]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/of/property.c
dt-bindings: ata: rcar-sata: Convert to json-schema
[mirror_ubuntu-hirsute-kernel.git] / drivers / of / property.c
CommitLineData
af6074fc 1// SPDX-License-Identifier: GPL-2.0+
1df09bc6
SA
2/*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
1df09bc6
SA
20 */
21
22#define pr_fmt(fmt) "OF: " fmt
23
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/of_graph.h>
27#include <linux/string.h>
a3e1d1a7 28#include <linux/moduleparam.h>
1df09bc6
SA
29
30#include "of_private.h"
31
32/**
33 * of_property_count_elems_of_size - Count the number of elements in a property
34 *
35 * @np: device node from which the property value is to be read.
36 * @propname: name of the property to be searched.
37 * @elem_size: size of the individual element
38 *
39 * Search for a property in a device node and count the number of elements of
40 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
41 * property does not exist or its length does not match a multiple of elem_size
42 * and -ENODATA if the property does not have a value.
43 */
44int of_property_count_elems_of_size(const struct device_node *np,
45 const char *propname, int elem_size)
46{
47 struct property *prop = of_find_property(np, propname, NULL);
48
49 if (!prop)
50 return -EINVAL;
51 if (!prop->value)
52 return -ENODATA;
53
54 if (prop->length % elem_size != 0) {
0d638a07
RH
55 pr_err("size of %s in node %pOF is not a multiple of %d\n",
56 propname, np, elem_size);
1df09bc6
SA
57 return -EINVAL;
58 }
59
60 return prop->length / elem_size;
61}
62EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
63
64/**
65 * of_find_property_value_of_size
66 *
67 * @np: device node from which the property value is to be read.
68 * @propname: name of the property to be searched.
69 * @min: minimum allowed length of property value
70 * @max: maximum allowed length of property value (0 means unlimited)
71 * @len: if !=NULL, actual length is written to here
72 *
73 * Search for a property in a device node and valid the requested size.
74 * Returns the property value on success, -EINVAL if the property does not
75 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
76 * property data is too small or too large.
77 *
78 */
79static void *of_find_property_value_of_size(const struct device_node *np,
80 const char *propname, u32 min, u32 max, size_t *len)
81{
82 struct property *prop = of_find_property(np, propname, NULL);
83
84 if (!prop)
85 return ERR_PTR(-EINVAL);
86 if (!prop->value)
87 return ERR_PTR(-ENODATA);
88 if (prop->length < min)
89 return ERR_PTR(-EOVERFLOW);
90 if (max && prop->length > max)
91 return ERR_PTR(-EOVERFLOW);
92
93 if (len)
94 *len = prop->length;
95
96 return prop->value;
97}
98
99/**
100 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
101 *
102 * @np: device node from which the property value is to be read.
103 * @propname: name of the property to be searched.
104 * @index: index of the u32 in the list of values
105 * @out_value: pointer to return value, modified only if no error.
106 *
107 * Search for a property in a device node and read nth 32-bit value from
108 * it. Returns 0 on success, -EINVAL if the property does not exist,
109 * -ENODATA if property does not have a value, and -EOVERFLOW if the
110 * property data isn't large enough.
111 *
112 * The out_value is modified only if a valid u32 value can be decoded.
113 */
114int of_property_read_u32_index(const struct device_node *np,
115 const char *propname,
116 u32 index, u32 *out_value)
117{
118 const u32 *val = of_find_property_value_of_size(np, propname,
119 ((index + 1) * sizeof(*out_value)),
120 0,
121 NULL);
122
123 if (IS_ERR(val))
124 return PTR_ERR(val);
125
126 *out_value = be32_to_cpup(((__be32 *)val) + index);
127 return 0;
128}
129EXPORT_SYMBOL_GPL(of_property_read_u32_index);
130
131/**
132 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
133 *
134 * @np: device node from which the property value is to be read.
135 * @propname: name of the property to be searched.
136 * @index: index of the u64 in the list of values
137 * @out_value: pointer to return value, modified only if no error.
138 *
139 * Search for a property in a device node and read nth 64-bit value from
140 * it. Returns 0 on success, -EINVAL if the property does not exist,
141 * -ENODATA if property does not have a value, and -EOVERFLOW if the
142 * property data isn't large enough.
143 *
144 * The out_value is modified only if a valid u64 value can be decoded.
145 */
146int of_property_read_u64_index(const struct device_node *np,
147 const char *propname,
148 u32 index, u64 *out_value)
149{
150 const u64 *val = of_find_property_value_of_size(np, propname,
151 ((index + 1) * sizeof(*out_value)),
152 0, NULL);
153
154 if (IS_ERR(val))
155 return PTR_ERR(val);
156
157 *out_value = be64_to_cpup(((__be64 *)val) + index);
158 return 0;
159}
160EXPORT_SYMBOL_GPL(of_property_read_u64_index);
161
162/**
163 * of_property_read_variable_u8_array - Find and read an array of u8 from a
164 * property, with bounds on the minimum and maximum array size.
165 *
166 * @np: device node from which the property value is to be read.
167 * @propname: name of the property to be searched.
7f3fefee 168 * @out_values: pointer to found values.
1df09bc6
SA
169 * @sz_min: minimum number of array elements to read
170 * @sz_max: maximum number of array elements to read, if zero there is no
171 * upper limit on the number of elements in the dts entry but only
172 * sz_min will be read.
173 *
174 * Search for a property in a device node and read 8-bit value(s) from
175 * it. Returns number of elements read on success, -EINVAL if the property
176 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
177 * if the property data is smaller than sz_min or longer than sz_max.
178 *
179 * dts entry of array should be like:
180 * property = /bits/ 8 <0x50 0x60 0x70>;
181 *
182 * The out_values is modified only if a valid u8 value can be decoded.
183 */
184int of_property_read_variable_u8_array(const struct device_node *np,
185 const char *propname, u8 *out_values,
186 size_t sz_min, size_t sz_max)
187{
188 size_t sz, count;
189 const u8 *val = of_find_property_value_of_size(np, propname,
190 (sz_min * sizeof(*out_values)),
191 (sz_max * sizeof(*out_values)),
192 &sz);
193
194 if (IS_ERR(val))
195 return PTR_ERR(val);
196
197 if (!sz_max)
198 sz = sz_min;
199 else
200 sz /= sizeof(*out_values);
201
202 count = sz;
203 while (count--)
204 *out_values++ = *val++;
205
206 return sz;
207}
208EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
209
210/**
211 * of_property_read_variable_u16_array - Find and read an array of u16 from a
212 * property, with bounds on the minimum and maximum array size.
213 *
214 * @np: device node from which the property value is to be read.
215 * @propname: name of the property to be searched.
7f3fefee 216 * @out_values: pointer to found values.
1df09bc6
SA
217 * @sz_min: minimum number of array elements to read
218 * @sz_max: maximum number of array elements to read, if zero there is no
219 * upper limit on the number of elements in the dts entry but only
220 * sz_min will be read.
221 *
222 * Search for a property in a device node and read 16-bit value(s) from
223 * it. Returns number of elements read on success, -EINVAL if the property
224 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
225 * if the property data is smaller than sz_min or longer than sz_max.
226 *
227 * dts entry of array should be like:
228 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
229 *
230 * The out_values is modified only if a valid u16 value can be decoded.
231 */
232int of_property_read_variable_u16_array(const struct device_node *np,
233 const char *propname, u16 *out_values,
234 size_t sz_min, size_t sz_max)
235{
236 size_t sz, count;
237 const __be16 *val = of_find_property_value_of_size(np, propname,
238 (sz_min * sizeof(*out_values)),
239 (sz_max * sizeof(*out_values)),
240 &sz);
241
242 if (IS_ERR(val))
243 return PTR_ERR(val);
244
245 if (!sz_max)
246 sz = sz_min;
247 else
248 sz /= sizeof(*out_values);
249
250 count = sz;
251 while (count--)
252 *out_values++ = be16_to_cpup(val++);
253
254 return sz;
255}
256EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
257
258/**
259 * of_property_read_variable_u32_array - Find and read an array of 32 bit
260 * integers from a property, with bounds on the minimum and maximum array size.
261 *
262 * @np: device node from which the property value is to be read.
263 * @propname: name of the property to be searched.
7f3fefee 264 * @out_values: pointer to return found values.
1df09bc6
SA
265 * @sz_min: minimum number of array elements to read
266 * @sz_max: maximum number of array elements to read, if zero there is no
267 * upper limit on the number of elements in the dts entry but only
268 * sz_min will be read.
269 *
270 * Search for a property in a device node and read 32-bit value(s) from
271 * it. Returns number of elements read on success, -EINVAL if the property
272 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
273 * if the property data is smaller than sz_min or longer than sz_max.
274 *
275 * The out_values is modified only if a valid u32 value can be decoded.
276 */
277int of_property_read_variable_u32_array(const struct device_node *np,
278 const char *propname, u32 *out_values,
279 size_t sz_min, size_t sz_max)
280{
281 size_t sz, count;
282 const __be32 *val = of_find_property_value_of_size(np, propname,
283 (sz_min * sizeof(*out_values)),
284 (sz_max * sizeof(*out_values)),
285 &sz);
286
287 if (IS_ERR(val))
288 return PTR_ERR(val);
289
290 if (!sz_max)
291 sz = sz_min;
292 else
293 sz /= sizeof(*out_values);
294
295 count = sz;
296 while (count--)
297 *out_values++ = be32_to_cpup(val++);
298
299 return sz;
300}
301EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
302
303/**
304 * of_property_read_u64 - Find and read a 64 bit integer from a property
305 * @np: device node from which the property value is to be read.
306 * @propname: name of the property to be searched.
307 * @out_value: pointer to return value, modified only if return value is 0.
308 *
309 * Search for a property in a device node and read a 64-bit value from
310 * it. Returns 0 on success, -EINVAL if the property does not exist,
311 * -ENODATA if property does not have a value, and -EOVERFLOW if the
312 * property data isn't large enough.
313 *
314 * The out_value is modified only if a valid u64 value can be decoded.
315 */
316int of_property_read_u64(const struct device_node *np, const char *propname,
317 u64 *out_value)
318{
319 const __be32 *val = of_find_property_value_of_size(np, propname,
320 sizeof(*out_value),
321 0,
322 NULL);
323
324 if (IS_ERR(val))
325 return PTR_ERR(val);
326
327 *out_value = of_read_number(val, 2);
328 return 0;
329}
330EXPORT_SYMBOL_GPL(of_property_read_u64);
331
332/**
333 * of_property_read_variable_u64_array - Find and read an array of 64 bit
334 * integers from a property, with bounds on the minimum and maximum array size.
335 *
336 * @np: device node from which the property value is to be read.
337 * @propname: name of the property to be searched.
7f3fefee 338 * @out_values: pointer to found values.
1df09bc6
SA
339 * @sz_min: minimum number of array elements to read
340 * @sz_max: maximum number of array elements to read, if zero there is no
341 * upper limit on the number of elements in the dts entry but only
342 * sz_min will be read.
343 *
344 * Search for a property in a device node and read 64-bit value(s) from
345 * it. Returns number of elements read on success, -EINVAL if the property
346 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
347 * if the property data is smaller than sz_min or longer than sz_max.
348 *
349 * The out_values is modified only if a valid u64 value can be decoded.
350 */
351int of_property_read_variable_u64_array(const struct device_node *np,
352 const char *propname, u64 *out_values,
353 size_t sz_min, size_t sz_max)
354{
355 size_t sz, count;
356 const __be32 *val = of_find_property_value_of_size(np, propname,
357 (sz_min * sizeof(*out_values)),
358 (sz_max * sizeof(*out_values)),
359 &sz);
360
361 if (IS_ERR(val))
362 return PTR_ERR(val);
363
364 if (!sz_max)
365 sz = sz_min;
366 else
367 sz /= sizeof(*out_values);
368
369 count = sz;
370 while (count--) {
371 *out_values++ = of_read_number(val, 2);
372 val += 2;
373 }
374
375 return sz;
376}
377EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
378
379/**
380 * of_property_read_string - Find and read a string from a property
381 * @np: device node from which the property value is to be read.
382 * @propname: name of the property to be searched.
383 * @out_string: pointer to null terminated return string, modified only if
384 * return value is 0.
385 *
386 * Search for a property in a device tree node and retrieve a null
387 * terminated string value (pointer to data, not a copy). Returns 0 on
388 * success, -EINVAL if the property does not exist, -ENODATA if property
389 * does not have a value, and -EILSEQ if the string is not null-terminated
390 * within the length of the property data.
391 *
392 * The out_string pointer is modified only if a valid string can be decoded.
393 */
394int of_property_read_string(const struct device_node *np, const char *propname,
395 const char **out_string)
396{
397 const struct property *prop = of_find_property(np, propname, NULL);
398 if (!prop)
399 return -EINVAL;
400 if (!prop->value)
401 return -ENODATA;
402 if (strnlen(prop->value, prop->length) >= prop->length)
403 return -EILSEQ;
404 *out_string = prop->value;
405 return 0;
406}
407EXPORT_SYMBOL_GPL(of_property_read_string);
408
409/**
410 * of_property_match_string() - Find string in a list and return index
411 * @np: pointer to node containing string list property
412 * @propname: string list property name
413 * @string: pointer to string to search for in string list
414 *
415 * This function searches a string list property and returns the index
416 * of a specific string value.
417 */
418int of_property_match_string(const struct device_node *np, const char *propname,
419 const char *string)
420{
421 const struct property *prop = of_find_property(np, propname, NULL);
422 size_t l;
423 int i;
424 const char *p, *end;
425
426 if (!prop)
427 return -EINVAL;
428 if (!prop->value)
429 return -ENODATA;
430
431 p = prop->value;
432 end = p + prop->length;
433
434 for (i = 0; p < end; i++, p += l) {
435 l = strnlen(p, end - p) + 1;
436 if (p + l > end)
437 return -EILSEQ;
438 pr_debug("comparing %s with %s\n", string, p);
439 if (strcmp(string, p) == 0)
440 return i; /* Found it; return index */
441 }
442 return -ENODATA;
443}
444EXPORT_SYMBOL_GPL(of_property_match_string);
445
446/**
447 * of_property_read_string_helper() - Utility helper for parsing string properties
448 * @np: device node from which the property value is to be read.
449 * @propname: name of the property to be searched.
450 * @out_strs: output array of string pointers.
451 * @sz: number of array elements to read.
452 * @skip: Number of strings to skip over at beginning of list.
453 *
454 * Don't call this function directly. It is a utility helper for the
455 * of_property_read_string*() family of functions.
456 */
457int of_property_read_string_helper(const struct device_node *np,
458 const char *propname, const char **out_strs,
459 size_t sz, int skip)
460{
461 const struct property *prop = of_find_property(np, propname, NULL);
462 int l = 0, i = 0;
463 const char *p, *end;
464
465 if (!prop)
466 return -EINVAL;
467 if (!prop->value)
468 return -ENODATA;
469 p = prop->value;
470 end = p + prop->length;
471
472 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
473 l = strnlen(p, end - p) + 1;
474 if (p + l > end)
475 return -EILSEQ;
476 if (out_strs && i >= skip)
477 *out_strs++ = p;
478 }
479 i -= skip;
480 return i <= 0 ? -ENODATA : i;
481}
482EXPORT_SYMBOL_GPL(of_property_read_string_helper);
483
484const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
485 u32 *pu)
486{
487 const void *curv = cur;
488
489 if (!prop)
490 return NULL;
491
492 if (!cur) {
493 curv = prop->value;
494 goto out_val;
495 }
496
497 curv += sizeof(*cur);
498 if (curv >= prop->value + prop->length)
499 return NULL;
500
501out_val:
502 *pu = be32_to_cpup(curv);
503 return curv;
504}
505EXPORT_SYMBOL_GPL(of_prop_next_u32);
506
507const char *of_prop_next_string(struct property *prop, const char *cur)
508{
509 const void *curv = cur;
510
511 if (!prop)
512 return NULL;
513
514 if (!cur)
515 return prop->value;
516
517 curv += strlen(cur) + 1;
518 if (curv >= prop->value + prop->length)
519 return NULL;
520
521 return curv;
522}
523EXPORT_SYMBOL_GPL(of_prop_next_string);
524
525/**
526 * of_graph_parse_endpoint() - parse common endpoint node properties
527 * @node: pointer to endpoint device_node
528 * @endpoint: pointer to the OF endpoint data structure
529 *
530 * The caller should hold a reference to @node.
531 */
532int of_graph_parse_endpoint(const struct device_node *node,
533 struct of_endpoint *endpoint)
534{
535 struct device_node *port_node = of_get_parent(node);
536
0d638a07
RH
537 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
538 __func__, node);
1df09bc6
SA
539
540 memset(endpoint, 0, sizeof(*endpoint));
541
542 endpoint->local_node = node;
543 /*
544 * It doesn't matter whether the two calls below succeed.
545 * If they don't then the default value 0 is used.
546 */
547 of_property_read_u32(port_node, "reg", &endpoint->port);
548 of_property_read_u32(node, "reg", &endpoint->id);
549
550 of_node_put(port_node);
551
552 return 0;
553}
554EXPORT_SYMBOL(of_graph_parse_endpoint);
555
556/**
557 * of_graph_get_port_by_id() - get the port matching a given id
558 * @parent: pointer to the parent device node
559 * @id: id of the port
560 *
561 * Return: A 'port' node pointer with refcount incremented. The caller
562 * has to use of_node_put() on it when done.
563 */
564struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
565{
566 struct device_node *node, *port;
567
568 node = of_get_child_by_name(parent, "ports");
569 if (node)
570 parent = node;
571
572 for_each_child_of_node(parent, port) {
573 u32 port_id = 0;
574
b3e46d1a 575 if (!of_node_name_eq(port, "port"))
1df09bc6
SA
576 continue;
577 of_property_read_u32(port, "reg", &port_id);
578 if (id == port_id)
579 break;
580 }
581
582 of_node_put(node);
583
584 return port;
585}
586EXPORT_SYMBOL(of_graph_get_port_by_id);
587
588/**
589 * of_graph_get_next_endpoint() - get next endpoint node
590 * @parent: pointer to the parent device node
591 * @prev: previous endpoint node, or NULL to get first
592 *
593 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
594 * of the passed @prev node is decremented.
595 */
596struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
597 struct device_node *prev)
598{
599 struct device_node *endpoint;
600 struct device_node *port;
601
602 if (!parent)
603 return NULL;
604
605 /*
606 * Start by locating the port node. If no previous endpoint is specified
607 * search for the first port node, otherwise get the previous endpoint
608 * parent port node.
609 */
610 if (!prev) {
611 struct device_node *node;
612
613 node = of_get_child_by_name(parent, "ports");
614 if (node)
615 parent = node;
616
617 port = of_get_child_by_name(parent, "port");
618 of_node_put(node);
619
620 if (!port) {
0d638a07 621 pr_err("graph: no port node found in %pOF\n", parent);
1df09bc6
SA
622 return NULL;
623 }
624 } else {
625 port = of_get_parent(prev);
0d638a07
RH
626 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
627 __func__, prev))
1df09bc6
SA
628 return NULL;
629 }
630
631 while (1) {
632 /*
633 * Now that we have a port node, get the next endpoint by
634 * getting the next child. If the previous endpoint is NULL this
635 * will return the first child.
636 */
637 endpoint = of_get_next_child(port, prev);
638 if (endpoint) {
639 of_node_put(port);
640 return endpoint;
641 }
642
643 /* No more endpoints under this port, try the next one. */
644 prev = NULL;
645
646 do {
647 port = of_get_next_child(parent, port);
648 if (!port)
649 return NULL;
b3e46d1a 650 } while (!of_node_name_eq(port, "port"));
1df09bc6
SA
651 }
652}
653EXPORT_SYMBOL(of_graph_get_next_endpoint);
654
655/**
656 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
657 * @parent: pointer to the parent device node
658 * @port_reg: identifier (value of reg property) of the parent port node
659 * @reg: identifier (value of reg property) of the endpoint node
660 *
661 * Return: An 'endpoint' node pointer which is identified by reg and at the same
662 * is the child of a port node identified by port_reg. reg and port_reg are
deb387d4 663 * ignored when they are -1. Use of_node_put() on the pointer when done.
1df09bc6
SA
664 */
665struct device_node *of_graph_get_endpoint_by_regs(
666 const struct device_node *parent, int port_reg, int reg)
667{
668 struct of_endpoint endpoint;
669 struct device_node *node = NULL;
670
671 for_each_endpoint_of_node(parent, node) {
672 of_graph_parse_endpoint(node, &endpoint);
673 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
674 ((reg == -1) || (endpoint.id == reg)))
675 return node;
676 }
677
678 return NULL;
679}
680EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
681
b8ba92b1
RH
682/**
683 * of_graph_get_remote_endpoint() - get remote endpoint node
684 * @node: pointer to a local endpoint device_node
685 *
686 * Return: Remote endpoint node associated with remote endpoint node linked
687 * to @node. Use of_node_put() on it when done.
688 */
689struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
690{
691 /* Get remote endpoint node. */
692 return of_parse_phandle(node, "remote-endpoint", 0);
693}
694EXPORT_SYMBOL(of_graph_get_remote_endpoint);
695
696/**
697 * of_graph_get_port_parent() - get port's parent node
698 * @node: pointer to a local endpoint device_node
699 *
700 * Return: device node associated with endpoint node linked
701 * to @node. Use of_node_put() on it when done.
702 */
703struct device_node *of_graph_get_port_parent(struct device_node *node)
704{
705 unsigned int depth;
706
c0a480d1
TL
707 if (!node)
708 return NULL;
709
710 /*
711 * Preserve usecount for passed in node as of_get_next_parent()
712 * will do of_node_put() on it.
713 */
714 of_node_get(node);
715
b8ba92b1
RH
716 /* Walk 3 levels up only if there is 'ports' node. */
717 for (depth = 3; depth && node; depth--) {
718 node = of_get_next_parent(node);
b3e46d1a 719 if (depth == 2 && !of_node_name_eq(node, "ports"))
b8ba92b1
RH
720 break;
721 }
722 return node;
723}
724EXPORT_SYMBOL(of_graph_get_port_parent);
725
1df09bc6
SA
726/**
727 * of_graph_get_remote_port_parent() - get remote port's parent node
728 * @node: pointer to a local endpoint device_node
729 *
730 * Return: Remote device node associated with remote endpoint node linked
731 * to @node. Use of_node_put() on it when done.
732 */
733struct device_node *of_graph_get_remote_port_parent(
734 const struct device_node *node)
735{
c0a480d1 736 struct device_node *np, *pp;
1df09bc6
SA
737
738 /* Get remote endpoint node. */
b8ba92b1 739 np = of_graph_get_remote_endpoint(node);
1df09bc6 740
c0a480d1
TL
741 pp = of_graph_get_port_parent(np);
742
743 of_node_put(np);
744
745 return pp;
1df09bc6
SA
746}
747EXPORT_SYMBOL(of_graph_get_remote_port_parent);
748
749/**
750 * of_graph_get_remote_port() - get remote port node
751 * @node: pointer to a local endpoint device_node
752 *
753 * Return: Remote port node associated with remote endpoint node linked
754 * to @node. Use of_node_put() on it when done.
755 */
756struct device_node *of_graph_get_remote_port(const struct device_node *node)
757{
758 struct device_node *np;
759
760 /* Get remote endpoint node. */
b8ba92b1 761 np = of_graph_get_remote_endpoint(node);
1df09bc6
SA
762 if (!np)
763 return NULL;
764 return of_get_next_parent(np);
765}
766EXPORT_SYMBOL(of_graph_get_remote_port);
767
b8ba92b1
RH
768int of_graph_get_endpoint_count(const struct device_node *np)
769{
770 struct device_node *endpoint;
771 int num = 0;
772
773 for_each_endpoint_of_node(np, endpoint)
774 num++;
775
776 return num;
777}
778EXPORT_SYMBOL(of_graph_get_endpoint_count);
779
1df09bc6
SA
780/**
781 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
782 * @node: pointer to parent device_node containing graph port/endpoint
783 * @port: identifier (value of reg property) of the parent port node
784 * @endpoint: identifier (value of reg property) of the endpoint node
785 *
786 * Return: Remote device node associated with remote endpoint node linked
787 * to @node. Use of_node_put() on it when done.
788 */
789struct device_node *of_graph_get_remote_node(const struct device_node *node,
790 u32 port, u32 endpoint)
791{
792 struct device_node *endpoint_node, *remote;
793
794 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
795 if (!endpoint_node) {
0d638a07
RH
796 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
797 port, endpoint, node);
1df09bc6
SA
798 return NULL;
799 }
800
801 remote = of_graph_get_remote_port_parent(endpoint_node);
802 of_node_put(endpoint_node);
803 if (!remote) {
804 pr_debug("no valid remote node\n");
805 return NULL;
806 }
807
808 if (!of_device_is_available(remote)) {
809 pr_debug("not available for remote node\n");
28b170e8 810 of_node_put(remote);
1df09bc6
SA
811 return NULL;
812 }
813
814 return remote;
815}
816EXPORT_SYMBOL(of_graph_get_remote_node);
3708184a 817
cf89a31c 818static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
3708184a 819{
cf89a31c 820 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
3708184a
SA
821}
822
823static void of_fwnode_put(struct fwnode_handle *fwnode)
824{
825 of_node_put(to_of_node(fwnode));
826}
827
37ba983c 828static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
2294b3af
SA
829{
830 return of_device_is_available(to_of_node(fwnode));
831}
832
37ba983c 833static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
3708184a
SA
834 const char *propname)
835{
836 return of_property_read_bool(to_of_node(fwnode), propname);
837}
838
37ba983c 839static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
3708184a
SA
840 const char *propname,
841 unsigned int elem_size, void *val,
842 size_t nval)
843{
37ba983c 844 const struct device_node *node = to_of_node(fwnode);
3708184a
SA
845
846 if (!val)
847 return of_property_count_elems_of_size(node, propname,
848 elem_size);
849
850 switch (elem_size) {
851 case sizeof(u8):
852 return of_property_read_u8_array(node, propname, val, nval);
853 case sizeof(u16):
854 return of_property_read_u16_array(node, propname, val, nval);
855 case sizeof(u32):
856 return of_property_read_u32_array(node, propname, val, nval);
857 case sizeof(u64):
858 return of_property_read_u64_array(node, propname, val, nval);
859 }
860
861 return -ENXIO;
862}
863
37ba983c
SA
864static int
865of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
866 const char *propname, const char **val,
867 size_t nval)
3708184a 868{
37ba983c 869 const struct device_node *node = to_of_node(fwnode);
3708184a
SA
870
871 return val ?
872 of_property_read_string_array(node, propname, val, nval) :
873 of_property_count_strings(node, propname);
874}
875
bc0500c1
SA
876static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
877{
878 return kbasename(to_of_node(fwnode)->full_name);
879}
880
e7e242bc
SA
881static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
882{
883 /* Root needs no prefix here (its name is "/"). */
884 if (!to_of_node(fwnode)->parent)
885 return "";
886
887 return "/";
888}
889
37ba983c
SA
890static struct fwnode_handle *
891of_fwnode_get_parent(const struct fwnode_handle *fwnode)
3708184a
SA
892{
893 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
894}
895
896static struct fwnode_handle *
37ba983c 897of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
3708184a
SA
898 struct fwnode_handle *child)
899{
900 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
901 to_of_node(child)));
902}
903
904static struct fwnode_handle *
37ba983c 905of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
3708184a
SA
906 const char *childname)
907{
37ba983c 908 const struct device_node *node = to_of_node(fwnode);
3708184a
SA
909 struct device_node *child;
910
911 for_each_available_child_of_node(node, child)
b3e46d1a 912 if (of_node_name_eq(child, childname))
3708184a
SA
913 return of_fwnode_handle(child);
914
915 return NULL;
916}
917
3e3119d3
SA
918static int
919of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
920 const char *prop, const char *nargs_prop,
921 unsigned int nargs, unsigned int index,
922 struct fwnode_reference_args *args)
923{
924 struct of_phandle_args of_args;
925 unsigned int i;
926 int ret;
927
928 if (nargs_prop)
929 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
930 nargs_prop, index, &of_args);
931 else
932 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
933 nargs, index, &of_args);
934 if (ret < 0)
935 return ret;
936 if (!args)
937 return 0;
938
939 args->nargs = of_args.args_count;
940 args->fwnode = of_fwnode_handle(of_args.np);
941
942 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
943 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
944
945 return 0;
946}
947
3b27d00e 948static struct fwnode_handle *
37ba983c 949of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
3b27d00e
SA
950 struct fwnode_handle *prev)
951{
952 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
953 to_of_node(prev)));
954}
955
956static struct fwnode_handle *
37ba983c 957of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
3b27d00e 958{
358155ed
KM
959 return of_fwnode_handle(
960 of_graph_get_remote_endpoint(to_of_node(fwnode)));
3b27d00e
SA
961}
962
963static struct fwnode_handle *
964of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
965{
966 struct device_node *np;
967
968 /* Get the parent of the port */
3314c6bd 969 np = of_get_parent(to_of_node(fwnode));
3b27d00e
SA
970 if (!np)
971 return NULL;
972
973 /* Is this the "ports" node? If not, it's the port parent. */
b3e46d1a 974 if (!of_node_name_eq(np, "ports"))
3b27d00e
SA
975 return of_fwnode_handle(np);
976
977 return of_fwnode_handle(of_get_next_parent(np));
978}
979
37ba983c 980static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
3b27d00e
SA
981 struct fwnode_endpoint *endpoint)
982{
37ba983c 983 const struct device_node *node = to_of_node(fwnode);
3b27d00e
SA
984 struct device_node *port_node = of_get_parent(node);
985
986 endpoint->local_fwnode = fwnode;
987
988 of_property_read_u32(port_node, "reg", &endpoint->port);
989 of_property_read_u32(node, "reg", &endpoint->id);
990
991 of_node_put(port_node);
992
993 return 0;
994}
995
67dcc26d 996static const void *
1c2c82ea
SK
997of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
998 const struct device *dev)
999{
67dcc26d 1000 return of_device_get_match_data(dev);
1c2c82ea
SK
1001}
1002
a3e1d1a7
SK
1003static bool of_is_ancestor_of(struct device_node *test_ancestor,
1004 struct device_node *child)
1005{
1006 of_node_get(child);
1007 while (child) {
1008 if (child == test_ancestor) {
1009 of_node_put(child);
38835391 1010 return true;
a3e1d1a7
SK
1011 }
1012 child = of_get_next_parent(child);
1013 }
38835391 1014 return false;
a3e1d1a7
SK
1015}
1016
1017/**
1018 * of_link_to_phandle - Add device link to supplier from supplier phandle
1019 * @dev: consumer device
1020 * @sup_np: phandle to supplier device tree node
1021 *
1022 * Given a phandle to a supplier device tree node (@sup_np), this function
1023 * finds the device that owns the supplier device tree node and creates a
1024 * device link from @dev consumer device to the supplier device. This function
1025 * doesn't create device links for invalid scenarios such as trying to create a
1026 * link with a parent device as the consumer of its child device. In such
1027 * cases, it returns an error.
1028 *
1029 * Returns:
1030 * - 0 if link successfully created to supplier
1031 * - -EAGAIN if linking to the supplier should be reattempted
1032 * - -EINVAL if the supplier link is invalid and should not be created
1033 * - -ENODEV if there is no device that corresponds to the supplier phandle
1034 */
0ff5cc1e
SK
1035static int of_link_to_phandle(struct device *dev, struct device_node *sup_np,
1036 u32 dl_flags)
a3e1d1a7
SK
1037{
1038 struct device *sup_dev;
a3e1d1a7
SK
1039 int ret = 0;
1040 struct device_node *tmp_np = sup_np;
15956dad 1041 int is_populated;
a3e1d1a7
SK
1042
1043 of_node_get(sup_np);
1044 /*
1045 * Find the device node that contains the supplier phandle. It may be
1046 * @sup_np or it may be an ancestor of @sup_np.
1047 */
1048 while (sup_np && !of_find_property(sup_np, "compatible", NULL))
1049 sup_np = of_get_next_parent(sup_np);
1050 if (!sup_np) {
1051 dev_dbg(dev, "Not linking to %pOFP - No device\n", tmp_np);
1052 return -ENODEV;
1053 }
1054
1055 /*
1056 * Don't allow linking a device node as a consumer of one of its
1057 * descendant nodes. By definition, a child node can't be a functional
1058 * dependency for the parent node.
1059 */
38835391 1060 if (of_is_ancestor_of(dev->of_node, sup_np)) {
a3e1d1a7
SK
1061 dev_dbg(dev, "Not linking to %pOFP - is descendant\n", sup_np);
1062 of_node_put(sup_np);
1063 return -EINVAL;
1064 }
1065 sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
15956dad 1066 is_populated = of_node_check_flag(sup_np, OF_POPULATED);
a3e1d1a7 1067 of_node_put(sup_np);
ba861f8e
SK
1068 if (!sup_dev && is_populated) {
1069 /* Early device without struct device. */
1070 dev_dbg(dev, "Not linking to %pOFP - No struct device\n",
1071 sup_np);
1072 return -ENODEV;
1073 } else if (!sup_dev) {
1074 return -EAGAIN;
1075 }
a3e1d1a7
SK
1076 if (!device_link_add(dev, sup_dev, dl_flags))
1077 ret = -EAGAIN;
1078 put_device(sup_dev);
1079 return ret;
1080}
1081
1082/**
1083 * parse_prop_cells - Property parsing function for suppliers
1084 *
1085 * @np: Pointer to device tree node containing a list
1086 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1087 * @index: For properties holding a list of phandles, this is the index
1088 * into the list.
1089 * @list_name: Property name that is known to contain list of phandle(s) to
1090 * supplier(s)
1091 * @cells_name: property name that specifies phandles' arguments count
1092 *
1093 * This is a helper function to parse properties that have a known fixed name
1094 * and are a list of phandles and phandle arguments.
1095 *
1096 * Returns:
1097 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1098 * on it when done.
1099 * - NULL if no phandle found at index
1100 */
1101static struct device_node *parse_prop_cells(struct device_node *np,
1102 const char *prop_name, int index,
1103 const char *list_name,
1104 const char *cells_name)
1105{
1106 struct of_phandle_args sup_args;
1107
1108 if (strcmp(prop_name, list_name))
1109 return NULL;
1110
1111 if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1112 &sup_args))
1113 return NULL;
1114
1115 return sup_args.np;
1116}
1117
a436ef4a
SK
1118#define DEFINE_SIMPLE_PROP(fname, name, cells) \
1119static struct device_node *parse_##fname(struct device_node *np, \
1120 const char *prop_name, int index) \
1121{ \
1122 return parse_prop_cells(np, prop_name, index, name, cells); \
a3e1d1a7
SK
1123}
1124
1125static int strcmp_suffix(const char *str, const char *suffix)
1126{
1127 unsigned int len, suffix_len;
1128
1129 len = strlen(str);
1130 suffix_len = strlen(suffix);
1131 if (len <= suffix_len)
1132 return -1;
1133 return strcmp(str + len - suffix_len, suffix);
1134}
1135
a436ef4a
SK
1136/**
1137 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1138 *
1139 * @np: Pointer to device tree node containing a list
1140 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1141 * @index: For properties holding a list of phandles, this is the index
1142 * into the list.
1143 * @suffix: Property suffix that is known to contain list of phandle(s) to
1144 * supplier(s)
1145 * @cells_name: property name that specifies phandles' arguments count
1146 *
1147 * This is a helper function to parse properties that have a known fixed suffix
1148 * and are a list of phandles and phandle arguments.
1149 *
1150 * Returns:
1151 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1152 * on it when done.
1153 * - NULL if no phandle found at index
1154 */
1155static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1156 const char *prop_name, int index,
1157 const char *suffix,
1158 const char *cells_name)
a3e1d1a7 1159{
a436ef4a
SK
1160 struct of_phandle_args sup_args;
1161
1162 if (strcmp_suffix(prop_name, suffix))
a3e1d1a7
SK
1163 return NULL;
1164
a436ef4a
SK
1165 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1166 &sup_args))
1167 return NULL;
1168
1169 return sup_args.np;
1170}
1171
1172#define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1173static struct device_node *parse_##fname(struct device_node *np, \
1174 const char *prop_name, int index) \
1175{ \
1176 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
a3e1d1a7
SK
1177}
1178
1179/**
1180 * struct supplier_bindings - Property parsing functions for suppliers
1181 *
1182 * @parse_prop: function name
1183 * parse_prop() finds the node corresponding to a supplier phandle
1184 * @parse_prop.np: Pointer to device node holding supplier phandle property
1185 * @parse_prop.prop_name: Name of property holding a phandle value
1186 * @parse_prop.index: For properties holding a list of phandles, this is the
1187 * index into the list
1188 *
1189 * Returns:
1190 * parse_prop() return values are
1191 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1192 * on it when done.
1193 * - NULL if no phandle found at index
1194 */
1195struct supplier_bindings {
1196 struct device_node *(*parse_prop)(struct device_node *np,
1197 const char *prop_name, int index);
1198};
1199
a436ef4a
SK
1200DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1201DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
8e12257d
SK
1202DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1203DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1204DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
7f00be96
SK
1205DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1206DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
a436ef4a 1207DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
7f00be96
SK
1208DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1209DEFINE_SUFFIX_PROP(gpios, "-gpios", "#gpio-cells")
a436ef4a 1210
e149573b
WD
1211static struct device_node *parse_iommu_maps(struct device_node *np,
1212 const char *prop_name, int index)
1213{
1214 if (strcmp(prop_name, "iommu-map"))
1215 return NULL;
1216
1217 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1218}
1219
af1b967a 1220static const struct supplier_bindings of_supplier_bindings[] = {
a3e1d1a7
SK
1221 { .parse_prop = parse_clocks, },
1222 { .parse_prop = parse_interconnects, },
8e12257d 1223 { .parse_prop = parse_iommus, },
e149573b 1224 { .parse_prop = parse_iommu_maps, },
8e12257d
SK
1225 { .parse_prop = parse_mboxes, },
1226 { .parse_prop = parse_io_channels, },
7f00be96
SK
1227 { .parse_prop = parse_interrupt_parent, },
1228 { .parse_prop = parse_dmas, },
a3e1d1a7 1229 { .parse_prop = parse_regulators, },
7f00be96
SK
1230 { .parse_prop = parse_gpio, },
1231 { .parse_prop = parse_gpios, },
af1b967a 1232 {}
a3e1d1a7
SK
1233};
1234
1235/**
1236 * of_link_property - Create device links to suppliers listed in a property
1237 * @dev: Consumer device
1238 * @con_np: The consumer device tree node which contains the property
1239 * @prop_name: Name of property to be parsed
1240 *
1241 * This function checks if the property @prop_name that is present in the
1242 * @con_np device tree node is one of the known common device tree bindings
1243 * that list phandles to suppliers. If @prop_name isn't one, this function
1244 * doesn't do anything.
1245 *
1246 * If @prop_name is one, this function attempts to create device links from the
1247 * consumer device @dev to all the devices of the suppliers listed in
1248 * @prop_name.
1249 *
1250 * Any failed attempt to create a device link will NOT result in an immediate
1251 * return. of_link_property() must create links to all the available supplier
1252 * devices even when attempts to create a link to one or more suppliers fail.
1253 */
1254static int of_link_property(struct device *dev, struct device_node *con_np,
1255 const char *prop_name)
1256{
1257 struct device_node *phandle;
af1b967a 1258 const struct supplier_bindings *s = of_supplier_bindings;
a3e1d1a7
SK
1259 unsigned int i = 0;
1260 bool matched = false;
1261 int ret = 0;
0ff5cc1e
SK
1262 u32 dl_flags;
1263
1264 if (dev->of_node == con_np)
1265 dl_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1266 else
1267 dl_flags = DL_FLAG_SYNC_STATE_ONLY;
a3e1d1a7
SK
1268
1269 /* Do not stop at first failed link, link all available suppliers. */
1270 while (!matched && s->parse_prop) {
1271 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1272 matched = true;
1273 i++;
0ff5cc1e
SK
1274 if (of_link_to_phandle(dev, phandle, dl_flags)
1275 == -EAGAIN)
a3e1d1a7
SK
1276 ret = -EAGAIN;
1277 of_node_put(phandle);
1278 }
1279 s++;
1280 }
1281 return ret;
1282}
1283
af1b967a 1284static int of_link_to_suppliers(struct device *dev,
a3e1d1a7
SK
1285 struct device_node *con_np)
1286{
1287 struct device_node *child;
1288 struct property *p;
1289 int ret = 0;
1290
1291 for_each_property_of_node(con_np, p)
1292 if (of_link_property(dev, con_np, p->name))
0ff5cc1e 1293 ret = -ENODEV;
a3e1d1a7 1294
d4387cd1 1295 for_each_child_of_node(con_np, child)
0ff5cc1e 1296 if (of_link_to_suppliers(dev, child) && !ret)
d4387cd1
SK
1297 ret = -EAGAIN;
1298
a3e1d1a7
SK
1299 return ret;
1300}
1301
1302static bool of_devlink;
1303core_param(of_devlink, of_devlink, bool, 0);
1304
1305static int of_fwnode_add_links(const struct fwnode_handle *fwnode,
1306 struct device *dev)
1307{
1308 if (!of_devlink)
1309 return 0;
1310
1311 if (unlikely(!is_of_node(fwnode)))
1312 return 0;
1313
af1b967a 1314 return of_link_to_suppliers(dev, to_of_node(fwnode));
a3e1d1a7
SK
1315}
1316
3708184a
SA
1317const struct fwnode_operations of_fwnode_ops = {
1318 .get = of_fwnode_get,
1319 .put = of_fwnode_put,
2294b3af 1320 .device_is_available = of_fwnode_device_is_available,
1c2c82ea 1321 .device_get_match_data = of_fwnode_device_get_match_data,
3708184a
SA
1322 .property_present = of_fwnode_property_present,
1323 .property_read_int_array = of_fwnode_property_read_int_array,
1324 .property_read_string_array = of_fwnode_property_read_string_array,
bc0500c1 1325 .get_name = of_fwnode_get_name,
e7e242bc 1326 .get_name_prefix = of_fwnode_get_name_prefix,
3708184a
SA
1327 .get_parent = of_fwnode_get_parent,
1328 .get_next_child_node = of_fwnode_get_next_child_node,
1329 .get_named_child_node = of_fwnode_get_named_child_node,
3e3119d3 1330 .get_reference_args = of_fwnode_get_reference_args,
3b27d00e
SA
1331 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1332 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1333 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1334 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
a3e1d1a7 1335 .add_links = of_fwnode_add_links,
3708184a 1336};
db3e50f3 1337EXPORT_SYMBOL_GPL(of_fwnode_ops);