]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/nvme/target/fc.c
Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-jammy-kernel.git] / drivers / nvme / target / fc.c
CommitLineData
c5343203
JS
1/*
2 * Copyright (c) 2016 Avago Technologies. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful.
9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13 * See the GNU General Public License for more details, a copy of which
14 * can be found in the file COPYING included with this package
15 *
16 */
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18#include <linux/module.h>
19#include <linux/slab.h>
20#include <linux/blk-mq.h>
21#include <linux/parser.h>
22#include <linux/random.h>
23#include <uapi/scsi/fc/fc_fs.h>
24#include <uapi/scsi/fc/fc_els.h>
25
26#include "nvmet.h"
27#include <linux/nvme-fc-driver.h>
28#include <linux/nvme-fc.h>
29
30
31/* *************************** Data Structures/Defines ****************** */
32
33
34#define NVMET_LS_CTX_COUNT 4
35
36/* for this implementation, assume small single frame rqst/rsp */
37#define NVME_FC_MAX_LS_BUFFER_SIZE 2048
38
39struct nvmet_fc_tgtport;
40struct nvmet_fc_tgt_assoc;
41
42struct nvmet_fc_ls_iod {
43 struct nvmefc_tgt_ls_req *lsreq;
44 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */
45
46 struct list_head ls_list; /* tgtport->ls_list */
47
48 struct nvmet_fc_tgtport *tgtport;
49 struct nvmet_fc_tgt_assoc *assoc;
50
51 u8 *rqstbuf;
52 u8 *rspbuf;
53 u16 rqstdatalen;
54 dma_addr_t rspdma;
55
56 struct scatterlist sg[2];
57
58 struct work_struct work;
59} __aligned(sizeof(unsigned long long));
60
48fa362b
JS
61#define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024)
62#define NVMET_FC_MAX_XFR_SGENTS (NVMET_FC_MAX_SEQ_LENGTH / PAGE_SIZE)
c5343203
JS
63
64enum nvmet_fcp_datadir {
65 NVMET_FCP_NODATA,
66 NVMET_FCP_WRITE,
67 NVMET_FCP_READ,
68 NVMET_FCP_ABORTED,
69};
70
71struct nvmet_fc_fcp_iod {
72 struct nvmefc_tgt_fcp_req *fcpreq;
73
74 struct nvme_fc_cmd_iu cmdiubuf;
75 struct nvme_fc_ersp_iu rspiubuf;
76 dma_addr_t rspdma;
77 struct scatterlist *data_sg;
c5343203 78 int data_sg_cnt;
c5343203
JS
79 u32 offset;
80 enum nvmet_fcp_datadir io_dir;
81 bool active;
82 bool abort;
a97ec51b
JS
83 bool aborted;
84 bool writedataactive;
c5343203
JS
85 spinlock_t flock;
86
87 struct nvmet_req req;
88 struct work_struct work;
39498fae 89 struct work_struct done_work;
c5343203
JS
90
91 struct nvmet_fc_tgtport *tgtport;
92 struct nvmet_fc_tgt_queue *queue;
93
94 struct list_head fcp_list; /* tgtport->fcp_list */
95};
96
97struct nvmet_fc_tgtport {
98
99 struct nvmet_fc_target_port fc_target_port;
100
101 struct list_head tgt_list; /* nvmet_fc_target_list */
102 struct device *dev; /* dev for dma mapping */
103 struct nvmet_fc_target_template *ops;
104
105 struct nvmet_fc_ls_iod *iod;
106 spinlock_t lock;
107 struct list_head ls_list;
108 struct list_head ls_busylist;
109 struct list_head assoc_list;
110 struct ida assoc_cnt;
111 struct nvmet_port *port;
112 struct kref ref;
48fa362b 113 u32 max_sg_cnt;
c5343203
JS
114};
115
0fb228d3
JS
116struct nvmet_fc_defer_fcp_req {
117 struct list_head req_list;
118 struct nvmefc_tgt_fcp_req *fcp_req;
119};
120
c5343203
JS
121struct nvmet_fc_tgt_queue {
122 bool ninetypercent;
123 u16 qid;
124 u16 sqsize;
125 u16 ersp_ratio;
f63688a6 126 __le16 sqhd;
c5343203
JS
127 int cpu;
128 atomic_t connected;
129 atomic_t sqtail;
130 atomic_t zrspcnt;
131 atomic_t rsn;
132 spinlock_t qlock;
133 struct nvmet_port *port;
134 struct nvmet_cq nvme_cq;
135 struct nvmet_sq nvme_sq;
136 struct nvmet_fc_tgt_assoc *assoc;
137 struct nvmet_fc_fcp_iod *fod; /* array of fcp_iods */
138 struct list_head fod_list;
0fb228d3
JS
139 struct list_head pending_cmd_list;
140 struct list_head avail_defer_list;
c5343203
JS
141 struct workqueue_struct *work_q;
142 struct kref ref;
143} __aligned(sizeof(unsigned long long));
144
145struct nvmet_fc_tgt_assoc {
146 u64 association_id;
147 u32 a_id;
148 struct nvmet_fc_tgtport *tgtport;
149 struct list_head a_list;
deb61742 150 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES + 1];
c5343203 151 struct kref ref;
a96d4bd8 152 struct work_struct del_work;
c5343203
JS
153};
154
155
156static inline int
157nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
158{
159 return (iodptr - iodptr->tgtport->iod);
160}
161
162static inline int
163nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
164{
165 return (fodptr - fodptr->queue->fod);
166}
167
168
169/*
170 * Association and Connection IDs:
171 *
172 * Association ID will have random number in upper 6 bytes and zero
173 * in lower 2 bytes
174 *
175 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
176 *
177 * note: Association ID = Connection ID for queue 0
178 */
179#define BYTES_FOR_QID sizeof(u16)
180#define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
181#define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
182
183static inline u64
184nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
185{
186 return (assoc->association_id | qid);
187}
188
189static inline u64
190nvmet_fc_getassociationid(u64 connectionid)
191{
192 return connectionid & ~NVMET_FC_QUEUEID_MASK;
193}
194
195static inline u16
196nvmet_fc_getqueueid(u64 connectionid)
197{
198 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
199}
200
201static inline struct nvmet_fc_tgtport *
202targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
203{
204 return container_of(targetport, struct nvmet_fc_tgtport,
205 fc_target_port);
206}
207
208static inline struct nvmet_fc_fcp_iod *
209nvmet_req_to_fod(struct nvmet_req *nvme_req)
210{
211 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
212}
213
214
215/* *************************** Globals **************************** */
216
217
218static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
219
220static LIST_HEAD(nvmet_fc_target_list);
221static DEFINE_IDA(nvmet_fc_tgtport_cnt);
222
223
224static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
225static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work);
39498fae 226static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work);
c5343203
JS
227static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
228static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
229static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
230static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
231static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
232static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
0fb228d3
JS
233static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
234 struct nvmet_fc_fcp_iod *fod);
a96d4bd8 235static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
c5343203
JS
236
237
238/* *********************** FC-NVME DMA Handling **************************** */
239
240/*
241 * The fcloop device passes in a NULL device pointer. Real LLD's will
242 * pass in a valid device pointer. If NULL is passed to the dma mapping
243 * routines, depending on the platform, it may or may not succeed, and
244 * may crash.
245 *
246 * As such:
247 * Wrapper all the dma routines and check the dev pointer.
248 *
249 * If simple mappings (return just a dma address, we'll noop them,
250 * returning a dma address of 0.
251 *
252 * On more complex mappings (dma_map_sg), a pseudo routine fills
253 * in the scatter list, setting all dma addresses to 0.
254 */
255
256static inline dma_addr_t
257fc_dma_map_single(struct device *dev, void *ptr, size_t size,
258 enum dma_data_direction dir)
259{
260 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
261}
262
263static inline int
264fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
265{
266 return dev ? dma_mapping_error(dev, dma_addr) : 0;
267}
268
269static inline void
270fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
271 enum dma_data_direction dir)
272{
273 if (dev)
274 dma_unmap_single(dev, addr, size, dir);
275}
276
277static inline void
278fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
279 enum dma_data_direction dir)
280{
281 if (dev)
282 dma_sync_single_for_cpu(dev, addr, size, dir);
283}
284
285static inline void
286fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
287 enum dma_data_direction dir)
288{
289 if (dev)
290 dma_sync_single_for_device(dev, addr, size, dir);
291}
292
293/* pseudo dma_map_sg call */
294static int
295fc_map_sg(struct scatterlist *sg, int nents)
296{
297 struct scatterlist *s;
298 int i;
299
300 WARN_ON(nents == 0 || sg[0].length == 0);
301
302 for_each_sg(sg, s, nents, i) {
303 s->dma_address = 0L;
304#ifdef CONFIG_NEED_SG_DMA_LENGTH
305 s->dma_length = s->length;
306#endif
307 }
308 return nents;
309}
310
311static inline int
312fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
313 enum dma_data_direction dir)
314{
315 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
316}
317
318static inline void
319fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
320 enum dma_data_direction dir)
321{
322 if (dev)
323 dma_unmap_sg(dev, sg, nents, dir);
324}
325
326
327/* *********************** FC-NVME Port Management ************************ */
328
329
330static int
331nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
332{
333 struct nvmet_fc_ls_iod *iod;
334 int i;
335
336 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
337 GFP_KERNEL);
338 if (!iod)
339 return -ENOMEM;
340
341 tgtport->iod = iod;
342
343 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
344 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
345 iod->tgtport = tgtport;
346 list_add_tail(&iod->ls_list, &tgtport->ls_list);
347
348 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
349 GFP_KERNEL);
350 if (!iod->rqstbuf)
351 goto out_fail;
352
353 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
354
355 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
356 NVME_FC_MAX_LS_BUFFER_SIZE,
357 DMA_TO_DEVICE);
358 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
359 goto out_fail;
360 }
361
362 return 0;
363
364out_fail:
365 kfree(iod->rqstbuf);
366 list_del(&iod->ls_list);
367 for (iod--, i--; i >= 0; iod--, i--) {
368 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
369 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
370 kfree(iod->rqstbuf);
371 list_del(&iod->ls_list);
372 }
373
374 kfree(iod);
375
376 return -EFAULT;
377}
378
379static void
380nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
381{
382 struct nvmet_fc_ls_iod *iod = tgtport->iod;
383 int i;
384
385 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
386 fc_dma_unmap_single(tgtport->dev,
387 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
388 DMA_TO_DEVICE);
389 kfree(iod->rqstbuf);
390 list_del(&iod->ls_list);
391 }
392 kfree(tgtport->iod);
393}
394
395static struct nvmet_fc_ls_iod *
396nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
397{
369157b4 398 struct nvmet_fc_ls_iod *iod;
c5343203
JS
399 unsigned long flags;
400
401 spin_lock_irqsave(&tgtport->lock, flags);
402 iod = list_first_entry_or_null(&tgtport->ls_list,
403 struct nvmet_fc_ls_iod, ls_list);
404 if (iod)
405 list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
406 spin_unlock_irqrestore(&tgtport->lock, flags);
407 return iod;
408}
409
410
411static void
412nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
413 struct nvmet_fc_ls_iod *iod)
414{
415 unsigned long flags;
416
417 spin_lock_irqsave(&tgtport->lock, flags);
418 list_move(&iod->ls_list, &tgtport->ls_list);
419 spin_unlock_irqrestore(&tgtport->lock, flags);
420}
421
422static void
423nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
424 struct nvmet_fc_tgt_queue *queue)
425{
426 struct nvmet_fc_fcp_iod *fod = queue->fod;
427 int i;
428
429 for (i = 0; i < queue->sqsize; fod++, i++) {
430 INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work);
39498fae 431 INIT_WORK(&fod->done_work, nvmet_fc_fcp_rqst_op_done_work);
c5343203
JS
432 fod->tgtport = tgtport;
433 fod->queue = queue;
434 fod->active = false;
a97ec51b
JS
435 fod->abort = false;
436 fod->aborted = false;
437 fod->fcpreq = NULL;
c5343203
JS
438 list_add_tail(&fod->fcp_list, &queue->fod_list);
439 spin_lock_init(&fod->flock);
440
441 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
442 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
443 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
444 list_del(&fod->fcp_list);
445 for (fod--, i--; i >= 0; fod--, i--) {
446 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
447 sizeof(fod->rspiubuf),
448 DMA_TO_DEVICE);
449 fod->rspdma = 0L;
450 list_del(&fod->fcp_list);
451 }
452
453 return;
454 }
455 }
456}
457
458static void
459nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
460 struct nvmet_fc_tgt_queue *queue)
461{
462 struct nvmet_fc_fcp_iod *fod = queue->fod;
463 int i;
464
465 for (i = 0; i < queue->sqsize; fod++, i++) {
466 if (fod->rspdma)
467 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
468 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
469 }
470}
471
472static struct nvmet_fc_fcp_iod *
473nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
474{
369157b4 475 struct nvmet_fc_fcp_iod *fod;
c5343203 476
0fb228d3
JS
477 lockdep_assert_held(&queue->qlock);
478
c5343203
JS
479 fod = list_first_entry_or_null(&queue->fod_list,
480 struct nvmet_fc_fcp_iod, fcp_list);
481 if (fod) {
482 list_del(&fod->fcp_list);
483 fod->active = true;
c5343203
JS
484 /*
485 * no queue reference is taken, as it was taken by the
486 * queue lookup just prior to the allocation. The iod
487 * will "inherit" that reference.
488 */
489 }
c5343203
JS
490 return fod;
491}
492
493
0fb228d3
JS
494static void
495nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
496 struct nvmet_fc_tgt_queue *queue,
497 struct nvmefc_tgt_fcp_req *fcpreq)
498{
499 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
500
501 /*
502 * put all admin cmds on hw queue id 0. All io commands go to
503 * the respective hw queue based on a modulo basis
504 */
505 fcpreq->hwqid = queue->qid ?
506 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
507
508 if (tgtport->ops->target_features & NVMET_FCTGTFEAT_CMD_IN_ISR)
509 queue_work_on(queue->cpu, queue->work_q, &fod->work);
510 else
511 nvmet_fc_handle_fcp_rqst(tgtport, fod);
512}
513
c5343203
JS
514static void
515nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
516 struct nvmet_fc_fcp_iod *fod)
517{
19b58d94
JS
518 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
519 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
0fb228d3 520 struct nvmet_fc_defer_fcp_req *deferfcp;
c5343203
JS
521 unsigned long flags;
522
a97ec51b
JS
523 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
524 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
525
526 fcpreq->nvmet_fc_private = NULL;
527
c5343203 528 fod->active = false;
a97ec51b
JS
529 fod->abort = false;
530 fod->aborted = false;
531 fod->writedataactive = false;
532 fod->fcpreq = NULL;
0fb228d3
JS
533
534 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
535
619c62dc
JS
536 /* release the queue lookup reference on the completed IO */
537 nvmet_fc_tgt_q_put(queue);
538
0fb228d3
JS
539 spin_lock_irqsave(&queue->qlock, flags);
540 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
541 struct nvmet_fc_defer_fcp_req, req_list);
542 if (!deferfcp) {
543 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
544 spin_unlock_irqrestore(&queue->qlock, flags);
0fb228d3
JS
545 return;
546 }
547
548 /* Re-use the fod for the next pending cmd that was deferred */
549 list_del(&deferfcp->req_list);
550
551 fcpreq = deferfcp->fcp_req;
552
553 /* deferfcp can be reused for another IO at a later date */
554 list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
555
c5343203
JS
556 spin_unlock_irqrestore(&queue->qlock, flags);
557
0fb228d3
JS
558 /* Save NVME CMD IO in fod */
559 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
560
561 /* Setup new fcpreq to be processed */
562 fcpreq->rspaddr = NULL;
563 fcpreq->rsplen = 0;
564 fcpreq->nvmet_fc_private = fod;
565 fod->fcpreq = fcpreq;
566 fod->active = true;
567
568 /* inform LLDD IO is now being processed */
569 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
570
571 /* Submit deferred IO for processing */
572 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
573
c5343203 574 /*
0fb228d3
JS
575 * Leave the queue lookup get reference taken when
576 * fod was originally allocated.
c5343203 577 */
c5343203
JS
578}
579
580static int
581nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid)
582{
583 int cpu, idx, cnt;
584
4b8ba5fa 585 if (tgtport->ops->max_hw_queues == 1)
c5343203
JS
586 return WORK_CPU_UNBOUND;
587
588 /* Simple cpu selection based on qid modulo active cpu count */
589 idx = !qid ? 0 : (qid - 1) % num_active_cpus();
590
591 /* find the n'th active cpu */
592 for (cpu = 0, cnt = 0; ; ) {
593 if (cpu_active(cpu)) {
594 if (cnt == idx)
595 break;
596 cnt++;
597 }
598 cpu = (cpu + 1) % num_possible_cpus();
599 }
600
601 return cpu;
602}
603
604static struct nvmet_fc_tgt_queue *
605nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
606 u16 qid, u16 sqsize)
607{
608 struct nvmet_fc_tgt_queue *queue;
609 unsigned long flags;
610 int ret;
611
deb61742 612 if (qid > NVMET_NR_QUEUES)
c5343203
JS
613 return NULL;
614
615 queue = kzalloc((sizeof(*queue) +
616 (sizeof(struct nvmet_fc_fcp_iod) * sqsize)),
617 GFP_KERNEL);
618 if (!queue)
619 return NULL;
620
621 if (!nvmet_fc_tgt_a_get(assoc))
622 goto out_free_queue;
623
624 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
625 assoc->tgtport->fc_target_port.port_num,
626 assoc->a_id, qid);
627 if (!queue->work_q)
628 goto out_a_put;
629
630 queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1];
631 queue->qid = qid;
632 queue->sqsize = sqsize;
633 queue->assoc = assoc;
634 queue->port = assoc->tgtport->port;
635 queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid);
636 INIT_LIST_HEAD(&queue->fod_list);
0fb228d3
JS
637 INIT_LIST_HEAD(&queue->avail_defer_list);
638 INIT_LIST_HEAD(&queue->pending_cmd_list);
c5343203
JS
639 atomic_set(&queue->connected, 0);
640 atomic_set(&queue->sqtail, 0);
641 atomic_set(&queue->rsn, 1);
642 atomic_set(&queue->zrspcnt, 0);
643 spin_lock_init(&queue->qlock);
644 kref_init(&queue->ref);
645
646 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
647
648 ret = nvmet_sq_init(&queue->nvme_sq);
649 if (ret)
650 goto out_fail_iodlist;
651
652 WARN_ON(assoc->queues[qid]);
653 spin_lock_irqsave(&assoc->tgtport->lock, flags);
654 assoc->queues[qid] = queue;
655 spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
656
657 return queue;
658
659out_fail_iodlist:
660 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
661 destroy_workqueue(queue->work_q);
662out_a_put:
663 nvmet_fc_tgt_a_put(assoc);
664out_free_queue:
665 kfree(queue);
666 return NULL;
667}
668
669
670static void
671nvmet_fc_tgt_queue_free(struct kref *ref)
672{
673 struct nvmet_fc_tgt_queue *queue =
674 container_of(ref, struct nvmet_fc_tgt_queue, ref);
675 unsigned long flags;
676
677 spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
678 queue->assoc->queues[queue->qid] = NULL;
679 spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
680
681 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
682
683 nvmet_fc_tgt_a_put(queue->assoc);
684
685 destroy_workqueue(queue->work_q);
686
687 kfree(queue);
688}
689
690static void
691nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
692{
693 kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
694}
695
696static int
697nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
698{
699 return kref_get_unless_zero(&queue->ref);
700}
701
702
c5343203
JS
703static void
704nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
705{
a97ec51b 706 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
c5343203 707 struct nvmet_fc_fcp_iod *fod = queue->fod;
16a5a480 708 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
c5343203 709 unsigned long flags;
a97ec51b 710 int i, writedataactive;
c5343203
JS
711 bool disconnect;
712
713 disconnect = atomic_xchg(&queue->connected, 0);
714
715 spin_lock_irqsave(&queue->qlock, flags);
716 /* about outstanding io's */
717 for (i = 0; i < queue->sqsize; fod++, i++) {
718 if (fod->active) {
719 spin_lock(&fod->flock);
720 fod->abort = true;
a97ec51b 721 writedataactive = fod->writedataactive;
c5343203 722 spin_unlock(&fod->flock);
a97ec51b
JS
723 /*
724 * only call lldd abort routine if waiting for
725 * writedata. other outstanding ops should finish
726 * on their own.
727 */
728 if (writedataactive) {
729 spin_lock(&fod->flock);
730 fod->aborted = true;
731 spin_unlock(&fod->flock);
732 tgtport->ops->fcp_abort(
733 &tgtport->fc_target_port, fod->fcpreq);
734 }
c5343203
JS
735 }
736 }
0fb228d3
JS
737
738 /* Cleanup defer'ed IOs in queue */
16a5a480
JS
739 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
740 req_list) {
0fb228d3
JS
741 list_del(&deferfcp->req_list);
742 kfree(deferfcp);
743 }
744
745 for (;;) {
746 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
747 struct nvmet_fc_defer_fcp_req, req_list);
748 if (!deferfcp)
749 break;
750
751 list_del(&deferfcp->req_list);
752 spin_unlock_irqrestore(&queue->qlock, flags);
753
754 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
755 deferfcp->fcp_req);
756
757 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
758 deferfcp->fcp_req);
759
760 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
761 deferfcp->fcp_req);
762
619c62dc
JS
763 /* release the queue lookup reference */
764 nvmet_fc_tgt_q_put(queue);
765
0fb228d3
JS
766 kfree(deferfcp);
767
768 spin_lock_irqsave(&queue->qlock, flags);
769 }
c5343203
JS
770 spin_unlock_irqrestore(&queue->qlock, flags);
771
772 flush_workqueue(queue->work_q);
773
774 if (disconnect)
775 nvmet_sq_destroy(&queue->nvme_sq);
776
777 nvmet_fc_tgt_q_put(queue);
778}
779
780static struct nvmet_fc_tgt_queue *
781nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
782 u64 connection_id)
783{
784 struct nvmet_fc_tgt_assoc *assoc;
785 struct nvmet_fc_tgt_queue *queue;
786 u64 association_id = nvmet_fc_getassociationid(connection_id);
787 u16 qid = nvmet_fc_getqueueid(connection_id);
788 unsigned long flags;
789
0c319d3a
JS
790 if (qid > NVMET_NR_QUEUES)
791 return NULL;
792
c5343203
JS
793 spin_lock_irqsave(&tgtport->lock, flags);
794 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
795 if (association_id == assoc->association_id) {
796 queue = assoc->queues[qid];
797 if (queue &&
798 (!atomic_read(&queue->connected) ||
799 !nvmet_fc_tgt_q_get(queue)))
800 queue = NULL;
801 spin_unlock_irqrestore(&tgtport->lock, flags);
802 return queue;
803 }
804 }
805 spin_unlock_irqrestore(&tgtport->lock, flags);
806 return NULL;
807}
808
a96d4bd8
JS
809static void
810nvmet_fc_delete_assoc(struct work_struct *work)
811{
812 struct nvmet_fc_tgt_assoc *assoc =
813 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
814
815 nvmet_fc_delete_target_assoc(assoc);
816 nvmet_fc_tgt_a_put(assoc);
817}
818
c5343203
JS
819static struct nvmet_fc_tgt_assoc *
820nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
821{
822 struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
823 unsigned long flags;
824 u64 ran;
825 int idx;
826 bool needrandom = true;
827
828 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
829 if (!assoc)
830 return NULL;
831
832 idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
833 if (idx < 0)
834 goto out_free_assoc;
835
836 if (!nvmet_fc_tgtport_get(tgtport))
837 goto out_ida_put;
838
839 assoc->tgtport = tgtport;
840 assoc->a_id = idx;
841 INIT_LIST_HEAD(&assoc->a_list);
842 kref_init(&assoc->ref);
a96d4bd8 843 INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
c5343203
JS
844
845 while (needrandom) {
846 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
847 ran = ran << BYTES_FOR_QID_SHIFT;
848
849 spin_lock_irqsave(&tgtport->lock, flags);
850 needrandom = false;
851 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
852 if (ran == tmpassoc->association_id) {
853 needrandom = true;
854 break;
855 }
856 if (!needrandom) {
857 assoc->association_id = ran;
858 list_add_tail(&assoc->a_list, &tgtport->assoc_list);
859 }
860 spin_unlock_irqrestore(&tgtport->lock, flags);
861 }
862
863 return assoc;
864
865out_ida_put:
866 ida_simple_remove(&tgtport->assoc_cnt, idx);
867out_free_assoc:
868 kfree(assoc);
869 return NULL;
870}
871
872static void
873nvmet_fc_target_assoc_free(struct kref *ref)
874{
875 struct nvmet_fc_tgt_assoc *assoc =
876 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
877 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
878 unsigned long flags;
879
880 spin_lock_irqsave(&tgtport->lock, flags);
881 list_del(&assoc->a_list);
882 spin_unlock_irqrestore(&tgtport->lock, flags);
883 ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
884 kfree(assoc);
885 nvmet_fc_tgtport_put(tgtport);
886}
887
888static void
889nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
890{
891 kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
892}
893
894static int
895nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
896{
897 return kref_get_unless_zero(&assoc->ref);
898}
899
900static void
901nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
902{
903 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
904 struct nvmet_fc_tgt_queue *queue;
905 unsigned long flags;
906 int i;
907
908 spin_lock_irqsave(&tgtport->lock, flags);
deb61742 909 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
c5343203
JS
910 queue = assoc->queues[i];
911 if (queue) {
912 if (!nvmet_fc_tgt_q_get(queue))
913 continue;
914 spin_unlock_irqrestore(&tgtport->lock, flags);
915 nvmet_fc_delete_target_queue(queue);
916 nvmet_fc_tgt_q_put(queue);
917 spin_lock_irqsave(&tgtport->lock, flags);
918 }
919 }
920 spin_unlock_irqrestore(&tgtport->lock, flags);
921
922 nvmet_fc_tgt_a_put(assoc);
923}
924
925static struct nvmet_fc_tgt_assoc *
926nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
927 u64 association_id)
928{
929 struct nvmet_fc_tgt_assoc *assoc;
930 struct nvmet_fc_tgt_assoc *ret = NULL;
931 unsigned long flags;
932
933 spin_lock_irqsave(&tgtport->lock, flags);
934 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
935 if (association_id == assoc->association_id) {
936 ret = assoc;
937 nvmet_fc_tgt_a_get(assoc);
938 break;
939 }
940 }
941 spin_unlock_irqrestore(&tgtport->lock, flags);
942
943 return ret;
944}
945
946
947/**
948 * nvme_fc_register_targetport - transport entry point called by an
949 * LLDD to register the existence of a local
950 * NVME subystem FC port.
951 * @pinfo: pointer to information about the port to be registered
952 * @template: LLDD entrypoints and operational parameters for the port
953 * @dev: physical hardware device node port corresponds to. Will be
954 * used for DMA mappings
955 * @portptr: pointer to a local port pointer. Upon success, the routine
956 * will allocate a nvme_fc_local_port structure and place its
957 * address in the local port pointer. Upon failure, local port
958 * pointer will be set to NULL.
959 *
960 * Returns:
961 * a completion status. Must be 0 upon success; a negative errno
962 * (ex: -ENXIO) upon failure.
963 */
964int
965nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
966 struct nvmet_fc_target_template *template,
967 struct device *dev,
968 struct nvmet_fc_target_port **portptr)
969{
970 struct nvmet_fc_tgtport *newrec;
971 unsigned long flags;
972 int ret, idx;
973
974 if (!template->xmt_ls_rsp || !template->fcp_op ||
a97ec51b 975 !template->fcp_abort ||
19b58d94 976 !template->fcp_req_release || !template->targetport_delete ||
c5343203
JS
977 !template->max_hw_queues || !template->max_sgl_segments ||
978 !template->max_dif_sgl_segments || !template->dma_boundary) {
979 ret = -EINVAL;
980 goto out_regtgt_failed;
981 }
982
983 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
984 GFP_KERNEL);
985 if (!newrec) {
986 ret = -ENOMEM;
987 goto out_regtgt_failed;
988 }
989
990 idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
991 if (idx < 0) {
992 ret = -ENOSPC;
993 goto out_fail_kfree;
994 }
995
996 if (!get_device(dev) && dev) {
997 ret = -ENODEV;
998 goto out_ida_put;
999 }
1000
1001 newrec->fc_target_port.node_name = pinfo->node_name;
1002 newrec->fc_target_port.port_name = pinfo->port_name;
1003 newrec->fc_target_port.private = &newrec[1];
1004 newrec->fc_target_port.port_id = pinfo->port_id;
1005 newrec->fc_target_port.port_num = idx;
1006 INIT_LIST_HEAD(&newrec->tgt_list);
1007 newrec->dev = dev;
1008 newrec->ops = template;
1009 spin_lock_init(&newrec->lock);
1010 INIT_LIST_HEAD(&newrec->ls_list);
1011 INIT_LIST_HEAD(&newrec->ls_busylist);
1012 INIT_LIST_HEAD(&newrec->assoc_list);
1013 kref_init(&newrec->ref);
1014 ida_init(&newrec->assoc_cnt);
48fa362b
JS
1015 newrec->max_sg_cnt = min_t(u32, NVMET_FC_MAX_XFR_SGENTS,
1016 template->max_sgl_segments);
c5343203
JS
1017
1018 ret = nvmet_fc_alloc_ls_iodlist(newrec);
1019 if (ret) {
1020 ret = -ENOMEM;
1021 goto out_free_newrec;
1022 }
1023
1024 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1025 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1026 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1027
1028 *portptr = &newrec->fc_target_port;
1029 return 0;
1030
1031out_free_newrec:
1032 put_device(dev);
1033out_ida_put:
1034 ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1035out_fail_kfree:
1036 kfree(newrec);
1037out_regtgt_failed:
1038 *portptr = NULL;
1039 return ret;
1040}
1041EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1042
1043
1044static void
1045nvmet_fc_free_tgtport(struct kref *ref)
1046{
1047 struct nvmet_fc_tgtport *tgtport =
1048 container_of(ref, struct nvmet_fc_tgtport, ref);
1049 struct device *dev = tgtport->dev;
1050 unsigned long flags;
1051
1052 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1053 list_del(&tgtport->tgt_list);
1054 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1055
1056 nvmet_fc_free_ls_iodlist(tgtport);
1057
1058 /* let the LLDD know we've finished tearing it down */
1059 tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1060
1061 ida_simple_remove(&nvmet_fc_tgtport_cnt,
1062 tgtport->fc_target_port.port_num);
1063
1064 ida_destroy(&tgtport->assoc_cnt);
1065
1066 kfree(tgtport);
1067
1068 put_device(dev);
1069}
1070
1071static void
1072nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1073{
1074 kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1075}
1076
1077static int
1078nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1079{
1080 return kref_get_unless_zero(&tgtport->ref);
1081}
1082
1083static void
1084__nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1085{
1086 struct nvmet_fc_tgt_assoc *assoc, *next;
1087 unsigned long flags;
1088
1089 spin_lock_irqsave(&tgtport->lock, flags);
1090 list_for_each_entry_safe(assoc, next,
1091 &tgtport->assoc_list, a_list) {
1092 if (!nvmet_fc_tgt_a_get(assoc))
1093 continue;
1094 spin_unlock_irqrestore(&tgtport->lock, flags);
1095 nvmet_fc_delete_target_assoc(assoc);
1096 nvmet_fc_tgt_a_put(assoc);
1097 spin_lock_irqsave(&tgtport->lock, flags);
1098 }
1099 spin_unlock_irqrestore(&tgtport->lock, flags);
1100}
1101
1102/*
1103 * nvmet layer has called to terminate an association
1104 */
1105static void
1106nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1107{
1108 struct nvmet_fc_tgtport *tgtport, *next;
1109 struct nvmet_fc_tgt_assoc *assoc;
1110 struct nvmet_fc_tgt_queue *queue;
1111 unsigned long flags;
1112 bool found_ctrl = false;
1113
1114 /* this is a bit ugly, but don't want to make locks layered */
1115 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1116 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1117 tgt_list) {
1118 if (!nvmet_fc_tgtport_get(tgtport))
1119 continue;
1120 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1121
1122 spin_lock_irqsave(&tgtport->lock, flags);
1123 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1124 queue = assoc->queues[0];
1125 if (queue && queue->nvme_sq.ctrl == ctrl) {
1126 if (nvmet_fc_tgt_a_get(assoc))
1127 found_ctrl = true;
1128 break;
1129 }
1130 }
1131 spin_unlock_irqrestore(&tgtport->lock, flags);
1132
1133 nvmet_fc_tgtport_put(tgtport);
1134
1135 if (found_ctrl) {
a96d4bd8 1136 schedule_work(&assoc->del_work);
c5343203
JS
1137 return;
1138 }
1139
1140 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1141 }
1142 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1143}
1144
1145/**
1146 * nvme_fc_unregister_targetport - transport entry point called by an
1147 * LLDD to deregister/remove a previously
1148 * registered a local NVME subsystem FC port.
1149 * @tgtport: pointer to the (registered) target port that is to be
1150 * deregistered.
1151 *
1152 * Returns:
1153 * a completion status. Must be 0 upon success; a negative errno
1154 * (ex: -ENXIO) upon failure.
1155 */
1156int
1157nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1158{
1159 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1160
1161 /* terminate any outstanding associations */
1162 __nvmet_fc_free_assocs(tgtport);
1163
1164 nvmet_fc_tgtport_put(tgtport);
1165
1166 return 0;
1167}
1168EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1169
1170
1171/* *********************** FC-NVME LS Handling **************************** */
1172
1173
1174static void
3f5e1188 1175nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
c5343203
JS
1176{
1177 struct fcnvme_ls_acc_hdr *acc = buf;
1178
1179 acc->w0.ls_cmd = ls_cmd;
1180 acc->desc_list_len = desc_len;
1181 acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1182 acc->rqst.desc_len =
1183 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1184 acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1185}
1186
1187static int
1188nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1189 u8 reason, u8 explanation, u8 vendor)
1190{
1191 struct fcnvme_ls_rjt *rjt = buf;
1192
1193 nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1194 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1195 ls_cmd);
1196 rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1197 rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1198 rjt->rjt.reason_code = reason;
1199 rjt->rjt.reason_explanation = explanation;
1200 rjt->rjt.vendor = vendor;
1201
1202 return sizeof(struct fcnvme_ls_rjt);
1203}
1204
1205/* Validation Error indexes into the string table below */
1206enum {
1207 VERR_NO_ERROR = 0,
1208 VERR_CR_ASSOC_LEN = 1,
1209 VERR_CR_ASSOC_RQST_LEN = 2,
1210 VERR_CR_ASSOC_CMD = 3,
1211 VERR_CR_ASSOC_CMD_LEN = 4,
1212 VERR_ERSP_RATIO = 5,
1213 VERR_ASSOC_ALLOC_FAIL = 6,
1214 VERR_QUEUE_ALLOC_FAIL = 7,
1215 VERR_CR_CONN_LEN = 8,
1216 VERR_CR_CONN_RQST_LEN = 9,
1217 VERR_ASSOC_ID = 10,
1218 VERR_ASSOC_ID_LEN = 11,
1219 VERR_NO_ASSOC = 12,
1220 VERR_CONN_ID = 13,
1221 VERR_CONN_ID_LEN = 14,
1222 VERR_NO_CONN = 15,
1223 VERR_CR_CONN_CMD = 16,
1224 VERR_CR_CONN_CMD_LEN = 17,
1225 VERR_DISCONN_LEN = 18,
1226 VERR_DISCONN_RQST_LEN = 19,
1227 VERR_DISCONN_CMD = 20,
1228 VERR_DISCONN_CMD_LEN = 21,
1229 VERR_DISCONN_SCOPE = 22,
1230 VERR_RS_LEN = 23,
1231 VERR_RS_RQST_LEN = 24,
1232 VERR_RS_CMD = 25,
1233 VERR_RS_CMD_LEN = 26,
1234 VERR_RS_RCTL = 27,
1235 VERR_RS_RO = 28,
1236};
1237
1238static char *validation_errors[] = {
1239 "OK",
1240 "Bad CR_ASSOC Length",
1241 "Bad CR_ASSOC Rqst Length",
1242 "Not CR_ASSOC Cmd",
1243 "Bad CR_ASSOC Cmd Length",
1244 "Bad Ersp Ratio",
1245 "Association Allocation Failed",
1246 "Queue Allocation Failed",
1247 "Bad CR_CONN Length",
1248 "Bad CR_CONN Rqst Length",
1249 "Not Association ID",
1250 "Bad Association ID Length",
1251 "No Association",
1252 "Not Connection ID",
1253 "Bad Connection ID Length",
1254 "No Connection",
1255 "Not CR_CONN Cmd",
1256 "Bad CR_CONN Cmd Length",
1257 "Bad DISCONN Length",
1258 "Bad DISCONN Rqst Length",
1259 "Not DISCONN Cmd",
1260 "Bad DISCONN Cmd Length",
1261 "Bad Disconnect Scope",
1262 "Bad RS Length",
1263 "Bad RS Rqst Length",
1264 "Not RS Cmd",
1265 "Bad RS Cmd Length",
1266 "Bad RS R_CTL",
1267 "Bad RS Relative Offset",
1268};
1269
1270static void
1271nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1272 struct nvmet_fc_ls_iod *iod)
1273{
1274 struct fcnvme_ls_cr_assoc_rqst *rqst =
1275 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1276 struct fcnvme_ls_cr_assoc_acc *acc =
1277 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1278 struct nvmet_fc_tgt_queue *queue;
1279 int ret = 0;
1280
1281 memset(acc, 0, sizeof(*acc));
1282
4cb7ca80
JS
1283 /*
1284 * FC-NVME spec changes. There are initiators sending different
1285 * lengths as padding sizes for Create Association Cmd descriptor
1286 * was incorrect.
1287 * Accept anything of "minimum" length. Assume format per 1.15
1288 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1289 * trailing pad length is.
1290 */
1291 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
c5343203 1292 ret = VERR_CR_ASSOC_LEN;
7722ecdc
CH
1293 else if (be32_to_cpu(rqst->desc_list_len) <
1294 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
c5343203
JS
1295 ret = VERR_CR_ASSOC_RQST_LEN;
1296 else if (rqst->assoc_cmd.desc_tag !=
1297 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1298 ret = VERR_CR_ASSOC_CMD;
7722ecdc
CH
1299 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1300 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
c5343203
JS
1301 ret = VERR_CR_ASSOC_CMD_LEN;
1302 else if (!rqst->assoc_cmd.ersp_ratio ||
1303 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1304 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1305 ret = VERR_ERSP_RATIO;
1306
1307 else {
1308 /* new association w/ admin queue */
1309 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1310 if (!iod->assoc)
1311 ret = VERR_ASSOC_ALLOC_FAIL;
1312 else {
1313 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1314 be16_to_cpu(rqst->assoc_cmd.sqsize));
1315 if (!queue)
1316 ret = VERR_QUEUE_ALLOC_FAIL;
1317 }
1318 }
1319
1320 if (ret) {
1321 dev_err(tgtport->dev,
1322 "Create Association LS failed: %s\n",
1323 validation_errors[ret]);
1324 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1325 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
4083aa98
JS
1326 FCNVME_RJT_RC_LOGIC,
1327 FCNVME_RJT_EXP_NONE, 0);
c5343203
JS
1328 return;
1329 }
1330
1331 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1332 atomic_set(&queue->connected, 1);
1333 queue->sqhd = 0; /* best place to init value */
1334
1335 /* format a response */
1336
1337 iod->lsreq->rsplen = sizeof(*acc);
1338
1339 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1340 fcnvme_lsdesc_len(
1341 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1342 FCNVME_LS_CREATE_ASSOCIATION);
1343 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1344 acc->associd.desc_len =
1345 fcnvme_lsdesc_len(
1346 sizeof(struct fcnvme_lsdesc_assoc_id));
1347 acc->associd.association_id =
1348 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1349 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1350 acc->connectid.desc_len =
1351 fcnvme_lsdesc_len(
1352 sizeof(struct fcnvme_lsdesc_conn_id));
1353 acc->connectid.connection_id = acc->associd.association_id;
1354}
1355
1356static void
1357nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1358 struct nvmet_fc_ls_iod *iod)
1359{
1360 struct fcnvme_ls_cr_conn_rqst *rqst =
1361 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1362 struct fcnvme_ls_cr_conn_acc *acc =
1363 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1364 struct nvmet_fc_tgt_queue *queue;
1365 int ret = 0;
1366
1367 memset(acc, 0, sizeof(*acc));
1368
1369 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1370 ret = VERR_CR_CONN_LEN;
1371 else if (rqst->desc_list_len !=
1372 fcnvme_lsdesc_len(
1373 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1374 ret = VERR_CR_CONN_RQST_LEN;
1375 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1376 ret = VERR_ASSOC_ID;
1377 else if (rqst->associd.desc_len !=
1378 fcnvme_lsdesc_len(
1379 sizeof(struct fcnvme_lsdesc_assoc_id)))
1380 ret = VERR_ASSOC_ID_LEN;
1381 else if (rqst->connect_cmd.desc_tag !=
1382 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1383 ret = VERR_CR_CONN_CMD;
1384 else if (rqst->connect_cmd.desc_len !=
1385 fcnvme_lsdesc_len(
1386 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1387 ret = VERR_CR_CONN_CMD_LEN;
1388 else if (!rqst->connect_cmd.ersp_ratio ||
1389 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1390 be16_to_cpu(rqst->connect_cmd.sqsize)))
1391 ret = VERR_ERSP_RATIO;
1392
1393 else {
1394 /* new io queue */
1395 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1396 be64_to_cpu(rqst->associd.association_id));
1397 if (!iod->assoc)
1398 ret = VERR_NO_ASSOC;
1399 else {
1400 queue = nvmet_fc_alloc_target_queue(iod->assoc,
1401 be16_to_cpu(rqst->connect_cmd.qid),
1402 be16_to_cpu(rqst->connect_cmd.sqsize));
1403 if (!queue)
1404 ret = VERR_QUEUE_ALLOC_FAIL;
1405
1406 /* release get taken in nvmet_fc_find_target_assoc */
1407 nvmet_fc_tgt_a_put(iod->assoc);
1408 }
1409 }
1410
1411 if (ret) {
1412 dev_err(tgtport->dev,
1413 "Create Connection LS failed: %s\n",
1414 validation_errors[ret]);
1415 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1416 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1417 (ret == VERR_NO_ASSOC) ?
4083aa98
JS
1418 FCNVME_RJT_RC_INV_ASSOC :
1419 FCNVME_RJT_RC_LOGIC,
1420 FCNVME_RJT_EXP_NONE, 0);
c5343203
JS
1421 return;
1422 }
1423
1424 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1425 atomic_set(&queue->connected, 1);
1426 queue->sqhd = 0; /* best place to init value */
1427
1428 /* format a response */
1429
1430 iod->lsreq->rsplen = sizeof(*acc);
1431
1432 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1433 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1434 FCNVME_LS_CREATE_CONNECTION);
1435 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1436 acc->connectid.desc_len =
1437 fcnvme_lsdesc_len(
1438 sizeof(struct fcnvme_lsdesc_conn_id));
1439 acc->connectid.connection_id =
1440 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1441 be16_to_cpu(rqst->connect_cmd.qid)));
1442}
1443
1444static void
1445nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1446 struct nvmet_fc_ls_iod *iod)
1447{
1448 struct fcnvme_ls_disconnect_rqst *rqst =
1449 (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1450 struct fcnvme_ls_disconnect_acc *acc =
1451 (struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
c81e55e0 1452 struct nvmet_fc_tgt_queue *queue = NULL;
c5343203
JS
1453 struct nvmet_fc_tgt_assoc *assoc;
1454 int ret = 0;
1455 bool del_assoc = false;
1456
1457 memset(acc, 0, sizeof(*acc));
1458
1459 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1460 ret = VERR_DISCONN_LEN;
1461 else if (rqst->desc_list_len !=
1462 fcnvme_lsdesc_len(
1463 sizeof(struct fcnvme_ls_disconnect_rqst)))
1464 ret = VERR_DISCONN_RQST_LEN;
1465 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1466 ret = VERR_ASSOC_ID;
1467 else if (rqst->associd.desc_len !=
1468 fcnvme_lsdesc_len(
1469 sizeof(struct fcnvme_lsdesc_assoc_id)))
1470 ret = VERR_ASSOC_ID_LEN;
1471 else if (rqst->discon_cmd.desc_tag !=
1472 cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1473 ret = VERR_DISCONN_CMD;
1474 else if (rqst->discon_cmd.desc_len !=
1475 fcnvme_lsdesc_len(
1476 sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1477 ret = VERR_DISCONN_CMD_LEN;
1478 else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1479 (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1480 ret = VERR_DISCONN_SCOPE;
1481 else {
1482 /* match an active association */
1483 assoc = nvmet_fc_find_target_assoc(tgtport,
1484 be64_to_cpu(rqst->associd.association_id));
1485 iod->assoc = assoc;
c81e55e0
JS
1486 if (assoc) {
1487 if (rqst->discon_cmd.scope ==
1488 FCNVME_DISCONN_CONNECTION) {
1489 queue = nvmet_fc_find_target_queue(tgtport,
1490 be64_to_cpu(
1491 rqst->discon_cmd.id));
1492 if (!queue) {
1493 nvmet_fc_tgt_a_put(assoc);
1494 ret = VERR_NO_CONN;
1495 }
1496 }
1497 } else
c5343203
JS
1498 ret = VERR_NO_ASSOC;
1499 }
1500
1501 if (ret) {
1502 dev_err(tgtport->dev,
1503 "Disconnect LS failed: %s\n",
1504 validation_errors[ret]);
1505 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1506 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
4083aa98
JS
1507 (ret == VERR_NO_ASSOC) ?
1508 FCNVME_RJT_RC_INV_ASSOC :
1509 (ret == VERR_NO_CONN) ?
1510 FCNVME_RJT_RC_INV_CONN :
1511 FCNVME_RJT_RC_LOGIC,
1512 FCNVME_RJT_EXP_NONE, 0);
c5343203
JS
1513 return;
1514 }
1515
1516 /* format a response */
1517
1518 iod->lsreq->rsplen = sizeof(*acc);
1519
1520 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1521 fcnvme_lsdesc_len(
1522 sizeof(struct fcnvme_ls_disconnect_acc)),
1523 FCNVME_LS_DISCONNECT);
1524
1525
c81e55e0
JS
1526 /* are we to delete a Connection ID (queue) */
1527 if (queue) {
1528 int qid = queue->qid;
c5343203 1529
c81e55e0 1530 nvmet_fc_delete_target_queue(queue);
c5343203 1531
c81e55e0
JS
1532 /* release the get taken by find_target_queue */
1533 nvmet_fc_tgt_q_put(queue);
c5343203 1534
c81e55e0
JS
1535 /* tear association down if io queue terminated */
1536 if (!qid)
1537 del_assoc = true;
c5343203
JS
1538 }
1539
1540 /* release get taken in nvmet_fc_find_target_assoc */
1541 nvmet_fc_tgt_a_put(iod->assoc);
1542
1543 if (del_assoc)
1544 nvmet_fc_delete_target_assoc(iod->assoc);
1545}
1546
1547
1548/* *********************** NVME Ctrl Routines **************************** */
1549
1550
1551static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1552
1553static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1554
1555static void
1556nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1557{
1558 struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1559 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1560
1561 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1562 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1563 nvmet_fc_free_ls_iod(tgtport, iod);
1564 nvmet_fc_tgtport_put(tgtport);
1565}
1566
1567static void
1568nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1569 struct nvmet_fc_ls_iod *iod)
1570{
1571 int ret;
1572
1573 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1574 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1575
1576 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1577 if (ret)
1578 nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1579}
1580
1581/*
1582 * Actual processing routine for received FC-NVME LS Requests from the LLD
1583 */
1584static void
1585nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1586 struct nvmet_fc_ls_iod *iod)
1587{
1588 struct fcnvme_ls_rqst_w0 *w0 =
1589 (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1590
1591 iod->lsreq->nvmet_fc_private = iod;
1592 iod->lsreq->rspbuf = iod->rspbuf;
1593 iod->lsreq->rspdma = iod->rspdma;
1594 iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1595 /* Be preventative. handlers will later set to valid length */
1596 iod->lsreq->rsplen = 0;
1597
1598 iod->assoc = NULL;
1599
1600 /*
1601 * handlers:
1602 * parse request input, execute the request, and format the
1603 * LS response
1604 */
1605 switch (w0->ls_cmd) {
1606 case FCNVME_LS_CREATE_ASSOCIATION:
1607 /* Creates Association and initial Admin Queue/Connection */
1608 nvmet_fc_ls_create_association(tgtport, iod);
1609 break;
1610 case FCNVME_LS_CREATE_CONNECTION:
1611 /* Creates an IO Queue/Connection */
1612 nvmet_fc_ls_create_connection(tgtport, iod);
1613 break;
1614 case FCNVME_LS_DISCONNECT:
1615 /* Terminate a Queue/Connection or the Association */
1616 nvmet_fc_ls_disconnect(tgtport, iod);
1617 break;
1618 default:
1619 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1620 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
4083aa98 1621 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
c5343203
JS
1622 }
1623
1624 nvmet_fc_xmt_ls_rsp(tgtport, iod);
1625}
1626
1627/*
1628 * Actual processing routine for received FC-NVME LS Requests from the LLD
1629 */
1630static void
1631nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1632{
1633 struct nvmet_fc_ls_iod *iod =
1634 container_of(work, struct nvmet_fc_ls_iod, work);
1635 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1636
1637 nvmet_fc_handle_ls_rqst(tgtport, iod);
1638}
1639
1640
1641/**
1642 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1643 * upon the reception of a NVME LS request.
1644 *
1645 * The nvmet-fc layer will copy payload to an internal structure for
1646 * processing. As such, upon completion of the routine, the LLDD may
1647 * immediately free/reuse the LS request buffer passed in the call.
1648 *
1649 * If this routine returns error, the LLDD should abort the exchange.
1650 *
1651 * @tgtport: pointer to the (registered) target port the LS was
1652 * received on.
1653 * @lsreq: pointer to a lsreq request structure to be used to reference
1654 * the exchange corresponding to the LS.
1655 * @lsreqbuf: pointer to the buffer containing the LS Request
1656 * @lsreqbuf_len: length, in bytes, of the received LS request
1657 */
1658int
1659nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1660 struct nvmefc_tgt_ls_req *lsreq,
1661 void *lsreqbuf, u32 lsreqbuf_len)
1662{
1663 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1664 struct nvmet_fc_ls_iod *iod;
1665
1666 if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1667 return -E2BIG;
1668
1669 if (!nvmet_fc_tgtport_get(tgtport))
1670 return -ESHUTDOWN;
1671
1672 iod = nvmet_fc_alloc_ls_iod(tgtport);
1673 if (!iod) {
1674 nvmet_fc_tgtport_put(tgtport);
1675 return -ENOENT;
1676 }
1677
1678 iod->lsreq = lsreq;
1679 iod->fcpreq = NULL;
1680 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1681 iod->rqstdatalen = lsreqbuf_len;
1682
1683 schedule_work(&iod->work);
1684
1685 return 0;
1686}
1687EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1688
1689
1690/*
1691 * **********************
1692 * Start of FCP handling
1693 * **********************
1694 */
1695
1696static int
1697nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1698{
1699 struct scatterlist *sg;
c5343203 1700 unsigned int nent;
c5343203 1701
4442b56f 1702 sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
c5343203
JS
1703 if (!sg)
1704 goto out;
1705
c5343203
JS
1706 fod->data_sg = sg;
1707 fod->data_sg_cnt = nent;
1708 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1709 ((fod->io_dir == NVMET_FCP_WRITE) ?
1710 DMA_FROM_DEVICE : DMA_TO_DEVICE));
1711 /* note: write from initiator perspective */
1712
1713 return 0;
1714
c5343203
JS
1715out:
1716 return NVME_SC_INTERNAL;
1717}
1718
1719static void
1720nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1721{
c5343203
JS
1722 if (!fod->data_sg || !fod->data_sg_cnt)
1723 return;
1724
1725 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1726 ((fod->io_dir == NVMET_FCP_WRITE) ?
1727 DMA_FROM_DEVICE : DMA_TO_DEVICE));
4442b56f 1728 sgl_free(fod->data_sg);
c820ad4c
JS
1729 fod->data_sg = NULL;
1730 fod->data_sg_cnt = 0;
c5343203
JS
1731}
1732
1733
1734static bool
1735queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1736{
1737 u32 sqtail, used;
1738
1739 /* egad, this is ugly. And sqtail is just a best guess */
1740 sqtail = atomic_read(&q->sqtail) % q->sqsize;
1741
1742 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1743 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1744}
1745
1746/*
1747 * Prep RSP payload.
1748 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1749 */
1750static void
1751nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1752 struct nvmet_fc_fcp_iod *fod)
1753{
1754 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1755 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1756 struct nvme_completion *cqe = &ersp->cqe;
1757 u32 *cqewd = (u32 *)cqe;
1758 bool send_ersp = false;
1759 u32 rsn, rspcnt, xfr_length;
1760
1761 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
5e62d5c9 1762 xfr_length = fod->req.transfer_len;
c5343203
JS
1763 else
1764 xfr_length = fod->offset;
1765
1766 /*
1767 * check to see if we can send a 0's rsp.
1768 * Note: to send a 0's response, the NVME-FC host transport will
1769 * recreate the CQE. The host transport knows: sq id, SQHD (last
1770 * seen in an ersp), and command_id. Thus it will create a
1771 * zero-filled CQE with those known fields filled in. Transport
1772 * must send an ersp for any condition where the cqe won't match
1773 * this.
1774 *
1775 * Here are the FC-NVME mandated cases where we must send an ersp:
1776 * every N responses, where N=ersp_ratio
1777 * force fabric commands to send ersp's (not in FC-NVME but good
1778 * practice)
1779 * normal cmds: any time status is non-zero, or status is zero
1780 * but words 0 or 1 are non-zero.
1781 * the SQ is 90% or more full
1782 * the cmd is a fused command
1783 * transferred data length not equal to cmd iu length
1784 */
1785 rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1786 if (!(rspcnt % fod->queue->ersp_ratio) ||
1787 sqe->opcode == nvme_fabrics_command ||
5e62d5c9 1788 xfr_length != fod->req.transfer_len ||
c5343203
JS
1789 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1790 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
8ad76cf1 1791 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
c5343203
JS
1792 send_ersp = true;
1793
1794 /* re-set the fields */
1795 fod->fcpreq->rspaddr = ersp;
1796 fod->fcpreq->rspdma = fod->rspdma;
1797
1798 if (!send_ersp) {
1799 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1800 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1801 } else {
1802 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1803 rsn = atomic_inc_return(&fod->queue->rsn);
1804 ersp->rsn = cpu_to_be32(rsn);
1805 ersp->xfrd_len = cpu_to_be32(xfr_length);
1806 fod->fcpreq->rsplen = sizeof(*ersp);
1807 }
1808
1809 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1810 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1811}
1812
1813static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1814
a97ec51b
JS
1815static void
1816nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1817 struct nvmet_fc_fcp_iod *fod)
1818{
1819 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1820
1821 /* data no longer needed */
1822 nvmet_fc_free_tgt_pgs(fod);
1823
1824 /*
1825 * if an ABTS was received or we issued the fcp_abort early
1826 * don't call abort routine again.
1827 */
1828 /* no need to take lock - lock was taken earlier to get here */
1829 if (!fod->aborted)
1830 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1831
1832 nvmet_fc_free_fcp_iod(fod->queue, fod);
1833}
1834
c5343203
JS
1835static void
1836nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1837 struct nvmet_fc_fcp_iod *fod)
1838{
1839 int ret;
1840
1841 fod->fcpreq->op = NVMET_FCOP_RSP;
1842 fod->fcpreq->timeout = 0;
1843
1844 nvmet_fc_prep_fcp_rsp(tgtport, fod);
1845
1846 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1847 if (ret)
a97ec51b 1848 nvmet_fc_abort_op(tgtport, fod);
c5343203
JS
1849}
1850
1851static void
1852nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1853 struct nvmet_fc_fcp_iod *fod, u8 op)
1854{
1855 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
a97ec51b 1856 unsigned long flags;
48fa362b 1857 u32 tlen;
c5343203
JS
1858 int ret;
1859
1860 fcpreq->op = op;
1861 fcpreq->offset = fod->offset;
1862 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
48fa362b
JS
1863
1864 tlen = min_t(u32, tgtport->max_sg_cnt * PAGE_SIZE,
5e62d5c9 1865 (fod->req.transfer_len - fod->offset));
c5343203
JS
1866 fcpreq->transfer_length = tlen;
1867 fcpreq->transferred_length = 0;
1868 fcpreq->fcp_error = 0;
1869 fcpreq->rsplen = 0;
1870
48fa362b
JS
1871 fcpreq->sg = &fod->data_sg[fod->offset / PAGE_SIZE];
1872 fcpreq->sg_cnt = DIV_ROUND_UP(tlen, PAGE_SIZE);
c5343203
JS
1873
1874 /*
1875 * If the last READDATA request: check if LLDD supports
1876 * combined xfr with response.
1877 */
1878 if ((op == NVMET_FCOP_READDATA) &&
5e62d5c9 1879 ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
c5343203
JS
1880 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1881 fcpreq->op = NVMET_FCOP_READDATA_RSP;
1882 nvmet_fc_prep_fcp_rsp(tgtport, fod);
1883 }
1884
1885 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1886 if (ret) {
1887 /*
1888 * should be ok to set w/o lock as its in the thread of
1889 * execution (not an async timer routine) and doesn't
1890 * contend with any clearing action
1891 */
1892 fod->abort = true;
1893
a97ec51b
JS
1894 if (op == NVMET_FCOP_WRITEDATA) {
1895 spin_lock_irqsave(&fod->flock, flags);
1896 fod->writedataactive = false;
1897 spin_unlock_irqrestore(&fod->flock, flags);
29b3d26e 1898 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
a97ec51b 1899 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
c5343203
JS
1900 fcpreq->fcp_error = ret;
1901 fcpreq->transferred_length = 0;
1902 nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1903 }
1904 }
1905}
1906
a97ec51b
JS
1907static inline bool
1908__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
1909{
1910 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1911 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1912
1913 /* if in the middle of an io and we need to tear down */
1914 if (abort) {
1915 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
29b3d26e 1916 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
a97ec51b
JS
1917 return true;
1918 }
1919
1920 nvmet_fc_abort_op(tgtport, fod);
1921 return true;
1922 }
1923
1924 return false;
1925}
1926
39498fae
JS
1927/*
1928 * actual done handler for FCP operations when completed by the lldd
1929 */
c5343203 1930static void
39498fae 1931nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
c5343203 1932{
39498fae 1933 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
c5343203
JS
1934 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1935 unsigned long flags;
1936 bool abort;
1937
1938 spin_lock_irqsave(&fod->flock, flags);
1939 abort = fod->abort;
a97ec51b 1940 fod->writedataactive = false;
c5343203
JS
1941 spin_unlock_irqrestore(&fod->flock, flags);
1942
c5343203
JS
1943 switch (fcpreq->op) {
1944
1945 case NVMET_FCOP_WRITEDATA:
a97ec51b
JS
1946 if (__nvmet_fc_fod_op_abort(fod, abort))
1947 return;
f64935ab 1948 if (fcpreq->fcp_error ||
c5343203 1949 fcpreq->transferred_length != fcpreq->transfer_length) {
a97ec51b
JS
1950 spin_lock(&fod->flock);
1951 fod->abort = true;
1952 spin_unlock(&fod->flock);
1953
29b3d26e 1954 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
c5343203
JS
1955 return;
1956 }
1957
1958 fod->offset += fcpreq->transferred_length;
5e62d5c9 1959 if (fod->offset != fod->req.transfer_len) {
a97ec51b
JS
1960 spin_lock_irqsave(&fod->flock, flags);
1961 fod->writedataactive = true;
1962 spin_unlock_irqrestore(&fod->flock, flags);
1963
c5343203
JS
1964 /* transfer the next chunk */
1965 nvmet_fc_transfer_fcp_data(tgtport, fod,
1966 NVMET_FCOP_WRITEDATA);
1967 return;
1968 }
1969
1970 /* data transfer complete, resume with nvmet layer */
5e62d5c9 1971 nvmet_req_execute(&fod->req);
c5343203
JS
1972 break;
1973
1974 case NVMET_FCOP_READDATA:
1975 case NVMET_FCOP_READDATA_RSP:
a97ec51b
JS
1976 if (__nvmet_fc_fod_op_abort(fod, abort))
1977 return;
f64935ab 1978 if (fcpreq->fcp_error ||
c5343203 1979 fcpreq->transferred_length != fcpreq->transfer_length) {
a97ec51b 1980 nvmet_fc_abort_op(tgtport, fod);
c5343203
JS
1981 return;
1982 }
1983
1984 /* success */
1985
1986 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
1987 /* data no longer needed */
1988 nvmet_fc_free_tgt_pgs(fod);
c5343203
JS
1989 nvmet_fc_free_fcp_iod(fod->queue, fod);
1990 return;
1991 }
1992
1993 fod->offset += fcpreq->transferred_length;
5e62d5c9 1994 if (fod->offset != fod->req.transfer_len) {
c5343203
JS
1995 /* transfer the next chunk */
1996 nvmet_fc_transfer_fcp_data(tgtport, fod,
1997 NVMET_FCOP_READDATA);
1998 return;
1999 }
2000
2001 /* data transfer complete, send response */
2002
2003 /* data no longer needed */
2004 nvmet_fc_free_tgt_pgs(fod);
2005
2006 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2007
2008 break;
2009
2010 case NVMET_FCOP_RSP:
a97ec51b
JS
2011 if (__nvmet_fc_fod_op_abort(fod, abort))
2012 return;
c5343203
JS
2013 nvmet_fc_free_fcp_iod(fod->queue, fod);
2014 break;
2015
2016 default:
c5343203
JS
2017 break;
2018 }
2019}
2020
39498fae
JS
2021static void
2022nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work)
2023{
2024 struct nvmet_fc_fcp_iod *fod =
2025 container_of(work, struct nvmet_fc_fcp_iod, done_work);
2026
2027 nvmet_fc_fod_op_done(fod);
2028}
2029
2030static void
2031nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2032{
2033 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2034 struct nvmet_fc_tgt_queue *queue = fod->queue;
2035
2036 if (fod->tgtport->ops->target_features & NVMET_FCTGTFEAT_OPDONE_IN_ISR)
2037 /* context switch so completion is not in ISR context */
2038 queue_work_on(queue->cpu, queue->work_q, &fod->done_work);
2039 else
2040 nvmet_fc_fod_op_done(fod);
2041}
2042
c5343203
JS
2043/*
2044 * actual completion handler after execution by the nvmet layer
2045 */
2046static void
2047__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2048 struct nvmet_fc_fcp_iod *fod, int status)
2049{
2050 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2051 struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2052 unsigned long flags;
2053 bool abort;
2054
2055 spin_lock_irqsave(&fod->flock, flags);
2056 abort = fod->abort;
2057 spin_unlock_irqrestore(&fod->flock, flags);
2058
2059 /* if we have a CQE, snoop the last sq_head value */
2060 if (!status)
2061 fod->queue->sqhd = cqe->sq_head;
2062
2063 if (abort) {
a97ec51b 2064 nvmet_fc_abort_op(tgtport, fod);
c5343203
JS
2065 return;
2066 }
2067
2068 /* if an error handling the cmd post initial parsing */
2069 if (status) {
2070 /* fudge up a failed CQE status for our transport error */
2071 memset(cqe, 0, sizeof(*cqe));
2072 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */
2073 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2074 cqe->command_id = sqe->command_id;
2075 cqe->status = cpu_to_le16(status);
2076 } else {
2077
2078 /*
2079 * try to push the data even if the SQE status is non-zero.
2080 * There may be a status where data still was intended to
2081 * be moved
2082 */
2083 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2084 /* push the data over before sending rsp */
2085 nvmet_fc_transfer_fcp_data(tgtport, fod,
2086 NVMET_FCOP_READDATA);
2087 return;
2088 }
2089
2090 /* writes & no data - fall thru */
2091 }
2092
2093 /* data no longer needed */
2094 nvmet_fc_free_tgt_pgs(fod);
2095
2096 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2097}
2098
2099
2100static void
2101nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2102{
2103 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2104 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2105
2106 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2107}
2108
2109
2110/*
2111 * Actual processing routine for received FC-NVME LS Requests from the LLD
2112 */
edba98dd 2113static void
c5343203
JS
2114nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2115 struct nvmet_fc_fcp_iod *fod)
2116{
2117 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
cce75291 2118 u32 xfrlen = be32_to_cpu(cmdiu->data_len);
c5343203
JS
2119 int ret;
2120
2121 /*
2122 * Fused commands are currently not supported in the linux
2123 * implementation.
2124 *
2125 * As such, the implementation of the FC transport does not
2126 * look at the fused commands and order delivery to the upper
2127 * layer until we have both based on csn.
2128 */
2129
2130 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2131
c5343203
JS
2132 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2133 fod->io_dir = NVMET_FCP_WRITE;
2134 if (!nvme_is_write(&cmdiu->sqe))
2135 goto transport_error;
2136 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2137 fod->io_dir = NVMET_FCP_READ;
2138 if (nvme_is_write(&cmdiu->sqe))
2139 goto transport_error;
2140 } else {
2141 fod->io_dir = NVMET_FCP_NODATA;
cce75291 2142 if (xfrlen)
c5343203
JS
2143 goto transport_error;
2144 }
2145
2146 fod->req.cmd = &fod->cmdiubuf.sqe;
2147 fod->req.rsp = &fod->rspiubuf.cqe;
2148 fod->req.port = fod->queue->port;
2149
c5343203
JS
2150 /* clear any response payload */
2151 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2152
188f7e8a
JS
2153 fod->data_sg = NULL;
2154 fod->data_sg_cnt = 0;
2155
c5343203
JS
2156 ret = nvmet_req_init(&fod->req,
2157 &fod->queue->nvme_cq,
2158 &fod->queue->nvme_sq,
2159 &nvmet_fc_tgt_fcp_ops);
188f7e8a
JS
2160 if (!ret) {
2161 /* bad SQE content or invalid ctrl state */
2162 /* nvmet layer has already called op done to send rsp. */
c5343203
JS
2163 return;
2164 }
2165
cce75291
JS
2166 fod->req.transfer_len = xfrlen;
2167
c5343203
JS
2168 /* keep a running counter of tail position */
2169 atomic_inc(&fod->queue->sqtail);
2170
5e62d5c9 2171 if (fod->req.transfer_len) {
c5343203
JS
2172 ret = nvmet_fc_alloc_tgt_pgs(fod);
2173 if (ret) {
2174 nvmet_req_complete(&fod->req, ret);
2175 return;
2176 }
2177 }
2178 fod->req.sg = fod->data_sg;
2179 fod->req.sg_cnt = fod->data_sg_cnt;
2180 fod->offset = 0;
c5343203
JS
2181
2182 if (fod->io_dir == NVMET_FCP_WRITE) {
2183 /* pull the data over before invoking nvmet layer */
2184 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2185 return;
2186 }
2187
2188 /*
2189 * Reads or no data:
2190 *
2191 * can invoke the nvmet_layer now. If read data, cmd completion will
2192 * push the data
2193 */
5e62d5c9 2194 nvmet_req_execute(&fod->req);
c5343203
JS
2195 return;
2196
2197transport_error:
a97ec51b 2198 nvmet_fc_abort_op(tgtport, fod);
c5343203
JS
2199}
2200
2201/*
2202 * Actual processing routine for received FC-NVME LS Requests from the LLD
2203 */
2204static void
2205nvmet_fc_handle_fcp_rqst_work(struct work_struct *work)
2206{
2207 struct nvmet_fc_fcp_iod *fod =
2208 container_of(work, struct nvmet_fc_fcp_iod, work);
2209 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2210
2211 nvmet_fc_handle_fcp_rqst(tgtport, fod);
2212}
2213
2214/**
2215 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2216 * upon the reception of a NVME FCP CMD IU.
2217 *
2218 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2219 * layer for processing.
2220 *
0fb228d3
JS
2221 * The nvmet_fc layer allocates a local job structure (struct
2222 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2223 * CMD IU buffer to the job structure. As such, on a successful
2224 * completion (returns 0), the LLDD may immediately free/reuse
2225 * the CMD IU buffer passed in the call.
2226 *
2227 * However, in some circumstances, due to the packetized nature of FC
2228 * and the api of the FC LLDD which may issue a hw command to send the
2229 * response, but the LLDD may not get the hw completion for that command
2230 * and upcall the nvmet_fc layer before a new command may be
2231 * asynchronously received - its possible for a command to be received
2232 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2233 * the appearance of more commands received than fits in the sq.
2234 * To alleviate this scenario, a temporary queue is maintained in the
2235 * transport for pending LLDD requests waiting for a queue job structure.
2236 * In these "overrun" cases, a temporary queue element is allocated
2237 * the LLDD request and CMD iu buffer information remembered, and the
2238 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2239 * structure is freed, it is immediately reallocated for anything on the
2240 * pending request list. The LLDDs defer_rcv() callback is called,
2241 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2242 * is then started normally with the transport.
c5343203 2243 *
0fb228d3
JS
2244 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2245 * the completion as successful but must not reuse the CMD IU buffer
2246 * until the LLDD's defer_rcv() callback has been called for the
2247 * corresponding struct nvmefc_tgt_fcp_req pointer.
2248 *
2249 * If there is any other condition in which an error occurs, the
2250 * transport will return a non-zero status indicating the error.
2251 * In all cases other than -EOVERFLOW, the transport has not accepted the
2252 * request and the LLDD should abort the exchange.
c5343203
JS
2253 *
2254 * @target_port: pointer to the (registered) target port the FCP CMD IU
19b58d94 2255 * was received on.
c5343203
JS
2256 * @fcpreq: pointer to a fcpreq request structure to be used to reference
2257 * the exchange corresponding to the FCP Exchange.
2258 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU
2259 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2260 */
2261int
2262nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2263 struct nvmefc_tgt_fcp_req *fcpreq,
2264 void *cmdiubuf, u32 cmdiubuf_len)
2265{
2266 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2267 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2268 struct nvmet_fc_tgt_queue *queue;
2269 struct nvmet_fc_fcp_iod *fod;
0fb228d3
JS
2270 struct nvmet_fc_defer_fcp_req *deferfcp;
2271 unsigned long flags;
c5343203
JS
2272
2273 /* validate iu, so the connection id can be used to find the queue */
2274 if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2275 (cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2276 (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2277 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2278 return -EIO;
2279
c5343203
JS
2280 queue = nvmet_fc_find_target_queue(tgtport,
2281 be64_to_cpu(cmdiu->connection_id));
2282 if (!queue)
2283 return -ENOTCONN;
2284
2285 /*
2286 * note: reference taken by find_target_queue
2287 * After successful fod allocation, the fod will inherit the
2288 * ownership of that reference and will remove the reference
2289 * when the fod is freed.
2290 */
2291
0fb228d3
JS
2292 spin_lock_irqsave(&queue->qlock, flags);
2293
c5343203 2294 fod = nvmet_fc_alloc_fcp_iod(queue);
0fb228d3
JS
2295 if (fod) {
2296 spin_unlock_irqrestore(&queue->qlock, flags);
2297
2298 fcpreq->nvmet_fc_private = fod;
2299 fod->fcpreq = fcpreq;
2300
2301 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2302
2303 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2304
2305 return 0;
2306 }
2307
2308 if (!tgtport->ops->defer_rcv) {
2309 spin_unlock_irqrestore(&queue->qlock, flags);
c5343203
JS
2310 /* release the queue lookup reference */
2311 nvmet_fc_tgt_q_put(queue);
2312 return -ENOENT;
2313 }
2314
0fb228d3
JS
2315 deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2316 struct nvmet_fc_defer_fcp_req, req_list);
2317 if (deferfcp) {
2318 /* Just re-use one that was previously allocated */
2319 list_del(&deferfcp->req_list);
2320 } else {
2321 spin_unlock_irqrestore(&queue->qlock, flags);
c5343203 2322
0fb228d3
JS
2323 /* Now we need to dynamically allocate one */
2324 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2325 if (!deferfcp) {
2326 /* release the queue lookup reference */
2327 nvmet_fc_tgt_q_put(queue);
2328 return -ENOMEM;
2329 }
2330 spin_lock_irqsave(&queue->qlock, flags);
2331 }
c5343203 2332
0fb228d3
JS
2333 /* For now, use rspaddr / rsplen to save payload information */
2334 fcpreq->rspaddr = cmdiubuf;
2335 fcpreq->rsplen = cmdiubuf_len;
2336 deferfcp->fcp_req = fcpreq;
2337
2338 /* defer processing till a fod becomes available */
2339 list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2340
2341 /* NOTE: the queue lookup reference is still valid */
2342
2343 spin_unlock_irqrestore(&queue->qlock, flags);
2344
2345 return -EOVERFLOW;
c5343203
JS
2346}
2347EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2348
a97ec51b
JS
2349/**
2350 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2351 * upon the reception of an ABTS for a FCP command
2352 *
2353 * Notify the transport that an ABTS has been received for a FCP command
2354 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2355 * LLDD believes the command is still being worked on
2356 * (template_ops->fcp_req_release() has not been called).
2357 *
2358 * The transport will wait for any outstanding work (an op to the LLDD,
2359 * which the lldd should complete with error due to the ABTS; or the
2360 * completion from the nvmet layer of the nvme command), then will
2361 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2362 * return the i/o context to the LLDD. The LLDD may send the BA_ACC
2363 * to the ABTS either after return from this function (assuming any
2364 * outstanding op work has been terminated) or upon the callback being
2365 * called.
2366 *
2367 * @target_port: pointer to the (registered) target port the FCP CMD IU
2368 * was received on.
2369 * @fcpreq: pointer to the fcpreq request structure that corresponds
2370 * to the exchange that received the ABTS.
2371 */
2372void
2373nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2374 struct nvmefc_tgt_fcp_req *fcpreq)
2375{
2376 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2377 struct nvmet_fc_tgt_queue *queue;
2378 unsigned long flags;
2379
2380 if (!fod || fod->fcpreq != fcpreq)
2381 /* job appears to have already completed, ignore abort */
2382 return;
2383
2384 queue = fod->queue;
2385
2386 spin_lock_irqsave(&queue->qlock, flags);
2387 if (fod->active) {
2388 /*
2389 * mark as abort. The abort handler, invoked upon completion
2390 * of any work, will detect the aborted status and do the
2391 * callback.
2392 */
2393 spin_lock(&fod->flock);
2394 fod->abort = true;
2395 fod->aborted = true;
2396 spin_unlock(&fod->flock);
2397 }
2398 spin_unlock_irqrestore(&queue->qlock, flags);
2399}
2400EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2401
c5343203
JS
2402
2403struct nvmet_fc_traddr {
2404 u64 nn;
2405 u64 pn;
2406};
2407
c5343203 2408static int
9c5358e1 2409__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
c5343203 2410{
c5343203
JS
2411 u64 token64;
2412
9c5358e1
JS
2413 if (match_u64(sstr, &token64))
2414 return -EINVAL;
2415 *val = token64;
c5343203 2416
9c5358e1
JS
2417 return 0;
2418}
c5343203 2419
9c5358e1
JS
2420/*
2421 * This routine validates and extracts the WWN's from the TRADDR string.
2422 * As kernel parsers need the 0x to determine number base, universally
2423 * build string to parse with 0x prefix before parsing name strings.
2424 */
2425static int
2426nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2427{
2428 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2429 substring_t wwn = { name, &name[sizeof(name)-1] };
2430 int nnoffset, pnoffset;
2431
2432 /* validate it string one of the 2 allowed formats */
2433 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2434 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2435 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2436 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2437 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2438 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2439 NVME_FC_TRADDR_OXNNLEN;
2440 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2441 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2442 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2443 "pn-", NVME_FC_TRADDR_NNLEN))) {
2444 nnoffset = NVME_FC_TRADDR_NNLEN;
2445 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2446 } else
2447 goto out_einval;
2448
2449 name[0] = '0';
2450 name[1] = 'x';
2451 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2452
2453 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2454 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2455 goto out_einval;
2456
2457 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2458 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2459 goto out_einval;
c5343203 2460
9c5358e1
JS
2461 return 0;
2462
2463out_einval:
2464 pr_warn("%s: bad traddr string\n", __func__);
2465 return -EINVAL;
c5343203
JS
2466}
2467
2468static int
2469nvmet_fc_add_port(struct nvmet_port *port)
2470{
2471 struct nvmet_fc_tgtport *tgtport;
2472 struct nvmet_fc_traddr traddr = { 0L, 0L };
2473 unsigned long flags;
2474 int ret;
2475
2476 /* validate the address info */
2477 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2478 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2479 return -EINVAL;
2480
2481 /* map the traddr address info to a target port */
2482
9c5358e1
JS
2483 ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2484 sizeof(port->disc_addr.traddr));
c5343203
JS
2485 if (ret)
2486 return ret;
2487
2488 ret = -ENXIO;
2489 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2490 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2491 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2492 (tgtport->fc_target_port.port_name == traddr.pn)) {
9ce1f2e1
JS
2493 tgtport->port = port;
2494 ret = 0;
c5343203
JS
2495 break;
2496 }
2497 }
2498 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2499 return ret;
2500}
2501
2502static void
2503nvmet_fc_remove_port(struct nvmet_port *port)
2504{
9ce1f2e1 2505 /* nothing to do */
c5343203
JS
2506}
2507
2508static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2509 .owner = THIS_MODULE,
2510 .type = NVMF_TRTYPE_FC,
2511 .msdbd = 1,
2512 .add_port = nvmet_fc_add_port,
2513 .remove_port = nvmet_fc_remove_port,
2514 .queue_response = nvmet_fc_fcp_nvme_cmd_done,
2515 .delete_ctrl = nvmet_fc_delete_ctrl,
2516};
2517
2518static int __init nvmet_fc_init_module(void)
2519{
2520 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2521}
2522
2523static void __exit nvmet_fc_exit_module(void)
2524{
2525 /* sanity check - all lports should be removed */
2526 if (!list_empty(&nvmet_fc_target_list))
2527 pr_warn("%s: targetport list not empty\n", __func__);
2528
2529 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2530
2531 ida_destroy(&nvmet_fc_tgtport_cnt);
2532}
2533
2534module_init(nvmet_fc_init_module);
2535module_exit(nvmet_fc_exit_module);
2536
2537MODULE_LICENSE("GPL v2");