]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/parisc/iosapic.c
net/tls: don't leak IV and record seq when offload fails
[mirror_ubuntu-jammy-kernel.git] / drivers / parisc / iosapic.c
CommitLineData
1da177e4
LT
1/*
2** I/O Sapic Driver - PCI interrupt line support
3**
4** (c) Copyright 1999 Grant Grundler
5** (c) Copyright 1999 Hewlett-Packard Company
6**
7** This program is free software; you can redistribute it and/or modify
8** it under the terms of the GNU General Public License as published by
9** the Free Software Foundation; either version 2 of the License, or
10** (at your option) any later version.
11**
12** The I/O sapic driver manages the Interrupt Redirection Table which is
13** the control logic to convert PCI line based interrupts into a Message
14** Signaled Interrupt (aka Transaction Based Interrupt, TBI).
15**
16** Acronyms
17** --------
18** HPA Hard Physical Address (aka MMIO address)
19** IRQ Interrupt ReQuest. Implies Line based interrupt.
20** IRT Interrupt Routing Table (provided by PAT firmware)
21** IRdT Interrupt Redirection Table. IRQ line to TXN ADDR/DATA
22** table which is implemented in I/O SAPIC.
23** ISR Interrupt Service Routine. aka Interrupt handler.
24** MSI Message Signaled Interrupt. PCI 2.2 functionality.
25** aka Transaction Based Interrupt (or TBI).
26** PA Precision Architecture. HP's RISC architecture.
27** RISC Reduced Instruction Set Computer.
28**
29**
30** What's a Message Signalled Interrupt?
31** -------------------------------------
32** MSI is a write transaction which targets a processor and is similar
33** to a processor write to memory or MMIO. MSIs can be generated by I/O
34** devices as well as processors and require *architecture* to work.
35**
36** PA only supports MSI. So I/O subsystems must either natively generate
37** MSIs (e.g. GSC or HP-PB) or convert line based interrupts into MSIs
38** (e.g. PCI and EISA). IA64 supports MSIs via a "local SAPIC" which
39** acts on behalf of a processor.
40**
41** MSI allows any I/O device to interrupt any processor. This makes
42** load balancing of the interrupt processing possible on an SMP platform.
43** Interrupts are also ordered WRT to DMA data. It's possible on I/O
44** coherent systems to completely eliminate PIO reads from the interrupt
45** path. The device and driver must be designed and implemented to
46** guarantee all DMA has been issued (issues about atomicity here)
47** before the MSI is issued. I/O status can then safely be read from
48** DMA'd data by the ISR.
49**
50**
51** PA Firmware
52** -----------
0779bf2d 53** PA-RISC platforms have two fundamentally different types of firmware.
1da177e4
LT
54** For PCI devices, "Legacy" PDC initializes the "INTERRUPT_LINE" register
55** and BARs similar to a traditional PC BIOS.
56** The newer "PAT" firmware supports PDC calls which return tables.
0779bf2d
ML
57** PAT firmware only initializes the PCI Console and Boot interface.
58** With these tables, the OS can program all other PCI devices.
1da177e4
LT
59**
60** One such PAT PDC call returns the "Interrupt Routing Table" (IRT).
61** The IRT maps each PCI slot's INTA-D "output" line to an I/O SAPIC
62** input line. If the IRT is not available, this driver assumes
63** INTERRUPT_LINE register has been programmed by firmware. The latter
64** case also means online addition of PCI cards can NOT be supported
65** even if HW support is present.
66**
67** All platforms with PAT firmware to date (Oct 1999) use one Interrupt
68** Routing Table for the entire platform.
69**
70** Where's the iosapic?
71** --------------------
72** I/O sapic is part of the "Core Electronics Complex". And on HP platforms
73** it's integrated as part of the PCI bus adapter, "lba". So no bus walk
74** will discover I/O Sapic. I/O Sapic driver learns about each device
75** when lba driver advertises the presence of the I/O sapic by calling
76** iosapic_register().
77**
78**
79** IRQ handling notes
80** ------------------
81** The IO-SAPIC can indicate to the CPU which interrupt was asserted.
82** So, unlike the GSC-ASIC and Dino, we allocate one CPU interrupt per
83** IO-SAPIC interrupt and call the device driver's handler directly.
84** The IO-SAPIC driver hijacks the CPU interrupt handler so it can
85** issue the End Of Interrupt command to the IO-SAPIC.
86**
87** Overview of exported iosapic functions
88** --------------------------------------
89** (caveat: code isn't finished yet - this is just the plan)
90**
91** iosapic_init:
92** o initialize globals (lock, etc)
93** o try to read IRT. Presence of IRT determines if this is
94** a PAT platform or not.
95**
96** iosapic_register():
97** o create iosapic_info instance data structure
98** o allocate vector_info array for this iosapic
99** o initialize vector_info - read corresponding IRdT?
100**
101** iosapic_xlate_pin: (only called by fixup_irq for PAT platform)
102** o intr_pin = read cfg (INTERRUPT_PIN);
103** o if (device under PCI-PCI bridge)
104** translate slot/pin
105**
106** iosapic_fixup_irq:
107** o if PAT platform (IRT present)
108** intr_pin = iosapic_xlate_pin(isi,pcidev):
109** intr_line = find IRT entry(isi, PCI_SLOT(pcidev), intr_pin)
110** save IRT entry into vector_info later
111** write cfg INTERRUPT_LINE (with intr_line)?
112** else
113** intr_line = pcidev->irq
114** IRT pointer = NULL
115** endif
116** o locate vector_info (needs: isi, intr_line)
117** o allocate processor "irq" and get txn_addr/data
118** o request_irq(processor_irq, iosapic_interrupt, vector_info,...)
119**
120** iosapic_enable_irq:
121** o clear any pending IRQ on that line
122** o enable IRdT - call enable_irq(vector[line]->processor_irq)
123** o write EOI in case line is already asserted.
124**
125** iosapic_disable_irq:
126** o disable IRdT - call disable_irq(vector[line]->processor_irq)
127*/
128
1da177e4 129#include <linux/pci.h>
1da177e4 130
1da177e4
LT
131#include <asm/pdc.h>
132#include <asm/pdcpat.h>
1da177e4
LT
133#ifdef CONFIG_SUPERIO
134#include <asm/superio.h>
135#endif
136
1790cf91 137#include <asm/ropes.h>
c224071e 138#include "iosapic_private.h"
1da177e4
LT
139
140#define MODULE_NAME "iosapic"
141
142/* "local" compile flags */
143#undef PCI_BRIDGE_FUNCS
144#undef DEBUG_IOSAPIC
145#undef DEBUG_IOSAPIC_IRT
146
147
148#ifdef DEBUG_IOSAPIC
149#define DBG(x...) printk(x)
150#else /* DEBUG_IOSAPIC */
151#define DBG(x...)
152#endif /* DEBUG_IOSAPIC */
153
154#ifdef DEBUG_IOSAPIC_IRT
155#define DBG_IRT(x...) printk(x)
156#else
157#define DBG_IRT(x...)
158#endif
159
c2f8d7cb
HD
160#ifdef CONFIG_64BIT
161#define COMPARE_IRTE_ADDR(irte, hpa) ((irte)->dest_iosapic_addr == (hpa))
162#else
1da177e4 163#define COMPARE_IRTE_ADDR(irte, hpa) \
c2f8d7cb
HD
164 ((irte)->dest_iosapic_addr == ((hpa) | 0xffffffff00000000ULL))
165#endif
1da177e4
LT
166
167#define IOSAPIC_REG_SELECT 0x00
168#define IOSAPIC_REG_WINDOW 0x10
169#define IOSAPIC_REG_EOI 0x40
170
171#define IOSAPIC_REG_VERSION 0x1
172
173#define IOSAPIC_IRDT_ENTRY(idx) (0x10+(idx)*2)
174#define IOSAPIC_IRDT_ENTRY_HI(idx) (0x11+(idx)*2)
175
176static inline unsigned int iosapic_read(void __iomem *iosapic, unsigned int reg)
177{
178 writel(reg, iosapic + IOSAPIC_REG_SELECT);
179 return readl(iosapic + IOSAPIC_REG_WINDOW);
180}
181
182static inline void iosapic_write(void __iomem *iosapic, unsigned int reg, u32 val)
183{
184 writel(reg, iosapic + IOSAPIC_REG_SELECT);
185 writel(val, iosapic + IOSAPIC_REG_WINDOW);
186}
187
188#define IOSAPIC_VERSION_MASK 0x000000ff
189#define IOSAPIC_VERSION(ver) ((int) (ver & IOSAPIC_VERSION_MASK))
190
191#define IOSAPIC_MAX_ENTRY_MASK 0x00ff0000
192#define IOSAPIC_MAX_ENTRY_SHIFT 0x10
193#define IOSAPIC_IRDT_MAX_ENTRY(ver) \
194 (int) (((ver) & IOSAPIC_MAX_ENTRY_MASK) >> IOSAPIC_MAX_ENTRY_SHIFT)
195
196/* bits in the "low" I/O Sapic IRdT entry */
197#define IOSAPIC_IRDT_ENABLE 0x10000
198#define IOSAPIC_IRDT_PO_LOW 0x02000
199#define IOSAPIC_IRDT_LEVEL_TRIG 0x08000
200#define IOSAPIC_IRDT_MODE_LPRI 0x00100
201
202/* bits in the "high" I/O Sapic IRdT entry */
203#define IOSAPIC_IRDT_ID_EID_SHIFT 0x10
204
205
a9f6a0dd 206static DEFINE_SPINLOCK(iosapic_lock);
1da177e4
LT
207
208static inline void iosapic_eoi(void __iomem *addr, unsigned int data)
209{
210 __raw_writel(data, addr);
211}
212
213/*
214** REVISIT: future platforms may have more than one IRT.
215** If so, the following three fields form a structure which
216** then be linked into a list. Names are chosen to make searching
217** for them easy - not necessarily accurate (eg "cell").
218**
219** Alternative: iosapic_info could point to the IRT it's in.
220** iosapic_register() could search a list of IRT's.
221*/
222static struct irt_entry *irt_cell;
223static size_t irt_num_entry;
224
225static struct irt_entry *iosapic_alloc_irt(int num_entries)
226{
227 unsigned long a;
228
229 /* The IRT needs to be 8-byte aligned for the PDC call.
230 * Normally kmalloc would guarantee larger alignment, but
231 * if CONFIG_DEBUG_SLAB is enabled, then we can get only
232 * 4-byte alignment on 32-bit kernels
233 */
234 a = (unsigned long)kmalloc(sizeof(struct irt_entry) * num_entries + 8, GFP_KERNEL);
3aa0862c 235 a = (a + 7UL) & ~7UL;
1da177e4
LT
236 return (struct irt_entry *)a;
237}
238
239/**
240 * iosapic_load_irt - Fill in the interrupt routing table
241 * @cell_num: The cell number of the CPU we're currently executing on
242 * @irt: The address to place the new IRT at
243 * @return The number of entries found
244 *
245 * The "Get PCI INT Routing Table Size" option returns the number of
246 * entries in the PCI interrupt routing table for the cell specified
247 * in the cell_number argument. The cell number must be for a cell
248 * within the caller's protection domain.
249 *
250 * The "Get PCI INT Routing Table" option returns, for the cell
251 * specified in the cell_number argument, the PCI interrupt routing
252 * table in the caller allocated memory pointed to by mem_addr.
253 * We assume the IRT only contains entries for I/O SAPIC and
254 * calculate the size based on the size of I/O sapic entries.
255 *
256 * The PCI interrupt routing table entry format is derived from the
257 * IA64 SAL Specification 2.4. The PCI interrupt routing table defines
258 * the routing of PCI interrupt signals between the PCI device output
259 * "pins" and the IO SAPICs' input "lines" (including core I/O PCI
260 * devices). This table does NOT include information for devices/slots
261 * behind PCI to PCI bridges. See PCI to PCI Bridge Architecture Spec.
262 * for the architected method of routing of IRQ's behind PPB's.
263 */
264
265
266static int __init
267iosapic_load_irt(unsigned long cell_num, struct irt_entry **irt)
268{
269 long status; /* PDC return value status */
270 struct irt_entry *table; /* start of interrupt routing tbl */
271 unsigned long num_entries = 0UL;
272
273 BUG_ON(!irt);
274
275 if (is_pdc_pat()) {
276 /* Use pat pdc routine to get interrupt routing table size */
277 DBG("calling get_irt_size (cell %ld)\n", cell_num);
278 status = pdc_pat_get_irt_size(&num_entries, cell_num);
279 DBG("get_irt_size: %ld\n", status);
280
281 BUG_ON(status != PDC_OK);
282 BUG_ON(num_entries == 0);
283
284 /*
285 ** allocate memory for interrupt routing table
286 ** This interface isn't really right. We are assuming
287 ** the contents of the table are exclusively
288 ** for I/O sapic devices.
289 */
290 table = iosapic_alloc_irt(num_entries);
291 if (table == NULL) {
292 printk(KERN_WARNING MODULE_NAME ": read_irt : can "
293 "not alloc mem for IRT\n");
294 return 0;
295 }
296
297 /* get PCI INT routing table */
298 status = pdc_pat_get_irt(table, cell_num);
299 DBG("pdc_pat_get_irt: %ld\n", status);
300 WARN_ON(status != PDC_OK);
301 } else {
302 /*
303 ** C3000/J5000 (and similar) platforms with Sprockets PDC
304 ** will return exactly one IRT for all iosapics.
305 ** So if we have one, don't need to get it again.
306 */
307 if (irt_cell)
308 return 0;
309
310 /* Should be using the Elroy's HPA, but it's ignored anyway */
311 status = pdc_pci_irt_size(&num_entries, 0);
312 DBG("pdc_pci_irt_size: %ld\n", status);
313
314 if (status != PDC_OK) {
315 /* Not a "legacy" system with I/O SAPIC either */
316 return 0;
317 }
318
319 BUG_ON(num_entries == 0);
320
321 table = iosapic_alloc_irt(num_entries);
322 if (!table) {
323 printk(KERN_WARNING MODULE_NAME ": read_irt : can "
324 "not alloc mem for IRT\n");
325 return 0;
326 }
327
328 /* HPA ignored by this call too. */
329 status = pdc_pci_irt(num_entries, 0, table);
330 BUG_ON(status != PDC_OK);
331 }
332
333 /* return interrupt table address */
334 *irt = table;
335
336#ifdef DEBUG_IOSAPIC_IRT
337{
338 struct irt_entry *p = table;
339 int i;
340
341 printk(MODULE_NAME " Interrupt Routing Table (cell %ld)\n", cell_num);
342 printk(MODULE_NAME " start = 0x%p num_entries %ld entry_size %d\n",
343 table,
344 num_entries,
345 (int) sizeof(struct irt_entry));
346
347 for (i = 0 ; i < num_entries ; i++, p++) {
348 printk(MODULE_NAME " %02x %02x %02x %02x %02x %02x %02x %02x %08x%08x\n",
349 p->entry_type, p->entry_length, p->interrupt_type,
350 p->polarity_trigger, p->src_bus_irq_devno, p->src_bus_id,
351 p->src_seg_id, p->dest_iosapic_intin,
352 ((u32 *) p)[2],
353 ((u32 *) p)[3]
354 );
355 }
356}
357#endif /* DEBUG_IOSAPIC_IRT */
358
359 return num_entries;
360}
361
362
363
364void __init iosapic_init(void)
365{
366 unsigned long cell = 0;
367
368 DBG("iosapic_init()\n");
369
370#ifdef __LP64__
371 if (is_pdc_pat()) {
372 int status;
373 struct pdc_pat_cell_num cell_info;
374
375 status = pdc_pat_cell_get_number(&cell_info);
376 if (status == PDC_OK) {
377 cell = cell_info.cell_num;
378 }
379 }
380#endif
381
382 /* get interrupt routing table for this cell */
383 irt_num_entry = iosapic_load_irt(cell, &irt_cell);
384 if (irt_num_entry == 0)
385 irt_cell = NULL; /* old PDC w/o iosapic */
386}
387
388
389/*
390** Return the IRT entry in case we need to look something else up.
391*/
392static struct irt_entry *
393irt_find_irqline(struct iosapic_info *isi, u8 slot, u8 intr_pin)
394{
395 struct irt_entry *i = irt_cell;
396 int cnt; /* track how many entries we've looked at */
397 u8 irq_devno = (slot << IRT_DEV_SHIFT) | (intr_pin-1);
398
399 DBG_IRT("irt_find_irqline() SLOT %d pin %d\n", slot, intr_pin);
400
401 for (cnt=0; cnt < irt_num_entry; cnt++, i++) {
402
403 /*
404 ** Validate: entry_type, entry_length, interrupt_type
405 **
406 ** Difference between validate vs compare is the former
407 ** should print debug info and is not expected to "fail"
408 ** on current platforms.
409 */
410 if (i->entry_type != IRT_IOSAPIC_TYPE) {
411 DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d type %d\n", i, cnt, i->entry_type);
412 continue;
413 }
414
415 if (i->entry_length != IRT_IOSAPIC_LENGTH) {
416 DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d length %d\n", i, cnt, i->entry_length);
417 continue;
418 }
419
420 if (i->interrupt_type != IRT_VECTORED_INTR) {
421 DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d interrupt_type %d\n", i, cnt, i->interrupt_type);
422 continue;
423 }
424
425 if (!COMPARE_IRTE_ADDR(i, isi->isi_hpa))
426 continue;
427
428 if ((i->src_bus_irq_devno & IRT_IRQ_DEVNO_MASK) != irq_devno)
429 continue;
430
431 /*
432 ** Ignore: src_bus_id and rc_seg_id correlate with
433 ** iosapic_info->isi_hpa on HP platforms.
434 ** If needed, pass in "PFA" (aka config space addr)
435 ** instead of slot.
436 */
437
438 /* Found it! */
439 return i;
440 }
441
442 printk(KERN_WARNING MODULE_NAME ": 0x%lx : no IRT entry for slot %d, pin %d\n",
443 isi->isi_hpa, slot, intr_pin);
444 return NULL;
445}
446
447
448/*
449** xlate_pin() supports the skewing of IRQ lines done by subsidiary bridges.
450** Legacy PDC already does this translation for us and stores it in INTR_LINE.
451**
452** PAT PDC needs to basically do what legacy PDC does:
453** o read PIN
454** o adjust PIN in case device is "behind" a PPB
455** (eg 4-port 100BT and SCSI/LAN "Combo Card")
456** o convert slot/pin to I/O SAPIC input line.
457**
458** HP platforms only support:
459** o one level of skewing for any number of PPBs
460** o only support PCI-PCI Bridges.
461*/
462static struct irt_entry *
463iosapic_xlate_pin(struct iosapic_info *isi, struct pci_dev *pcidev)
464{
465 u8 intr_pin, intr_slot;
466
467 pci_read_config_byte(pcidev, PCI_INTERRUPT_PIN, &intr_pin);
468
469 DBG_IRT("iosapic_xlate_pin(%s) SLOT %d pin %d\n",
470 pcidev->slot_name, PCI_SLOT(pcidev->devfn), intr_pin);
471
472 if (intr_pin == 0) {
473 /* The device does NOT support/use IRQ lines. */
474 return NULL;
475 }
476
477 /* Check if pcidev behind a PPB */
9785d646 478 if (pcidev->bus->parent) {
1da177e4
LT
479 /* Convert pcidev INTR_PIN into something we
480 ** can lookup in the IRT.
481 */
482#ifdef PCI_BRIDGE_FUNCS
483 /*
484 ** Proposal #1:
485 **
486 ** call implementation specific translation function
487 ** This is architecturally "cleaner". HP-UX doesn't
488 ** support other secondary bus types (eg. E/ISA) directly.
489 ** May be needed for other processor (eg IA64) architectures
490 ** or by some ambitous soul who wants to watch TV.
491 */
492 if (pci_bridge_funcs->xlate_intr_line) {
493 intr_pin = pci_bridge_funcs->xlate_intr_line(pcidev);
494 }
495#else /* PCI_BRIDGE_FUNCS */
496 struct pci_bus *p = pcidev->bus;
497 /*
498 ** Proposal #2:
499 ** The "pin" is skewed ((pin + dev - 1) % 4).
500 **
501 ** This isn't very clean since I/O SAPIC must assume:
502 ** - all platforms only have PCI busses.
503 ** - only PCI-PCI bridge (eg not PCI-EISA, PCI-PCMCIA)
504 ** - IRQ routing is only skewed once regardless of
505 ** the number of PPB's between iosapic and device.
506 ** (Bit3 expansion chassis follows this rule)
507 **
508 ** Advantage is it's really easy to implement.
509 */
f0e88af8 510 intr_pin = pci_swizzle_interrupt_pin(pcidev, intr_pin);
1da177e4
LT
511#endif /* PCI_BRIDGE_FUNCS */
512
513 /*
9785d646
GG
514 * Locate the host slot of the PPB.
515 */
516 while (p->parent->parent)
1da177e4
LT
517 p = p->parent;
518
519 intr_slot = PCI_SLOT(p->self->devfn);
520 } else {
521 intr_slot = PCI_SLOT(pcidev->devfn);
522 }
523 DBG_IRT("iosapic_xlate_pin: bus %d slot %d pin %d\n",
b918c62e 524 pcidev->bus->busn_res.start, intr_slot, intr_pin);
1da177e4
LT
525
526 return irt_find_irqline(isi, intr_slot, intr_pin);
527}
528
529static void iosapic_rd_irt_entry(struct vector_info *vi , u32 *dp0, u32 *dp1)
530{
531 struct iosapic_info *isp = vi->iosapic;
532 u8 idx = vi->irqline;
533
534 *dp0 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY(idx));
535 *dp1 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY_HI(idx));
536}
537
538
539static void iosapic_wr_irt_entry(struct vector_info *vi, u32 dp0, u32 dp1)
540{
541 struct iosapic_info *isp = vi->iosapic;
542
543 DBG_IRT("iosapic_wr_irt_entry(): irq %d hpa %lx 0x%x 0x%x\n",
544 vi->irqline, isp->isi_hpa, dp0, dp1);
545
546 iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY(vi->irqline), dp0);
547
548 /* Read the window register to flush the writes down to HW */
549 dp0 = readl(isp->addr+IOSAPIC_REG_WINDOW);
550
551 iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY_HI(vi->irqline), dp1);
552
553 /* Read the window register to flush the writes down to HW */
554 dp1 = readl(isp->addr+IOSAPIC_REG_WINDOW);
555}
556
557/*
558** set_irt prepares the data (dp0, dp1) according to the vector_info
559** and target cpu (id_eid). dp0/dp1 are then used to program I/O SAPIC
560** IRdT for the given "vector" (aka IRQ line).
561*/
562static void
563iosapic_set_irt_data( struct vector_info *vi, u32 *dp0, u32 *dp1)
564{
565 u32 mode = 0;
566 struct irt_entry *p = vi->irte;
567
568 if ((p->polarity_trigger & IRT_PO_MASK) == IRT_ACTIVE_LO)
569 mode |= IOSAPIC_IRDT_PO_LOW;
570
571 if (((p->polarity_trigger >> IRT_EL_SHIFT) & IRT_EL_MASK) == IRT_LEVEL_TRIG)
572 mode |= IOSAPIC_IRDT_LEVEL_TRIG;
573
574 /*
575 ** IA64 REVISIT
576 ** PA doesn't support EXTINT or LPRIO bits.
577 */
578
579 *dp0 = mode | (u32) vi->txn_data;
580
581 /*
582 ** Extracting id_eid isn't a real clean way of getting it.
583 ** But the encoding is the same for both PA and IA64 platforms.
584 */
585 if (is_pdc_pat()) {
586 /*
587 ** PAT PDC just hands it to us "right".
588 ** txn_addr comes from cpu_data[x].txn_addr.
589 */
590 *dp1 = (u32) (vi->txn_addr);
591 } else {
592 /*
593 ** eg if base_addr == 0xfffa0000),
594 ** we want to get 0xa0ff0000.
595 **
596 ** eid 0x0ff00000 -> 0x00ff0000
597 ** id 0x000ff000 -> 0xff000000
598 */
599 *dp1 = (((u32)vi->txn_addr & 0x0ff00000) >> 4) |
600 (((u32)vi->txn_addr & 0x000ff000) << 12);
601 }
602 DBG_IRT("iosapic_set_irt_data(): 0x%x 0x%x\n", *dp0, *dp1);
603}
604
605
4c4231ea 606static void iosapic_mask_irq(struct irq_data *d)
1da177e4
LT
607{
608 unsigned long flags;
4c4231ea 609 struct vector_info *vi = irq_data_get_irq_chip_data(d);
1da177e4
LT
610 u32 d0, d1;
611
612 spin_lock_irqsave(&iosapic_lock, flags);
613 iosapic_rd_irt_entry(vi, &d0, &d1);
614 d0 |= IOSAPIC_IRDT_ENABLE;
615 iosapic_wr_irt_entry(vi, d0, d1);
616 spin_unlock_irqrestore(&iosapic_lock, flags);
617}
618
4c4231ea 619static void iosapic_unmask_irq(struct irq_data *d)
1da177e4 620{
4c4231ea 621 struct vector_info *vi = irq_data_get_irq_chip_data(d);
1da177e4
LT
622 u32 d0, d1;
623
624 /* data is initialized by fixup_irq */
625 WARN_ON(vi->txn_irq == 0);
626
627 iosapic_set_irt_data(vi, &d0, &d1);
628 iosapic_wr_irt_entry(vi, d0, d1);
629
630#ifdef DEBUG_IOSAPIC_IRT
631{
632 u32 *t = (u32 *) ((ulong) vi->eoi_addr & ~0xffUL);
633 printk("iosapic_enable_irq(): regs %p", vi->eoi_addr);
634 for ( ; t < vi->eoi_addr; t++)
635 printk(" %x", readl(t));
636 printk("\n");
637}
638
639printk("iosapic_enable_irq(): sel ");
640{
641 struct iosapic_info *isp = vi->iosapic;
642
643 for (d0=0x10; d0<0x1e; d0++) {
644 d1 = iosapic_read(isp->addr, d0);
645 printk(" %x", d1);
646 }
647}
648printk("\n");
649#endif
650
651 /*
652 * Issuing I/O SAPIC an EOI causes an interrupt IFF IRQ line is
653 * asserted. IRQ generally should not be asserted when a driver
654 * enables their IRQ. It can lead to "interesting" race conditions
655 * in the driver initialization sequence.
656 */
4c4231ea 657 DBG(KERN_DEBUG "enable_irq(%d): eoi(%p, 0x%x)\n", d->irq,
1da177e4
LT
658 vi->eoi_addr, vi->eoi_data);
659 iosapic_eoi(vi->eoi_addr, vi->eoi_data);
51890613
JB
660}
661
4c4231ea 662static void iosapic_eoi_irq(struct irq_data *d)
51890613 663{
4c4231ea 664 struct vector_info *vi = irq_data_get_irq_chip_data(d);
51890613
JB
665
666 iosapic_eoi(vi->eoi_addr, vi->eoi_data);
4c4231ea 667 cpu_eoi_irq(d);
1da177e4
LT
668}
669
c2ab64d0 670#ifdef CONFIG_SMP
4c4231ea
TG
671static int iosapic_set_affinity_irq(struct irq_data *d,
672 const struct cpumask *dest, bool force)
c2ab64d0 673{
4c4231ea 674 struct vector_info *vi = irq_data_get_irq_chip_data(d);
c2ab64d0
JB
675 u32 d0, d1, dummy_d0;
676 unsigned long flags;
8b6649c5 677 int dest_cpu;
c2ab64d0 678
4c4231ea 679 dest_cpu = cpu_check_affinity(d, dest);
8b6649c5 680 if (dest_cpu < 0)
d5dedd45 681 return -1;
c2ab64d0 682
d2109a12 683 cpumask_copy(irq_data_get_affinity_mask(d), cpumask_of(dest_cpu));
4c4231ea 684 vi->txn_addr = txn_affinity_addr(d->irq, dest_cpu);
c2ab64d0
JB
685
686 spin_lock_irqsave(&iosapic_lock, flags);
687 /* d1 contains the destination CPU, so only want to set that
688 * entry */
689 iosapic_rd_irt_entry(vi, &d0, &d1);
690 iosapic_set_irt_data(vi, &dummy_d0, &d1);
691 iosapic_wr_irt_entry(vi, d0, d1);
692 spin_unlock_irqrestore(&iosapic_lock, flags);
d5dedd45
YL
693
694 return 0;
c2ab64d0
JB
695}
696#endif
697
dfe07565 698static struct irq_chip iosapic_interrupt_type = {
4c4231ea
TG
699 .name = "IO-SAPIC-level",
700 .irq_unmask = iosapic_unmask_irq,
701 .irq_mask = iosapic_mask_irq,
702 .irq_ack = cpu_ack_irq,
703 .irq_eoi = iosapic_eoi_irq,
c2ab64d0 704#ifdef CONFIG_SMP
4c4231ea 705 .irq_set_affinity = iosapic_set_affinity_irq,
c2ab64d0 706#endif
1da177e4
LT
707};
708
709int iosapic_fixup_irq(void *isi_obj, struct pci_dev *pcidev)
710{
711 struct iosapic_info *isi = isi_obj;
712 struct irt_entry *irte = NULL; /* only used if PAT PDC */
713 struct vector_info *vi;
714 int isi_line; /* line used by device */
715
716 if (!isi) {
717 printk(KERN_WARNING MODULE_NAME ": hpa not registered for %s\n",
718 pci_name(pcidev));
719 return -1;
720 }
721
722#ifdef CONFIG_SUPERIO
723 /*
724 * HACK ALERT! (non-compliant PCI device support)
725 *
726 * All SuckyIO interrupts are routed through the PIC's on function 1.
727 * But SuckyIO OHCI USB controller gets an IRT entry anyway because
728 * it advertises INT D for INT_PIN. Use that IRT entry to get the
729 * SuckyIO interrupt routing for PICs on function 1 (*BLEECCHH*).
730 */
731 if (is_superio_device(pcidev)) {
732 /* We must call superio_fixup_irq() to register the pdev */
733 pcidev->irq = superio_fixup_irq(pcidev);
734
735 /* Don't return if need to program the IOSAPIC's IRT... */
736 if (PCI_FUNC(pcidev->devfn) != SUPERIO_USB_FN)
737 return pcidev->irq;
738 }
739#endif /* CONFIG_SUPERIO */
740
741 /* lookup IRT entry for isi/slot/pin set */
742 irte = iosapic_xlate_pin(isi, pcidev);
743 if (!irte) {
744 printk("iosapic: no IRTE for %s (IRQ not connected?)\n",
745 pci_name(pcidev));
746 return -1;
747 }
748 DBG_IRT("iosapic_fixup_irq(): irte %p %x %x %x %x %x %x %x %x\n",
749 irte,
750 irte->entry_type,
751 irte->entry_length,
752 irte->polarity_trigger,
753 irte->src_bus_irq_devno,
754 irte->src_bus_id,
755 irte->src_seg_id,
756 irte->dest_iosapic_intin,
757 (u32) irte->dest_iosapic_addr);
758 isi_line = irte->dest_iosapic_intin;
759
760 /* get vector info for this input line */
761 vi = isi->isi_vector + isi_line;
762 DBG_IRT("iosapic_fixup_irq: line %d vi 0x%p\n", isi_line, vi);
763
764 /* If this IRQ line has already been setup, skip it */
765 if (vi->irte)
766 goto out;
767
768 vi->irte = irte;
769
770 /*
771 * Allocate processor IRQ
772 *
773 * XXX/FIXME The txn_alloc_irq() code and related code should be
774 * moved to enable_irq(). That way we only allocate processor IRQ
775 * bits for devices that actually have drivers claiming them.
776 * Right now we assign an IRQ to every PCI device present,
777 * regardless of whether it's used or not.
778 */
779 vi->txn_irq = txn_alloc_irq(8);
780
781 if (vi->txn_irq < 0)
782 panic("I/O sapic: couldn't get TXN IRQ\n");
783
784 /* enable_irq() will use txn_* to program IRdT */
785 vi->txn_addr = txn_alloc_addr(vi->txn_irq);
786 vi->txn_data = txn_alloc_data(vi->txn_irq);
787
788 vi->eoi_addr = isi->addr + IOSAPIC_REG_EOI;
789 vi->eoi_data = cpu_to_le32(vi->txn_data);
790
791 cpu_claim_irq(vi->txn_irq, &iosapic_interrupt_type, vi);
792
793 out:
794 pcidev->irq = vi->txn_irq;
795
796 DBG_IRT("iosapic_fixup_irq() %d:%d %x %x line %d irq %d\n",
797 PCI_SLOT(pcidev->devfn), PCI_FUNC(pcidev->devfn),
798 pcidev->vendor, pcidev->device, isi_line, pcidev->irq);
799
800 return pcidev->irq;
801}
802
dd5e6d6a 803static struct iosapic_info *iosapic_list;
9a66d186
TB
804
805#ifdef CONFIG_64BIT
dd5e6d6a 806int iosapic_serial_irq(struct parisc_device *dev)
9a66d186 807{
dd5e6d6a
TB
808 struct iosapic_info *isi;
809 struct irt_entry *irte;
9a66d186 810 struct vector_info *vi;
dd5e6d6a
TB
811 int cnt;
812 int intin;
813
814 intin = (dev->mod_info >> 24) & 15;
9a66d186
TB
815
816 /* lookup IRT entry for isi/slot/pin set */
dd5e6d6a
TB
817 for (cnt = 0; cnt < irt_num_entry; cnt++) {
818 irte = &irt_cell[cnt];
819 if (COMPARE_IRTE_ADDR(irte, dev->mod0) &&
820 irte->dest_iosapic_intin == intin)
821 break;
822 }
823 if (cnt >= irt_num_entry)
824 return 0; /* no irq found, force polling */
9a66d186
TB
825
826 DBG_IRT("iosapic_serial_irq(): irte %p %x %x %x %x %x %x %x %x\n",
827 irte,
828 irte->entry_type,
829 irte->entry_length,
830 irte->polarity_trigger,
831 irte->src_bus_irq_devno,
832 irte->src_bus_id,
833 irte->src_seg_id,
834 irte->dest_iosapic_intin,
835 (u32) irte->dest_iosapic_addr);
dd5e6d6a
TB
836
837 /* search for iosapic */
838 for (isi = iosapic_list; isi; isi = isi->isi_next)
839 if (isi->isi_hpa == dev->mod0)
840 break;
841 if (!isi)
842 return 0; /* no iosapic found, force polling */
9a66d186
TB
843
844 /* get vector info for this input line */
dd5e6d6a
TB
845 vi = isi->isi_vector + intin;
846 DBG_IRT("iosapic_serial_irq: line %d vi 0x%p\n", iosapic_intin, vi);
9a66d186
TB
847
848 /* If this IRQ line has already been setup, skip it */
849 if (vi->irte)
850 goto out;
851
852 vi->irte = irte;
853
854 /*
855 * Allocate processor IRQ
856 *
857 * XXX/FIXME The txn_alloc_irq() code and related code should be
858 * moved to enable_irq(). That way we only allocate processor IRQ
859 * bits for devices that actually have drivers claiming them.
860 * Right now we assign an IRQ to every PCI device present,
861 * regardless of whether it's used or not.
862 */
863 vi->txn_irq = txn_alloc_irq(8);
864
865 if (vi->txn_irq < 0)
866 panic("I/O sapic: couldn't get TXN IRQ\n");
867
868 /* enable_irq() will use txn_* to program IRdT */
869 vi->txn_addr = txn_alloc_addr(vi->txn_irq);
870 vi->txn_data = txn_alloc_data(vi->txn_irq);
871
872 vi->eoi_addr = isi->addr + IOSAPIC_REG_EOI;
873 vi->eoi_data = cpu_to_le32(vi->txn_data);
874
875 cpu_claim_irq(vi->txn_irq, &iosapic_interrupt_type, vi);
876
877 out:
878
879 return vi->txn_irq;
880}
881#endif
882
1da177e4
LT
883
884/*
885** squirrel away the I/O Sapic Version
886*/
887static unsigned int
888iosapic_rd_version(struct iosapic_info *isi)
889{
890 return iosapic_read(isi->addr, IOSAPIC_REG_VERSION);
891}
892
893
894/*
895** iosapic_register() is called by "drivers" with an integrated I/O SAPIC.
896** Caller must be certain they have an I/O SAPIC and know its MMIO address.
897**
898** o allocate iosapic_info and add it to the list
899** o read iosapic version and squirrel that away
900** o read size of IRdT.
901** o allocate and initialize isi_vector[]
902** o allocate irq region
903*/
904void *iosapic_register(unsigned long hpa)
905{
906 struct iosapic_info *isi = NULL;
907 struct irt_entry *irte = irt_cell;
908 struct vector_info *vip;
909 int cnt; /* track how many entries we've looked at */
910
911 /*
912 * Astro based platforms can only support PCI OLARD if they implement
913 * PAT PDC. Legacy PDC omits LBAs with no PCI devices from the IRT.
914 * Search the IRT and ignore iosapic's which aren't in the IRT.
915 */
916 for (cnt=0; cnt < irt_num_entry; cnt++, irte++) {
917 WARN_ON(IRT_IOSAPIC_TYPE != irte->entry_type);
918 if (COMPARE_IRTE_ADDR(irte, hpa))
919 break;
920 }
921
922 if (cnt >= irt_num_entry) {
923 DBG("iosapic_register() ignoring 0x%lx (NOT FOUND)\n", hpa);
924 return NULL;
925 }
926
5cbded58 927 isi = kzalloc(sizeof(struct iosapic_info), GFP_KERNEL);
1da177e4
LT
928 if (!isi) {
929 BUG();
930 return NULL;
931 }
932
5076c158 933 isi->addr = ioremap_nocache(hpa, 4096);
1da177e4
LT
934 isi->isi_hpa = hpa;
935 isi->isi_version = iosapic_rd_version(isi);
936 isi->isi_num_vectors = IOSAPIC_IRDT_MAX_ENTRY(isi->isi_version) + 1;
937
f8301041
JP
938 vip = isi->isi_vector = kcalloc(isi->isi_num_vectors,
939 sizeof(struct vector_info), GFP_KERNEL);
1da177e4
LT
940 if (vip == NULL) {
941 kfree(isi);
942 return NULL;
943 }
944
1da177e4
LT
945 for (cnt=0; cnt < isi->isi_num_vectors; cnt++, vip++) {
946 vip->irqline = (unsigned char) cnt;
947 vip->iosapic = isi;
948 }
dd5e6d6a
TB
949 isi->isi_next = iosapic_list;
950 iosapic_list = isi;
1da177e4
LT
951 return isi;
952}
953
954
955#ifdef DEBUG_IOSAPIC
956
957static void
958iosapic_prt_irt(void *irt, long num_entry)
959{
960 unsigned int i, *irp = (unsigned int *) irt;
961
962
963 printk(KERN_DEBUG MODULE_NAME ": Interrupt Routing Table (%lx entries)\n", num_entry);
964
965 for (i=0; i<num_entry; i++, irp += 4) {
966 printk(KERN_DEBUG "%p : %2d %.8x %.8x %.8x %.8x\n",
967 irp, i, irp[0], irp[1], irp[2], irp[3]);
968 }
969}
970
971
972static void
973iosapic_prt_vi(struct vector_info *vi)
974{
975 printk(KERN_DEBUG MODULE_NAME ": vector_info[%d] is at %p\n", vi->irqline, vi);
976 printk(KERN_DEBUG "\t\tstatus: %.4x\n", vi->status);
977 printk(KERN_DEBUG "\t\ttxn_irq: %d\n", vi->txn_irq);
978 printk(KERN_DEBUG "\t\ttxn_addr: %lx\n", vi->txn_addr);
979 printk(KERN_DEBUG "\t\ttxn_data: %lx\n", vi->txn_data);
980 printk(KERN_DEBUG "\t\teoi_addr: %p\n", vi->eoi_addr);
981 printk(KERN_DEBUG "\t\teoi_data: %x\n", vi->eoi_data);
982}
983
984
985static void
986iosapic_prt_isi(struct iosapic_info *isi)
987{
988 printk(KERN_DEBUG MODULE_NAME ": io_sapic_info at %p\n", isi);
989 printk(KERN_DEBUG "\t\tisi_hpa: %lx\n", isi->isi_hpa);
990 printk(KERN_DEBUG "\t\tisi_status: %x\n", isi->isi_status);
991 printk(KERN_DEBUG "\t\tisi_version: %x\n", isi->isi_version);
992 printk(KERN_DEBUG "\t\tisi_vector: %p\n", isi->isi_vector);
993}
994#endif /* DEBUG_IOSAPIC */