]>
Commit | Line | Data |
---|---|---|
ba395927 KA |
1 | /* |
2 | * Copyright (c) 2006, Intel Corporation. | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or modify it | |
5 | * under the terms and conditions of the GNU General Public License, | |
6 | * version 2, as published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope it will be useful, but WITHOUT | |
9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
11 | * more details. | |
12 | * | |
13 | * You should have received a copy of the GNU General Public License along with | |
14 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |
15 | * Place - Suite 330, Boston, MA 02111-1307 USA. | |
16 | * | |
98bcef56 | 17 | * Copyright (C) 2006-2008 Intel Corporation |
18 | * Author: Ashok Raj <ashok.raj@intel.com> | |
19 | * Author: Shaohua Li <shaohua.li@intel.com> | |
20 | * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> | |
ba395927 KA |
21 | */ |
22 | ||
23 | #include <linux/init.h> | |
24 | #include <linux/bitmap.h> | |
5e0d2a6f | 25 | #include <linux/debugfs.h> |
ba395927 KA |
26 | #include <linux/slab.h> |
27 | #include <linux/irq.h> | |
28 | #include <linux/interrupt.h> | |
29 | #include <linux/sysdev.h> | |
30 | #include <linux/spinlock.h> | |
31 | #include <linux/pci.h> | |
32 | #include <linux/dmar.h> | |
33 | #include <linux/dma-mapping.h> | |
34 | #include <linux/mempool.h> | |
5e0d2a6f | 35 | #include <linux/timer.h> |
ba395927 KA |
36 | #include "iova.h" |
37 | #include "intel-iommu.h" | |
38 | #include <asm/proto.h> /* force_iommu in this header in x86-64*/ | |
39 | #include <asm/cacheflush.h> | |
395624fc | 40 | #include <asm/gart.h> |
ba395927 KA |
41 | #include "pci.h" |
42 | ||
43 | #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) | |
44 | #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) | |
45 | ||
46 | #define IOAPIC_RANGE_START (0xfee00000) | |
47 | #define IOAPIC_RANGE_END (0xfeefffff) | |
48 | #define IOVA_START_ADDR (0x1000) | |
49 | ||
50 | #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48 | |
51 | ||
ba395927 KA |
52 | #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1) |
53 | ||
5e0d2a6f | 54 | |
55 | static void flush_unmaps_timeout(unsigned long data); | |
56 | ||
57 | DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0); | |
58 | ||
80b20dd8 | 59 | #define HIGH_WATER_MARK 250 |
60 | struct deferred_flush_tables { | |
61 | int next; | |
62 | struct iova *iova[HIGH_WATER_MARK]; | |
63 | struct dmar_domain *domain[HIGH_WATER_MARK]; | |
64 | }; | |
65 | ||
66 | static struct deferred_flush_tables *deferred_flush; | |
67 | ||
5e0d2a6f | 68 | /* bitmap for indexing intel_iommus */ |
5e0d2a6f | 69 | static int g_num_of_iommus; |
70 | ||
71 | static DEFINE_SPINLOCK(async_umap_flush_lock); | |
72 | static LIST_HEAD(unmaps_to_do); | |
73 | ||
74 | static int timer_on; | |
75 | static long list_size; | |
5e0d2a6f | 76 | |
ba395927 KA |
77 | static void domain_remove_dev_info(struct dmar_domain *domain); |
78 | ||
79 | static int dmar_disabled; | |
80 | static int __initdata dmar_map_gfx = 1; | |
7d3b03ce | 81 | static int dmar_forcedac; |
5e0d2a6f | 82 | static int intel_iommu_strict; |
ba395927 KA |
83 | |
84 | #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1)) | |
85 | static DEFINE_SPINLOCK(device_domain_lock); | |
86 | static LIST_HEAD(device_domain_list); | |
87 | ||
88 | static int __init intel_iommu_setup(char *str) | |
89 | { | |
90 | if (!str) | |
91 | return -EINVAL; | |
92 | while (*str) { | |
93 | if (!strncmp(str, "off", 3)) { | |
94 | dmar_disabled = 1; | |
95 | printk(KERN_INFO"Intel-IOMMU: disabled\n"); | |
96 | } else if (!strncmp(str, "igfx_off", 8)) { | |
97 | dmar_map_gfx = 0; | |
98 | printk(KERN_INFO | |
99 | "Intel-IOMMU: disable GFX device mapping\n"); | |
7d3b03ce | 100 | } else if (!strncmp(str, "forcedac", 8)) { |
5e0d2a6f | 101 | printk(KERN_INFO |
7d3b03ce KA |
102 | "Intel-IOMMU: Forcing DAC for PCI devices\n"); |
103 | dmar_forcedac = 1; | |
5e0d2a6f | 104 | } else if (!strncmp(str, "strict", 6)) { |
105 | printk(KERN_INFO | |
106 | "Intel-IOMMU: disable batched IOTLB flush\n"); | |
107 | intel_iommu_strict = 1; | |
ba395927 KA |
108 | } |
109 | ||
110 | str += strcspn(str, ","); | |
111 | while (*str == ',') | |
112 | str++; | |
113 | } | |
114 | return 0; | |
115 | } | |
116 | __setup("intel_iommu=", intel_iommu_setup); | |
117 | ||
118 | static struct kmem_cache *iommu_domain_cache; | |
119 | static struct kmem_cache *iommu_devinfo_cache; | |
120 | static struct kmem_cache *iommu_iova_cache; | |
121 | ||
eb3fa7cb KA |
122 | static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep) |
123 | { | |
124 | unsigned int flags; | |
125 | void *vaddr; | |
126 | ||
127 | /* trying to avoid low memory issues */ | |
128 | flags = current->flags & PF_MEMALLOC; | |
129 | current->flags |= PF_MEMALLOC; | |
130 | vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC); | |
131 | current->flags &= (~PF_MEMALLOC | flags); | |
132 | return vaddr; | |
133 | } | |
134 | ||
135 | ||
ba395927 KA |
136 | static inline void *alloc_pgtable_page(void) |
137 | { | |
eb3fa7cb KA |
138 | unsigned int flags; |
139 | void *vaddr; | |
140 | ||
141 | /* trying to avoid low memory issues */ | |
142 | flags = current->flags & PF_MEMALLOC; | |
143 | current->flags |= PF_MEMALLOC; | |
144 | vaddr = (void *)get_zeroed_page(GFP_ATOMIC); | |
145 | current->flags &= (~PF_MEMALLOC | flags); | |
146 | return vaddr; | |
ba395927 KA |
147 | } |
148 | ||
149 | static inline void free_pgtable_page(void *vaddr) | |
150 | { | |
151 | free_page((unsigned long)vaddr); | |
152 | } | |
153 | ||
154 | static inline void *alloc_domain_mem(void) | |
155 | { | |
eb3fa7cb | 156 | return iommu_kmem_cache_alloc(iommu_domain_cache); |
ba395927 KA |
157 | } |
158 | ||
159 | static inline void free_domain_mem(void *vaddr) | |
160 | { | |
161 | kmem_cache_free(iommu_domain_cache, vaddr); | |
162 | } | |
163 | ||
164 | static inline void * alloc_devinfo_mem(void) | |
165 | { | |
eb3fa7cb | 166 | return iommu_kmem_cache_alloc(iommu_devinfo_cache); |
ba395927 KA |
167 | } |
168 | ||
169 | static inline void free_devinfo_mem(void *vaddr) | |
170 | { | |
171 | kmem_cache_free(iommu_devinfo_cache, vaddr); | |
172 | } | |
173 | ||
174 | struct iova *alloc_iova_mem(void) | |
175 | { | |
eb3fa7cb | 176 | return iommu_kmem_cache_alloc(iommu_iova_cache); |
ba395927 KA |
177 | } |
178 | ||
179 | void free_iova_mem(struct iova *iova) | |
180 | { | |
181 | kmem_cache_free(iommu_iova_cache, iova); | |
182 | } | |
183 | ||
ba395927 KA |
184 | /* Gets context entry for a given bus and devfn */ |
185 | static struct context_entry * device_to_context_entry(struct intel_iommu *iommu, | |
186 | u8 bus, u8 devfn) | |
187 | { | |
188 | struct root_entry *root; | |
189 | struct context_entry *context; | |
190 | unsigned long phy_addr; | |
191 | unsigned long flags; | |
192 | ||
193 | spin_lock_irqsave(&iommu->lock, flags); | |
194 | root = &iommu->root_entry[bus]; | |
195 | context = get_context_addr_from_root(root); | |
196 | if (!context) { | |
197 | context = (struct context_entry *)alloc_pgtable_page(); | |
198 | if (!context) { | |
199 | spin_unlock_irqrestore(&iommu->lock, flags); | |
200 | return NULL; | |
201 | } | |
202 | __iommu_flush_cache(iommu, (void *)context, PAGE_SIZE_4K); | |
203 | phy_addr = virt_to_phys((void *)context); | |
204 | set_root_value(root, phy_addr); | |
205 | set_root_present(root); | |
206 | __iommu_flush_cache(iommu, root, sizeof(*root)); | |
207 | } | |
208 | spin_unlock_irqrestore(&iommu->lock, flags); | |
209 | return &context[devfn]; | |
210 | } | |
211 | ||
212 | static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) | |
213 | { | |
214 | struct root_entry *root; | |
215 | struct context_entry *context; | |
216 | int ret; | |
217 | unsigned long flags; | |
218 | ||
219 | spin_lock_irqsave(&iommu->lock, flags); | |
220 | root = &iommu->root_entry[bus]; | |
221 | context = get_context_addr_from_root(root); | |
222 | if (!context) { | |
223 | ret = 0; | |
224 | goto out; | |
225 | } | |
226 | ret = context_present(context[devfn]); | |
227 | out: | |
228 | spin_unlock_irqrestore(&iommu->lock, flags); | |
229 | return ret; | |
230 | } | |
231 | ||
232 | static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn) | |
233 | { | |
234 | struct root_entry *root; | |
235 | struct context_entry *context; | |
236 | unsigned long flags; | |
237 | ||
238 | spin_lock_irqsave(&iommu->lock, flags); | |
239 | root = &iommu->root_entry[bus]; | |
240 | context = get_context_addr_from_root(root); | |
241 | if (context) { | |
242 | context_clear_entry(context[devfn]); | |
243 | __iommu_flush_cache(iommu, &context[devfn], \ | |
244 | sizeof(*context)); | |
245 | } | |
246 | spin_unlock_irqrestore(&iommu->lock, flags); | |
247 | } | |
248 | ||
249 | static void free_context_table(struct intel_iommu *iommu) | |
250 | { | |
251 | struct root_entry *root; | |
252 | int i; | |
253 | unsigned long flags; | |
254 | struct context_entry *context; | |
255 | ||
256 | spin_lock_irqsave(&iommu->lock, flags); | |
257 | if (!iommu->root_entry) { | |
258 | goto out; | |
259 | } | |
260 | for (i = 0; i < ROOT_ENTRY_NR; i++) { | |
261 | root = &iommu->root_entry[i]; | |
262 | context = get_context_addr_from_root(root); | |
263 | if (context) | |
264 | free_pgtable_page(context); | |
265 | } | |
266 | free_pgtable_page(iommu->root_entry); | |
267 | iommu->root_entry = NULL; | |
268 | out: | |
269 | spin_unlock_irqrestore(&iommu->lock, flags); | |
270 | } | |
271 | ||
272 | /* page table handling */ | |
273 | #define LEVEL_STRIDE (9) | |
274 | #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) | |
275 | ||
276 | static inline int agaw_to_level(int agaw) | |
277 | { | |
278 | return agaw + 2; | |
279 | } | |
280 | ||
281 | static inline int agaw_to_width(int agaw) | |
282 | { | |
283 | return 30 + agaw * LEVEL_STRIDE; | |
284 | ||
285 | } | |
286 | ||
287 | static inline int width_to_agaw(int width) | |
288 | { | |
289 | return (width - 30) / LEVEL_STRIDE; | |
290 | } | |
291 | ||
292 | static inline unsigned int level_to_offset_bits(int level) | |
293 | { | |
294 | return (12 + (level - 1) * LEVEL_STRIDE); | |
295 | } | |
296 | ||
297 | static inline int address_level_offset(u64 addr, int level) | |
298 | { | |
299 | return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK); | |
300 | } | |
301 | ||
302 | static inline u64 level_mask(int level) | |
303 | { | |
304 | return ((u64)-1 << level_to_offset_bits(level)); | |
305 | } | |
306 | ||
307 | static inline u64 level_size(int level) | |
308 | { | |
309 | return ((u64)1 << level_to_offset_bits(level)); | |
310 | } | |
311 | ||
312 | static inline u64 align_to_level(u64 addr, int level) | |
313 | { | |
314 | return ((addr + level_size(level) - 1) & level_mask(level)); | |
315 | } | |
316 | ||
317 | static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr) | |
318 | { | |
319 | int addr_width = agaw_to_width(domain->agaw); | |
320 | struct dma_pte *parent, *pte = NULL; | |
321 | int level = agaw_to_level(domain->agaw); | |
322 | int offset; | |
323 | unsigned long flags; | |
324 | ||
325 | BUG_ON(!domain->pgd); | |
326 | ||
327 | addr &= (((u64)1) << addr_width) - 1; | |
328 | parent = domain->pgd; | |
329 | ||
330 | spin_lock_irqsave(&domain->mapping_lock, flags); | |
331 | while (level > 0) { | |
332 | void *tmp_page; | |
333 | ||
334 | offset = address_level_offset(addr, level); | |
335 | pte = &parent[offset]; | |
336 | if (level == 1) | |
337 | break; | |
338 | ||
339 | if (!dma_pte_present(*pte)) { | |
340 | tmp_page = alloc_pgtable_page(); | |
341 | ||
342 | if (!tmp_page) { | |
343 | spin_unlock_irqrestore(&domain->mapping_lock, | |
344 | flags); | |
345 | return NULL; | |
346 | } | |
347 | __iommu_flush_cache(domain->iommu, tmp_page, | |
348 | PAGE_SIZE_4K); | |
349 | dma_set_pte_addr(*pte, virt_to_phys(tmp_page)); | |
350 | /* | |
351 | * high level table always sets r/w, last level page | |
352 | * table control read/write | |
353 | */ | |
354 | dma_set_pte_readable(*pte); | |
355 | dma_set_pte_writable(*pte); | |
356 | __iommu_flush_cache(domain->iommu, pte, sizeof(*pte)); | |
357 | } | |
358 | parent = phys_to_virt(dma_pte_addr(*pte)); | |
359 | level--; | |
360 | } | |
361 | ||
362 | spin_unlock_irqrestore(&domain->mapping_lock, flags); | |
363 | return pte; | |
364 | } | |
365 | ||
366 | /* return address's pte at specific level */ | |
367 | static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr, | |
368 | int level) | |
369 | { | |
370 | struct dma_pte *parent, *pte = NULL; | |
371 | int total = agaw_to_level(domain->agaw); | |
372 | int offset; | |
373 | ||
374 | parent = domain->pgd; | |
375 | while (level <= total) { | |
376 | offset = address_level_offset(addr, total); | |
377 | pte = &parent[offset]; | |
378 | if (level == total) | |
379 | return pte; | |
380 | ||
381 | if (!dma_pte_present(*pte)) | |
382 | break; | |
383 | parent = phys_to_virt(dma_pte_addr(*pte)); | |
384 | total--; | |
385 | } | |
386 | return NULL; | |
387 | } | |
388 | ||
389 | /* clear one page's page table */ | |
390 | static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr) | |
391 | { | |
392 | struct dma_pte *pte = NULL; | |
393 | ||
394 | /* get last level pte */ | |
395 | pte = dma_addr_level_pte(domain, addr, 1); | |
396 | ||
397 | if (pte) { | |
398 | dma_clear_pte(*pte); | |
399 | __iommu_flush_cache(domain->iommu, pte, sizeof(*pte)); | |
400 | } | |
401 | } | |
402 | ||
403 | /* clear last level pte, a tlb flush should be followed */ | |
404 | static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end) | |
405 | { | |
406 | int addr_width = agaw_to_width(domain->agaw); | |
407 | ||
408 | start &= (((u64)1) << addr_width) - 1; | |
409 | end &= (((u64)1) << addr_width) - 1; | |
410 | /* in case it's partial page */ | |
411 | start = PAGE_ALIGN_4K(start); | |
412 | end &= PAGE_MASK_4K; | |
413 | ||
414 | /* we don't need lock here, nobody else touches the iova range */ | |
415 | while (start < end) { | |
416 | dma_pte_clear_one(domain, start); | |
417 | start += PAGE_SIZE_4K; | |
418 | } | |
419 | } | |
420 | ||
421 | /* free page table pages. last level pte should already be cleared */ | |
422 | static void dma_pte_free_pagetable(struct dmar_domain *domain, | |
423 | u64 start, u64 end) | |
424 | { | |
425 | int addr_width = agaw_to_width(domain->agaw); | |
426 | struct dma_pte *pte; | |
427 | int total = agaw_to_level(domain->agaw); | |
428 | int level; | |
429 | u64 tmp; | |
430 | ||
431 | start &= (((u64)1) << addr_width) - 1; | |
432 | end &= (((u64)1) << addr_width) - 1; | |
433 | ||
434 | /* we don't need lock here, nobody else touches the iova range */ | |
435 | level = 2; | |
436 | while (level <= total) { | |
437 | tmp = align_to_level(start, level); | |
438 | if (tmp >= end || (tmp + level_size(level) > end)) | |
439 | return; | |
440 | ||
441 | while (tmp < end) { | |
442 | pte = dma_addr_level_pte(domain, tmp, level); | |
443 | if (pte) { | |
444 | free_pgtable_page( | |
445 | phys_to_virt(dma_pte_addr(*pte))); | |
446 | dma_clear_pte(*pte); | |
447 | __iommu_flush_cache(domain->iommu, | |
448 | pte, sizeof(*pte)); | |
449 | } | |
450 | tmp += level_size(level); | |
451 | } | |
452 | level++; | |
453 | } | |
454 | /* free pgd */ | |
455 | if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) { | |
456 | free_pgtable_page(domain->pgd); | |
457 | domain->pgd = NULL; | |
458 | } | |
459 | } | |
460 | ||
461 | /* iommu handling */ | |
462 | static int iommu_alloc_root_entry(struct intel_iommu *iommu) | |
463 | { | |
464 | struct root_entry *root; | |
465 | unsigned long flags; | |
466 | ||
467 | root = (struct root_entry *)alloc_pgtable_page(); | |
468 | if (!root) | |
469 | return -ENOMEM; | |
470 | ||
471 | __iommu_flush_cache(iommu, root, PAGE_SIZE_4K); | |
472 | ||
473 | spin_lock_irqsave(&iommu->lock, flags); | |
474 | iommu->root_entry = root; | |
475 | spin_unlock_irqrestore(&iommu->lock, flags); | |
476 | ||
477 | return 0; | |
478 | } | |
479 | ||
ba395927 KA |
480 | static void iommu_set_root_entry(struct intel_iommu *iommu) |
481 | { | |
482 | void *addr; | |
483 | u32 cmd, sts; | |
484 | unsigned long flag; | |
485 | ||
486 | addr = iommu->root_entry; | |
487 | ||
488 | spin_lock_irqsave(&iommu->register_lock, flag); | |
489 | dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr)); | |
490 | ||
491 | cmd = iommu->gcmd | DMA_GCMD_SRTP; | |
492 | writel(cmd, iommu->reg + DMAR_GCMD_REG); | |
493 | ||
494 | /* Make sure hardware complete it */ | |
495 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | |
496 | readl, (sts & DMA_GSTS_RTPS), sts); | |
497 | ||
498 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
499 | } | |
500 | ||
501 | static void iommu_flush_write_buffer(struct intel_iommu *iommu) | |
502 | { | |
503 | u32 val; | |
504 | unsigned long flag; | |
505 | ||
506 | if (!cap_rwbf(iommu->cap)) | |
507 | return; | |
508 | val = iommu->gcmd | DMA_GCMD_WBF; | |
509 | ||
510 | spin_lock_irqsave(&iommu->register_lock, flag); | |
511 | writel(val, iommu->reg + DMAR_GCMD_REG); | |
512 | ||
513 | /* Make sure hardware complete it */ | |
514 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | |
515 | readl, (!(val & DMA_GSTS_WBFS)), val); | |
516 | ||
517 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
518 | } | |
519 | ||
520 | /* return value determine if we need a write buffer flush */ | |
521 | static int __iommu_flush_context(struct intel_iommu *iommu, | |
522 | u16 did, u16 source_id, u8 function_mask, u64 type, | |
523 | int non_present_entry_flush) | |
524 | { | |
525 | u64 val = 0; | |
526 | unsigned long flag; | |
527 | ||
528 | /* | |
529 | * In the non-present entry flush case, if hardware doesn't cache | |
530 | * non-present entry we do nothing and if hardware cache non-present | |
531 | * entry, we flush entries of domain 0 (the domain id is used to cache | |
532 | * any non-present entries) | |
533 | */ | |
534 | if (non_present_entry_flush) { | |
535 | if (!cap_caching_mode(iommu->cap)) | |
536 | return 1; | |
537 | else | |
538 | did = 0; | |
539 | } | |
540 | ||
541 | switch (type) { | |
542 | case DMA_CCMD_GLOBAL_INVL: | |
543 | val = DMA_CCMD_GLOBAL_INVL; | |
544 | break; | |
545 | case DMA_CCMD_DOMAIN_INVL: | |
546 | val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); | |
547 | break; | |
548 | case DMA_CCMD_DEVICE_INVL: | |
549 | val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) | |
550 | | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); | |
551 | break; | |
552 | default: | |
553 | BUG(); | |
554 | } | |
555 | val |= DMA_CCMD_ICC; | |
556 | ||
557 | spin_lock_irqsave(&iommu->register_lock, flag); | |
558 | dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); | |
559 | ||
560 | /* Make sure hardware complete it */ | |
561 | IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, | |
562 | dmar_readq, (!(val & DMA_CCMD_ICC)), val); | |
563 | ||
564 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
565 | ||
566 | /* flush context entry will implictly flush write buffer */ | |
567 | return 0; | |
568 | } | |
569 | ||
570 | static int inline iommu_flush_context_global(struct intel_iommu *iommu, | |
571 | int non_present_entry_flush) | |
572 | { | |
573 | return __iommu_flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL, | |
574 | non_present_entry_flush); | |
575 | } | |
576 | ||
577 | static int inline iommu_flush_context_domain(struct intel_iommu *iommu, u16 did, | |
578 | int non_present_entry_flush) | |
579 | { | |
580 | return __iommu_flush_context(iommu, did, 0, 0, DMA_CCMD_DOMAIN_INVL, | |
581 | non_present_entry_flush); | |
582 | } | |
583 | ||
584 | static int inline iommu_flush_context_device(struct intel_iommu *iommu, | |
585 | u16 did, u16 source_id, u8 function_mask, int non_present_entry_flush) | |
586 | { | |
587 | return __iommu_flush_context(iommu, did, source_id, function_mask, | |
588 | DMA_CCMD_DEVICE_INVL, non_present_entry_flush); | |
589 | } | |
590 | ||
591 | /* return value determine if we need a write buffer flush */ | |
592 | static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, | |
593 | u64 addr, unsigned int size_order, u64 type, | |
594 | int non_present_entry_flush) | |
595 | { | |
596 | int tlb_offset = ecap_iotlb_offset(iommu->ecap); | |
597 | u64 val = 0, val_iva = 0; | |
598 | unsigned long flag; | |
599 | ||
600 | /* | |
601 | * In the non-present entry flush case, if hardware doesn't cache | |
602 | * non-present entry we do nothing and if hardware cache non-present | |
603 | * entry, we flush entries of domain 0 (the domain id is used to cache | |
604 | * any non-present entries) | |
605 | */ | |
606 | if (non_present_entry_flush) { | |
607 | if (!cap_caching_mode(iommu->cap)) | |
608 | return 1; | |
609 | else | |
610 | did = 0; | |
611 | } | |
612 | ||
613 | switch (type) { | |
614 | case DMA_TLB_GLOBAL_FLUSH: | |
615 | /* global flush doesn't need set IVA_REG */ | |
616 | val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; | |
617 | break; | |
618 | case DMA_TLB_DSI_FLUSH: | |
619 | val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); | |
620 | break; | |
621 | case DMA_TLB_PSI_FLUSH: | |
622 | val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); | |
623 | /* Note: always flush non-leaf currently */ | |
624 | val_iva = size_order | addr; | |
625 | break; | |
626 | default: | |
627 | BUG(); | |
628 | } | |
629 | /* Note: set drain read/write */ | |
630 | #if 0 | |
631 | /* | |
632 | * This is probably to be super secure.. Looks like we can | |
633 | * ignore it without any impact. | |
634 | */ | |
635 | if (cap_read_drain(iommu->cap)) | |
636 | val |= DMA_TLB_READ_DRAIN; | |
637 | #endif | |
638 | if (cap_write_drain(iommu->cap)) | |
639 | val |= DMA_TLB_WRITE_DRAIN; | |
640 | ||
641 | spin_lock_irqsave(&iommu->register_lock, flag); | |
642 | /* Note: Only uses first TLB reg currently */ | |
643 | if (val_iva) | |
644 | dmar_writeq(iommu->reg + tlb_offset, val_iva); | |
645 | dmar_writeq(iommu->reg + tlb_offset + 8, val); | |
646 | ||
647 | /* Make sure hardware complete it */ | |
648 | IOMMU_WAIT_OP(iommu, tlb_offset + 8, | |
649 | dmar_readq, (!(val & DMA_TLB_IVT)), val); | |
650 | ||
651 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
652 | ||
653 | /* check IOTLB invalidation granularity */ | |
654 | if (DMA_TLB_IAIG(val) == 0) | |
655 | printk(KERN_ERR"IOMMU: flush IOTLB failed\n"); | |
656 | if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) | |
657 | pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n", | |
658 | DMA_TLB_IIRG(type), DMA_TLB_IAIG(val)); | |
659 | /* flush context entry will implictly flush write buffer */ | |
660 | return 0; | |
661 | } | |
662 | ||
663 | static int inline iommu_flush_iotlb_global(struct intel_iommu *iommu, | |
664 | int non_present_entry_flush) | |
665 | { | |
666 | return __iommu_flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH, | |
667 | non_present_entry_flush); | |
668 | } | |
669 | ||
670 | static int inline iommu_flush_iotlb_dsi(struct intel_iommu *iommu, u16 did, | |
671 | int non_present_entry_flush) | |
672 | { | |
673 | return __iommu_flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH, | |
674 | non_present_entry_flush); | |
675 | } | |
676 | ||
ba395927 KA |
677 | static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did, |
678 | u64 addr, unsigned int pages, int non_present_entry_flush) | |
679 | { | |
f76aec76 | 680 | unsigned int mask; |
ba395927 KA |
681 | |
682 | BUG_ON(addr & (~PAGE_MASK_4K)); | |
683 | BUG_ON(pages == 0); | |
684 | ||
685 | /* Fallback to domain selective flush if no PSI support */ | |
686 | if (!cap_pgsel_inv(iommu->cap)) | |
687 | return iommu_flush_iotlb_dsi(iommu, did, | |
688 | non_present_entry_flush); | |
689 | ||
690 | /* | |
691 | * PSI requires page size to be 2 ^ x, and the base address is naturally | |
692 | * aligned to the size | |
693 | */ | |
f76aec76 | 694 | mask = ilog2(__roundup_pow_of_two(pages)); |
ba395927 | 695 | /* Fallback to domain selective flush if size is too big */ |
f76aec76 | 696 | if (mask > cap_max_amask_val(iommu->cap)) |
ba395927 KA |
697 | return iommu_flush_iotlb_dsi(iommu, did, |
698 | non_present_entry_flush); | |
699 | ||
f76aec76 | 700 | return __iommu_flush_iotlb(iommu, did, addr, mask, |
ba395927 KA |
701 | DMA_TLB_PSI_FLUSH, non_present_entry_flush); |
702 | } | |
703 | ||
f8bab735 | 704 | static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) |
705 | { | |
706 | u32 pmen; | |
707 | unsigned long flags; | |
708 | ||
709 | spin_lock_irqsave(&iommu->register_lock, flags); | |
710 | pmen = readl(iommu->reg + DMAR_PMEN_REG); | |
711 | pmen &= ~DMA_PMEN_EPM; | |
712 | writel(pmen, iommu->reg + DMAR_PMEN_REG); | |
713 | ||
714 | /* wait for the protected region status bit to clear */ | |
715 | IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, | |
716 | readl, !(pmen & DMA_PMEN_PRS), pmen); | |
717 | ||
718 | spin_unlock_irqrestore(&iommu->register_lock, flags); | |
719 | } | |
720 | ||
ba395927 KA |
721 | static int iommu_enable_translation(struct intel_iommu *iommu) |
722 | { | |
723 | u32 sts; | |
724 | unsigned long flags; | |
725 | ||
726 | spin_lock_irqsave(&iommu->register_lock, flags); | |
727 | writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG); | |
728 | ||
729 | /* Make sure hardware complete it */ | |
730 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | |
731 | readl, (sts & DMA_GSTS_TES), sts); | |
732 | ||
733 | iommu->gcmd |= DMA_GCMD_TE; | |
734 | spin_unlock_irqrestore(&iommu->register_lock, flags); | |
735 | return 0; | |
736 | } | |
737 | ||
738 | static int iommu_disable_translation(struct intel_iommu *iommu) | |
739 | { | |
740 | u32 sts; | |
741 | unsigned long flag; | |
742 | ||
743 | spin_lock_irqsave(&iommu->register_lock, flag); | |
744 | iommu->gcmd &= ~DMA_GCMD_TE; | |
745 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | |
746 | ||
747 | /* Make sure hardware complete it */ | |
748 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | |
749 | readl, (!(sts & DMA_GSTS_TES)), sts); | |
750 | ||
751 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
752 | return 0; | |
753 | } | |
754 | ||
3460a6d9 KA |
755 | /* iommu interrupt handling. Most stuff are MSI-like. */ |
756 | ||
d94afc6c | 757 | static const char *fault_reason_strings[] = |
3460a6d9 KA |
758 | { |
759 | "Software", | |
760 | "Present bit in root entry is clear", | |
761 | "Present bit in context entry is clear", | |
762 | "Invalid context entry", | |
763 | "Access beyond MGAW", | |
764 | "PTE Write access is not set", | |
765 | "PTE Read access is not set", | |
766 | "Next page table ptr is invalid", | |
767 | "Root table address invalid", | |
768 | "Context table ptr is invalid", | |
769 | "non-zero reserved fields in RTP", | |
770 | "non-zero reserved fields in CTP", | |
771 | "non-zero reserved fields in PTE", | |
3460a6d9 | 772 | }; |
f8bab735 | 773 | #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1) |
3460a6d9 | 774 | |
d94afc6c | 775 | const char *dmar_get_fault_reason(u8 fault_reason) |
3460a6d9 | 776 | { |
d94afc6c | 777 | if (fault_reason > MAX_FAULT_REASON_IDX) |
778 | return "Unknown"; | |
3460a6d9 KA |
779 | else |
780 | return fault_reason_strings[fault_reason]; | |
781 | } | |
782 | ||
783 | void dmar_msi_unmask(unsigned int irq) | |
784 | { | |
785 | struct intel_iommu *iommu = get_irq_data(irq); | |
786 | unsigned long flag; | |
787 | ||
788 | /* unmask it */ | |
789 | spin_lock_irqsave(&iommu->register_lock, flag); | |
790 | writel(0, iommu->reg + DMAR_FECTL_REG); | |
791 | /* Read a reg to force flush the post write */ | |
792 | readl(iommu->reg + DMAR_FECTL_REG); | |
793 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
794 | } | |
795 | ||
796 | void dmar_msi_mask(unsigned int irq) | |
797 | { | |
798 | unsigned long flag; | |
799 | struct intel_iommu *iommu = get_irq_data(irq); | |
800 | ||
801 | /* mask it */ | |
802 | spin_lock_irqsave(&iommu->register_lock, flag); | |
803 | writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG); | |
804 | /* Read a reg to force flush the post write */ | |
805 | readl(iommu->reg + DMAR_FECTL_REG); | |
806 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
807 | } | |
808 | ||
809 | void dmar_msi_write(int irq, struct msi_msg *msg) | |
810 | { | |
811 | struct intel_iommu *iommu = get_irq_data(irq); | |
812 | unsigned long flag; | |
813 | ||
814 | spin_lock_irqsave(&iommu->register_lock, flag); | |
815 | writel(msg->data, iommu->reg + DMAR_FEDATA_REG); | |
816 | writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG); | |
817 | writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG); | |
818 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
819 | } | |
820 | ||
821 | void dmar_msi_read(int irq, struct msi_msg *msg) | |
822 | { | |
823 | struct intel_iommu *iommu = get_irq_data(irq); | |
824 | unsigned long flag; | |
825 | ||
826 | spin_lock_irqsave(&iommu->register_lock, flag); | |
827 | msg->data = readl(iommu->reg + DMAR_FEDATA_REG); | |
828 | msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG); | |
829 | msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG); | |
830 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
831 | } | |
832 | ||
833 | static int iommu_page_fault_do_one(struct intel_iommu *iommu, int type, | |
834 | u8 fault_reason, u16 source_id, u64 addr) | |
835 | { | |
d94afc6c | 836 | const char *reason; |
3460a6d9 KA |
837 | |
838 | reason = dmar_get_fault_reason(fault_reason); | |
839 | ||
840 | printk(KERN_ERR | |
841 | "DMAR:[%s] Request device [%02x:%02x.%d] " | |
842 | "fault addr %llx \n" | |
843 | "DMAR:[fault reason %02d] %s\n", | |
844 | (type ? "DMA Read" : "DMA Write"), | |
845 | (source_id >> 8), PCI_SLOT(source_id & 0xFF), | |
846 | PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason); | |
847 | return 0; | |
848 | } | |
849 | ||
850 | #define PRIMARY_FAULT_REG_LEN (16) | |
851 | static irqreturn_t iommu_page_fault(int irq, void *dev_id) | |
852 | { | |
853 | struct intel_iommu *iommu = dev_id; | |
854 | int reg, fault_index; | |
855 | u32 fault_status; | |
856 | unsigned long flag; | |
857 | ||
858 | spin_lock_irqsave(&iommu->register_lock, flag); | |
859 | fault_status = readl(iommu->reg + DMAR_FSTS_REG); | |
860 | ||
861 | /* TBD: ignore advanced fault log currently */ | |
862 | if (!(fault_status & DMA_FSTS_PPF)) | |
863 | goto clear_overflow; | |
864 | ||
865 | fault_index = dma_fsts_fault_record_index(fault_status); | |
866 | reg = cap_fault_reg_offset(iommu->cap); | |
867 | while (1) { | |
868 | u8 fault_reason; | |
869 | u16 source_id; | |
870 | u64 guest_addr; | |
871 | int type; | |
872 | u32 data; | |
873 | ||
874 | /* highest 32 bits */ | |
875 | data = readl(iommu->reg + reg + | |
876 | fault_index * PRIMARY_FAULT_REG_LEN + 12); | |
877 | if (!(data & DMA_FRCD_F)) | |
878 | break; | |
879 | ||
880 | fault_reason = dma_frcd_fault_reason(data); | |
881 | type = dma_frcd_type(data); | |
882 | ||
883 | data = readl(iommu->reg + reg + | |
884 | fault_index * PRIMARY_FAULT_REG_LEN + 8); | |
885 | source_id = dma_frcd_source_id(data); | |
886 | ||
887 | guest_addr = dmar_readq(iommu->reg + reg + | |
888 | fault_index * PRIMARY_FAULT_REG_LEN); | |
889 | guest_addr = dma_frcd_page_addr(guest_addr); | |
890 | /* clear the fault */ | |
891 | writel(DMA_FRCD_F, iommu->reg + reg + | |
892 | fault_index * PRIMARY_FAULT_REG_LEN + 12); | |
893 | ||
894 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
895 | ||
896 | iommu_page_fault_do_one(iommu, type, fault_reason, | |
897 | source_id, guest_addr); | |
898 | ||
899 | fault_index++; | |
900 | if (fault_index > cap_num_fault_regs(iommu->cap)) | |
901 | fault_index = 0; | |
902 | spin_lock_irqsave(&iommu->register_lock, flag); | |
903 | } | |
904 | clear_overflow: | |
905 | /* clear primary fault overflow */ | |
906 | fault_status = readl(iommu->reg + DMAR_FSTS_REG); | |
907 | if (fault_status & DMA_FSTS_PFO) | |
908 | writel(DMA_FSTS_PFO, iommu->reg + DMAR_FSTS_REG); | |
909 | ||
910 | spin_unlock_irqrestore(&iommu->register_lock, flag); | |
911 | return IRQ_HANDLED; | |
912 | } | |
913 | ||
914 | int dmar_set_interrupt(struct intel_iommu *iommu) | |
915 | { | |
916 | int irq, ret; | |
917 | ||
918 | irq = create_irq(); | |
919 | if (!irq) { | |
920 | printk(KERN_ERR "IOMMU: no free vectors\n"); | |
921 | return -EINVAL; | |
922 | } | |
923 | ||
924 | set_irq_data(irq, iommu); | |
925 | iommu->irq = irq; | |
926 | ||
927 | ret = arch_setup_dmar_msi(irq); | |
928 | if (ret) { | |
929 | set_irq_data(irq, NULL); | |
930 | iommu->irq = 0; | |
931 | destroy_irq(irq); | |
932 | return 0; | |
933 | } | |
934 | ||
935 | /* Force fault register is cleared */ | |
936 | iommu_page_fault(irq, iommu); | |
937 | ||
938 | ret = request_irq(irq, iommu_page_fault, 0, iommu->name, iommu); | |
939 | if (ret) | |
940 | printk(KERN_ERR "IOMMU: can't request irq\n"); | |
941 | return ret; | |
942 | } | |
943 | ||
ba395927 KA |
944 | static int iommu_init_domains(struct intel_iommu *iommu) |
945 | { | |
946 | unsigned long ndomains; | |
947 | unsigned long nlongs; | |
948 | ||
949 | ndomains = cap_ndoms(iommu->cap); | |
950 | pr_debug("Number of Domains supportd <%ld>\n", ndomains); | |
951 | nlongs = BITS_TO_LONGS(ndomains); | |
952 | ||
953 | /* TBD: there might be 64K domains, | |
954 | * consider other allocation for future chip | |
955 | */ | |
956 | iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); | |
957 | if (!iommu->domain_ids) { | |
958 | printk(KERN_ERR "Allocating domain id array failed\n"); | |
959 | return -ENOMEM; | |
960 | } | |
961 | iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *), | |
962 | GFP_KERNEL); | |
963 | if (!iommu->domains) { | |
964 | printk(KERN_ERR "Allocating domain array failed\n"); | |
965 | kfree(iommu->domain_ids); | |
966 | return -ENOMEM; | |
967 | } | |
968 | ||
e61d98d8 SS |
969 | spin_lock_init(&iommu->lock); |
970 | ||
ba395927 KA |
971 | /* |
972 | * if Caching mode is set, then invalid translations are tagged | |
973 | * with domainid 0. Hence we need to pre-allocate it. | |
974 | */ | |
975 | if (cap_caching_mode(iommu->cap)) | |
976 | set_bit(0, iommu->domain_ids); | |
977 | return 0; | |
978 | } | |
ba395927 | 979 | |
ba395927 KA |
980 | |
981 | static void domain_exit(struct dmar_domain *domain); | |
e61d98d8 SS |
982 | |
983 | void free_dmar_iommu(struct intel_iommu *iommu) | |
ba395927 KA |
984 | { |
985 | struct dmar_domain *domain; | |
986 | int i; | |
987 | ||
ba395927 KA |
988 | i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap)); |
989 | for (; i < cap_ndoms(iommu->cap); ) { | |
990 | domain = iommu->domains[i]; | |
991 | clear_bit(i, iommu->domain_ids); | |
992 | domain_exit(domain); | |
993 | i = find_next_bit(iommu->domain_ids, | |
994 | cap_ndoms(iommu->cap), i+1); | |
995 | } | |
996 | ||
997 | if (iommu->gcmd & DMA_GCMD_TE) | |
998 | iommu_disable_translation(iommu); | |
999 | ||
1000 | if (iommu->irq) { | |
1001 | set_irq_data(iommu->irq, NULL); | |
1002 | /* This will mask the irq */ | |
1003 | free_irq(iommu->irq, iommu); | |
1004 | destroy_irq(iommu->irq); | |
1005 | } | |
1006 | ||
1007 | kfree(iommu->domains); | |
1008 | kfree(iommu->domain_ids); | |
1009 | ||
1010 | /* free context mapping */ | |
1011 | free_context_table(iommu); | |
ba395927 KA |
1012 | } |
1013 | ||
1014 | static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu) | |
1015 | { | |
1016 | unsigned long num; | |
1017 | unsigned long ndomains; | |
1018 | struct dmar_domain *domain; | |
1019 | unsigned long flags; | |
1020 | ||
1021 | domain = alloc_domain_mem(); | |
1022 | if (!domain) | |
1023 | return NULL; | |
1024 | ||
1025 | ndomains = cap_ndoms(iommu->cap); | |
1026 | ||
1027 | spin_lock_irqsave(&iommu->lock, flags); | |
1028 | num = find_first_zero_bit(iommu->domain_ids, ndomains); | |
1029 | if (num >= ndomains) { | |
1030 | spin_unlock_irqrestore(&iommu->lock, flags); | |
1031 | free_domain_mem(domain); | |
1032 | printk(KERN_ERR "IOMMU: no free domain ids\n"); | |
1033 | return NULL; | |
1034 | } | |
1035 | ||
1036 | set_bit(num, iommu->domain_ids); | |
1037 | domain->id = num; | |
1038 | domain->iommu = iommu; | |
1039 | iommu->domains[num] = domain; | |
1040 | spin_unlock_irqrestore(&iommu->lock, flags); | |
1041 | ||
1042 | return domain; | |
1043 | } | |
1044 | ||
1045 | static void iommu_free_domain(struct dmar_domain *domain) | |
1046 | { | |
1047 | unsigned long flags; | |
1048 | ||
1049 | spin_lock_irqsave(&domain->iommu->lock, flags); | |
1050 | clear_bit(domain->id, domain->iommu->domain_ids); | |
1051 | spin_unlock_irqrestore(&domain->iommu->lock, flags); | |
1052 | } | |
1053 | ||
1054 | static struct iova_domain reserved_iova_list; | |
8a443df4 MG |
1055 | static struct lock_class_key reserved_alloc_key; |
1056 | static struct lock_class_key reserved_rbtree_key; | |
ba395927 KA |
1057 | |
1058 | static void dmar_init_reserved_ranges(void) | |
1059 | { | |
1060 | struct pci_dev *pdev = NULL; | |
1061 | struct iova *iova; | |
1062 | int i; | |
1063 | u64 addr, size; | |
1064 | ||
f661197e | 1065 | init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN); |
ba395927 | 1066 | |
8a443df4 MG |
1067 | lockdep_set_class(&reserved_iova_list.iova_alloc_lock, |
1068 | &reserved_alloc_key); | |
1069 | lockdep_set_class(&reserved_iova_list.iova_rbtree_lock, | |
1070 | &reserved_rbtree_key); | |
1071 | ||
ba395927 KA |
1072 | /* IOAPIC ranges shouldn't be accessed by DMA */ |
1073 | iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START), | |
1074 | IOVA_PFN(IOAPIC_RANGE_END)); | |
1075 | if (!iova) | |
1076 | printk(KERN_ERR "Reserve IOAPIC range failed\n"); | |
1077 | ||
1078 | /* Reserve all PCI MMIO to avoid peer-to-peer access */ | |
1079 | for_each_pci_dev(pdev) { | |
1080 | struct resource *r; | |
1081 | ||
1082 | for (i = 0; i < PCI_NUM_RESOURCES; i++) { | |
1083 | r = &pdev->resource[i]; | |
1084 | if (!r->flags || !(r->flags & IORESOURCE_MEM)) | |
1085 | continue; | |
1086 | addr = r->start; | |
1087 | addr &= PAGE_MASK_4K; | |
1088 | size = r->end - addr; | |
1089 | size = PAGE_ALIGN_4K(size); | |
1090 | iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr), | |
1091 | IOVA_PFN(size + addr) - 1); | |
1092 | if (!iova) | |
1093 | printk(KERN_ERR "Reserve iova failed\n"); | |
1094 | } | |
1095 | } | |
1096 | ||
1097 | } | |
1098 | ||
1099 | static void domain_reserve_special_ranges(struct dmar_domain *domain) | |
1100 | { | |
1101 | copy_reserved_iova(&reserved_iova_list, &domain->iovad); | |
1102 | } | |
1103 | ||
1104 | static inline int guestwidth_to_adjustwidth(int gaw) | |
1105 | { | |
1106 | int agaw; | |
1107 | int r = (gaw - 12) % 9; | |
1108 | ||
1109 | if (r == 0) | |
1110 | agaw = gaw; | |
1111 | else | |
1112 | agaw = gaw + 9 - r; | |
1113 | if (agaw > 64) | |
1114 | agaw = 64; | |
1115 | return agaw; | |
1116 | } | |
1117 | ||
1118 | static int domain_init(struct dmar_domain *domain, int guest_width) | |
1119 | { | |
1120 | struct intel_iommu *iommu; | |
1121 | int adjust_width, agaw; | |
1122 | unsigned long sagaw; | |
1123 | ||
f661197e | 1124 | init_iova_domain(&domain->iovad, DMA_32BIT_PFN); |
ba395927 KA |
1125 | spin_lock_init(&domain->mapping_lock); |
1126 | ||
1127 | domain_reserve_special_ranges(domain); | |
1128 | ||
1129 | /* calculate AGAW */ | |
1130 | iommu = domain->iommu; | |
1131 | if (guest_width > cap_mgaw(iommu->cap)) | |
1132 | guest_width = cap_mgaw(iommu->cap); | |
1133 | domain->gaw = guest_width; | |
1134 | adjust_width = guestwidth_to_adjustwidth(guest_width); | |
1135 | agaw = width_to_agaw(adjust_width); | |
1136 | sagaw = cap_sagaw(iommu->cap); | |
1137 | if (!test_bit(agaw, &sagaw)) { | |
1138 | /* hardware doesn't support it, choose a bigger one */ | |
1139 | pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw); | |
1140 | agaw = find_next_bit(&sagaw, 5, agaw); | |
1141 | if (agaw >= 5) | |
1142 | return -ENODEV; | |
1143 | } | |
1144 | domain->agaw = agaw; | |
1145 | INIT_LIST_HEAD(&domain->devices); | |
1146 | ||
1147 | /* always allocate the top pgd */ | |
1148 | domain->pgd = (struct dma_pte *)alloc_pgtable_page(); | |
1149 | if (!domain->pgd) | |
1150 | return -ENOMEM; | |
1151 | __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE_4K); | |
1152 | return 0; | |
1153 | } | |
1154 | ||
1155 | static void domain_exit(struct dmar_domain *domain) | |
1156 | { | |
1157 | u64 end; | |
1158 | ||
1159 | /* Domain 0 is reserved, so dont process it */ | |
1160 | if (!domain) | |
1161 | return; | |
1162 | ||
1163 | domain_remove_dev_info(domain); | |
1164 | /* destroy iovas */ | |
1165 | put_iova_domain(&domain->iovad); | |
1166 | end = DOMAIN_MAX_ADDR(domain->gaw); | |
1167 | end = end & (~PAGE_MASK_4K); | |
1168 | ||
1169 | /* clear ptes */ | |
1170 | dma_pte_clear_range(domain, 0, end); | |
1171 | ||
1172 | /* free page tables */ | |
1173 | dma_pte_free_pagetable(domain, 0, end); | |
1174 | ||
1175 | iommu_free_domain(domain); | |
1176 | free_domain_mem(domain); | |
1177 | } | |
1178 | ||
1179 | static int domain_context_mapping_one(struct dmar_domain *domain, | |
1180 | u8 bus, u8 devfn) | |
1181 | { | |
1182 | struct context_entry *context; | |
1183 | struct intel_iommu *iommu = domain->iommu; | |
1184 | unsigned long flags; | |
1185 | ||
1186 | pr_debug("Set context mapping for %02x:%02x.%d\n", | |
1187 | bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); | |
1188 | BUG_ON(!domain->pgd); | |
1189 | context = device_to_context_entry(iommu, bus, devfn); | |
1190 | if (!context) | |
1191 | return -ENOMEM; | |
1192 | spin_lock_irqsave(&iommu->lock, flags); | |
1193 | if (context_present(*context)) { | |
1194 | spin_unlock_irqrestore(&iommu->lock, flags); | |
1195 | return 0; | |
1196 | } | |
1197 | ||
1198 | context_set_domain_id(*context, domain->id); | |
1199 | context_set_address_width(*context, domain->agaw); | |
1200 | context_set_address_root(*context, virt_to_phys(domain->pgd)); | |
1201 | context_set_translation_type(*context, CONTEXT_TT_MULTI_LEVEL); | |
1202 | context_set_fault_enable(*context); | |
1203 | context_set_present(*context); | |
1204 | __iommu_flush_cache(iommu, context, sizeof(*context)); | |
1205 | ||
1206 | /* it's a non-present to present mapping */ | |
1207 | if (iommu_flush_context_device(iommu, domain->id, | |
1208 | (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT, 1)) | |
1209 | iommu_flush_write_buffer(iommu); | |
1210 | else | |
1211 | iommu_flush_iotlb_dsi(iommu, 0, 0); | |
1212 | spin_unlock_irqrestore(&iommu->lock, flags); | |
1213 | return 0; | |
1214 | } | |
1215 | ||
1216 | static int | |
1217 | domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev) | |
1218 | { | |
1219 | int ret; | |
1220 | struct pci_dev *tmp, *parent; | |
1221 | ||
1222 | ret = domain_context_mapping_one(domain, pdev->bus->number, | |
1223 | pdev->devfn); | |
1224 | if (ret) | |
1225 | return ret; | |
1226 | ||
1227 | /* dependent device mapping */ | |
1228 | tmp = pci_find_upstream_pcie_bridge(pdev); | |
1229 | if (!tmp) | |
1230 | return 0; | |
1231 | /* Secondary interface's bus number and devfn 0 */ | |
1232 | parent = pdev->bus->self; | |
1233 | while (parent != tmp) { | |
1234 | ret = domain_context_mapping_one(domain, parent->bus->number, | |
1235 | parent->devfn); | |
1236 | if (ret) | |
1237 | return ret; | |
1238 | parent = parent->bus->self; | |
1239 | } | |
1240 | if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */ | |
1241 | return domain_context_mapping_one(domain, | |
1242 | tmp->subordinate->number, 0); | |
1243 | else /* this is a legacy PCI bridge */ | |
1244 | return domain_context_mapping_one(domain, | |
1245 | tmp->bus->number, tmp->devfn); | |
1246 | } | |
1247 | ||
1248 | static int domain_context_mapped(struct dmar_domain *domain, | |
1249 | struct pci_dev *pdev) | |
1250 | { | |
1251 | int ret; | |
1252 | struct pci_dev *tmp, *parent; | |
1253 | ||
1254 | ret = device_context_mapped(domain->iommu, | |
1255 | pdev->bus->number, pdev->devfn); | |
1256 | if (!ret) | |
1257 | return ret; | |
1258 | /* dependent device mapping */ | |
1259 | tmp = pci_find_upstream_pcie_bridge(pdev); | |
1260 | if (!tmp) | |
1261 | return ret; | |
1262 | /* Secondary interface's bus number and devfn 0 */ | |
1263 | parent = pdev->bus->self; | |
1264 | while (parent != tmp) { | |
1265 | ret = device_context_mapped(domain->iommu, parent->bus->number, | |
1266 | parent->devfn); | |
1267 | if (!ret) | |
1268 | return ret; | |
1269 | parent = parent->bus->self; | |
1270 | } | |
1271 | if (tmp->is_pcie) | |
1272 | return device_context_mapped(domain->iommu, | |
1273 | tmp->subordinate->number, 0); | |
1274 | else | |
1275 | return device_context_mapped(domain->iommu, | |
1276 | tmp->bus->number, tmp->devfn); | |
1277 | } | |
1278 | ||
1279 | static int | |
1280 | domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova, | |
1281 | u64 hpa, size_t size, int prot) | |
1282 | { | |
1283 | u64 start_pfn, end_pfn; | |
1284 | struct dma_pte *pte; | |
1285 | int index; | |
1286 | ||
1287 | if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) | |
1288 | return -EINVAL; | |
1289 | iova &= PAGE_MASK_4K; | |
1290 | start_pfn = ((u64)hpa) >> PAGE_SHIFT_4K; | |
1291 | end_pfn = (PAGE_ALIGN_4K(((u64)hpa) + size)) >> PAGE_SHIFT_4K; | |
1292 | index = 0; | |
1293 | while (start_pfn < end_pfn) { | |
1294 | pte = addr_to_dma_pte(domain, iova + PAGE_SIZE_4K * index); | |
1295 | if (!pte) | |
1296 | return -ENOMEM; | |
1297 | /* We don't need lock here, nobody else | |
1298 | * touches the iova range | |
1299 | */ | |
1300 | BUG_ON(dma_pte_addr(*pte)); | |
1301 | dma_set_pte_addr(*pte, start_pfn << PAGE_SHIFT_4K); | |
1302 | dma_set_pte_prot(*pte, prot); | |
1303 | __iommu_flush_cache(domain->iommu, pte, sizeof(*pte)); | |
1304 | start_pfn++; | |
1305 | index++; | |
1306 | } | |
1307 | return 0; | |
1308 | } | |
1309 | ||
1310 | static void detach_domain_for_dev(struct dmar_domain *domain, u8 bus, u8 devfn) | |
1311 | { | |
1312 | clear_context_table(domain->iommu, bus, devfn); | |
1313 | iommu_flush_context_global(domain->iommu, 0); | |
1314 | iommu_flush_iotlb_global(domain->iommu, 0); | |
1315 | } | |
1316 | ||
1317 | static void domain_remove_dev_info(struct dmar_domain *domain) | |
1318 | { | |
1319 | struct device_domain_info *info; | |
1320 | unsigned long flags; | |
1321 | ||
1322 | spin_lock_irqsave(&device_domain_lock, flags); | |
1323 | while (!list_empty(&domain->devices)) { | |
1324 | info = list_entry(domain->devices.next, | |
1325 | struct device_domain_info, link); | |
1326 | list_del(&info->link); | |
1327 | list_del(&info->global); | |
1328 | if (info->dev) | |
358dd8ac | 1329 | info->dev->dev.archdata.iommu = NULL; |
ba395927 KA |
1330 | spin_unlock_irqrestore(&device_domain_lock, flags); |
1331 | ||
1332 | detach_domain_for_dev(info->domain, info->bus, info->devfn); | |
1333 | free_devinfo_mem(info); | |
1334 | ||
1335 | spin_lock_irqsave(&device_domain_lock, flags); | |
1336 | } | |
1337 | spin_unlock_irqrestore(&device_domain_lock, flags); | |
1338 | } | |
1339 | ||
1340 | /* | |
1341 | * find_domain | |
358dd8ac | 1342 | * Note: we use struct pci_dev->dev.archdata.iommu stores the info |
ba395927 KA |
1343 | */ |
1344 | struct dmar_domain * | |
1345 | find_domain(struct pci_dev *pdev) | |
1346 | { | |
1347 | struct device_domain_info *info; | |
1348 | ||
1349 | /* No lock here, assumes no domain exit in normal case */ | |
358dd8ac | 1350 | info = pdev->dev.archdata.iommu; |
ba395927 KA |
1351 | if (info) |
1352 | return info->domain; | |
1353 | return NULL; | |
1354 | } | |
1355 | ||
ba395927 KA |
1356 | /* domain is initialized */ |
1357 | static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw) | |
1358 | { | |
1359 | struct dmar_domain *domain, *found = NULL; | |
1360 | struct intel_iommu *iommu; | |
1361 | struct dmar_drhd_unit *drhd; | |
1362 | struct device_domain_info *info, *tmp; | |
1363 | struct pci_dev *dev_tmp; | |
1364 | unsigned long flags; | |
1365 | int bus = 0, devfn = 0; | |
1366 | ||
1367 | domain = find_domain(pdev); | |
1368 | if (domain) | |
1369 | return domain; | |
1370 | ||
1371 | dev_tmp = pci_find_upstream_pcie_bridge(pdev); | |
1372 | if (dev_tmp) { | |
1373 | if (dev_tmp->is_pcie) { | |
1374 | bus = dev_tmp->subordinate->number; | |
1375 | devfn = 0; | |
1376 | } else { | |
1377 | bus = dev_tmp->bus->number; | |
1378 | devfn = dev_tmp->devfn; | |
1379 | } | |
1380 | spin_lock_irqsave(&device_domain_lock, flags); | |
1381 | list_for_each_entry(info, &device_domain_list, global) { | |
1382 | if (info->bus == bus && info->devfn == devfn) { | |
1383 | found = info->domain; | |
1384 | break; | |
1385 | } | |
1386 | } | |
1387 | spin_unlock_irqrestore(&device_domain_lock, flags); | |
1388 | /* pcie-pci bridge already has a domain, uses it */ | |
1389 | if (found) { | |
1390 | domain = found; | |
1391 | goto found_domain; | |
1392 | } | |
1393 | } | |
1394 | ||
1395 | /* Allocate new domain for the device */ | |
1396 | drhd = dmar_find_matched_drhd_unit(pdev); | |
1397 | if (!drhd) { | |
1398 | printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n", | |
1399 | pci_name(pdev)); | |
1400 | return NULL; | |
1401 | } | |
1402 | iommu = drhd->iommu; | |
1403 | ||
1404 | domain = iommu_alloc_domain(iommu); | |
1405 | if (!domain) | |
1406 | goto error; | |
1407 | ||
1408 | if (domain_init(domain, gaw)) { | |
1409 | domain_exit(domain); | |
1410 | goto error; | |
1411 | } | |
1412 | ||
1413 | /* register pcie-to-pci device */ | |
1414 | if (dev_tmp) { | |
1415 | info = alloc_devinfo_mem(); | |
1416 | if (!info) { | |
1417 | domain_exit(domain); | |
1418 | goto error; | |
1419 | } | |
1420 | info->bus = bus; | |
1421 | info->devfn = devfn; | |
1422 | info->dev = NULL; | |
1423 | info->domain = domain; | |
1424 | /* This domain is shared by devices under p2p bridge */ | |
1425 | domain->flags |= DOMAIN_FLAG_MULTIPLE_DEVICES; | |
1426 | ||
1427 | /* pcie-to-pci bridge already has a domain, uses it */ | |
1428 | found = NULL; | |
1429 | spin_lock_irqsave(&device_domain_lock, flags); | |
1430 | list_for_each_entry(tmp, &device_domain_list, global) { | |
1431 | if (tmp->bus == bus && tmp->devfn == devfn) { | |
1432 | found = tmp->domain; | |
1433 | break; | |
1434 | } | |
1435 | } | |
1436 | if (found) { | |
1437 | free_devinfo_mem(info); | |
1438 | domain_exit(domain); | |
1439 | domain = found; | |
1440 | } else { | |
1441 | list_add(&info->link, &domain->devices); | |
1442 | list_add(&info->global, &device_domain_list); | |
1443 | } | |
1444 | spin_unlock_irqrestore(&device_domain_lock, flags); | |
1445 | } | |
1446 | ||
1447 | found_domain: | |
1448 | info = alloc_devinfo_mem(); | |
1449 | if (!info) | |
1450 | goto error; | |
1451 | info->bus = pdev->bus->number; | |
1452 | info->devfn = pdev->devfn; | |
1453 | info->dev = pdev; | |
1454 | info->domain = domain; | |
1455 | spin_lock_irqsave(&device_domain_lock, flags); | |
1456 | /* somebody is fast */ | |
1457 | found = find_domain(pdev); | |
1458 | if (found != NULL) { | |
1459 | spin_unlock_irqrestore(&device_domain_lock, flags); | |
1460 | if (found != domain) { | |
1461 | domain_exit(domain); | |
1462 | domain = found; | |
1463 | } | |
1464 | free_devinfo_mem(info); | |
1465 | return domain; | |
1466 | } | |
1467 | list_add(&info->link, &domain->devices); | |
1468 | list_add(&info->global, &device_domain_list); | |
358dd8ac | 1469 | pdev->dev.archdata.iommu = info; |
ba395927 KA |
1470 | spin_unlock_irqrestore(&device_domain_lock, flags); |
1471 | return domain; | |
1472 | error: | |
1473 | /* recheck it here, maybe others set it */ | |
1474 | return find_domain(pdev); | |
1475 | } | |
1476 | ||
1477 | static int iommu_prepare_identity_map(struct pci_dev *pdev, u64 start, u64 end) | |
1478 | { | |
1479 | struct dmar_domain *domain; | |
1480 | unsigned long size; | |
1481 | u64 base; | |
1482 | int ret; | |
1483 | ||
1484 | printk(KERN_INFO | |
1485 | "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n", | |
1486 | pci_name(pdev), start, end); | |
1487 | /* page table init */ | |
1488 | domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH); | |
1489 | if (!domain) | |
1490 | return -ENOMEM; | |
1491 | ||
1492 | /* The address might not be aligned */ | |
1493 | base = start & PAGE_MASK_4K; | |
1494 | size = end - base; | |
1495 | size = PAGE_ALIGN_4K(size); | |
1496 | if (!reserve_iova(&domain->iovad, IOVA_PFN(base), | |
1497 | IOVA_PFN(base + size) - 1)) { | |
1498 | printk(KERN_ERR "IOMMU: reserve iova failed\n"); | |
1499 | ret = -ENOMEM; | |
1500 | goto error; | |
1501 | } | |
1502 | ||
1503 | pr_debug("Mapping reserved region %lx@%llx for %s\n", | |
1504 | size, base, pci_name(pdev)); | |
1505 | /* | |
1506 | * RMRR range might have overlap with physical memory range, | |
1507 | * clear it first | |
1508 | */ | |
1509 | dma_pte_clear_range(domain, base, base + size); | |
1510 | ||
1511 | ret = domain_page_mapping(domain, base, base, size, | |
1512 | DMA_PTE_READ|DMA_PTE_WRITE); | |
1513 | if (ret) | |
1514 | goto error; | |
1515 | ||
1516 | /* context entry init */ | |
1517 | ret = domain_context_mapping(domain, pdev); | |
1518 | if (!ret) | |
1519 | return 0; | |
1520 | error: | |
1521 | domain_exit(domain); | |
1522 | return ret; | |
1523 | ||
1524 | } | |
1525 | ||
1526 | static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr, | |
1527 | struct pci_dev *pdev) | |
1528 | { | |
358dd8ac | 1529 | if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) |
ba395927 KA |
1530 | return 0; |
1531 | return iommu_prepare_identity_map(pdev, rmrr->base_address, | |
1532 | rmrr->end_address + 1); | |
1533 | } | |
1534 | ||
e820482c | 1535 | #ifdef CONFIG_DMAR_GFX_WA |
d52d53b8 YL |
1536 | struct iommu_prepare_data { |
1537 | struct pci_dev *pdev; | |
1538 | int ret; | |
1539 | }; | |
1540 | ||
1541 | static int __init iommu_prepare_work_fn(unsigned long start_pfn, | |
1542 | unsigned long end_pfn, void *datax) | |
1543 | { | |
1544 | struct iommu_prepare_data *data; | |
1545 | ||
1546 | data = (struct iommu_prepare_data *)datax; | |
1547 | ||
1548 | data->ret = iommu_prepare_identity_map(data->pdev, | |
1549 | start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT); | |
1550 | return data->ret; | |
1551 | ||
1552 | } | |
1553 | ||
1554 | static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev) | |
1555 | { | |
1556 | int nid; | |
1557 | struct iommu_prepare_data data; | |
1558 | ||
1559 | data.pdev = pdev; | |
1560 | data.ret = 0; | |
1561 | ||
1562 | for_each_online_node(nid) { | |
1563 | work_with_active_regions(nid, iommu_prepare_work_fn, &data); | |
1564 | if (data.ret) | |
1565 | return data.ret; | |
1566 | } | |
1567 | return data.ret; | |
1568 | } | |
1569 | ||
e820482c KA |
1570 | static void __init iommu_prepare_gfx_mapping(void) |
1571 | { | |
1572 | struct pci_dev *pdev = NULL; | |
e820482c KA |
1573 | int ret; |
1574 | ||
1575 | for_each_pci_dev(pdev) { | |
358dd8ac | 1576 | if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO || |
e820482c KA |
1577 | !IS_GFX_DEVICE(pdev)) |
1578 | continue; | |
1579 | printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n", | |
1580 | pci_name(pdev)); | |
d52d53b8 YL |
1581 | ret = iommu_prepare_with_active_regions(pdev); |
1582 | if (ret) | |
1583 | printk(KERN_ERR "IOMMU: mapping reserved region failed\n"); | |
e820482c KA |
1584 | } |
1585 | } | |
1586 | #endif | |
1587 | ||
49a0429e KA |
1588 | #ifdef CONFIG_DMAR_FLOPPY_WA |
1589 | static inline void iommu_prepare_isa(void) | |
1590 | { | |
1591 | struct pci_dev *pdev; | |
1592 | int ret; | |
1593 | ||
1594 | pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL); | |
1595 | if (!pdev) | |
1596 | return; | |
1597 | ||
1598 | printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n"); | |
1599 | ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024); | |
1600 | ||
1601 | if (ret) | |
1602 | printk("IOMMU: Failed to create 0-64M identity map, " | |
1603 | "floppy might not work\n"); | |
1604 | ||
1605 | } | |
1606 | #else | |
1607 | static inline void iommu_prepare_isa(void) | |
1608 | { | |
1609 | return; | |
1610 | } | |
1611 | #endif /* !CONFIG_DMAR_FLPY_WA */ | |
1612 | ||
ba395927 KA |
1613 | int __init init_dmars(void) |
1614 | { | |
1615 | struct dmar_drhd_unit *drhd; | |
1616 | struct dmar_rmrr_unit *rmrr; | |
1617 | struct pci_dev *pdev; | |
1618 | struct intel_iommu *iommu; | |
80b20dd8 | 1619 | int i, ret, unit = 0; |
ba395927 KA |
1620 | |
1621 | /* | |
1622 | * for each drhd | |
1623 | * allocate root | |
1624 | * initialize and program root entry to not present | |
1625 | * endfor | |
1626 | */ | |
1627 | for_each_drhd_unit(drhd) { | |
5e0d2a6f | 1628 | g_num_of_iommus++; |
1629 | /* | |
1630 | * lock not needed as this is only incremented in the single | |
1631 | * threaded kernel __init code path all other access are read | |
1632 | * only | |
1633 | */ | |
1634 | } | |
1635 | ||
80b20dd8 | 1636 | deferred_flush = kzalloc(g_num_of_iommus * |
1637 | sizeof(struct deferred_flush_tables), GFP_KERNEL); | |
1638 | if (!deferred_flush) { | |
5e0d2a6f | 1639 | ret = -ENOMEM; |
1640 | goto error; | |
1641 | } | |
1642 | ||
5e0d2a6f | 1643 | for_each_drhd_unit(drhd) { |
1644 | if (drhd->ignored) | |
1645 | continue; | |
1886e8a9 SS |
1646 | |
1647 | iommu = drhd->iommu; | |
ba395927 | 1648 | |
e61d98d8 SS |
1649 | ret = iommu_init_domains(iommu); |
1650 | if (ret) | |
1651 | goto error; | |
1652 | ||
ba395927 KA |
1653 | /* |
1654 | * TBD: | |
1655 | * we could share the same root & context tables | |
1656 | * amoung all IOMMU's. Need to Split it later. | |
1657 | */ | |
1658 | ret = iommu_alloc_root_entry(iommu); | |
1659 | if (ret) { | |
1660 | printk(KERN_ERR "IOMMU: allocate root entry failed\n"); | |
1661 | goto error; | |
1662 | } | |
1663 | } | |
1664 | ||
1665 | /* | |
1666 | * For each rmrr | |
1667 | * for each dev attached to rmrr | |
1668 | * do | |
1669 | * locate drhd for dev, alloc domain for dev | |
1670 | * allocate free domain | |
1671 | * allocate page table entries for rmrr | |
1672 | * if context not allocated for bus | |
1673 | * allocate and init context | |
1674 | * set present in root table for this bus | |
1675 | * init context with domain, translation etc | |
1676 | * endfor | |
1677 | * endfor | |
1678 | */ | |
1679 | for_each_rmrr_units(rmrr) { | |
ba395927 KA |
1680 | for (i = 0; i < rmrr->devices_cnt; i++) { |
1681 | pdev = rmrr->devices[i]; | |
1682 | /* some BIOS lists non-exist devices in DMAR table */ | |
1683 | if (!pdev) | |
1684 | continue; | |
1685 | ret = iommu_prepare_rmrr_dev(rmrr, pdev); | |
1686 | if (ret) | |
1687 | printk(KERN_ERR | |
1688 | "IOMMU: mapping reserved region failed\n"); | |
1689 | } | |
1690 | } | |
1691 | ||
e820482c KA |
1692 | iommu_prepare_gfx_mapping(); |
1693 | ||
49a0429e KA |
1694 | iommu_prepare_isa(); |
1695 | ||
ba395927 KA |
1696 | /* |
1697 | * for each drhd | |
1698 | * enable fault log | |
1699 | * global invalidate context cache | |
1700 | * global invalidate iotlb | |
1701 | * enable translation | |
1702 | */ | |
1703 | for_each_drhd_unit(drhd) { | |
1704 | if (drhd->ignored) | |
1705 | continue; | |
1706 | iommu = drhd->iommu; | |
1707 | sprintf (iommu->name, "dmar%d", unit++); | |
1708 | ||
1709 | iommu_flush_write_buffer(iommu); | |
1710 | ||
3460a6d9 KA |
1711 | ret = dmar_set_interrupt(iommu); |
1712 | if (ret) | |
1713 | goto error; | |
1714 | ||
ba395927 KA |
1715 | iommu_set_root_entry(iommu); |
1716 | ||
1717 | iommu_flush_context_global(iommu, 0); | |
1718 | iommu_flush_iotlb_global(iommu, 0); | |
1719 | ||
f8bab735 | 1720 | iommu_disable_protect_mem_regions(iommu); |
1721 | ||
ba395927 KA |
1722 | ret = iommu_enable_translation(iommu); |
1723 | if (ret) | |
1724 | goto error; | |
1725 | } | |
1726 | ||
1727 | return 0; | |
1728 | error: | |
1729 | for_each_drhd_unit(drhd) { | |
1730 | if (drhd->ignored) | |
1731 | continue; | |
1732 | iommu = drhd->iommu; | |
1733 | free_iommu(iommu); | |
1734 | } | |
1735 | return ret; | |
1736 | } | |
1737 | ||
1738 | static inline u64 aligned_size(u64 host_addr, size_t size) | |
1739 | { | |
1740 | u64 addr; | |
1741 | addr = (host_addr & (~PAGE_MASK_4K)) + size; | |
1742 | return PAGE_ALIGN_4K(addr); | |
1743 | } | |
1744 | ||
1745 | struct iova * | |
f76aec76 | 1746 | iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end) |
ba395927 | 1747 | { |
ba395927 KA |
1748 | struct iova *piova; |
1749 | ||
1750 | /* Make sure it's in range */ | |
ba395927 | 1751 | end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end); |
f76aec76 | 1752 | if (!size || (IOVA_START_ADDR + size > end)) |
ba395927 KA |
1753 | return NULL; |
1754 | ||
1755 | piova = alloc_iova(&domain->iovad, | |
f76aec76 | 1756 | size >> PAGE_SHIFT_4K, IOVA_PFN(end), 1); |
ba395927 KA |
1757 | return piova; |
1758 | } | |
1759 | ||
f76aec76 KA |
1760 | static struct iova * |
1761 | __intel_alloc_iova(struct device *dev, struct dmar_domain *domain, | |
1762 | size_t size) | |
ba395927 | 1763 | { |
ba395927 | 1764 | struct pci_dev *pdev = to_pci_dev(dev); |
ba395927 | 1765 | struct iova *iova = NULL; |
ba395927 | 1766 | |
7d3b03ce | 1767 | if ((pdev->dma_mask <= DMA_32BIT_MASK) || (dmar_forcedac)) { |
f76aec76 | 1768 | iova = iommu_alloc_iova(domain, size, pdev->dma_mask); |
ba395927 KA |
1769 | } else { |
1770 | /* | |
1771 | * First try to allocate an io virtual address in | |
1772 | * DMA_32BIT_MASK and if that fails then try allocating | |
3609801e | 1773 | * from higher range |
ba395927 | 1774 | */ |
f76aec76 | 1775 | iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK); |
ba395927 | 1776 | if (!iova) |
f76aec76 | 1777 | iova = iommu_alloc_iova(domain, size, pdev->dma_mask); |
ba395927 KA |
1778 | } |
1779 | ||
1780 | if (!iova) { | |
1781 | printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev)); | |
f76aec76 KA |
1782 | return NULL; |
1783 | } | |
1784 | ||
1785 | return iova; | |
1786 | } | |
1787 | ||
1788 | static struct dmar_domain * | |
1789 | get_valid_domain_for_dev(struct pci_dev *pdev) | |
1790 | { | |
1791 | struct dmar_domain *domain; | |
1792 | int ret; | |
1793 | ||
1794 | domain = get_domain_for_dev(pdev, | |
1795 | DEFAULT_DOMAIN_ADDRESS_WIDTH); | |
1796 | if (!domain) { | |
1797 | printk(KERN_ERR | |
1798 | "Allocating domain for %s failed", pci_name(pdev)); | |
4fe05bbc | 1799 | return NULL; |
ba395927 KA |
1800 | } |
1801 | ||
1802 | /* make sure context mapping is ok */ | |
1803 | if (unlikely(!domain_context_mapped(domain, pdev))) { | |
1804 | ret = domain_context_mapping(domain, pdev); | |
f76aec76 KA |
1805 | if (ret) { |
1806 | printk(KERN_ERR | |
1807 | "Domain context map for %s failed", | |
1808 | pci_name(pdev)); | |
4fe05bbc | 1809 | return NULL; |
f76aec76 | 1810 | } |
ba395927 KA |
1811 | } |
1812 | ||
f76aec76 KA |
1813 | return domain; |
1814 | } | |
1815 | ||
6865f0d1 IM |
1816 | static dma_addr_t |
1817 | intel_map_single(struct device *hwdev, phys_addr_t paddr, size_t size, int dir) | |
f76aec76 KA |
1818 | { |
1819 | struct pci_dev *pdev = to_pci_dev(hwdev); | |
f76aec76 | 1820 | struct dmar_domain *domain; |
6865f0d1 | 1821 | unsigned long start_paddr; |
f76aec76 KA |
1822 | struct iova *iova; |
1823 | int prot = 0; | |
6865f0d1 | 1824 | int ret; |
f76aec76 KA |
1825 | |
1826 | BUG_ON(dir == DMA_NONE); | |
358dd8ac | 1827 | if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) |
6865f0d1 | 1828 | return paddr; |
f76aec76 KA |
1829 | |
1830 | domain = get_valid_domain_for_dev(pdev); | |
1831 | if (!domain) | |
1832 | return 0; | |
1833 | ||
6865f0d1 | 1834 | size = aligned_size((u64)paddr, size); |
f76aec76 KA |
1835 | |
1836 | iova = __intel_alloc_iova(hwdev, domain, size); | |
1837 | if (!iova) | |
1838 | goto error; | |
1839 | ||
6865f0d1 | 1840 | start_paddr = iova->pfn_lo << PAGE_SHIFT_4K; |
f76aec76 | 1841 | |
ba395927 KA |
1842 | /* |
1843 | * Check if DMAR supports zero-length reads on write only | |
1844 | * mappings.. | |
1845 | */ | |
1846 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ | |
1847 | !cap_zlr(domain->iommu->cap)) | |
1848 | prot |= DMA_PTE_READ; | |
1849 | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) | |
1850 | prot |= DMA_PTE_WRITE; | |
1851 | /* | |
6865f0d1 | 1852 | * paddr - (paddr + size) might be partial page, we should map the whole |
ba395927 | 1853 | * page. Note: if two part of one page are separately mapped, we |
6865f0d1 | 1854 | * might have two guest_addr mapping to the same host paddr, but this |
ba395927 KA |
1855 | * is not a big problem |
1856 | */ | |
6865f0d1 IM |
1857 | ret = domain_page_mapping(domain, start_paddr, |
1858 | ((u64)paddr) & PAGE_MASK_4K, size, prot); | |
ba395927 KA |
1859 | if (ret) |
1860 | goto error; | |
1861 | ||
1862 | pr_debug("Device %s request: %lx@%llx mapping: %lx@%llx, dir %d\n", | |
6865f0d1 IM |
1863 | pci_name(pdev), size, (u64)paddr, |
1864 | size, (u64)start_paddr, dir); | |
f76aec76 KA |
1865 | |
1866 | /* it's a non-present to present mapping */ | |
1867 | ret = iommu_flush_iotlb_psi(domain->iommu, domain->id, | |
6865f0d1 | 1868 | start_paddr, size >> PAGE_SHIFT_4K, 1); |
f76aec76 KA |
1869 | if (ret) |
1870 | iommu_flush_write_buffer(domain->iommu); | |
1871 | ||
6865f0d1 | 1872 | return (start_paddr + ((u64)paddr & (~PAGE_MASK_4K))); |
ba395927 | 1873 | |
ba395927 | 1874 | error: |
f76aec76 KA |
1875 | if (iova) |
1876 | __free_iova(&domain->iovad, iova); | |
ba395927 | 1877 | printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n", |
6865f0d1 | 1878 | pci_name(pdev), size, (u64)paddr, dir); |
ba395927 KA |
1879 | return 0; |
1880 | } | |
1881 | ||
5e0d2a6f | 1882 | static void flush_unmaps(void) |
1883 | { | |
80b20dd8 | 1884 | int i, j; |
5e0d2a6f | 1885 | |
5e0d2a6f | 1886 | timer_on = 0; |
1887 | ||
1888 | /* just flush them all */ | |
1889 | for (i = 0; i < g_num_of_iommus; i++) { | |
80b20dd8 | 1890 | if (deferred_flush[i].next) { |
c42d9f32 SS |
1891 | struct intel_iommu *iommu = |
1892 | deferred_flush[i].domain[0]->iommu; | |
1893 | ||
1894 | iommu_flush_iotlb_global(iommu, 0); | |
80b20dd8 | 1895 | for (j = 0; j < deferred_flush[i].next; j++) { |
1896 | __free_iova(&deferred_flush[i].domain[j]->iovad, | |
1897 | deferred_flush[i].iova[j]); | |
1898 | } | |
1899 | deferred_flush[i].next = 0; | |
1900 | } | |
5e0d2a6f | 1901 | } |
1902 | ||
5e0d2a6f | 1903 | list_size = 0; |
5e0d2a6f | 1904 | } |
1905 | ||
1906 | static void flush_unmaps_timeout(unsigned long data) | |
1907 | { | |
80b20dd8 | 1908 | unsigned long flags; |
1909 | ||
1910 | spin_lock_irqsave(&async_umap_flush_lock, flags); | |
5e0d2a6f | 1911 | flush_unmaps(); |
80b20dd8 | 1912 | spin_unlock_irqrestore(&async_umap_flush_lock, flags); |
5e0d2a6f | 1913 | } |
1914 | ||
1915 | static void add_unmap(struct dmar_domain *dom, struct iova *iova) | |
1916 | { | |
1917 | unsigned long flags; | |
80b20dd8 | 1918 | int next, iommu_id; |
5e0d2a6f | 1919 | |
1920 | spin_lock_irqsave(&async_umap_flush_lock, flags); | |
80b20dd8 | 1921 | if (list_size == HIGH_WATER_MARK) |
1922 | flush_unmaps(); | |
1923 | ||
c42d9f32 SS |
1924 | iommu_id = dom->iommu->seq_id; |
1925 | ||
80b20dd8 | 1926 | next = deferred_flush[iommu_id].next; |
1927 | deferred_flush[iommu_id].domain[next] = dom; | |
1928 | deferred_flush[iommu_id].iova[next] = iova; | |
1929 | deferred_flush[iommu_id].next++; | |
5e0d2a6f | 1930 | |
1931 | if (!timer_on) { | |
1932 | mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10)); | |
1933 | timer_on = 1; | |
1934 | } | |
1935 | list_size++; | |
1936 | spin_unlock_irqrestore(&async_umap_flush_lock, flags); | |
1937 | } | |
1938 | ||
f76aec76 | 1939 | static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, |
ba395927 KA |
1940 | size_t size, int dir) |
1941 | { | |
ba395927 | 1942 | struct pci_dev *pdev = to_pci_dev(dev); |
f76aec76 KA |
1943 | struct dmar_domain *domain; |
1944 | unsigned long start_addr; | |
ba395927 KA |
1945 | struct iova *iova; |
1946 | ||
358dd8ac | 1947 | if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) |
f76aec76 | 1948 | return; |
ba395927 KA |
1949 | domain = find_domain(pdev); |
1950 | BUG_ON(!domain); | |
1951 | ||
1952 | iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr)); | |
f76aec76 | 1953 | if (!iova) |
ba395927 | 1954 | return; |
ba395927 | 1955 | |
f76aec76 KA |
1956 | start_addr = iova->pfn_lo << PAGE_SHIFT_4K; |
1957 | size = aligned_size((u64)dev_addr, size); | |
ba395927 | 1958 | |
f76aec76 KA |
1959 | pr_debug("Device %s unmapping: %lx@%llx\n", |
1960 | pci_name(pdev), size, (u64)start_addr); | |
ba395927 | 1961 | |
f76aec76 KA |
1962 | /* clear the whole page */ |
1963 | dma_pte_clear_range(domain, start_addr, start_addr + size); | |
1964 | /* free page tables */ | |
1965 | dma_pte_free_pagetable(domain, start_addr, start_addr + size); | |
5e0d2a6f | 1966 | if (intel_iommu_strict) { |
1967 | if (iommu_flush_iotlb_psi(domain->iommu, | |
1968 | domain->id, start_addr, size >> PAGE_SHIFT_4K, 0)) | |
1969 | iommu_flush_write_buffer(domain->iommu); | |
1970 | /* free iova */ | |
1971 | __free_iova(&domain->iovad, iova); | |
1972 | } else { | |
1973 | add_unmap(domain, iova); | |
1974 | /* | |
1975 | * queue up the release of the unmap to save the 1/6th of the | |
1976 | * cpu used up by the iotlb flush operation... | |
1977 | */ | |
5e0d2a6f | 1978 | } |
ba395927 KA |
1979 | } |
1980 | ||
1981 | static void * intel_alloc_coherent(struct device *hwdev, size_t size, | |
1982 | dma_addr_t *dma_handle, gfp_t flags) | |
1983 | { | |
1984 | void *vaddr; | |
1985 | int order; | |
1986 | ||
1987 | size = PAGE_ALIGN_4K(size); | |
1988 | order = get_order(size); | |
1989 | flags &= ~(GFP_DMA | GFP_DMA32); | |
1990 | ||
1991 | vaddr = (void *)__get_free_pages(flags, order); | |
1992 | if (!vaddr) | |
1993 | return NULL; | |
1994 | memset(vaddr, 0, size); | |
1995 | ||
6865f0d1 | 1996 | *dma_handle = intel_map_single(hwdev, virt_to_bus(vaddr), size, DMA_BIDIRECTIONAL); |
ba395927 KA |
1997 | if (*dma_handle) |
1998 | return vaddr; | |
1999 | free_pages((unsigned long)vaddr, order); | |
2000 | return NULL; | |
2001 | } | |
2002 | ||
2003 | static void intel_free_coherent(struct device *hwdev, size_t size, | |
2004 | void *vaddr, dma_addr_t dma_handle) | |
2005 | { | |
2006 | int order; | |
2007 | ||
2008 | size = PAGE_ALIGN_4K(size); | |
2009 | order = get_order(size); | |
2010 | ||
2011 | intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL); | |
2012 | free_pages((unsigned long)vaddr, order); | |
2013 | } | |
2014 | ||
12d4d40e | 2015 | #define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg))) |
c03ab37c | 2016 | static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist, |
ba395927 KA |
2017 | int nelems, int dir) |
2018 | { | |
2019 | int i; | |
2020 | struct pci_dev *pdev = to_pci_dev(hwdev); | |
2021 | struct dmar_domain *domain; | |
f76aec76 KA |
2022 | unsigned long start_addr; |
2023 | struct iova *iova; | |
2024 | size_t size = 0; | |
2025 | void *addr; | |
c03ab37c | 2026 | struct scatterlist *sg; |
ba395927 | 2027 | |
358dd8ac | 2028 | if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) |
ba395927 KA |
2029 | return; |
2030 | ||
2031 | domain = find_domain(pdev); | |
ba395927 | 2032 | |
c03ab37c | 2033 | iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address)); |
f76aec76 KA |
2034 | if (!iova) |
2035 | return; | |
c03ab37c | 2036 | for_each_sg(sglist, sg, nelems, i) { |
f76aec76 KA |
2037 | addr = SG_ENT_VIRT_ADDRESS(sg); |
2038 | size += aligned_size((u64)addr, sg->length); | |
2039 | } | |
2040 | ||
2041 | start_addr = iova->pfn_lo << PAGE_SHIFT_4K; | |
2042 | ||
2043 | /* clear the whole page */ | |
2044 | dma_pte_clear_range(domain, start_addr, start_addr + size); | |
2045 | /* free page tables */ | |
2046 | dma_pte_free_pagetable(domain, start_addr, start_addr + size); | |
2047 | ||
2048 | if (iommu_flush_iotlb_psi(domain->iommu, domain->id, start_addr, | |
2049 | size >> PAGE_SHIFT_4K, 0)) | |
ba395927 | 2050 | iommu_flush_write_buffer(domain->iommu); |
f76aec76 KA |
2051 | |
2052 | /* free iova */ | |
2053 | __free_iova(&domain->iovad, iova); | |
ba395927 KA |
2054 | } |
2055 | ||
ba395927 | 2056 | static int intel_nontranslate_map_sg(struct device *hddev, |
c03ab37c | 2057 | struct scatterlist *sglist, int nelems, int dir) |
ba395927 KA |
2058 | { |
2059 | int i; | |
c03ab37c | 2060 | struct scatterlist *sg; |
ba395927 | 2061 | |
c03ab37c | 2062 | for_each_sg(sglist, sg, nelems, i) { |
12d4d40e | 2063 | BUG_ON(!sg_page(sg)); |
c03ab37c FT |
2064 | sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg)); |
2065 | sg->dma_length = sg->length; | |
ba395927 KA |
2066 | } |
2067 | return nelems; | |
2068 | } | |
2069 | ||
c03ab37c FT |
2070 | static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, |
2071 | int nelems, int dir) | |
ba395927 KA |
2072 | { |
2073 | void *addr; | |
2074 | int i; | |
ba395927 KA |
2075 | struct pci_dev *pdev = to_pci_dev(hwdev); |
2076 | struct dmar_domain *domain; | |
f76aec76 KA |
2077 | size_t size = 0; |
2078 | int prot = 0; | |
2079 | size_t offset = 0; | |
2080 | struct iova *iova = NULL; | |
2081 | int ret; | |
c03ab37c | 2082 | struct scatterlist *sg; |
f76aec76 | 2083 | unsigned long start_addr; |
ba395927 KA |
2084 | |
2085 | BUG_ON(dir == DMA_NONE); | |
358dd8ac | 2086 | if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) |
c03ab37c | 2087 | return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir); |
ba395927 | 2088 | |
f76aec76 KA |
2089 | domain = get_valid_domain_for_dev(pdev); |
2090 | if (!domain) | |
2091 | return 0; | |
2092 | ||
c03ab37c | 2093 | for_each_sg(sglist, sg, nelems, i) { |
ba395927 | 2094 | addr = SG_ENT_VIRT_ADDRESS(sg); |
f76aec76 KA |
2095 | addr = (void *)virt_to_phys(addr); |
2096 | size += aligned_size((u64)addr, sg->length); | |
2097 | } | |
2098 | ||
2099 | iova = __intel_alloc_iova(hwdev, domain, size); | |
2100 | if (!iova) { | |
c03ab37c | 2101 | sglist->dma_length = 0; |
f76aec76 KA |
2102 | return 0; |
2103 | } | |
2104 | ||
2105 | /* | |
2106 | * Check if DMAR supports zero-length reads on write only | |
2107 | * mappings.. | |
2108 | */ | |
2109 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ | |
2110 | !cap_zlr(domain->iommu->cap)) | |
2111 | prot |= DMA_PTE_READ; | |
2112 | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) | |
2113 | prot |= DMA_PTE_WRITE; | |
2114 | ||
2115 | start_addr = iova->pfn_lo << PAGE_SHIFT_4K; | |
2116 | offset = 0; | |
c03ab37c | 2117 | for_each_sg(sglist, sg, nelems, i) { |
f76aec76 KA |
2118 | addr = SG_ENT_VIRT_ADDRESS(sg); |
2119 | addr = (void *)virt_to_phys(addr); | |
2120 | size = aligned_size((u64)addr, sg->length); | |
2121 | ret = domain_page_mapping(domain, start_addr + offset, | |
2122 | ((u64)addr) & PAGE_MASK_4K, | |
2123 | size, prot); | |
2124 | if (ret) { | |
2125 | /* clear the page */ | |
2126 | dma_pte_clear_range(domain, start_addr, | |
2127 | start_addr + offset); | |
2128 | /* free page tables */ | |
2129 | dma_pte_free_pagetable(domain, start_addr, | |
2130 | start_addr + offset); | |
2131 | /* free iova */ | |
2132 | __free_iova(&domain->iovad, iova); | |
ba395927 KA |
2133 | return 0; |
2134 | } | |
f76aec76 KA |
2135 | sg->dma_address = start_addr + offset + |
2136 | ((u64)addr & (~PAGE_MASK_4K)); | |
ba395927 | 2137 | sg->dma_length = sg->length; |
f76aec76 | 2138 | offset += size; |
ba395927 KA |
2139 | } |
2140 | ||
ba395927 | 2141 | /* it's a non-present to present mapping */ |
f76aec76 KA |
2142 | if (iommu_flush_iotlb_psi(domain->iommu, domain->id, |
2143 | start_addr, offset >> PAGE_SHIFT_4K, 1)) | |
ba395927 KA |
2144 | iommu_flush_write_buffer(domain->iommu); |
2145 | return nelems; | |
2146 | } | |
2147 | ||
2148 | static struct dma_mapping_ops intel_dma_ops = { | |
2149 | .alloc_coherent = intel_alloc_coherent, | |
2150 | .free_coherent = intel_free_coherent, | |
2151 | .map_single = intel_map_single, | |
2152 | .unmap_single = intel_unmap_single, | |
2153 | .map_sg = intel_map_sg, | |
2154 | .unmap_sg = intel_unmap_sg, | |
2155 | }; | |
2156 | ||
2157 | static inline int iommu_domain_cache_init(void) | |
2158 | { | |
2159 | int ret = 0; | |
2160 | ||
2161 | iommu_domain_cache = kmem_cache_create("iommu_domain", | |
2162 | sizeof(struct dmar_domain), | |
2163 | 0, | |
2164 | SLAB_HWCACHE_ALIGN, | |
2165 | ||
2166 | NULL); | |
2167 | if (!iommu_domain_cache) { | |
2168 | printk(KERN_ERR "Couldn't create iommu_domain cache\n"); | |
2169 | ret = -ENOMEM; | |
2170 | } | |
2171 | ||
2172 | return ret; | |
2173 | } | |
2174 | ||
2175 | static inline int iommu_devinfo_cache_init(void) | |
2176 | { | |
2177 | int ret = 0; | |
2178 | ||
2179 | iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", | |
2180 | sizeof(struct device_domain_info), | |
2181 | 0, | |
2182 | SLAB_HWCACHE_ALIGN, | |
2183 | ||
2184 | NULL); | |
2185 | if (!iommu_devinfo_cache) { | |
2186 | printk(KERN_ERR "Couldn't create devinfo cache\n"); | |
2187 | ret = -ENOMEM; | |
2188 | } | |
2189 | ||
2190 | return ret; | |
2191 | } | |
2192 | ||
2193 | static inline int iommu_iova_cache_init(void) | |
2194 | { | |
2195 | int ret = 0; | |
2196 | ||
2197 | iommu_iova_cache = kmem_cache_create("iommu_iova", | |
2198 | sizeof(struct iova), | |
2199 | 0, | |
2200 | SLAB_HWCACHE_ALIGN, | |
2201 | ||
2202 | NULL); | |
2203 | if (!iommu_iova_cache) { | |
2204 | printk(KERN_ERR "Couldn't create iova cache\n"); | |
2205 | ret = -ENOMEM; | |
2206 | } | |
2207 | ||
2208 | return ret; | |
2209 | } | |
2210 | ||
2211 | static int __init iommu_init_mempool(void) | |
2212 | { | |
2213 | int ret; | |
2214 | ret = iommu_iova_cache_init(); | |
2215 | if (ret) | |
2216 | return ret; | |
2217 | ||
2218 | ret = iommu_domain_cache_init(); | |
2219 | if (ret) | |
2220 | goto domain_error; | |
2221 | ||
2222 | ret = iommu_devinfo_cache_init(); | |
2223 | if (!ret) | |
2224 | return ret; | |
2225 | ||
2226 | kmem_cache_destroy(iommu_domain_cache); | |
2227 | domain_error: | |
2228 | kmem_cache_destroy(iommu_iova_cache); | |
2229 | ||
2230 | return -ENOMEM; | |
2231 | } | |
2232 | ||
2233 | static void __init iommu_exit_mempool(void) | |
2234 | { | |
2235 | kmem_cache_destroy(iommu_devinfo_cache); | |
2236 | kmem_cache_destroy(iommu_domain_cache); | |
2237 | kmem_cache_destroy(iommu_iova_cache); | |
2238 | ||
2239 | } | |
2240 | ||
2241 | void __init detect_intel_iommu(void) | |
2242 | { | |
2243 | if (swiotlb || no_iommu || iommu_detected || dmar_disabled) | |
2244 | return; | |
2245 | if (early_dmar_detect()) { | |
2246 | iommu_detected = 1; | |
2247 | } | |
2248 | } | |
2249 | ||
2250 | static void __init init_no_remapping_devices(void) | |
2251 | { | |
2252 | struct dmar_drhd_unit *drhd; | |
2253 | ||
2254 | for_each_drhd_unit(drhd) { | |
2255 | if (!drhd->include_all) { | |
2256 | int i; | |
2257 | for (i = 0; i < drhd->devices_cnt; i++) | |
2258 | if (drhd->devices[i] != NULL) | |
2259 | break; | |
2260 | /* ignore DMAR unit if no pci devices exist */ | |
2261 | if (i == drhd->devices_cnt) | |
2262 | drhd->ignored = 1; | |
2263 | } | |
2264 | } | |
2265 | ||
2266 | if (dmar_map_gfx) | |
2267 | return; | |
2268 | ||
2269 | for_each_drhd_unit(drhd) { | |
2270 | int i; | |
2271 | if (drhd->ignored || drhd->include_all) | |
2272 | continue; | |
2273 | ||
2274 | for (i = 0; i < drhd->devices_cnt; i++) | |
2275 | if (drhd->devices[i] && | |
2276 | !IS_GFX_DEVICE(drhd->devices[i])) | |
2277 | break; | |
2278 | ||
2279 | if (i < drhd->devices_cnt) | |
2280 | continue; | |
2281 | ||
2282 | /* bypass IOMMU if it is just for gfx devices */ | |
2283 | drhd->ignored = 1; | |
2284 | for (i = 0; i < drhd->devices_cnt; i++) { | |
2285 | if (!drhd->devices[i]) | |
2286 | continue; | |
358dd8ac | 2287 | drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; |
ba395927 KA |
2288 | } |
2289 | } | |
2290 | } | |
2291 | ||
2292 | int __init intel_iommu_init(void) | |
2293 | { | |
2294 | int ret = 0; | |
2295 | ||
2296 | if (no_iommu || swiotlb || dmar_disabled) | |
2297 | return -ENODEV; | |
2298 | ||
2299 | if (dmar_table_init()) | |
2300 | return -ENODEV; | |
2301 | ||
1886e8a9 SS |
2302 | if (dmar_dev_scope_init()) |
2303 | return -ENODEV; | |
2304 | ||
ba395927 KA |
2305 | iommu_init_mempool(); |
2306 | dmar_init_reserved_ranges(); | |
2307 | ||
2308 | init_no_remapping_devices(); | |
2309 | ||
2310 | ret = init_dmars(); | |
2311 | if (ret) { | |
2312 | printk(KERN_ERR "IOMMU: dmar init failed\n"); | |
2313 | put_iova_domain(&reserved_iova_list); | |
2314 | iommu_exit_mempool(); | |
2315 | return ret; | |
2316 | } | |
2317 | printk(KERN_INFO | |
2318 | "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n"); | |
2319 | ||
5e0d2a6f | 2320 | init_timer(&unmap_timer); |
ba395927 KA |
2321 | force_iommu = 1; |
2322 | dma_ops = &intel_dma_ops; | |
2323 | return 0; | |
2324 | } | |
e820482c | 2325 |