]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/pci/controller/pcie-iproc-msi.c
UBUNTU: Ubuntu-5.3.0-29.31
[mirror_ubuntu-eoan-kernel.git] / drivers / pci / controller / pcie-iproc-msi.c
CommitLineData
8cfab3cf 1// SPDX-License-Identifier: GPL-2.0
3bc2b234
RJ
2/*
3 * Copyright (C) 2015 Broadcom Corporation
3bc2b234
RJ
4 */
5
6#include <linux/interrupt.h>
7#include <linux/irqchip/chained_irq.h>
8#include <linux/irqdomain.h>
9#include <linux/msi.h>
10#include <linux/of_irq.h>
11#include <linux/of_pci.h>
12#include <linux/pci.h>
13
14#include "pcie-iproc.h"
15
16#define IPROC_MSI_INTR_EN_SHIFT 11
17#define IPROC_MSI_INTR_EN BIT(IPROC_MSI_INTR_EN_SHIFT)
18#define IPROC_MSI_INT_N_EVENT_SHIFT 1
19#define IPROC_MSI_INT_N_EVENT BIT(IPROC_MSI_INT_N_EVENT_SHIFT)
20#define IPROC_MSI_EQ_EN_SHIFT 0
21#define IPROC_MSI_EQ_EN BIT(IPROC_MSI_EQ_EN_SHIFT)
22
23#define IPROC_MSI_EQ_MASK 0x3f
24
25/* Max number of GIC interrupts */
26#define NR_HW_IRQS 6
27
28/* Number of entries in each event queue */
29#define EQ_LEN 64
30
31/* Size of each event queue memory region */
32#define EQ_MEM_REGION_SIZE SZ_4K
33
34/* Size of each MSI address region */
35#define MSI_MEM_REGION_SIZE SZ_4K
36
37enum iproc_msi_reg {
38 IPROC_MSI_EQ_PAGE = 0,
39 IPROC_MSI_EQ_PAGE_UPPER,
40 IPROC_MSI_PAGE,
41 IPROC_MSI_PAGE_UPPER,
42 IPROC_MSI_CTRL,
43 IPROC_MSI_EQ_HEAD,
44 IPROC_MSI_EQ_TAIL,
45 IPROC_MSI_INTS_EN,
46 IPROC_MSI_REG_SIZE,
47};
48
49struct iproc_msi;
50
51/**
52 * iProc MSI group
53 *
54 * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI
55 * event queue.
56 *
57 * @msi: pointer to iProc MSI data
58 * @gic_irq: GIC interrupt
59 * @eq: Event queue number
60 */
61struct iproc_msi_grp {
62 struct iproc_msi *msi;
63 int gic_irq;
64 unsigned int eq;
65};
66
67/**
68 * iProc event queue based MSI
69 *
70 * Only meant to be used on platforms without MSI support integrated into the
71 * GIC.
72 *
73 * @pcie: pointer to iProc PCIe data
74 * @reg_offsets: MSI register offsets
75 * @grps: MSI groups
76 * @nr_irqs: number of total interrupts connected to GIC
77 * @nr_cpus: number of toal CPUs
78 * @has_inten_reg: indicates the MSI interrupt enable register needs to be
79 * set explicitly (required for some legacy platforms)
80 * @bitmap: MSI vector bitmap
81 * @bitmap_lock: lock to protect access to the MSI bitmap
82 * @nr_msi_vecs: total number of MSI vectors
83 * @inner_domain: inner IRQ domain
84 * @msi_domain: MSI IRQ domain
85 * @nr_eq_region: required number of 4K aligned memory region for MSI event
86 * queues
87 * @nr_msi_region: required number of 4K aligned address region for MSI posted
88 * writes
89 * @eq_cpu: pointer to allocated memory region for MSI event queues
90 * @eq_dma: DMA address of MSI event queues
91 * @msi_addr: MSI address
92 */
93struct iproc_msi {
94 struct iproc_pcie *pcie;
95 const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE];
96 struct iproc_msi_grp *grps;
97 int nr_irqs;
98 int nr_cpus;
99 bool has_inten_reg;
100 unsigned long *bitmap;
101 struct mutex bitmap_lock;
102 unsigned int nr_msi_vecs;
103 struct irq_domain *inner_domain;
104 struct irq_domain *msi_domain;
105 unsigned int nr_eq_region;
106 unsigned int nr_msi_region;
107 void *eq_cpu;
108 dma_addr_t eq_dma;
109 phys_addr_t msi_addr;
110};
111
112static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
113 { 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 },
114 { 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 },
115 { 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 },
116 { 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 },
117 { 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 },
118 { 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 },
119};
120
121static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
122 { 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 },
123 { 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 },
124 { 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 },
125 { 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c },
126};
127
128static inline u32 iproc_msi_read_reg(struct iproc_msi *msi,
129 enum iproc_msi_reg reg,
130 unsigned int eq)
131{
132 struct iproc_pcie *pcie = msi->pcie;
133
134 return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]);
135}
136
137static inline void iproc_msi_write_reg(struct iproc_msi *msi,
138 enum iproc_msi_reg reg,
139 int eq, u32 val)
140{
141 struct iproc_pcie *pcie = msi->pcie;
142
143 writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]);
144}
145
146static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq)
147{
148 return (hwirq % msi->nr_irqs);
149}
150
151static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi,
152 unsigned long hwirq)
153{
154 if (msi->nr_msi_region > 1)
155 return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE;
156 else
157 return hwirq_to_group(msi, hwirq) * sizeof(u32);
158}
159
160static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq)
161{
162 if (msi->nr_eq_region > 1)
163 return eq * EQ_MEM_REGION_SIZE;
164 else
165 return eq * EQ_LEN * sizeof(u32);
166}
167
168static struct irq_chip iproc_msi_irq_chip = {
169 .name = "iProc-MSI",
170};
171
172static struct msi_domain_info iproc_msi_domain_info = {
173 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
fc54bae2 174 MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX,
3bc2b234
RJ
175 .chip = &iproc_msi_irq_chip,
176};
177
178/*
179 * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a
180 * dedicated event queue. Each MSI group can support up to 64 MSI vectors.
181 *
182 * The number of MSI groups varies between different iProc SoCs. The total
183 * number of CPU cores also varies. To support MSI IRQ affinity, we
184 * distribute GIC interrupts across all available CPUs. MSI vector is moved
185 * from one GIC interrupt to another to steer to the target CPU.
186 *
187 * Assuming:
188 * - the number of MSI groups is M
189 * - the number of CPU cores is N
190 * - M is always a multiple of N
191 *
192 * Total number of raw MSI vectors = M * 64
193 * Total number of supported MSI vectors = (M * 64) / N
194 */
195static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq)
196{
197 return (hwirq % msi->nr_cpus);
198}
199
200static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi,
201 unsigned long hwirq)
202{
203 return (hwirq - hwirq_to_cpu(msi, hwirq));
204}
205
206static int iproc_msi_irq_set_affinity(struct irq_data *data,
207 const struct cpumask *mask, bool force)
208{
209 struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
210 int target_cpu = cpumask_first(mask);
211 int curr_cpu;
212
213 curr_cpu = hwirq_to_cpu(msi, data->hwirq);
214 if (curr_cpu == target_cpu)
215 return IRQ_SET_MASK_OK_DONE;
216
217 /* steer MSI to the target CPU */
218 data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu;
219
220 return IRQ_SET_MASK_OK;
221}
222
223static void iproc_msi_irq_compose_msi_msg(struct irq_data *data,
224 struct msi_msg *msg)
225{
226 struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
227 dma_addr_t addr;
228
229 addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq);
230 msg->address_lo = lower_32_bits(addr);
231 msg->address_hi = upper_32_bits(addr);
fc54bae2 232 msg->data = data->hwirq << 5;
3bc2b234
RJ
233}
234
235static struct irq_chip iproc_msi_bottom_irq_chip = {
236 .name = "MSI",
237 .irq_set_affinity = iproc_msi_irq_set_affinity,
238 .irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg,
239};
240
241static int iproc_msi_irq_domain_alloc(struct irq_domain *domain,
242 unsigned int virq, unsigned int nr_irqs,
243 void *args)
244{
245 struct iproc_msi *msi = domain->host_data;
fc54bae2 246 int hwirq, i;
3bc2b234
RJ
247
248 mutex_lock(&msi->bitmap_lock);
249
250 /* Allocate 'nr_cpus' number of MSI vectors each time */
251 hwirq = bitmap_find_next_zero_area(msi->bitmap, msi->nr_msi_vecs, 0,
252 msi->nr_cpus, 0);
253 if (hwirq < msi->nr_msi_vecs) {
254 bitmap_set(msi->bitmap, hwirq, msi->nr_cpus);
255 } else {
256 mutex_unlock(&msi->bitmap_lock);
257 return -ENOSPC;
258 }
259
260 mutex_unlock(&msi->bitmap_lock);
261
fc54bae2
SBM
262 for (i = 0; i < nr_irqs; i++) {
263 irq_domain_set_info(domain, virq + i, hwirq + i,
264 &iproc_msi_bottom_irq_chip,
265 domain->host_data, handle_simple_irq,
266 NULL, NULL);
267 }
3bc2b234 268
fc54bae2 269 return hwirq;
3bc2b234
RJ
270}
271
272static void iproc_msi_irq_domain_free(struct irq_domain *domain,
273 unsigned int virq, unsigned int nr_irqs)
274{
275 struct irq_data *data = irq_domain_get_irq_data(domain, virq);
276 struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
277 unsigned int hwirq;
278
279 mutex_lock(&msi->bitmap_lock);
280
281 hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq);
282 bitmap_clear(msi->bitmap, hwirq, msi->nr_cpus);
283
284 mutex_unlock(&msi->bitmap_lock);
285
286 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
287}
288
289static const struct irq_domain_ops msi_domain_ops = {
290 .alloc = iproc_msi_irq_domain_alloc,
291 .free = iproc_msi_irq_domain_free,
292};
293
294static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head)
295{
296 u32 *msg, hwirq;
297 unsigned int offs;
298
299 offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32);
300 msg = (u32 *)(msi->eq_cpu + offs);
fc54bae2
SBM
301 hwirq = readl(msg);
302 hwirq = (hwirq >> 5) + (hwirq & 0x1f);
3bc2b234
RJ
303
304 /*
305 * Since we have multiple hwirq mapped to a single MSI vector,
306 * now we need to derive the hwirq at CPU0. It can then be used to
307 * mapped back to virq.
308 */
309 return hwirq_to_canonical_hwirq(msi, hwirq);
310}
311
312static void iproc_msi_handler(struct irq_desc *desc)
313{
314 struct irq_chip *chip = irq_desc_get_chip(desc);
315 struct iproc_msi_grp *grp;
316 struct iproc_msi *msi;
3bc2b234
RJ
317 u32 eq, head, tail, nr_events;
318 unsigned long hwirq;
319 int virq;
320
321 chained_irq_enter(chip, desc);
322
323 grp = irq_desc_get_handler_data(desc);
324 msi = grp->msi;
3bc2b234
RJ
325 eq = grp->eq;
326
327 /*
328 * iProc MSI event queue is tracked by head and tail pointers. Head
329 * pointer indicates the next entry (MSI data) to be consumed by SW in
330 * the queue and needs to be updated by SW. iProc MSI core uses the
331 * tail pointer as the next data insertion point.
332 *
333 * Entries between head and tail pointers contain valid MSI data. MSI
334 * data is guaranteed to be in the event queue memory before the tail
335 * pointer is updated by the iProc MSI core.
336 */
337 head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD,
338 eq) & IPROC_MSI_EQ_MASK;
339 do {
340 tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL,
341 eq) & IPROC_MSI_EQ_MASK;
342
343 /*
344 * Figure out total number of events (MSI data) to be
345 * processed.
346 */
347 nr_events = (tail < head) ?
348 (EQ_LEN - (head - tail)) : (tail - head);
349 if (!nr_events)
350 break;
351
352 /* process all outstanding events */
353 while (nr_events--) {
354 hwirq = decode_msi_hwirq(msi, eq, head);
355 virq = irq_find_mapping(msi->inner_domain, hwirq);
356 generic_handle_irq(virq);
357
358 head++;
359 head %= EQ_LEN;
360 }
361
362 /*
363 * Now all outstanding events have been processed. Update the
364 * head pointer.
365 */
366 iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head);
367
368 /*
369 * Now go read the tail pointer again to see if there are new
74356add 370 * outstanding events that came in during the above window.
3bc2b234
RJ
371 */
372 } while (true);
373
374 chained_irq_exit(chip, desc);
375}
376
377static void iproc_msi_enable(struct iproc_msi *msi)
378{
379 int i, eq;
380 u32 val;
381
382 /* Program memory region for each event queue */
383 for (i = 0; i < msi->nr_eq_region; i++) {
384 dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE);
385
386 iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i,
387 lower_32_bits(addr));
388 iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i,
389 upper_32_bits(addr));
390 }
391
392 /* Program address region for MSI posted writes */
393 for (i = 0; i < msi->nr_msi_region; i++) {
394 phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE);
395
396 iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i,
397 lower_32_bits(addr));
398 iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i,
399 upper_32_bits(addr));
400 }
401
402 for (eq = 0; eq < msi->nr_irqs; eq++) {
403 /* Enable MSI event queue */
404 val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
405 IPROC_MSI_EQ_EN;
406 iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
407
408 /*
409 * Some legacy platforms require the MSI interrupt enable
410 * register to be set explicitly.
411 */
412 if (msi->has_inten_reg) {
413 val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
414 val |= BIT(eq);
415 iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
416 }
417 }
418}
419
420static void iproc_msi_disable(struct iproc_msi *msi)
421{
422 u32 eq, val;
423
424 for (eq = 0; eq < msi->nr_irqs; eq++) {
425 if (msi->has_inten_reg) {
426 val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
427 val &= ~BIT(eq);
428 iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
429 }
430
431 val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq);
432 val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
433 IPROC_MSI_EQ_EN);
434 iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
435 }
436}
437
438static int iproc_msi_alloc_domains(struct device_node *node,
439 struct iproc_msi *msi)
440{
441 msi->inner_domain = irq_domain_add_linear(NULL, msi->nr_msi_vecs,
442 &msi_domain_ops, msi);
443 if (!msi->inner_domain)
444 return -ENOMEM;
445
446 msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node),
447 &iproc_msi_domain_info,
448 msi->inner_domain);
449 if (!msi->msi_domain) {
450 irq_domain_remove(msi->inner_domain);
451 return -ENOMEM;
452 }
453
454 return 0;
455}
456
457static void iproc_msi_free_domains(struct iproc_msi *msi)
458{
459 if (msi->msi_domain)
460 irq_domain_remove(msi->msi_domain);
461
462 if (msi->inner_domain)
463 irq_domain_remove(msi->inner_domain);
464}
465
466static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu)
467{
468 int i;
469
470 for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
471 irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
472 NULL, NULL);
473 }
474}
475
476static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu)
477{
478 int i, ret;
479 cpumask_var_t mask;
480 struct iproc_pcie *pcie = msi->pcie;
481
482 for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
483 irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
484 iproc_msi_handler,
485 &msi->grps[i]);
486 /* Dedicate GIC interrupt to each CPU core */
487 if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
488 cpumask_clear(mask);
489 cpumask_set_cpu(cpu, mask);
490 ret = irq_set_affinity(msi->grps[i].gic_irq, mask);
491 if (ret)
492 dev_err(pcie->dev,
493 "failed to set affinity for IRQ%d\n",
494 msi->grps[i].gic_irq);
495 free_cpumask_var(mask);
496 } else {
497 dev_err(pcie->dev, "failed to alloc CPU mask\n");
498 ret = -EINVAL;
499 }
500
501 if (ret) {
502 /* Free all configured/unconfigured IRQs */
503 iproc_msi_irq_free(msi, cpu);
504 return ret;
505 }
506 }
507
508 return 0;
509}
510
511int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node)
512{
513 struct iproc_msi *msi;
514 int i, ret;
515 unsigned int cpu;
516
517 if (!of_device_is_compatible(node, "brcm,iproc-msi"))
518 return -ENODEV;
519
520 if (!of_find_property(node, "msi-controller", NULL))
521 return -ENODEV;
522
523 if (pcie->msi)
524 return -EBUSY;
525
526 msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL);
527 if (!msi)
528 return -ENOMEM;
529
530 msi->pcie = pcie;
531 pcie->msi = msi;
532 msi->msi_addr = pcie->base_addr;
533 mutex_init(&msi->bitmap_lock);
534 msi->nr_cpus = num_possible_cpus();
535
536 msi->nr_irqs = of_irq_count(node);
537 if (!msi->nr_irqs) {
538 dev_err(pcie->dev, "found no MSI GIC interrupt\n");
539 return -ENODEV;
540 }
541
542 if (msi->nr_irqs > NR_HW_IRQS) {
543 dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n",
544 msi->nr_irqs);
545 msi->nr_irqs = NR_HW_IRQS;
546 }
547
548 if (msi->nr_irqs < msi->nr_cpus) {
549 dev_err(pcie->dev,
550 "not enough GIC interrupts for MSI affinity\n");
551 return -EINVAL;
552 }
553
554 if (msi->nr_irqs % msi->nr_cpus != 0) {
555 msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus;
556 dev_warn(pcie->dev, "Reducing number of interrupts to %d\n",
557 msi->nr_irqs);
558 }
559
560 switch (pcie->type) {
404349c5 561 case IPROC_PCIE_PAXB_BCMA:
3bc2b234
RJ
562 case IPROC_PCIE_PAXB:
563 msi->reg_offsets = iproc_msi_reg_paxb;
564 msi->nr_eq_region = 1;
565 msi->nr_msi_region = 1;
566 break;
567 case IPROC_PCIE_PAXC:
568 msi->reg_offsets = iproc_msi_reg_paxc;
569 msi->nr_eq_region = msi->nr_irqs;
570 msi->nr_msi_region = msi->nr_irqs;
571 break;
572 default:
573 dev_err(pcie->dev, "incompatible iProc PCIe interface\n");
574 return -EINVAL;
575 }
576
577 if (of_find_property(node, "brcm,pcie-msi-inten", NULL))
578 msi->has_inten_reg = true;
579
580 msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN;
581 msi->bitmap = devm_kcalloc(pcie->dev, BITS_TO_LONGS(msi->nr_msi_vecs),
582 sizeof(*msi->bitmap), GFP_KERNEL);
583 if (!msi->bitmap)
584 return -ENOMEM;
585
586 msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps),
587 GFP_KERNEL);
588 if (!msi->grps)
589 return -ENOMEM;
590
591 for (i = 0; i < msi->nr_irqs; i++) {
592 unsigned int irq = irq_of_parse_and_map(node, i);
593
594 if (!irq) {
595 dev_err(pcie->dev, "unable to parse/map interrupt\n");
596 ret = -ENODEV;
597 goto free_irqs;
598 }
599 msi->grps[i].gic_irq = irq;
600 msi->grps[i].msi = msi;
601 msi->grps[i].eq = i;
602 }
603
604 /* Reserve memory for event queue and make sure memories are zeroed */
750afb08
LC
605 msi->eq_cpu = dma_alloc_coherent(pcie->dev,
606 msi->nr_eq_region * EQ_MEM_REGION_SIZE,
607 &msi->eq_dma, GFP_KERNEL);
3bc2b234
RJ
608 if (!msi->eq_cpu) {
609 ret = -ENOMEM;
610 goto free_irqs;
611 }
612
613 ret = iproc_msi_alloc_domains(node, msi);
614 if (ret) {
615 dev_err(pcie->dev, "failed to create MSI domains\n");
616 goto free_eq_dma;
617 }
618
619 for_each_online_cpu(cpu) {
620 ret = iproc_msi_irq_setup(msi, cpu);
621 if (ret)
622 goto free_msi_irq;
623 }
624
625 iproc_msi_enable(msi);
626
627 return 0;
628
629free_msi_irq:
630 for_each_online_cpu(cpu)
631 iproc_msi_irq_free(msi, cpu);
632 iproc_msi_free_domains(msi);
633
634free_eq_dma:
635 dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
636 msi->eq_cpu, msi->eq_dma);
637
638free_irqs:
639 for (i = 0; i < msi->nr_irqs; i++) {
640 if (msi->grps[i].gic_irq)
641 irq_dispose_mapping(msi->grps[i].gic_irq);
642 }
643 pcie->msi = NULL;
644 return ret;
645}
646EXPORT_SYMBOL(iproc_msi_init);
647
648void iproc_msi_exit(struct iproc_pcie *pcie)
649{
650 struct iproc_msi *msi = pcie->msi;
651 unsigned int i, cpu;
652
653 if (!msi)
654 return;
655
656 iproc_msi_disable(msi);
657
658 for_each_online_cpu(cpu)
659 iproc_msi_irq_free(msi, cpu);
660
661 iproc_msi_free_domains(msi);
662
663 dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
664 msi->eq_cpu, msi->eq_dma);
665
666 for (i = 0; i < msi->nr_irqs; i++) {
667 if (msi->grps[i].gic_irq)
668 irq_dispose_mapping(msi->grps[i].gic_irq);
669 }
670}
671EXPORT_SYMBOL(iproc_msi_exit);