_req_needs_retry(req, req->errors)) {
f80ec966 647 req->retries++;
eee417b0
CH
648 nvme_requeue_req(req);
649 return;
e1e5e564 650 }
1974b1ae 651
eee417b0
CH
652 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
653 error = req->errors;
654 else
655 error = nvme_error_status(req->errors);
656 }
a4aea562 657
f4800d6d 658 if (unlikely(iod->aborted)) {
1b3c47c1 659 dev_warn(dev->ctrl.device,
eee417b0
CH
660 "completing aborted command with status: %04x\n",
661 req->errors);
662 }
a4aea562 663
eee417b0 664 blk_mq_end_request(req, error);
b60503ba
MW
665}
666
d783e0bd
MR
667/* We read the CQE phase first to check if the rest of the entry is valid */
668static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
669 u16 phase)
670{
671 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
672}
673
a0fa9647 674static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 675{
82123460 676 u16 head, phase;
b60503ba 677
b60503ba 678 head = nvmeq->cq_head;
82123460 679 phase = nvmeq->cq_phase;
b60503ba 680
d783e0bd 681 while (nvme_cqe_valid(nvmeq, head, phase)) {
b60503ba 682 struct nvme_completion cqe = nvmeq->cqes[head];
eee417b0 683 struct request *req;
adf68f21 684
b60503ba
MW
685 if (++head == nvmeq->q_depth) {
686 head = 0;
82123460 687 phase = !phase;
b60503ba 688 }
adf68f21 689
a0fa9647
JA
690 if (tag && *tag == cqe.command_id)
691 *tag = -1;
adf68f21 692
aae239e1 693 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
1b3c47c1 694 dev_warn(nvmeq->dev->ctrl.device,
aae239e1
CH
695 "invalid id %d completed on queue %d\n",
696 cqe.command_id, le16_to_cpu(cqe.sq_id));
697 continue;
698 }
699
adf68f21
CH
700 /*
701 * AEN requests are special as they don't time out and can
702 * survive any kind of queue freeze and often don't respond to
703 * aborts. We don't even bother to allocate a struct request
704 * for them but rather special case them here.
705 */
706 if (unlikely(nvmeq->qid == 0 &&
707 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
7bf58533
CH
708 nvme_complete_async_event(&nvmeq->dev->ctrl,
709 cqe.status, &cqe.result);
adf68f21
CH
710 continue;
711 }
712
eee417b0 713 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
d49187e9 714 nvme_req(req)->result = cqe.result;
d783e0bd 715 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
b60503ba
MW
716 }
717
82123460 718 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 719 return;
b60503ba 720
604e8c8d
KB
721 if (likely(nvmeq->cq_vector >= 0))
722 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 723 nvmeq->cq_head = head;
82123460 724 nvmeq->cq_phase = phase;
b60503ba 725
e9539f47 726 nvmeq->cqe_seen = 1;
a0fa9647
JA
727}
728
729static void nvme_process_cq(struct nvme_queue *nvmeq)
730{
731 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
732}
733
734static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
735{
736 irqreturn_t result;
737 struct nvme_queue *nvmeq = data;
738 spin_lock(&nvmeq->q_lock);
e9539f47
MW
739 nvme_process_cq(nvmeq);
740 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
741 nvmeq->cqe_seen = 0;
58ffacb5
MW
742 spin_unlock(&nvmeq->q_lock);
743 return result;
744}
745
746static irqreturn_t nvme_irq_check(int irq, void *data)
747{
748 struct nvme_queue *nvmeq = data;
d783e0bd
MR
749 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
750 return IRQ_WAKE_THREAD;
751 return IRQ_NONE;
58ffacb5
MW
752}
753
a0fa9647
JA
754static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
755{
756 struct nvme_queue *nvmeq = hctx->driver_data;
757
d783e0bd 758 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
a0fa9647
JA
759 spin_lock_irq(&nvmeq->q_lock);
760 __nvme_process_cq(nvmeq, &tag);
761 spin_unlock_irq(&nvmeq->q_lock);
762
763 if (tag == -1)
764 return 1;
765 }
766
767 return 0;
768}
769
f866fc42 770static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 771{
f866fc42 772 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 773 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 774 struct nvme_command c;
b60503ba 775
a4aea562
MB
776 memset(&c, 0, sizeof(c));
777 c.common.opcode = nvme_admin_async_event;
f866fc42 778 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 779
9396dec9 780 spin_lock_irq(&nvmeq->q_lock);
f866fc42 781 __nvme_submit_cmd(nvmeq, &c);
9396dec9 782 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
783}
784
b60503ba 785static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 786{
b60503ba
MW
787 struct nvme_command c;
788
789 memset(&c, 0, sizeof(c));
790 c.delete_queue.opcode = opcode;
791 c.delete_queue.qid = cpu_to_le16(id);
792
1c63dc66 793 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
794}
795
b60503ba
MW
796static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
797 struct nvme_queue *nvmeq)
798{
b60503ba
MW
799 struct nvme_command c;
800 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
801
d29ec824
CH
802 /*
803 * Note: we (ab)use the fact the the prp fields survive if no data
804 * is attached to the request.
805 */
b60503ba
MW
806 memset(&c, 0, sizeof(c));
807 c.create_cq.opcode = nvme_admin_create_cq;
808 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
809 c.create_cq.cqid = cpu_to_le16(qid);
810 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
811 c.create_cq.cq_flags = cpu_to_le16(flags);
812 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
813
1c63dc66 814 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
815}
816
817static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
818 struct nvme_queue *nvmeq)
819{
b60503ba
MW
820 struct nvme_command c;
821 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
822
d29ec824
CH
823 /*
824 * Note: we (ab)use the fact the the prp fields survive if no data
825 * is attached to the request.
826 */
b60503ba
MW
827 memset(&c, 0, sizeof(c));
828 c.create_sq.opcode = nvme_admin_create_sq;
829 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
830 c.create_sq.sqid = cpu_to_le16(qid);
831 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
832 c.create_sq.sq_flags = cpu_to_le16(flags);
833 c.create_sq.cqid = cpu_to_le16(qid);
834
1c63dc66 835 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
836}
837
838static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
839{
840 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
841}
842
843static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
844{
845 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
846}
847
e7a2a87d 848static void abort_endio(struct request *req, int error)
bc5fc7e4 849{
f4800d6d
CH
850 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
851 struct nvme_queue *nvmeq = iod->nvmeq;
e7a2a87d 852 u16 status = req->errors;
e44ac588 853
1cb3cce5 854 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
e7a2a87d 855 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 856 blk_mq_free_request(req);
bc5fc7e4
MW
857}
858
31c7c7d2 859static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 860{
f4800d6d
CH
861 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
862 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 863 struct nvme_dev *dev = nvmeq->dev;
a4aea562 864 struct request *abort_req;
a4aea562 865 struct nvme_command cmd;
c30341dc 866
31c7c7d2 867 /*
fd634f41
CH
868 * Shutdown immediately if controller times out while starting. The
869 * reset work will see the pci device disabled when it gets the forced
870 * cancellation error. All outstanding requests are completed on
871 * shutdown, so we return BLK_EH_HANDLED.
872 */
bb8d261e 873 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 874 dev_warn(dev->ctrl.device,
fd634f41
CH
875 "I/O %d QID %d timeout, disable controller\n",
876 req->tag, nvmeq->qid);
a5cdb68c 877 nvme_dev_disable(dev, false);
fd634f41
CH
878 req->errors = NVME_SC_CANCELLED;
879 return BLK_EH_HANDLED;
c30341dc
KB
880 }
881
fd634f41
CH
882 /*
883 * Shutdown the controller immediately and schedule a reset if the
884 * command was already aborted once before and still hasn't been
885 * returned to the driver, or if this is the admin queue.
31c7c7d2 886 */
f4800d6d 887 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 888 dev_warn(dev->ctrl.device,
e1569a16
KB
889 "I/O %d QID %d timeout, reset controller\n",
890 req->tag, nvmeq->qid);
a5cdb68c 891 nvme_dev_disable(dev, false);
c5f6ce97 892 nvme_reset(dev);
c30341dc 893
e1569a16
KB
894 /*
895 * Mark the request as handled, since the inline shutdown
896 * forces all outstanding requests to complete.
897 */
898 req->errors = NVME_SC_CANCELLED;
899 return BLK_EH_HANDLED;
c30341dc 900 }
c30341dc 901
e7a2a87d 902 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 903 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 904 return BLK_EH_RESET_TIMER;
6bf25d16 905 }
7bf7d778 906 iod->aborted = 1;
a4aea562 907
c30341dc
KB
908 memset(&cmd, 0, sizeof(cmd));
909 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 910 cmd.abort.cid = req->tag;
c30341dc 911 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 912
1b3c47c1
SG
913 dev_warn(nvmeq->dev->ctrl.device,
914 "I/O %d QID %d timeout, aborting\n",
915 req->tag, nvmeq->qid);
e7a2a87d
CH
916
917 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 918 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
919 if (IS_ERR(abort_req)) {
920 atomic_inc(&dev->ctrl.abort_limit);
921 return BLK_EH_RESET_TIMER;
922 }
923
924 abort_req->timeout = ADMIN_TIMEOUT;
925 abort_req->end_io_data = NULL;
926 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 927
31c7c7d2
CH
928 /*
929 * The aborted req will be completed on receiving the abort req.
930 * We enable the timer again. If hit twice, it'll cause a device reset,
931 * as the device then is in a faulty state.
932 */
933 return BLK_EH_RESET_TIMER;
c30341dc
KB
934}
935
a4aea562
MB
936static void nvme_free_queue(struct nvme_queue *nvmeq)
937{
9e866774
MW
938 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
939 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
940 if (nvmeq->sq_cmds)
941 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
942 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
943 kfree(nvmeq);
944}
945
a1a5ef99 946static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
947{
948 int i;
949
a1a5ef99 950 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 951 struct nvme_queue *nvmeq = dev->queues[i];
22404274 952 dev->queue_count--;
a4aea562 953 dev->queues[i] = NULL;
f435c282 954 nvme_free_queue(nvmeq);
121c7ad4 955 }
22404274
KB
956}
957
4d115420
KB
958/**
959 * nvme_suspend_queue - put queue into suspended state
960 * @nvmeq - queue to suspend
4d115420
KB
961 */
962static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 963{
2b25d981 964 int vector;
b60503ba 965
a09115b2 966 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
967 if (nvmeq->cq_vector == -1) {
968 spin_unlock_irq(&nvmeq->q_lock);
969 return 1;
970 }
dca51e78 971 vector = nvmeq_irq(nvmeq);
42f61420 972 nvmeq->dev->online_queues--;
2b25d981 973 nvmeq->cq_vector = -1;
a09115b2
MW
974 spin_unlock_irq(&nvmeq->q_lock);
975
1c63dc66 976 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 977 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 978
aba2080f 979 free_irq(vector, nvmeq);
b60503ba 980
4d115420
KB
981 return 0;
982}
b60503ba 983
a5cdb68c 984static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 985{
a5cdb68c 986 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
987
988 if (!nvmeq)
989 return;
990 if (nvme_suspend_queue(nvmeq))
991 return;
992
a5cdb68c
KB
993 if (shutdown)
994 nvme_shutdown_ctrl(&dev->ctrl);
995 else
996 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
997 dev->bar + NVME_REG_CAP));
07836e65
KB
998
999 spin_lock_irq(&nvmeq->q_lock);
1000 nvme_process_cq(nvmeq);
1001 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1002}
1003
8ffaadf7
JD
1004static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1005 int entry_size)
1006{
1007 int q_depth = dev->q_depth;
5fd4ce1b
CH
1008 unsigned q_size_aligned = roundup(q_depth * entry_size,
1009 dev->ctrl.page_size);
8ffaadf7
JD
1010
1011 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1012 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1013 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1014 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1015
1016 /*
1017 * Ensure the reduced q_depth is above some threshold where it
1018 * would be better to map queues in system memory with the
1019 * original depth
1020 */
1021 if (q_depth < 64)
1022 return -ENOMEM;
1023 }
1024
1025 return q_depth;
1026}
1027
1028static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1029 int qid, int depth)
1030{
1031 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1032 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1033 dev->ctrl.page_size);
8ffaadf7
JD
1034 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1035 nvmeq->sq_cmds_io = dev->cmb + offset;
1036 } else {
1037 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1038 &nvmeq->sq_dma_addr, GFP_KERNEL);
1039 if (!nvmeq->sq_cmds)
1040 return -ENOMEM;
1041 }
1042
1043 return 0;
1044}
1045
b60503ba 1046static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1047 int depth)
b60503ba 1048{
a4aea562 1049 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1050 if (!nvmeq)
1051 return NULL;
1052
e75ec752 1053 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1054 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1055 if (!nvmeq->cqes)
1056 goto free_nvmeq;
b60503ba 1057
8ffaadf7 1058 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1059 goto free_cqdma;
1060
e75ec752 1061 nvmeq->q_dmadev = dev->dev;
091b6092 1062 nvmeq->dev = dev;
3193f07b 1063 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1064 dev->ctrl.instance, qid);
b60503ba
MW
1065 spin_lock_init(&nvmeq->q_lock);
1066 nvmeq->cq_head = 0;
82123460 1067 nvmeq->cq_phase = 1;
b80d5ccc 1068 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1069 nvmeq->q_depth = depth;
c30341dc 1070 nvmeq->qid = qid;
758dd7fd 1071 nvmeq->cq_vector = -1;
a4aea562 1072 dev->queues[qid] = nvmeq;
36a7e993
JD
1073 dev->queue_count++;
1074
b60503ba
MW
1075 return nvmeq;
1076
1077 free_cqdma:
e75ec752 1078 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1079 nvmeq->cq_dma_addr);
1080 free_nvmeq:
1081 kfree(nvmeq);
1082 return NULL;
1083}
1084
dca51e78 1085static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1086{
58ffacb5 1087 if (use_threaded_interrupts)
dca51e78
CH
1088 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1089 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1090 else
1091 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1092 nvmeq->irqname, nvmeq);
3001082c
MW
1093}
1094
22404274 1095static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1096{
22404274 1097 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1098
7be50e93 1099 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1100 nvmeq->sq_tail = 0;
1101 nvmeq->cq_head = 0;
1102 nvmeq->cq_phase = 1;
b80d5ccc 1103 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1104 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1105 dev->online_queues++;
7be50e93 1106 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1107}
1108
1109static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1110{
1111 struct nvme_dev *dev = nvmeq->dev;
1112 int result;
3f85d50b 1113
2b25d981 1114 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1115 result = adapter_alloc_cq(dev, qid, nvmeq);
1116 if (result < 0)
22404274 1117 return result;
b60503ba
MW
1118
1119 result = adapter_alloc_sq(dev, qid, nvmeq);
1120 if (result < 0)
1121 goto release_cq;
1122
dca51e78 1123 result = queue_request_irq(nvmeq);
b60503ba
MW
1124 if (result < 0)
1125 goto release_sq;
1126
22404274 1127 nvme_init_queue(nvmeq, qid);
22404274 1128 return result;
b60503ba
MW
1129
1130 release_sq:
1131 adapter_delete_sq(dev, qid);
1132 release_cq:
1133 adapter_delete_cq(dev, qid);
22404274 1134 return result;
b60503ba
MW
1135}
1136
a4aea562 1137static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1138 .queue_rq = nvme_queue_rq,
eee417b0 1139 .complete = nvme_complete_rq,
a4aea562 1140 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1141 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1142 .init_request = nvme_admin_init_request,
1143 .timeout = nvme_timeout,
1144};
1145
1146static struct blk_mq_ops nvme_mq_ops = {
1147 .queue_rq = nvme_queue_rq,
eee417b0 1148 .complete = nvme_complete_rq,
a4aea562
MB
1149 .init_hctx = nvme_init_hctx,
1150 .init_request = nvme_init_request,
dca51e78 1151 .map_queues = nvme_pci_map_queues,
a4aea562 1152 .timeout = nvme_timeout,
a0fa9647 1153 .poll = nvme_poll,
a4aea562
MB
1154};
1155
ea191d2f
KB
1156static void nvme_dev_remove_admin(struct nvme_dev *dev)
1157{
1c63dc66 1158 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1159 /*
1160 * If the controller was reset during removal, it's possible
1161 * user requests may be waiting on a stopped queue. Start the
1162 * queue to flush these to completion.
1163 */
1164 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1165 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1166 blk_mq_free_tag_set(&dev->admin_tagset);
1167 }
1168}
1169
a4aea562
MB
1170static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1171{
1c63dc66 1172 if (!dev->ctrl.admin_q) {
a4aea562
MB
1173 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1174 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1175
1176 /*
1177 * Subtract one to leave an empty queue entry for 'Full Queue'
1178 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1179 */
1180 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1181 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1182 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1183 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
d3484991 1184 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1185 dev->admin_tagset.driver_data = dev;
1186
1187 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1188 return -ENOMEM;
1189
1c63dc66
CH
1190 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1191 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1192 blk_mq_free_tag_set(&dev->admin_tagset);
1193 return -ENOMEM;
1194 }
1c63dc66 1195 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1196 nvme_dev_remove_admin(dev);
1c63dc66 1197 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1198 return -ENODEV;
1199 }
0fb59cbc 1200 } else
25646264 1201 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1202
1203 return 0;
1204}
1205
8d85fce7 1206static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1207{
ba47e386 1208 int result;
b60503ba 1209 u32 aqa;
7a67cbea 1210 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1211 struct nvme_queue *nvmeq;
1212
8ef2074d 1213 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
dfbac8c7
KB
1214 NVME_CAP_NSSRC(cap) : 0;
1215
7a67cbea
CH
1216 if (dev->subsystem &&
1217 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1218 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1219
5fd4ce1b 1220 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1221 if (result < 0)
1222 return result;
b60503ba 1223
a4aea562 1224 nvmeq = dev->queues[0];
cd638946 1225 if (!nvmeq) {
2b25d981 1226 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1227 if (!nvmeq)
1228 return -ENOMEM;
cd638946 1229 }
b60503ba
MW
1230
1231 aqa = nvmeq->q_depth - 1;
1232 aqa |= aqa << 16;
1233
7a67cbea
CH
1234 writel(aqa, dev->bar + NVME_REG_AQA);
1235 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1236 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1237
5fd4ce1b 1238 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1239 if (result)
d4875622 1240 return result;
a4aea562 1241
2b25d981 1242 nvmeq->cq_vector = 0;
dca51e78 1243 result = queue_request_irq(nvmeq);
758dd7fd
JD
1244 if (result) {
1245 nvmeq->cq_vector = -1;
d4875622 1246 return result;
758dd7fd 1247 }
025c557a 1248
b60503ba
MW
1249 return result;
1250}
1251
c875a709
GP
1252static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1253{
1254
1255 /* If true, indicates loss of adapter communication, possibly by a
1256 * NVMe Subsystem reset.
1257 */
1258 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1259
1260 /* If there is a reset ongoing, we shouldn't reset again. */
1261 if (work_busy(&dev->reset_work))
1262 return false;
1263
1264 /* We shouldn't reset unless the controller is on fatal error state
1265 * _or_ if we lost the communication with it.
1266 */
1267 if (!(csts & NVME_CSTS_CFS) && !nssro)
1268 return false;
1269
1270 /* If PCI error recovery process is happening, we cannot reset or
1271 * the recovery mechanism will surely fail.
1272 */
1273 if (pci_channel_offline(to_pci_dev(dev->dev)))
1274 return false;
1275
1276 return true;
1277}
1278
d2a61918
AL
1279static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1280{
1281 /* Read a config register to help see what died. */
1282 u16 pci_status;
1283 int result;
1284
1285 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1286 &pci_status);
1287 if (result == PCIBIOS_SUCCESSFUL)
1288 dev_warn(dev->dev,
1289 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1290 csts, pci_status);
1291 else
1292 dev_warn(dev->dev,
1293 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1294 csts, result);
1295}
1296
2d55cd5f 1297static void nvme_watchdog_timer(unsigned long data)
1fa6aead 1298{
2d55cd5f
CH
1299 struct nvme_dev *dev = (struct nvme_dev *)data;
1300 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1fa6aead 1301
c875a709
GP
1302 /* Skip controllers under certain specific conditions. */
1303 if (nvme_should_reset(dev, csts)) {
c5f6ce97 1304 if (!nvme_reset(dev))
d2a61918 1305 nvme_warn_reset(dev, csts);
2d55cd5f 1306 return;
1fa6aead 1307 }
2d55cd5f
CH
1308
1309 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1fa6aead
MW
1310}
1311
749941f2 1312static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1313{
949928c1 1314 unsigned i, max;
749941f2 1315 int ret = 0;
42f61420 1316
749941f2
CH
1317 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1318 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1319 ret = -ENOMEM;
42f61420 1320 break;
749941f2
CH
1321 }
1322 }
42f61420 1323
949928c1
KB
1324 max = min(dev->max_qid, dev->queue_count - 1);
1325 for (i = dev->online_queues; i <= max; i++) {
749941f2 1326 ret = nvme_create_queue(dev->queues[i], i);
d4875622 1327 if (ret)
42f61420 1328 break;
27e8166c 1329 }
749941f2
CH
1330
1331 /*
1332 * Ignore failing Create SQ/CQ commands, we can continue with less
1333 * than the desired aount of queues, and even a controller without
1334 * I/O queues an still be used to issue admin commands. This might
1335 * be useful to upgrade a buggy firmware for example.
1336 */
1337 return ret >= 0 ? 0 : ret;
b60503ba
MW
1338}
1339
202021c1
SB
1340static ssize_t nvme_cmb_show(struct device *dev,
1341 struct device_attribute *attr,
1342 char *buf)
1343{
1344 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1345
c965809c 1346 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1347 ndev->cmbloc, ndev->cmbsz);
1348}
1349static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1350
8ffaadf7
JD
1351static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1352{
1353 u64 szu, size, offset;
8ffaadf7
JD
1354 resource_size_t bar_size;
1355 struct pci_dev *pdev = to_pci_dev(dev->dev);
1356 void __iomem *cmb;
1357 dma_addr_t dma_addr;
1358
7a67cbea 1359 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1360 if (!(NVME_CMB_SZ(dev->cmbsz)))
1361 return NULL;
202021c1 1362 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1363
202021c1
SB
1364 if (!use_cmb_sqes)
1365 return NULL;
8ffaadf7
JD
1366
1367 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1368 size = szu * NVME_CMB_SZ(dev->cmbsz);
202021c1
SB
1369 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1370 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
8ffaadf7
JD
1371
1372 if (offset > bar_size)
1373 return NULL;
1374
1375 /*
1376 * Controllers may support a CMB size larger than their BAR,
1377 * for example, due to being behind a bridge. Reduce the CMB to
1378 * the reported size of the BAR
1379 */
1380 if (size > bar_size - offset)
1381 size = bar_size - offset;
1382
202021c1 1383 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
8ffaadf7
JD
1384 cmb = ioremap_wc(dma_addr, size);
1385 if (!cmb)
1386 return NULL;
1387
1388 dev->cmb_dma_addr = dma_addr;
1389 dev->cmb_size = size;
1390 return cmb;
1391}
1392
1393static inline void nvme_release_cmb(struct nvme_dev *dev)
1394{
1395 if (dev->cmb) {
1396 iounmap(dev->cmb);
1397 dev->cmb = NULL;
1398 }
1399}
1400
9d713c2b
KB
1401static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1402{
b80d5ccc 1403 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1404}
1405
8d85fce7 1406static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1407{
a4aea562 1408 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1409 struct pci_dev *pdev = to_pci_dev(dev->dev);
dca51e78 1410 int result, nr_io_queues, size;
b60503ba 1411
2800b8e7 1412 nr_io_queues = num_online_cpus();
9a0be7ab
CH
1413 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1414 if (result < 0)
1b23484b 1415 return result;
9a0be7ab 1416
f5fa90dc 1417 if (nr_io_queues == 0)
a5229050 1418 return 0;
b60503ba 1419
8ffaadf7
JD
1420 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1421 result = nvme_cmb_qdepth(dev, nr_io_queues,
1422 sizeof(struct nvme_command));
1423 if (result > 0)
1424 dev->q_depth = result;
1425 else
1426 nvme_release_cmb(dev);
1427 }
1428
9d713c2b
KB
1429 size = db_bar_size(dev, nr_io_queues);
1430 if (size > 8192) {
f1938f6e 1431 iounmap(dev->bar);
9d713c2b
KB
1432 do {
1433 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1434 if (dev->bar)
1435 break;
1436 if (!--nr_io_queues)
1437 return -ENOMEM;
1438 size = db_bar_size(dev, nr_io_queues);
1439 } while (1);
7a67cbea 1440 dev->dbs = dev->bar + 4096;
5a92e700 1441 adminq->q_db = dev->dbs;
f1938f6e
MW
1442 }
1443
9d713c2b 1444 /* Deregister the admin queue's interrupt */
dca51e78 1445 free_irq(pci_irq_vector(pdev, 0), adminq);
9d713c2b 1446
e32efbfc
JA
1447 /*
1448 * If we enable msix early due to not intx, disable it again before
1449 * setting up the full range we need.
1450 */
dca51e78
CH
1451 pci_free_irq_vectors(pdev);
1452 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1453 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1454 if (nr_io_queues <= 0)
1455 return -EIO;
1456 dev->max_qid = nr_io_queues;
fa08a396 1457
063a8096
MW
1458 /*
1459 * Should investigate if there's a performance win from allocating
1460 * more queues than interrupt vectors; it might allow the submission
1461 * path to scale better, even if the receive path is limited by the
1462 * number of interrupts.
1463 */
063a8096 1464
dca51e78 1465 result = queue_request_irq(adminq);
758dd7fd
JD
1466 if (result) {
1467 adminq->cq_vector = -1;
d4875622 1468 return result;
758dd7fd 1469 }
749941f2 1470 return nvme_create_io_queues(dev);
b60503ba
MW
1471}
1472
db3cbfff 1473static void nvme_del_queue_end(struct request *req, int error)
a5768aa8 1474{
db3cbfff 1475 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1476
db3cbfff
KB
1477 blk_mq_free_request(req);
1478 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1479}
1480
db3cbfff 1481static void nvme_del_cq_end(struct request *req, int error)
a5768aa8 1482{
db3cbfff 1483 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1484
db3cbfff
KB
1485 if (!error) {
1486 unsigned long flags;
1487
2e39e0f6
ML
1488 /*
1489 * We might be called with the AQ q_lock held
1490 * and the I/O queue q_lock should always
1491 * nest inside the AQ one.
1492 */
1493 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1494 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1495 nvme_process_cq(nvmeq);
1496 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1497 }
db3cbfff
KB
1498
1499 nvme_del_queue_end(req, error);
a5768aa8
KB
1500}
1501
db3cbfff 1502static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1503{
db3cbfff
KB
1504 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1505 struct request *req;
1506 struct nvme_command cmd;
bda4e0fb 1507
db3cbfff
KB
1508 memset(&cmd, 0, sizeof(cmd));
1509 cmd.delete_queue.opcode = opcode;
1510 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1511
eb71f435 1512 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1513 if (IS_ERR(req))
1514 return PTR_ERR(req);
bda4e0fb 1515
db3cbfff
KB
1516 req->timeout = ADMIN_TIMEOUT;
1517 req->end_io_data = nvmeq;
1518
1519 blk_execute_rq_nowait(q, NULL, req, false,
1520 opcode == nvme_admin_delete_cq ?
1521 nvme_del_cq_end : nvme_del_queue_end);
1522 return 0;
bda4e0fb
KB
1523}
1524
70659060 1525static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
a5768aa8 1526{
70659060 1527 int pass;
db3cbfff
KB
1528 unsigned long timeout;
1529 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1530
db3cbfff 1531 for (pass = 0; pass < 2; pass++) {
014a0d60 1532 int sent = 0, i = queues;
db3cbfff
KB
1533
1534 reinit_completion(&dev->ioq_wait);
1535 retry:
1536 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1537 for (; i > 0; i--, sent++)
1538 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1539 break;
c21377f8 1540
db3cbfff
KB
1541 while (sent--) {
1542 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1543 if (timeout == 0)
1544 return;
1545 if (i)
1546 goto retry;
1547 }
1548 opcode = nvme_admin_delete_cq;
1549 }
a5768aa8
KB
1550}
1551
422ef0c7
MW
1552/*
1553 * Return: error value if an error occurred setting up the queues or calling
1554 * Identify Device. 0 if these succeeded, even if adding some of the
1555 * namespaces failed. At the moment, these failures are silent. TBD which
1556 * failures should be reported.
1557 */
8d85fce7 1558static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1559{
5bae7f73 1560 if (!dev->ctrl.tagset) {
ffe7704d
KB
1561 dev->tagset.ops = &nvme_mq_ops;
1562 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1563 dev->tagset.timeout = NVME_IO_TIMEOUT;
1564 dev->tagset.numa_node = dev_to_node(dev->dev);
1565 dev->tagset.queue_depth =
a4aea562 1566 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1567 dev->tagset.cmd_size = nvme_cmd_size(dev);
1568 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1569 dev->tagset.driver_data = dev;
b60503ba 1570
ffe7704d
KB
1571 if (blk_mq_alloc_tag_set(&dev->tagset))
1572 return 0;
5bae7f73 1573 dev->ctrl.tagset = &dev->tagset;
949928c1
KB
1574 } else {
1575 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1576
1577 /* Free previously allocated queues that are no longer usable */
1578 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1579 }
949928c1 1580
e1e5e564 1581 return 0;
b60503ba
MW
1582}
1583
b00a726a 1584static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1585{
42f61420 1586 u64 cap;
b00a726a 1587 int result = -ENOMEM;
e75ec752 1588 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1589
1590 if (pci_enable_device_mem(pdev))
1591 return result;
1592
0877cb0d 1593 pci_set_master(pdev);
0877cb0d 1594
e75ec752
CH
1595 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1596 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1597 goto disable;
0877cb0d 1598
7a67cbea 1599 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1600 result = -ENODEV;
b00a726a 1601 goto disable;
0e53d180 1602 }
e32efbfc
JA
1603
1604 /*
a5229050
KB
1605 * Some devices and/or platforms don't advertise or work with INTx
1606 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1607 * adjust this later.
e32efbfc 1608 */
dca51e78
CH
1609 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1610 if (result < 0)
1611 return result;
e32efbfc 1612
7a67cbea
CH
1613 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1614
42f61420
KB
1615 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1616 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1617 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1618
1619 /*
1620 * Temporary fix for the Apple controller found in the MacBook8,1 and
1621 * some MacBook7,1 to avoid controller resets and data loss.
1622 */
1623 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1624 dev->q_depth = 2;
1625 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1626 "queue depth=%u to work around controller resets\n",
1627 dev->q_depth);
1628 }
1629
202021c1
SB
1630 /*
1631 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1632 * populate sysfs if a CMB is implemented. Note that we add the
1633 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1634 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1635 * NULL as final argument to sysfs_add_file_to_group.
1636 */
1637
8ef2074d 1638 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
8ffaadf7 1639 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1640
202021c1
SB
1641 if (dev->cmbsz) {
1642 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1643 &dev_attr_cmb.attr, NULL))
1644 dev_warn(dev->dev,
1645 "failed to add sysfs attribute for CMB\n");
1646 }
1647 }
1648
a0a3408e
KB
1649 pci_enable_pcie_error_reporting(pdev);
1650 pci_save_state(pdev);
0877cb0d
KB
1651 return 0;
1652
1653 disable:
0877cb0d
KB
1654 pci_disable_device(pdev);
1655 return result;
1656}
1657
1658static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1659{
1660 if (dev->bar)
1661 iounmap(dev->bar);
a1f447b3 1662 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1663}
1664
1665static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1666{
e75ec752
CH
1667 struct pci_dev *pdev = to_pci_dev(dev->dev);
1668
dca51e78 1669 pci_free_irq_vectors(pdev);
0877cb0d 1670
a0a3408e
KB
1671 if (pci_is_enabled(pdev)) {
1672 pci_disable_pcie_error_reporting(pdev);
e75ec752 1673 pci_disable_device(pdev);
4d115420 1674 }
4d115420
KB
1675}
1676
a5cdb68c 1677static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1678{
70659060 1679 int i, queues;
7c1b2450 1680 u32 csts = -1;
22404274 1681
2d55cd5f 1682 del_timer_sync(&dev->watchdog_timer);
1fa6aead 1683
77bf25ea 1684 mutex_lock(&dev->shutdown_lock);
b00a726a 1685 if (pci_is_enabled(to_pci_dev(dev->dev))) {
25646264 1686 nvme_stop_queues(&dev->ctrl);
7a67cbea 1687 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 1688 }
c21377f8 1689
70659060 1690 queues = dev->online_queues - 1;
c21377f8
GKB
1691 for (i = dev->queue_count - 1; i > 0; i--)
1692 nvme_suspend_queue(dev->queues[i]);
1693
7c1b2450 1694 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
82469c59
GKB
1695 /* A device might become IO incapable very soon during
1696 * probe, before the admin queue is configured. Thus,
1697 * queue_count can be 0 here.
1698 */
1699 if (dev->queue_count)
1700 nvme_suspend_queue(dev->queues[0]);
4d115420 1701 } else {
70659060 1702 nvme_disable_io_queues(dev, queues);
a5cdb68c 1703 nvme_disable_admin_queue(dev, shutdown);
4d115420 1704 }
b00a726a 1705 nvme_pci_disable(dev);
07836e65 1706
e1958e65
ML
1707 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1708 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
77bf25ea 1709 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
1710}
1711
091b6092
MW
1712static int nvme_setup_prp_pools(struct nvme_dev *dev)
1713{
e75ec752 1714 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1715 PAGE_SIZE, PAGE_SIZE, 0);
1716 if (!dev->prp_page_pool)
1717 return -ENOMEM;
1718
99802a7a 1719 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1720 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1721 256, 256, 0);
1722 if (!dev->prp_small_pool) {
1723 dma_pool_destroy(dev->prp_page_pool);
1724 return -ENOMEM;
1725 }
091b6092
MW
1726 return 0;
1727}
1728
1729static void nvme_release_prp_pools(struct nvme_dev *dev)
1730{
1731 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1732 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1733}
1734
1673f1f0 1735static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1736{
1673f1f0 1737 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1738
e75ec752 1739 put_device(dev->dev);
4af0e21c
KB
1740 if (dev->tagset.tags)
1741 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1742 if (dev->ctrl.admin_q)
1743 blk_put_queue(dev->ctrl.admin_q);
5e82e952 1744 kfree(dev->queues);
5e82e952
KB
1745 kfree(dev);
1746}
1747
f58944e2
KB
1748static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1749{
237045fc 1750 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
1751
1752 kref_get(&dev->ctrl.kref);
69d9a99c 1753 nvme_dev_disable(dev, false);
f58944e2
KB
1754 if (!schedule_work(&dev->remove_work))
1755 nvme_put_ctrl(&dev->ctrl);
1756}
1757
fd634f41 1758static void nvme_reset_work(struct work_struct *work)
5e82e952 1759{
fd634f41 1760 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
a98e58e5 1761 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 1762 int result = -ENODEV;
5e82e952 1763
bb8d261e 1764 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
fd634f41 1765 goto out;
5e82e952 1766
fd634f41
CH
1767 /*
1768 * If we're called to reset a live controller first shut it down before
1769 * moving on.
1770 */
b00a726a 1771 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 1772 nvme_dev_disable(dev, false);
5e82e952 1773
bb8d261e 1774 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
9bf2b972
KB
1775 goto out;
1776
b00a726a 1777 result = nvme_pci_enable(dev);
f0b50732 1778 if (result)
3cf519b5 1779 goto out;
f0b50732
KB
1780
1781 result = nvme_configure_admin_queue(dev);
1782 if (result)
f58944e2 1783 goto out;
f0b50732 1784
a4aea562 1785 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
1786 result = nvme_alloc_admin_tags(dev);
1787 if (result)
f58944e2 1788 goto out;
b9afca3e 1789
ce4541f4
CH
1790 result = nvme_init_identify(&dev->ctrl);
1791 if (result)
f58944e2 1792 goto out;
ce4541f4 1793
a98e58e5
SB
1794 init_opal_dev(&dev->ctrl.opal_dev, &nvme_sec_submit);
1795
1796 if (was_suspend)
1797 opal_unlock_from_suspend(&dev->ctrl.opal_dev);
1798
f0b50732 1799 result = nvme_setup_io_queues(dev);
badc34d4 1800 if (result)
f58944e2 1801 goto out;
f0b50732 1802
21f033f7
KB
1803 /*
1804 * A controller that can not execute IO typically requires user
1805 * intervention to correct. For such degraded controllers, the driver
1806 * should not submit commands the user did not request, so skip
1807 * registering for asynchronous event notification on this condition.
1808 */
f866fc42
CH
1809 if (dev->online_queues > 1)
1810 nvme_queue_async_events(&dev->ctrl);
3cf519b5 1811
2d55cd5f 1812 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
3cf519b5 1813
2659e57b
CH
1814 /*
1815 * Keep the controller around but remove all namespaces if we don't have
1816 * any working I/O queue.
1817 */
3cf519b5 1818 if (dev->online_queues < 2) {
1b3c47c1 1819 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 1820 nvme_kill_queues(&dev->ctrl);
5bae7f73 1821 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 1822 } else {
25646264 1823 nvme_start_queues(&dev->ctrl);
3cf519b5
CH
1824 nvme_dev_add(dev);
1825 }
1826
bb8d261e
CH
1827 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1828 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1829 goto out;
1830 }
92911a55
CH
1831
1832 if (dev->online_queues > 1)
5955be21 1833 nvme_queue_scan(&dev->ctrl);
3cf519b5 1834 return;
f0b50732 1835
3cf519b5 1836 out:
f58944e2 1837 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
1838}
1839
5c8809e6 1840static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 1841{
5c8809e6 1842 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 1843 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 1844
69d9a99c 1845 nvme_kill_queues(&dev->ctrl);
9a6b9458 1846 if (pci_get_drvdata(pdev))
921920ab 1847 device_release_driver(&pdev->dev);
1673f1f0 1848 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
1849}
1850
4cc06521 1851static int nvme_reset(struct nvme_dev *dev)
9a6b9458 1852{
1c63dc66 1853 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521 1854 return -ENODEV;
c5f6ce97
KB
1855 if (work_busy(&dev->reset_work))
1856 return -ENODEV;
846cc05f
CH
1857 if (!queue_work(nvme_workq, &dev->reset_work))
1858 return -EBUSY;
846cc05f 1859 return 0;
9a6b9458
KB
1860}
1861
1c63dc66 1862static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 1863{
1c63dc66 1864 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 1865 return 0;
9ca97374
TH
1866}
1867
5fd4ce1b 1868static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 1869{
5fd4ce1b
CH
1870 writel(val, to_nvme_dev(ctrl)->bar + off);
1871 return 0;
1872}
4cc06521 1873
7fd8930f
CH
1874static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1875{
1876 *val = readq(to_nvme_dev(ctrl)->bar + off);
1877 return 0;
4cc06521
KB
1878}
1879
f3ca80fc
CH
1880static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1881{
c5f6ce97
KB
1882 struct nvme_dev *dev = to_nvme_dev(ctrl);
1883 int ret = nvme_reset(dev);
1884
1885 if (!ret)
1886 flush_work(&dev->reset_work);
1887 return ret;
4cc06521 1888}
f3ca80fc 1889
1c63dc66 1890static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 1891 .name = "pcie",
e439bb12 1892 .module = THIS_MODULE,
1c63dc66 1893 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 1894 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 1895 .reg_read64 = nvme_pci_reg_read64,
f3ca80fc 1896 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 1897 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 1898 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 1899};
4cc06521 1900
b00a726a
KB
1901static int nvme_dev_map(struct nvme_dev *dev)
1902{
b00a726a
KB
1903 struct pci_dev *pdev = to_pci_dev(dev->dev);
1904
a1f447b3 1905 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
1906 return -ENODEV;
1907
1908 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1909 if (!dev->bar)
1910 goto release;
1911
9fa196e7 1912 return 0;
b00a726a 1913 release:
9fa196e7
MG
1914 pci_release_mem_regions(pdev);
1915 return -ENODEV;
b00a726a
KB
1916}
1917
8d85fce7 1918static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 1919{
a4aea562 1920 int node, result = -ENOMEM;
b60503ba
MW
1921 struct nvme_dev *dev;
1922
a4aea562
MB
1923 node = dev_to_node(&pdev->dev);
1924 if (node == NUMA_NO_NODE)
2fa84351 1925 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
1926
1927 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
1928 if (!dev)
1929 return -ENOMEM;
a4aea562
MB
1930 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1931 GFP_KERNEL, node);
b60503ba
MW
1932 if (!dev->queues)
1933 goto free;
1934
e75ec752 1935 dev->dev = get_device(&pdev->dev);
9a6b9458 1936 pci_set_drvdata(pdev, dev);
1c63dc66 1937
b00a726a
KB
1938 result = nvme_dev_map(dev);
1939 if (result)
1940 goto free;
1941
f3ca80fc 1942 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 1943 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2d55cd5f
CH
1944 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1945 (unsigned long)dev);
77bf25ea 1946 mutex_init(&dev->shutdown_lock);
db3cbfff 1947 init_completion(&dev->ioq_wait);
b60503ba 1948
091b6092
MW
1949 result = nvme_setup_prp_pools(dev);
1950 if (result)
a96d4f5c 1951 goto put_pci;
4cc06521 1952
f3ca80fc
CH
1953 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1954 id->driver_data);
4cc06521 1955 if (result)
2e1d8448 1956 goto release_pools;
740216fc 1957
1b3c47c1
SG
1958 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1959
92f7a162 1960 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
1961 return 0;
1962
0877cb0d 1963 release_pools:
091b6092 1964 nvme_release_prp_pools(dev);
a96d4f5c 1965 put_pci:
e75ec752 1966 put_device(dev->dev);
b00a726a 1967 nvme_dev_unmap(dev);
b60503ba
MW
1968 free:
1969 kfree(dev->queues);
b60503ba
MW
1970 kfree(dev);
1971 return result;
1972}
1973
f0d54a54
KB
1974static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1975{
a6739479 1976 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 1977
a6739479 1978 if (prepare)
a5cdb68c 1979 nvme_dev_disable(dev, false);
a6739479 1980 else
c5f6ce97 1981 nvme_reset(dev);
f0d54a54
KB
1982}
1983
09ece142
KB
1984static void nvme_shutdown(struct pci_dev *pdev)
1985{
1986 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 1987 nvme_dev_disable(dev, true);
09ece142
KB
1988}
1989
f58944e2
KB
1990/*
1991 * The driver's remove may be called on a device in a partially initialized
1992 * state. This function must not have any dependencies on the device state in
1993 * order to proceed.
1994 */
8d85fce7 1995static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
1996{
1997 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 1998
bb8d261e
CH
1999 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2000
9a6b9458 2001 pci_set_drvdata(pdev, NULL);
0ff9d4e1
KB
2002
2003 if (!pci_device_is_present(pdev))
2004 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2005
9bf2b972 2006 flush_work(&dev->reset_work);
53029b04 2007 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2008 nvme_dev_disable(dev, true);
a4aea562 2009 nvme_dev_remove_admin(dev);
a1a5ef99 2010 nvme_free_queues(dev, 0);
8ffaadf7 2011 nvme_release_cmb(dev);
9a6b9458 2012 nvme_release_prp_pools(dev);
b00a726a 2013 nvme_dev_unmap(dev);
1673f1f0 2014 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2015}
2016
13880f5b
KB
2017static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2018{
2019 int ret = 0;
2020
2021 if (numvfs == 0) {
2022 if (pci_vfs_assigned(pdev)) {
2023 dev_warn(&pdev->dev,
2024 "Cannot disable SR-IOV VFs while assigned\n");
2025 return -EPERM;
2026 }
2027 pci_disable_sriov(pdev);
2028 return 0;
2029 }
2030
2031 ret = pci_enable_sriov(pdev, numvfs);
2032 return ret ? ret : numvfs;
2033}
2034
671a6018 2035#ifdef CONFIG_PM_SLEEP
cd638946
KB
2036static int nvme_suspend(struct device *dev)
2037{
2038 struct pci_dev *pdev = to_pci_dev(dev);
2039 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2040
a5cdb68c 2041 nvme_dev_disable(ndev, true);
cd638946
KB
2042 return 0;
2043}
2044
2045static int nvme_resume(struct device *dev)
2046{
2047 struct pci_dev *pdev = to_pci_dev(dev);
2048 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2049
c5f6ce97 2050 nvme_reset(ndev);
9a6b9458 2051 return 0;
cd638946 2052}
671a6018 2053#endif
cd638946
KB
2054
2055static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2056
a0a3408e
KB
2057static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2058 pci_channel_state_t state)
2059{
2060 struct nvme_dev *dev = pci_get_drvdata(pdev);
2061
2062 /*
2063 * A frozen channel requires a reset. When detected, this method will
2064 * shutdown the controller to quiesce. The controller will be restarted
2065 * after the slot reset through driver's slot_reset callback.
2066 */
a0a3408e
KB
2067 switch (state) {
2068 case pci_channel_io_normal:
2069 return PCI_ERS_RESULT_CAN_RECOVER;
2070 case pci_channel_io_frozen:
d011fb31
KB
2071 dev_warn(dev->ctrl.device,
2072 "frozen state error detected, reset controller\n");
a5cdb68c 2073 nvme_dev_disable(dev, false);
a0a3408e
KB
2074 return PCI_ERS_RESULT_NEED_RESET;
2075 case pci_channel_io_perm_failure:
d011fb31
KB
2076 dev_warn(dev->ctrl.device,
2077 "failure state error detected, request disconnect\n");
a0a3408e
KB
2078 return PCI_ERS_RESULT_DISCONNECT;
2079 }
2080 return PCI_ERS_RESULT_NEED_RESET;
2081}
2082
2083static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2084{
2085 struct nvme_dev *dev = pci_get_drvdata(pdev);
2086
1b3c47c1 2087 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2088 pci_restore_state(pdev);
c5f6ce97 2089 nvme_reset(dev);
a0a3408e
KB
2090 return PCI_ERS_RESULT_RECOVERED;
2091}
2092
2093static void nvme_error_resume(struct pci_dev *pdev)
2094{
2095 pci_cleanup_aer_uncorrect_error_status(pdev);
2096}
2097
1d352035 2098static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2099 .error_detected = nvme_error_detected,
b60503ba
MW
2100 .slot_reset = nvme_slot_reset,
2101 .resume = nvme_error_resume,
f0d54a54 2102 .reset_notify = nvme_reset_notify,
b60503ba
MW
2103};
2104
6eb0d698 2105static const struct pci_device_id nvme_id_table[] = {
106198ed 2106 { PCI_VDEVICE(INTEL, 0x0953),
08095e70
KB
2107 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2108 NVME_QUIRK_DISCARD_ZEROES, },
99466e70
KB
2109 { PCI_VDEVICE(INTEL, 0x0a53),
2110 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2111 NVME_QUIRK_DISCARD_ZEROES, },
2112 { PCI_VDEVICE(INTEL, 0x0a54),
2113 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2114 NVME_QUIRK_DISCARD_ZEROES, },
540c801c
KB
2115 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2116 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2117 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2118 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2119 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2120 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2121 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2122 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2123 { 0, }
2124};
2125MODULE_DEVICE_TABLE(pci, nvme_id_table);
2126
2127static struct pci_driver nvme_driver = {
2128 .name = "nvme",
2129 .id_table = nvme_id_table,
2130 .probe = nvme_probe,
8d85fce7 2131 .remove = nvme_remove,
09ece142 2132 .shutdown = nvme_shutdown,
cd638946
KB
2133 .driver = {
2134 .pm = &nvme_dev_pm_ops,
2135 },
13880f5b 2136 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2137 .err_handler = &nvme_err_handler,
2138};
2139
2140static int __init nvme_init(void)
2141{
0ac13140 2142 int result;
1fa6aead 2143
92f7a162 2144 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2145 if (!nvme_workq)
b9afca3e 2146 return -ENOMEM;
9a6b9458 2147
f3db22fe
KB
2148 result = pci_register_driver(&nvme_driver);
2149 if (result)
576d55d6 2150 destroy_workqueue(nvme_workq);
b60503ba
MW
2151 return result;
2152}
2153
2154static void __exit nvme_exit(void)
2155{
2156 pci_unregister_driver(&nvme_driver);
9a6b9458 2157 destroy_workqueue(nvme_workq);
21bd78bc 2158 _nvme_check_size();
b60503ba
MW
2159}
2160
2161MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2162MODULE_LICENSE("GPL");
c78b4713 2163MODULE_VERSION("1.0");
b60503ba
MW
2164module_init(nvme_init);
2165module_exit(nvme_exit);