]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/pci/intel-iommu.c
intel-iommu: Clean up handling of "caching mode" vs. context flushing.
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / intel-iommu.c
CommitLineData
ba395927
KA
1/*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
98bcef56 17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
5b6985ce 21 * Author: Fenghua Yu <fenghua.yu@intel.com>
ba395927
KA
22 */
23
24#include <linux/init.h>
25#include <linux/bitmap.h>
5e0d2a6f 26#include <linux/debugfs.h>
ba395927
KA
27#include <linux/slab.h>
28#include <linux/irq.h>
29#include <linux/interrupt.h>
ba395927
KA
30#include <linux/spinlock.h>
31#include <linux/pci.h>
32#include <linux/dmar.h>
33#include <linux/dma-mapping.h>
34#include <linux/mempool.h>
5e0d2a6f 35#include <linux/timer.h>
38717946 36#include <linux/iova.h>
5d450806 37#include <linux/iommu.h>
38717946 38#include <linux/intel-iommu.h>
f59c7b69 39#include <linux/sysdev.h>
ba395927 40#include <asm/cacheflush.h>
46a7fa27 41#include <asm/iommu.h>
ba395927
KA
42#include "pci.h"
43
5b6985ce
FY
44#define ROOT_SIZE VTD_PAGE_SIZE
45#define CONTEXT_SIZE VTD_PAGE_SIZE
46
ba395927
KA
47#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
49
50#define IOAPIC_RANGE_START (0xfee00000)
51#define IOAPIC_RANGE_END (0xfeefffff)
52#define IOVA_START_ADDR (0x1000)
53
54#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
55
4ed0d3e6
FY
56#define MAX_AGAW_WIDTH 64
57
ba395927
KA
58#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
59
f27be03b 60#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
284901a9 61#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
6a35528a 62#define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
5e0d2a6f 63
d9630fe9
WH
64/* global iommu list, set NULL for ignored DMAR units */
65static struct intel_iommu **g_iommus;
66
9af88143
DW
67static int rwbf_quirk;
68
46b08e1a
MM
69/*
70 * 0: Present
71 * 1-11: Reserved
72 * 12-63: Context Ptr (12 - (haw-1))
73 * 64-127: Reserved
74 */
75struct root_entry {
76 u64 val;
77 u64 rsvd1;
78};
79#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
80static inline bool root_present(struct root_entry *root)
81{
82 return (root->val & 1);
83}
84static inline void set_root_present(struct root_entry *root)
85{
86 root->val |= 1;
87}
88static inline void set_root_value(struct root_entry *root, unsigned long value)
89{
90 root->val |= value & VTD_PAGE_MASK;
91}
92
93static inline struct context_entry *
94get_context_addr_from_root(struct root_entry *root)
95{
96 return (struct context_entry *)
97 (root_present(root)?phys_to_virt(
98 root->val & VTD_PAGE_MASK) :
99 NULL);
100}
101
7a8fc25e
MM
102/*
103 * low 64 bits:
104 * 0: present
105 * 1: fault processing disable
106 * 2-3: translation type
107 * 12-63: address space root
108 * high 64 bits:
109 * 0-2: address width
110 * 3-6: aval
111 * 8-23: domain id
112 */
113struct context_entry {
114 u64 lo;
115 u64 hi;
116};
c07e7d21
MM
117
118static inline bool context_present(struct context_entry *context)
119{
120 return (context->lo & 1);
121}
122static inline void context_set_present(struct context_entry *context)
123{
124 context->lo |= 1;
125}
126
127static inline void context_set_fault_enable(struct context_entry *context)
128{
129 context->lo &= (((u64)-1) << 2) | 1;
130}
131
c07e7d21
MM
132static inline void context_set_translation_type(struct context_entry *context,
133 unsigned long value)
134{
135 context->lo &= (((u64)-1) << 4) | 3;
136 context->lo |= (value & 3) << 2;
137}
138
139static inline void context_set_address_root(struct context_entry *context,
140 unsigned long value)
141{
142 context->lo |= value & VTD_PAGE_MASK;
143}
144
145static inline void context_set_address_width(struct context_entry *context,
146 unsigned long value)
147{
148 context->hi |= value & 7;
149}
150
151static inline void context_set_domain_id(struct context_entry *context,
152 unsigned long value)
153{
154 context->hi |= (value & ((1 << 16) - 1)) << 8;
155}
156
157static inline void context_clear_entry(struct context_entry *context)
158{
159 context->lo = 0;
160 context->hi = 0;
161}
7a8fc25e 162
622ba12a
MM
163/*
164 * 0: readable
165 * 1: writable
166 * 2-6: reserved
167 * 7: super page
9cf06697
SY
168 * 8-10: available
169 * 11: snoop behavior
622ba12a
MM
170 * 12-63: Host physcial address
171 */
172struct dma_pte {
173 u64 val;
174};
622ba12a 175
19c239ce
MM
176static inline void dma_clear_pte(struct dma_pte *pte)
177{
178 pte->val = 0;
179}
180
181static inline void dma_set_pte_readable(struct dma_pte *pte)
182{
183 pte->val |= DMA_PTE_READ;
184}
185
186static inline void dma_set_pte_writable(struct dma_pte *pte)
187{
188 pte->val |= DMA_PTE_WRITE;
189}
190
9cf06697
SY
191static inline void dma_set_pte_snp(struct dma_pte *pte)
192{
193 pte->val |= DMA_PTE_SNP;
194}
195
19c239ce
MM
196static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
197{
198 pte->val = (pte->val & ~3) | (prot & 3);
199}
200
201static inline u64 dma_pte_addr(struct dma_pte *pte)
202{
203 return (pte->val & VTD_PAGE_MASK);
204}
205
206static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr)
207{
208 pte->val |= (addr & VTD_PAGE_MASK);
209}
210
211static inline bool dma_pte_present(struct dma_pte *pte)
212{
213 return (pte->val & 3) != 0;
214}
622ba12a 215
3b5410e7 216/* devices under the same p2p bridge are owned in one domain */
cdc7b837 217#define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
3b5410e7 218
1ce28feb
WH
219/* domain represents a virtual machine, more than one devices
220 * across iommus may be owned in one domain, e.g. kvm guest.
221 */
222#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
223
99126f7c
MM
224struct dmar_domain {
225 int id; /* domain id */
8c11e798 226 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
99126f7c
MM
227
228 struct list_head devices; /* all devices' list */
229 struct iova_domain iovad; /* iova's that belong to this domain */
230
231 struct dma_pte *pgd; /* virtual address */
232 spinlock_t mapping_lock; /* page table lock */
233 int gaw; /* max guest address width */
234
235 /* adjusted guest address width, 0 is level 2 30-bit */
236 int agaw;
237
3b5410e7 238 int flags; /* flags to find out type of domain */
8e604097
WH
239
240 int iommu_coherency;/* indicate coherency of iommu access */
58c610bd 241 int iommu_snooping; /* indicate snooping control feature*/
c7151a8d
WH
242 int iommu_count; /* reference count of iommu */
243 spinlock_t iommu_lock; /* protect iommu set in domain */
fe40f1e0 244 u64 max_addr; /* maximum mapped address */
99126f7c
MM
245};
246
a647dacb
MM
247/* PCI domain-device relationship */
248struct device_domain_info {
249 struct list_head link; /* link to domain siblings */
250 struct list_head global; /* link to global list */
276dbf99
DW
251 int segment; /* PCI domain */
252 u8 bus; /* PCI bus number */
a647dacb
MM
253 u8 devfn; /* PCI devfn number */
254 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
255 struct dmar_domain *domain; /* pointer to domain */
256};
257
5e0d2a6f 258static void flush_unmaps_timeout(unsigned long data);
259
260DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
261
80b20dd8 262#define HIGH_WATER_MARK 250
263struct deferred_flush_tables {
264 int next;
265 struct iova *iova[HIGH_WATER_MARK];
266 struct dmar_domain *domain[HIGH_WATER_MARK];
267};
268
269static struct deferred_flush_tables *deferred_flush;
270
5e0d2a6f 271/* bitmap for indexing intel_iommus */
5e0d2a6f 272static int g_num_of_iommus;
273
274static DEFINE_SPINLOCK(async_umap_flush_lock);
275static LIST_HEAD(unmaps_to_do);
276
277static int timer_on;
278static long list_size;
5e0d2a6f 279
ba395927
KA
280static void domain_remove_dev_info(struct dmar_domain *domain);
281
0cd5c3c8
KM
282#ifdef CONFIG_DMAR_DEFAULT_ON
283int dmar_disabled = 0;
284#else
285int dmar_disabled = 1;
286#endif /*CONFIG_DMAR_DEFAULT_ON*/
287
ba395927 288static int __initdata dmar_map_gfx = 1;
7d3b03ce 289static int dmar_forcedac;
5e0d2a6f 290static int intel_iommu_strict;
ba395927
KA
291
292#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
293static DEFINE_SPINLOCK(device_domain_lock);
294static LIST_HEAD(device_domain_list);
295
a8bcbb0d
JR
296static struct iommu_ops intel_iommu_ops;
297
ba395927
KA
298static int __init intel_iommu_setup(char *str)
299{
300 if (!str)
301 return -EINVAL;
302 while (*str) {
0cd5c3c8
KM
303 if (!strncmp(str, "on", 2)) {
304 dmar_disabled = 0;
305 printk(KERN_INFO "Intel-IOMMU: enabled\n");
306 } else if (!strncmp(str, "off", 3)) {
ba395927 307 dmar_disabled = 1;
0cd5c3c8 308 printk(KERN_INFO "Intel-IOMMU: disabled\n");
ba395927
KA
309 } else if (!strncmp(str, "igfx_off", 8)) {
310 dmar_map_gfx = 0;
311 printk(KERN_INFO
312 "Intel-IOMMU: disable GFX device mapping\n");
7d3b03ce 313 } else if (!strncmp(str, "forcedac", 8)) {
5e0d2a6f 314 printk(KERN_INFO
7d3b03ce
KA
315 "Intel-IOMMU: Forcing DAC for PCI devices\n");
316 dmar_forcedac = 1;
5e0d2a6f 317 } else if (!strncmp(str, "strict", 6)) {
318 printk(KERN_INFO
319 "Intel-IOMMU: disable batched IOTLB flush\n");
320 intel_iommu_strict = 1;
ba395927
KA
321 }
322
323 str += strcspn(str, ",");
324 while (*str == ',')
325 str++;
326 }
327 return 0;
328}
329__setup("intel_iommu=", intel_iommu_setup);
330
331static struct kmem_cache *iommu_domain_cache;
332static struct kmem_cache *iommu_devinfo_cache;
333static struct kmem_cache *iommu_iova_cache;
334
eb3fa7cb
KA
335static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
336{
337 unsigned int flags;
338 void *vaddr;
339
340 /* trying to avoid low memory issues */
341 flags = current->flags & PF_MEMALLOC;
342 current->flags |= PF_MEMALLOC;
343 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
344 current->flags &= (~PF_MEMALLOC | flags);
345 return vaddr;
346}
347
348
ba395927
KA
349static inline void *alloc_pgtable_page(void)
350{
eb3fa7cb
KA
351 unsigned int flags;
352 void *vaddr;
353
354 /* trying to avoid low memory issues */
355 flags = current->flags & PF_MEMALLOC;
356 current->flags |= PF_MEMALLOC;
357 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
358 current->flags &= (~PF_MEMALLOC | flags);
359 return vaddr;
ba395927
KA
360}
361
362static inline void free_pgtable_page(void *vaddr)
363{
364 free_page((unsigned long)vaddr);
365}
366
367static inline void *alloc_domain_mem(void)
368{
eb3fa7cb 369 return iommu_kmem_cache_alloc(iommu_domain_cache);
ba395927
KA
370}
371
38717946 372static void free_domain_mem(void *vaddr)
ba395927
KA
373{
374 kmem_cache_free(iommu_domain_cache, vaddr);
375}
376
377static inline void * alloc_devinfo_mem(void)
378{
eb3fa7cb 379 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
ba395927
KA
380}
381
382static inline void free_devinfo_mem(void *vaddr)
383{
384 kmem_cache_free(iommu_devinfo_cache, vaddr);
385}
386
387struct iova *alloc_iova_mem(void)
388{
eb3fa7cb 389 return iommu_kmem_cache_alloc(iommu_iova_cache);
ba395927
KA
390}
391
392void free_iova_mem(struct iova *iova)
393{
394 kmem_cache_free(iommu_iova_cache, iova);
395}
396
1b573683
WH
397
398static inline int width_to_agaw(int width);
399
4ed0d3e6 400static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
1b573683
WH
401{
402 unsigned long sagaw;
403 int agaw = -1;
404
405 sagaw = cap_sagaw(iommu->cap);
4ed0d3e6 406 for (agaw = width_to_agaw(max_gaw);
1b573683
WH
407 agaw >= 0; agaw--) {
408 if (test_bit(agaw, &sagaw))
409 break;
410 }
411
412 return agaw;
413}
414
4ed0d3e6
FY
415/*
416 * Calculate max SAGAW for each iommu.
417 */
418int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
419{
420 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
421}
422
423/*
424 * calculate agaw for each iommu.
425 * "SAGAW" may be different across iommus, use a default agaw, and
426 * get a supported less agaw for iommus that don't support the default agaw.
427 */
428int iommu_calculate_agaw(struct intel_iommu *iommu)
429{
430 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
431}
432
8c11e798
WH
433/* in native case, each domain is related to only one iommu */
434static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
435{
436 int iommu_id;
437
1ce28feb
WH
438 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
439
8c11e798
WH
440 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
441 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
442 return NULL;
443
444 return g_iommus[iommu_id];
445}
446
8e604097
WH
447static void domain_update_iommu_coherency(struct dmar_domain *domain)
448{
449 int i;
450
451 domain->iommu_coherency = 1;
452
453 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
454 for (; i < g_num_of_iommus; ) {
455 if (!ecap_coherent(g_iommus[i]->ecap)) {
456 domain->iommu_coherency = 0;
457 break;
458 }
459 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
460 }
461}
462
58c610bd
SY
463static void domain_update_iommu_snooping(struct dmar_domain *domain)
464{
465 int i;
466
467 domain->iommu_snooping = 1;
468
469 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
470 for (; i < g_num_of_iommus; ) {
471 if (!ecap_sc_support(g_iommus[i]->ecap)) {
472 domain->iommu_snooping = 0;
473 break;
474 }
475 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
476 }
477}
478
479/* Some capabilities may be different across iommus */
480static void domain_update_iommu_cap(struct dmar_domain *domain)
481{
482 domain_update_iommu_coherency(domain);
483 domain_update_iommu_snooping(domain);
484}
485
276dbf99 486static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
c7151a8d
WH
487{
488 struct dmar_drhd_unit *drhd = NULL;
489 int i;
490
491 for_each_drhd_unit(drhd) {
492 if (drhd->ignored)
493 continue;
276dbf99
DW
494 if (segment != drhd->segment)
495 continue;
c7151a8d 496
924b6231 497 for (i = 0; i < drhd->devices_cnt; i++) {
288e4877
DH
498 if (drhd->devices[i] &&
499 drhd->devices[i]->bus->number == bus &&
c7151a8d
WH
500 drhd->devices[i]->devfn == devfn)
501 return drhd->iommu;
4958c5dc
DW
502 if (drhd->devices[i] &&
503 drhd->devices[i]->subordinate &&
924b6231
DW
504 drhd->devices[i]->subordinate->number <= bus &&
505 drhd->devices[i]->subordinate->subordinate >= bus)
506 return drhd->iommu;
507 }
c7151a8d
WH
508
509 if (drhd->include_all)
510 return drhd->iommu;
511 }
512
513 return NULL;
514}
515
5331fe6f
WH
516static void domain_flush_cache(struct dmar_domain *domain,
517 void *addr, int size)
518{
519 if (!domain->iommu_coherency)
520 clflush_cache_range(addr, size);
521}
522
ba395927
KA
523/* Gets context entry for a given bus and devfn */
524static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
525 u8 bus, u8 devfn)
526{
527 struct root_entry *root;
528 struct context_entry *context;
529 unsigned long phy_addr;
530 unsigned long flags;
531
532 spin_lock_irqsave(&iommu->lock, flags);
533 root = &iommu->root_entry[bus];
534 context = get_context_addr_from_root(root);
535 if (!context) {
536 context = (struct context_entry *)alloc_pgtable_page();
537 if (!context) {
538 spin_unlock_irqrestore(&iommu->lock, flags);
539 return NULL;
540 }
5b6985ce 541 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
ba395927
KA
542 phy_addr = virt_to_phys((void *)context);
543 set_root_value(root, phy_addr);
544 set_root_present(root);
545 __iommu_flush_cache(iommu, root, sizeof(*root));
546 }
547 spin_unlock_irqrestore(&iommu->lock, flags);
548 return &context[devfn];
549}
550
551static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
552{
553 struct root_entry *root;
554 struct context_entry *context;
555 int ret;
556 unsigned long flags;
557
558 spin_lock_irqsave(&iommu->lock, flags);
559 root = &iommu->root_entry[bus];
560 context = get_context_addr_from_root(root);
561 if (!context) {
562 ret = 0;
563 goto out;
564 }
c07e7d21 565 ret = context_present(&context[devfn]);
ba395927
KA
566out:
567 spin_unlock_irqrestore(&iommu->lock, flags);
568 return ret;
569}
570
571static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
572{
573 struct root_entry *root;
574 struct context_entry *context;
575 unsigned long flags;
576
577 spin_lock_irqsave(&iommu->lock, flags);
578 root = &iommu->root_entry[bus];
579 context = get_context_addr_from_root(root);
580 if (context) {
c07e7d21 581 context_clear_entry(&context[devfn]);
ba395927
KA
582 __iommu_flush_cache(iommu, &context[devfn], \
583 sizeof(*context));
584 }
585 spin_unlock_irqrestore(&iommu->lock, flags);
586}
587
588static void free_context_table(struct intel_iommu *iommu)
589{
590 struct root_entry *root;
591 int i;
592 unsigned long flags;
593 struct context_entry *context;
594
595 spin_lock_irqsave(&iommu->lock, flags);
596 if (!iommu->root_entry) {
597 goto out;
598 }
599 for (i = 0; i < ROOT_ENTRY_NR; i++) {
600 root = &iommu->root_entry[i];
601 context = get_context_addr_from_root(root);
602 if (context)
603 free_pgtable_page(context);
604 }
605 free_pgtable_page(iommu->root_entry);
606 iommu->root_entry = NULL;
607out:
608 spin_unlock_irqrestore(&iommu->lock, flags);
609}
610
611/* page table handling */
612#define LEVEL_STRIDE (9)
613#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
614
615static inline int agaw_to_level(int agaw)
616{
617 return agaw + 2;
618}
619
620static inline int agaw_to_width(int agaw)
621{
622 return 30 + agaw * LEVEL_STRIDE;
623
624}
625
626static inline int width_to_agaw(int width)
627{
628 return (width - 30) / LEVEL_STRIDE;
629}
630
631static inline unsigned int level_to_offset_bits(int level)
632{
633 return (12 + (level - 1) * LEVEL_STRIDE);
634}
635
636static inline int address_level_offset(u64 addr, int level)
637{
638 return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
639}
640
641static inline u64 level_mask(int level)
642{
643 return ((u64)-1 << level_to_offset_bits(level));
644}
645
646static inline u64 level_size(int level)
647{
648 return ((u64)1 << level_to_offset_bits(level));
649}
650
651static inline u64 align_to_level(u64 addr, int level)
652{
653 return ((addr + level_size(level) - 1) & level_mask(level));
654}
655
656static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
657{
658 int addr_width = agaw_to_width(domain->agaw);
659 struct dma_pte *parent, *pte = NULL;
660 int level = agaw_to_level(domain->agaw);
661 int offset;
662 unsigned long flags;
663
664 BUG_ON(!domain->pgd);
665
666 addr &= (((u64)1) << addr_width) - 1;
667 parent = domain->pgd;
668
669 spin_lock_irqsave(&domain->mapping_lock, flags);
670 while (level > 0) {
671 void *tmp_page;
672
673 offset = address_level_offset(addr, level);
674 pte = &parent[offset];
675 if (level == 1)
676 break;
677
19c239ce 678 if (!dma_pte_present(pte)) {
ba395927
KA
679 tmp_page = alloc_pgtable_page();
680
681 if (!tmp_page) {
682 spin_unlock_irqrestore(&domain->mapping_lock,
683 flags);
684 return NULL;
685 }
5331fe6f 686 domain_flush_cache(domain, tmp_page, PAGE_SIZE);
19c239ce 687 dma_set_pte_addr(pte, virt_to_phys(tmp_page));
ba395927
KA
688 /*
689 * high level table always sets r/w, last level page
690 * table control read/write
691 */
19c239ce
MM
692 dma_set_pte_readable(pte);
693 dma_set_pte_writable(pte);
5331fe6f 694 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927 695 }
19c239ce 696 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
697 level--;
698 }
699
700 spin_unlock_irqrestore(&domain->mapping_lock, flags);
701 return pte;
702}
703
704/* return address's pte at specific level */
705static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
706 int level)
707{
708 struct dma_pte *parent, *pte = NULL;
709 int total = agaw_to_level(domain->agaw);
710 int offset;
711
712 parent = domain->pgd;
713 while (level <= total) {
714 offset = address_level_offset(addr, total);
715 pte = &parent[offset];
716 if (level == total)
717 return pte;
718
19c239ce 719 if (!dma_pte_present(pte))
ba395927 720 break;
19c239ce 721 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
722 total--;
723 }
724 return NULL;
725}
726
727/* clear one page's page table */
728static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
729{
730 struct dma_pte *pte = NULL;
731
732 /* get last level pte */
733 pte = dma_addr_level_pte(domain, addr, 1);
734
735 if (pte) {
19c239ce 736 dma_clear_pte(pte);
5331fe6f 737 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927
KA
738 }
739}
740
741/* clear last level pte, a tlb flush should be followed */
742static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
743{
744 int addr_width = agaw_to_width(domain->agaw);
afeeb7ce 745 int npages;
ba395927
KA
746
747 start &= (((u64)1) << addr_width) - 1;
748 end &= (((u64)1) << addr_width) - 1;
749 /* in case it's partial page */
31d3568d
FY
750 start &= PAGE_MASK;
751 end = PAGE_ALIGN(end);
afeeb7ce 752 npages = (end - start) / VTD_PAGE_SIZE;
ba395927
KA
753
754 /* we don't need lock here, nobody else touches the iova range */
afeeb7ce 755 while (npages--) {
ba395927 756 dma_pte_clear_one(domain, start);
5b6985ce 757 start += VTD_PAGE_SIZE;
ba395927
KA
758 }
759}
760
761/* free page table pages. last level pte should already be cleared */
762static void dma_pte_free_pagetable(struct dmar_domain *domain,
763 u64 start, u64 end)
764{
765 int addr_width = agaw_to_width(domain->agaw);
766 struct dma_pte *pte;
767 int total = agaw_to_level(domain->agaw);
768 int level;
769 u64 tmp;
770
771 start &= (((u64)1) << addr_width) - 1;
772 end &= (((u64)1) << addr_width) - 1;
773
774 /* we don't need lock here, nobody else touches the iova range */
775 level = 2;
776 while (level <= total) {
777 tmp = align_to_level(start, level);
778 if (tmp >= end || (tmp + level_size(level) > end))
779 return;
780
781 while (tmp < end) {
782 pte = dma_addr_level_pte(domain, tmp, level);
783 if (pte) {
784 free_pgtable_page(
19c239ce
MM
785 phys_to_virt(dma_pte_addr(pte)));
786 dma_clear_pte(pte);
5331fe6f 787 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927
KA
788 }
789 tmp += level_size(level);
790 }
791 level++;
792 }
793 /* free pgd */
794 if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
795 free_pgtable_page(domain->pgd);
796 domain->pgd = NULL;
797 }
798}
799
800/* iommu handling */
801static int iommu_alloc_root_entry(struct intel_iommu *iommu)
802{
803 struct root_entry *root;
804 unsigned long flags;
805
806 root = (struct root_entry *)alloc_pgtable_page();
807 if (!root)
808 return -ENOMEM;
809
5b6985ce 810 __iommu_flush_cache(iommu, root, ROOT_SIZE);
ba395927
KA
811
812 spin_lock_irqsave(&iommu->lock, flags);
813 iommu->root_entry = root;
814 spin_unlock_irqrestore(&iommu->lock, flags);
815
816 return 0;
817}
818
ba395927
KA
819static void iommu_set_root_entry(struct intel_iommu *iommu)
820{
821 void *addr;
822 u32 cmd, sts;
823 unsigned long flag;
824
825 addr = iommu->root_entry;
826
827 spin_lock_irqsave(&iommu->register_lock, flag);
828 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
829
830 cmd = iommu->gcmd | DMA_GCMD_SRTP;
831 writel(cmd, iommu->reg + DMAR_GCMD_REG);
832
833 /* Make sure hardware complete it */
834 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
835 readl, (sts & DMA_GSTS_RTPS), sts);
836
837 spin_unlock_irqrestore(&iommu->register_lock, flag);
838}
839
840static void iommu_flush_write_buffer(struct intel_iommu *iommu)
841{
842 u32 val;
843 unsigned long flag;
844
9af88143 845 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
ba395927
KA
846 return;
847 val = iommu->gcmd | DMA_GCMD_WBF;
848
849 spin_lock_irqsave(&iommu->register_lock, flag);
850 writel(val, iommu->reg + DMAR_GCMD_REG);
851
852 /* Make sure hardware complete it */
853 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
854 readl, (!(val & DMA_GSTS_WBFS)), val);
855
856 spin_unlock_irqrestore(&iommu->register_lock, flag);
857}
858
859/* return value determine if we need a write buffer flush */
4c25a2c1
DW
860static void __iommu_flush_context(struct intel_iommu *iommu,
861 u16 did, u16 source_id, u8 function_mask,
862 u64 type)
ba395927
KA
863{
864 u64 val = 0;
865 unsigned long flag;
866
ba395927
KA
867 switch (type) {
868 case DMA_CCMD_GLOBAL_INVL:
869 val = DMA_CCMD_GLOBAL_INVL;
870 break;
871 case DMA_CCMD_DOMAIN_INVL:
872 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
873 break;
874 case DMA_CCMD_DEVICE_INVL:
875 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
876 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
877 break;
878 default:
879 BUG();
880 }
881 val |= DMA_CCMD_ICC;
882
883 spin_lock_irqsave(&iommu->register_lock, flag);
884 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
885
886 /* Make sure hardware complete it */
887 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
888 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
889
890 spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
891}
892
ba395927
KA
893/* return value determine if we need a write buffer flush */
894static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
895 u64 addr, unsigned int size_order, u64 type,
896 int non_present_entry_flush)
897{
898 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
899 u64 val = 0, val_iva = 0;
900 unsigned long flag;
901
902 /*
903 * In the non-present entry flush case, if hardware doesn't cache
904 * non-present entry we do nothing and if hardware cache non-present
905 * entry, we flush entries of domain 0 (the domain id is used to cache
906 * any non-present entries)
907 */
908 if (non_present_entry_flush) {
909 if (!cap_caching_mode(iommu->cap))
910 return 1;
911 else
912 did = 0;
913 }
914
915 switch (type) {
916 case DMA_TLB_GLOBAL_FLUSH:
917 /* global flush doesn't need set IVA_REG */
918 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
919 break;
920 case DMA_TLB_DSI_FLUSH:
921 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
922 break;
923 case DMA_TLB_PSI_FLUSH:
924 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
925 /* Note: always flush non-leaf currently */
926 val_iva = size_order | addr;
927 break;
928 default:
929 BUG();
930 }
931 /* Note: set drain read/write */
932#if 0
933 /*
934 * This is probably to be super secure.. Looks like we can
935 * ignore it without any impact.
936 */
937 if (cap_read_drain(iommu->cap))
938 val |= DMA_TLB_READ_DRAIN;
939#endif
940 if (cap_write_drain(iommu->cap))
941 val |= DMA_TLB_WRITE_DRAIN;
942
943 spin_lock_irqsave(&iommu->register_lock, flag);
944 /* Note: Only uses first TLB reg currently */
945 if (val_iva)
946 dmar_writeq(iommu->reg + tlb_offset, val_iva);
947 dmar_writeq(iommu->reg + tlb_offset + 8, val);
948
949 /* Make sure hardware complete it */
950 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
951 dmar_readq, (!(val & DMA_TLB_IVT)), val);
952
953 spin_unlock_irqrestore(&iommu->register_lock, flag);
954
955 /* check IOTLB invalidation granularity */
956 if (DMA_TLB_IAIG(val) == 0)
957 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
958 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
959 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
5b6985ce
FY
960 (unsigned long long)DMA_TLB_IIRG(type),
961 (unsigned long long)DMA_TLB_IAIG(val));
4d235ba6 962 /* flush iotlb entry will implicitly flush write buffer */
ba395927
KA
963 return 0;
964}
965
ba395927
KA
966static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
967 u64 addr, unsigned int pages, int non_present_entry_flush)
968{
f76aec76 969 unsigned int mask;
ba395927 970
5b6985ce 971 BUG_ON(addr & (~VTD_PAGE_MASK));
ba395927
KA
972 BUG_ON(pages == 0);
973
974 /* Fallback to domain selective flush if no PSI support */
975 if (!cap_pgsel_inv(iommu->cap))
a77b67d4
YS
976 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
977 DMA_TLB_DSI_FLUSH,
978 non_present_entry_flush);
ba395927
KA
979
980 /*
981 * PSI requires page size to be 2 ^ x, and the base address is naturally
982 * aligned to the size
983 */
f76aec76 984 mask = ilog2(__roundup_pow_of_two(pages));
ba395927 985 /* Fallback to domain selective flush if size is too big */
f76aec76 986 if (mask > cap_max_amask_val(iommu->cap))
a77b67d4
YS
987 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
988 DMA_TLB_DSI_FLUSH, non_present_entry_flush);
ba395927 989
a77b67d4
YS
990 return iommu->flush.flush_iotlb(iommu, did, addr, mask,
991 DMA_TLB_PSI_FLUSH,
992 non_present_entry_flush);
ba395927
KA
993}
994
f8bab735 995static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
996{
997 u32 pmen;
998 unsigned long flags;
999
1000 spin_lock_irqsave(&iommu->register_lock, flags);
1001 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1002 pmen &= ~DMA_PMEN_EPM;
1003 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1004
1005 /* wait for the protected region status bit to clear */
1006 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1007 readl, !(pmen & DMA_PMEN_PRS), pmen);
1008
1009 spin_unlock_irqrestore(&iommu->register_lock, flags);
1010}
1011
ba395927
KA
1012static int iommu_enable_translation(struct intel_iommu *iommu)
1013{
1014 u32 sts;
1015 unsigned long flags;
1016
1017 spin_lock_irqsave(&iommu->register_lock, flags);
1018 writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
1019
1020 /* Make sure hardware complete it */
1021 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1022 readl, (sts & DMA_GSTS_TES), sts);
1023
1024 iommu->gcmd |= DMA_GCMD_TE;
1025 spin_unlock_irqrestore(&iommu->register_lock, flags);
1026 return 0;
1027}
1028
1029static int iommu_disable_translation(struct intel_iommu *iommu)
1030{
1031 u32 sts;
1032 unsigned long flag;
1033
1034 spin_lock_irqsave(&iommu->register_lock, flag);
1035 iommu->gcmd &= ~DMA_GCMD_TE;
1036 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1037
1038 /* Make sure hardware complete it */
1039 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1040 readl, (!(sts & DMA_GSTS_TES)), sts);
1041
1042 spin_unlock_irqrestore(&iommu->register_lock, flag);
1043 return 0;
1044}
1045
3460a6d9 1046
ba395927
KA
1047static int iommu_init_domains(struct intel_iommu *iommu)
1048{
1049 unsigned long ndomains;
1050 unsigned long nlongs;
1051
1052 ndomains = cap_ndoms(iommu->cap);
1053 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1054 nlongs = BITS_TO_LONGS(ndomains);
1055
1056 /* TBD: there might be 64K domains,
1057 * consider other allocation for future chip
1058 */
1059 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1060 if (!iommu->domain_ids) {
1061 printk(KERN_ERR "Allocating domain id array failed\n");
1062 return -ENOMEM;
1063 }
1064 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1065 GFP_KERNEL);
1066 if (!iommu->domains) {
1067 printk(KERN_ERR "Allocating domain array failed\n");
1068 kfree(iommu->domain_ids);
1069 return -ENOMEM;
1070 }
1071
e61d98d8
SS
1072 spin_lock_init(&iommu->lock);
1073
ba395927
KA
1074 /*
1075 * if Caching mode is set, then invalid translations are tagged
1076 * with domainid 0. Hence we need to pre-allocate it.
1077 */
1078 if (cap_caching_mode(iommu->cap))
1079 set_bit(0, iommu->domain_ids);
1080 return 0;
1081}
ba395927 1082
ba395927
KA
1083
1084static void domain_exit(struct dmar_domain *domain);
5e98c4b1 1085static void vm_domain_exit(struct dmar_domain *domain);
e61d98d8
SS
1086
1087void free_dmar_iommu(struct intel_iommu *iommu)
ba395927
KA
1088{
1089 struct dmar_domain *domain;
1090 int i;
c7151a8d 1091 unsigned long flags;
ba395927 1092
ba395927
KA
1093 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1094 for (; i < cap_ndoms(iommu->cap); ) {
1095 domain = iommu->domains[i];
1096 clear_bit(i, iommu->domain_ids);
c7151a8d
WH
1097
1098 spin_lock_irqsave(&domain->iommu_lock, flags);
5e98c4b1
WH
1099 if (--domain->iommu_count == 0) {
1100 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1101 vm_domain_exit(domain);
1102 else
1103 domain_exit(domain);
1104 }
c7151a8d
WH
1105 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1106
ba395927
KA
1107 i = find_next_bit(iommu->domain_ids,
1108 cap_ndoms(iommu->cap), i+1);
1109 }
1110
1111 if (iommu->gcmd & DMA_GCMD_TE)
1112 iommu_disable_translation(iommu);
1113
1114 if (iommu->irq) {
1115 set_irq_data(iommu->irq, NULL);
1116 /* This will mask the irq */
1117 free_irq(iommu->irq, iommu);
1118 destroy_irq(iommu->irq);
1119 }
1120
1121 kfree(iommu->domains);
1122 kfree(iommu->domain_ids);
1123
d9630fe9
WH
1124 g_iommus[iommu->seq_id] = NULL;
1125
1126 /* if all iommus are freed, free g_iommus */
1127 for (i = 0; i < g_num_of_iommus; i++) {
1128 if (g_iommus[i])
1129 break;
1130 }
1131
1132 if (i == g_num_of_iommus)
1133 kfree(g_iommus);
1134
ba395927
KA
1135 /* free context mapping */
1136 free_context_table(iommu);
ba395927
KA
1137}
1138
1139static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
1140{
1141 unsigned long num;
1142 unsigned long ndomains;
1143 struct dmar_domain *domain;
1144 unsigned long flags;
1145
1146 domain = alloc_domain_mem();
1147 if (!domain)
1148 return NULL;
1149
1150 ndomains = cap_ndoms(iommu->cap);
1151
1152 spin_lock_irqsave(&iommu->lock, flags);
1153 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1154 if (num >= ndomains) {
1155 spin_unlock_irqrestore(&iommu->lock, flags);
1156 free_domain_mem(domain);
1157 printk(KERN_ERR "IOMMU: no free domain ids\n");
1158 return NULL;
1159 }
1160
1161 set_bit(num, iommu->domain_ids);
1162 domain->id = num;
8c11e798
WH
1163 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1164 set_bit(iommu->seq_id, &domain->iommu_bmp);
d71a2f33 1165 domain->flags = 0;
ba395927
KA
1166 iommu->domains[num] = domain;
1167 spin_unlock_irqrestore(&iommu->lock, flags);
1168
1169 return domain;
1170}
1171
1172static void iommu_free_domain(struct dmar_domain *domain)
1173{
1174 unsigned long flags;
8c11e798
WH
1175 struct intel_iommu *iommu;
1176
1177 iommu = domain_get_iommu(domain);
ba395927 1178
8c11e798
WH
1179 spin_lock_irqsave(&iommu->lock, flags);
1180 clear_bit(domain->id, iommu->domain_ids);
1181 spin_unlock_irqrestore(&iommu->lock, flags);
ba395927
KA
1182}
1183
1184static struct iova_domain reserved_iova_list;
8a443df4
MG
1185static struct lock_class_key reserved_alloc_key;
1186static struct lock_class_key reserved_rbtree_key;
ba395927
KA
1187
1188static void dmar_init_reserved_ranges(void)
1189{
1190 struct pci_dev *pdev = NULL;
1191 struct iova *iova;
1192 int i;
1193 u64 addr, size;
1194
f661197e 1195 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
ba395927 1196
8a443df4
MG
1197 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1198 &reserved_alloc_key);
1199 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1200 &reserved_rbtree_key);
1201
ba395927
KA
1202 /* IOAPIC ranges shouldn't be accessed by DMA */
1203 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1204 IOVA_PFN(IOAPIC_RANGE_END));
1205 if (!iova)
1206 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1207
1208 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1209 for_each_pci_dev(pdev) {
1210 struct resource *r;
1211
1212 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1213 r = &pdev->resource[i];
1214 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1215 continue;
1216 addr = r->start;
5b6985ce 1217 addr &= PAGE_MASK;
ba395927 1218 size = r->end - addr;
5b6985ce 1219 size = PAGE_ALIGN(size);
ba395927
KA
1220 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1221 IOVA_PFN(size + addr) - 1);
1222 if (!iova)
1223 printk(KERN_ERR "Reserve iova failed\n");
1224 }
1225 }
1226
1227}
1228
1229static void domain_reserve_special_ranges(struct dmar_domain *domain)
1230{
1231 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1232}
1233
1234static inline int guestwidth_to_adjustwidth(int gaw)
1235{
1236 int agaw;
1237 int r = (gaw - 12) % 9;
1238
1239 if (r == 0)
1240 agaw = gaw;
1241 else
1242 agaw = gaw + 9 - r;
1243 if (agaw > 64)
1244 agaw = 64;
1245 return agaw;
1246}
1247
1248static int domain_init(struct dmar_domain *domain, int guest_width)
1249{
1250 struct intel_iommu *iommu;
1251 int adjust_width, agaw;
1252 unsigned long sagaw;
1253
f661197e 1254 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
ba395927 1255 spin_lock_init(&domain->mapping_lock);
c7151a8d 1256 spin_lock_init(&domain->iommu_lock);
ba395927
KA
1257
1258 domain_reserve_special_ranges(domain);
1259
1260 /* calculate AGAW */
8c11e798 1261 iommu = domain_get_iommu(domain);
ba395927
KA
1262 if (guest_width > cap_mgaw(iommu->cap))
1263 guest_width = cap_mgaw(iommu->cap);
1264 domain->gaw = guest_width;
1265 adjust_width = guestwidth_to_adjustwidth(guest_width);
1266 agaw = width_to_agaw(adjust_width);
1267 sagaw = cap_sagaw(iommu->cap);
1268 if (!test_bit(agaw, &sagaw)) {
1269 /* hardware doesn't support it, choose a bigger one */
1270 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1271 agaw = find_next_bit(&sagaw, 5, agaw);
1272 if (agaw >= 5)
1273 return -ENODEV;
1274 }
1275 domain->agaw = agaw;
1276 INIT_LIST_HEAD(&domain->devices);
1277
8e604097
WH
1278 if (ecap_coherent(iommu->ecap))
1279 domain->iommu_coherency = 1;
1280 else
1281 domain->iommu_coherency = 0;
1282
58c610bd
SY
1283 if (ecap_sc_support(iommu->ecap))
1284 domain->iommu_snooping = 1;
1285 else
1286 domain->iommu_snooping = 0;
1287
c7151a8d
WH
1288 domain->iommu_count = 1;
1289
ba395927
KA
1290 /* always allocate the top pgd */
1291 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1292 if (!domain->pgd)
1293 return -ENOMEM;
5b6985ce 1294 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
ba395927
KA
1295 return 0;
1296}
1297
1298static void domain_exit(struct dmar_domain *domain)
1299{
1300 u64 end;
1301
1302 /* Domain 0 is reserved, so dont process it */
1303 if (!domain)
1304 return;
1305
1306 domain_remove_dev_info(domain);
1307 /* destroy iovas */
1308 put_iova_domain(&domain->iovad);
1309 end = DOMAIN_MAX_ADDR(domain->gaw);
5b6985ce 1310 end = end & (~PAGE_MASK);
ba395927
KA
1311
1312 /* clear ptes */
1313 dma_pte_clear_range(domain, 0, end);
1314
1315 /* free page tables */
1316 dma_pte_free_pagetable(domain, 0, end);
1317
1318 iommu_free_domain(domain);
1319 free_domain_mem(domain);
1320}
1321
4ed0d3e6
FY
1322static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1323 u8 bus, u8 devfn, int translation)
ba395927
KA
1324{
1325 struct context_entry *context;
ba395927 1326 unsigned long flags;
5331fe6f 1327 struct intel_iommu *iommu;
ea6606b0
WH
1328 struct dma_pte *pgd;
1329 unsigned long num;
1330 unsigned long ndomains;
1331 int id;
1332 int agaw;
ba395927
KA
1333
1334 pr_debug("Set context mapping for %02x:%02x.%d\n",
1335 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
4ed0d3e6 1336
ba395927 1337 BUG_ON(!domain->pgd);
4ed0d3e6
FY
1338 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1339 translation != CONTEXT_TT_MULTI_LEVEL);
5331fe6f 1340
276dbf99 1341 iommu = device_to_iommu(segment, bus, devfn);
5331fe6f
WH
1342 if (!iommu)
1343 return -ENODEV;
1344
ba395927
KA
1345 context = device_to_context_entry(iommu, bus, devfn);
1346 if (!context)
1347 return -ENOMEM;
1348 spin_lock_irqsave(&iommu->lock, flags);
c07e7d21 1349 if (context_present(context)) {
ba395927
KA
1350 spin_unlock_irqrestore(&iommu->lock, flags);
1351 return 0;
1352 }
1353
ea6606b0
WH
1354 id = domain->id;
1355 pgd = domain->pgd;
1356
1357 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
1358 int found = 0;
1359
1360 /* find an available domain id for this device in iommu */
1361 ndomains = cap_ndoms(iommu->cap);
1362 num = find_first_bit(iommu->domain_ids, ndomains);
1363 for (; num < ndomains; ) {
1364 if (iommu->domains[num] == domain) {
1365 id = num;
1366 found = 1;
1367 break;
1368 }
1369 num = find_next_bit(iommu->domain_ids,
1370 cap_ndoms(iommu->cap), num+1);
1371 }
1372
1373 if (found == 0) {
1374 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1375 if (num >= ndomains) {
1376 spin_unlock_irqrestore(&iommu->lock, flags);
1377 printk(KERN_ERR "IOMMU: no free domain ids\n");
1378 return -EFAULT;
1379 }
1380
1381 set_bit(num, iommu->domain_ids);
1382 iommu->domains[num] = domain;
1383 id = num;
1384 }
1385
1386 /* Skip top levels of page tables for
1387 * iommu which has less agaw than default.
1388 */
1389 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1390 pgd = phys_to_virt(dma_pte_addr(pgd));
1391 if (!dma_pte_present(pgd)) {
1392 spin_unlock_irqrestore(&iommu->lock, flags);
1393 return -ENOMEM;
1394 }
1395 }
1396 }
1397
1398 context_set_domain_id(context, id);
4ed0d3e6
FY
1399
1400 /*
1401 * In pass through mode, AW must be programmed to indicate the largest
1402 * AGAW value supported by hardware. And ASR is ignored by hardware.
1403 */
1404 if (likely(translation == CONTEXT_TT_MULTI_LEVEL)) {
1405 context_set_address_width(context, iommu->agaw);
1406 context_set_address_root(context, virt_to_phys(pgd));
1407 } else
1408 context_set_address_width(context, iommu->msagaw);
1409
1410 context_set_translation_type(context, translation);
c07e7d21
MM
1411 context_set_fault_enable(context);
1412 context_set_present(context);
5331fe6f 1413 domain_flush_cache(domain, context, sizeof(*context));
ba395927 1414
4c25a2c1
DW
1415 /*
1416 * It's a non-present to present mapping. If hardware doesn't cache
1417 * non-present entry we only need to flush the write-buffer. If the
1418 * _does_ cache non-present entries, then it does so in the special
1419 * domain #0, which we have to flush:
1420 */
1421 if (cap_caching_mode(iommu->cap)) {
1422 iommu->flush.flush_context(iommu, 0,
1423 (((u16)bus) << 8) | devfn,
1424 DMA_CCMD_MASK_NOBIT,
1425 DMA_CCMD_DEVICE_INVL);
a77b67d4 1426 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH, 0);
4c25a2c1
DW
1427 } else {
1428 iommu_flush_write_buffer(iommu);
1429 }
ba395927 1430 spin_unlock_irqrestore(&iommu->lock, flags);
c7151a8d
WH
1431
1432 spin_lock_irqsave(&domain->iommu_lock, flags);
1433 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1434 domain->iommu_count++;
58c610bd 1435 domain_update_iommu_cap(domain);
c7151a8d
WH
1436 }
1437 spin_unlock_irqrestore(&domain->iommu_lock, flags);
ba395927
KA
1438 return 0;
1439}
1440
1441static int
4ed0d3e6
FY
1442domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1443 int translation)
ba395927
KA
1444{
1445 int ret;
1446 struct pci_dev *tmp, *parent;
1447
276dbf99 1448 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
4ed0d3e6
FY
1449 pdev->bus->number, pdev->devfn,
1450 translation);
ba395927
KA
1451 if (ret)
1452 return ret;
1453
1454 /* dependent device mapping */
1455 tmp = pci_find_upstream_pcie_bridge(pdev);
1456 if (!tmp)
1457 return 0;
1458 /* Secondary interface's bus number and devfn 0 */
1459 parent = pdev->bus->self;
1460 while (parent != tmp) {
276dbf99
DW
1461 ret = domain_context_mapping_one(domain,
1462 pci_domain_nr(parent->bus),
1463 parent->bus->number,
4ed0d3e6 1464 parent->devfn, translation);
ba395927
KA
1465 if (ret)
1466 return ret;
1467 parent = parent->bus->self;
1468 }
1469 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1470 return domain_context_mapping_one(domain,
276dbf99 1471 pci_domain_nr(tmp->subordinate),
4ed0d3e6
FY
1472 tmp->subordinate->number, 0,
1473 translation);
ba395927
KA
1474 else /* this is a legacy PCI bridge */
1475 return domain_context_mapping_one(domain,
276dbf99
DW
1476 pci_domain_nr(tmp->bus),
1477 tmp->bus->number,
4ed0d3e6
FY
1478 tmp->devfn,
1479 translation);
ba395927
KA
1480}
1481
5331fe6f 1482static int domain_context_mapped(struct pci_dev *pdev)
ba395927
KA
1483{
1484 int ret;
1485 struct pci_dev *tmp, *parent;
5331fe6f
WH
1486 struct intel_iommu *iommu;
1487
276dbf99
DW
1488 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1489 pdev->devfn);
5331fe6f
WH
1490 if (!iommu)
1491 return -ENODEV;
ba395927 1492
276dbf99 1493 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
ba395927
KA
1494 if (!ret)
1495 return ret;
1496 /* dependent device mapping */
1497 tmp = pci_find_upstream_pcie_bridge(pdev);
1498 if (!tmp)
1499 return ret;
1500 /* Secondary interface's bus number and devfn 0 */
1501 parent = pdev->bus->self;
1502 while (parent != tmp) {
8c11e798 1503 ret = device_context_mapped(iommu, parent->bus->number,
276dbf99 1504 parent->devfn);
ba395927
KA
1505 if (!ret)
1506 return ret;
1507 parent = parent->bus->self;
1508 }
1509 if (tmp->is_pcie)
276dbf99
DW
1510 return device_context_mapped(iommu, tmp->subordinate->number,
1511 0);
ba395927 1512 else
276dbf99
DW
1513 return device_context_mapped(iommu, tmp->bus->number,
1514 tmp->devfn);
ba395927
KA
1515}
1516
1517static int
1518domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1519 u64 hpa, size_t size, int prot)
1520{
1521 u64 start_pfn, end_pfn;
1522 struct dma_pte *pte;
1523 int index;
5b6985ce
FY
1524 int addr_width = agaw_to_width(domain->agaw);
1525
1526 hpa &= (((u64)1) << addr_width) - 1;
ba395927
KA
1527
1528 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1529 return -EINVAL;
5b6985ce
FY
1530 iova &= PAGE_MASK;
1531 start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1532 end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
ba395927
KA
1533 index = 0;
1534 while (start_pfn < end_pfn) {
5b6985ce 1535 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
ba395927
KA
1536 if (!pte)
1537 return -ENOMEM;
1538 /* We don't need lock here, nobody else
1539 * touches the iova range
1540 */
19c239ce
MM
1541 BUG_ON(dma_pte_addr(pte));
1542 dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT);
1543 dma_set_pte_prot(pte, prot);
9cf06697
SY
1544 if (prot & DMA_PTE_SNP)
1545 dma_set_pte_snp(pte);
5331fe6f 1546 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927
KA
1547 start_pfn++;
1548 index++;
1549 }
1550 return 0;
1551}
1552
c7151a8d 1553static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
ba395927 1554{
c7151a8d
WH
1555 if (!iommu)
1556 return;
8c11e798
WH
1557
1558 clear_context_table(iommu, bus, devfn);
1559 iommu->flush.flush_context(iommu, 0, 0, 0,
4c25a2c1 1560 DMA_CCMD_GLOBAL_INVL);
8c11e798 1561 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
a77b67d4 1562 DMA_TLB_GLOBAL_FLUSH, 0);
ba395927
KA
1563}
1564
1565static void domain_remove_dev_info(struct dmar_domain *domain)
1566{
1567 struct device_domain_info *info;
1568 unsigned long flags;
c7151a8d 1569 struct intel_iommu *iommu;
ba395927
KA
1570
1571 spin_lock_irqsave(&device_domain_lock, flags);
1572 while (!list_empty(&domain->devices)) {
1573 info = list_entry(domain->devices.next,
1574 struct device_domain_info, link);
1575 list_del(&info->link);
1576 list_del(&info->global);
1577 if (info->dev)
358dd8ac 1578 info->dev->dev.archdata.iommu = NULL;
ba395927
KA
1579 spin_unlock_irqrestore(&device_domain_lock, flags);
1580
276dbf99 1581 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
c7151a8d 1582 iommu_detach_dev(iommu, info->bus, info->devfn);
ba395927
KA
1583 free_devinfo_mem(info);
1584
1585 spin_lock_irqsave(&device_domain_lock, flags);
1586 }
1587 spin_unlock_irqrestore(&device_domain_lock, flags);
1588}
1589
1590/*
1591 * find_domain
358dd8ac 1592 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
ba395927 1593 */
38717946 1594static struct dmar_domain *
ba395927
KA
1595find_domain(struct pci_dev *pdev)
1596{
1597 struct device_domain_info *info;
1598
1599 /* No lock here, assumes no domain exit in normal case */
358dd8ac 1600 info = pdev->dev.archdata.iommu;
ba395927
KA
1601 if (info)
1602 return info->domain;
1603 return NULL;
1604}
1605
ba395927
KA
1606/* domain is initialized */
1607static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1608{
1609 struct dmar_domain *domain, *found = NULL;
1610 struct intel_iommu *iommu;
1611 struct dmar_drhd_unit *drhd;
1612 struct device_domain_info *info, *tmp;
1613 struct pci_dev *dev_tmp;
1614 unsigned long flags;
1615 int bus = 0, devfn = 0;
276dbf99 1616 int segment;
ba395927
KA
1617
1618 domain = find_domain(pdev);
1619 if (domain)
1620 return domain;
1621
276dbf99
DW
1622 segment = pci_domain_nr(pdev->bus);
1623
ba395927
KA
1624 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1625 if (dev_tmp) {
1626 if (dev_tmp->is_pcie) {
1627 bus = dev_tmp->subordinate->number;
1628 devfn = 0;
1629 } else {
1630 bus = dev_tmp->bus->number;
1631 devfn = dev_tmp->devfn;
1632 }
1633 spin_lock_irqsave(&device_domain_lock, flags);
1634 list_for_each_entry(info, &device_domain_list, global) {
276dbf99
DW
1635 if (info->segment == segment &&
1636 info->bus == bus && info->devfn == devfn) {
ba395927
KA
1637 found = info->domain;
1638 break;
1639 }
1640 }
1641 spin_unlock_irqrestore(&device_domain_lock, flags);
1642 /* pcie-pci bridge already has a domain, uses it */
1643 if (found) {
1644 domain = found;
1645 goto found_domain;
1646 }
1647 }
1648
1649 /* Allocate new domain for the device */
1650 drhd = dmar_find_matched_drhd_unit(pdev);
1651 if (!drhd) {
1652 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1653 pci_name(pdev));
1654 return NULL;
1655 }
1656 iommu = drhd->iommu;
1657
1658 domain = iommu_alloc_domain(iommu);
1659 if (!domain)
1660 goto error;
1661
1662 if (domain_init(domain, gaw)) {
1663 domain_exit(domain);
1664 goto error;
1665 }
1666
1667 /* register pcie-to-pci device */
1668 if (dev_tmp) {
1669 info = alloc_devinfo_mem();
1670 if (!info) {
1671 domain_exit(domain);
1672 goto error;
1673 }
276dbf99 1674 info->segment = segment;
ba395927
KA
1675 info->bus = bus;
1676 info->devfn = devfn;
1677 info->dev = NULL;
1678 info->domain = domain;
1679 /* This domain is shared by devices under p2p bridge */
3b5410e7 1680 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
ba395927
KA
1681
1682 /* pcie-to-pci bridge already has a domain, uses it */
1683 found = NULL;
1684 spin_lock_irqsave(&device_domain_lock, flags);
1685 list_for_each_entry(tmp, &device_domain_list, global) {
276dbf99
DW
1686 if (tmp->segment == segment &&
1687 tmp->bus == bus && tmp->devfn == devfn) {
ba395927
KA
1688 found = tmp->domain;
1689 break;
1690 }
1691 }
1692 if (found) {
1693 free_devinfo_mem(info);
1694 domain_exit(domain);
1695 domain = found;
1696 } else {
1697 list_add(&info->link, &domain->devices);
1698 list_add(&info->global, &device_domain_list);
1699 }
1700 spin_unlock_irqrestore(&device_domain_lock, flags);
1701 }
1702
1703found_domain:
1704 info = alloc_devinfo_mem();
1705 if (!info)
1706 goto error;
276dbf99 1707 info->segment = segment;
ba395927
KA
1708 info->bus = pdev->bus->number;
1709 info->devfn = pdev->devfn;
1710 info->dev = pdev;
1711 info->domain = domain;
1712 spin_lock_irqsave(&device_domain_lock, flags);
1713 /* somebody is fast */
1714 found = find_domain(pdev);
1715 if (found != NULL) {
1716 spin_unlock_irqrestore(&device_domain_lock, flags);
1717 if (found != domain) {
1718 domain_exit(domain);
1719 domain = found;
1720 }
1721 free_devinfo_mem(info);
1722 return domain;
1723 }
1724 list_add(&info->link, &domain->devices);
1725 list_add(&info->global, &device_domain_list);
358dd8ac 1726 pdev->dev.archdata.iommu = info;
ba395927
KA
1727 spin_unlock_irqrestore(&device_domain_lock, flags);
1728 return domain;
1729error:
1730 /* recheck it here, maybe others set it */
1731 return find_domain(pdev);
1732}
1733
5b6985ce
FY
1734static int iommu_prepare_identity_map(struct pci_dev *pdev,
1735 unsigned long long start,
1736 unsigned long long end)
ba395927
KA
1737{
1738 struct dmar_domain *domain;
1739 unsigned long size;
5b6985ce 1740 unsigned long long base;
ba395927
KA
1741 int ret;
1742
1743 printk(KERN_INFO
1744 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1745 pci_name(pdev), start, end);
1746 /* page table init */
1747 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1748 if (!domain)
1749 return -ENOMEM;
1750
1751 /* The address might not be aligned */
5b6985ce 1752 base = start & PAGE_MASK;
ba395927 1753 size = end - base;
5b6985ce 1754 size = PAGE_ALIGN(size);
ba395927
KA
1755 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1756 IOVA_PFN(base + size) - 1)) {
1757 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1758 ret = -ENOMEM;
1759 goto error;
1760 }
1761
1762 pr_debug("Mapping reserved region %lx@%llx for %s\n",
1763 size, base, pci_name(pdev));
1764 /*
1765 * RMRR range might have overlap with physical memory range,
1766 * clear it first
1767 */
1768 dma_pte_clear_range(domain, base, base + size);
1769
1770 ret = domain_page_mapping(domain, base, base, size,
1771 DMA_PTE_READ|DMA_PTE_WRITE);
1772 if (ret)
1773 goto error;
1774
1775 /* context entry init */
4ed0d3e6 1776 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
ba395927
KA
1777 if (!ret)
1778 return 0;
1779error:
1780 domain_exit(domain);
1781 return ret;
1782
1783}
1784
1785static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1786 struct pci_dev *pdev)
1787{
358dd8ac 1788 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927
KA
1789 return 0;
1790 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1791 rmrr->end_address + 1);
1792}
1793
e820482c 1794#ifdef CONFIG_DMAR_GFX_WA
d52d53b8
YL
1795struct iommu_prepare_data {
1796 struct pci_dev *pdev;
1797 int ret;
1798};
1799
1800static int __init iommu_prepare_work_fn(unsigned long start_pfn,
1801 unsigned long end_pfn, void *datax)
1802{
1803 struct iommu_prepare_data *data;
1804
1805 data = (struct iommu_prepare_data *)datax;
1806
1807 data->ret = iommu_prepare_identity_map(data->pdev,
1808 start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
1809 return data->ret;
1810
1811}
1812
1813static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
1814{
1815 int nid;
1816 struct iommu_prepare_data data;
1817
1818 data.pdev = pdev;
1819 data.ret = 0;
1820
1821 for_each_online_node(nid) {
1822 work_with_active_regions(nid, iommu_prepare_work_fn, &data);
1823 if (data.ret)
1824 return data.ret;
1825 }
1826 return data.ret;
1827}
1828
e820482c
KA
1829static void __init iommu_prepare_gfx_mapping(void)
1830{
1831 struct pci_dev *pdev = NULL;
e820482c
KA
1832 int ret;
1833
1834 for_each_pci_dev(pdev) {
358dd8ac 1835 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
e820482c
KA
1836 !IS_GFX_DEVICE(pdev))
1837 continue;
1838 printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1839 pci_name(pdev));
d52d53b8
YL
1840 ret = iommu_prepare_with_active_regions(pdev);
1841 if (ret)
1842 printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
e820482c
KA
1843 }
1844}
2abd7e16
MM
1845#else /* !CONFIG_DMAR_GFX_WA */
1846static inline void iommu_prepare_gfx_mapping(void)
1847{
1848 return;
1849}
e820482c
KA
1850#endif
1851
49a0429e
KA
1852#ifdef CONFIG_DMAR_FLOPPY_WA
1853static inline void iommu_prepare_isa(void)
1854{
1855 struct pci_dev *pdev;
1856 int ret;
1857
1858 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1859 if (!pdev)
1860 return;
1861
1862 printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1863 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1864
1865 if (ret)
1c35b8e5 1866 printk(KERN_ERR "IOMMU: Failed to create 0-64M identity map, "
49a0429e
KA
1867 "floppy might not work\n");
1868
1869}
1870#else
1871static inline void iommu_prepare_isa(void)
1872{
1873 return;
1874}
1875#endif /* !CONFIG_DMAR_FLPY_WA */
1876
4ed0d3e6
FY
1877/* Initialize each context entry as pass through.*/
1878static int __init init_context_pass_through(void)
1879{
1880 struct pci_dev *pdev = NULL;
1881 struct dmar_domain *domain;
1882 int ret;
1883
1884 for_each_pci_dev(pdev) {
1885 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1886 ret = domain_context_mapping(domain, pdev,
1887 CONTEXT_TT_PASS_THROUGH);
1888 if (ret)
1889 return ret;
1890 }
1891 return 0;
1892}
1893
519a0549 1894static int __init init_dmars(void)
ba395927
KA
1895{
1896 struct dmar_drhd_unit *drhd;
1897 struct dmar_rmrr_unit *rmrr;
1898 struct pci_dev *pdev;
1899 struct intel_iommu *iommu;
9d783ba0 1900 int i, ret;
4ed0d3e6 1901 int pass_through = 1;
ba395927
KA
1902
1903 /*
1904 * for each drhd
1905 * allocate root
1906 * initialize and program root entry to not present
1907 * endfor
1908 */
1909 for_each_drhd_unit(drhd) {
5e0d2a6f 1910 g_num_of_iommus++;
1911 /*
1912 * lock not needed as this is only incremented in the single
1913 * threaded kernel __init code path all other access are read
1914 * only
1915 */
1916 }
1917
d9630fe9
WH
1918 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
1919 GFP_KERNEL);
1920 if (!g_iommus) {
1921 printk(KERN_ERR "Allocating global iommu array failed\n");
1922 ret = -ENOMEM;
1923 goto error;
1924 }
1925
80b20dd8 1926 deferred_flush = kzalloc(g_num_of_iommus *
1927 sizeof(struct deferred_flush_tables), GFP_KERNEL);
1928 if (!deferred_flush) {
d9630fe9 1929 kfree(g_iommus);
5e0d2a6f 1930 ret = -ENOMEM;
1931 goto error;
1932 }
1933
5e0d2a6f 1934 for_each_drhd_unit(drhd) {
1935 if (drhd->ignored)
1936 continue;
1886e8a9
SS
1937
1938 iommu = drhd->iommu;
d9630fe9 1939 g_iommus[iommu->seq_id] = iommu;
ba395927 1940
e61d98d8
SS
1941 ret = iommu_init_domains(iommu);
1942 if (ret)
1943 goto error;
1944
ba395927
KA
1945 /*
1946 * TBD:
1947 * we could share the same root & context tables
1948 * amoung all IOMMU's. Need to Split it later.
1949 */
1950 ret = iommu_alloc_root_entry(iommu);
1951 if (ret) {
1952 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
1953 goto error;
1954 }
4ed0d3e6
FY
1955 if (!ecap_pass_through(iommu->ecap))
1956 pass_through = 0;
ba395927 1957 }
4ed0d3e6
FY
1958 if (iommu_pass_through)
1959 if (!pass_through) {
1960 printk(KERN_INFO
1961 "Pass Through is not supported by hardware.\n");
1962 iommu_pass_through = 0;
1963 }
ba395927 1964
1531a6a6
SS
1965 /*
1966 * Start from the sane iommu hardware state.
1967 */
a77b67d4
YS
1968 for_each_drhd_unit(drhd) {
1969 if (drhd->ignored)
1970 continue;
1971
1972 iommu = drhd->iommu;
1531a6a6
SS
1973
1974 /*
1975 * If the queued invalidation is already initialized by us
1976 * (for example, while enabling interrupt-remapping) then
1977 * we got the things already rolling from a sane state.
1978 */
1979 if (iommu->qi)
1980 continue;
1981
1982 /*
1983 * Clear any previous faults.
1984 */
1985 dmar_fault(-1, iommu);
1986 /*
1987 * Disable queued invalidation if supported and already enabled
1988 * before OS handover.
1989 */
1990 dmar_disable_qi(iommu);
1991 }
1992
1993 for_each_drhd_unit(drhd) {
1994 if (drhd->ignored)
1995 continue;
1996
1997 iommu = drhd->iommu;
1998
a77b67d4
YS
1999 if (dmar_enable_qi(iommu)) {
2000 /*
2001 * Queued Invalidate not enabled, use Register Based
2002 * Invalidate
2003 */
2004 iommu->flush.flush_context = __iommu_flush_context;
2005 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2006 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
b4e0f9eb
FT
2007 "invalidation\n",
2008 (unsigned long long)drhd->reg_base_addr);
a77b67d4
YS
2009 } else {
2010 iommu->flush.flush_context = qi_flush_context;
2011 iommu->flush.flush_iotlb = qi_flush_iotlb;
2012 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
b4e0f9eb
FT
2013 "invalidation\n",
2014 (unsigned long long)drhd->reg_base_addr);
a77b67d4
YS
2015 }
2016 }
2017
d0b03bd1
HW
2018#ifdef CONFIG_INTR_REMAP
2019 if (!intr_remapping_enabled) {
2020 ret = enable_intr_remapping(0);
2021 if (ret)
2022 printk(KERN_ERR
2023 "IOMMU: enable interrupt remapping failed\n");
2024 }
2025#endif
4ed0d3e6
FY
2026 /*
2027 * If pass through is set and enabled, context entries of all pci
2028 * devices are intialized by pass through translation type.
2029 */
2030 if (iommu_pass_through) {
2031 ret = init_context_pass_through();
2032 if (ret) {
2033 printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2034 iommu_pass_through = 0;
2035 }
2036 }
d0b03bd1 2037
ba395927 2038 /*
4ed0d3e6
FY
2039 * If pass through is not set or not enabled, setup context entries for
2040 * identity mappings for rmrr, gfx, and isa.
ba395927 2041 */
4ed0d3e6
FY
2042 if (!iommu_pass_through) {
2043 /*
2044 * For each rmrr
2045 * for each dev attached to rmrr
2046 * do
2047 * locate drhd for dev, alloc domain for dev
2048 * allocate free domain
2049 * allocate page table entries for rmrr
2050 * if context not allocated for bus
2051 * allocate and init context
2052 * set present in root table for this bus
2053 * init context with domain, translation etc
2054 * endfor
2055 * endfor
2056 */
2057 for_each_rmrr_units(rmrr) {
2058 for (i = 0; i < rmrr->devices_cnt; i++) {
2059 pdev = rmrr->devices[i];
2060 /*
2061 * some BIOS lists non-exist devices in DMAR
2062 * table.
2063 */
2064 if (!pdev)
2065 continue;
2066 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2067 if (ret)
2068 printk(KERN_ERR
ba395927 2069 "IOMMU: mapping reserved region failed\n");
4ed0d3e6 2070 }
ba395927 2071 }
ba395927 2072
4ed0d3e6 2073 iommu_prepare_gfx_mapping();
e820482c 2074
4ed0d3e6
FY
2075 iommu_prepare_isa();
2076 }
49a0429e 2077
ba395927
KA
2078 /*
2079 * for each drhd
2080 * enable fault log
2081 * global invalidate context cache
2082 * global invalidate iotlb
2083 * enable translation
2084 */
2085 for_each_drhd_unit(drhd) {
2086 if (drhd->ignored)
2087 continue;
2088 iommu = drhd->iommu;
ba395927
KA
2089
2090 iommu_flush_write_buffer(iommu);
2091
3460a6d9
KA
2092 ret = dmar_set_interrupt(iommu);
2093 if (ret)
2094 goto error;
2095
ba395927
KA
2096 iommu_set_root_entry(iommu);
2097
4c25a2c1 2098 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
a77b67d4
YS
2099 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
2100 0);
f8bab735 2101 iommu_disable_protect_mem_regions(iommu);
2102
ba395927
KA
2103 ret = iommu_enable_translation(iommu);
2104 if (ret)
2105 goto error;
2106 }
2107
2108 return 0;
2109error:
2110 for_each_drhd_unit(drhd) {
2111 if (drhd->ignored)
2112 continue;
2113 iommu = drhd->iommu;
2114 free_iommu(iommu);
2115 }
d9630fe9 2116 kfree(g_iommus);
ba395927
KA
2117 return ret;
2118}
2119
2120static inline u64 aligned_size(u64 host_addr, size_t size)
2121{
2122 u64 addr;
5b6985ce
FY
2123 addr = (host_addr & (~PAGE_MASK)) + size;
2124 return PAGE_ALIGN(addr);
ba395927
KA
2125}
2126
2127struct iova *
f76aec76 2128iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
ba395927 2129{
ba395927
KA
2130 struct iova *piova;
2131
2132 /* Make sure it's in range */
ba395927 2133 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
f76aec76 2134 if (!size || (IOVA_START_ADDR + size > end))
ba395927
KA
2135 return NULL;
2136
2137 piova = alloc_iova(&domain->iovad,
5b6985ce 2138 size >> PAGE_SHIFT, IOVA_PFN(end), 1);
ba395927
KA
2139 return piova;
2140}
2141
f76aec76
KA
2142static struct iova *
2143__intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
bb9e6d65 2144 size_t size, u64 dma_mask)
ba395927 2145{
ba395927 2146 struct pci_dev *pdev = to_pci_dev(dev);
ba395927 2147 struct iova *iova = NULL;
ba395927 2148
284901a9 2149 if (dma_mask <= DMA_BIT_MASK(32) || dmar_forcedac)
bb9e6d65
FT
2150 iova = iommu_alloc_iova(domain, size, dma_mask);
2151 else {
ba395927
KA
2152 /*
2153 * First try to allocate an io virtual address in
284901a9 2154 * DMA_BIT_MASK(32) and if that fails then try allocating
3609801e 2155 * from higher range
ba395927 2156 */
284901a9 2157 iova = iommu_alloc_iova(domain, size, DMA_BIT_MASK(32));
ba395927 2158 if (!iova)
bb9e6d65 2159 iova = iommu_alloc_iova(domain, size, dma_mask);
ba395927
KA
2160 }
2161
2162 if (!iova) {
2163 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
f76aec76
KA
2164 return NULL;
2165 }
2166
2167 return iova;
2168}
2169
2170static struct dmar_domain *
2171get_valid_domain_for_dev(struct pci_dev *pdev)
2172{
2173 struct dmar_domain *domain;
2174 int ret;
2175
2176 domain = get_domain_for_dev(pdev,
2177 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2178 if (!domain) {
2179 printk(KERN_ERR
2180 "Allocating domain for %s failed", pci_name(pdev));
4fe05bbc 2181 return NULL;
ba395927
KA
2182 }
2183
2184 /* make sure context mapping is ok */
5331fe6f 2185 if (unlikely(!domain_context_mapped(pdev))) {
4ed0d3e6
FY
2186 ret = domain_context_mapping(domain, pdev,
2187 CONTEXT_TT_MULTI_LEVEL);
f76aec76
KA
2188 if (ret) {
2189 printk(KERN_ERR
2190 "Domain context map for %s failed",
2191 pci_name(pdev));
4fe05bbc 2192 return NULL;
f76aec76 2193 }
ba395927
KA
2194 }
2195
f76aec76
KA
2196 return domain;
2197}
2198
bb9e6d65
FT
2199static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2200 size_t size, int dir, u64 dma_mask)
f76aec76
KA
2201{
2202 struct pci_dev *pdev = to_pci_dev(hwdev);
f76aec76 2203 struct dmar_domain *domain;
5b6985ce 2204 phys_addr_t start_paddr;
f76aec76
KA
2205 struct iova *iova;
2206 int prot = 0;
6865f0d1 2207 int ret;
8c11e798 2208 struct intel_iommu *iommu;
f76aec76
KA
2209
2210 BUG_ON(dir == DMA_NONE);
358dd8ac 2211 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
6865f0d1 2212 return paddr;
f76aec76
KA
2213
2214 domain = get_valid_domain_for_dev(pdev);
2215 if (!domain)
2216 return 0;
2217
8c11e798 2218 iommu = domain_get_iommu(domain);
6865f0d1 2219 size = aligned_size((u64)paddr, size);
f76aec76 2220
bb9e6d65 2221 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
f76aec76
KA
2222 if (!iova)
2223 goto error;
2224
5b6985ce 2225 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
f76aec76 2226
ba395927
KA
2227 /*
2228 * Check if DMAR supports zero-length reads on write only
2229 * mappings..
2230 */
2231 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 2232 !cap_zlr(iommu->cap))
ba395927
KA
2233 prot |= DMA_PTE_READ;
2234 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2235 prot |= DMA_PTE_WRITE;
2236 /*
6865f0d1 2237 * paddr - (paddr + size) might be partial page, we should map the whole
ba395927 2238 * page. Note: if two part of one page are separately mapped, we
6865f0d1 2239 * might have two guest_addr mapping to the same host paddr, but this
ba395927
KA
2240 * is not a big problem
2241 */
6865f0d1 2242 ret = domain_page_mapping(domain, start_paddr,
5b6985ce 2243 ((u64)paddr) & PAGE_MASK, size, prot);
ba395927
KA
2244 if (ret)
2245 goto error;
2246
f76aec76 2247 /* it's a non-present to present mapping */
8c11e798 2248 ret = iommu_flush_iotlb_psi(iommu, domain->id,
5b6985ce 2249 start_paddr, size >> VTD_PAGE_SHIFT, 1);
f76aec76 2250 if (ret)
8c11e798 2251 iommu_flush_write_buffer(iommu);
f76aec76 2252
5b6985ce 2253 return start_paddr + ((u64)paddr & (~PAGE_MASK));
ba395927 2254
ba395927 2255error:
f76aec76
KA
2256 if (iova)
2257 __free_iova(&domain->iovad, iova);
4cf2e75d 2258 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
5b6985ce 2259 pci_name(pdev), size, (unsigned long long)paddr, dir);
ba395927
KA
2260 return 0;
2261}
2262
ffbbef5c
FT
2263static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2264 unsigned long offset, size_t size,
2265 enum dma_data_direction dir,
2266 struct dma_attrs *attrs)
bb9e6d65 2267{
ffbbef5c
FT
2268 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2269 dir, to_pci_dev(dev)->dma_mask);
bb9e6d65
FT
2270}
2271
5e0d2a6f 2272static void flush_unmaps(void)
2273{
80b20dd8 2274 int i, j;
5e0d2a6f 2275
5e0d2a6f 2276 timer_on = 0;
2277
2278 /* just flush them all */
2279 for (i = 0; i < g_num_of_iommus; i++) {
a2bb8459
WH
2280 struct intel_iommu *iommu = g_iommus[i];
2281 if (!iommu)
2282 continue;
c42d9f32 2283
a2bb8459 2284 if (deferred_flush[i].next) {
a77b67d4
YS
2285 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2286 DMA_TLB_GLOBAL_FLUSH, 0);
80b20dd8 2287 for (j = 0; j < deferred_flush[i].next; j++) {
2288 __free_iova(&deferred_flush[i].domain[j]->iovad,
2289 deferred_flush[i].iova[j]);
2290 }
2291 deferred_flush[i].next = 0;
2292 }
5e0d2a6f 2293 }
2294
5e0d2a6f 2295 list_size = 0;
5e0d2a6f 2296}
2297
2298static void flush_unmaps_timeout(unsigned long data)
2299{
80b20dd8 2300 unsigned long flags;
2301
2302 spin_lock_irqsave(&async_umap_flush_lock, flags);
5e0d2a6f 2303 flush_unmaps();
80b20dd8 2304 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
5e0d2a6f 2305}
2306
2307static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2308{
2309 unsigned long flags;
80b20dd8 2310 int next, iommu_id;
8c11e798 2311 struct intel_iommu *iommu;
5e0d2a6f 2312
2313 spin_lock_irqsave(&async_umap_flush_lock, flags);
80b20dd8 2314 if (list_size == HIGH_WATER_MARK)
2315 flush_unmaps();
2316
8c11e798
WH
2317 iommu = domain_get_iommu(dom);
2318 iommu_id = iommu->seq_id;
c42d9f32 2319
80b20dd8 2320 next = deferred_flush[iommu_id].next;
2321 deferred_flush[iommu_id].domain[next] = dom;
2322 deferred_flush[iommu_id].iova[next] = iova;
2323 deferred_flush[iommu_id].next++;
5e0d2a6f 2324
2325 if (!timer_on) {
2326 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2327 timer_on = 1;
2328 }
2329 list_size++;
2330 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2331}
2332
ffbbef5c
FT
2333static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2334 size_t size, enum dma_data_direction dir,
2335 struct dma_attrs *attrs)
ba395927 2336{
ba395927 2337 struct pci_dev *pdev = to_pci_dev(dev);
f76aec76
KA
2338 struct dmar_domain *domain;
2339 unsigned long start_addr;
ba395927 2340 struct iova *iova;
8c11e798 2341 struct intel_iommu *iommu;
ba395927 2342
358dd8ac 2343 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
f76aec76 2344 return;
ba395927
KA
2345 domain = find_domain(pdev);
2346 BUG_ON(!domain);
2347
8c11e798
WH
2348 iommu = domain_get_iommu(domain);
2349
ba395927 2350 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
f76aec76 2351 if (!iova)
ba395927 2352 return;
ba395927 2353
5b6985ce 2354 start_addr = iova->pfn_lo << PAGE_SHIFT;
f76aec76 2355 size = aligned_size((u64)dev_addr, size);
ba395927 2356
4cf2e75d 2357 pr_debug("Device %s unmapping: %zx@%llx\n",
5b6985ce 2358 pci_name(pdev), size, (unsigned long long)start_addr);
ba395927 2359
f76aec76
KA
2360 /* clear the whole page */
2361 dma_pte_clear_range(domain, start_addr, start_addr + size);
2362 /* free page tables */
2363 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
5e0d2a6f 2364 if (intel_iommu_strict) {
8c11e798 2365 if (iommu_flush_iotlb_psi(iommu,
5b6985ce 2366 domain->id, start_addr, size >> VTD_PAGE_SHIFT, 0))
8c11e798 2367 iommu_flush_write_buffer(iommu);
5e0d2a6f 2368 /* free iova */
2369 __free_iova(&domain->iovad, iova);
2370 } else {
2371 add_unmap(domain, iova);
2372 /*
2373 * queue up the release of the unmap to save the 1/6th of the
2374 * cpu used up by the iotlb flush operation...
2375 */
5e0d2a6f 2376 }
ba395927
KA
2377}
2378
d7ab5c46
FT
2379static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2380 int dir)
ffbbef5c
FT
2381{
2382 intel_unmap_page(dev, dev_addr, size, dir, NULL);
2383}
2384
d7ab5c46
FT
2385static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2386 dma_addr_t *dma_handle, gfp_t flags)
ba395927
KA
2387{
2388 void *vaddr;
2389 int order;
2390
5b6985ce 2391 size = PAGE_ALIGN(size);
ba395927
KA
2392 order = get_order(size);
2393 flags &= ~(GFP_DMA | GFP_DMA32);
2394
2395 vaddr = (void *)__get_free_pages(flags, order);
2396 if (!vaddr)
2397 return NULL;
2398 memset(vaddr, 0, size);
2399
bb9e6d65
FT
2400 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2401 DMA_BIDIRECTIONAL,
2402 hwdev->coherent_dma_mask);
ba395927
KA
2403 if (*dma_handle)
2404 return vaddr;
2405 free_pages((unsigned long)vaddr, order);
2406 return NULL;
2407}
2408
d7ab5c46
FT
2409static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2410 dma_addr_t dma_handle)
ba395927
KA
2411{
2412 int order;
2413
5b6985ce 2414 size = PAGE_ALIGN(size);
ba395927
KA
2415 order = get_order(size);
2416
2417 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2418 free_pages((unsigned long)vaddr, order);
2419}
2420
d7ab5c46
FT
2421static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2422 int nelems, enum dma_data_direction dir,
2423 struct dma_attrs *attrs)
ba395927
KA
2424{
2425 int i;
2426 struct pci_dev *pdev = to_pci_dev(hwdev);
2427 struct dmar_domain *domain;
f76aec76
KA
2428 unsigned long start_addr;
2429 struct iova *iova;
2430 size_t size = 0;
4cf2e75d 2431 phys_addr_t addr;
c03ab37c 2432 struct scatterlist *sg;
8c11e798 2433 struct intel_iommu *iommu;
ba395927 2434
358dd8ac 2435 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927
KA
2436 return;
2437
2438 domain = find_domain(pdev);
8c11e798
WH
2439 BUG_ON(!domain);
2440
2441 iommu = domain_get_iommu(domain);
ba395927 2442
c03ab37c 2443 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
f76aec76
KA
2444 if (!iova)
2445 return;
c03ab37c 2446 for_each_sg(sglist, sg, nelems, i) {
4cf2e75d 2447 addr = page_to_phys(sg_page(sg)) + sg->offset;
f76aec76
KA
2448 size += aligned_size((u64)addr, sg->length);
2449 }
2450
5b6985ce 2451 start_addr = iova->pfn_lo << PAGE_SHIFT;
f76aec76
KA
2452
2453 /* clear the whole page */
2454 dma_pte_clear_range(domain, start_addr, start_addr + size);
2455 /* free page tables */
2456 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2457
8c11e798 2458 if (iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
5b6985ce 2459 size >> VTD_PAGE_SHIFT, 0))
8c11e798 2460 iommu_flush_write_buffer(iommu);
f76aec76
KA
2461
2462 /* free iova */
2463 __free_iova(&domain->iovad, iova);
ba395927
KA
2464}
2465
ba395927 2466static int intel_nontranslate_map_sg(struct device *hddev,
c03ab37c 2467 struct scatterlist *sglist, int nelems, int dir)
ba395927
KA
2468{
2469 int i;
c03ab37c 2470 struct scatterlist *sg;
ba395927 2471
c03ab37c 2472 for_each_sg(sglist, sg, nelems, i) {
12d4d40e 2473 BUG_ON(!sg_page(sg));
4cf2e75d 2474 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
c03ab37c 2475 sg->dma_length = sg->length;
ba395927
KA
2476 }
2477 return nelems;
2478}
2479
d7ab5c46
FT
2480static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2481 enum dma_data_direction dir, struct dma_attrs *attrs)
ba395927 2482{
4cf2e75d 2483 phys_addr_t addr;
ba395927 2484 int i;
ba395927
KA
2485 struct pci_dev *pdev = to_pci_dev(hwdev);
2486 struct dmar_domain *domain;
f76aec76
KA
2487 size_t size = 0;
2488 int prot = 0;
2489 size_t offset = 0;
2490 struct iova *iova = NULL;
2491 int ret;
c03ab37c 2492 struct scatterlist *sg;
f76aec76 2493 unsigned long start_addr;
8c11e798 2494 struct intel_iommu *iommu;
ba395927
KA
2495
2496 BUG_ON(dir == DMA_NONE);
358dd8ac 2497 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
c03ab37c 2498 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
ba395927 2499
f76aec76
KA
2500 domain = get_valid_domain_for_dev(pdev);
2501 if (!domain)
2502 return 0;
2503
8c11e798
WH
2504 iommu = domain_get_iommu(domain);
2505
c03ab37c 2506 for_each_sg(sglist, sg, nelems, i) {
4cf2e75d 2507 addr = page_to_phys(sg_page(sg)) + sg->offset;
f76aec76
KA
2508 size += aligned_size((u64)addr, sg->length);
2509 }
2510
bb9e6d65 2511 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
f76aec76 2512 if (!iova) {
c03ab37c 2513 sglist->dma_length = 0;
f76aec76
KA
2514 return 0;
2515 }
2516
2517 /*
2518 * Check if DMAR supports zero-length reads on write only
2519 * mappings..
2520 */
2521 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 2522 !cap_zlr(iommu->cap))
f76aec76
KA
2523 prot |= DMA_PTE_READ;
2524 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2525 prot |= DMA_PTE_WRITE;
2526
5b6985ce 2527 start_addr = iova->pfn_lo << PAGE_SHIFT;
f76aec76 2528 offset = 0;
c03ab37c 2529 for_each_sg(sglist, sg, nelems, i) {
4cf2e75d 2530 addr = page_to_phys(sg_page(sg)) + sg->offset;
f76aec76
KA
2531 size = aligned_size((u64)addr, sg->length);
2532 ret = domain_page_mapping(domain, start_addr + offset,
5b6985ce 2533 ((u64)addr) & PAGE_MASK,
f76aec76
KA
2534 size, prot);
2535 if (ret) {
2536 /* clear the page */
2537 dma_pte_clear_range(domain, start_addr,
2538 start_addr + offset);
2539 /* free page tables */
2540 dma_pte_free_pagetable(domain, start_addr,
2541 start_addr + offset);
2542 /* free iova */
2543 __free_iova(&domain->iovad, iova);
ba395927
KA
2544 return 0;
2545 }
f76aec76 2546 sg->dma_address = start_addr + offset +
5b6985ce 2547 ((u64)addr & (~PAGE_MASK));
ba395927 2548 sg->dma_length = sg->length;
f76aec76 2549 offset += size;
ba395927
KA
2550 }
2551
ba395927 2552 /* it's a non-present to present mapping */
8c11e798 2553 if (iommu_flush_iotlb_psi(iommu, domain->id,
5b6985ce 2554 start_addr, offset >> VTD_PAGE_SHIFT, 1))
8c11e798 2555 iommu_flush_write_buffer(iommu);
ba395927
KA
2556 return nelems;
2557}
2558
dfb805e8
FT
2559static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2560{
2561 return !dma_addr;
2562}
2563
160c1d8e 2564struct dma_map_ops intel_dma_ops = {
ba395927
KA
2565 .alloc_coherent = intel_alloc_coherent,
2566 .free_coherent = intel_free_coherent,
ba395927
KA
2567 .map_sg = intel_map_sg,
2568 .unmap_sg = intel_unmap_sg,
ffbbef5c
FT
2569 .map_page = intel_map_page,
2570 .unmap_page = intel_unmap_page,
dfb805e8 2571 .mapping_error = intel_mapping_error,
ba395927
KA
2572};
2573
2574static inline int iommu_domain_cache_init(void)
2575{
2576 int ret = 0;
2577
2578 iommu_domain_cache = kmem_cache_create("iommu_domain",
2579 sizeof(struct dmar_domain),
2580 0,
2581 SLAB_HWCACHE_ALIGN,
2582
2583 NULL);
2584 if (!iommu_domain_cache) {
2585 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2586 ret = -ENOMEM;
2587 }
2588
2589 return ret;
2590}
2591
2592static inline int iommu_devinfo_cache_init(void)
2593{
2594 int ret = 0;
2595
2596 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2597 sizeof(struct device_domain_info),
2598 0,
2599 SLAB_HWCACHE_ALIGN,
ba395927
KA
2600 NULL);
2601 if (!iommu_devinfo_cache) {
2602 printk(KERN_ERR "Couldn't create devinfo cache\n");
2603 ret = -ENOMEM;
2604 }
2605
2606 return ret;
2607}
2608
2609static inline int iommu_iova_cache_init(void)
2610{
2611 int ret = 0;
2612
2613 iommu_iova_cache = kmem_cache_create("iommu_iova",
2614 sizeof(struct iova),
2615 0,
2616 SLAB_HWCACHE_ALIGN,
ba395927
KA
2617 NULL);
2618 if (!iommu_iova_cache) {
2619 printk(KERN_ERR "Couldn't create iova cache\n");
2620 ret = -ENOMEM;
2621 }
2622
2623 return ret;
2624}
2625
2626static int __init iommu_init_mempool(void)
2627{
2628 int ret;
2629 ret = iommu_iova_cache_init();
2630 if (ret)
2631 return ret;
2632
2633 ret = iommu_domain_cache_init();
2634 if (ret)
2635 goto domain_error;
2636
2637 ret = iommu_devinfo_cache_init();
2638 if (!ret)
2639 return ret;
2640
2641 kmem_cache_destroy(iommu_domain_cache);
2642domain_error:
2643 kmem_cache_destroy(iommu_iova_cache);
2644
2645 return -ENOMEM;
2646}
2647
2648static void __init iommu_exit_mempool(void)
2649{
2650 kmem_cache_destroy(iommu_devinfo_cache);
2651 kmem_cache_destroy(iommu_domain_cache);
2652 kmem_cache_destroy(iommu_iova_cache);
2653
2654}
2655
ba395927
KA
2656static void __init init_no_remapping_devices(void)
2657{
2658 struct dmar_drhd_unit *drhd;
2659
2660 for_each_drhd_unit(drhd) {
2661 if (!drhd->include_all) {
2662 int i;
2663 for (i = 0; i < drhd->devices_cnt; i++)
2664 if (drhd->devices[i] != NULL)
2665 break;
2666 /* ignore DMAR unit if no pci devices exist */
2667 if (i == drhd->devices_cnt)
2668 drhd->ignored = 1;
2669 }
2670 }
2671
2672 if (dmar_map_gfx)
2673 return;
2674
2675 for_each_drhd_unit(drhd) {
2676 int i;
2677 if (drhd->ignored || drhd->include_all)
2678 continue;
2679
2680 for (i = 0; i < drhd->devices_cnt; i++)
2681 if (drhd->devices[i] &&
2682 !IS_GFX_DEVICE(drhd->devices[i]))
2683 break;
2684
2685 if (i < drhd->devices_cnt)
2686 continue;
2687
2688 /* bypass IOMMU if it is just for gfx devices */
2689 drhd->ignored = 1;
2690 for (i = 0; i < drhd->devices_cnt; i++) {
2691 if (!drhd->devices[i])
2692 continue;
358dd8ac 2693 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
ba395927
KA
2694 }
2695 }
2696}
2697
f59c7b69
FY
2698#ifdef CONFIG_SUSPEND
2699static int init_iommu_hw(void)
2700{
2701 struct dmar_drhd_unit *drhd;
2702 struct intel_iommu *iommu = NULL;
2703
2704 for_each_active_iommu(iommu, drhd)
2705 if (iommu->qi)
2706 dmar_reenable_qi(iommu);
2707
2708 for_each_active_iommu(iommu, drhd) {
2709 iommu_flush_write_buffer(iommu);
2710
2711 iommu_set_root_entry(iommu);
2712
2713 iommu->flush.flush_context(iommu, 0, 0, 0,
4c25a2c1 2714 DMA_CCMD_GLOBAL_INVL);
f59c7b69
FY
2715 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2716 DMA_TLB_GLOBAL_FLUSH, 0);
2717 iommu_disable_protect_mem_regions(iommu);
2718 iommu_enable_translation(iommu);
2719 }
2720
2721 return 0;
2722}
2723
2724static void iommu_flush_all(void)
2725{
2726 struct dmar_drhd_unit *drhd;
2727 struct intel_iommu *iommu;
2728
2729 for_each_active_iommu(iommu, drhd) {
2730 iommu->flush.flush_context(iommu, 0, 0, 0,
4c25a2c1 2731 DMA_CCMD_GLOBAL_INVL);
f59c7b69
FY
2732 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2733 DMA_TLB_GLOBAL_FLUSH, 0);
2734 }
2735}
2736
2737static int iommu_suspend(struct sys_device *dev, pm_message_t state)
2738{
2739 struct dmar_drhd_unit *drhd;
2740 struct intel_iommu *iommu = NULL;
2741 unsigned long flag;
2742
2743 for_each_active_iommu(iommu, drhd) {
2744 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
2745 GFP_ATOMIC);
2746 if (!iommu->iommu_state)
2747 goto nomem;
2748 }
2749
2750 iommu_flush_all();
2751
2752 for_each_active_iommu(iommu, drhd) {
2753 iommu_disable_translation(iommu);
2754
2755 spin_lock_irqsave(&iommu->register_lock, flag);
2756
2757 iommu->iommu_state[SR_DMAR_FECTL_REG] =
2758 readl(iommu->reg + DMAR_FECTL_REG);
2759 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
2760 readl(iommu->reg + DMAR_FEDATA_REG);
2761 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
2762 readl(iommu->reg + DMAR_FEADDR_REG);
2763 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
2764 readl(iommu->reg + DMAR_FEUADDR_REG);
2765
2766 spin_unlock_irqrestore(&iommu->register_lock, flag);
2767 }
2768 return 0;
2769
2770nomem:
2771 for_each_active_iommu(iommu, drhd)
2772 kfree(iommu->iommu_state);
2773
2774 return -ENOMEM;
2775}
2776
2777static int iommu_resume(struct sys_device *dev)
2778{
2779 struct dmar_drhd_unit *drhd;
2780 struct intel_iommu *iommu = NULL;
2781 unsigned long flag;
2782
2783 if (init_iommu_hw()) {
2784 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
2785 return -EIO;
2786 }
2787
2788 for_each_active_iommu(iommu, drhd) {
2789
2790 spin_lock_irqsave(&iommu->register_lock, flag);
2791
2792 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
2793 iommu->reg + DMAR_FECTL_REG);
2794 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
2795 iommu->reg + DMAR_FEDATA_REG);
2796 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
2797 iommu->reg + DMAR_FEADDR_REG);
2798 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
2799 iommu->reg + DMAR_FEUADDR_REG);
2800
2801 spin_unlock_irqrestore(&iommu->register_lock, flag);
2802 }
2803
2804 for_each_active_iommu(iommu, drhd)
2805 kfree(iommu->iommu_state);
2806
2807 return 0;
2808}
2809
2810static struct sysdev_class iommu_sysclass = {
2811 .name = "iommu",
2812 .resume = iommu_resume,
2813 .suspend = iommu_suspend,
2814};
2815
2816static struct sys_device device_iommu = {
2817 .cls = &iommu_sysclass,
2818};
2819
2820static int __init init_iommu_sysfs(void)
2821{
2822 int error;
2823
2824 error = sysdev_class_register(&iommu_sysclass);
2825 if (error)
2826 return error;
2827
2828 error = sysdev_register(&device_iommu);
2829 if (error)
2830 sysdev_class_unregister(&iommu_sysclass);
2831
2832 return error;
2833}
2834
2835#else
2836static int __init init_iommu_sysfs(void)
2837{
2838 return 0;
2839}
2840#endif /* CONFIG_PM */
2841
ba395927
KA
2842int __init intel_iommu_init(void)
2843{
2844 int ret = 0;
2845
ba395927
KA
2846 if (dmar_table_init())
2847 return -ENODEV;
2848
1886e8a9
SS
2849 if (dmar_dev_scope_init())
2850 return -ENODEV;
2851
2ae21010
SS
2852 /*
2853 * Check the need for DMA-remapping initialization now.
2854 * Above initialization will also be used by Interrupt-remapping.
2855 */
4ed0d3e6 2856 if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
2ae21010
SS
2857 return -ENODEV;
2858
ba395927
KA
2859 iommu_init_mempool();
2860 dmar_init_reserved_ranges();
2861
2862 init_no_remapping_devices();
2863
2864 ret = init_dmars();
2865 if (ret) {
2866 printk(KERN_ERR "IOMMU: dmar init failed\n");
2867 put_iova_domain(&reserved_iova_list);
2868 iommu_exit_mempool();
2869 return ret;
2870 }
2871 printk(KERN_INFO
2872 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2873
5e0d2a6f 2874 init_timer(&unmap_timer);
ba395927 2875 force_iommu = 1;
4ed0d3e6
FY
2876
2877 if (!iommu_pass_through) {
2878 printk(KERN_INFO
2879 "Multi-level page-table translation for DMAR.\n");
2880 dma_ops = &intel_dma_ops;
2881 } else
2882 printk(KERN_INFO
2883 "DMAR: Pass through translation for DMAR.\n");
2884
f59c7b69 2885 init_iommu_sysfs();
a8bcbb0d
JR
2886
2887 register_iommu(&intel_iommu_ops);
2888
ba395927
KA
2889 return 0;
2890}
e820482c 2891
c7151a8d
WH
2892static int vm_domain_add_dev_info(struct dmar_domain *domain,
2893 struct pci_dev *pdev)
2894{
2895 struct device_domain_info *info;
2896 unsigned long flags;
2897
2898 info = alloc_devinfo_mem();
2899 if (!info)
2900 return -ENOMEM;
2901
276dbf99 2902 info->segment = pci_domain_nr(pdev->bus);
c7151a8d
WH
2903 info->bus = pdev->bus->number;
2904 info->devfn = pdev->devfn;
2905 info->dev = pdev;
2906 info->domain = domain;
2907
2908 spin_lock_irqsave(&device_domain_lock, flags);
2909 list_add(&info->link, &domain->devices);
2910 list_add(&info->global, &device_domain_list);
2911 pdev->dev.archdata.iommu = info;
2912 spin_unlock_irqrestore(&device_domain_lock, flags);
2913
2914 return 0;
2915}
2916
3199aa6b
HW
2917static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
2918 struct pci_dev *pdev)
2919{
2920 struct pci_dev *tmp, *parent;
2921
2922 if (!iommu || !pdev)
2923 return;
2924
2925 /* dependent device detach */
2926 tmp = pci_find_upstream_pcie_bridge(pdev);
2927 /* Secondary interface's bus number and devfn 0 */
2928 if (tmp) {
2929 parent = pdev->bus->self;
2930 while (parent != tmp) {
2931 iommu_detach_dev(iommu, parent->bus->number,
276dbf99 2932 parent->devfn);
3199aa6b
HW
2933 parent = parent->bus->self;
2934 }
2935 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
2936 iommu_detach_dev(iommu,
2937 tmp->subordinate->number, 0);
2938 else /* this is a legacy PCI bridge */
276dbf99
DW
2939 iommu_detach_dev(iommu, tmp->bus->number,
2940 tmp->devfn);
3199aa6b
HW
2941 }
2942}
2943
c7151a8d
WH
2944static void vm_domain_remove_one_dev_info(struct dmar_domain *domain,
2945 struct pci_dev *pdev)
2946{
2947 struct device_domain_info *info;
2948 struct intel_iommu *iommu;
2949 unsigned long flags;
2950 int found = 0;
2951 struct list_head *entry, *tmp;
2952
276dbf99
DW
2953 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
2954 pdev->devfn);
c7151a8d
WH
2955 if (!iommu)
2956 return;
2957
2958 spin_lock_irqsave(&device_domain_lock, flags);
2959 list_for_each_safe(entry, tmp, &domain->devices) {
2960 info = list_entry(entry, struct device_domain_info, link);
276dbf99 2961 /* No need to compare PCI domain; it has to be the same */
c7151a8d
WH
2962 if (info->bus == pdev->bus->number &&
2963 info->devfn == pdev->devfn) {
2964 list_del(&info->link);
2965 list_del(&info->global);
2966 if (info->dev)
2967 info->dev->dev.archdata.iommu = NULL;
2968 spin_unlock_irqrestore(&device_domain_lock, flags);
2969
2970 iommu_detach_dev(iommu, info->bus, info->devfn);
3199aa6b 2971 iommu_detach_dependent_devices(iommu, pdev);
c7151a8d
WH
2972 free_devinfo_mem(info);
2973
2974 spin_lock_irqsave(&device_domain_lock, flags);
2975
2976 if (found)
2977 break;
2978 else
2979 continue;
2980 }
2981
2982 /* if there is no other devices under the same iommu
2983 * owned by this domain, clear this iommu in iommu_bmp
2984 * update iommu count and coherency
2985 */
276dbf99
DW
2986 if (iommu == device_to_iommu(info->segment, info->bus,
2987 info->devfn))
c7151a8d
WH
2988 found = 1;
2989 }
2990
2991 if (found == 0) {
2992 unsigned long tmp_flags;
2993 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
2994 clear_bit(iommu->seq_id, &domain->iommu_bmp);
2995 domain->iommu_count--;
58c610bd 2996 domain_update_iommu_cap(domain);
c7151a8d
WH
2997 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
2998 }
2999
3000 spin_unlock_irqrestore(&device_domain_lock, flags);
3001}
3002
3003static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3004{
3005 struct device_domain_info *info;
3006 struct intel_iommu *iommu;
3007 unsigned long flags1, flags2;
3008
3009 spin_lock_irqsave(&device_domain_lock, flags1);
3010 while (!list_empty(&domain->devices)) {
3011 info = list_entry(domain->devices.next,
3012 struct device_domain_info, link);
3013 list_del(&info->link);
3014 list_del(&info->global);
3015 if (info->dev)
3016 info->dev->dev.archdata.iommu = NULL;
3017
3018 spin_unlock_irqrestore(&device_domain_lock, flags1);
3019
276dbf99 3020 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
c7151a8d 3021 iommu_detach_dev(iommu, info->bus, info->devfn);
3199aa6b 3022 iommu_detach_dependent_devices(iommu, info->dev);
c7151a8d
WH
3023
3024 /* clear this iommu in iommu_bmp, update iommu count
58c610bd 3025 * and capabilities
c7151a8d
WH
3026 */
3027 spin_lock_irqsave(&domain->iommu_lock, flags2);
3028 if (test_and_clear_bit(iommu->seq_id,
3029 &domain->iommu_bmp)) {
3030 domain->iommu_count--;
58c610bd 3031 domain_update_iommu_cap(domain);
c7151a8d
WH
3032 }
3033 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3034
3035 free_devinfo_mem(info);
3036 spin_lock_irqsave(&device_domain_lock, flags1);
3037 }
3038 spin_unlock_irqrestore(&device_domain_lock, flags1);
3039}
3040
5e98c4b1
WH
3041/* domain id for virtual machine, it won't be set in context */
3042static unsigned long vm_domid;
3043
fe40f1e0
WH
3044static int vm_domain_min_agaw(struct dmar_domain *domain)
3045{
3046 int i;
3047 int min_agaw = domain->agaw;
3048
3049 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3050 for (; i < g_num_of_iommus; ) {
3051 if (min_agaw > g_iommus[i]->agaw)
3052 min_agaw = g_iommus[i]->agaw;
3053
3054 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3055 }
3056
3057 return min_agaw;
3058}
3059
5e98c4b1
WH
3060static struct dmar_domain *iommu_alloc_vm_domain(void)
3061{
3062 struct dmar_domain *domain;
3063
3064 domain = alloc_domain_mem();
3065 if (!domain)
3066 return NULL;
3067
3068 domain->id = vm_domid++;
3069 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3070 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3071
3072 return domain;
3073}
3074
3075static int vm_domain_init(struct dmar_domain *domain, int guest_width)
3076{
3077 int adjust_width;
3078
3079 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3080 spin_lock_init(&domain->mapping_lock);
3081 spin_lock_init(&domain->iommu_lock);
3082
3083 domain_reserve_special_ranges(domain);
3084
3085 /* calculate AGAW */
3086 domain->gaw = guest_width;
3087 adjust_width = guestwidth_to_adjustwidth(guest_width);
3088 domain->agaw = width_to_agaw(adjust_width);
3089
3090 INIT_LIST_HEAD(&domain->devices);
3091
3092 domain->iommu_count = 0;
3093 domain->iommu_coherency = 0;
fe40f1e0 3094 domain->max_addr = 0;
5e98c4b1
WH
3095
3096 /* always allocate the top pgd */
3097 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3098 if (!domain->pgd)
3099 return -ENOMEM;
3100 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3101 return 0;
3102}
3103
3104static void iommu_free_vm_domain(struct dmar_domain *domain)
3105{
3106 unsigned long flags;
3107 struct dmar_drhd_unit *drhd;
3108 struct intel_iommu *iommu;
3109 unsigned long i;
3110 unsigned long ndomains;
3111
3112 for_each_drhd_unit(drhd) {
3113 if (drhd->ignored)
3114 continue;
3115 iommu = drhd->iommu;
3116
3117 ndomains = cap_ndoms(iommu->cap);
3118 i = find_first_bit(iommu->domain_ids, ndomains);
3119 for (; i < ndomains; ) {
3120 if (iommu->domains[i] == domain) {
3121 spin_lock_irqsave(&iommu->lock, flags);
3122 clear_bit(i, iommu->domain_ids);
3123 iommu->domains[i] = NULL;
3124 spin_unlock_irqrestore(&iommu->lock, flags);
3125 break;
3126 }
3127 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3128 }
3129 }
3130}
3131
3132static void vm_domain_exit(struct dmar_domain *domain)
3133{
3134 u64 end;
3135
3136 /* Domain 0 is reserved, so dont process it */
3137 if (!domain)
3138 return;
3139
3140 vm_domain_remove_all_dev_info(domain);
3141 /* destroy iovas */
3142 put_iova_domain(&domain->iovad);
3143 end = DOMAIN_MAX_ADDR(domain->gaw);
3144 end = end & (~VTD_PAGE_MASK);
3145
3146 /* clear ptes */
3147 dma_pte_clear_range(domain, 0, end);
3148
3149 /* free page tables */
3150 dma_pte_free_pagetable(domain, 0, end);
3151
3152 iommu_free_vm_domain(domain);
3153 free_domain_mem(domain);
3154}
3155
5d450806 3156static int intel_iommu_domain_init(struct iommu_domain *domain)
38717946 3157{
5d450806 3158 struct dmar_domain *dmar_domain;
38717946 3159
5d450806
JR
3160 dmar_domain = iommu_alloc_vm_domain();
3161 if (!dmar_domain) {
38717946 3162 printk(KERN_ERR
5d450806
JR
3163 "intel_iommu_domain_init: dmar_domain == NULL\n");
3164 return -ENOMEM;
38717946 3165 }
5d450806 3166 if (vm_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
38717946 3167 printk(KERN_ERR
5d450806
JR
3168 "intel_iommu_domain_init() failed\n");
3169 vm_domain_exit(dmar_domain);
3170 return -ENOMEM;
38717946 3171 }
5d450806 3172 domain->priv = dmar_domain;
faa3d6f5 3173
5d450806 3174 return 0;
38717946 3175}
38717946 3176
5d450806 3177static void intel_iommu_domain_destroy(struct iommu_domain *domain)
38717946 3178{
5d450806
JR
3179 struct dmar_domain *dmar_domain = domain->priv;
3180
3181 domain->priv = NULL;
3182 vm_domain_exit(dmar_domain);
38717946 3183}
38717946 3184
4c5478c9
JR
3185static int intel_iommu_attach_device(struct iommu_domain *domain,
3186 struct device *dev)
38717946 3187{
4c5478c9
JR
3188 struct dmar_domain *dmar_domain = domain->priv;
3189 struct pci_dev *pdev = to_pci_dev(dev);
fe40f1e0
WH
3190 struct intel_iommu *iommu;
3191 int addr_width;
3192 u64 end;
faa3d6f5
WH
3193 int ret;
3194
3195 /* normally pdev is not mapped */
3196 if (unlikely(domain_context_mapped(pdev))) {
3197 struct dmar_domain *old_domain;
3198
3199 old_domain = find_domain(pdev);
3200 if (old_domain) {
4c5478c9 3201 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
faa3d6f5
WH
3202 vm_domain_remove_one_dev_info(old_domain, pdev);
3203 else
3204 domain_remove_dev_info(old_domain);
3205 }
3206 }
3207
276dbf99
DW
3208 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3209 pdev->devfn);
fe40f1e0
WH
3210 if (!iommu)
3211 return -ENODEV;
3212
3213 /* check if this iommu agaw is sufficient for max mapped address */
3214 addr_width = agaw_to_width(iommu->agaw);
3215 end = DOMAIN_MAX_ADDR(addr_width);
3216 end = end & VTD_PAGE_MASK;
4c5478c9 3217 if (end < dmar_domain->max_addr) {
fe40f1e0
WH
3218 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3219 "sufficient for the mapped address (%llx)\n",
4c5478c9 3220 __func__, iommu->agaw, dmar_domain->max_addr);
fe40f1e0
WH
3221 return -EFAULT;
3222 }
3223
4ed0d3e6 3224 ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
faa3d6f5
WH
3225 if (ret)
3226 return ret;
3227
4c5478c9 3228 ret = vm_domain_add_dev_info(dmar_domain, pdev);
faa3d6f5 3229 return ret;
38717946 3230}
38717946 3231
4c5478c9
JR
3232static void intel_iommu_detach_device(struct iommu_domain *domain,
3233 struct device *dev)
38717946 3234{
4c5478c9
JR
3235 struct dmar_domain *dmar_domain = domain->priv;
3236 struct pci_dev *pdev = to_pci_dev(dev);
3237
3238 vm_domain_remove_one_dev_info(dmar_domain, pdev);
faa3d6f5 3239}
c7151a8d 3240
dde57a21
JR
3241static int intel_iommu_map_range(struct iommu_domain *domain,
3242 unsigned long iova, phys_addr_t hpa,
3243 size_t size, int iommu_prot)
faa3d6f5 3244{
dde57a21 3245 struct dmar_domain *dmar_domain = domain->priv;
fe40f1e0
WH
3246 u64 max_addr;
3247 int addr_width;
dde57a21 3248 int prot = 0;
faa3d6f5 3249 int ret;
fe40f1e0 3250
dde57a21
JR
3251 if (iommu_prot & IOMMU_READ)
3252 prot |= DMA_PTE_READ;
3253 if (iommu_prot & IOMMU_WRITE)
3254 prot |= DMA_PTE_WRITE;
9cf06697
SY
3255 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3256 prot |= DMA_PTE_SNP;
dde57a21 3257
fe40f1e0 3258 max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
dde57a21 3259 if (dmar_domain->max_addr < max_addr) {
fe40f1e0
WH
3260 int min_agaw;
3261 u64 end;
3262
3263 /* check if minimum agaw is sufficient for mapped address */
dde57a21 3264 min_agaw = vm_domain_min_agaw(dmar_domain);
fe40f1e0
WH
3265 addr_width = agaw_to_width(min_agaw);
3266 end = DOMAIN_MAX_ADDR(addr_width);
3267 end = end & VTD_PAGE_MASK;
3268 if (end < max_addr) {
3269 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3270 "sufficient for the mapped address (%llx)\n",
3271 __func__, min_agaw, max_addr);
3272 return -EFAULT;
3273 }
dde57a21 3274 dmar_domain->max_addr = max_addr;
fe40f1e0
WH
3275 }
3276
dde57a21 3277 ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
faa3d6f5 3278 return ret;
38717946 3279}
38717946 3280
dde57a21
JR
3281static void intel_iommu_unmap_range(struct iommu_domain *domain,
3282 unsigned long iova, size_t size)
38717946 3283{
dde57a21 3284 struct dmar_domain *dmar_domain = domain->priv;
faa3d6f5
WH
3285 dma_addr_t base;
3286
3287 /* The address might not be aligned */
3288 base = iova & VTD_PAGE_MASK;
3289 size = VTD_PAGE_ALIGN(size);
dde57a21 3290 dma_pte_clear_range(dmar_domain, base, base + size);
fe40f1e0 3291
dde57a21
JR
3292 if (dmar_domain->max_addr == base + size)
3293 dmar_domain->max_addr = base;
38717946 3294}
38717946 3295
d14d6577
JR
3296static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3297 unsigned long iova)
38717946 3298{
d14d6577 3299 struct dmar_domain *dmar_domain = domain->priv;
38717946 3300 struct dma_pte *pte;
faa3d6f5 3301 u64 phys = 0;
38717946 3302
d14d6577 3303 pte = addr_to_dma_pte(dmar_domain, iova);
38717946 3304 if (pte)
faa3d6f5 3305 phys = dma_pte_addr(pte);
38717946 3306
faa3d6f5 3307 return phys;
38717946 3308}
a8bcbb0d 3309
dbb9fd86
SY
3310static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3311 unsigned long cap)
3312{
3313 struct dmar_domain *dmar_domain = domain->priv;
3314
3315 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3316 return dmar_domain->iommu_snooping;
3317
3318 return 0;
3319}
3320
a8bcbb0d
JR
3321static struct iommu_ops intel_iommu_ops = {
3322 .domain_init = intel_iommu_domain_init,
3323 .domain_destroy = intel_iommu_domain_destroy,
3324 .attach_dev = intel_iommu_attach_device,
3325 .detach_dev = intel_iommu_detach_device,
3326 .map = intel_iommu_map_range,
3327 .unmap = intel_iommu_unmap_range,
3328 .iova_to_phys = intel_iommu_iova_to_phys,
dbb9fd86 3329 .domain_has_cap = intel_iommu_domain_has_cap,
a8bcbb0d 3330};
9af88143
DW
3331
3332static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3333{
3334 /*
3335 * Mobile 4 Series Chipset neglects to set RWBF capability,
3336 * but needs it:
3337 */
3338 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3339 rwbf_quirk = 1;
3340}
3341
3342DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);