]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/pci/intel-iommu.c
x86, dmar: routines for disabling queued invalidation and intr remapping
[mirror_ubuntu-artful-kernel.git] / drivers / pci / intel-iommu.c
CommitLineData
ba395927
KA
1/*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
98bcef56 17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
5b6985ce 21 * Author: Fenghua Yu <fenghua.yu@intel.com>
ba395927
KA
22 */
23
24#include <linux/init.h>
25#include <linux/bitmap.h>
5e0d2a6f 26#include <linux/debugfs.h>
ba395927
KA
27#include <linux/slab.h>
28#include <linux/irq.h>
29#include <linux/interrupt.h>
ba395927
KA
30#include <linux/spinlock.h>
31#include <linux/pci.h>
32#include <linux/dmar.h>
33#include <linux/dma-mapping.h>
34#include <linux/mempool.h>
5e0d2a6f 35#include <linux/timer.h>
38717946 36#include <linux/iova.h>
5d450806 37#include <linux/iommu.h>
38717946 38#include <linux/intel-iommu.h>
ba395927 39#include <asm/cacheflush.h>
46a7fa27 40#include <asm/iommu.h>
ba395927
KA
41#include "pci.h"
42
5b6985ce
FY
43#define ROOT_SIZE VTD_PAGE_SIZE
44#define CONTEXT_SIZE VTD_PAGE_SIZE
45
ba395927
KA
46#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
47#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
48
49#define IOAPIC_RANGE_START (0xfee00000)
50#define IOAPIC_RANGE_END (0xfeefffff)
51#define IOVA_START_ADDR (0x1000)
52
53#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
54
ba395927
KA
55#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
56
f27be03b
MM
57#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
58#define DMA_32BIT_PFN IOVA_PFN(DMA_32BIT_MASK)
59#define DMA_64BIT_PFN IOVA_PFN(DMA_64BIT_MASK)
5e0d2a6f 60
d9630fe9
WH
61/* global iommu list, set NULL for ignored DMAR units */
62static struct intel_iommu **g_iommus;
63
9af88143
DW
64static int rwbf_quirk;
65
46b08e1a
MM
66/*
67 * 0: Present
68 * 1-11: Reserved
69 * 12-63: Context Ptr (12 - (haw-1))
70 * 64-127: Reserved
71 */
72struct root_entry {
73 u64 val;
74 u64 rsvd1;
75};
76#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
77static inline bool root_present(struct root_entry *root)
78{
79 return (root->val & 1);
80}
81static inline void set_root_present(struct root_entry *root)
82{
83 root->val |= 1;
84}
85static inline void set_root_value(struct root_entry *root, unsigned long value)
86{
87 root->val |= value & VTD_PAGE_MASK;
88}
89
90static inline struct context_entry *
91get_context_addr_from_root(struct root_entry *root)
92{
93 return (struct context_entry *)
94 (root_present(root)?phys_to_virt(
95 root->val & VTD_PAGE_MASK) :
96 NULL);
97}
98
7a8fc25e
MM
99/*
100 * low 64 bits:
101 * 0: present
102 * 1: fault processing disable
103 * 2-3: translation type
104 * 12-63: address space root
105 * high 64 bits:
106 * 0-2: address width
107 * 3-6: aval
108 * 8-23: domain id
109 */
110struct context_entry {
111 u64 lo;
112 u64 hi;
113};
c07e7d21
MM
114
115static inline bool context_present(struct context_entry *context)
116{
117 return (context->lo & 1);
118}
119static inline void context_set_present(struct context_entry *context)
120{
121 context->lo |= 1;
122}
123
124static inline void context_set_fault_enable(struct context_entry *context)
125{
126 context->lo &= (((u64)-1) << 2) | 1;
127}
128
7a8fc25e 129#define CONTEXT_TT_MULTI_LEVEL 0
c07e7d21
MM
130
131static inline void context_set_translation_type(struct context_entry *context,
132 unsigned long value)
133{
134 context->lo &= (((u64)-1) << 4) | 3;
135 context->lo |= (value & 3) << 2;
136}
137
138static inline void context_set_address_root(struct context_entry *context,
139 unsigned long value)
140{
141 context->lo |= value & VTD_PAGE_MASK;
142}
143
144static inline void context_set_address_width(struct context_entry *context,
145 unsigned long value)
146{
147 context->hi |= value & 7;
148}
149
150static inline void context_set_domain_id(struct context_entry *context,
151 unsigned long value)
152{
153 context->hi |= (value & ((1 << 16) - 1)) << 8;
154}
155
156static inline void context_clear_entry(struct context_entry *context)
157{
158 context->lo = 0;
159 context->hi = 0;
160}
7a8fc25e 161
622ba12a
MM
162/*
163 * 0: readable
164 * 1: writable
165 * 2-6: reserved
166 * 7: super page
167 * 8-11: available
168 * 12-63: Host physcial address
169 */
170struct dma_pte {
171 u64 val;
172};
622ba12a 173
19c239ce
MM
174static inline void dma_clear_pte(struct dma_pte *pte)
175{
176 pte->val = 0;
177}
178
179static inline void dma_set_pte_readable(struct dma_pte *pte)
180{
181 pte->val |= DMA_PTE_READ;
182}
183
184static inline void dma_set_pte_writable(struct dma_pte *pte)
185{
186 pte->val |= DMA_PTE_WRITE;
187}
188
189static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
190{
191 pte->val = (pte->val & ~3) | (prot & 3);
192}
193
194static inline u64 dma_pte_addr(struct dma_pte *pte)
195{
196 return (pte->val & VTD_PAGE_MASK);
197}
198
199static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr)
200{
201 pte->val |= (addr & VTD_PAGE_MASK);
202}
203
204static inline bool dma_pte_present(struct dma_pte *pte)
205{
206 return (pte->val & 3) != 0;
207}
622ba12a 208
3b5410e7 209/* devices under the same p2p bridge are owned in one domain */
cdc7b837 210#define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
3b5410e7 211
1ce28feb
WH
212/* domain represents a virtual machine, more than one devices
213 * across iommus may be owned in one domain, e.g. kvm guest.
214 */
215#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
216
99126f7c
MM
217struct dmar_domain {
218 int id; /* domain id */
8c11e798 219 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
99126f7c
MM
220
221 struct list_head devices; /* all devices' list */
222 struct iova_domain iovad; /* iova's that belong to this domain */
223
224 struct dma_pte *pgd; /* virtual address */
225 spinlock_t mapping_lock; /* page table lock */
226 int gaw; /* max guest address width */
227
228 /* adjusted guest address width, 0 is level 2 30-bit */
229 int agaw;
230
3b5410e7 231 int flags; /* flags to find out type of domain */
8e604097
WH
232
233 int iommu_coherency;/* indicate coherency of iommu access */
c7151a8d
WH
234 int iommu_count; /* reference count of iommu */
235 spinlock_t iommu_lock; /* protect iommu set in domain */
fe40f1e0 236 u64 max_addr; /* maximum mapped address */
99126f7c
MM
237};
238
a647dacb
MM
239/* PCI domain-device relationship */
240struct device_domain_info {
241 struct list_head link; /* link to domain siblings */
242 struct list_head global; /* link to global list */
243 u8 bus; /* PCI bus numer */
244 u8 devfn; /* PCI devfn number */
245 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
246 struct dmar_domain *domain; /* pointer to domain */
247};
248
5e0d2a6f 249static void flush_unmaps_timeout(unsigned long data);
250
251DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
252
80b20dd8 253#define HIGH_WATER_MARK 250
254struct deferred_flush_tables {
255 int next;
256 struct iova *iova[HIGH_WATER_MARK];
257 struct dmar_domain *domain[HIGH_WATER_MARK];
258};
259
260static struct deferred_flush_tables *deferred_flush;
261
5e0d2a6f 262/* bitmap for indexing intel_iommus */
5e0d2a6f 263static int g_num_of_iommus;
264
265static DEFINE_SPINLOCK(async_umap_flush_lock);
266static LIST_HEAD(unmaps_to_do);
267
268static int timer_on;
269static long list_size;
5e0d2a6f 270
ba395927
KA
271static void domain_remove_dev_info(struct dmar_domain *domain);
272
0cd5c3c8
KM
273#ifdef CONFIG_DMAR_DEFAULT_ON
274int dmar_disabled = 0;
275#else
276int dmar_disabled = 1;
277#endif /*CONFIG_DMAR_DEFAULT_ON*/
278
ba395927 279static int __initdata dmar_map_gfx = 1;
7d3b03ce 280static int dmar_forcedac;
5e0d2a6f 281static int intel_iommu_strict;
ba395927
KA
282
283#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
284static DEFINE_SPINLOCK(device_domain_lock);
285static LIST_HEAD(device_domain_list);
286
a8bcbb0d
JR
287static struct iommu_ops intel_iommu_ops;
288
ba395927
KA
289static int __init intel_iommu_setup(char *str)
290{
291 if (!str)
292 return -EINVAL;
293 while (*str) {
0cd5c3c8
KM
294 if (!strncmp(str, "on", 2)) {
295 dmar_disabled = 0;
296 printk(KERN_INFO "Intel-IOMMU: enabled\n");
297 } else if (!strncmp(str, "off", 3)) {
ba395927 298 dmar_disabled = 1;
0cd5c3c8 299 printk(KERN_INFO "Intel-IOMMU: disabled\n");
ba395927
KA
300 } else if (!strncmp(str, "igfx_off", 8)) {
301 dmar_map_gfx = 0;
302 printk(KERN_INFO
303 "Intel-IOMMU: disable GFX device mapping\n");
7d3b03ce 304 } else if (!strncmp(str, "forcedac", 8)) {
5e0d2a6f 305 printk(KERN_INFO
7d3b03ce
KA
306 "Intel-IOMMU: Forcing DAC for PCI devices\n");
307 dmar_forcedac = 1;
5e0d2a6f 308 } else if (!strncmp(str, "strict", 6)) {
309 printk(KERN_INFO
310 "Intel-IOMMU: disable batched IOTLB flush\n");
311 intel_iommu_strict = 1;
ba395927
KA
312 }
313
314 str += strcspn(str, ",");
315 while (*str == ',')
316 str++;
317 }
318 return 0;
319}
320__setup("intel_iommu=", intel_iommu_setup);
321
322static struct kmem_cache *iommu_domain_cache;
323static struct kmem_cache *iommu_devinfo_cache;
324static struct kmem_cache *iommu_iova_cache;
325
eb3fa7cb
KA
326static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
327{
328 unsigned int flags;
329 void *vaddr;
330
331 /* trying to avoid low memory issues */
332 flags = current->flags & PF_MEMALLOC;
333 current->flags |= PF_MEMALLOC;
334 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
335 current->flags &= (~PF_MEMALLOC | flags);
336 return vaddr;
337}
338
339
ba395927
KA
340static inline void *alloc_pgtable_page(void)
341{
eb3fa7cb
KA
342 unsigned int flags;
343 void *vaddr;
344
345 /* trying to avoid low memory issues */
346 flags = current->flags & PF_MEMALLOC;
347 current->flags |= PF_MEMALLOC;
348 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
349 current->flags &= (~PF_MEMALLOC | flags);
350 return vaddr;
ba395927
KA
351}
352
353static inline void free_pgtable_page(void *vaddr)
354{
355 free_page((unsigned long)vaddr);
356}
357
358static inline void *alloc_domain_mem(void)
359{
eb3fa7cb 360 return iommu_kmem_cache_alloc(iommu_domain_cache);
ba395927
KA
361}
362
38717946 363static void free_domain_mem(void *vaddr)
ba395927
KA
364{
365 kmem_cache_free(iommu_domain_cache, vaddr);
366}
367
368static inline void * alloc_devinfo_mem(void)
369{
eb3fa7cb 370 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
ba395927
KA
371}
372
373static inline void free_devinfo_mem(void *vaddr)
374{
375 kmem_cache_free(iommu_devinfo_cache, vaddr);
376}
377
378struct iova *alloc_iova_mem(void)
379{
eb3fa7cb 380 return iommu_kmem_cache_alloc(iommu_iova_cache);
ba395927
KA
381}
382
383void free_iova_mem(struct iova *iova)
384{
385 kmem_cache_free(iommu_iova_cache, iova);
386}
387
1b573683
WH
388
389static inline int width_to_agaw(int width);
390
391/* calculate agaw for each iommu.
392 * "SAGAW" may be different across iommus, use a default agaw, and
393 * get a supported less agaw for iommus that don't support the default agaw.
394 */
395int iommu_calculate_agaw(struct intel_iommu *iommu)
396{
397 unsigned long sagaw;
398 int agaw = -1;
399
400 sagaw = cap_sagaw(iommu->cap);
401 for (agaw = width_to_agaw(DEFAULT_DOMAIN_ADDRESS_WIDTH);
402 agaw >= 0; agaw--) {
403 if (test_bit(agaw, &sagaw))
404 break;
405 }
406
407 return agaw;
408}
409
8c11e798
WH
410/* in native case, each domain is related to only one iommu */
411static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
412{
413 int iommu_id;
414
1ce28feb
WH
415 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
416
8c11e798
WH
417 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
418 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
419 return NULL;
420
421 return g_iommus[iommu_id];
422}
423
8e604097
WH
424/* "Coherency" capability may be different across iommus */
425static void domain_update_iommu_coherency(struct dmar_domain *domain)
426{
427 int i;
428
429 domain->iommu_coherency = 1;
430
431 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
432 for (; i < g_num_of_iommus; ) {
433 if (!ecap_coherent(g_iommus[i]->ecap)) {
434 domain->iommu_coherency = 0;
435 break;
436 }
437 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
438 }
439}
440
c7151a8d
WH
441static struct intel_iommu *device_to_iommu(u8 bus, u8 devfn)
442{
443 struct dmar_drhd_unit *drhd = NULL;
444 int i;
445
446 for_each_drhd_unit(drhd) {
447 if (drhd->ignored)
448 continue;
449
450 for (i = 0; i < drhd->devices_cnt; i++)
288e4877
DH
451 if (drhd->devices[i] &&
452 drhd->devices[i]->bus->number == bus &&
c7151a8d
WH
453 drhd->devices[i]->devfn == devfn)
454 return drhd->iommu;
455
456 if (drhd->include_all)
457 return drhd->iommu;
458 }
459
460 return NULL;
461}
462
5331fe6f
WH
463static void domain_flush_cache(struct dmar_domain *domain,
464 void *addr, int size)
465{
466 if (!domain->iommu_coherency)
467 clflush_cache_range(addr, size);
468}
469
ba395927
KA
470/* Gets context entry for a given bus and devfn */
471static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
472 u8 bus, u8 devfn)
473{
474 struct root_entry *root;
475 struct context_entry *context;
476 unsigned long phy_addr;
477 unsigned long flags;
478
479 spin_lock_irqsave(&iommu->lock, flags);
480 root = &iommu->root_entry[bus];
481 context = get_context_addr_from_root(root);
482 if (!context) {
483 context = (struct context_entry *)alloc_pgtable_page();
484 if (!context) {
485 spin_unlock_irqrestore(&iommu->lock, flags);
486 return NULL;
487 }
5b6985ce 488 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
ba395927
KA
489 phy_addr = virt_to_phys((void *)context);
490 set_root_value(root, phy_addr);
491 set_root_present(root);
492 __iommu_flush_cache(iommu, root, sizeof(*root));
493 }
494 spin_unlock_irqrestore(&iommu->lock, flags);
495 return &context[devfn];
496}
497
498static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
499{
500 struct root_entry *root;
501 struct context_entry *context;
502 int ret;
503 unsigned long flags;
504
505 spin_lock_irqsave(&iommu->lock, flags);
506 root = &iommu->root_entry[bus];
507 context = get_context_addr_from_root(root);
508 if (!context) {
509 ret = 0;
510 goto out;
511 }
c07e7d21 512 ret = context_present(&context[devfn]);
ba395927
KA
513out:
514 spin_unlock_irqrestore(&iommu->lock, flags);
515 return ret;
516}
517
518static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
519{
520 struct root_entry *root;
521 struct context_entry *context;
522 unsigned long flags;
523
524 spin_lock_irqsave(&iommu->lock, flags);
525 root = &iommu->root_entry[bus];
526 context = get_context_addr_from_root(root);
527 if (context) {
c07e7d21 528 context_clear_entry(&context[devfn]);
ba395927
KA
529 __iommu_flush_cache(iommu, &context[devfn], \
530 sizeof(*context));
531 }
532 spin_unlock_irqrestore(&iommu->lock, flags);
533}
534
535static void free_context_table(struct intel_iommu *iommu)
536{
537 struct root_entry *root;
538 int i;
539 unsigned long flags;
540 struct context_entry *context;
541
542 spin_lock_irqsave(&iommu->lock, flags);
543 if (!iommu->root_entry) {
544 goto out;
545 }
546 for (i = 0; i < ROOT_ENTRY_NR; i++) {
547 root = &iommu->root_entry[i];
548 context = get_context_addr_from_root(root);
549 if (context)
550 free_pgtable_page(context);
551 }
552 free_pgtable_page(iommu->root_entry);
553 iommu->root_entry = NULL;
554out:
555 spin_unlock_irqrestore(&iommu->lock, flags);
556}
557
558/* page table handling */
559#define LEVEL_STRIDE (9)
560#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
561
562static inline int agaw_to_level(int agaw)
563{
564 return agaw + 2;
565}
566
567static inline int agaw_to_width(int agaw)
568{
569 return 30 + agaw * LEVEL_STRIDE;
570
571}
572
573static inline int width_to_agaw(int width)
574{
575 return (width - 30) / LEVEL_STRIDE;
576}
577
578static inline unsigned int level_to_offset_bits(int level)
579{
580 return (12 + (level - 1) * LEVEL_STRIDE);
581}
582
583static inline int address_level_offset(u64 addr, int level)
584{
585 return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
586}
587
588static inline u64 level_mask(int level)
589{
590 return ((u64)-1 << level_to_offset_bits(level));
591}
592
593static inline u64 level_size(int level)
594{
595 return ((u64)1 << level_to_offset_bits(level));
596}
597
598static inline u64 align_to_level(u64 addr, int level)
599{
600 return ((addr + level_size(level) - 1) & level_mask(level));
601}
602
603static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
604{
605 int addr_width = agaw_to_width(domain->agaw);
606 struct dma_pte *parent, *pte = NULL;
607 int level = agaw_to_level(domain->agaw);
608 int offset;
609 unsigned long flags;
610
611 BUG_ON(!domain->pgd);
612
613 addr &= (((u64)1) << addr_width) - 1;
614 parent = domain->pgd;
615
616 spin_lock_irqsave(&domain->mapping_lock, flags);
617 while (level > 0) {
618 void *tmp_page;
619
620 offset = address_level_offset(addr, level);
621 pte = &parent[offset];
622 if (level == 1)
623 break;
624
19c239ce 625 if (!dma_pte_present(pte)) {
ba395927
KA
626 tmp_page = alloc_pgtable_page();
627
628 if (!tmp_page) {
629 spin_unlock_irqrestore(&domain->mapping_lock,
630 flags);
631 return NULL;
632 }
5331fe6f 633 domain_flush_cache(domain, tmp_page, PAGE_SIZE);
19c239ce 634 dma_set_pte_addr(pte, virt_to_phys(tmp_page));
ba395927
KA
635 /*
636 * high level table always sets r/w, last level page
637 * table control read/write
638 */
19c239ce
MM
639 dma_set_pte_readable(pte);
640 dma_set_pte_writable(pte);
5331fe6f 641 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927 642 }
19c239ce 643 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
644 level--;
645 }
646
647 spin_unlock_irqrestore(&domain->mapping_lock, flags);
648 return pte;
649}
650
651/* return address's pte at specific level */
652static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
653 int level)
654{
655 struct dma_pte *parent, *pte = NULL;
656 int total = agaw_to_level(domain->agaw);
657 int offset;
658
659 parent = domain->pgd;
660 while (level <= total) {
661 offset = address_level_offset(addr, total);
662 pte = &parent[offset];
663 if (level == total)
664 return pte;
665
19c239ce 666 if (!dma_pte_present(pte))
ba395927 667 break;
19c239ce 668 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
669 total--;
670 }
671 return NULL;
672}
673
674/* clear one page's page table */
675static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
676{
677 struct dma_pte *pte = NULL;
678
679 /* get last level pte */
680 pte = dma_addr_level_pte(domain, addr, 1);
681
682 if (pte) {
19c239ce 683 dma_clear_pte(pte);
5331fe6f 684 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927
KA
685 }
686}
687
688/* clear last level pte, a tlb flush should be followed */
689static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
690{
691 int addr_width = agaw_to_width(domain->agaw);
692
693 start &= (((u64)1) << addr_width) - 1;
694 end &= (((u64)1) << addr_width) - 1;
695 /* in case it's partial page */
5b6985ce
FY
696 start = PAGE_ALIGN(start);
697 end &= PAGE_MASK;
ba395927
KA
698
699 /* we don't need lock here, nobody else touches the iova range */
700 while (start < end) {
701 dma_pte_clear_one(domain, start);
5b6985ce 702 start += VTD_PAGE_SIZE;
ba395927
KA
703 }
704}
705
706/* free page table pages. last level pte should already be cleared */
707static void dma_pte_free_pagetable(struct dmar_domain *domain,
708 u64 start, u64 end)
709{
710 int addr_width = agaw_to_width(domain->agaw);
711 struct dma_pte *pte;
712 int total = agaw_to_level(domain->agaw);
713 int level;
714 u64 tmp;
715
716 start &= (((u64)1) << addr_width) - 1;
717 end &= (((u64)1) << addr_width) - 1;
718
719 /* we don't need lock here, nobody else touches the iova range */
720 level = 2;
721 while (level <= total) {
722 tmp = align_to_level(start, level);
723 if (tmp >= end || (tmp + level_size(level) > end))
724 return;
725
726 while (tmp < end) {
727 pte = dma_addr_level_pte(domain, tmp, level);
728 if (pte) {
729 free_pgtable_page(
19c239ce
MM
730 phys_to_virt(dma_pte_addr(pte)));
731 dma_clear_pte(pte);
5331fe6f 732 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927
KA
733 }
734 tmp += level_size(level);
735 }
736 level++;
737 }
738 /* free pgd */
739 if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
740 free_pgtable_page(domain->pgd);
741 domain->pgd = NULL;
742 }
743}
744
745/* iommu handling */
746static int iommu_alloc_root_entry(struct intel_iommu *iommu)
747{
748 struct root_entry *root;
749 unsigned long flags;
750
751 root = (struct root_entry *)alloc_pgtable_page();
752 if (!root)
753 return -ENOMEM;
754
5b6985ce 755 __iommu_flush_cache(iommu, root, ROOT_SIZE);
ba395927
KA
756
757 spin_lock_irqsave(&iommu->lock, flags);
758 iommu->root_entry = root;
759 spin_unlock_irqrestore(&iommu->lock, flags);
760
761 return 0;
762}
763
ba395927
KA
764static void iommu_set_root_entry(struct intel_iommu *iommu)
765{
766 void *addr;
767 u32 cmd, sts;
768 unsigned long flag;
769
770 addr = iommu->root_entry;
771
772 spin_lock_irqsave(&iommu->register_lock, flag);
773 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
774
775 cmd = iommu->gcmd | DMA_GCMD_SRTP;
776 writel(cmd, iommu->reg + DMAR_GCMD_REG);
777
778 /* Make sure hardware complete it */
779 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
780 readl, (sts & DMA_GSTS_RTPS), sts);
781
782 spin_unlock_irqrestore(&iommu->register_lock, flag);
783}
784
785static void iommu_flush_write_buffer(struct intel_iommu *iommu)
786{
787 u32 val;
788 unsigned long flag;
789
9af88143 790 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
ba395927
KA
791 return;
792 val = iommu->gcmd | DMA_GCMD_WBF;
793
794 spin_lock_irqsave(&iommu->register_lock, flag);
795 writel(val, iommu->reg + DMAR_GCMD_REG);
796
797 /* Make sure hardware complete it */
798 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
799 readl, (!(val & DMA_GSTS_WBFS)), val);
800
801 spin_unlock_irqrestore(&iommu->register_lock, flag);
802}
803
804/* return value determine if we need a write buffer flush */
805static int __iommu_flush_context(struct intel_iommu *iommu,
806 u16 did, u16 source_id, u8 function_mask, u64 type,
807 int non_present_entry_flush)
808{
809 u64 val = 0;
810 unsigned long flag;
811
812 /*
813 * In the non-present entry flush case, if hardware doesn't cache
814 * non-present entry we do nothing and if hardware cache non-present
815 * entry, we flush entries of domain 0 (the domain id is used to cache
816 * any non-present entries)
817 */
818 if (non_present_entry_flush) {
819 if (!cap_caching_mode(iommu->cap))
820 return 1;
821 else
822 did = 0;
823 }
824
825 switch (type) {
826 case DMA_CCMD_GLOBAL_INVL:
827 val = DMA_CCMD_GLOBAL_INVL;
828 break;
829 case DMA_CCMD_DOMAIN_INVL:
830 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
831 break;
832 case DMA_CCMD_DEVICE_INVL:
833 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
834 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
835 break;
836 default:
837 BUG();
838 }
839 val |= DMA_CCMD_ICC;
840
841 spin_lock_irqsave(&iommu->register_lock, flag);
842 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
843
844 /* Make sure hardware complete it */
845 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
846 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
847
848 spin_unlock_irqrestore(&iommu->register_lock, flag);
849
4d235ba6 850 /* flush context entry will implicitly flush write buffer */
ba395927
KA
851 return 0;
852}
853
ba395927
KA
854/* return value determine if we need a write buffer flush */
855static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
856 u64 addr, unsigned int size_order, u64 type,
857 int non_present_entry_flush)
858{
859 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
860 u64 val = 0, val_iva = 0;
861 unsigned long flag;
862
863 /*
864 * In the non-present entry flush case, if hardware doesn't cache
865 * non-present entry we do nothing and if hardware cache non-present
866 * entry, we flush entries of domain 0 (the domain id is used to cache
867 * any non-present entries)
868 */
869 if (non_present_entry_flush) {
870 if (!cap_caching_mode(iommu->cap))
871 return 1;
872 else
873 did = 0;
874 }
875
876 switch (type) {
877 case DMA_TLB_GLOBAL_FLUSH:
878 /* global flush doesn't need set IVA_REG */
879 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
880 break;
881 case DMA_TLB_DSI_FLUSH:
882 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
883 break;
884 case DMA_TLB_PSI_FLUSH:
885 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
886 /* Note: always flush non-leaf currently */
887 val_iva = size_order | addr;
888 break;
889 default:
890 BUG();
891 }
892 /* Note: set drain read/write */
893#if 0
894 /*
895 * This is probably to be super secure.. Looks like we can
896 * ignore it without any impact.
897 */
898 if (cap_read_drain(iommu->cap))
899 val |= DMA_TLB_READ_DRAIN;
900#endif
901 if (cap_write_drain(iommu->cap))
902 val |= DMA_TLB_WRITE_DRAIN;
903
904 spin_lock_irqsave(&iommu->register_lock, flag);
905 /* Note: Only uses first TLB reg currently */
906 if (val_iva)
907 dmar_writeq(iommu->reg + tlb_offset, val_iva);
908 dmar_writeq(iommu->reg + tlb_offset + 8, val);
909
910 /* Make sure hardware complete it */
911 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
912 dmar_readq, (!(val & DMA_TLB_IVT)), val);
913
914 spin_unlock_irqrestore(&iommu->register_lock, flag);
915
916 /* check IOTLB invalidation granularity */
917 if (DMA_TLB_IAIG(val) == 0)
918 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
919 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
920 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
5b6985ce
FY
921 (unsigned long long)DMA_TLB_IIRG(type),
922 (unsigned long long)DMA_TLB_IAIG(val));
4d235ba6 923 /* flush iotlb entry will implicitly flush write buffer */
ba395927
KA
924 return 0;
925}
926
ba395927
KA
927static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
928 u64 addr, unsigned int pages, int non_present_entry_flush)
929{
f76aec76 930 unsigned int mask;
ba395927 931
5b6985ce 932 BUG_ON(addr & (~VTD_PAGE_MASK));
ba395927
KA
933 BUG_ON(pages == 0);
934
935 /* Fallback to domain selective flush if no PSI support */
936 if (!cap_pgsel_inv(iommu->cap))
a77b67d4
YS
937 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
938 DMA_TLB_DSI_FLUSH,
939 non_present_entry_flush);
ba395927
KA
940
941 /*
942 * PSI requires page size to be 2 ^ x, and the base address is naturally
943 * aligned to the size
944 */
f76aec76 945 mask = ilog2(__roundup_pow_of_two(pages));
ba395927 946 /* Fallback to domain selective flush if size is too big */
f76aec76 947 if (mask > cap_max_amask_val(iommu->cap))
a77b67d4
YS
948 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
949 DMA_TLB_DSI_FLUSH, non_present_entry_flush);
ba395927 950
a77b67d4
YS
951 return iommu->flush.flush_iotlb(iommu, did, addr, mask,
952 DMA_TLB_PSI_FLUSH,
953 non_present_entry_flush);
ba395927
KA
954}
955
f8bab735 956static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
957{
958 u32 pmen;
959 unsigned long flags;
960
961 spin_lock_irqsave(&iommu->register_lock, flags);
962 pmen = readl(iommu->reg + DMAR_PMEN_REG);
963 pmen &= ~DMA_PMEN_EPM;
964 writel(pmen, iommu->reg + DMAR_PMEN_REG);
965
966 /* wait for the protected region status bit to clear */
967 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
968 readl, !(pmen & DMA_PMEN_PRS), pmen);
969
970 spin_unlock_irqrestore(&iommu->register_lock, flags);
971}
972
ba395927
KA
973static int iommu_enable_translation(struct intel_iommu *iommu)
974{
975 u32 sts;
976 unsigned long flags;
977
978 spin_lock_irqsave(&iommu->register_lock, flags);
979 writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
980
981 /* Make sure hardware complete it */
982 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
983 readl, (sts & DMA_GSTS_TES), sts);
984
985 iommu->gcmd |= DMA_GCMD_TE;
986 spin_unlock_irqrestore(&iommu->register_lock, flags);
987 return 0;
988}
989
990static int iommu_disable_translation(struct intel_iommu *iommu)
991{
992 u32 sts;
993 unsigned long flag;
994
995 spin_lock_irqsave(&iommu->register_lock, flag);
996 iommu->gcmd &= ~DMA_GCMD_TE;
997 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
998
999 /* Make sure hardware complete it */
1000 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1001 readl, (!(sts & DMA_GSTS_TES)), sts);
1002
1003 spin_unlock_irqrestore(&iommu->register_lock, flag);
1004 return 0;
1005}
1006
3460a6d9 1007
ba395927
KA
1008static int iommu_init_domains(struct intel_iommu *iommu)
1009{
1010 unsigned long ndomains;
1011 unsigned long nlongs;
1012
1013 ndomains = cap_ndoms(iommu->cap);
1014 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1015 nlongs = BITS_TO_LONGS(ndomains);
1016
1017 /* TBD: there might be 64K domains,
1018 * consider other allocation for future chip
1019 */
1020 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1021 if (!iommu->domain_ids) {
1022 printk(KERN_ERR "Allocating domain id array failed\n");
1023 return -ENOMEM;
1024 }
1025 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1026 GFP_KERNEL);
1027 if (!iommu->domains) {
1028 printk(KERN_ERR "Allocating domain array failed\n");
1029 kfree(iommu->domain_ids);
1030 return -ENOMEM;
1031 }
1032
e61d98d8
SS
1033 spin_lock_init(&iommu->lock);
1034
ba395927
KA
1035 /*
1036 * if Caching mode is set, then invalid translations are tagged
1037 * with domainid 0. Hence we need to pre-allocate it.
1038 */
1039 if (cap_caching_mode(iommu->cap))
1040 set_bit(0, iommu->domain_ids);
1041 return 0;
1042}
ba395927 1043
ba395927
KA
1044
1045static void domain_exit(struct dmar_domain *domain);
5e98c4b1 1046static void vm_domain_exit(struct dmar_domain *domain);
e61d98d8
SS
1047
1048void free_dmar_iommu(struct intel_iommu *iommu)
ba395927
KA
1049{
1050 struct dmar_domain *domain;
1051 int i;
c7151a8d 1052 unsigned long flags;
ba395927 1053
ba395927
KA
1054 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1055 for (; i < cap_ndoms(iommu->cap); ) {
1056 domain = iommu->domains[i];
1057 clear_bit(i, iommu->domain_ids);
c7151a8d
WH
1058
1059 spin_lock_irqsave(&domain->iommu_lock, flags);
5e98c4b1
WH
1060 if (--domain->iommu_count == 0) {
1061 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1062 vm_domain_exit(domain);
1063 else
1064 domain_exit(domain);
1065 }
c7151a8d
WH
1066 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1067
ba395927
KA
1068 i = find_next_bit(iommu->domain_ids,
1069 cap_ndoms(iommu->cap), i+1);
1070 }
1071
1072 if (iommu->gcmd & DMA_GCMD_TE)
1073 iommu_disable_translation(iommu);
1074
1075 if (iommu->irq) {
1076 set_irq_data(iommu->irq, NULL);
1077 /* This will mask the irq */
1078 free_irq(iommu->irq, iommu);
1079 destroy_irq(iommu->irq);
1080 }
1081
1082 kfree(iommu->domains);
1083 kfree(iommu->domain_ids);
1084
d9630fe9
WH
1085 g_iommus[iommu->seq_id] = NULL;
1086
1087 /* if all iommus are freed, free g_iommus */
1088 for (i = 0; i < g_num_of_iommus; i++) {
1089 if (g_iommus[i])
1090 break;
1091 }
1092
1093 if (i == g_num_of_iommus)
1094 kfree(g_iommus);
1095
ba395927
KA
1096 /* free context mapping */
1097 free_context_table(iommu);
ba395927
KA
1098}
1099
1100static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
1101{
1102 unsigned long num;
1103 unsigned long ndomains;
1104 struct dmar_domain *domain;
1105 unsigned long flags;
1106
1107 domain = alloc_domain_mem();
1108 if (!domain)
1109 return NULL;
1110
1111 ndomains = cap_ndoms(iommu->cap);
1112
1113 spin_lock_irqsave(&iommu->lock, flags);
1114 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1115 if (num >= ndomains) {
1116 spin_unlock_irqrestore(&iommu->lock, flags);
1117 free_domain_mem(domain);
1118 printk(KERN_ERR "IOMMU: no free domain ids\n");
1119 return NULL;
1120 }
1121
1122 set_bit(num, iommu->domain_ids);
1123 domain->id = num;
8c11e798
WH
1124 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1125 set_bit(iommu->seq_id, &domain->iommu_bmp);
d71a2f33 1126 domain->flags = 0;
ba395927
KA
1127 iommu->domains[num] = domain;
1128 spin_unlock_irqrestore(&iommu->lock, flags);
1129
1130 return domain;
1131}
1132
1133static void iommu_free_domain(struct dmar_domain *domain)
1134{
1135 unsigned long flags;
8c11e798
WH
1136 struct intel_iommu *iommu;
1137
1138 iommu = domain_get_iommu(domain);
ba395927 1139
8c11e798
WH
1140 spin_lock_irqsave(&iommu->lock, flags);
1141 clear_bit(domain->id, iommu->domain_ids);
1142 spin_unlock_irqrestore(&iommu->lock, flags);
ba395927
KA
1143}
1144
1145static struct iova_domain reserved_iova_list;
8a443df4
MG
1146static struct lock_class_key reserved_alloc_key;
1147static struct lock_class_key reserved_rbtree_key;
ba395927
KA
1148
1149static void dmar_init_reserved_ranges(void)
1150{
1151 struct pci_dev *pdev = NULL;
1152 struct iova *iova;
1153 int i;
1154 u64 addr, size;
1155
f661197e 1156 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
ba395927 1157
8a443df4
MG
1158 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1159 &reserved_alloc_key);
1160 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1161 &reserved_rbtree_key);
1162
ba395927
KA
1163 /* IOAPIC ranges shouldn't be accessed by DMA */
1164 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1165 IOVA_PFN(IOAPIC_RANGE_END));
1166 if (!iova)
1167 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1168
1169 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1170 for_each_pci_dev(pdev) {
1171 struct resource *r;
1172
1173 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1174 r = &pdev->resource[i];
1175 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1176 continue;
1177 addr = r->start;
5b6985ce 1178 addr &= PAGE_MASK;
ba395927 1179 size = r->end - addr;
5b6985ce 1180 size = PAGE_ALIGN(size);
ba395927
KA
1181 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1182 IOVA_PFN(size + addr) - 1);
1183 if (!iova)
1184 printk(KERN_ERR "Reserve iova failed\n");
1185 }
1186 }
1187
1188}
1189
1190static void domain_reserve_special_ranges(struct dmar_domain *domain)
1191{
1192 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1193}
1194
1195static inline int guestwidth_to_adjustwidth(int gaw)
1196{
1197 int agaw;
1198 int r = (gaw - 12) % 9;
1199
1200 if (r == 0)
1201 agaw = gaw;
1202 else
1203 agaw = gaw + 9 - r;
1204 if (agaw > 64)
1205 agaw = 64;
1206 return agaw;
1207}
1208
1209static int domain_init(struct dmar_domain *domain, int guest_width)
1210{
1211 struct intel_iommu *iommu;
1212 int adjust_width, agaw;
1213 unsigned long sagaw;
1214
f661197e 1215 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
ba395927 1216 spin_lock_init(&domain->mapping_lock);
c7151a8d 1217 spin_lock_init(&domain->iommu_lock);
ba395927
KA
1218
1219 domain_reserve_special_ranges(domain);
1220
1221 /* calculate AGAW */
8c11e798 1222 iommu = domain_get_iommu(domain);
ba395927
KA
1223 if (guest_width > cap_mgaw(iommu->cap))
1224 guest_width = cap_mgaw(iommu->cap);
1225 domain->gaw = guest_width;
1226 adjust_width = guestwidth_to_adjustwidth(guest_width);
1227 agaw = width_to_agaw(adjust_width);
1228 sagaw = cap_sagaw(iommu->cap);
1229 if (!test_bit(agaw, &sagaw)) {
1230 /* hardware doesn't support it, choose a bigger one */
1231 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1232 agaw = find_next_bit(&sagaw, 5, agaw);
1233 if (agaw >= 5)
1234 return -ENODEV;
1235 }
1236 domain->agaw = agaw;
1237 INIT_LIST_HEAD(&domain->devices);
1238
8e604097
WH
1239 if (ecap_coherent(iommu->ecap))
1240 domain->iommu_coherency = 1;
1241 else
1242 domain->iommu_coherency = 0;
1243
c7151a8d
WH
1244 domain->iommu_count = 1;
1245
ba395927
KA
1246 /* always allocate the top pgd */
1247 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1248 if (!domain->pgd)
1249 return -ENOMEM;
5b6985ce 1250 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
ba395927
KA
1251 return 0;
1252}
1253
1254static void domain_exit(struct dmar_domain *domain)
1255{
1256 u64 end;
1257
1258 /* Domain 0 is reserved, so dont process it */
1259 if (!domain)
1260 return;
1261
1262 domain_remove_dev_info(domain);
1263 /* destroy iovas */
1264 put_iova_domain(&domain->iovad);
1265 end = DOMAIN_MAX_ADDR(domain->gaw);
5b6985ce 1266 end = end & (~PAGE_MASK);
ba395927
KA
1267
1268 /* clear ptes */
1269 dma_pte_clear_range(domain, 0, end);
1270
1271 /* free page tables */
1272 dma_pte_free_pagetable(domain, 0, end);
1273
1274 iommu_free_domain(domain);
1275 free_domain_mem(domain);
1276}
1277
1278static int domain_context_mapping_one(struct dmar_domain *domain,
1279 u8 bus, u8 devfn)
1280{
1281 struct context_entry *context;
ba395927 1282 unsigned long flags;
5331fe6f 1283 struct intel_iommu *iommu;
ea6606b0
WH
1284 struct dma_pte *pgd;
1285 unsigned long num;
1286 unsigned long ndomains;
1287 int id;
1288 int agaw;
ba395927
KA
1289
1290 pr_debug("Set context mapping for %02x:%02x.%d\n",
1291 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1292 BUG_ON(!domain->pgd);
5331fe6f
WH
1293
1294 iommu = device_to_iommu(bus, devfn);
1295 if (!iommu)
1296 return -ENODEV;
1297
ba395927
KA
1298 context = device_to_context_entry(iommu, bus, devfn);
1299 if (!context)
1300 return -ENOMEM;
1301 spin_lock_irqsave(&iommu->lock, flags);
c07e7d21 1302 if (context_present(context)) {
ba395927
KA
1303 spin_unlock_irqrestore(&iommu->lock, flags);
1304 return 0;
1305 }
1306
ea6606b0
WH
1307 id = domain->id;
1308 pgd = domain->pgd;
1309
1310 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
1311 int found = 0;
1312
1313 /* find an available domain id for this device in iommu */
1314 ndomains = cap_ndoms(iommu->cap);
1315 num = find_first_bit(iommu->domain_ids, ndomains);
1316 for (; num < ndomains; ) {
1317 if (iommu->domains[num] == domain) {
1318 id = num;
1319 found = 1;
1320 break;
1321 }
1322 num = find_next_bit(iommu->domain_ids,
1323 cap_ndoms(iommu->cap), num+1);
1324 }
1325
1326 if (found == 0) {
1327 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1328 if (num >= ndomains) {
1329 spin_unlock_irqrestore(&iommu->lock, flags);
1330 printk(KERN_ERR "IOMMU: no free domain ids\n");
1331 return -EFAULT;
1332 }
1333
1334 set_bit(num, iommu->domain_ids);
1335 iommu->domains[num] = domain;
1336 id = num;
1337 }
1338
1339 /* Skip top levels of page tables for
1340 * iommu which has less agaw than default.
1341 */
1342 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1343 pgd = phys_to_virt(dma_pte_addr(pgd));
1344 if (!dma_pte_present(pgd)) {
1345 spin_unlock_irqrestore(&iommu->lock, flags);
1346 return -ENOMEM;
1347 }
1348 }
1349 }
1350
1351 context_set_domain_id(context, id);
1352 context_set_address_width(context, iommu->agaw);
1353 context_set_address_root(context, virt_to_phys(pgd));
c07e7d21
MM
1354 context_set_translation_type(context, CONTEXT_TT_MULTI_LEVEL);
1355 context_set_fault_enable(context);
1356 context_set_present(context);
5331fe6f 1357 domain_flush_cache(domain, context, sizeof(*context));
ba395927
KA
1358
1359 /* it's a non-present to present mapping */
a77b67d4
YS
1360 if (iommu->flush.flush_context(iommu, domain->id,
1361 (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT,
1362 DMA_CCMD_DEVICE_INVL, 1))
ba395927
KA
1363 iommu_flush_write_buffer(iommu);
1364 else
a77b67d4
YS
1365 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH, 0);
1366
ba395927 1367 spin_unlock_irqrestore(&iommu->lock, flags);
c7151a8d
WH
1368
1369 spin_lock_irqsave(&domain->iommu_lock, flags);
1370 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1371 domain->iommu_count++;
1372 domain_update_iommu_coherency(domain);
1373 }
1374 spin_unlock_irqrestore(&domain->iommu_lock, flags);
ba395927
KA
1375 return 0;
1376}
1377
1378static int
1379domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
1380{
1381 int ret;
1382 struct pci_dev *tmp, *parent;
1383
1384 ret = domain_context_mapping_one(domain, pdev->bus->number,
1385 pdev->devfn);
1386 if (ret)
1387 return ret;
1388
1389 /* dependent device mapping */
1390 tmp = pci_find_upstream_pcie_bridge(pdev);
1391 if (!tmp)
1392 return 0;
1393 /* Secondary interface's bus number and devfn 0 */
1394 parent = pdev->bus->self;
1395 while (parent != tmp) {
1396 ret = domain_context_mapping_one(domain, parent->bus->number,
1397 parent->devfn);
1398 if (ret)
1399 return ret;
1400 parent = parent->bus->self;
1401 }
1402 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1403 return domain_context_mapping_one(domain,
1404 tmp->subordinate->number, 0);
1405 else /* this is a legacy PCI bridge */
1406 return domain_context_mapping_one(domain,
1407 tmp->bus->number, tmp->devfn);
1408}
1409
5331fe6f 1410static int domain_context_mapped(struct pci_dev *pdev)
ba395927
KA
1411{
1412 int ret;
1413 struct pci_dev *tmp, *parent;
5331fe6f
WH
1414 struct intel_iommu *iommu;
1415
1416 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
1417 if (!iommu)
1418 return -ENODEV;
ba395927 1419
8c11e798 1420 ret = device_context_mapped(iommu,
ba395927
KA
1421 pdev->bus->number, pdev->devfn);
1422 if (!ret)
1423 return ret;
1424 /* dependent device mapping */
1425 tmp = pci_find_upstream_pcie_bridge(pdev);
1426 if (!tmp)
1427 return ret;
1428 /* Secondary interface's bus number and devfn 0 */
1429 parent = pdev->bus->self;
1430 while (parent != tmp) {
8c11e798 1431 ret = device_context_mapped(iommu, parent->bus->number,
ba395927
KA
1432 parent->devfn);
1433 if (!ret)
1434 return ret;
1435 parent = parent->bus->self;
1436 }
1437 if (tmp->is_pcie)
8c11e798 1438 return device_context_mapped(iommu,
ba395927
KA
1439 tmp->subordinate->number, 0);
1440 else
8c11e798 1441 return device_context_mapped(iommu,
ba395927
KA
1442 tmp->bus->number, tmp->devfn);
1443}
1444
1445static int
1446domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1447 u64 hpa, size_t size, int prot)
1448{
1449 u64 start_pfn, end_pfn;
1450 struct dma_pte *pte;
1451 int index;
5b6985ce
FY
1452 int addr_width = agaw_to_width(domain->agaw);
1453
1454 hpa &= (((u64)1) << addr_width) - 1;
ba395927
KA
1455
1456 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1457 return -EINVAL;
5b6985ce
FY
1458 iova &= PAGE_MASK;
1459 start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1460 end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
ba395927
KA
1461 index = 0;
1462 while (start_pfn < end_pfn) {
5b6985ce 1463 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
ba395927
KA
1464 if (!pte)
1465 return -ENOMEM;
1466 /* We don't need lock here, nobody else
1467 * touches the iova range
1468 */
19c239ce
MM
1469 BUG_ON(dma_pte_addr(pte));
1470 dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT);
1471 dma_set_pte_prot(pte, prot);
5331fe6f 1472 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927
KA
1473 start_pfn++;
1474 index++;
1475 }
1476 return 0;
1477}
1478
c7151a8d 1479static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
ba395927 1480{
c7151a8d
WH
1481 if (!iommu)
1482 return;
8c11e798
WH
1483
1484 clear_context_table(iommu, bus, devfn);
1485 iommu->flush.flush_context(iommu, 0, 0, 0,
a77b67d4 1486 DMA_CCMD_GLOBAL_INVL, 0);
8c11e798 1487 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
a77b67d4 1488 DMA_TLB_GLOBAL_FLUSH, 0);
ba395927
KA
1489}
1490
1491static void domain_remove_dev_info(struct dmar_domain *domain)
1492{
1493 struct device_domain_info *info;
1494 unsigned long flags;
c7151a8d 1495 struct intel_iommu *iommu;
ba395927
KA
1496
1497 spin_lock_irqsave(&device_domain_lock, flags);
1498 while (!list_empty(&domain->devices)) {
1499 info = list_entry(domain->devices.next,
1500 struct device_domain_info, link);
1501 list_del(&info->link);
1502 list_del(&info->global);
1503 if (info->dev)
358dd8ac 1504 info->dev->dev.archdata.iommu = NULL;
ba395927
KA
1505 spin_unlock_irqrestore(&device_domain_lock, flags);
1506
c7151a8d
WH
1507 iommu = device_to_iommu(info->bus, info->devfn);
1508 iommu_detach_dev(iommu, info->bus, info->devfn);
ba395927
KA
1509 free_devinfo_mem(info);
1510
1511 spin_lock_irqsave(&device_domain_lock, flags);
1512 }
1513 spin_unlock_irqrestore(&device_domain_lock, flags);
1514}
1515
1516/*
1517 * find_domain
358dd8ac 1518 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
ba395927 1519 */
38717946 1520static struct dmar_domain *
ba395927
KA
1521find_domain(struct pci_dev *pdev)
1522{
1523 struct device_domain_info *info;
1524
1525 /* No lock here, assumes no domain exit in normal case */
358dd8ac 1526 info = pdev->dev.archdata.iommu;
ba395927
KA
1527 if (info)
1528 return info->domain;
1529 return NULL;
1530}
1531
ba395927
KA
1532/* domain is initialized */
1533static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1534{
1535 struct dmar_domain *domain, *found = NULL;
1536 struct intel_iommu *iommu;
1537 struct dmar_drhd_unit *drhd;
1538 struct device_domain_info *info, *tmp;
1539 struct pci_dev *dev_tmp;
1540 unsigned long flags;
1541 int bus = 0, devfn = 0;
1542
1543 domain = find_domain(pdev);
1544 if (domain)
1545 return domain;
1546
1547 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1548 if (dev_tmp) {
1549 if (dev_tmp->is_pcie) {
1550 bus = dev_tmp->subordinate->number;
1551 devfn = 0;
1552 } else {
1553 bus = dev_tmp->bus->number;
1554 devfn = dev_tmp->devfn;
1555 }
1556 spin_lock_irqsave(&device_domain_lock, flags);
1557 list_for_each_entry(info, &device_domain_list, global) {
1558 if (info->bus == bus && info->devfn == devfn) {
1559 found = info->domain;
1560 break;
1561 }
1562 }
1563 spin_unlock_irqrestore(&device_domain_lock, flags);
1564 /* pcie-pci bridge already has a domain, uses it */
1565 if (found) {
1566 domain = found;
1567 goto found_domain;
1568 }
1569 }
1570
1571 /* Allocate new domain for the device */
1572 drhd = dmar_find_matched_drhd_unit(pdev);
1573 if (!drhd) {
1574 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1575 pci_name(pdev));
1576 return NULL;
1577 }
1578 iommu = drhd->iommu;
1579
1580 domain = iommu_alloc_domain(iommu);
1581 if (!domain)
1582 goto error;
1583
1584 if (domain_init(domain, gaw)) {
1585 domain_exit(domain);
1586 goto error;
1587 }
1588
1589 /* register pcie-to-pci device */
1590 if (dev_tmp) {
1591 info = alloc_devinfo_mem();
1592 if (!info) {
1593 domain_exit(domain);
1594 goto error;
1595 }
1596 info->bus = bus;
1597 info->devfn = devfn;
1598 info->dev = NULL;
1599 info->domain = domain;
1600 /* This domain is shared by devices under p2p bridge */
3b5410e7 1601 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
ba395927
KA
1602
1603 /* pcie-to-pci bridge already has a domain, uses it */
1604 found = NULL;
1605 spin_lock_irqsave(&device_domain_lock, flags);
1606 list_for_each_entry(tmp, &device_domain_list, global) {
1607 if (tmp->bus == bus && tmp->devfn == devfn) {
1608 found = tmp->domain;
1609 break;
1610 }
1611 }
1612 if (found) {
1613 free_devinfo_mem(info);
1614 domain_exit(domain);
1615 domain = found;
1616 } else {
1617 list_add(&info->link, &domain->devices);
1618 list_add(&info->global, &device_domain_list);
1619 }
1620 spin_unlock_irqrestore(&device_domain_lock, flags);
1621 }
1622
1623found_domain:
1624 info = alloc_devinfo_mem();
1625 if (!info)
1626 goto error;
1627 info->bus = pdev->bus->number;
1628 info->devfn = pdev->devfn;
1629 info->dev = pdev;
1630 info->domain = domain;
1631 spin_lock_irqsave(&device_domain_lock, flags);
1632 /* somebody is fast */
1633 found = find_domain(pdev);
1634 if (found != NULL) {
1635 spin_unlock_irqrestore(&device_domain_lock, flags);
1636 if (found != domain) {
1637 domain_exit(domain);
1638 domain = found;
1639 }
1640 free_devinfo_mem(info);
1641 return domain;
1642 }
1643 list_add(&info->link, &domain->devices);
1644 list_add(&info->global, &device_domain_list);
358dd8ac 1645 pdev->dev.archdata.iommu = info;
ba395927
KA
1646 spin_unlock_irqrestore(&device_domain_lock, flags);
1647 return domain;
1648error:
1649 /* recheck it here, maybe others set it */
1650 return find_domain(pdev);
1651}
1652
5b6985ce
FY
1653static int iommu_prepare_identity_map(struct pci_dev *pdev,
1654 unsigned long long start,
1655 unsigned long long end)
ba395927
KA
1656{
1657 struct dmar_domain *domain;
1658 unsigned long size;
5b6985ce 1659 unsigned long long base;
ba395927
KA
1660 int ret;
1661
1662 printk(KERN_INFO
1663 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1664 pci_name(pdev), start, end);
1665 /* page table init */
1666 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1667 if (!domain)
1668 return -ENOMEM;
1669
1670 /* The address might not be aligned */
5b6985ce 1671 base = start & PAGE_MASK;
ba395927 1672 size = end - base;
5b6985ce 1673 size = PAGE_ALIGN(size);
ba395927
KA
1674 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1675 IOVA_PFN(base + size) - 1)) {
1676 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1677 ret = -ENOMEM;
1678 goto error;
1679 }
1680
1681 pr_debug("Mapping reserved region %lx@%llx for %s\n",
1682 size, base, pci_name(pdev));
1683 /*
1684 * RMRR range might have overlap with physical memory range,
1685 * clear it first
1686 */
1687 dma_pte_clear_range(domain, base, base + size);
1688
1689 ret = domain_page_mapping(domain, base, base, size,
1690 DMA_PTE_READ|DMA_PTE_WRITE);
1691 if (ret)
1692 goto error;
1693
1694 /* context entry init */
1695 ret = domain_context_mapping(domain, pdev);
1696 if (!ret)
1697 return 0;
1698error:
1699 domain_exit(domain);
1700 return ret;
1701
1702}
1703
1704static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1705 struct pci_dev *pdev)
1706{
358dd8ac 1707 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927
KA
1708 return 0;
1709 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1710 rmrr->end_address + 1);
1711}
1712
e820482c 1713#ifdef CONFIG_DMAR_GFX_WA
d52d53b8
YL
1714struct iommu_prepare_data {
1715 struct pci_dev *pdev;
1716 int ret;
1717};
1718
1719static int __init iommu_prepare_work_fn(unsigned long start_pfn,
1720 unsigned long end_pfn, void *datax)
1721{
1722 struct iommu_prepare_data *data;
1723
1724 data = (struct iommu_prepare_data *)datax;
1725
1726 data->ret = iommu_prepare_identity_map(data->pdev,
1727 start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
1728 return data->ret;
1729
1730}
1731
1732static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
1733{
1734 int nid;
1735 struct iommu_prepare_data data;
1736
1737 data.pdev = pdev;
1738 data.ret = 0;
1739
1740 for_each_online_node(nid) {
1741 work_with_active_regions(nid, iommu_prepare_work_fn, &data);
1742 if (data.ret)
1743 return data.ret;
1744 }
1745 return data.ret;
1746}
1747
e820482c
KA
1748static void __init iommu_prepare_gfx_mapping(void)
1749{
1750 struct pci_dev *pdev = NULL;
e820482c
KA
1751 int ret;
1752
1753 for_each_pci_dev(pdev) {
358dd8ac 1754 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
e820482c
KA
1755 !IS_GFX_DEVICE(pdev))
1756 continue;
1757 printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1758 pci_name(pdev));
d52d53b8
YL
1759 ret = iommu_prepare_with_active_regions(pdev);
1760 if (ret)
1761 printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
e820482c
KA
1762 }
1763}
2abd7e16
MM
1764#else /* !CONFIG_DMAR_GFX_WA */
1765static inline void iommu_prepare_gfx_mapping(void)
1766{
1767 return;
1768}
e820482c
KA
1769#endif
1770
49a0429e
KA
1771#ifdef CONFIG_DMAR_FLOPPY_WA
1772static inline void iommu_prepare_isa(void)
1773{
1774 struct pci_dev *pdev;
1775 int ret;
1776
1777 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1778 if (!pdev)
1779 return;
1780
1781 printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1782 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1783
1784 if (ret)
1785 printk("IOMMU: Failed to create 0-64M identity map, "
1786 "floppy might not work\n");
1787
1788}
1789#else
1790static inline void iommu_prepare_isa(void)
1791{
1792 return;
1793}
1794#endif /* !CONFIG_DMAR_FLPY_WA */
1795
519a0549 1796static int __init init_dmars(void)
ba395927
KA
1797{
1798 struct dmar_drhd_unit *drhd;
1799 struct dmar_rmrr_unit *rmrr;
1800 struct pci_dev *pdev;
1801 struct intel_iommu *iommu;
9d783ba0 1802 int i, ret;
ba395927
KA
1803
1804 /*
1805 * for each drhd
1806 * allocate root
1807 * initialize and program root entry to not present
1808 * endfor
1809 */
1810 for_each_drhd_unit(drhd) {
5e0d2a6f 1811 g_num_of_iommus++;
1812 /*
1813 * lock not needed as this is only incremented in the single
1814 * threaded kernel __init code path all other access are read
1815 * only
1816 */
1817 }
1818
d9630fe9
WH
1819 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
1820 GFP_KERNEL);
1821 if (!g_iommus) {
1822 printk(KERN_ERR "Allocating global iommu array failed\n");
1823 ret = -ENOMEM;
1824 goto error;
1825 }
1826
80b20dd8 1827 deferred_flush = kzalloc(g_num_of_iommus *
1828 sizeof(struct deferred_flush_tables), GFP_KERNEL);
1829 if (!deferred_flush) {
d9630fe9 1830 kfree(g_iommus);
5e0d2a6f 1831 ret = -ENOMEM;
1832 goto error;
1833 }
1834
5e0d2a6f 1835 for_each_drhd_unit(drhd) {
1836 if (drhd->ignored)
1837 continue;
1886e8a9
SS
1838
1839 iommu = drhd->iommu;
d9630fe9 1840 g_iommus[iommu->seq_id] = iommu;
ba395927 1841
e61d98d8
SS
1842 ret = iommu_init_domains(iommu);
1843 if (ret)
1844 goto error;
1845
ba395927
KA
1846 /*
1847 * TBD:
1848 * we could share the same root & context tables
1849 * amoung all IOMMU's. Need to Split it later.
1850 */
1851 ret = iommu_alloc_root_entry(iommu);
1852 if (ret) {
1853 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
1854 goto error;
1855 }
1856 }
1857
a77b67d4
YS
1858 for_each_drhd_unit(drhd) {
1859 if (drhd->ignored)
1860 continue;
1861
1862 iommu = drhd->iommu;
1863 if (dmar_enable_qi(iommu)) {
1864 /*
1865 * Queued Invalidate not enabled, use Register Based
1866 * Invalidate
1867 */
1868 iommu->flush.flush_context = __iommu_flush_context;
1869 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
1870 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
b4e0f9eb
FT
1871 "invalidation\n",
1872 (unsigned long long)drhd->reg_base_addr);
a77b67d4
YS
1873 } else {
1874 iommu->flush.flush_context = qi_flush_context;
1875 iommu->flush.flush_iotlb = qi_flush_iotlb;
1876 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
b4e0f9eb
FT
1877 "invalidation\n",
1878 (unsigned long long)drhd->reg_base_addr);
a77b67d4
YS
1879 }
1880 }
1881
ba395927
KA
1882 /*
1883 * For each rmrr
1884 * for each dev attached to rmrr
1885 * do
1886 * locate drhd for dev, alloc domain for dev
1887 * allocate free domain
1888 * allocate page table entries for rmrr
1889 * if context not allocated for bus
1890 * allocate and init context
1891 * set present in root table for this bus
1892 * init context with domain, translation etc
1893 * endfor
1894 * endfor
1895 */
1896 for_each_rmrr_units(rmrr) {
ba395927
KA
1897 for (i = 0; i < rmrr->devices_cnt; i++) {
1898 pdev = rmrr->devices[i];
1899 /* some BIOS lists non-exist devices in DMAR table */
1900 if (!pdev)
1901 continue;
1902 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
1903 if (ret)
1904 printk(KERN_ERR
1905 "IOMMU: mapping reserved region failed\n");
1906 }
1907 }
1908
e820482c
KA
1909 iommu_prepare_gfx_mapping();
1910
49a0429e
KA
1911 iommu_prepare_isa();
1912
ba395927
KA
1913 /*
1914 * for each drhd
1915 * enable fault log
1916 * global invalidate context cache
1917 * global invalidate iotlb
1918 * enable translation
1919 */
1920 for_each_drhd_unit(drhd) {
1921 if (drhd->ignored)
1922 continue;
1923 iommu = drhd->iommu;
ba395927
KA
1924
1925 iommu_flush_write_buffer(iommu);
1926
3460a6d9
KA
1927 ret = dmar_set_interrupt(iommu);
1928 if (ret)
1929 goto error;
1930
ba395927
KA
1931 iommu_set_root_entry(iommu);
1932
a77b67d4
YS
1933 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
1934 0);
1935 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
1936 0);
f8bab735 1937 iommu_disable_protect_mem_regions(iommu);
1938
ba395927
KA
1939 ret = iommu_enable_translation(iommu);
1940 if (ret)
1941 goto error;
1942 }
1943
1944 return 0;
1945error:
1946 for_each_drhd_unit(drhd) {
1947 if (drhd->ignored)
1948 continue;
1949 iommu = drhd->iommu;
1950 free_iommu(iommu);
1951 }
d9630fe9 1952 kfree(g_iommus);
ba395927
KA
1953 return ret;
1954}
1955
1956static inline u64 aligned_size(u64 host_addr, size_t size)
1957{
1958 u64 addr;
5b6985ce
FY
1959 addr = (host_addr & (~PAGE_MASK)) + size;
1960 return PAGE_ALIGN(addr);
ba395927
KA
1961}
1962
1963struct iova *
f76aec76 1964iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
ba395927 1965{
ba395927
KA
1966 struct iova *piova;
1967
1968 /* Make sure it's in range */
ba395927 1969 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
f76aec76 1970 if (!size || (IOVA_START_ADDR + size > end))
ba395927
KA
1971 return NULL;
1972
1973 piova = alloc_iova(&domain->iovad,
5b6985ce 1974 size >> PAGE_SHIFT, IOVA_PFN(end), 1);
ba395927
KA
1975 return piova;
1976}
1977
f76aec76
KA
1978static struct iova *
1979__intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
bb9e6d65 1980 size_t size, u64 dma_mask)
ba395927 1981{
ba395927 1982 struct pci_dev *pdev = to_pci_dev(dev);
ba395927 1983 struct iova *iova = NULL;
ba395927 1984
bb9e6d65
FT
1985 if (dma_mask <= DMA_32BIT_MASK || dmar_forcedac)
1986 iova = iommu_alloc_iova(domain, size, dma_mask);
1987 else {
ba395927
KA
1988 /*
1989 * First try to allocate an io virtual address in
1990 * DMA_32BIT_MASK and if that fails then try allocating
3609801e 1991 * from higher range
ba395927 1992 */
f76aec76 1993 iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK);
ba395927 1994 if (!iova)
bb9e6d65 1995 iova = iommu_alloc_iova(domain, size, dma_mask);
ba395927
KA
1996 }
1997
1998 if (!iova) {
1999 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
f76aec76
KA
2000 return NULL;
2001 }
2002
2003 return iova;
2004}
2005
2006static struct dmar_domain *
2007get_valid_domain_for_dev(struct pci_dev *pdev)
2008{
2009 struct dmar_domain *domain;
2010 int ret;
2011
2012 domain = get_domain_for_dev(pdev,
2013 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2014 if (!domain) {
2015 printk(KERN_ERR
2016 "Allocating domain for %s failed", pci_name(pdev));
4fe05bbc 2017 return NULL;
ba395927
KA
2018 }
2019
2020 /* make sure context mapping is ok */
5331fe6f 2021 if (unlikely(!domain_context_mapped(pdev))) {
ba395927 2022 ret = domain_context_mapping(domain, pdev);
f76aec76
KA
2023 if (ret) {
2024 printk(KERN_ERR
2025 "Domain context map for %s failed",
2026 pci_name(pdev));
4fe05bbc 2027 return NULL;
f76aec76 2028 }
ba395927
KA
2029 }
2030
f76aec76
KA
2031 return domain;
2032}
2033
bb9e6d65
FT
2034static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2035 size_t size, int dir, u64 dma_mask)
f76aec76
KA
2036{
2037 struct pci_dev *pdev = to_pci_dev(hwdev);
f76aec76 2038 struct dmar_domain *domain;
5b6985ce 2039 phys_addr_t start_paddr;
f76aec76
KA
2040 struct iova *iova;
2041 int prot = 0;
6865f0d1 2042 int ret;
8c11e798 2043 struct intel_iommu *iommu;
f76aec76
KA
2044
2045 BUG_ON(dir == DMA_NONE);
358dd8ac 2046 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
6865f0d1 2047 return paddr;
f76aec76
KA
2048
2049 domain = get_valid_domain_for_dev(pdev);
2050 if (!domain)
2051 return 0;
2052
8c11e798 2053 iommu = domain_get_iommu(domain);
6865f0d1 2054 size = aligned_size((u64)paddr, size);
f76aec76 2055
bb9e6d65 2056 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
f76aec76
KA
2057 if (!iova)
2058 goto error;
2059
5b6985ce 2060 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
f76aec76 2061
ba395927
KA
2062 /*
2063 * Check if DMAR supports zero-length reads on write only
2064 * mappings..
2065 */
2066 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 2067 !cap_zlr(iommu->cap))
ba395927
KA
2068 prot |= DMA_PTE_READ;
2069 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2070 prot |= DMA_PTE_WRITE;
2071 /*
6865f0d1 2072 * paddr - (paddr + size) might be partial page, we should map the whole
ba395927 2073 * page. Note: if two part of one page are separately mapped, we
6865f0d1 2074 * might have two guest_addr mapping to the same host paddr, but this
ba395927
KA
2075 * is not a big problem
2076 */
6865f0d1 2077 ret = domain_page_mapping(domain, start_paddr,
5b6985ce 2078 ((u64)paddr) & PAGE_MASK, size, prot);
ba395927
KA
2079 if (ret)
2080 goto error;
2081
f76aec76 2082 /* it's a non-present to present mapping */
8c11e798 2083 ret = iommu_flush_iotlb_psi(iommu, domain->id,
5b6985ce 2084 start_paddr, size >> VTD_PAGE_SHIFT, 1);
f76aec76 2085 if (ret)
8c11e798 2086 iommu_flush_write_buffer(iommu);
f76aec76 2087
5b6985ce 2088 return start_paddr + ((u64)paddr & (~PAGE_MASK));
ba395927 2089
ba395927 2090error:
f76aec76
KA
2091 if (iova)
2092 __free_iova(&domain->iovad, iova);
ba395927 2093 printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n",
5b6985ce 2094 pci_name(pdev), size, (unsigned long long)paddr, dir);
ba395927
KA
2095 return 0;
2096}
2097
bb9e6d65
FT
2098dma_addr_t intel_map_single(struct device *hwdev, phys_addr_t paddr,
2099 size_t size, int dir)
2100{
2101 return __intel_map_single(hwdev, paddr, size, dir,
2102 to_pci_dev(hwdev)->dma_mask);
2103}
2104
5e0d2a6f 2105static void flush_unmaps(void)
2106{
80b20dd8 2107 int i, j;
5e0d2a6f 2108
5e0d2a6f 2109 timer_on = 0;
2110
2111 /* just flush them all */
2112 for (i = 0; i < g_num_of_iommus; i++) {
a2bb8459
WH
2113 struct intel_iommu *iommu = g_iommus[i];
2114 if (!iommu)
2115 continue;
c42d9f32 2116
a2bb8459 2117 if (deferred_flush[i].next) {
a77b67d4
YS
2118 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2119 DMA_TLB_GLOBAL_FLUSH, 0);
80b20dd8 2120 for (j = 0; j < deferred_flush[i].next; j++) {
2121 __free_iova(&deferred_flush[i].domain[j]->iovad,
2122 deferred_flush[i].iova[j]);
2123 }
2124 deferred_flush[i].next = 0;
2125 }
5e0d2a6f 2126 }
2127
5e0d2a6f 2128 list_size = 0;
5e0d2a6f 2129}
2130
2131static void flush_unmaps_timeout(unsigned long data)
2132{
80b20dd8 2133 unsigned long flags;
2134
2135 spin_lock_irqsave(&async_umap_flush_lock, flags);
5e0d2a6f 2136 flush_unmaps();
80b20dd8 2137 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
5e0d2a6f 2138}
2139
2140static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2141{
2142 unsigned long flags;
80b20dd8 2143 int next, iommu_id;
8c11e798 2144 struct intel_iommu *iommu;
5e0d2a6f 2145
2146 spin_lock_irqsave(&async_umap_flush_lock, flags);
80b20dd8 2147 if (list_size == HIGH_WATER_MARK)
2148 flush_unmaps();
2149
8c11e798
WH
2150 iommu = domain_get_iommu(dom);
2151 iommu_id = iommu->seq_id;
c42d9f32 2152
80b20dd8 2153 next = deferred_flush[iommu_id].next;
2154 deferred_flush[iommu_id].domain[next] = dom;
2155 deferred_flush[iommu_id].iova[next] = iova;
2156 deferred_flush[iommu_id].next++;
5e0d2a6f 2157
2158 if (!timer_on) {
2159 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2160 timer_on = 1;
2161 }
2162 list_size++;
2163 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2164}
2165
5b6985ce
FY
2166void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2167 int dir)
ba395927 2168{
ba395927 2169 struct pci_dev *pdev = to_pci_dev(dev);
f76aec76
KA
2170 struct dmar_domain *domain;
2171 unsigned long start_addr;
ba395927 2172 struct iova *iova;
8c11e798 2173 struct intel_iommu *iommu;
ba395927 2174
358dd8ac 2175 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
f76aec76 2176 return;
ba395927
KA
2177 domain = find_domain(pdev);
2178 BUG_ON(!domain);
2179
8c11e798
WH
2180 iommu = domain_get_iommu(domain);
2181
ba395927 2182 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
f76aec76 2183 if (!iova)
ba395927 2184 return;
ba395927 2185
5b6985ce 2186 start_addr = iova->pfn_lo << PAGE_SHIFT;
f76aec76 2187 size = aligned_size((u64)dev_addr, size);
ba395927 2188
f76aec76 2189 pr_debug("Device %s unmapping: %lx@%llx\n",
5b6985ce 2190 pci_name(pdev), size, (unsigned long long)start_addr);
ba395927 2191
f76aec76
KA
2192 /* clear the whole page */
2193 dma_pte_clear_range(domain, start_addr, start_addr + size);
2194 /* free page tables */
2195 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
5e0d2a6f 2196 if (intel_iommu_strict) {
8c11e798 2197 if (iommu_flush_iotlb_psi(iommu,
5b6985ce 2198 domain->id, start_addr, size >> VTD_PAGE_SHIFT, 0))
8c11e798 2199 iommu_flush_write_buffer(iommu);
5e0d2a6f 2200 /* free iova */
2201 __free_iova(&domain->iovad, iova);
2202 } else {
2203 add_unmap(domain, iova);
2204 /*
2205 * queue up the release of the unmap to save the 1/6th of the
2206 * cpu used up by the iotlb flush operation...
2207 */
5e0d2a6f 2208 }
ba395927
KA
2209}
2210
5b6985ce
FY
2211void *intel_alloc_coherent(struct device *hwdev, size_t size,
2212 dma_addr_t *dma_handle, gfp_t flags)
ba395927
KA
2213{
2214 void *vaddr;
2215 int order;
2216
5b6985ce 2217 size = PAGE_ALIGN(size);
ba395927
KA
2218 order = get_order(size);
2219 flags &= ~(GFP_DMA | GFP_DMA32);
2220
2221 vaddr = (void *)__get_free_pages(flags, order);
2222 if (!vaddr)
2223 return NULL;
2224 memset(vaddr, 0, size);
2225
bb9e6d65
FT
2226 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2227 DMA_BIDIRECTIONAL,
2228 hwdev->coherent_dma_mask);
ba395927
KA
2229 if (*dma_handle)
2230 return vaddr;
2231 free_pages((unsigned long)vaddr, order);
2232 return NULL;
2233}
2234
5b6985ce
FY
2235void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2236 dma_addr_t dma_handle)
ba395927
KA
2237{
2238 int order;
2239
5b6985ce 2240 size = PAGE_ALIGN(size);
ba395927
KA
2241 order = get_order(size);
2242
2243 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2244 free_pages((unsigned long)vaddr, order);
2245}
2246
12d4d40e 2247#define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg)))
5b6985ce
FY
2248
2249void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2250 int nelems, int dir)
ba395927
KA
2251{
2252 int i;
2253 struct pci_dev *pdev = to_pci_dev(hwdev);
2254 struct dmar_domain *domain;
f76aec76
KA
2255 unsigned long start_addr;
2256 struct iova *iova;
2257 size_t size = 0;
2258 void *addr;
c03ab37c 2259 struct scatterlist *sg;
8c11e798 2260 struct intel_iommu *iommu;
ba395927 2261
358dd8ac 2262 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927
KA
2263 return;
2264
2265 domain = find_domain(pdev);
8c11e798
WH
2266 BUG_ON(!domain);
2267
2268 iommu = domain_get_iommu(domain);
ba395927 2269
c03ab37c 2270 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
f76aec76
KA
2271 if (!iova)
2272 return;
c03ab37c 2273 for_each_sg(sglist, sg, nelems, i) {
f76aec76
KA
2274 addr = SG_ENT_VIRT_ADDRESS(sg);
2275 size += aligned_size((u64)addr, sg->length);
2276 }
2277
5b6985ce 2278 start_addr = iova->pfn_lo << PAGE_SHIFT;
f76aec76
KA
2279
2280 /* clear the whole page */
2281 dma_pte_clear_range(domain, start_addr, start_addr + size);
2282 /* free page tables */
2283 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2284
8c11e798 2285 if (iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
5b6985ce 2286 size >> VTD_PAGE_SHIFT, 0))
8c11e798 2287 iommu_flush_write_buffer(iommu);
f76aec76
KA
2288
2289 /* free iova */
2290 __free_iova(&domain->iovad, iova);
ba395927
KA
2291}
2292
ba395927 2293static int intel_nontranslate_map_sg(struct device *hddev,
c03ab37c 2294 struct scatterlist *sglist, int nelems, int dir)
ba395927
KA
2295{
2296 int i;
c03ab37c 2297 struct scatterlist *sg;
ba395927 2298
c03ab37c 2299 for_each_sg(sglist, sg, nelems, i) {
12d4d40e 2300 BUG_ON(!sg_page(sg));
c03ab37c
FT
2301 sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg));
2302 sg->dma_length = sg->length;
ba395927
KA
2303 }
2304 return nelems;
2305}
2306
5b6985ce
FY
2307int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2308 int dir)
ba395927
KA
2309{
2310 void *addr;
2311 int i;
ba395927
KA
2312 struct pci_dev *pdev = to_pci_dev(hwdev);
2313 struct dmar_domain *domain;
f76aec76
KA
2314 size_t size = 0;
2315 int prot = 0;
2316 size_t offset = 0;
2317 struct iova *iova = NULL;
2318 int ret;
c03ab37c 2319 struct scatterlist *sg;
f76aec76 2320 unsigned long start_addr;
8c11e798 2321 struct intel_iommu *iommu;
ba395927
KA
2322
2323 BUG_ON(dir == DMA_NONE);
358dd8ac 2324 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
c03ab37c 2325 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
ba395927 2326
f76aec76
KA
2327 domain = get_valid_domain_for_dev(pdev);
2328 if (!domain)
2329 return 0;
2330
8c11e798
WH
2331 iommu = domain_get_iommu(domain);
2332
c03ab37c 2333 for_each_sg(sglist, sg, nelems, i) {
ba395927 2334 addr = SG_ENT_VIRT_ADDRESS(sg);
f76aec76
KA
2335 addr = (void *)virt_to_phys(addr);
2336 size += aligned_size((u64)addr, sg->length);
2337 }
2338
bb9e6d65 2339 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
f76aec76 2340 if (!iova) {
c03ab37c 2341 sglist->dma_length = 0;
f76aec76
KA
2342 return 0;
2343 }
2344
2345 /*
2346 * Check if DMAR supports zero-length reads on write only
2347 * mappings..
2348 */
2349 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 2350 !cap_zlr(iommu->cap))
f76aec76
KA
2351 prot |= DMA_PTE_READ;
2352 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2353 prot |= DMA_PTE_WRITE;
2354
5b6985ce 2355 start_addr = iova->pfn_lo << PAGE_SHIFT;
f76aec76 2356 offset = 0;
c03ab37c 2357 for_each_sg(sglist, sg, nelems, i) {
f76aec76
KA
2358 addr = SG_ENT_VIRT_ADDRESS(sg);
2359 addr = (void *)virt_to_phys(addr);
2360 size = aligned_size((u64)addr, sg->length);
2361 ret = domain_page_mapping(domain, start_addr + offset,
5b6985ce 2362 ((u64)addr) & PAGE_MASK,
f76aec76
KA
2363 size, prot);
2364 if (ret) {
2365 /* clear the page */
2366 dma_pte_clear_range(domain, start_addr,
2367 start_addr + offset);
2368 /* free page tables */
2369 dma_pte_free_pagetable(domain, start_addr,
2370 start_addr + offset);
2371 /* free iova */
2372 __free_iova(&domain->iovad, iova);
ba395927
KA
2373 return 0;
2374 }
f76aec76 2375 sg->dma_address = start_addr + offset +
5b6985ce 2376 ((u64)addr & (~PAGE_MASK));
ba395927 2377 sg->dma_length = sg->length;
f76aec76 2378 offset += size;
ba395927
KA
2379 }
2380
ba395927 2381 /* it's a non-present to present mapping */
8c11e798 2382 if (iommu_flush_iotlb_psi(iommu, domain->id,
5b6985ce 2383 start_addr, offset >> VTD_PAGE_SHIFT, 1))
8c11e798 2384 iommu_flush_write_buffer(iommu);
ba395927
KA
2385 return nelems;
2386}
2387
2388static struct dma_mapping_ops intel_dma_ops = {
2389 .alloc_coherent = intel_alloc_coherent,
2390 .free_coherent = intel_free_coherent,
2391 .map_single = intel_map_single,
2392 .unmap_single = intel_unmap_single,
2393 .map_sg = intel_map_sg,
2394 .unmap_sg = intel_unmap_sg,
2395};
2396
2397static inline int iommu_domain_cache_init(void)
2398{
2399 int ret = 0;
2400
2401 iommu_domain_cache = kmem_cache_create("iommu_domain",
2402 sizeof(struct dmar_domain),
2403 0,
2404 SLAB_HWCACHE_ALIGN,
2405
2406 NULL);
2407 if (!iommu_domain_cache) {
2408 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2409 ret = -ENOMEM;
2410 }
2411
2412 return ret;
2413}
2414
2415static inline int iommu_devinfo_cache_init(void)
2416{
2417 int ret = 0;
2418
2419 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2420 sizeof(struct device_domain_info),
2421 0,
2422 SLAB_HWCACHE_ALIGN,
ba395927
KA
2423 NULL);
2424 if (!iommu_devinfo_cache) {
2425 printk(KERN_ERR "Couldn't create devinfo cache\n");
2426 ret = -ENOMEM;
2427 }
2428
2429 return ret;
2430}
2431
2432static inline int iommu_iova_cache_init(void)
2433{
2434 int ret = 0;
2435
2436 iommu_iova_cache = kmem_cache_create("iommu_iova",
2437 sizeof(struct iova),
2438 0,
2439 SLAB_HWCACHE_ALIGN,
ba395927
KA
2440 NULL);
2441 if (!iommu_iova_cache) {
2442 printk(KERN_ERR "Couldn't create iova cache\n");
2443 ret = -ENOMEM;
2444 }
2445
2446 return ret;
2447}
2448
2449static int __init iommu_init_mempool(void)
2450{
2451 int ret;
2452 ret = iommu_iova_cache_init();
2453 if (ret)
2454 return ret;
2455
2456 ret = iommu_domain_cache_init();
2457 if (ret)
2458 goto domain_error;
2459
2460 ret = iommu_devinfo_cache_init();
2461 if (!ret)
2462 return ret;
2463
2464 kmem_cache_destroy(iommu_domain_cache);
2465domain_error:
2466 kmem_cache_destroy(iommu_iova_cache);
2467
2468 return -ENOMEM;
2469}
2470
2471static void __init iommu_exit_mempool(void)
2472{
2473 kmem_cache_destroy(iommu_devinfo_cache);
2474 kmem_cache_destroy(iommu_domain_cache);
2475 kmem_cache_destroy(iommu_iova_cache);
2476
2477}
2478
ba395927
KA
2479static void __init init_no_remapping_devices(void)
2480{
2481 struct dmar_drhd_unit *drhd;
2482
2483 for_each_drhd_unit(drhd) {
2484 if (!drhd->include_all) {
2485 int i;
2486 for (i = 0; i < drhd->devices_cnt; i++)
2487 if (drhd->devices[i] != NULL)
2488 break;
2489 /* ignore DMAR unit if no pci devices exist */
2490 if (i == drhd->devices_cnt)
2491 drhd->ignored = 1;
2492 }
2493 }
2494
2495 if (dmar_map_gfx)
2496 return;
2497
2498 for_each_drhd_unit(drhd) {
2499 int i;
2500 if (drhd->ignored || drhd->include_all)
2501 continue;
2502
2503 for (i = 0; i < drhd->devices_cnt; i++)
2504 if (drhd->devices[i] &&
2505 !IS_GFX_DEVICE(drhd->devices[i]))
2506 break;
2507
2508 if (i < drhd->devices_cnt)
2509 continue;
2510
2511 /* bypass IOMMU if it is just for gfx devices */
2512 drhd->ignored = 1;
2513 for (i = 0; i < drhd->devices_cnt; i++) {
2514 if (!drhd->devices[i])
2515 continue;
358dd8ac 2516 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
ba395927
KA
2517 }
2518 }
2519}
2520
2521int __init intel_iommu_init(void)
2522{
2523 int ret = 0;
2524
ba395927
KA
2525 if (dmar_table_init())
2526 return -ENODEV;
2527
1886e8a9
SS
2528 if (dmar_dev_scope_init())
2529 return -ENODEV;
2530
2ae21010
SS
2531 /*
2532 * Check the need for DMA-remapping initialization now.
2533 * Above initialization will also be used by Interrupt-remapping.
2534 */
2535 if (no_iommu || swiotlb || dmar_disabled)
2536 return -ENODEV;
2537
ba395927
KA
2538 iommu_init_mempool();
2539 dmar_init_reserved_ranges();
2540
2541 init_no_remapping_devices();
2542
2543 ret = init_dmars();
2544 if (ret) {
2545 printk(KERN_ERR "IOMMU: dmar init failed\n");
2546 put_iova_domain(&reserved_iova_list);
2547 iommu_exit_mempool();
2548 return ret;
2549 }
2550 printk(KERN_INFO
2551 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2552
5e0d2a6f 2553 init_timer(&unmap_timer);
ba395927
KA
2554 force_iommu = 1;
2555 dma_ops = &intel_dma_ops;
a8bcbb0d
JR
2556
2557 register_iommu(&intel_iommu_ops);
2558
ba395927
KA
2559 return 0;
2560}
e820482c 2561
c7151a8d
WH
2562static int vm_domain_add_dev_info(struct dmar_domain *domain,
2563 struct pci_dev *pdev)
2564{
2565 struct device_domain_info *info;
2566 unsigned long flags;
2567
2568 info = alloc_devinfo_mem();
2569 if (!info)
2570 return -ENOMEM;
2571
2572 info->bus = pdev->bus->number;
2573 info->devfn = pdev->devfn;
2574 info->dev = pdev;
2575 info->domain = domain;
2576
2577 spin_lock_irqsave(&device_domain_lock, flags);
2578 list_add(&info->link, &domain->devices);
2579 list_add(&info->global, &device_domain_list);
2580 pdev->dev.archdata.iommu = info;
2581 spin_unlock_irqrestore(&device_domain_lock, flags);
2582
2583 return 0;
2584}
2585
2586static void vm_domain_remove_one_dev_info(struct dmar_domain *domain,
2587 struct pci_dev *pdev)
2588{
2589 struct device_domain_info *info;
2590 struct intel_iommu *iommu;
2591 unsigned long flags;
2592 int found = 0;
2593 struct list_head *entry, *tmp;
2594
2595 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
2596 if (!iommu)
2597 return;
2598
2599 spin_lock_irqsave(&device_domain_lock, flags);
2600 list_for_each_safe(entry, tmp, &domain->devices) {
2601 info = list_entry(entry, struct device_domain_info, link);
2602 if (info->bus == pdev->bus->number &&
2603 info->devfn == pdev->devfn) {
2604 list_del(&info->link);
2605 list_del(&info->global);
2606 if (info->dev)
2607 info->dev->dev.archdata.iommu = NULL;
2608 spin_unlock_irqrestore(&device_domain_lock, flags);
2609
2610 iommu_detach_dev(iommu, info->bus, info->devfn);
2611 free_devinfo_mem(info);
2612
2613 spin_lock_irqsave(&device_domain_lock, flags);
2614
2615 if (found)
2616 break;
2617 else
2618 continue;
2619 }
2620
2621 /* if there is no other devices under the same iommu
2622 * owned by this domain, clear this iommu in iommu_bmp
2623 * update iommu count and coherency
2624 */
2625 if (device_to_iommu(info->bus, info->devfn) == iommu)
2626 found = 1;
2627 }
2628
2629 if (found == 0) {
2630 unsigned long tmp_flags;
2631 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
2632 clear_bit(iommu->seq_id, &domain->iommu_bmp);
2633 domain->iommu_count--;
2634 domain_update_iommu_coherency(domain);
2635 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
2636 }
2637
2638 spin_unlock_irqrestore(&device_domain_lock, flags);
2639}
2640
2641static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
2642{
2643 struct device_domain_info *info;
2644 struct intel_iommu *iommu;
2645 unsigned long flags1, flags2;
2646
2647 spin_lock_irqsave(&device_domain_lock, flags1);
2648 while (!list_empty(&domain->devices)) {
2649 info = list_entry(domain->devices.next,
2650 struct device_domain_info, link);
2651 list_del(&info->link);
2652 list_del(&info->global);
2653 if (info->dev)
2654 info->dev->dev.archdata.iommu = NULL;
2655
2656 spin_unlock_irqrestore(&device_domain_lock, flags1);
2657
2658 iommu = device_to_iommu(info->bus, info->devfn);
2659 iommu_detach_dev(iommu, info->bus, info->devfn);
2660
2661 /* clear this iommu in iommu_bmp, update iommu count
2662 * and coherency
2663 */
2664 spin_lock_irqsave(&domain->iommu_lock, flags2);
2665 if (test_and_clear_bit(iommu->seq_id,
2666 &domain->iommu_bmp)) {
2667 domain->iommu_count--;
2668 domain_update_iommu_coherency(domain);
2669 }
2670 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
2671
2672 free_devinfo_mem(info);
2673 spin_lock_irqsave(&device_domain_lock, flags1);
2674 }
2675 spin_unlock_irqrestore(&device_domain_lock, flags1);
2676}
2677
5e98c4b1
WH
2678/* domain id for virtual machine, it won't be set in context */
2679static unsigned long vm_domid;
2680
fe40f1e0
WH
2681static int vm_domain_min_agaw(struct dmar_domain *domain)
2682{
2683 int i;
2684 int min_agaw = domain->agaw;
2685
2686 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
2687 for (; i < g_num_of_iommus; ) {
2688 if (min_agaw > g_iommus[i]->agaw)
2689 min_agaw = g_iommus[i]->agaw;
2690
2691 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
2692 }
2693
2694 return min_agaw;
2695}
2696
5e98c4b1
WH
2697static struct dmar_domain *iommu_alloc_vm_domain(void)
2698{
2699 struct dmar_domain *domain;
2700
2701 domain = alloc_domain_mem();
2702 if (!domain)
2703 return NULL;
2704
2705 domain->id = vm_domid++;
2706 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
2707 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
2708
2709 return domain;
2710}
2711
2712static int vm_domain_init(struct dmar_domain *domain, int guest_width)
2713{
2714 int adjust_width;
2715
2716 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
2717 spin_lock_init(&domain->mapping_lock);
2718 spin_lock_init(&domain->iommu_lock);
2719
2720 domain_reserve_special_ranges(domain);
2721
2722 /* calculate AGAW */
2723 domain->gaw = guest_width;
2724 adjust_width = guestwidth_to_adjustwidth(guest_width);
2725 domain->agaw = width_to_agaw(adjust_width);
2726
2727 INIT_LIST_HEAD(&domain->devices);
2728
2729 domain->iommu_count = 0;
2730 domain->iommu_coherency = 0;
fe40f1e0 2731 domain->max_addr = 0;
5e98c4b1
WH
2732
2733 /* always allocate the top pgd */
2734 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
2735 if (!domain->pgd)
2736 return -ENOMEM;
2737 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
2738 return 0;
2739}
2740
2741static void iommu_free_vm_domain(struct dmar_domain *domain)
2742{
2743 unsigned long flags;
2744 struct dmar_drhd_unit *drhd;
2745 struct intel_iommu *iommu;
2746 unsigned long i;
2747 unsigned long ndomains;
2748
2749 for_each_drhd_unit(drhd) {
2750 if (drhd->ignored)
2751 continue;
2752 iommu = drhd->iommu;
2753
2754 ndomains = cap_ndoms(iommu->cap);
2755 i = find_first_bit(iommu->domain_ids, ndomains);
2756 for (; i < ndomains; ) {
2757 if (iommu->domains[i] == domain) {
2758 spin_lock_irqsave(&iommu->lock, flags);
2759 clear_bit(i, iommu->domain_ids);
2760 iommu->domains[i] = NULL;
2761 spin_unlock_irqrestore(&iommu->lock, flags);
2762 break;
2763 }
2764 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
2765 }
2766 }
2767}
2768
2769static void vm_domain_exit(struct dmar_domain *domain)
2770{
2771 u64 end;
2772
2773 /* Domain 0 is reserved, so dont process it */
2774 if (!domain)
2775 return;
2776
2777 vm_domain_remove_all_dev_info(domain);
2778 /* destroy iovas */
2779 put_iova_domain(&domain->iovad);
2780 end = DOMAIN_MAX_ADDR(domain->gaw);
2781 end = end & (~VTD_PAGE_MASK);
2782
2783 /* clear ptes */
2784 dma_pte_clear_range(domain, 0, end);
2785
2786 /* free page tables */
2787 dma_pte_free_pagetable(domain, 0, end);
2788
2789 iommu_free_vm_domain(domain);
2790 free_domain_mem(domain);
2791}
2792
5d450806 2793static int intel_iommu_domain_init(struct iommu_domain *domain)
38717946 2794{
5d450806 2795 struct dmar_domain *dmar_domain;
38717946 2796
5d450806
JR
2797 dmar_domain = iommu_alloc_vm_domain();
2798 if (!dmar_domain) {
38717946 2799 printk(KERN_ERR
5d450806
JR
2800 "intel_iommu_domain_init: dmar_domain == NULL\n");
2801 return -ENOMEM;
38717946 2802 }
5d450806 2803 if (vm_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
38717946 2804 printk(KERN_ERR
5d450806
JR
2805 "intel_iommu_domain_init() failed\n");
2806 vm_domain_exit(dmar_domain);
2807 return -ENOMEM;
38717946 2808 }
5d450806 2809 domain->priv = dmar_domain;
faa3d6f5 2810
5d450806 2811 return 0;
38717946 2812}
38717946 2813
5d450806 2814static void intel_iommu_domain_destroy(struct iommu_domain *domain)
38717946 2815{
5d450806
JR
2816 struct dmar_domain *dmar_domain = domain->priv;
2817
2818 domain->priv = NULL;
2819 vm_domain_exit(dmar_domain);
38717946 2820}
38717946 2821
4c5478c9
JR
2822static int intel_iommu_attach_device(struct iommu_domain *domain,
2823 struct device *dev)
38717946 2824{
4c5478c9
JR
2825 struct dmar_domain *dmar_domain = domain->priv;
2826 struct pci_dev *pdev = to_pci_dev(dev);
fe40f1e0
WH
2827 struct intel_iommu *iommu;
2828 int addr_width;
2829 u64 end;
faa3d6f5
WH
2830 int ret;
2831
2832 /* normally pdev is not mapped */
2833 if (unlikely(domain_context_mapped(pdev))) {
2834 struct dmar_domain *old_domain;
2835
2836 old_domain = find_domain(pdev);
2837 if (old_domain) {
4c5478c9 2838 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
faa3d6f5
WH
2839 vm_domain_remove_one_dev_info(old_domain, pdev);
2840 else
2841 domain_remove_dev_info(old_domain);
2842 }
2843 }
2844
fe40f1e0
WH
2845 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
2846 if (!iommu)
2847 return -ENODEV;
2848
2849 /* check if this iommu agaw is sufficient for max mapped address */
2850 addr_width = agaw_to_width(iommu->agaw);
2851 end = DOMAIN_MAX_ADDR(addr_width);
2852 end = end & VTD_PAGE_MASK;
4c5478c9 2853 if (end < dmar_domain->max_addr) {
fe40f1e0
WH
2854 printk(KERN_ERR "%s: iommu agaw (%d) is not "
2855 "sufficient for the mapped address (%llx)\n",
4c5478c9 2856 __func__, iommu->agaw, dmar_domain->max_addr);
fe40f1e0
WH
2857 return -EFAULT;
2858 }
2859
4c5478c9 2860 ret = domain_context_mapping(dmar_domain, pdev);
faa3d6f5
WH
2861 if (ret)
2862 return ret;
2863
4c5478c9 2864 ret = vm_domain_add_dev_info(dmar_domain, pdev);
faa3d6f5 2865 return ret;
38717946 2866}
38717946 2867
4c5478c9
JR
2868static void intel_iommu_detach_device(struct iommu_domain *domain,
2869 struct device *dev)
38717946 2870{
4c5478c9
JR
2871 struct dmar_domain *dmar_domain = domain->priv;
2872 struct pci_dev *pdev = to_pci_dev(dev);
2873
2874 vm_domain_remove_one_dev_info(dmar_domain, pdev);
faa3d6f5 2875}
c7151a8d 2876
dde57a21
JR
2877static int intel_iommu_map_range(struct iommu_domain *domain,
2878 unsigned long iova, phys_addr_t hpa,
2879 size_t size, int iommu_prot)
faa3d6f5 2880{
dde57a21 2881 struct dmar_domain *dmar_domain = domain->priv;
fe40f1e0
WH
2882 u64 max_addr;
2883 int addr_width;
dde57a21 2884 int prot = 0;
faa3d6f5 2885 int ret;
fe40f1e0 2886
dde57a21
JR
2887 if (iommu_prot & IOMMU_READ)
2888 prot |= DMA_PTE_READ;
2889 if (iommu_prot & IOMMU_WRITE)
2890 prot |= DMA_PTE_WRITE;
2891
fe40f1e0 2892 max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
dde57a21 2893 if (dmar_domain->max_addr < max_addr) {
fe40f1e0
WH
2894 int min_agaw;
2895 u64 end;
2896
2897 /* check if minimum agaw is sufficient for mapped address */
dde57a21 2898 min_agaw = vm_domain_min_agaw(dmar_domain);
fe40f1e0
WH
2899 addr_width = agaw_to_width(min_agaw);
2900 end = DOMAIN_MAX_ADDR(addr_width);
2901 end = end & VTD_PAGE_MASK;
2902 if (end < max_addr) {
2903 printk(KERN_ERR "%s: iommu agaw (%d) is not "
2904 "sufficient for the mapped address (%llx)\n",
2905 __func__, min_agaw, max_addr);
2906 return -EFAULT;
2907 }
dde57a21 2908 dmar_domain->max_addr = max_addr;
fe40f1e0
WH
2909 }
2910
dde57a21 2911 ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
faa3d6f5 2912 return ret;
38717946 2913}
38717946 2914
dde57a21
JR
2915static void intel_iommu_unmap_range(struct iommu_domain *domain,
2916 unsigned long iova, size_t size)
38717946 2917{
dde57a21 2918 struct dmar_domain *dmar_domain = domain->priv;
faa3d6f5
WH
2919 dma_addr_t base;
2920
2921 /* The address might not be aligned */
2922 base = iova & VTD_PAGE_MASK;
2923 size = VTD_PAGE_ALIGN(size);
dde57a21 2924 dma_pte_clear_range(dmar_domain, base, base + size);
fe40f1e0 2925
dde57a21
JR
2926 if (dmar_domain->max_addr == base + size)
2927 dmar_domain->max_addr = base;
38717946 2928}
38717946 2929
d14d6577
JR
2930static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
2931 unsigned long iova)
38717946 2932{
d14d6577 2933 struct dmar_domain *dmar_domain = domain->priv;
38717946 2934 struct dma_pte *pte;
faa3d6f5 2935 u64 phys = 0;
38717946 2936
d14d6577 2937 pte = addr_to_dma_pte(dmar_domain, iova);
38717946 2938 if (pte)
faa3d6f5 2939 phys = dma_pte_addr(pte);
38717946 2940
faa3d6f5 2941 return phys;
38717946 2942}
a8bcbb0d
JR
2943
2944static struct iommu_ops intel_iommu_ops = {
2945 .domain_init = intel_iommu_domain_init,
2946 .domain_destroy = intel_iommu_domain_destroy,
2947 .attach_dev = intel_iommu_attach_device,
2948 .detach_dev = intel_iommu_detach_device,
2949 .map = intel_iommu_map_range,
2950 .unmap = intel_iommu_unmap_range,
2951 .iova_to_phys = intel_iommu_iova_to_phys,
2952};
9af88143
DW
2953
2954static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
2955{
2956 /*
2957 * Mobile 4 Series Chipset neglects to set RWBF capability,
2958 * but needs it:
2959 */
2960 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
2961 rwbf_quirk = 1;
2962}
2963
2964DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);