]>
Commit | Line | Data |
---|---|---|
ba395927 KA |
1 | /* |
2 | * Copyright (c) 2006, Intel Corporation. | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or modify it | |
5 | * under the terms and conditions of the GNU General Public License, | |
6 | * version 2, as published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope it will be useful, but WITHOUT | |
9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
11 | * more details. | |
12 | * | |
13 | * You should have received a copy of the GNU General Public License along with | |
14 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |
15 | * Place - Suite 330, Boston, MA 02111-1307 USA. | |
16 | * | |
17 | * Copyright (C) Ashok Raj <ashok.raj@intel.com> | |
18 | * Copyright (C) Shaohua Li <shaohua.li@intel.com> | |
19 | * Copyright (C) Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> | |
20 | */ | |
21 | ||
22 | #include <linux/init.h> | |
23 | #include <linux/bitmap.h> | |
24 | #include <linux/slab.h> | |
25 | #include <linux/irq.h> | |
26 | #include <linux/interrupt.h> | |
27 | #include <linux/sysdev.h> | |
28 | #include <linux/spinlock.h> | |
29 | #include <linux/pci.h> | |
30 | #include <linux/dmar.h> | |
31 | #include <linux/dma-mapping.h> | |
32 | #include <linux/mempool.h> | |
33 | #include "iova.h" | |
34 | #include "intel-iommu.h" | |
35 | #include <asm/proto.h> /* force_iommu in this header in x86-64*/ | |
36 | #include <asm/cacheflush.h> | |
37 | #include <asm/iommu.h> | |
38 | #include "pci.h" | |
39 | ||
40 | #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) | |
41 | #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) | |
42 | ||
43 | #define IOAPIC_RANGE_START (0xfee00000) | |
44 | #define IOAPIC_RANGE_END (0xfeefffff) | |
45 | #define IOVA_START_ADDR (0x1000) | |
46 | ||
47 | #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48 | |
48 | ||
49 | #define DMAR_OPERATION_TIMEOUT (HZ*60) /* 1m */ | |
50 | ||
51 | #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1) | |
52 | ||
53 | static void domain_remove_dev_info(struct dmar_domain *domain); | |
54 | ||
55 | static int dmar_disabled; | |
56 | static int __initdata dmar_map_gfx = 1; | |
7d3b03ce | 57 | static int dmar_forcedac; |
ba395927 KA |
58 | |
59 | #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1)) | |
60 | static DEFINE_SPINLOCK(device_domain_lock); | |
61 | static LIST_HEAD(device_domain_list); | |
62 | ||
63 | static int __init intel_iommu_setup(char *str) | |
64 | { | |
65 | if (!str) | |
66 | return -EINVAL; | |
67 | while (*str) { | |
68 | if (!strncmp(str, "off", 3)) { | |
69 | dmar_disabled = 1; | |
70 | printk(KERN_INFO"Intel-IOMMU: disabled\n"); | |
71 | } else if (!strncmp(str, "igfx_off", 8)) { | |
72 | dmar_map_gfx = 0; | |
73 | printk(KERN_INFO | |
74 | "Intel-IOMMU: disable GFX device mapping\n"); | |
7d3b03ce KA |
75 | } else if (!strncmp(str, "forcedac", 8)) { |
76 | printk (KERN_INFO | |
77 | "Intel-IOMMU: Forcing DAC for PCI devices\n"); | |
78 | dmar_forcedac = 1; | |
ba395927 KA |
79 | } |
80 | ||
81 | str += strcspn(str, ","); | |
82 | while (*str == ',') | |
83 | str++; | |
84 | } | |
85 | return 0; | |
86 | } | |
87 | __setup("intel_iommu=", intel_iommu_setup); | |
88 | ||
89 | static struct kmem_cache *iommu_domain_cache; | |
90 | static struct kmem_cache *iommu_devinfo_cache; | |
91 | static struct kmem_cache *iommu_iova_cache; | |
92 | ||
eb3fa7cb KA |
93 | static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep) |
94 | { | |
95 | unsigned int flags; | |
96 | void *vaddr; | |
97 | ||
98 | /* trying to avoid low memory issues */ | |
99 | flags = current->flags & PF_MEMALLOC; | |
100 | current->flags |= PF_MEMALLOC; | |
101 | vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC); | |
102 | current->flags &= (~PF_MEMALLOC | flags); | |
103 | return vaddr; | |
104 | } | |
105 | ||
106 | ||
ba395927 KA |
107 | static inline void *alloc_pgtable_page(void) |
108 | { | |
eb3fa7cb KA |
109 | unsigned int flags; |
110 | void *vaddr; | |
111 | ||
112 | /* trying to avoid low memory issues */ | |
113 | flags = current->flags & PF_MEMALLOC; | |
114 | current->flags |= PF_MEMALLOC; | |
115 | vaddr = (void *)get_zeroed_page(GFP_ATOMIC); | |
116 | current->flags &= (~PF_MEMALLOC | flags); | |
117 | return vaddr; | |
ba395927 KA |
118 | } |
119 | ||
120 | static inline void free_pgtable_page(void *vaddr) | |
121 | { | |
122 | free_page((unsigned long)vaddr); | |
123 | } | |
124 | ||
125 | static inline void *alloc_domain_mem(void) | |
126 | { | |
eb3fa7cb | 127 | return iommu_kmem_cache_alloc(iommu_domain_cache); |
ba395927 KA |
128 | } |
129 | ||
130 | static inline void free_domain_mem(void *vaddr) | |
131 | { | |
132 | kmem_cache_free(iommu_domain_cache, vaddr); | |
133 | } | |
134 | ||
135 | static inline void * alloc_devinfo_mem(void) | |
136 | { | |
eb3fa7cb | 137 | return iommu_kmem_cache_alloc(iommu_devinfo_cache); |
ba395927 KA |
138 | } |
139 | ||
140 | static inline void free_devinfo_mem(void *vaddr) | |
141 | { | |
142 | kmem_cache_free(iommu_devinfo_cache, vaddr); | |
143 | } | |
144 | ||
145 | struct iova *alloc_iova_mem(void) | |
146 | { | |
eb3fa7cb | 147 | return iommu_kmem_cache_alloc(iommu_iova_cache); |
ba395927 KA |
148 | } |
149 | ||
150 | void free_iova_mem(struct iova *iova) | |
151 | { | |
152 | kmem_cache_free(iommu_iova_cache, iova); | |
153 | } | |
154 | ||
155 | static inline void __iommu_flush_cache( | |
156 | struct intel_iommu *iommu, void *addr, int size) | |
157 | { | |
158 | if (!ecap_coherent(iommu->ecap)) | |
159 | clflush_cache_range(addr, size); | |
160 | } | |
161 | ||
162 | /* Gets context entry for a given bus and devfn */ | |
163 | static struct context_entry * device_to_context_entry(struct intel_iommu *iommu, | |
164 | u8 bus, u8 devfn) | |
165 | { | |
166 | struct root_entry *root; | |
167 | struct context_entry *context; | |
168 | unsigned long phy_addr; | |
169 | unsigned long flags; | |
170 | ||
171 | spin_lock_irqsave(&iommu->lock, flags); | |
172 | root = &iommu->root_entry[bus]; | |
173 | context = get_context_addr_from_root(root); | |
174 | if (!context) { | |
175 | context = (struct context_entry *)alloc_pgtable_page(); | |
176 | if (!context) { | |
177 | spin_unlock_irqrestore(&iommu->lock, flags); | |
178 | return NULL; | |
179 | } | |
180 | __iommu_flush_cache(iommu, (void *)context, PAGE_SIZE_4K); | |
181 | phy_addr = virt_to_phys((void *)context); | |
182 | set_root_value(root, phy_addr); | |
183 | set_root_present(root); | |
184 | __iommu_flush_cache(iommu, root, sizeof(*root)); | |
185 | } | |
186 | spin_unlock_irqrestore(&iommu->lock, flags); | |
187 | return &context[devfn]; | |
188 | } | |
189 | ||
190 | static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) | |
191 | { | |
192 | struct root_entry *root; | |
193 | struct context_entry *context; | |
194 | int ret; | |
195 | unsigned long flags; | |
196 | ||
197 | spin_lock_irqsave(&iommu->lock, flags); | |
198 | root = &iommu->root_entry[bus]; | |
199 | context = get_context_addr_from_root(root); | |
200 | if (!context) { | |
201 | ret = 0; | |
202 | goto out; | |
203 | } | |
204 | ret = context_present(context[devfn]); | |
205 | out: | |
206 | spin_unlock_irqrestore(&iommu->lock, flags); | |
207 | return ret; | |
208 | } | |
209 | ||
210 | static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn) | |
211 | { | |
212 | struct root_entry *root; | |
213 | struct context_entry *context; | |
214 | unsigned long flags; | |
215 | ||
216 | spin_lock_irqsave(&iommu->lock, flags); | |
217 | root = &iommu->root_entry[bus]; | |
218 | context = get_context_addr_from_root(root); | |
219 | if (context) { | |
220 | context_clear_entry(context[devfn]); | |
221 | __iommu_flush_cache(iommu, &context[devfn], \ | |
222 | sizeof(*context)); | |
223 | } | |
224 | spin_unlock_irqrestore(&iommu->lock, flags); | |
225 | } | |
226 | ||
227 | static void free_context_table(struct intel_iommu *iommu) | |
228 | { | |
229 | struct root_entry *root; | |
230 | int i; | |
231 | unsigned long flags; | |
232 | struct context_entry *context; | |
233 | ||
234 | spin_lock_irqsave(&iommu->lock, flags); | |
235 | if (!iommu->root_entry) { | |
236 | goto out; | |
237 | } | |
238 | for (i = 0; i < ROOT_ENTRY_NR; i++) { | |
239 | root = &iommu->root_entry[i]; | |
240 | context = get_context_addr_from_root(root); | |
241 | if (context) | |
242 | free_pgtable_page(context); | |
243 | } | |
244 | free_pgtable_page(iommu->root_entry); | |
245 | iommu->root_entry = NULL; | |
246 | out: | |
247 | spin_unlock_irqrestore(&iommu->lock, flags); | |
248 | } | |
249 | ||
250 | /* page table handling */ | |
251 | #define LEVEL_STRIDE (9) | |
252 | #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) | |
253 | ||
254 | static inline int agaw_to_level(int agaw) | |
255 | { | |
256 | return agaw + 2; | |
257 | } | |
258 | ||
259 | static inline int agaw_to_width(int agaw) | |
260 | { | |
261 | return 30 + agaw * LEVEL_STRIDE; | |
262 | ||
263 | } | |
264 | ||
265 | static inline int width_to_agaw(int width) | |
266 | { | |
267 | return (width - 30) / LEVEL_STRIDE; | |
268 | } | |
269 | ||
270 | static inline unsigned int level_to_offset_bits(int level) | |
271 | { | |
272 | return (12 + (level - 1) * LEVEL_STRIDE); | |
273 | } | |
274 | ||
275 | static inline int address_level_offset(u64 addr, int level) | |
276 | { | |
277 | return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK); | |
278 | } | |
279 | ||
280 | static inline u64 level_mask(int level) | |
281 | { | |
282 | return ((u64)-1 << level_to_offset_bits(level)); | |
283 | } | |
284 | ||
285 | static inline u64 level_size(int level) | |
286 | { | |
287 | return ((u64)1 << level_to_offset_bits(level)); | |
288 | } | |
289 | ||
290 | static inline u64 align_to_level(u64 addr, int level) | |
291 | { | |
292 | return ((addr + level_size(level) - 1) & level_mask(level)); | |
293 | } | |
294 | ||
295 | static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr) | |
296 | { | |
297 | int addr_width = agaw_to_width(domain->agaw); | |
298 | struct dma_pte *parent, *pte = NULL; | |
299 | int level = agaw_to_level(domain->agaw); | |
300 | int offset; | |
301 | unsigned long flags; | |
302 | ||
303 | BUG_ON(!domain->pgd); | |
304 | ||
305 | addr &= (((u64)1) << addr_width) - 1; | |
306 | parent = domain->pgd; | |
307 | ||
308 | spin_lock_irqsave(&domain->mapping_lock, flags); | |
309 | while (level > 0) { | |
310 | void *tmp_page; | |
311 | ||
312 | offset = address_level_offset(addr, level); | |
313 | pte = &parent[offset]; | |
314 | if (level == 1) | |
315 | break; | |
316 | ||
317 | if (!dma_pte_present(*pte)) { | |
318 | tmp_page = alloc_pgtable_page(); | |
319 | ||
320 | if (!tmp_page) { | |
321 | spin_unlock_irqrestore(&domain->mapping_lock, | |
322 | flags); | |
323 | return NULL; | |
324 | } | |
325 | __iommu_flush_cache(domain->iommu, tmp_page, | |
326 | PAGE_SIZE_4K); | |
327 | dma_set_pte_addr(*pte, virt_to_phys(tmp_page)); | |
328 | /* | |
329 | * high level table always sets r/w, last level page | |
330 | * table control read/write | |
331 | */ | |
332 | dma_set_pte_readable(*pte); | |
333 | dma_set_pte_writable(*pte); | |
334 | __iommu_flush_cache(domain->iommu, pte, sizeof(*pte)); | |
335 | } | |
336 | parent = phys_to_virt(dma_pte_addr(*pte)); | |
337 | level--; | |
338 | } | |
339 | ||
340 | spin_unlock_irqrestore(&domain->mapping_lock, flags); | |
341 | return pte; | |
342 | } | |
343 | ||
344 | /* return address's pte at specific level */ | |
345 | static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr, | |
346 | int level) | |
347 | { | |
348 | struct dma_pte *parent, *pte = NULL; | |
349 | int total = agaw_to_level(domain->agaw); | |
350 | int offset; | |
351 | ||
352 | parent = domain->pgd; | |
353 | while (level <= total) { | |
354 | offset = address_level_offset(addr, total); | |
355 | pte = &parent[offset]; | |
356 | if (level == total) | |
357 | return pte; | |
358 | ||
359 | if (!dma_pte_present(*pte)) | |
360 | break; | |
361 | parent = phys_to_virt(dma_pte_addr(*pte)); | |
362 | total--; | |
363 | } | |
364 | return NULL; | |
365 | } | |
366 | ||
367 | /* clear one page's page table */ | |
368 | static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr) | |
369 | { | |
370 | struct dma_pte *pte = NULL; | |
371 | ||
372 | /* get last level pte */ | |
373 | pte = dma_addr_level_pte(domain, addr, 1); | |
374 | ||
375 | if (pte) { | |
376 | dma_clear_pte(*pte); | |
377 | __iommu_flush_cache(domain->iommu, pte, sizeof(*pte)); | |
378 | } | |
379 | } | |
380 | ||
381 | /* clear last level pte, a tlb flush should be followed */ | |
382 | static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end) | |
383 | { | |
384 | int addr_width = agaw_to_width(domain->agaw); | |
385 | ||
386 | start &= (((u64)1) << addr_width) - 1; | |
387 | end &= (((u64)1) << addr_width) - 1; | |
388 | /* in case it's partial page */ | |
389 | start = PAGE_ALIGN_4K(start); | |
390 | end &= PAGE_MASK_4K; | |
391 | ||
392 | /* we don't need lock here, nobody else touches the iova range */ | |
393 | while (start < end) { | |
394 | dma_pte_clear_one(domain, start); | |
395 | start += PAGE_SIZE_4K; | |
396 | } | |
397 | } | |
398 | ||
399 | /* free page table pages. last level pte should already be cleared */ | |
400 | static void dma_pte_free_pagetable(struct dmar_domain *domain, | |
401 | u64 start, u64 end) | |
402 | { | |
403 | int addr_width = agaw_to_width(domain->agaw); | |
404 | struct dma_pte *pte; | |
405 | int total = agaw_to_level(domain->agaw); | |
406 | int level; | |
407 | u64 tmp; | |
408 | ||
409 | start &= (((u64)1) << addr_width) - 1; | |
410 | end &= (((u64)1) << addr_width) - 1; | |
411 | ||
412 | /* we don't need lock here, nobody else touches the iova range */ | |
413 | level = 2; | |
414 | while (level <= total) { | |
415 | tmp = align_to_level(start, level); | |
416 | if (tmp >= end || (tmp + level_size(level) > end)) | |
417 | return; | |
418 | ||
419 | while (tmp < end) { | |
420 | pte = dma_addr_level_pte(domain, tmp, level); | |
421 | if (pte) { | |
422 | free_pgtable_page( | |
423 | phys_to_virt(dma_pte_addr(*pte))); | |
424 | dma_clear_pte(*pte); | |
425 | __iommu_flush_cache(domain->iommu, | |
426 | pte, sizeof(*pte)); | |
427 | } | |
428 | tmp += level_size(level); | |
429 | } | |
430 | level++; | |
431 | } | |
432 | /* free pgd */ | |
433 | if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) { | |
434 | free_pgtable_page(domain->pgd); | |
435 | domain->pgd = NULL; | |
436 | } | |
437 | } | |
438 | ||
439 | /* iommu handling */ | |
440 | static int iommu_alloc_root_entry(struct intel_iommu *iommu) | |
441 | { | |
442 | struct root_entry *root; | |
443 | unsigned long flags; | |
444 | ||
445 | root = (struct root_entry *)alloc_pgtable_page(); | |
446 | if (!root) | |
447 | return -ENOMEM; | |
448 | ||
449 | __iommu_flush_cache(iommu, root, PAGE_SIZE_4K); | |
450 | ||
451 | spin_lock_irqsave(&iommu->lock, flags); | |
452 | iommu->root_entry = root; | |
453 | spin_unlock_irqrestore(&iommu->lock, flags); | |
454 | ||
455 | return 0; | |
456 | } | |
457 | ||
458 | #define IOMMU_WAIT_OP(iommu, offset, op, cond, sts) \ | |
459 | {\ | |
460 | unsigned long start_time = jiffies;\ | |
461 | while (1) {\ | |
462 | sts = op (iommu->reg + offset);\ | |
463 | if (cond)\ | |
464 | break;\ | |
465 | if (time_after(jiffies, start_time + DMAR_OPERATION_TIMEOUT))\ | |
466 | panic("DMAR hardware is malfunctioning\n");\ | |
467 | cpu_relax();\ | |
468 | }\ | |
469 | } | |
470 | ||
471 | static void iommu_set_root_entry(struct intel_iommu *iommu) | |
472 | { | |
473 | void *addr; | |
474 | u32 cmd, sts; | |
475 | unsigned long flag; | |
476 | ||
477 | addr = iommu->root_entry; | |
478 | ||
479 | spin_lock_irqsave(&iommu->register_lock, flag); | |
480 | dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr)); | |
481 | ||
482 | cmd = iommu->gcmd | DMA_GCMD_SRTP; | |
483 | writel(cmd, iommu->reg + DMAR_GCMD_REG); | |
484 | ||
485 | /* Make sure hardware complete it */ | |
486 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | |
487 | readl, (sts & DMA_GSTS_RTPS), sts); | |
488 | ||
489 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
490 | } | |
491 | ||
492 | static void iommu_flush_write_buffer(struct intel_iommu *iommu) | |
493 | { | |
494 | u32 val; | |
495 | unsigned long flag; | |
496 | ||
497 | if (!cap_rwbf(iommu->cap)) | |
498 | return; | |
499 | val = iommu->gcmd | DMA_GCMD_WBF; | |
500 | ||
501 | spin_lock_irqsave(&iommu->register_lock, flag); | |
502 | writel(val, iommu->reg + DMAR_GCMD_REG); | |
503 | ||
504 | /* Make sure hardware complete it */ | |
505 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | |
506 | readl, (!(val & DMA_GSTS_WBFS)), val); | |
507 | ||
508 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
509 | } | |
510 | ||
511 | /* return value determine if we need a write buffer flush */ | |
512 | static int __iommu_flush_context(struct intel_iommu *iommu, | |
513 | u16 did, u16 source_id, u8 function_mask, u64 type, | |
514 | int non_present_entry_flush) | |
515 | { | |
516 | u64 val = 0; | |
517 | unsigned long flag; | |
518 | ||
519 | /* | |
520 | * In the non-present entry flush case, if hardware doesn't cache | |
521 | * non-present entry we do nothing and if hardware cache non-present | |
522 | * entry, we flush entries of domain 0 (the domain id is used to cache | |
523 | * any non-present entries) | |
524 | */ | |
525 | if (non_present_entry_flush) { | |
526 | if (!cap_caching_mode(iommu->cap)) | |
527 | return 1; | |
528 | else | |
529 | did = 0; | |
530 | } | |
531 | ||
532 | switch (type) { | |
533 | case DMA_CCMD_GLOBAL_INVL: | |
534 | val = DMA_CCMD_GLOBAL_INVL; | |
535 | break; | |
536 | case DMA_CCMD_DOMAIN_INVL: | |
537 | val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); | |
538 | break; | |
539 | case DMA_CCMD_DEVICE_INVL: | |
540 | val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) | |
541 | | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); | |
542 | break; | |
543 | default: | |
544 | BUG(); | |
545 | } | |
546 | val |= DMA_CCMD_ICC; | |
547 | ||
548 | spin_lock_irqsave(&iommu->register_lock, flag); | |
549 | dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); | |
550 | ||
551 | /* Make sure hardware complete it */ | |
552 | IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, | |
553 | dmar_readq, (!(val & DMA_CCMD_ICC)), val); | |
554 | ||
555 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
556 | ||
557 | /* flush context entry will implictly flush write buffer */ | |
558 | return 0; | |
559 | } | |
560 | ||
561 | static int inline iommu_flush_context_global(struct intel_iommu *iommu, | |
562 | int non_present_entry_flush) | |
563 | { | |
564 | return __iommu_flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL, | |
565 | non_present_entry_flush); | |
566 | } | |
567 | ||
568 | static int inline iommu_flush_context_domain(struct intel_iommu *iommu, u16 did, | |
569 | int non_present_entry_flush) | |
570 | { | |
571 | return __iommu_flush_context(iommu, did, 0, 0, DMA_CCMD_DOMAIN_INVL, | |
572 | non_present_entry_flush); | |
573 | } | |
574 | ||
575 | static int inline iommu_flush_context_device(struct intel_iommu *iommu, | |
576 | u16 did, u16 source_id, u8 function_mask, int non_present_entry_flush) | |
577 | { | |
578 | return __iommu_flush_context(iommu, did, source_id, function_mask, | |
579 | DMA_CCMD_DEVICE_INVL, non_present_entry_flush); | |
580 | } | |
581 | ||
582 | /* return value determine if we need a write buffer flush */ | |
583 | static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, | |
584 | u64 addr, unsigned int size_order, u64 type, | |
585 | int non_present_entry_flush) | |
586 | { | |
587 | int tlb_offset = ecap_iotlb_offset(iommu->ecap); | |
588 | u64 val = 0, val_iva = 0; | |
589 | unsigned long flag; | |
590 | ||
591 | /* | |
592 | * In the non-present entry flush case, if hardware doesn't cache | |
593 | * non-present entry we do nothing and if hardware cache non-present | |
594 | * entry, we flush entries of domain 0 (the domain id is used to cache | |
595 | * any non-present entries) | |
596 | */ | |
597 | if (non_present_entry_flush) { | |
598 | if (!cap_caching_mode(iommu->cap)) | |
599 | return 1; | |
600 | else | |
601 | did = 0; | |
602 | } | |
603 | ||
604 | switch (type) { | |
605 | case DMA_TLB_GLOBAL_FLUSH: | |
606 | /* global flush doesn't need set IVA_REG */ | |
607 | val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; | |
608 | break; | |
609 | case DMA_TLB_DSI_FLUSH: | |
610 | val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); | |
611 | break; | |
612 | case DMA_TLB_PSI_FLUSH: | |
613 | val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); | |
614 | /* Note: always flush non-leaf currently */ | |
615 | val_iva = size_order | addr; | |
616 | break; | |
617 | default: | |
618 | BUG(); | |
619 | } | |
620 | /* Note: set drain read/write */ | |
621 | #if 0 | |
622 | /* | |
623 | * This is probably to be super secure.. Looks like we can | |
624 | * ignore it without any impact. | |
625 | */ | |
626 | if (cap_read_drain(iommu->cap)) | |
627 | val |= DMA_TLB_READ_DRAIN; | |
628 | #endif | |
629 | if (cap_write_drain(iommu->cap)) | |
630 | val |= DMA_TLB_WRITE_DRAIN; | |
631 | ||
632 | spin_lock_irqsave(&iommu->register_lock, flag); | |
633 | /* Note: Only uses first TLB reg currently */ | |
634 | if (val_iva) | |
635 | dmar_writeq(iommu->reg + tlb_offset, val_iva); | |
636 | dmar_writeq(iommu->reg + tlb_offset + 8, val); | |
637 | ||
638 | /* Make sure hardware complete it */ | |
639 | IOMMU_WAIT_OP(iommu, tlb_offset + 8, | |
640 | dmar_readq, (!(val & DMA_TLB_IVT)), val); | |
641 | ||
642 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
643 | ||
644 | /* check IOTLB invalidation granularity */ | |
645 | if (DMA_TLB_IAIG(val) == 0) | |
646 | printk(KERN_ERR"IOMMU: flush IOTLB failed\n"); | |
647 | if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) | |
648 | pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n", | |
649 | DMA_TLB_IIRG(type), DMA_TLB_IAIG(val)); | |
650 | /* flush context entry will implictly flush write buffer */ | |
651 | return 0; | |
652 | } | |
653 | ||
654 | static int inline iommu_flush_iotlb_global(struct intel_iommu *iommu, | |
655 | int non_present_entry_flush) | |
656 | { | |
657 | return __iommu_flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH, | |
658 | non_present_entry_flush); | |
659 | } | |
660 | ||
661 | static int inline iommu_flush_iotlb_dsi(struct intel_iommu *iommu, u16 did, | |
662 | int non_present_entry_flush) | |
663 | { | |
664 | return __iommu_flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH, | |
665 | non_present_entry_flush); | |
666 | } | |
667 | ||
668 | static int iommu_get_alignment(u64 base, unsigned int size) | |
669 | { | |
670 | int t = 0; | |
671 | u64 end; | |
672 | ||
673 | end = base + size - 1; | |
674 | while (base != end) { | |
675 | t++; | |
676 | base >>= 1; | |
677 | end >>= 1; | |
678 | } | |
679 | return t; | |
680 | } | |
681 | ||
682 | static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did, | |
683 | u64 addr, unsigned int pages, int non_present_entry_flush) | |
684 | { | |
685 | unsigned int align; | |
686 | ||
687 | BUG_ON(addr & (~PAGE_MASK_4K)); | |
688 | BUG_ON(pages == 0); | |
689 | ||
690 | /* Fallback to domain selective flush if no PSI support */ | |
691 | if (!cap_pgsel_inv(iommu->cap)) | |
692 | return iommu_flush_iotlb_dsi(iommu, did, | |
693 | non_present_entry_flush); | |
694 | ||
695 | /* | |
696 | * PSI requires page size to be 2 ^ x, and the base address is naturally | |
697 | * aligned to the size | |
698 | */ | |
699 | align = iommu_get_alignment(addr >> PAGE_SHIFT_4K, pages); | |
700 | /* Fallback to domain selective flush if size is too big */ | |
701 | if (align > cap_max_amask_val(iommu->cap)) | |
702 | return iommu_flush_iotlb_dsi(iommu, did, | |
703 | non_present_entry_flush); | |
704 | ||
705 | addr >>= PAGE_SHIFT_4K + align; | |
706 | addr <<= PAGE_SHIFT_4K + align; | |
707 | ||
708 | return __iommu_flush_iotlb(iommu, did, addr, align, | |
709 | DMA_TLB_PSI_FLUSH, non_present_entry_flush); | |
710 | } | |
711 | ||
712 | static int iommu_enable_translation(struct intel_iommu *iommu) | |
713 | { | |
714 | u32 sts; | |
715 | unsigned long flags; | |
716 | ||
717 | spin_lock_irqsave(&iommu->register_lock, flags); | |
718 | writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG); | |
719 | ||
720 | /* Make sure hardware complete it */ | |
721 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | |
722 | readl, (sts & DMA_GSTS_TES), sts); | |
723 | ||
724 | iommu->gcmd |= DMA_GCMD_TE; | |
725 | spin_unlock_irqrestore(&iommu->register_lock, flags); | |
726 | return 0; | |
727 | } | |
728 | ||
729 | static int iommu_disable_translation(struct intel_iommu *iommu) | |
730 | { | |
731 | u32 sts; | |
732 | unsigned long flag; | |
733 | ||
734 | spin_lock_irqsave(&iommu->register_lock, flag); | |
735 | iommu->gcmd &= ~DMA_GCMD_TE; | |
736 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | |
737 | ||
738 | /* Make sure hardware complete it */ | |
739 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | |
740 | readl, (!(sts & DMA_GSTS_TES)), sts); | |
741 | ||
742 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
743 | return 0; | |
744 | } | |
745 | ||
3460a6d9 KA |
746 | /* iommu interrupt handling. Most stuff are MSI-like. */ |
747 | ||
748 | static char *fault_reason_strings[] = | |
749 | { | |
750 | "Software", | |
751 | "Present bit in root entry is clear", | |
752 | "Present bit in context entry is clear", | |
753 | "Invalid context entry", | |
754 | "Access beyond MGAW", | |
755 | "PTE Write access is not set", | |
756 | "PTE Read access is not set", | |
757 | "Next page table ptr is invalid", | |
758 | "Root table address invalid", | |
759 | "Context table ptr is invalid", | |
760 | "non-zero reserved fields in RTP", | |
761 | "non-zero reserved fields in CTP", | |
762 | "non-zero reserved fields in PTE", | |
763 | "Unknown" | |
764 | }; | |
765 | #define MAX_FAULT_REASON_IDX ARRAY_SIZE(fault_reason_strings) | |
766 | ||
767 | char *dmar_get_fault_reason(u8 fault_reason) | |
768 | { | |
769 | if (fault_reason > MAX_FAULT_REASON_IDX) | |
770 | return fault_reason_strings[MAX_FAULT_REASON_IDX]; | |
771 | else | |
772 | return fault_reason_strings[fault_reason]; | |
773 | } | |
774 | ||
775 | void dmar_msi_unmask(unsigned int irq) | |
776 | { | |
777 | struct intel_iommu *iommu = get_irq_data(irq); | |
778 | unsigned long flag; | |
779 | ||
780 | /* unmask it */ | |
781 | spin_lock_irqsave(&iommu->register_lock, flag); | |
782 | writel(0, iommu->reg + DMAR_FECTL_REG); | |
783 | /* Read a reg to force flush the post write */ | |
784 | readl(iommu->reg + DMAR_FECTL_REG); | |
785 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
786 | } | |
787 | ||
788 | void dmar_msi_mask(unsigned int irq) | |
789 | { | |
790 | unsigned long flag; | |
791 | struct intel_iommu *iommu = get_irq_data(irq); | |
792 | ||
793 | /* mask it */ | |
794 | spin_lock_irqsave(&iommu->register_lock, flag); | |
795 | writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG); | |
796 | /* Read a reg to force flush the post write */ | |
797 | readl(iommu->reg + DMAR_FECTL_REG); | |
798 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
799 | } | |
800 | ||
801 | void dmar_msi_write(int irq, struct msi_msg *msg) | |
802 | { | |
803 | struct intel_iommu *iommu = get_irq_data(irq); | |
804 | unsigned long flag; | |
805 | ||
806 | spin_lock_irqsave(&iommu->register_lock, flag); | |
807 | writel(msg->data, iommu->reg + DMAR_FEDATA_REG); | |
808 | writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG); | |
809 | writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG); | |
810 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
811 | } | |
812 | ||
813 | void dmar_msi_read(int irq, struct msi_msg *msg) | |
814 | { | |
815 | struct intel_iommu *iommu = get_irq_data(irq); | |
816 | unsigned long flag; | |
817 | ||
818 | spin_lock_irqsave(&iommu->register_lock, flag); | |
819 | msg->data = readl(iommu->reg + DMAR_FEDATA_REG); | |
820 | msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG); | |
821 | msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG); | |
822 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
823 | } | |
824 | ||
825 | static int iommu_page_fault_do_one(struct intel_iommu *iommu, int type, | |
826 | u8 fault_reason, u16 source_id, u64 addr) | |
827 | { | |
828 | char *reason; | |
829 | ||
830 | reason = dmar_get_fault_reason(fault_reason); | |
831 | ||
832 | printk(KERN_ERR | |
833 | "DMAR:[%s] Request device [%02x:%02x.%d] " | |
834 | "fault addr %llx \n" | |
835 | "DMAR:[fault reason %02d] %s\n", | |
836 | (type ? "DMA Read" : "DMA Write"), | |
837 | (source_id >> 8), PCI_SLOT(source_id & 0xFF), | |
838 | PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason); | |
839 | return 0; | |
840 | } | |
841 | ||
842 | #define PRIMARY_FAULT_REG_LEN (16) | |
843 | static irqreturn_t iommu_page_fault(int irq, void *dev_id) | |
844 | { | |
845 | struct intel_iommu *iommu = dev_id; | |
846 | int reg, fault_index; | |
847 | u32 fault_status; | |
848 | unsigned long flag; | |
849 | ||
850 | spin_lock_irqsave(&iommu->register_lock, flag); | |
851 | fault_status = readl(iommu->reg + DMAR_FSTS_REG); | |
852 | ||
853 | /* TBD: ignore advanced fault log currently */ | |
854 | if (!(fault_status & DMA_FSTS_PPF)) | |
855 | goto clear_overflow; | |
856 | ||
857 | fault_index = dma_fsts_fault_record_index(fault_status); | |
858 | reg = cap_fault_reg_offset(iommu->cap); | |
859 | while (1) { | |
860 | u8 fault_reason; | |
861 | u16 source_id; | |
862 | u64 guest_addr; | |
863 | int type; | |
864 | u32 data; | |
865 | ||
866 | /* highest 32 bits */ | |
867 | data = readl(iommu->reg + reg + | |
868 | fault_index * PRIMARY_FAULT_REG_LEN + 12); | |
869 | if (!(data & DMA_FRCD_F)) | |
870 | break; | |
871 | ||
872 | fault_reason = dma_frcd_fault_reason(data); | |
873 | type = dma_frcd_type(data); | |
874 | ||
875 | data = readl(iommu->reg + reg + | |
876 | fault_index * PRIMARY_FAULT_REG_LEN + 8); | |
877 | source_id = dma_frcd_source_id(data); | |
878 | ||
879 | guest_addr = dmar_readq(iommu->reg + reg + | |
880 | fault_index * PRIMARY_FAULT_REG_LEN); | |
881 | guest_addr = dma_frcd_page_addr(guest_addr); | |
882 | /* clear the fault */ | |
883 | writel(DMA_FRCD_F, iommu->reg + reg + | |
884 | fault_index * PRIMARY_FAULT_REG_LEN + 12); | |
885 | ||
886 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
887 | ||
888 | iommu_page_fault_do_one(iommu, type, fault_reason, | |
889 | source_id, guest_addr); | |
890 | ||
891 | fault_index++; | |
892 | if (fault_index > cap_num_fault_regs(iommu->cap)) | |
893 | fault_index = 0; | |
894 | spin_lock_irqsave(&iommu->register_lock, flag); | |
895 | } | |
896 | clear_overflow: | |
897 | /* clear primary fault overflow */ | |
898 | fault_status = readl(iommu->reg + DMAR_FSTS_REG); | |
899 | if (fault_status & DMA_FSTS_PFO) | |
900 | writel(DMA_FSTS_PFO, iommu->reg + DMAR_FSTS_REG); | |
901 | ||
902 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
903 | return IRQ_HANDLED; | |
904 | } | |
905 | ||
906 | int dmar_set_interrupt(struct intel_iommu *iommu) | |
907 | { | |
908 | int irq, ret; | |
909 | ||
910 | irq = create_irq(); | |
911 | if (!irq) { | |
912 | printk(KERN_ERR "IOMMU: no free vectors\n"); | |
913 | return -EINVAL; | |
914 | } | |
915 | ||
916 | set_irq_data(irq, iommu); | |
917 | iommu->irq = irq; | |
918 | ||
919 | ret = arch_setup_dmar_msi(irq); | |
920 | if (ret) { | |
921 | set_irq_data(irq, NULL); | |
922 | iommu->irq = 0; | |
923 | destroy_irq(irq); | |
924 | return 0; | |
925 | } | |
926 | ||
927 | /* Force fault register is cleared */ | |
928 | iommu_page_fault(irq, iommu); | |
929 | ||
930 | ret = request_irq(irq, iommu_page_fault, 0, iommu->name, iommu); | |
931 | if (ret) | |
932 | printk(KERN_ERR "IOMMU: can't request irq\n"); | |
933 | return ret; | |
934 | } | |
935 | ||
ba395927 KA |
936 | static int iommu_init_domains(struct intel_iommu *iommu) |
937 | { | |
938 | unsigned long ndomains; | |
939 | unsigned long nlongs; | |
940 | ||
941 | ndomains = cap_ndoms(iommu->cap); | |
942 | pr_debug("Number of Domains supportd <%ld>\n", ndomains); | |
943 | nlongs = BITS_TO_LONGS(ndomains); | |
944 | ||
945 | /* TBD: there might be 64K domains, | |
946 | * consider other allocation for future chip | |
947 | */ | |
948 | iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); | |
949 | if (!iommu->domain_ids) { | |
950 | printk(KERN_ERR "Allocating domain id array failed\n"); | |
951 | return -ENOMEM; | |
952 | } | |
953 | iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *), | |
954 | GFP_KERNEL); | |
955 | if (!iommu->domains) { | |
956 | printk(KERN_ERR "Allocating domain array failed\n"); | |
957 | kfree(iommu->domain_ids); | |
958 | return -ENOMEM; | |
959 | } | |
960 | ||
961 | /* | |
962 | * if Caching mode is set, then invalid translations are tagged | |
963 | * with domainid 0. Hence we need to pre-allocate it. | |
964 | */ | |
965 | if (cap_caching_mode(iommu->cap)) | |
966 | set_bit(0, iommu->domain_ids); | |
967 | return 0; | |
968 | } | |
969 | ||
970 | static struct intel_iommu *alloc_iommu(struct dmar_drhd_unit *drhd) | |
971 | { | |
972 | struct intel_iommu *iommu; | |
973 | int ret; | |
974 | int map_size; | |
975 | u32 ver; | |
976 | ||
977 | iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); | |
978 | if (!iommu) | |
979 | return NULL; | |
980 | iommu->reg = ioremap(drhd->reg_base_addr, PAGE_SIZE_4K); | |
981 | if (!iommu->reg) { | |
982 | printk(KERN_ERR "IOMMU: can't map the region\n"); | |
983 | goto error; | |
984 | } | |
985 | iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); | |
986 | iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); | |
987 | ||
988 | /* the registers might be more than one page */ | |
989 | map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), | |
990 | cap_max_fault_reg_offset(iommu->cap)); | |
991 | map_size = PAGE_ALIGN_4K(map_size); | |
992 | if (map_size > PAGE_SIZE_4K) { | |
993 | iounmap(iommu->reg); | |
994 | iommu->reg = ioremap(drhd->reg_base_addr, map_size); | |
995 | if (!iommu->reg) { | |
996 | printk(KERN_ERR "IOMMU: can't map the region\n"); | |
997 | goto error; | |
998 | } | |
999 | } | |
1000 | ||
1001 | ver = readl(iommu->reg + DMAR_VER_REG); | |
1002 | pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n", | |
1003 | drhd->reg_base_addr, DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), | |
1004 | iommu->cap, iommu->ecap); | |
1005 | ret = iommu_init_domains(iommu); | |
1006 | if (ret) | |
1007 | goto error_unmap; | |
1008 | spin_lock_init(&iommu->lock); | |
1009 | spin_lock_init(&iommu->register_lock); | |
1010 | ||
1011 | drhd->iommu = iommu; | |
1012 | return iommu; | |
1013 | error_unmap: | |
1014 | iounmap(iommu->reg); | |
1015 | iommu->reg = 0; | |
1016 | error: | |
1017 | kfree(iommu); | |
1018 | return NULL; | |
1019 | } | |
1020 | ||
1021 | static void domain_exit(struct dmar_domain *domain); | |
1022 | static void free_iommu(struct intel_iommu *iommu) | |
1023 | { | |
1024 | struct dmar_domain *domain; | |
1025 | int i; | |
1026 | ||
1027 | if (!iommu) | |
1028 | return; | |
1029 | ||
1030 | i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap)); | |
1031 | for (; i < cap_ndoms(iommu->cap); ) { | |
1032 | domain = iommu->domains[i]; | |
1033 | clear_bit(i, iommu->domain_ids); | |
1034 | domain_exit(domain); | |
1035 | i = find_next_bit(iommu->domain_ids, | |
1036 | cap_ndoms(iommu->cap), i+1); | |
1037 | } | |
1038 | ||
1039 | if (iommu->gcmd & DMA_GCMD_TE) | |
1040 | iommu_disable_translation(iommu); | |
1041 | ||
1042 | if (iommu->irq) { | |
1043 | set_irq_data(iommu->irq, NULL); | |
1044 | /* This will mask the irq */ | |
1045 | free_irq(iommu->irq, iommu); | |
1046 | destroy_irq(iommu->irq); | |
1047 | } | |
1048 | ||
1049 | kfree(iommu->domains); | |
1050 | kfree(iommu->domain_ids); | |
1051 | ||
1052 | /* free context mapping */ | |
1053 | free_context_table(iommu); | |
1054 | ||
1055 | if (iommu->reg) | |
1056 | iounmap(iommu->reg); | |
1057 | kfree(iommu); | |
1058 | } | |
1059 | ||
1060 | static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu) | |
1061 | { | |
1062 | unsigned long num; | |
1063 | unsigned long ndomains; | |
1064 | struct dmar_domain *domain; | |
1065 | unsigned long flags; | |
1066 | ||
1067 | domain = alloc_domain_mem(); | |
1068 | if (!domain) | |
1069 | return NULL; | |
1070 | ||
1071 | ndomains = cap_ndoms(iommu->cap); | |
1072 | ||
1073 | spin_lock_irqsave(&iommu->lock, flags); | |
1074 | num = find_first_zero_bit(iommu->domain_ids, ndomains); | |
1075 | if (num >= ndomains) { | |
1076 | spin_unlock_irqrestore(&iommu->lock, flags); | |
1077 | free_domain_mem(domain); | |
1078 | printk(KERN_ERR "IOMMU: no free domain ids\n"); | |
1079 | return NULL; | |
1080 | } | |
1081 | ||
1082 | set_bit(num, iommu->domain_ids); | |
1083 | domain->id = num; | |
1084 | domain->iommu = iommu; | |
1085 | iommu->domains[num] = domain; | |
1086 | spin_unlock_irqrestore(&iommu->lock, flags); | |
1087 | ||
1088 | return domain; | |
1089 | } | |
1090 | ||
1091 | static void iommu_free_domain(struct dmar_domain *domain) | |
1092 | { | |
1093 | unsigned long flags; | |
1094 | ||
1095 | spin_lock_irqsave(&domain->iommu->lock, flags); | |
1096 | clear_bit(domain->id, domain->iommu->domain_ids); | |
1097 | spin_unlock_irqrestore(&domain->iommu->lock, flags); | |
1098 | } | |
1099 | ||
1100 | static struct iova_domain reserved_iova_list; | |
1101 | ||
1102 | static void dmar_init_reserved_ranges(void) | |
1103 | { | |
1104 | struct pci_dev *pdev = NULL; | |
1105 | struct iova *iova; | |
1106 | int i; | |
1107 | u64 addr, size; | |
1108 | ||
1109 | init_iova_domain(&reserved_iova_list); | |
1110 | ||
1111 | /* IOAPIC ranges shouldn't be accessed by DMA */ | |
1112 | iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START), | |
1113 | IOVA_PFN(IOAPIC_RANGE_END)); | |
1114 | if (!iova) | |
1115 | printk(KERN_ERR "Reserve IOAPIC range failed\n"); | |
1116 | ||
1117 | /* Reserve all PCI MMIO to avoid peer-to-peer access */ | |
1118 | for_each_pci_dev(pdev) { | |
1119 | struct resource *r; | |
1120 | ||
1121 | for (i = 0; i < PCI_NUM_RESOURCES; i++) { | |
1122 | r = &pdev->resource[i]; | |
1123 | if (!r->flags || !(r->flags & IORESOURCE_MEM)) | |
1124 | continue; | |
1125 | addr = r->start; | |
1126 | addr &= PAGE_MASK_4K; | |
1127 | size = r->end - addr; | |
1128 | size = PAGE_ALIGN_4K(size); | |
1129 | iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr), | |
1130 | IOVA_PFN(size + addr) - 1); | |
1131 | if (!iova) | |
1132 | printk(KERN_ERR "Reserve iova failed\n"); | |
1133 | } | |
1134 | } | |
1135 | ||
1136 | } | |
1137 | ||
1138 | static void domain_reserve_special_ranges(struct dmar_domain *domain) | |
1139 | { | |
1140 | copy_reserved_iova(&reserved_iova_list, &domain->iovad); | |
1141 | } | |
1142 | ||
1143 | static inline int guestwidth_to_adjustwidth(int gaw) | |
1144 | { | |
1145 | int agaw; | |
1146 | int r = (gaw - 12) % 9; | |
1147 | ||
1148 | if (r == 0) | |
1149 | agaw = gaw; | |
1150 | else | |
1151 | agaw = gaw + 9 - r; | |
1152 | if (agaw > 64) | |
1153 | agaw = 64; | |
1154 | return agaw; | |
1155 | } | |
1156 | ||
1157 | static int domain_init(struct dmar_domain *domain, int guest_width) | |
1158 | { | |
1159 | struct intel_iommu *iommu; | |
1160 | int adjust_width, agaw; | |
1161 | unsigned long sagaw; | |
1162 | ||
1163 | init_iova_domain(&domain->iovad); | |
1164 | spin_lock_init(&domain->mapping_lock); | |
1165 | ||
1166 | domain_reserve_special_ranges(domain); | |
1167 | ||
1168 | /* calculate AGAW */ | |
1169 | iommu = domain->iommu; | |
1170 | if (guest_width > cap_mgaw(iommu->cap)) | |
1171 | guest_width = cap_mgaw(iommu->cap); | |
1172 | domain->gaw = guest_width; | |
1173 | adjust_width = guestwidth_to_adjustwidth(guest_width); | |
1174 | agaw = width_to_agaw(adjust_width); | |
1175 | sagaw = cap_sagaw(iommu->cap); | |
1176 | if (!test_bit(agaw, &sagaw)) { | |
1177 | /* hardware doesn't support it, choose a bigger one */ | |
1178 | pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw); | |
1179 | agaw = find_next_bit(&sagaw, 5, agaw); | |
1180 | if (agaw >= 5) | |
1181 | return -ENODEV; | |
1182 | } | |
1183 | domain->agaw = agaw; | |
1184 | INIT_LIST_HEAD(&domain->devices); | |
1185 | ||
1186 | /* always allocate the top pgd */ | |
1187 | domain->pgd = (struct dma_pte *)alloc_pgtable_page(); | |
1188 | if (!domain->pgd) | |
1189 | return -ENOMEM; | |
1190 | __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE_4K); | |
1191 | return 0; | |
1192 | } | |
1193 | ||
1194 | static void domain_exit(struct dmar_domain *domain) | |
1195 | { | |
1196 | u64 end; | |
1197 | ||
1198 | /* Domain 0 is reserved, so dont process it */ | |
1199 | if (!domain) | |
1200 | return; | |
1201 | ||
1202 | domain_remove_dev_info(domain); | |
1203 | /* destroy iovas */ | |
1204 | put_iova_domain(&domain->iovad); | |
1205 | end = DOMAIN_MAX_ADDR(domain->gaw); | |
1206 | end = end & (~PAGE_MASK_4K); | |
1207 | ||
1208 | /* clear ptes */ | |
1209 | dma_pte_clear_range(domain, 0, end); | |
1210 | ||
1211 | /* free page tables */ | |
1212 | dma_pte_free_pagetable(domain, 0, end); | |
1213 | ||
1214 | iommu_free_domain(domain); | |
1215 | free_domain_mem(domain); | |
1216 | } | |
1217 | ||
1218 | static int domain_context_mapping_one(struct dmar_domain *domain, | |
1219 | u8 bus, u8 devfn) | |
1220 | { | |
1221 | struct context_entry *context; | |
1222 | struct intel_iommu *iommu = domain->iommu; | |
1223 | unsigned long flags; | |
1224 | ||
1225 | pr_debug("Set context mapping for %02x:%02x.%d\n", | |
1226 | bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); | |
1227 | BUG_ON(!domain->pgd); | |
1228 | context = device_to_context_entry(iommu, bus, devfn); | |
1229 | if (!context) | |
1230 | return -ENOMEM; | |
1231 | spin_lock_irqsave(&iommu->lock, flags); | |
1232 | if (context_present(*context)) { | |
1233 | spin_unlock_irqrestore(&iommu->lock, flags); | |
1234 | return 0; | |
1235 | } | |
1236 | ||
1237 | context_set_domain_id(*context, domain->id); | |
1238 | context_set_address_width(*context, domain->agaw); | |
1239 | context_set_address_root(*context, virt_to_phys(domain->pgd)); | |
1240 | context_set_translation_type(*context, CONTEXT_TT_MULTI_LEVEL); | |
1241 | context_set_fault_enable(*context); | |
1242 | context_set_present(*context); | |
1243 | __iommu_flush_cache(iommu, context, sizeof(*context)); | |
1244 | ||
1245 | /* it's a non-present to present mapping */ | |
1246 | if (iommu_flush_context_device(iommu, domain->id, | |
1247 | (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT, 1)) | |
1248 | iommu_flush_write_buffer(iommu); | |
1249 | else | |
1250 | iommu_flush_iotlb_dsi(iommu, 0, 0); | |
1251 | spin_unlock_irqrestore(&iommu->lock, flags); | |
1252 | return 0; | |
1253 | } | |
1254 | ||
1255 | static int | |
1256 | domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev) | |
1257 | { | |
1258 | int ret; | |
1259 | struct pci_dev *tmp, *parent; | |
1260 | ||
1261 | ret = domain_context_mapping_one(domain, pdev->bus->number, | |
1262 | pdev->devfn); | |
1263 | if (ret) | |
1264 | return ret; | |
1265 | ||
1266 | /* dependent device mapping */ | |
1267 | tmp = pci_find_upstream_pcie_bridge(pdev); | |
1268 | if (!tmp) | |
1269 | return 0; | |
1270 | /* Secondary interface's bus number and devfn 0 */ | |
1271 | parent = pdev->bus->self; | |
1272 | while (parent != tmp) { | |
1273 | ret = domain_context_mapping_one(domain, parent->bus->number, | |
1274 | parent->devfn); | |
1275 | if (ret) | |
1276 | return ret; | |
1277 | parent = parent->bus->self; | |
1278 | } | |
1279 | if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */ | |
1280 | return domain_context_mapping_one(domain, | |
1281 | tmp->subordinate->number, 0); | |
1282 | else /* this is a legacy PCI bridge */ | |
1283 | return domain_context_mapping_one(domain, | |
1284 | tmp->bus->number, tmp->devfn); | |
1285 | } | |
1286 | ||
1287 | static int domain_context_mapped(struct dmar_domain *domain, | |
1288 | struct pci_dev *pdev) | |
1289 | { | |
1290 | int ret; | |
1291 | struct pci_dev *tmp, *parent; | |
1292 | ||
1293 | ret = device_context_mapped(domain->iommu, | |
1294 | pdev->bus->number, pdev->devfn); | |
1295 | if (!ret) | |
1296 | return ret; | |
1297 | /* dependent device mapping */ | |
1298 | tmp = pci_find_upstream_pcie_bridge(pdev); | |
1299 | if (!tmp) | |
1300 | return ret; | |
1301 | /* Secondary interface's bus number and devfn 0 */ | |
1302 | parent = pdev->bus->self; | |
1303 | while (parent != tmp) { | |
1304 | ret = device_context_mapped(domain->iommu, parent->bus->number, | |
1305 | parent->devfn); | |
1306 | if (!ret) | |
1307 | return ret; | |
1308 | parent = parent->bus->self; | |
1309 | } | |
1310 | if (tmp->is_pcie) | |
1311 | return device_context_mapped(domain->iommu, | |
1312 | tmp->subordinate->number, 0); | |
1313 | else | |
1314 | return device_context_mapped(domain->iommu, | |
1315 | tmp->bus->number, tmp->devfn); | |
1316 | } | |
1317 | ||
1318 | static int | |
1319 | domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova, | |
1320 | u64 hpa, size_t size, int prot) | |
1321 | { | |
1322 | u64 start_pfn, end_pfn; | |
1323 | struct dma_pte *pte; | |
1324 | int index; | |
1325 | ||
1326 | if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) | |
1327 | return -EINVAL; | |
1328 | iova &= PAGE_MASK_4K; | |
1329 | start_pfn = ((u64)hpa) >> PAGE_SHIFT_4K; | |
1330 | end_pfn = (PAGE_ALIGN_4K(((u64)hpa) + size)) >> PAGE_SHIFT_4K; | |
1331 | index = 0; | |
1332 | while (start_pfn < end_pfn) { | |
1333 | pte = addr_to_dma_pte(domain, iova + PAGE_SIZE_4K * index); | |
1334 | if (!pte) | |
1335 | return -ENOMEM; | |
1336 | /* We don't need lock here, nobody else | |
1337 | * touches the iova range | |
1338 | */ | |
1339 | BUG_ON(dma_pte_addr(*pte)); | |
1340 | dma_set_pte_addr(*pte, start_pfn << PAGE_SHIFT_4K); | |
1341 | dma_set_pte_prot(*pte, prot); | |
1342 | __iommu_flush_cache(domain->iommu, pte, sizeof(*pte)); | |
1343 | start_pfn++; | |
1344 | index++; | |
1345 | } | |
1346 | return 0; | |
1347 | } | |
1348 | ||
1349 | static void detach_domain_for_dev(struct dmar_domain *domain, u8 bus, u8 devfn) | |
1350 | { | |
1351 | clear_context_table(domain->iommu, bus, devfn); | |
1352 | iommu_flush_context_global(domain->iommu, 0); | |
1353 | iommu_flush_iotlb_global(domain->iommu, 0); | |
1354 | } | |
1355 | ||
1356 | static void domain_remove_dev_info(struct dmar_domain *domain) | |
1357 | { | |
1358 | struct device_domain_info *info; | |
1359 | unsigned long flags; | |
1360 | ||
1361 | spin_lock_irqsave(&device_domain_lock, flags); | |
1362 | while (!list_empty(&domain->devices)) { | |
1363 | info = list_entry(domain->devices.next, | |
1364 | struct device_domain_info, link); | |
1365 | list_del(&info->link); | |
1366 | list_del(&info->global); | |
1367 | if (info->dev) | |
1368 | info->dev->sysdata = NULL; | |
1369 | spin_unlock_irqrestore(&device_domain_lock, flags); | |
1370 | ||
1371 | detach_domain_for_dev(info->domain, info->bus, info->devfn); | |
1372 | free_devinfo_mem(info); | |
1373 | ||
1374 | spin_lock_irqsave(&device_domain_lock, flags); | |
1375 | } | |
1376 | spin_unlock_irqrestore(&device_domain_lock, flags); | |
1377 | } | |
1378 | ||
1379 | /* | |
1380 | * find_domain | |
1381 | * Note: we use struct pci_dev->sysdata stores the info | |
1382 | */ | |
1383 | struct dmar_domain * | |
1384 | find_domain(struct pci_dev *pdev) | |
1385 | { | |
1386 | struct device_domain_info *info; | |
1387 | ||
1388 | /* No lock here, assumes no domain exit in normal case */ | |
1389 | info = pdev->sysdata; | |
1390 | if (info) | |
1391 | return info->domain; | |
1392 | return NULL; | |
1393 | } | |
1394 | ||
1395 | static int dmar_pci_device_match(struct pci_dev *devices[], int cnt, | |
1396 | struct pci_dev *dev) | |
1397 | { | |
1398 | int index; | |
1399 | ||
1400 | while (dev) { | |
1401 | for (index = 0; index < cnt; index ++) | |
1402 | if (dev == devices[index]) | |
1403 | return 1; | |
1404 | ||
1405 | /* Check our parent */ | |
1406 | dev = dev->bus->self; | |
1407 | } | |
1408 | ||
1409 | return 0; | |
1410 | } | |
1411 | ||
1412 | static struct dmar_drhd_unit * | |
1413 | dmar_find_matched_drhd_unit(struct pci_dev *dev) | |
1414 | { | |
1415 | struct dmar_drhd_unit *drhd = NULL; | |
1416 | ||
1417 | list_for_each_entry(drhd, &dmar_drhd_units, list) { | |
1418 | if (drhd->include_all || dmar_pci_device_match(drhd->devices, | |
1419 | drhd->devices_cnt, dev)) | |
1420 | return drhd; | |
1421 | } | |
1422 | ||
1423 | return NULL; | |
1424 | } | |
1425 | ||
1426 | /* domain is initialized */ | |
1427 | static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw) | |
1428 | { | |
1429 | struct dmar_domain *domain, *found = NULL; | |
1430 | struct intel_iommu *iommu; | |
1431 | struct dmar_drhd_unit *drhd; | |
1432 | struct device_domain_info *info, *tmp; | |
1433 | struct pci_dev *dev_tmp; | |
1434 | unsigned long flags; | |
1435 | int bus = 0, devfn = 0; | |
1436 | ||
1437 | domain = find_domain(pdev); | |
1438 | if (domain) | |
1439 | return domain; | |
1440 | ||
1441 | dev_tmp = pci_find_upstream_pcie_bridge(pdev); | |
1442 | if (dev_tmp) { | |
1443 | if (dev_tmp->is_pcie) { | |
1444 | bus = dev_tmp->subordinate->number; | |
1445 | devfn = 0; | |
1446 | } else { | |
1447 | bus = dev_tmp->bus->number; | |
1448 | devfn = dev_tmp->devfn; | |
1449 | } | |
1450 | spin_lock_irqsave(&device_domain_lock, flags); | |
1451 | list_for_each_entry(info, &device_domain_list, global) { | |
1452 | if (info->bus == bus && info->devfn == devfn) { | |
1453 | found = info->domain; | |
1454 | break; | |
1455 | } | |
1456 | } | |
1457 | spin_unlock_irqrestore(&device_domain_lock, flags); | |
1458 | /* pcie-pci bridge already has a domain, uses it */ | |
1459 | if (found) { | |
1460 | domain = found; | |
1461 | goto found_domain; | |
1462 | } | |
1463 | } | |
1464 | ||
1465 | /* Allocate new domain for the device */ | |
1466 | drhd = dmar_find_matched_drhd_unit(pdev); | |
1467 | if (!drhd) { | |
1468 | printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n", | |
1469 | pci_name(pdev)); | |
1470 | return NULL; | |
1471 | } | |
1472 | iommu = drhd->iommu; | |
1473 | ||
1474 | domain = iommu_alloc_domain(iommu); | |
1475 | if (!domain) | |
1476 | goto error; | |
1477 | ||
1478 | if (domain_init(domain, gaw)) { | |
1479 | domain_exit(domain); | |
1480 | goto error; | |
1481 | } | |
1482 | ||
1483 | /* register pcie-to-pci device */ | |
1484 | if (dev_tmp) { | |
1485 | info = alloc_devinfo_mem(); | |
1486 | if (!info) { | |
1487 | domain_exit(domain); | |
1488 | goto error; | |
1489 | } | |
1490 | info->bus = bus; | |
1491 | info->devfn = devfn; | |
1492 | info->dev = NULL; | |
1493 | info->domain = domain; | |
1494 | /* This domain is shared by devices under p2p bridge */ | |
1495 | domain->flags |= DOMAIN_FLAG_MULTIPLE_DEVICES; | |
1496 | ||
1497 | /* pcie-to-pci bridge already has a domain, uses it */ | |
1498 | found = NULL; | |
1499 | spin_lock_irqsave(&device_domain_lock, flags); | |
1500 | list_for_each_entry(tmp, &device_domain_list, global) { | |
1501 | if (tmp->bus == bus && tmp->devfn == devfn) { | |
1502 | found = tmp->domain; | |
1503 | break; | |
1504 | } | |
1505 | } | |
1506 | if (found) { | |
1507 | free_devinfo_mem(info); | |
1508 | domain_exit(domain); | |
1509 | domain = found; | |
1510 | } else { | |
1511 | list_add(&info->link, &domain->devices); | |
1512 | list_add(&info->global, &device_domain_list); | |
1513 | } | |
1514 | spin_unlock_irqrestore(&device_domain_lock, flags); | |
1515 | } | |
1516 | ||
1517 | found_domain: | |
1518 | info = alloc_devinfo_mem(); | |
1519 | if (!info) | |
1520 | goto error; | |
1521 | info->bus = pdev->bus->number; | |
1522 | info->devfn = pdev->devfn; | |
1523 | info->dev = pdev; | |
1524 | info->domain = domain; | |
1525 | spin_lock_irqsave(&device_domain_lock, flags); | |
1526 | /* somebody is fast */ | |
1527 | found = find_domain(pdev); | |
1528 | if (found != NULL) { | |
1529 | spin_unlock_irqrestore(&device_domain_lock, flags); | |
1530 | if (found != domain) { | |
1531 | domain_exit(domain); | |
1532 | domain = found; | |
1533 | } | |
1534 | free_devinfo_mem(info); | |
1535 | return domain; | |
1536 | } | |
1537 | list_add(&info->link, &domain->devices); | |
1538 | list_add(&info->global, &device_domain_list); | |
1539 | pdev->sysdata = info; | |
1540 | spin_unlock_irqrestore(&device_domain_lock, flags); | |
1541 | return domain; | |
1542 | error: | |
1543 | /* recheck it here, maybe others set it */ | |
1544 | return find_domain(pdev); | |
1545 | } | |
1546 | ||
1547 | static int iommu_prepare_identity_map(struct pci_dev *pdev, u64 start, u64 end) | |
1548 | { | |
1549 | struct dmar_domain *domain; | |
1550 | unsigned long size; | |
1551 | u64 base; | |
1552 | int ret; | |
1553 | ||
1554 | printk(KERN_INFO | |
1555 | "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n", | |
1556 | pci_name(pdev), start, end); | |
1557 | /* page table init */ | |
1558 | domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH); | |
1559 | if (!domain) | |
1560 | return -ENOMEM; | |
1561 | ||
1562 | /* The address might not be aligned */ | |
1563 | base = start & PAGE_MASK_4K; | |
1564 | size = end - base; | |
1565 | size = PAGE_ALIGN_4K(size); | |
1566 | if (!reserve_iova(&domain->iovad, IOVA_PFN(base), | |
1567 | IOVA_PFN(base + size) - 1)) { | |
1568 | printk(KERN_ERR "IOMMU: reserve iova failed\n"); | |
1569 | ret = -ENOMEM; | |
1570 | goto error; | |
1571 | } | |
1572 | ||
1573 | pr_debug("Mapping reserved region %lx@%llx for %s\n", | |
1574 | size, base, pci_name(pdev)); | |
1575 | /* | |
1576 | * RMRR range might have overlap with physical memory range, | |
1577 | * clear it first | |
1578 | */ | |
1579 | dma_pte_clear_range(domain, base, base + size); | |
1580 | ||
1581 | ret = domain_page_mapping(domain, base, base, size, | |
1582 | DMA_PTE_READ|DMA_PTE_WRITE); | |
1583 | if (ret) | |
1584 | goto error; | |
1585 | ||
1586 | /* context entry init */ | |
1587 | ret = domain_context_mapping(domain, pdev); | |
1588 | if (!ret) | |
1589 | return 0; | |
1590 | error: | |
1591 | domain_exit(domain); | |
1592 | return ret; | |
1593 | ||
1594 | } | |
1595 | ||
1596 | static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr, | |
1597 | struct pci_dev *pdev) | |
1598 | { | |
1599 | if (pdev->sysdata == DUMMY_DEVICE_DOMAIN_INFO) | |
1600 | return 0; | |
1601 | return iommu_prepare_identity_map(pdev, rmrr->base_address, | |
1602 | rmrr->end_address + 1); | |
1603 | } | |
1604 | ||
e820482c KA |
1605 | #ifdef CONFIG_DMAR_GFX_WA |
1606 | extern int arch_get_ram_range(int slot, u64 *addr, u64 *size); | |
1607 | static void __init iommu_prepare_gfx_mapping(void) | |
1608 | { | |
1609 | struct pci_dev *pdev = NULL; | |
1610 | u64 base, size; | |
1611 | int slot; | |
1612 | int ret; | |
1613 | ||
1614 | for_each_pci_dev(pdev) { | |
1615 | if (pdev->sysdata == DUMMY_DEVICE_DOMAIN_INFO || | |
1616 | !IS_GFX_DEVICE(pdev)) | |
1617 | continue; | |
1618 | printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n", | |
1619 | pci_name(pdev)); | |
1620 | slot = arch_get_ram_range(0, &base, &size); | |
1621 | while (slot >= 0) { | |
1622 | ret = iommu_prepare_identity_map(pdev, | |
1623 | base, base + size); | |
1624 | if (ret) | |
1625 | goto error; | |
1626 | slot = arch_get_ram_range(slot, &base, &size); | |
1627 | } | |
1628 | continue; | |
1629 | error: | |
1630 | printk(KERN_ERR "IOMMU: mapping reserved region failed\n"); | |
1631 | } | |
1632 | } | |
1633 | #endif | |
1634 | ||
49a0429e KA |
1635 | #ifdef CONFIG_DMAR_FLOPPY_WA |
1636 | static inline void iommu_prepare_isa(void) | |
1637 | { | |
1638 | struct pci_dev *pdev; | |
1639 | int ret; | |
1640 | ||
1641 | pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL); | |
1642 | if (!pdev) | |
1643 | return; | |
1644 | ||
1645 | printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n"); | |
1646 | ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024); | |
1647 | ||
1648 | if (ret) | |
1649 | printk("IOMMU: Failed to create 0-64M identity map, " | |
1650 | "floppy might not work\n"); | |
1651 | ||
1652 | } | |
1653 | #else | |
1654 | static inline void iommu_prepare_isa(void) | |
1655 | { | |
1656 | return; | |
1657 | } | |
1658 | #endif /* !CONFIG_DMAR_FLPY_WA */ | |
1659 | ||
ba395927 KA |
1660 | int __init init_dmars(void) |
1661 | { | |
1662 | struct dmar_drhd_unit *drhd; | |
1663 | struct dmar_rmrr_unit *rmrr; | |
1664 | struct pci_dev *pdev; | |
1665 | struct intel_iommu *iommu; | |
1666 | int ret, unit = 0; | |
1667 | ||
1668 | /* | |
1669 | * for each drhd | |
1670 | * allocate root | |
1671 | * initialize and program root entry to not present | |
1672 | * endfor | |
1673 | */ | |
1674 | for_each_drhd_unit(drhd) { | |
1675 | if (drhd->ignored) | |
1676 | continue; | |
1677 | iommu = alloc_iommu(drhd); | |
1678 | if (!iommu) { | |
1679 | ret = -ENOMEM; | |
1680 | goto error; | |
1681 | } | |
1682 | ||
1683 | /* | |
1684 | * TBD: | |
1685 | * we could share the same root & context tables | |
1686 | * amoung all IOMMU's. Need to Split it later. | |
1687 | */ | |
1688 | ret = iommu_alloc_root_entry(iommu); | |
1689 | if (ret) { | |
1690 | printk(KERN_ERR "IOMMU: allocate root entry failed\n"); | |
1691 | goto error; | |
1692 | } | |
1693 | } | |
1694 | ||
1695 | /* | |
1696 | * For each rmrr | |
1697 | * for each dev attached to rmrr | |
1698 | * do | |
1699 | * locate drhd for dev, alloc domain for dev | |
1700 | * allocate free domain | |
1701 | * allocate page table entries for rmrr | |
1702 | * if context not allocated for bus | |
1703 | * allocate and init context | |
1704 | * set present in root table for this bus | |
1705 | * init context with domain, translation etc | |
1706 | * endfor | |
1707 | * endfor | |
1708 | */ | |
1709 | for_each_rmrr_units(rmrr) { | |
1710 | int i; | |
1711 | for (i = 0; i < rmrr->devices_cnt; i++) { | |
1712 | pdev = rmrr->devices[i]; | |
1713 | /* some BIOS lists non-exist devices in DMAR table */ | |
1714 | if (!pdev) | |
1715 | continue; | |
1716 | ret = iommu_prepare_rmrr_dev(rmrr, pdev); | |
1717 | if (ret) | |
1718 | printk(KERN_ERR | |
1719 | "IOMMU: mapping reserved region failed\n"); | |
1720 | } | |
1721 | } | |
1722 | ||
e820482c KA |
1723 | iommu_prepare_gfx_mapping(); |
1724 | ||
49a0429e KA |
1725 | iommu_prepare_isa(); |
1726 | ||
ba395927 KA |
1727 | /* |
1728 | * for each drhd | |
1729 | * enable fault log | |
1730 | * global invalidate context cache | |
1731 | * global invalidate iotlb | |
1732 | * enable translation | |
1733 | */ | |
1734 | for_each_drhd_unit(drhd) { | |
1735 | if (drhd->ignored) | |
1736 | continue; | |
1737 | iommu = drhd->iommu; | |
1738 | sprintf (iommu->name, "dmar%d", unit++); | |
1739 | ||
1740 | iommu_flush_write_buffer(iommu); | |
1741 | ||
3460a6d9 KA |
1742 | ret = dmar_set_interrupt(iommu); |
1743 | if (ret) | |
1744 | goto error; | |
1745 | ||
ba395927 KA |
1746 | iommu_set_root_entry(iommu); |
1747 | ||
1748 | iommu_flush_context_global(iommu, 0); | |
1749 | iommu_flush_iotlb_global(iommu, 0); | |
1750 | ||
1751 | ret = iommu_enable_translation(iommu); | |
1752 | if (ret) | |
1753 | goto error; | |
1754 | } | |
1755 | ||
1756 | return 0; | |
1757 | error: | |
1758 | for_each_drhd_unit(drhd) { | |
1759 | if (drhd->ignored) | |
1760 | continue; | |
1761 | iommu = drhd->iommu; | |
1762 | free_iommu(iommu); | |
1763 | } | |
1764 | return ret; | |
1765 | } | |
1766 | ||
1767 | static inline u64 aligned_size(u64 host_addr, size_t size) | |
1768 | { | |
1769 | u64 addr; | |
1770 | addr = (host_addr & (~PAGE_MASK_4K)) + size; | |
1771 | return PAGE_ALIGN_4K(addr); | |
1772 | } | |
1773 | ||
1774 | struct iova * | |
1775 | iommu_alloc_iova(struct dmar_domain *domain, void *host_addr, size_t size, | |
1776 | u64 start, u64 end) | |
1777 | { | |
1778 | u64 start_addr; | |
1779 | struct iova *piova; | |
1780 | ||
1781 | /* Make sure it's in range */ | |
1782 | if ((start > DOMAIN_MAX_ADDR(domain->gaw)) || end < start) | |
1783 | return NULL; | |
1784 | ||
1785 | end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end); | |
1786 | start_addr = PAGE_ALIGN_4K(start); | |
1787 | size = aligned_size((u64)host_addr, size); | |
1788 | if (!size || (start_addr + size > end)) | |
1789 | return NULL; | |
1790 | ||
1791 | piova = alloc_iova(&domain->iovad, | |
1792 | size >> PAGE_SHIFT_4K, IOVA_PFN(end)); | |
1793 | ||
1794 | return piova; | |
1795 | } | |
1796 | ||
1797 | static dma_addr_t __intel_map_single(struct device *dev, void *addr, | |
1798 | size_t size, int dir, u64 *flush_addr, unsigned int *flush_size) | |
1799 | { | |
1800 | struct dmar_domain *domain; | |
1801 | struct pci_dev *pdev = to_pci_dev(dev); | |
1802 | int ret; | |
1803 | int prot = 0; | |
1804 | struct iova *iova = NULL; | |
1805 | u64 start_addr; | |
1806 | ||
1807 | addr = (void *)virt_to_phys(addr); | |
1808 | ||
1809 | domain = get_domain_for_dev(pdev, | |
1810 | DEFAULT_DOMAIN_ADDRESS_WIDTH); | |
1811 | if (!domain) { | |
1812 | printk(KERN_ERR | |
1813 | "Allocating domain for %s failed", pci_name(pdev)); | |
1814 | return 0; | |
1815 | } | |
1816 | ||
1817 | start_addr = IOVA_START_ADDR; | |
1818 | ||
7d3b03ce | 1819 | if ((pdev->dma_mask <= DMA_32BIT_MASK) || (dmar_forcedac)) { |
ba395927 KA |
1820 | iova = iommu_alloc_iova(domain, addr, size, start_addr, |
1821 | pdev->dma_mask); | |
1822 | } else { | |
1823 | /* | |
1824 | * First try to allocate an io virtual address in | |
1825 | * DMA_32BIT_MASK and if that fails then try allocating | |
1826 | * from higer range | |
1827 | */ | |
1828 | iova = iommu_alloc_iova(domain, addr, size, start_addr, | |
1829 | DMA_32BIT_MASK); | |
1830 | if (!iova) | |
1831 | iova = iommu_alloc_iova(domain, addr, size, start_addr, | |
1832 | pdev->dma_mask); | |
1833 | } | |
1834 | ||
1835 | if (!iova) { | |
1836 | printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev)); | |
1837 | return 0; | |
1838 | } | |
1839 | ||
1840 | /* make sure context mapping is ok */ | |
1841 | if (unlikely(!domain_context_mapped(domain, pdev))) { | |
1842 | ret = domain_context_mapping(domain, pdev); | |
1843 | if (ret) | |
1844 | goto error; | |
1845 | } | |
1846 | ||
1847 | /* | |
1848 | * Check if DMAR supports zero-length reads on write only | |
1849 | * mappings.. | |
1850 | */ | |
1851 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ | |
1852 | !cap_zlr(domain->iommu->cap)) | |
1853 | prot |= DMA_PTE_READ; | |
1854 | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) | |
1855 | prot |= DMA_PTE_WRITE; | |
1856 | /* | |
1857 | * addr - (addr + size) might be partial page, we should map the whole | |
1858 | * page. Note: if two part of one page are separately mapped, we | |
1859 | * might have two guest_addr mapping to the same host addr, but this | |
1860 | * is not a big problem | |
1861 | */ | |
1862 | ret = domain_page_mapping(domain, iova->pfn_lo << PAGE_SHIFT_4K, | |
1863 | ((u64)addr) & PAGE_MASK_4K, | |
1864 | (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT_4K, prot); | |
1865 | if (ret) | |
1866 | goto error; | |
1867 | ||
1868 | pr_debug("Device %s request: %lx@%llx mapping: %lx@%llx, dir %d\n", | |
1869 | pci_name(pdev), size, (u64)addr, | |
1870 | (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT_4K, | |
1871 | (u64)(iova->pfn_lo << PAGE_SHIFT_4K), dir); | |
1872 | ||
1873 | *flush_addr = iova->pfn_lo << PAGE_SHIFT_4K; | |
1874 | *flush_size = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT_4K; | |
1875 | return (iova->pfn_lo << PAGE_SHIFT_4K) + ((u64)addr & (~PAGE_MASK_4K)); | |
1876 | error: | |
1877 | __free_iova(&domain->iovad, iova); | |
1878 | printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n", | |
1879 | pci_name(pdev), size, (u64)addr, dir); | |
1880 | return 0; | |
1881 | } | |
1882 | ||
1883 | static dma_addr_t intel_map_single(struct device *hwdev, void *addr, | |
1884 | size_t size, int dir) | |
1885 | { | |
1886 | struct pci_dev *pdev = to_pci_dev(hwdev); | |
1887 | dma_addr_t ret; | |
1888 | struct dmar_domain *domain; | |
1889 | u64 flush_addr; | |
1890 | unsigned int flush_size; | |
1891 | ||
1892 | BUG_ON(dir == DMA_NONE); | |
1893 | if (pdev->sysdata == DUMMY_DEVICE_DOMAIN_INFO) | |
1894 | return virt_to_bus(addr); | |
1895 | ||
1896 | ret = __intel_map_single(hwdev, addr, size, | |
1897 | dir, &flush_addr, &flush_size); | |
1898 | if (ret) { | |
1899 | domain = find_domain(pdev); | |
1900 | /* it's a non-present to present mapping */ | |
1901 | if (iommu_flush_iotlb_psi(domain->iommu, domain->id, | |
1902 | flush_addr, flush_size >> PAGE_SHIFT_4K, 1)) | |
1903 | iommu_flush_write_buffer(domain->iommu); | |
1904 | } | |
1905 | return ret; | |
1906 | } | |
1907 | ||
1908 | static void __intel_unmap_single(struct device *dev, dma_addr_t dev_addr, | |
1909 | size_t size, int dir, u64 *flush_addr, unsigned int *flush_size) | |
1910 | { | |
1911 | struct dmar_domain *domain; | |
1912 | struct pci_dev *pdev = to_pci_dev(dev); | |
1913 | struct iova *iova; | |
1914 | ||
1915 | domain = find_domain(pdev); | |
1916 | BUG_ON(!domain); | |
1917 | ||
1918 | iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr)); | |
1919 | if (!iova) { | |
1920 | *flush_size = 0; | |
1921 | return; | |
1922 | } | |
1923 | pr_debug("Device %s unmapping: %lx@%llx\n", | |
1924 | pci_name(pdev), | |
1925 | (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT_4K, | |
1926 | (u64)(iova->pfn_lo << PAGE_SHIFT_4K)); | |
1927 | ||
1928 | *flush_addr = iova->pfn_lo << PAGE_SHIFT_4K; | |
1929 | *flush_size = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT_4K; | |
1930 | /* clear the whole page, not just dev_addr - (dev_addr + size) */ | |
1931 | dma_pte_clear_range(domain, *flush_addr, *flush_addr + *flush_size); | |
1932 | /* free page tables */ | |
1933 | dma_pte_free_pagetable(domain, *flush_addr, *flush_addr + *flush_size); | |
1934 | /* free iova */ | |
1935 | __free_iova(&domain->iovad, iova); | |
1936 | } | |
1937 | ||
1938 | static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, | |
1939 | size_t size, int dir) | |
1940 | { | |
1941 | struct pci_dev *pdev = to_pci_dev(dev); | |
1942 | struct dmar_domain *domain; | |
1943 | u64 flush_addr; | |
1944 | unsigned int flush_size; | |
1945 | ||
1946 | if (pdev->sysdata == DUMMY_DEVICE_DOMAIN_INFO) | |
1947 | return; | |
1948 | ||
1949 | domain = find_domain(pdev); | |
1950 | __intel_unmap_single(dev, dev_addr, size, | |
1951 | dir, &flush_addr, &flush_size); | |
1952 | if (flush_size == 0) | |
1953 | return; | |
1954 | if (iommu_flush_iotlb_psi(domain->iommu, domain->id, flush_addr, | |
1955 | flush_size >> PAGE_SHIFT_4K, 0)) | |
1956 | iommu_flush_write_buffer(domain->iommu); | |
1957 | } | |
1958 | ||
1959 | static void * intel_alloc_coherent(struct device *hwdev, size_t size, | |
1960 | dma_addr_t *dma_handle, gfp_t flags) | |
1961 | { | |
1962 | void *vaddr; | |
1963 | int order; | |
1964 | ||
1965 | size = PAGE_ALIGN_4K(size); | |
1966 | order = get_order(size); | |
1967 | flags &= ~(GFP_DMA | GFP_DMA32); | |
1968 | ||
1969 | vaddr = (void *)__get_free_pages(flags, order); | |
1970 | if (!vaddr) | |
1971 | return NULL; | |
1972 | memset(vaddr, 0, size); | |
1973 | ||
1974 | *dma_handle = intel_map_single(hwdev, vaddr, size, DMA_BIDIRECTIONAL); | |
1975 | if (*dma_handle) | |
1976 | return vaddr; | |
1977 | free_pages((unsigned long)vaddr, order); | |
1978 | return NULL; | |
1979 | } | |
1980 | ||
1981 | static void intel_free_coherent(struct device *hwdev, size_t size, | |
1982 | void *vaddr, dma_addr_t dma_handle) | |
1983 | { | |
1984 | int order; | |
1985 | ||
1986 | size = PAGE_ALIGN_4K(size); | |
1987 | order = get_order(size); | |
1988 | ||
1989 | intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL); | |
1990 | free_pages((unsigned long)vaddr, order); | |
1991 | } | |
1992 | ||
1993 | static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sg, | |
1994 | int nelems, int dir) | |
1995 | { | |
1996 | int i; | |
1997 | struct pci_dev *pdev = to_pci_dev(hwdev); | |
1998 | struct dmar_domain *domain; | |
1999 | u64 flush_addr; | |
2000 | unsigned int flush_size; | |
2001 | ||
2002 | if (pdev->sysdata == DUMMY_DEVICE_DOMAIN_INFO) | |
2003 | return; | |
2004 | ||
2005 | domain = find_domain(pdev); | |
2006 | for (i = 0; i < nelems; i++, sg++) | |
2007 | __intel_unmap_single(hwdev, sg->dma_address, | |
2008 | sg->dma_length, dir, &flush_addr, &flush_size); | |
2009 | ||
2010 | if (iommu_flush_iotlb_dsi(domain->iommu, domain->id, 0)) | |
2011 | iommu_flush_write_buffer(domain->iommu); | |
2012 | } | |
2013 | ||
2014 | #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset) | |
2015 | static int intel_nontranslate_map_sg(struct device *hddev, | |
2016 | struct scatterlist *sg, int nelems, int dir) | |
2017 | { | |
2018 | int i; | |
2019 | ||
2020 | for (i = 0; i < nelems; i++) { | |
2021 | struct scatterlist *s = &sg[i]; | |
2022 | BUG_ON(!s->page); | |
2023 | s->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(s)); | |
2024 | s->dma_length = s->length; | |
2025 | } | |
2026 | return nelems; | |
2027 | } | |
2028 | ||
2029 | static int intel_map_sg(struct device *hwdev, struct scatterlist *sg, | |
2030 | int nelems, int dir) | |
2031 | { | |
2032 | void *addr; | |
2033 | int i; | |
2034 | dma_addr_t dma_handle; | |
2035 | struct pci_dev *pdev = to_pci_dev(hwdev); | |
2036 | struct dmar_domain *domain; | |
2037 | u64 flush_addr; | |
2038 | unsigned int flush_size; | |
2039 | ||
2040 | BUG_ON(dir == DMA_NONE); | |
2041 | if (pdev->sysdata == DUMMY_DEVICE_DOMAIN_INFO) | |
2042 | return intel_nontranslate_map_sg(hwdev, sg, nelems, dir); | |
2043 | ||
2044 | for (i = 0; i < nelems; i++, sg++) { | |
2045 | addr = SG_ENT_VIRT_ADDRESS(sg); | |
2046 | dma_handle = __intel_map_single(hwdev, addr, | |
2047 | sg->length, dir, &flush_addr, &flush_size); | |
2048 | if (!dma_handle) { | |
2049 | intel_unmap_sg(hwdev, sg - i, i, dir); | |
2050 | sg[0].dma_length = 0; | |
2051 | return 0; | |
2052 | } | |
2053 | sg->dma_address = dma_handle; | |
2054 | sg->dma_length = sg->length; | |
2055 | } | |
2056 | ||
2057 | domain = find_domain(pdev); | |
2058 | ||
2059 | /* it's a non-present to present mapping */ | |
2060 | if (iommu_flush_iotlb_dsi(domain->iommu, domain->id, 1)) | |
2061 | iommu_flush_write_buffer(domain->iommu); | |
2062 | return nelems; | |
2063 | } | |
2064 | ||
2065 | static struct dma_mapping_ops intel_dma_ops = { | |
2066 | .alloc_coherent = intel_alloc_coherent, | |
2067 | .free_coherent = intel_free_coherent, | |
2068 | .map_single = intel_map_single, | |
2069 | .unmap_single = intel_unmap_single, | |
2070 | .map_sg = intel_map_sg, | |
2071 | .unmap_sg = intel_unmap_sg, | |
2072 | }; | |
2073 | ||
2074 | static inline int iommu_domain_cache_init(void) | |
2075 | { | |
2076 | int ret = 0; | |
2077 | ||
2078 | iommu_domain_cache = kmem_cache_create("iommu_domain", | |
2079 | sizeof(struct dmar_domain), | |
2080 | 0, | |
2081 | SLAB_HWCACHE_ALIGN, | |
2082 | ||
2083 | NULL); | |
2084 | if (!iommu_domain_cache) { | |
2085 | printk(KERN_ERR "Couldn't create iommu_domain cache\n"); | |
2086 | ret = -ENOMEM; | |
2087 | } | |
2088 | ||
2089 | return ret; | |
2090 | } | |
2091 | ||
2092 | static inline int iommu_devinfo_cache_init(void) | |
2093 | { | |
2094 | int ret = 0; | |
2095 | ||
2096 | iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", | |
2097 | sizeof(struct device_domain_info), | |
2098 | 0, | |
2099 | SLAB_HWCACHE_ALIGN, | |
2100 | ||
2101 | NULL); | |
2102 | if (!iommu_devinfo_cache) { | |
2103 | printk(KERN_ERR "Couldn't create devinfo cache\n"); | |
2104 | ret = -ENOMEM; | |
2105 | } | |
2106 | ||
2107 | return ret; | |
2108 | } | |
2109 | ||
2110 | static inline int iommu_iova_cache_init(void) | |
2111 | { | |
2112 | int ret = 0; | |
2113 | ||
2114 | iommu_iova_cache = kmem_cache_create("iommu_iova", | |
2115 | sizeof(struct iova), | |
2116 | 0, | |
2117 | SLAB_HWCACHE_ALIGN, | |
2118 | ||
2119 | NULL); | |
2120 | if (!iommu_iova_cache) { | |
2121 | printk(KERN_ERR "Couldn't create iova cache\n"); | |
2122 | ret = -ENOMEM; | |
2123 | } | |
2124 | ||
2125 | return ret; | |
2126 | } | |
2127 | ||
2128 | static int __init iommu_init_mempool(void) | |
2129 | { | |
2130 | int ret; | |
2131 | ret = iommu_iova_cache_init(); | |
2132 | if (ret) | |
2133 | return ret; | |
2134 | ||
2135 | ret = iommu_domain_cache_init(); | |
2136 | if (ret) | |
2137 | goto domain_error; | |
2138 | ||
2139 | ret = iommu_devinfo_cache_init(); | |
2140 | if (!ret) | |
2141 | return ret; | |
2142 | ||
2143 | kmem_cache_destroy(iommu_domain_cache); | |
2144 | domain_error: | |
2145 | kmem_cache_destroy(iommu_iova_cache); | |
2146 | ||
2147 | return -ENOMEM; | |
2148 | } | |
2149 | ||
2150 | static void __init iommu_exit_mempool(void) | |
2151 | { | |
2152 | kmem_cache_destroy(iommu_devinfo_cache); | |
2153 | kmem_cache_destroy(iommu_domain_cache); | |
2154 | kmem_cache_destroy(iommu_iova_cache); | |
2155 | ||
2156 | } | |
2157 | ||
2158 | void __init detect_intel_iommu(void) | |
2159 | { | |
2160 | if (swiotlb || no_iommu || iommu_detected || dmar_disabled) | |
2161 | return; | |
2162 | if (early_dmar_detect()) { | |
2163 | iommu_detected = 1; | |
2164 | } | |
2165 | } | |
2166 | ||
2167 | static void __init init_no_remapping_devices(void) | |
2168 | { | |
2169 | struct dmar_drhd_unit *drhd; | |
2170 | ||
2171 | for_each_drhd_unit(drhd) { | |
2172 | if (!drhd->include_all) { | |
2173 | int i; | |
2174 | for (i = 0; i < drhd->devices_cnt; i++) | |
2175 | if (drhd->devices[i] != NULL) | |
2176 | break; | |
2177 | /* ignore DMAR unit if no pci devices exist */ | |
2178 | if (i == drhd->devices_cnt) | |
2179 | drhd->ignored = 1; | |
2180 | } | |
2181 | } | |
2182 | ||
2183 | if (dmar_map_gfx) | |
2184 | return; | |
2185 | ||
2186 | for_each_drhd_unit(drhd) { | |
2187 | int i; | |
2188 | if (drhd->ignored || drhd->include_all) | |
2189 | continue; | |
2190 | ||
2191 | for (i = 0; i < drhd->devices_cnt; i++) | |
2192 | if (drhd->devices[i] && | |
2193 | !IS_GFX_DEVICE(drhd->devices[i])) | |
2194 | break; | |
2195 | ||
2196 | if (i < drhd->devices_cnt) | |
2197 | continue; | |
2198 | ||
2199 | /* bypass IOMMU if it is just for gfx devices */ | |
2200 | drhd->ignored = 1; | |
2201 | for (i = 0; i < drhd->devices_cnt; i++) { | |
2202 | if (!drhd->devices[i]) | |
2203 | continue; | |
2204 | drhd->devices[i]->sysdata = DUMMY_DEVICE_DOMAIN_INFO; | |
2205 | } | |
2206 | } | |
2207 | } | |
2208 | ||
2209 | int __init intel_iommu_init(void) | |
2210 | { | |
2211 | int ret = 0; | |
2212 | ||
2213 | if (no_iommu || swiotlb || dmar_disabled) | |
2214 | return -ENODEV; | |
2215 | ||
2216 | if (dmar_table_init()) | |
2217 | return -ENODEV; | |
2218 | ||
2219 | iommu_init_mempool(); | |
2220 | dmar_init_reserved_ranges(); | |
2221 | ||
2222 | init_no_remapping_devices(); | |
2223 | ||
2224 | ret = init_dmars(); | |
2225 | if (ret) { | |
2226 | printk(KERN_ERR "IOMMU: dmar init failed\n"); | |
2227 | put_iova_domain(&reserved_iova_list); | |
2228 | iommu_exit_mempool(); | |
2229 | return ret; | |
2230 | } | |
2231 | printk(KERN_INFO | |
2232 | "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n"); | |
2233 | ||
2234 | force_iommu = 1; | |
2235 | dma_ops = &intel_dma_ops; | |
2236 | return 0; | |
2237 | } | |
e820482c | 2238 |