]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/pci/pci.c
ACPI / hotplug / PCI: Check presence of slot itself in get_slot_status()
[mirror_ubuntu-bionic-kernel.git] / drivers / pci / pci.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
2ab51dde 10#include <linux/acpi.h>
1da177e4
LT
11#include <linux/kernel.h>
12#include <linux/delay.h>
9d26d3a8 13#include <linux/dmi.h>
1da177e4 14#include <linux/init.h>
7c674700
LP
15#include <linux/of.h>
16#include <linux/of_pci.h>
1da177e4 17#include <linux/pci.h>
075c1771 18#include <linux/pm.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/module.h>
21#include <linux/spinlock.h>
4e57b681 22#include <linux/string.h>
229f5afd 23#include <linux/log2.h>
046ff9e6 24#include <linux/logic_pio.h>
7d715a6c 25#include <linux/pci-aspm.h>
c300bd2f 26#include <linux/pm_wakeup.h>
8dd7f803 27#include <linux/interrupt.h>
32a9a682 28#include <linux/device.h>
b67ea761 29#include <linux/pm_runtime.h>
608c3881 30#include <linux/pci_hotplug.h>
4d3f1384 31#include <linux/vmalloc.h>
4ebeb1ec 32#include <linux/pci-ats.h>
32a9a682 33#include <asm/setup.h>
2a2aca31 34#include <asm/dma.h>
b07461a8 35#include <linux/aer.h>
bc56b9e0 36#include "pci.h"
1da177e4 37
00240c38
AS
38const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40};
41EXPORT_SYMBOL_GPL(pci_power_names);
42
93177a74
RW
43int isa_dma_bridge_buggy;
44EXPORT_SYMBOL(isa_dma_bridge_buggy);
45
46int pci_pci_problems;
47EXPORT_SYMBOL(pci_pci_problems);
48
1ae861e6
RW
49unsigned int pci_pm_d3_delay;
50
df17e62e
MG
51static void pci_pme_list_scan(struct work_struct *work);
52
53static LIST_HEAD(pci_pme_list);
54static DEFINE_MUTEX(pci_pme_list_mutex);
55static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56
57struct pci_pme_device {
58 struct list_head list;
59 struct pci_dev *dev;
60};
61
62#define PME_TIMEOUT 1000 /* How long between PME checks */
63
1ae861e6
RW
64static void pci_dev_d3_sleep(struct pci_dev *dev)
65{
66 unsigned int delay = dev->d3_delay;
67
68 if (delay < pci_pm_d3_delay)
69 delay = pci_pm_d3_delay;
70
50b2b540
AH
71 if (delay)
72 msleep(delay);
1ae861e6 73}
1da177e4 74
32a2eea7
JG
75#ifdef CONFIG_PCI_DOMAINS
76int pci_domains_supported = 1;
77#endif
78
4516a618
AN
79#define DEFAULT_CARDBUS_IO_SIZE (256)
80#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
81/* pci=cbmemsize=nnM,cbiosize=nn can override this */
82unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84
28760489
EB
85#define DEFAULT_HOTPLUG_IO_SIZE (256)
86#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
87/* pci=hpmemsize=nnM,hpiosize=nn can override this */
88unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
89unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
90
e16b4660
KB
91#define DEFAULT_HOTPLUG_BUS_SIZE 1
92unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
93
27d868b5 94enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
b03e7495 95
ac1aa47b
JB
96/*
97 * The default CLS is used if arch didn't set CLS explicitly and not
98 * all pci devices agree on the same value. Arch can override either
99 * the dfl or actual value as it sees fit. Don't forget this is
100 * measured in 32-bit words, not bytes.
101 */
15856ad5 102u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
ac1aa47b
JB
103u8 pci_cache_line_size;
104
96c55900
MS
105/*
106 * If we set up a device for bus mastering, we need to check the latency
107 * timer as certain BIOSes forget to set it properly.
108 */
109unsigned int pcibios_max_latency = 255;
110
6748dcc2
RW
111/* If set, the PCIe ARI capability will not be used. */
112static bool pcie_ari_disabled;
113
9d26d3a8
MW
114/* Disable bridge_d3 for all PCIe ports */
115static bool pci_bridge_d3_disable;
116/* Force bridge_d3 for all PCIe ports */
117static bool pci_bridge_d3_force;
118
119static int __init pcie_port_pm_setup(char *str)
120{
121 if (!strcmp(str, "off"))
122 pci_bridge_d3_disable = true;
123 else if (!strcmp(str, "force"))
124 pci_bridge_d3_force = true;
125 return 1;
126}
127__setup("pcie_port_pm=", pcie_port_pm_setup);
128
1da177e4
LT
129/**
130 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
131 * @bus: pointer to PCI bus structure to search
132 *
133 * Given a PCI bus, returns the highest PCI bus number present in the set
134 * including the given PCI bus and its list of child PCI buses.
135 */
07656d83 136unsigned char pci_bus_max_busnr(struct pci_bus *bus)
1da177e4 137{
94e6a9b9 138 struct pci_bus *tmp;
1da177e4
LT
139 unsigned char max, n;
140
b918c62e 141 max = bus->busn_res.end;
94e6a9b9
YW
142 list_for_each_entry(tmp, &bus->children, node) {
143 n = pci_bus_max_busnr(tmp);
3c78bc61 144 if (n > max)
1da177e4
LT
145 max = n;
146 }
147 return max;
148}
b82db5ce 149EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
1da177e4 150
1684f5dd
AM
151#ifdef CONFIG_HAS_IOMEM
152void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
153{
1f7bf3bf
BH
154 struct resource *res = &pdev->resource[bar];
155
1684f5dd
AM
156 /*
157 * Make sure the BAR is actually a memory resource, not an IO resource
158 */
646c0282 159 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
1f7bf3bf 160 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
1684f5dd
AM
161 return NULL;
162 }
1f7bf3bf 163 return ioremap_nocache(res->start, resource_size(res));
1684f5dd
AM
164}
165EXPORT_SYMBOL_GPL(pci_ioremap_bar);
c43996f4
LR
166
167void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
168{
169 /*
170 * Make sure the BAR is actually a memory resource, not an IO resource
171 */
172 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
173 WARN_ON(1);
174 return NULL;
175 }
176 return ioremap_wc(pci_resource_start(pdev, bar),
177 pci_resource_len(pdev, bar));
178}
179EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
1684f5dd
AM
180#endif
181
687d5fe3
ME
182
183static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
184 u8 pos, int cap, int *ttl)
24a4e377
RD
185{
186 u8 id;
55db3208
SS
187 u16 ent;
188
189 pci_bus_read_config_byte(bus, devfn, pos, &pos);
24a4e377 190
687d5fe3 191 while ((*ttl)--) {
24a4e377
RD
192 if (pos < 0x40)
193 break;
194 pos &= ~3;
55db3208
SS
195 pci_bus_read_config_word(bus, devfn, pos, &ent);
196
197 id = ent & 0xff;
24a4e377
RD
198 if (id == 0xff)
199 break;
200 if (id == cap)
201 return pos;
55db3208 202 pos = (ent >> 8);
24a4e377
RD
203 }
204 return 0;
205}
206
687d5fe3
ME
207static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
208 u8 pos, int cap)
209{
210 int ttl = PCI_FIND_CAP_TTL;
211
212 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
213}
214
24a4e377
RD
215int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
216{
217 return __pci_find_next_cap(dev->bus, dev->devfn,
218 pos + PCI_CAP_LIST_NEXT, cap);
219}
220EXPORT_SYMBOL_GPL(pci_find_next_capability);
221
d3bac118
ME
222static int __pci_bus_find_cap_start(struct pci_bus *bus,
223 unsigned int devfn, u8 hdr_type)
1da177e4
LT
224{
225 u16 status;
1da177e4
LT
226
227 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
228 if (!(status & PCI_STATUS_CAP_LIST))
229 return 0;
230
231 switch (hdr_type) {
232 case PCI_HEADER_TYPE_NORMAL:
233 case PCI_HEADER_TYPE_BRIDGE:
d3bac118 234 return PCI_CAPABILITY_LIST;
1da177e4 235 case PCI_HEADER_TYPE_CARDBUS:
d3bac118 236 return PCI_CB_CAPABILITY_LIST;
1da177e4 237 }
d3bac118
ME
238
239 return 0;
1da177e4
LT
240}
241
242/**
f7625980 243 * pci_find_capability - query for devices' capabilities
1da177e4
LT
244 * @dev: PCI device to query
245 * @cap: capability code
246 *
247 * Tell if a device supports a given PCI capability.
248 * Returns the address of the requested capability structure within the
249 * device's PCI configuration space or 0 in case the device does not
250 * support it. Possible values for @cap:
251 *
f7625980
BH
252 * %PCI_CAP_ID_PM Power Management
253 * %PCI_CAP_ID_AGP Accelerated Graphics Port
254 * %PCI_CAP_ID_VPD Vital Product Data
255 * %PCI_CAP_ID_SLOTID Slot Identification
1da177e4 256 * %PCI_CAP_ID_MSI Message Signalled Interrupts
f7625980 257 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
1da177e4
LT
258 * %PCI_CAP_ID_PCIX PCI-X
259 * %PCI_CAP_ID_EXP PCI Express
260 */
261int pci_find_capability(struct pci_dev *dev, int cap)
262{
d3bac118
ME
263 int pos;
264
265 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
266 if (pos)
267 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
268
269 return pos;
1da177e4 270}
b7fe9434 271EXPORT_SYMBOL(pci_find_capability);
1da177e4
LT
272
273/**
f7625980 274 * pci_bus_find_capability - query for devices' capabilities
1da177e4
LT
275 * @bus: the PCI bus to query
276 * @devfn: PCI device to query
277 * @cap: capability code
278 *
279 * Like pci_find_capability() but works for pci devices that do not have a
f7625980 280 * pci_dev structure set up yet.
1da177e4
LT
281 *
282 * Returns the address of the requested capability structure within the
283 * device's PCI configuration space or 0 in case the device does not
284 * support it.
285 */
286int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
287{
d3bac118 288 int pos;
1da177e4
LT
289 u8 hdr_type;
290
291 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
292
d3bac118
ME
293 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
294 if (pos)
295 pos = __pci_find_next_cap(bus, devfn, pos, cap);
296
297 return pos;
1da177e4 298}
b7fe9434 299EXPORT_SYMBOL(pci_bus_find_capability);
1da177e4
LT
300
301/**
44a9a36f 302 * pci_find_next_ext_capability - Find an extended capability
1da177e4 303 * @dev: PCI device to query
44a9a36f 304 * @start: address at which to start looking (0 to start at beginning of list)
1da177e4
LT
305 * @cap: capability code
306 *
44a9a36f 307 * Returns the address of the next matching extended capability structure
1da177e4 308 * within the device's PCI configuration space or 0 if the device does
44a9a36f
BH
309 * not support it. Some capabilities can occur several times, e.g., the
310 * vendor-specific capability, and this provides a way to find them all.
1da177e4 311 */
44a9a36f 312int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
1da177e4
LT
313{
314 u32 header;
557848c3
ZY
315 int ttl;
316 int pos = PCI_CFG_SPACE_SIZE;
1da177e4 317
557848c3
ZY
318 /* minimum 8 bytes per capability */
319 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
320
321 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
1da177e4
LT
322 return 0;
323
44a9a36f
BH
324 if (start)
325 pos = start;
326
1da177e4
LT
327 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
328 return 0;
329
330 /*
331 * If we have no capabilities, this is indicated by cap ID,
332 * cap version and next pointer all being 0.
333 */
334 if (header == 0)
335 return 0;
336
337 while (ttl-- > 0) {
44a9a36f 338 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
1da177e4
LT
339 return pos;
340
341 pos = PCI_EXT_CAP_NEXT(header);
557848c3 342 if (pos < PCI_CFG_SPACE_SIZE)
1da177e4
LT
343 break;
344
345 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
346 break;
347 }
348
349 return 0;
350}
44a9a36f
BH
351EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
352
353/**
354 * pci_find_ext_capability - Find an extended capability
355 * @dev: PCI device to query
356 * @cap: capability code
357 *
358 * Returns the address of the requested extended capability structure
359 * within the device's PCI configuration space or 0 if the device does
360 * not support it. Possible values for @cap:
361 *
362 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
363 * %PCI_EXT_CAP_ID_VC Virtual Channel
364 * %PCI_EXT_CAP_ID_DSN Device Serial Number
365 * %PCI_EXT_CAP_ID_PWR Power Budgeting
366 */
367int pci_find_ext_capability(struct pci_dev *dev, int cap)
368{
369 return pci_find_next_ext_capability(dev, 0, cap);
370}
3a720d72 371EXPORT_SYMBOL_GPL(pci_find_ext_capability);
1da177e4 372
687d5fe3
ME
373static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
374{
375 int rc, ttl = PCI_FIND_CAP_TTL;
376 u8 cap, mask;
377
378 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
379 mask = HT_3BIT_CAP_MASK;
380 else
381 mask = HT_5BIT_CAP_MASK;
382
383 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
384 PCI_CAP_ID_HT, &ttl);
385 while (pos) {
386 rc = pci_read_config_byte(dev, pos + 3, &cap);
387 if (rc != PCIBIOS_SUCCESSFUL)
388 return 0;
389
390 if ((cap & mask) == ht_cap)
391 return pos;
392
47a4d5be
BG
393 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
394 pos + PCI_CAP_LIST_NEXT,
687d5fe3
ME
395 PCI_CAP_ID_HT, &ttl);
396 }
397
398 return 0;
399}
400/**
401 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
402 * @dev: PCI device to query
403 * @pos: Position from which to continue searching
404 * @ht_cap: Hypertransport capability code
405 *
406 * To be used in conjunction with pci_find_ht_capability() to search for
407 * all capabilities matching @ht_cap. @pos should always be a value returned
408 * from pci_find_ht_capability().
409 *
410 * NB. To be 100% safe against broken PCI devices, the caller should take
411 * steps to avoid an infinite loop.
412 */
413int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
414{
415 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
416}
417EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
418
419/**
420 * pci_find_ht_capability - query a device's Hypertransport capabilities
421 * @dev: PCI device to query
422 * @ht_cap: Hypertransport capability code
423 *
424 * Tell if a device supports a given Hypertransport capability.
425 * Returns an address within the device's PCI configuration space
426 * or 0 in case the device does not support the request capability.
427 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
428 * which has a Hypertransport capability matching @ht_cap.
429 */
430int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
431{
432 int pos;
433
434 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
435 if (pos)
436 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
437
438 return pos;
439}
440EXPORT_SYMBOL_GPL(pci_find_ht_capability);
441
1da177e4
LT
442/**
443 * pci_find_parent_resource - return resource region of parent bus of given region
444 * @dev: PCI device structure contains resources to be searched
445 * @res: child resource record for which parent is sought
446 *
447 * For given resource region of given device, return the resource
f44116ae 448 * region of parent bus the given region is contained in.
1da177e4 449 */
3c78bc61
RD
450struct resource *pci_find_parent_resource(const struct pci_dev *dev,
451 struct resource *res)
1da177e4
LT
452{
453 const struct pci_bus *bus = dev->bus;
f44116ae 454 struct resource *r;
1da177e4 455 int i;
1da177e4 456
89a74ecc 457 pci_bus_for_each_resource(bus, r, i) {
1da177e4
LT
458 if (!r)
459 continue;
31342330 460 if (resource_contains(r, res)) {
f44116ae
BH
461
462 /*
463 * If the window is prefetchable but the BAR is
464 * not, the allocator made a mistake.
465 */
466 if (r->flags & IORESOURCE_PREFETCH &&
467 !(res->flags & IORESOURCE_PREFETCH))
468 return NULL;
469
470 /*
471 * If we're below a transparent bridge, there may
472 * be both a positively-decoded aperture and a
473 * subtractively-decoded region that contain the BAR.
474 * We want the positively-decoded one, so this depends
475 * on pci_bus_for_each_resource() giving us those
476 * first.
477 */
478 return r;
479 }
1da177e4 480 }
f44116ae 481 return NULL;
1da177e4 482}
b7fe9434 483EXPORT_SYMBOL(pci_find_parent_resource);
1da177e4 484
afd29f90
MW
485/**
486 * pci_find_resource - Return matching PCI device resource
487 * @dev: PCI device to query
488 * @res: Resource to look for
489 *
490 * Goes over standard PCI resources (BARs) and checks if the given resource
491 * is partially or fully contained in any of them. In that case the
492 * matching resource is returned, %NULL otherwise.
493 */
494struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
495{
496 int i;
497
498 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
499 struct resource *r = &dev->resource[i];
500
501 if (r->start && resource_contains(r, res))
502 return r;
503 }
504
505 return NULL;
506}
507EXPORT_SYMBOL(pci_find_resource);
508
c56d4450
HS
509/**
510 * pci_find_pcie_root_port - return PCIe Root Port
511 * @dev: PCI device to query
512 *
513 * Traverse up the parent chain and return the PCIe Root Port PCI Device
514 * for a given PCI Device.
515 */
516struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
517{
b6f6d56c 518 struct pci_dev *bridge, *highest_pcie_bridge = dev;
c56d4450
HS
519
520 bridge = pci_upstream_bridge(dev);
521 while (bridge && pci_is_pcie(bridge)) {
522 highest_pcie_bridge = bridge;
523 bridge = pci_upstream_bridge(bridge);
524 }
525
b6f6d56c
TR
526 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
527 return NULL;
c56d4450 528
b6f6d56c 529 return highest_pcie_bridge;
c56d4450
HS
530}
531EXPORT_SYMBOL(pci_find_pcie_root_port);
532
157e876f
AW
533/**
534 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
535 * @dev: the PCI device to operate on
536 * @pos: config space offset of status word
537 * @mask: mask of bit(s) to care about in status word
538 *
539 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
540 */
541int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
542{
543 int i;
544
545 /* Wait for Transaction Pending bit clean */
546 for (i = 0; i < 4; i++) {
547 u16 status;
548 if (i)
549 msleep((1 << (i - 1)) * 100);
550
551 pci_read_config_word(dev, pos, &status);
552 if (!(status & mask))
553 return 1;
554 }
555
556 return 0;
557}
558
064b53db 559/**
70675e0b 560 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
064b53db
JL
561 * @dev: PCI device to have its BARs restored
562 *
563 * Restore the BAR values for a given device, so as to make it
564 * accessible by its driver.
565 */
3c78bc61 566static void pci_restore_bars(struct pci_dev *dev)
064b53db 567{
bc5f5a82 568 int i;
064b53db 569
bc5f5a82 570 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
14add80b 571 pci_update_resource(dev, i);
064b53db
JL
572}
573
299f2ffe 574static const struct pci_platform_pm_ops *pci_platform_pm;
961d9120 575
299f2ffe 576int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
961d9120 577{
cc7cc02b 578 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
0847684c 579 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
961d9120
RW
580 return -EINVAL;
581 pci_platform_pm = ops;
582 return 0;
583}
584
585static inline bool platform_pci_power_manageable(struct pci_dev *dev)
586{
587 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
588}
589
590static inline int platform_pci_set_power_state(struct pci_dev *dev,
3c78bc61 591 pci_power_t t)
961d9120
RW
592{
593 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
594}
595
cc7cc02b
LW
596static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
597{
598 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
599}
600
961d9120
RW
601static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
602{
603 return pci_platform_pm ?
604 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
605}
8f7020d3 606
0847684c 607static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
eb9d0fe4
RW
608{
609 return pci_platform_pm ?
0847684c 610 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
b67ea761
RW
611}
612
bac2a909
RW
613static inline bool platform_pci_need_resume(struct pci_dev *dev)
614{
615 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
616}
617
1da177e4 618/**
44e4e66e
RW
619 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
620 * given PCI device
621 * @dev: PCI device to handle.
44e4e66e 622 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1da177e4 623 *
44e4e66e
RW
624 * RETURN VALUE:
625 * -EINVAL if the requested state is invalid.
626 * -EIO if device does not support PCI PM or its PM capabilities register has a
627 * wrong version, or device doesn't support the requested state.
628 * 0 if device already is in the requested state.
629 * 0 if device's power state has been successfully changed.
1da177e4 630 */
f00a20ef 631static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1da177e4 632{
337001b6 633 u16 pmcsr;
44e4e66e 634 bool need_restore = false;
1da177e4 635
4a865905
RW
636 /* Check if we're already there */
637 if (dev->current_state == state)
638 return 0;
639
337001b6 640 if (!dev->pm_cap)
cca03dec
AL
641 return -EIO;
642
44e4e66e
RW
643 if (state < PCI_D0 || state > PCI_D3hot)
644 return -EINVAL;
645
1da177e4 646 /* Validate current state:
f7625980 647 * Can enter D0 from any state, but if we can only go deeper
1da177e4
LT
648 * to sleep if we're already in a low power state
649 */
4a865905 650 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
44e4e66e 651 && dev->current_state > state) {
227f0647
RD
652 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
653 dev->current_state, state);
1da177e4 654 return -EINVAL;
44e4e66e 655 }
1da177e4 656
1da177e4 657 /* check if this device supports the desired state */
337001b6
RW
658 if ((state == PCI_D1 && !dev->d1_support)
659 || (state == PCI_D2 && !dev->d2_support))
3fe9d19f 660 return -EIO;
1da177e4 661
337001b6 662 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
064b53db 663
32a36585 664 /* If we're (effectively) in D3, force entire word to 0.
1da177e4
LT
665 * This doesn't affect PME_Status, disables PME_En, and
666 * sets PowerState to 0.
667 */
32a36585 668 switch (dev->current_state) {
d3535fbb
JL
669 case PCI_D0:
670 case PCI_D1:
671 case PCI_D2:
672 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
673 pmcsr |= state;
674 break;
f62795f1
RW
675 case PCI_D3hot:
676 case PCI_D3cold:
32a36585
JL
677 case PCI_UNKNOWN: /* Boot-up */
678 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
f00a20ef 679 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
44e4e66e 680 need_restore = true;
32a36585 681 /* Fall-through: force to D0 */
32a36585 682 default:
d3535fbb 683 pmcsr = 0;
32a36585 684 break;
1da177e4
LT
685 }
686
687 /* enter specified state */
337001b6 688 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1da177e4
LT
689
690 /* Mandatory power management transition delays */
691 /* see PCI PM 1.1 5.6.1 table 18 */
692 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1ae861e6 693 pci_dev_d3_sleep(dev);
1da177e4 694 else if (state == PCI_D2 || dev->current_state == PCI_D2)
aa8c6c93 695 udelay(PCI_PM_D2_DELAY);
1da177e4 696
e13cdbd7
RW
697 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
698 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
699 if (dev->current_state != state && printk_ratelimit())
227f0647
RD
700 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
701 dev->current_state);
064b53db 702
448bd857
HY
703 /*
704 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
064b53db
JL
705 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
706 * from D3hot to D0 _may_ perform an internal reset, thereby
707 * going to "D0 Uninitialized" rather than "D0 Initialized".
708 * For example, at least some versions of the 3c905B and the
709 * 3c556B exhibit this behaviour.
710 *
711 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
712 * devices in a D3hot state at boot. Consequently, we need to
713 * restore at least the BARs so that the device will be
714 * accessible to its driver.
715 */
716 if (need_restore)
717 pci_restore_bars(dev);
718
f00a20ef 719 if (dev->bus->self)
7d715a6c
SL
720 pcie_aspm_pm_state_change(dev->bus->self);
721
1da177e4
LT
722 return 0;
723}
724
44e4e66e 725/**
a6a64026 726 * pci_update_current_state - Read power state of given device and cache it
44e4e66e 727 * @dev: PCI device to handle.
f06fc0b6 728 * @state: State to cache in case the device doesn't have the PM capability
a6a64026
LW
729 *
730 * The power state is read from the PMCSR register, which however is
731 * inaccessible in D3cold. The platform firmware is therefore queried first
732 * to detect accessibility of the register. In case the platform firmware
733 * reports an incorrect state or the device isn't power manageable by the
734 * platform at all, we try to detect D3cold by testing accessibility of the
735 * vendor ID in config space.
44e4e66e 736 */
73410429 737void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
44e4e66e 738{
a6a64026
LW
739 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
740 !pci_device_is_present(dev)) {
741 dev->current_state = PCI_D3cold;
742 } else if (dev->pm_cap) {
44e4e66e
RW
743 u16 pmcsr;
744
337001b6 745 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
44e4e66e 746 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
f06fc0b6
RW
747 } else {
748 dev->current_state = state;
44e4e66e
RW
749 }
750}
751
db288c9c
RW
752/**
753 * pci_power_up - Put the given device into D0 forcibly
754 * @dev: PCI device to power up
755 */
756void pci_power_up(struct pci_dev *dev)
757{
758 if (platform_pci_power_manageable(dev))
759 platform_pci_set_power_state(dev, PCI_D0);
760
761 pci_raw_set_power_state(dev, PCI_D0);
762 pci_update_current_state(dev, PCI_D0);
763}
764
0e5dd46b
RW
765/**
766 * pci_platform_power_transition - Use platform to change device power state
767 * @dev: PCI device to handle.
768 * @state: State to put the device into.
769 */
770static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
771{
772 int error;
773
774 if (platform_pci_power_manageable(dev)) {
775 error = platform_pci_set_power_state(dev, state);
776 if (!error)
777 pci_update_current_state(dev, state);
769ba721 778 } else
0e5dd46b 779 error = -ENODEV;
769ba721
RW
780
781 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
782 dev->current_state = PCI_D0;
0e5dd46b
RW
783
784 return error;
785}
786
0b950f0f
SH
787/**
788 * pci_wakeup - Wake up a PCI device
789 * @pci_dev: Device to handle.
790 * @ign: ignored parameter
791 */
792static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
793{
794 pci_wakeup_event(pci_dev);
795 pm_request_resume(&pci_dev->dev);
796 return 0;
797}
798
799/**
800 * pci_wakeup_bus - Walk given bus and wake up devices on it
801 * @bus: Top bus of the subtree to walk.
802 */
803static void pci_wakeup_bus(struct pci_bus *bus)
804{
805 if (bus)
806 pci_walk_bus(bus, pci_wakeup, NULL);
807}
808
0e5dd46b
RW
809/**
810 * __pci_start_power_transition - Start power transition of a PCI device
811 * @dev: PCI device to handle.
812 * @state: State to put the device into.
813 */
814static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
815{
448bd857 816 if (state == PCI_D0) {
0e5dd46b 817 pci_platform_power_transition(dev, PCI_D0);
448bd857
HY
818 /*
819 * Mandatory power management transition delays, see
820 * PCI Express Base Specification Revision 2.0 Section
821 * 6.6.1: Conventional Reset. Do not delay for
822 * devices powered on/off by corresponding bridge,
823 * because have already delayed for the bridge.
824 */
825 if (dev->runtime_d3cold) {
50b2b540
AH
826 if (dev->d3cold_delay)
827 msleep(dev->d3cold_delay);
448bd857
HY
828 /*
829 * When powering on a bridge from D3cold, the
830 * whole hierarchy may be powered on into
831 * D0uninitialized state, resume them to give
832 * them a chance to suspend again
833 */
834 pci_wakeup_bus(dev->subordinate);
835 }
836 }
837}
838
839/**
840 * __pci_dev_set_current_state - Set current state of a PCI device
841 * @dev: Device to handle
842 * @data: pointer to state to be set
843 */
844static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
845{
846 pci_power_t state = *(pci_power_t *)data;
847
848 dev->current_state = state;
849 return 0;
850}
851
852/**
853 * __pci_bus_set_current_state - Walk given bus and set current state of devices
854 * @bus: Top bus of the subtree to walk.
855 * @state: state to be set
856 */
857static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
858{
859 if (bus)
860 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
0e5dd46b
RW
861}
862
863/**
864 * __pci_complete_power_transition - Complete power transition of a PCI device
865 * @dev: PCI device to handle.
866 * @state: State to put the device into.
867 *
868 * This function should not be called directly by device drivers.
869 */
870int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
871{
448bd857
HY
872 int ret;
873
db288c9c 874 if (state <= PCI_D0)
448bd857
HY
875 return -EINVAL;
876 ret = pci_platform_power_transition(dev, state);
877 /* Power off the bridge may power off the whole hierarchy */
878 if (!ret && state == PCI_D3cold)
879 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
880 return ret;
0e5dd46b
RW
881}
882EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
883
44e4e66e
RW
884/**
885 * pci_set_power_state - Set the power state of a PCI device
886 * @dev: PCI device to handle.
887 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
888 *
877d0310 889 * Transition a device to a new power state, using the platform firmware and/or
44e4e66e
RW
890 * the device's PCI PM registers.
891 *
892 * RETURN VALUE:
893 * -EINVAL if the requested state is invalid.
894 * -EIO if device does not support PCI PM or its PM capabilities register has a
895 * wrong version, or device doesn't support the requested state.
ab4b8a47 896 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
44e4e66e 897 * 0 if device already is in the requested state.
ab4b8a47 898 * 0 if the transition is to D3 but D3 is not supported.
44e4e66e
RW
899 * 0 if device's power state has been successfully changed.
900 */
901int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
902{
337001b6 903 int error;
44e4e66e
RW
904
905 /* bound the state we're entering */
448bd857
HY
906 if (state > PCI_D3cold)
907 state = PCI_D3cold;
44e4e66e
RW
908 else if (state < PCI_D0)
909 state = PCI_D0;
910 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
911 /*
912 * If the device or the parent bridge do not support PCI PM,
913 * ignore the request if we're doing anything other than putting
914 * it into D0 (which would only happen on boot).
915 */
916 return 0;
917
db288c9c
RW
918 /* Check if we're already there */
919 if (dev->current_state == state)
920 return 0;
921
0e5dd46b
RW
922 __pci_start_power_transition(dev, state);
923
979b1791
AC
924 /* This device is quirked not to be put into D3, so
925 don't put it in D3 */
448bd857 926 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
979b1791 927 return 0;
44e4e66e 928
448bd857
HY
929 /*
930 * To put device in D3cold, we put device into D3hot in native
931 * way, then put device into D3cold with platform ops
932 */
933 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
934 PCI_D3hot : state);
44e4e66e 935
0e5dd46b
RW
936 if (!__pci_complete_power_transition(dev, state))
937 error = 0;
44e4e66e
RW
938
939 return error;
940}
b7fe9434 941EXPORT_SYMBOL(pci_set_power_state);
44e4e66e 942
1da177e4
LT
943/**
944 * pci_choose_state - Choose the power state of a PCI device
945 * @dev: PCI device to be suspended
946 * @state: target sleep state for the whole system. This is the value
947 * that is passed to suspend() function.
948 *
949 * Returns PCI power state suitable for given device and given system
950 * message.
951 */
952
953pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
954{
ab826ca4 955 pci_power_t ret;
0f64474b 956
728cdb75 957 if (!dev->pm_cap)
1da177e4
LT
958 return PCI_D0;
959
961d9120
RW
960 ret = platform_pci_choose_state(dev);
961 if (ret != PCI_POWER_ERROR)
962 return ret;
ca078bae
PM
963
964 switch (state.event) {
965 case PM_EVENT_ON:
966 return PCI_D0;
967 case PM_EVENT_FREEZE:
b887d2e6
DB
968 case PM_EVENT_PRETHAW:
969 /* REVISIT both freeze and pre-thaw "should" use D0 */
ca078bae 970 case PM_EVENT_SUSPEND:
3a2d5b70 971 case PM_EVENT_HIBERNATE:
ca078bae 972 return PCI_D3hot;
1da177e4 973 default:
80ccba11
BH
974 dev_info(&dev->dev, "unrecognized suspend event %d\n",
975 state.event);
1da177e4
LT
976 BUG();
977 }
978 return PCI_D0;
979}
1da177e4
LT
980EXPORT_SYMBOL(pci_choose_state);
981
89858517
YZ
982#define PCI_EXP_SAVE_REGS 7
983
fd0f7f73
AW
984static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
985 u16 cap, bool extended)
34a4876e
YL
986{
987 struct pci_cap_saved_state *tmp;
34a4876e 988
b67bfe0d 989 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
fd0f7f73 990 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
34a4876e
YL
991 return tmp;
992 }
993 return NULL;
994}
995
fd0f7f73
AW
996struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
997{
998 return _pci_find_saved_cap(dev, cap, false);
999}
1000
1001struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1002{
1003 return _pci_find_saved_cap(dev, cap, true);
1004}
1005
b56a5a23
MT
1006static int pci_save_pcie_state(struct pci_dev *dev)
1007{
59875ae4 1008 int i = 0;
b56a5a23
MT
1009 struct pci_cap_saved_state *save_state;
1010 u16 *cap;
1011
59875ae4 1012 if (!pci_is_pcie(dev))
b56a5a23
MT
1013 return 0;
1014
9f35575d 1015 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
b56a5a23 1016 if (!save_state) {
e496b617 1017 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
b56a5a23
MT
1018 return -ENOMEM;
1019 }
63f4898a 1020
59875ae4
JL
1021 cap = (u16 *)&save_state->cap.data[0];
1022 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1023 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1024 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1025 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
9cb604ed 1029
b56a5a23
MT
1030 return 0;
1031}
1032
1033static void pci_restore_pcie_state(struct pci_dev *dev)
1034{
59875ae4 1035 int i = 0;
b56a5a23
MT
1036 struct pci_cap_saved_state *save_state;
1037 u16 *cap;
1038
1039 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
59875ae4 1040 if (!save_state)
9cb604ed
MS
1041 return;
1042
59875ae4
JL
1043 cap = (u16 *)&save_state->cap.data[0];
1044 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1045 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1046 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1047 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
b56a5a23
MT
1051}
1052
cc692a5f
SH
1053
1054static int pci_save_pcix_state(struct pci_dev *dev)
1055{
63f4898a 1056 int pos;
cc692a5f 1057 struct pci_cap_saved_state *save_state;
cc692a5f
SH
1058
1059 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
0a1a9b49 1060 if (!pos)
cc692a5f
SH
1061 return 0;
1062
f34303de 1063 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
cc692a5f 1064 if (!save_state) {
e496b617 1065 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
cc692a5f
SH
1066 return -ENOMEM;
1067 }
cc692a5f 1068
24a4742f
AW
1069 pci_read_config_word(dev, pos + PCI_X_CMD,
1070 (u16 *)save_state->cap.data);
63f4898a 1071
cc692a5f
SH
1072 return 0;
1073}
1074
1075static void pci_restore_pcix_state(struct pci_dev *dev)
1076{
1077 int i = 0, pos;
1078 struct pci_cap_saved_state *save_state;
1079 u16 *cap;
1080
1081 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1082 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
0a1a9b49 1083 if (!save_state || !pos)
cc692a5f 1084 return;
24a4742f 1085 cap = (u16 *)&save_state->cap.data[0];
cc692a5f
SH
1086
1087 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
cc692a5f
SH
1088}
1089
1090
1da177e4
LT
1091/**
1092 * pci_save_state - save the PCI configuration space of a device before suspending
1093 * @dev: - PCI device that we're dealing with
1da177e4 1094 */
3c78bc61 1095int pci_save_state(struct pci_dev *dev)
1da177e4
LT
1096{
1097 int i;
1098 /* XXX: 100% dword access ok here? */
1099 for (i = 0; i < 16; i++)
9e0b5b2c 1100 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
aa8c6c93 1101 dev->state_saved = true;
79e50e72
QL
1102
1103 i = pci_save_pcie_state(dev);
1104 if (i != 0)
b56a5a23 1105 return i;
79e50e72
QL
1106
1107 i = pci_save_pcix_state(dev);
1108 if (i != 0)
cc692a5f 1109 return i;
79e50e72 1110
754834b9 1111 return pci_save_vc_state(dev);
1da177e4 1112}
b7fe9434 1113EXPORT_SYMBOL(pci_save_state);
1da177e4 1114
ebfc5b80
RW
1115static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1116 u32 saved_val, int retry)
1117{
1118 u32 val;
1119
1120 pci_read_config_dword(pdev, offset, &val);
1121 if (val == saved_val)
1122 return;
1123
1124 for (;;) {
227f0647
RD
1125 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1126 offset, val, saved_val);
ebfc5b80
RW
1127 pci_write_config_dword(pdev, offset, saved_val);
1128 if (retry-- <= 0)
1129 return;
1130
1131 pci_read_config_dword(pdev, offset, &val);
1132 if (val == saved_val)
1133 return;
1134
1135 mdelay(1);
1136 }
1137}
1138
a6cb9ee7
RW
1139static void pci_restore_config_space_range(struct pci_dev *pdev,
1140 int start, int end, int retry)
ebfc5b80
RW
1141{
1142 int index;
1143
1144 for (index = end; index >= start; index--)
1145 pci_restore_config_dword(pdev, 4 * index,
1146 pdev->saved_config_space[index],
1147 retry);
1148}
1149
a6cb9ee7
RW
1150static void pci_restore_config_space(struct pci_dev *pdev)
1151{
1152 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1153 pci_restore_config_space_range(pdev, 10, 15, 0);
1154 /* Restore BARs before the command register. */
1155 pci_restore_config_space_range(pdev, 4, 9, 10);
1156 pci_restore_config_space_range(pdev, 0, 3, 0);
1157 } else {
1158 pci_restore_config_space_range(pdev, 0, 15, 0);
1159 }
1160}
1161
f7625980 1162/**
1da177e4
LT
1163 * pci_restore_state - Restore the saved state of a PCI device
1164 * @dev: - PCI device that we're dealing with
1da177e4 1165 */
1d3c16a8 1166void pci_restore_state(struct pci_dev *dev)
1da177e4 1167{
c82f63e4 1168 if (!dev->state_saved)
1d3c16a8 1169 return;
4b77b0a2 1170
b56a5a23
MT
1171 /* PCI Express register must be restored first */
1172 pci_restore_pcie_state(dev);
4ebeb1ec
CT
1173 pci_restore_pasid_state(dev);
1174 pci_restore_pri_state(dev);
1900ca13 1175 pci_restore_ats_state(dev);
425c1b22 1176 pci_restore_vc_state(dev);
b56a5a23 1177
b07461a8
TI
1178 pci_cleanup_aer_error_status_regs(dev);
1179
a6cb9ee7 1180 pci_restore_config_space(dev);
ebfc5b80 1181
cc692a5f 1182 pci_restore_pcix_state(dev);
41017f0c 1183 pci_restore_msi_state(dev);
ccbc175a
AD
1184
1185 /* Restore ACS and IOV configuration state */
1186 pci_enable_acs(dev);
8c5cdb6a 1187 pci_restore_iov_state(dev);
8fed4b65 1188
4b77b0a2 1189 dev->state_saved = false;
1da177e4 1190}
b7fe9434 1191EXPORT_SYMBOL(pci_restore_state);
1da177e4 1192
ffbdd3f7
AW
1193struct pci_saved_state {
1194 u32 config_space[16];
1195 struct pci_cap_saved_data cap[0];
1196};
1197
1198/**
1199 * pci_store_saved_state - Allocate and return an opaque struct containing
1200 * the device saved state.
1201 * @dev: PCI device that we're dealing with
1202 *
f7625980 1203 * Return NULL if no state or error.
ffbdd3f7
AW
1204 */
1205struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1206{
1207 struct pci_saved_state *state;
1208 struct pci_cap_saved_state *tmp;
1209 struct pci_cap_saved_data *cap;
ffbdd3f7
AW
1210 size_t size;
1211
1212 if (!dev->state_saved)
1213 return NULL;
1214
1215 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1216
b67bfe0d 1217 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
ffbdd3f7
AW
1218 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1219
1220 state = kzalloc(size, GFP_KERNEL);
1221 if (!state)
1222 return NULL;
1223
1224 memcpy(state->config_space, dev->saved_config_space,
1225 sizeof(state->config_space));
1226
1227 cap = state->cap;
b67bfe0d 1228 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
ffbdd3f7
AW
1229 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1230 memcpy(cap, &tmp->cap, len);
1231 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1232 }
1233 /* Empty cap_save terminates list */
1234
1235 return state;
1236}
1237EXPORT_SYMBOL_GPL(pci_store_saved_state);
1238
1239/**
1240 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1241 * @dev: PCI device that we're dealing with
1242 * @state: Saved state returned from pci_store_saved_state()
1243 */
98d9b271
KRW
1244int pci_load_saved_state(struct pci_dev *dev,
1245 struct pci_saved_state *state)
ffbdd3f7
AW
1246{
1247 struct pci_cap_saved_data *cap;
1248
1249 dev->state_saved = false;
1250
1251 if (!state)
1252 return 0;
1253
1254 memcpy(dev->saved_config_space, state->config_space,
1255 sizeof(state->config_space));
1256
1257 cap = state->cap;
1258 while (cap->size) {
1259 struct pci_cap_saved_state *tmp;
1260
fd0f7f73 1261 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
ffbdd3f7
AW
1262 if (!tmp || tmp->cap.size != cap->size)
1263 return -EINVAL;
1264
1265 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1266 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1267 sizeof(struct pci_cap_saved_data) + cap->size);
1268 }
1269
1270 dev->state_saved = true;
1271 return 0;
1272}
98d9b271 1273EXPORT_SYMBOL_GPL(pci_load_saved_state);
ffbdd3f7
AW
1274
1275/**
1276 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1277 * and free the memory allocated for it.
1278 * @dev: PCI device that we're dealing with
1279 * @state: Pointer to saved state returned from pci_store_saved_state()
1280 */
1281int pci_load_and_free_saved_state(struct pci_dev *dev,
1282 struct pci_saved_state **state)
1283{
1284 int ret = pci_load_saved_state(dev, *state);
1285 kfree(*state);
1286 *state = NULL;
1287 return ret;
1288}
1289EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1290
8a9d5609
BH
1291int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1292{
1293 return pci_enable_resources(dev, bars);
1294}
1295
38cc1302
HS
1296static int do_pci_enable_device(struct pci_dev *dev, int bars)
1297{
1298 int err;
1f6ae47e 1299 struct pci_dev *bridge;
1e2571a7
BH
1300 u16 cmd;
1301 u8 pin;
38cc1302
HS
1302
1303 err = pci_set_power_state(dev, PCI_D0);
1304 if (err < 0 && err != -EIO)
1305 return err;
1f6ae47e
VS
1306
1307 bridge = pci_upstream_bridge(dev);
1308 if (bridge)
1309 pcie_aspm_powersave_config_link(bridge);
1310
38cc1302
HS
1311 err = pcibios_enable_device(dev, bars);
1312 if (err < 0)
1313 return err;
1314 pci_fixup_device(pci_fixup_enable, dev);
1315
866d5417
BH
1316 if (dev->msi_enabled || dev->msix_enabled)
1317 return 0;
1318
1e2571a7
BH
1319 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1320 if (pin) {
1321 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1322 if (cmd & PCI_COMMAND_INTX_DISABLE)
1323 pci_write_config_word(dev, PCI_COMMAND,
1324 cmd & ~PCI_COMMAND_INTX_DISABLE);
1325 }
1326
38cc1302
HS
1327 return 0;
1328}
1329
1330/**
0b62e13b 1331 * pci_reenable_device - Resume abandoned device
38cc1302
HS
1332 * @dev: PCI device to be resumed
1333 *
1334 * Note this function is a backend of pci_default_resume and is not supposed
1335 * to be called by normal code, write proper resume handler and use it instead.
1336 */
0b62e13b 1337int pci_reenable_device(struct pci_dev *dev)
38cc1302 1338{
296ccb08 1339 if (pci_is_enabled(dev))
38cc1302
HS
1340 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1341 return 0;
1342}
b7fe9434 1343EXPORT_SYMBOL(pci_reenable_device);
38cc1302 1344
928bea96
YL
1345static void pci_enable_bridge(struct pci_dev *dev)
1346{
79272138 1347 struct pci_dev *bridge;
928bea96
YL
1348 int retval;
1349
79272138
BH
1350 bridge = pci_upstream_bridge(dev);
1351 if (bridge)
1352 pci_enable_bridge(bridge);
928bea96 1353
cf3e1feb 1354 if (pci_is_enabled(dev)) {
fbeeb822 1355 if (!dev->is_busmaster)
cf3e1feb 1356 pci_set_master(dev);
0f50a49e 1357 return;
cf3e1feb
YL
1358 }
1359
928bea96
YL
1360 retval = pci_enable_device(dev);
1361 if (retval)
1362 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1363 retval);
1364 pci_set_master(dev);
1365}
1366
b4b4fbba 1367static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1da177e4 1368{
79272138 1369 struct pci_dev *bridge;
1da177e4 1370 int err;
b718989d 1371 int i, bars = 0;
1da177e4 1372
97c145f7
JB
1373 /*
1374 * Power state could be unknown at this point, either due to a fresh
1375 * boot or a device removal call. So get the current power state
1376 * so that things like MSI message writing will behave as expected
1377 * (e.g. if the device really is in D0 at enable time).
1378 */
1379 if (dev->pm_cap) {
1380 u16 pmcsr;
1381 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1382 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1383 }
1384
cc7ba39b 1385 if (atomic_inc_return(&dev->enable_cnt) > 1)
9fb625c3
HS
1386 return 0; /* already enabled */
1387
79272138 1388 bridge = pci_upstream_bridge(dev);
0f50a49e 1389 if (bridge)
79272138 1390 pci_enable_bridge(bridge);
928bea96 1391
497f16f2
YL
1392 /* only skip sriov related */
1393 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1394 if (dev->resource[i].flags & flags)
1395 bars |= (1 << i);
1396 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
b718989d
BH
1397 if (dev->resource[i].flags & flags)
1398 bars |= (1 << i);
1399
38cc1302 1400 err = do_pci_enable_device(dev, bars);
95a62965 1401 if (err < 0)
38cc1302 1402 atomic_dec(&dev->enable_cnt);
9fb625c3 1403 return err;
1da177e4
LT
1404}
1405
b718989d
BH
1406/**
1407 * pci_enable_device_io - Initialize a device for use with IO space
1408 * @dev: PCI device to be initialized
1409 *
1410 * Initialize device before it's used by a driver. Ask low-level code
1411 * to enable I/O resources. Wake up the device if it was suspended.
1412 * Beware, this function can fail.
1413 */
1414int pci_enable_device_io(struct pci_dev *dev)
1415{
b4b4fbba 1416 return pci_enable_device_flags(dev, IORESOURCE_IO);
b718989d 1417}
b7fe9434 1418EXPORT_SYMBOL(pci_enable_device_io);
b718989d
BH
1419
1420/**
1421 * pci_enable_device_mem - Initialize a device for use with Memory space
1422 * @dev: PCI device to be initialized
1423 *
1424 * Initialize device before it's used by a driver. Ask low-level code
1425 * to enable Memory resources. Wake up the device if it was suspended.
1426 * Beware, this function can fail.
1427 */
1428int pci_enable_device_mem(struct pci_dev *dev)
1429{
b4b4fbba 1430 return pci_enable_device_flags(dev, IORESOURCE_MEM);
b718989d 1431}
b7fe9434 1432EXPORT_SYMBOL(pci_enable_device_mem);
b718989d 1433
bae94d02
IPG
1434/**
1435 * pci_enable_device - Initialize device before it's used by a driver.
1436 * @dev: PCI device to be initialized
1437 *
1438 * Initialize device before it's used by a driver. Ask low-level code
1439 * to enable I/O and memory. Wake up the device if it was suspended.
1440 * Beware, this function can fail.
1441 *
1442 * Note we don't actually enable the device many times if we call
1443 * this function repeatedly (we just increment the count).
1444 */
1445int pci_enable_device(struct pci_dev *dev)
1446{
b4b4fbba 1447 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
bae94d02 1448}
b7fe9434 1449EXPORT_SYMBOL(pci_enable_device);
bae94d02 1450
9ac7849e
TH
1451/*
1452 * Managed PCI resources. This manages device on/off, intx/msi/msix
1453 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1454 * there's no need to track it separately. pci_devres is initialized
1455 * when a device is enabled using managed PCI device enable interface.
1456 */
1457struct pci_devres {
7f375f32
TH
1458 unsigned int enabled:1;
1459 unsigned int pinned:1;
9ac7849e
TH
1460 unsigned int orig_intx:1;
1461 unsigned int restore_intx:1;
1462 u32 region_mask;
1463};
1464
1465static void pcim_release(struct device *gendev, void *res)
1466{
f3d2f165 1467 struct pci_dev *dev = to_pci_dev(gendev);
9ac7849e
TH
1468 struct pci_devres *this = res;
1469 int i;
1470
1471 if (dev->msi_enabled)
1472 pci_disable_msi(dev);
1473 if (dev->msix_enabled)
1474 pci_disable_msix(dev);
1475
1476 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1477 if (this->region_mask & (1 << i))
1478 pci_release_region(dev, i);
1479
1480 if (this->restore_intx)
1481 pci_intx(dev, this->orig_intx);
1482
7f375f32 1483 if (this->enabled && !this->pinned)
9ac7849e
TH
1484 pci_disable_device(dev);
1485}
1486
07656d83 1487static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
9ac7849e
TH
1488{
1489 struct pci_devres *dr, *new_dr;
1490
1491 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1492 if (dr)
1493 return dr;
1494
1495 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1496 if (!new_dr)
1497 return NULL;
1498 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1499}
1500
07656d83 1501static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
9ac7849e
TH
1502{
1503 if (pci_is_managed(pdev))
1504 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1505 return NULL;
1506}
1507
1508/**
1509 * pcim_enable_device - Managed pci_enable_device()
1510 * @pdev: PCI device to be initialized
1511 *
1512 * Managed pci_enable_device().
1513 */
1514int pcim_enable_device(struct pci_dev *pdev)
1515{
1516 struct pci_devres *dr;
1517 int rc;
1518
1519 dr = get_pci_dr(pdev);
1520 if (unlikely(!dr))
1521 return -ENOMEM;
b95d58ea
TH
1522 if (dr->enabled)
1523 return 0;
9ac7849e
TH
1524
1525 rc = pci_enable_device(pdev);
1526 if (!rc) {
1527 pdev->is_managed = 1;
7f375f32 1528 dr->enabled = 1;
9ac7849e
TH
1529 }
1530 return rc;
1531}
b7fe9434 1532EXPORT_SYMBOL(pcim_enable_device);
9ac7849e
TH
1533
1534/**
1535 * pcim_pin_device - Pin managed PCI device
1536 * @pdev: PCI device to pin
1537 *
1538 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1539 * driver detach. @pdev must have been enabled with
1540 * pcim_enable_device().
1541 */
1542void pcim_pin_device(struct pci_dev *pdev)
1543{
1544 struct pci_devres *dr;
1545
1546 dr = find_pci_dr(pdev);
7f375f32 1547 WARN_ON(!dr || !dr->enabled);
9ac7849e 1548 if (dr)
7f375f32 1549 dr->pinned = 1;
9ac7849e 1550}
b7fe9434 1551EXPORT_SYMBOL(pcim_pin_device);
9ac7849e 1552
eca0d467
MG
1553/*
1554 * pcibios_add_device - provide arch specific hooks when adding device dev
1555 * @dev: the PCI device being added
1556 *
1557 * Permits the platform to provide architecture specific functionality when
1558 * devices are added. This is the default implementation. Architecture
1559 * implementations can override this.
1560 */
3c78bc61 1561int __weak pcibios_add_device(struct pci_dev *dev)
eca0d467
MG
1562{
1563 return 0;
1564}
1565
6ae32c53
SO
1566/**
1567 * pcibios_release_device - provide arch specific hooks when releasing device dev
1568 * @dev: the PCI device being released
1569 *
1570 * Permits the platform to provide architecture specific functionality when
1571 * devices are released. This is the default implementation. Architecture
1572 * implementations can override this.
1573 */
1574void __weak pcibios_release_device(struct pci_dev *dev) {}
1575
1da177e4
LT
1576/**
1577 * pcibios_disable_device - disable arch specific PCI resources for device dev
1578 * @dev: the PCI device to disable
1579 *
1580 * Disables architecture specific PCI resources for the device. This
1581 * is the default implementation. Architecture implementations can
1582 * override this.
1583 */
ff3ce480 1584void __weak pcibios_disable_device(struct pci_dev *dev) {}
1da177e4 1585
a43ae58c
HG
1586/**
1587 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1588 * @irq: ISA IRQ to penalize
1589 * @active: IRQ active or not
1590 *
1591 * Permits the platform to provide architecture-specific functionality when
1592 * penalizing ISA IRQs. This is the default implementation. Architecture
1593 * implementations can override this.
1594 */
1595void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1596
fa58d305
RW
1597static void do_pci_disable_device(struct pci_dev *dev)
1598{
1599 u16 pci_command;
1600
1601 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1602 if (pci_command & PCI_COMMAND_MASTER) {
1603 pci_command &= ~PCI_COMMAND_MASTER;
1604 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1605 }
1606
1607 pcibios_disable_device(dev);
1608}
1609
1610/**
1611 * pci_disable_enabled_device - Disable device without updating enable_cnt
1612 * @dev: PCI device to disable
1613 *
1614 * NOTE: This function is a backend of PCI power management routines and is
1615 * not supposed to be called drivers.
1616 */
1617void pci_disable_enabled_device(struct pci_dev *dev)
1618{
296ccb08 1619 if (pci_is_enabled(dev))
fa58d305
RW
1620 do_pci_disable_device(dev);
1621}
1622
1da177e4
LT
1623/**
1624 * pci_disable_device - Disable PCI device after use
1625 * @dev: PCI device to be disabled
1626 *
1627 * Signal to the system that the PCI device is not in use by the system
1628 * anymore. This only involves disabling PCI bus-mastering, if active.
bae94d02
IPG
1629 *
1630 * Note we don't actually disable the device until all callers of
ee6583f6 1631 * pci_enable_device() have called pci_disable_device().
1da177e4 1632 */
3c78bc61 1633void pci_disable_device(struct pci_dev *dev)
1da177e4 1634{
9ac7849e 1635 struct pci_devres *dr;
99dc804d 1636
9ac7849e
TH
1637 dr = find_pci_dr(dev);
1638 if (dr)
7f375f32 1639 dr->enabled = 0;
9ac7849e 1640
fd6dceab
KK
1641 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1642 "disabling already-disabled device");
1643
cc7ba39b 1644 if (atomic_dec_return(&dev->enable_cnt) != 0)
bae94d02
IPG
1645 return;
1646
fa58d305 1647 do_pci_disable_device(dev);
1da177e4 1648
fa58d305 1649 dev->is_busmaster = 0;
1da177e4 1650}
b7fe9434 1651EXPORT_SYMBOL(pci_disable_device);
1da177e4 1652
f7bdd12d
BK
1653/**
1654 * pcibios_set_pcie_reset_state - set reset state for device dev
45e829ea 1655 * @dev: the PCIe device reset
f7bdd12d
BK
1656 * @state: Reset state to enter into
1657 *
1658 *
45e829ea 1659 * Sets the PCIe reset state for the device. This is the default
f7bdd12d
BK
1660 * implementation. Architecture implementations can override this.
1661 */
d6d88c83
BH
1662int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1663 enum pcie_reset_state state)
f7bdd12d
BK
1664{
1665 return -EINVAL;
1666}
1667
1668/**
1669 * pci_set_pcie_reset_state - set reset state for device dev
45e829ea 1670 * @dev: the PCIe device reset
f7bdd12d
BK
1671 * @state: Reset state to enter into
1672 *
1673 *
1674 * Sets the PCI reset state for the device.
1675 */
1676int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1677{
1678 return pcibios_set_pcie_reset_state(dev, state);
1679}
b7fe9434 1680EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
f7bdd12d 1681
58ff4633
RW
1682/**
1683 * pci_check_pme_status - Check if given device has generated PME.
1684 * @dev: Device to check.
1685 *
1686 * Check the PME status of the device and if set, clear it and clear PME enable
1687 * (if set). Return 'true' if PME status and PME enable were both set or
1688 * 'false' otherwise.
1689 */
1690bool pci_check_pme_status(struct pci_dev *dev)
1691{
1692 int pmcsr_pos;
1693 u16 pmcsr;
1694 bool ret = false;
1695
1696 if (!dev->pm_cap)
1697 return false;
1698
1699 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1700 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1701 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1702 return false;
1703
1704 /* Clear PME status. */
1705 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1706 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1707 /* Disable PME to avoid interrupt flood. */
1708 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1709 ret = true;
1710 }
1711
1712 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1713
1714 return ret;
1715}
1716
b67ea761
RW
1717/**
1718 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1719 * @dev: Device to handle.
379021d5 1720 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
b67ea761
RW
1721 *
1722 * Check if @dev has generated PME and queue a resume request for it in that
1723 * case.
1724 */
379021d5 1725static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
b67ea761 1726{
379021d5
RW
1727 if (pme_poll_reset && dev->pme_poll)
1728 dev->pme_poll = false;
1729
c125e96f 1730 if (pci_check_pme_status(dev)) {
c125e96f 1731 pci_wakeup_event(dev);
0f953bf6 1732 pm_request_resume(&dev->dev);
c125e96f 1733 }
b67ea761
RW
1734 return 0;
1735}
1736
1737/**
1738 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1739 * @bus: Top bus of the subtree to walk.
1740 */
1741void pci_pme_wakeup_bus(struct pci_bus *bus)
1742{
1743 if (bus)
379021d5 1744 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
b67ea761
RW
1745}
1746
448bd857 1747
eb9d0fe4
RW
1748/**
1749 * pci_pme_capable - check the capability of PCI device to generate PME#
1750 * @dev: PCI device to handle.
eb9d0fe4
RW
1751 * @state: PCI state from which device will issue PME#.
1752 */
e5899e1b 1753bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
eb9d0fe4 1754{
337001b6 1755 if (!dev->pm_cap)
eb9d0fe4
RW
1756 return false;
1757
337001b6 1758 return !!(dev->pme_support & (1 << state));
eb9d0fe4 1759}
b7fe9434 1760EXPORT_SYMBOL(pci_pme_capable);
eb9d0fe4 1761
df17e62e
MG
1762static void pci_pme_list_scan(struct work_struct *work)
1763{
379021d5 1764 struct pci_pme_device *pme_dev, *n;
df17e62e
MG
1765
1766 mutex_lock(&pci_pme_list_mutex);
ce300008
BH
1767 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1768 if (pme_dev->dev->pme_poll) {
1769 struct pci_dev *bridge;
1770
1771 bridge = pme_dev->dev->bus->self;
1772 /*
1773 * If bridge is in low power state, the
1774 * configuration space of subordinate devices
1775 * may be not accessible
1776 */
1777 if (bridge && bridge->current_state != PCI_D0)
1778 continue;
1779 pci_pme_wakeup(pme_dev->dev, NULL);
1780 } else {
1781 list_del(&pme_dev->list);
1782 kfree(pme_dev);
379021d5 1783 }
df17e62e 1784 }
ce300008 1785 if (!list_empty(&pci_pme_list))
ea00353f
LW
1786 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1787 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
1788 mutex_unlock(&pci_pme_list_mutex);
1789}
1790
2cef548a 1791static void __pci_pme_active(struct pci_dev *dev, bool enable)
eb9d0fe4
RW
1792{
1793 u16 pmcsr;
1794
ffaddbe8 1795 if (!dev->pme_support)
eb9d0fe4
RW
1796 return;
1797
337001b6 1798 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
eb9d0fe4
RW
1799 /* Clear PME_Status by writing 1 to it and enable PME# */
1800 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1801 if (!enable)
1802 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1803
337001b6 1804 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2cef548a
RW
1805}
1806
0ce3fcaf
RW
1807/**
1808 * pci_pme_restore - Restore PME configuration after config space restore.
1809 * @dev: PCI device to update.
1810 */
1811void pci_pme_restore(struct pci_dev *dev)
dc15e71e
RW
1812{
1813 u16 pmcsr;
1814
1815 if (!dev->pme_support)
1816 return;
1817
1818 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1819 if (dev->wakeup_prepared) {
1820 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
0ce3fcaf 1821 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
dc15e71e
RW
1822 } else {
1823 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1824 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1825 }
1826 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1827}
1828
2cef548a
RW
1829/**
1830 * pci_pme_active - enable or disable PCI device's PME# function
1831 * @dev: PCI device to handle.
1832 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1833 *
1834 * The caller must verify that the device is capable of generating PME# before
1835 * calling this function with @enable equal to 'true'.
1836 */
1837void pci_pme_active(struct pci_dev *dev, bool enable)
1838{
1839 __pci_pme_active(dev, enable);
eb9d0fe4 1840
6e965e0d
HY
1841 /*
1842 * PCI (as opposed to PCIe) PME requires that the device have
1843 * its PME# line hooked up correctly. Not all hardware vendors
1844 * do this, so the PME never gets delivered and the device
1845 * remains asleep. The easiest way around this is to
1846 * periodically walk the list of suspended devices and check
1847 * whether any have their PME flag set. The assumption is that
1848 * we'll wake up often enough anyway that this won't be a huge
1849 * hit, and the power savings from the devices will still be a
1850 * win.
1851 *
1852 * Although PCIe uses in-band PME message instead of PME# line
1853 * to report PME, PME does not work for some PCIe devices in
1854 * reality. For example, there are devices that set their PME
1855 * status bits, but don't really bother to send a PME message;
1856 * there are PCI Express Root Ports that don't bother to
1857 * trigger interrupts when they receive PME messages from the
1858 * devices below. So PME poll is used for PCIe devices too.
1859 */
df17e62e 1860
379021d5 1861 if (dev->pme_poll) {
df17e62e
MG
1862 struct pci_pme_device *pme_dev;
1863 if (enable) {
1864 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1865 GFP_KERNEL);
0394cb19
BH
1866 if (!pme_dev) {
1867 dev_warn(&dev->dev, "can't enable PME#\n");
1868 return;
1869 }
df17e62e
MG
1870 pme_dev->dev = dev;
1871 mutex_lock(&pci_pme_list_mutex);
1872 list_add(&pme_dev->list, &pci_pme_list);
1873 if (list_is_singular(&pci_pme_list))
ea00353f
LW
1874 queue_delayed_work(system_freezable_wq,
1875 &pci_pme_work,
1876 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
1877 mutex_unlock(&pci_pme_list_mutex);
1878 } else {
1879 mutex_lock(&pci_pme_list_mutex);
1880 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1881 if (pme_dev->dev == dev) {
1882 list_del(&pme_dev->list);
1883 kfree(pme_dev);
1884 break;
1885 }
1886 }
1887 mutex_unlock(&pci_pme_list_mutex);
1888 }
1889 }
1890
85b8582d 1891 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
eb9d0fe4 1892}
b7fe9434 1893EXPORT_SYMBOL(pci_pme_active);
eb9d0fe4 1894
1da177e4 1895/**
5638cfd5 1896 * __pci_enable_wake - enable PCI device as wakeup event source
075c1771
DB
1897 * @dev: PCI device affected
1898 * @state: PCI state from which device will issue wakeup events
1899 * @enable: True to enable event generation; false to disable
1900 *
1901 * This enables the device as a wakeup event source, or disables it.
1902 * When such events involves platform-specific hooks, those hooks are
1903 * called automatically by this routine.
1904 *
1905 * Devices with legacy power management (no standard PCI PM capabilities)
eb9d0fe4 1906 * always require such platform hooks.
075c1771 1907 *
eb9d0fe4
RW
1908 * RETURN VALUE:
1909 * 0 is returned on success
1910 * -EINVAL is returned if device is not supposed to wake up the system
1911 * Error code depending on the platform is returned if both the platform and
1912 * the native mechanism fail to enable the generation of wake-up events
1da177e4 1913 */
5638cfd5 1914static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1da177e4 1915{
5bcc2fb4 1916 int ret = 0;
075c1771 1917
baecc470
RW
1918 /*
1919 * Bridges can only signal wakeup on behalf of subordinate devices,
1920 * but that is set up elsewhere, so skip them.
1921 */
1922 if (pci_has_subordinate(dev))
1923 return 0;
1924
0ce3fcaf
RW
1925 /* Don't do the same thing twice in a row for one device. */
1926 if (!!enable == !!dev->wakeup_prepared)
e80bb09d
RW
1927 return 0;
1928
eb9d0fe4
RW
1929 /*
1930 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1931 * Anderson we should be doing PME# wake enable followed by ACPI wake
1932 * enable. To disable wake-up we call the platform first, for symmetry.
075c1771 1933 */
1da177e4 1934
5bcc2fb4
RW
1935 if (enable) {
1936 int error;
1da177e4 1937
5bcc2fb4
RW
1938 if (pci_pme_capable(dev, state))
1939 pci_pme_active(dev, true);
1940 else
1941 ret = 1;
0847684c 1942 error = platform_pci_set_wakeup(dev, true);
5bcc2fb4
RW
1943 if (ret)
1944 ret = error;
e80bb09d
RW
1945 if (!ret)
1946 dev->wakeup_prepared = true;
5bcc2fb4 1947 } else {
0847684c 1948 platform_pci_set_wakeup(dev, false);
5bcc2fb4 1949 pci_pme_active(dev, false);
e80bb09d 1950 dev->wakeup_prepared = false;
5bcc2fb4 1951 }
1da177e4 1952
5bcc2fb4 1953 return ret;
eb9d0fe4 1954}
5638cfd5
RW
1955
1956/**
1957 * pci_enable_wake - change wakeup settings for a PCI device
1958 * @pci_dev: Target device
1959 * @state: PCI state from which device will issue wakeup events
1960 * @enable: Whether or not to enable event generation
1961 *
1962 * If @enable is set, check device_may_wakeup() for the device before calling
1963 * __pci_enable_wake() for it.
1964 */
1965int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
1966{
1967 if (enable && !device_may_wakeup(&pci_dev->dev))
1968 return -EINVAL;
1969
1970 return __pci_enable_wake(pci_dev, state, enable);
1971}
0847684c 1972EXPORT_SYMBOL(pci_enable_wake);
1da177e4 1973
0235c4fc
RW
1974/**
1975 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1976 * @dev: PCI device to prepare
1977 * @enable: True to enable wake-up event generation; false to disable
1978 *
1979 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1980 * and this function allows them to set that up cleanly - pci_enable_wake()
1981 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1982 * ordering constraints.
1983 *
5638cfd5
RW
1984 * This function only returns error code if the device is not allowed to wake
1985 * up the system from sleep or it is not capable of generating PME# from both
1986 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
0235c4fc
RW
1987 */
1988int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1989{
1990 return pci_pme_capable(dev, PCI_D3cold) ?
1991 pci_enable_wake(dev, PCI_D3cold, enable) :
1992 pci_enable_wake(dev, PCI_D3hot, enable);
1993}
b7fe9434 1994EXPORT_SYMBOL(pci_wake_from_d3);
0235c4fc 1995
404cc2d8 1996/**
37139074
JB
1997 * pci_target_state - find an appropriate low power state for a given PCI dev
1998 * @dev: PCI device
666ff6f8 1999 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
37139074
JB
2000 *
2001 * Use underlying platform code to find a supported low power state for @dev.
2002 * If the platform can't manage @dev, return the deepest state from which it
2003 * can generate wake events, based on any available PME info.
404cc2d8 2004 */
666ff6f8 2005static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
404cc2d8
RW
2006{
2007 pci_power_t target_state = PCI_D3hot;
404cc2d8
RW
2008
2009 if (platform_pci_power_manageable(dev)) {
2010 /*
2011 * Call the platform to choose the target state of the device
2012 * and enable wake-up from this state if supported.
2013 */
2014 pci_power_t state = platform_pci_choose_state(dev);
2015
2016 switch (state) {
2017 case PCI_POWER_ERROR:
2018 case PCI_UNKNOWN:
2019 break;
2020 case PCI_D1:
2021 case PCI_D2:
2022 if (pci_no_d1d2(dev))
2023 break;
2024 default:
2025 target_state = state;
404cc2d8 2026 }
4132a577
LW
2027
2028 return target_state;
2029 }
2030
2031 if (!dev->pm_cap)
d2abdf62 2032 target_state = PCI_D0;
4132a577
LW
2033
2034 /*
2035 * If the device is in D3cold even though it's not power-manageable by
2036 * the platform, it may have been powered down by non-standard means.
2037 * Best to let it slumber.
2038 */
2039 if (dev->current_state == PCI_D3cold)
2040 target_state = PCI_D3cold;
2041
666ff6f8 2042 if (wakeup) {
404cc2d8
RW
2043 /*
2044 * Find the deepest state from which the device can generate
2045 * wake-up events, make it the target state and enable device
2046 * to generate PME#.
2047 */
337001b6
RW
2048 if (dev->pme_support) {
2049 while (target_state
2050 && !(dev->pme_support & (1 << target_state)))
2051 target_state--;
404cc2d8
RW
2052 }
2053 }
2054
e5899e1b
RW
2055 return target_state;
2056}
2057
2058/**
2059 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2060 * @dev: Device to handle.
2061 *
2062 * Choose the power state appropriate for the device depending on whether
2063 * it can wake up the system and/or is power manageable by the platform
2064 * (PCI_D3hot is the default) and put the device into that state.
2065 */
2066int pci_prepare_to_sleep(struct pci_dev *dev)
2067{
666ff6f8
RW
2068 bool wakeup = device_may_wakeup(&dev->dev);
2069 pci_power_t target_state = pci_target_state(dev, wakeup);
e5899e1b
RW
2070 int error;
2071
2072 if (target_state == PCI_POWER_ERROR)
2073 return -EIO;
2074
666ff6f8 2075 pci_enable_wake(dev, target_state, wakeup);
c157dfa3 2076
404cc2d8
RW
2077 error = pci_set_power_state(dev, target_state);
2078
2079 if (error)
2080 pci_enable_wake(dev, target_state, false);
2081
2082 return error;
2083}
b7fe9434 2084EXPORT_SYMBOL(pci_prepare_to_sleep);
404cc2d8
RW
2085
2086/**
443bd1c4 2087 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
404cc2d8
RW
2088 * @dev: Device to handle.
2089 *
88393161 2090 * Disable device's system wake-up capability and put it into D0.
404cc2d8
RW
2091 */
2092int pci_back_from_sleep(struct pci_dev *dev)
2093{
2094 pci_enable_wake(dev, PCI_D0, false);
2095 return pci_set_power_state(dev, PCI_D0);
2096}
b7fe9434 2097EXPORT_SYMBOL(pci_back_from_sleep);
404cc2d8 2098
6cbf8214
RW
2099/**
2100 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2101 * @dev: PCI device being suspended.
2102 *
2103 * Prepare @dev to generate wake-up events at run time and put it into a low
2104 * power state.
2105 */
2106int pci_finish_runtime_suspend(struct pci_dev *dev)
2107{
666ff6f8 2108 pci_power_t target_state;
6cbf8214
RW
2109 int error;
2110
666ff6f8 2111 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
6cbf8214
RW
2112 if (target_state == PCI_POWER_ERROR)
2113 return -EIO;
2114
448bd857
HY
2115 dev->runtime_d3cold = target_state == PCI_D3cold;
2116
5638cfd5 2117 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
6cbf8214
RW
2118
2119 error = pci_set_power_state(dev, target_state);
2120
448bd857 2121 if (error) {
0847684c 2122 pci_enable_wake(dev, target_state, false);
448bd857
HY
2123 dev->runtime_d3cold = false;
2124 }
6cbf8214
RW
2125
2126 return error;
2127}
2128
b67ea761
RW
2129/**
2130 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2131 * @dev: Device to check.
2132 *
f7625980 2133 * Return true if the device itself is capable of generating wake-up events
b67ea761
RW
2134 * (through the platform or using the native PCIe PME) or if the device supports
2135 * PME and one of its upstream bridges can generate wake-up events.
2136 */
2137bool pci_dev_run_wake(struct pci_dev *dev)
2138{
2139 struct pci_bus *bus = dev->bus;
2140
b67ea761
RW
2141 if (!dev->pme_support)
2142 return false;
2143
666ff6f8 2144 /* PME-capable in principle, but not from the target power state */
97231ef2 2145 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
6496ebd7
AS
2146 return false;
2147
97231ef2
KHF
2148 if (device_can_wakeup(&dev->dev))
2149 return true;
2150
b67ea761
RW
2151 while (bus->parent) {
2152 struct pci_dev *bridge = bus->self;
2153
de3ef1eb 2154 if (device_can_wakeup(&bridge->dev))
b67ea761
RW
2155 return true;
2156
2157 bus = bus->parent;
2158 }
2159
2160 /* We have reached the root bus. */
2161 if (bus->bridge)
de3ef1eb 2162 return device_can_wakeup(bus->bridge);
b67ea761
RW
2163
2164 return false;
2165}
2166EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2167
bac2a909
RW
2168/**
2169 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2170 * @pci_dev: Device to check.
2171 *
2172 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2173 * reconfigured due to wakeup settings difference between system and runtime
2174 * suspend and the current power state of it is suitable for the upcoming
2175 * (system) transition.
2cef548a
RW
2176 *
2177 * If the device is not configured for system wakeup, disable PME for it before
2178 * returning 'true' to prevent it from waking up the system unnecessarily.
bac2a909
RW
2179 */
2180bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2181{
2182 struct device *dev = &pci_dev->dev;
666ff6f8 2183 bool wakeup = device_may_wakeup(dev);
bac2a909
RW
2184
2185 if (!pm_runtime_suspended(dev)
666ff6f8 2186 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
c2eac4d3 2187 || platform_pci_need_resume(pci_dev))
bac2a909
RW
2188 return false;
2189
2cef548a
RW
2190 /*
2191 * At this point the device is good to go unless it's been configured
2192 * to generate PME at the runtime suspend time, but it is not supposed
2193 * to wake up the system. In that case, simply disable PME for it
2194 * (it will have to be re-enabled on exit from system resume).
2195 *
2196 * If the device's power state is D3cold and the platform check above
2197 * hasn't triggered, the device's configuration is suitable and we don't
2198 * need to manipulate it at all.
2199 */
2200 spin_lock_irq(&dev->power.lock);
2201
2202 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
666ff6f8 2203 !wakeup)
2cef548a
RW
2204 __pci_pme_active(pci_dev, false);
2205
2206 spin_unlock_irq(&dev->power.lock);
2207 return true;
2208}
2209
2210/**
2211 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2212 * @pci_dev: Device to handle.
2213 *
2214 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2215 * it might have been disabled during the prepare phase of system suspend if
2216 * the device was not configured for system wakeup.
2217 */
2218void pci_dev_complete_resume(struct pci_dev *pci_dev)
2219{
2220 struct device *dev = &pci_dev->dev;
2221
2222 if (!pci_dev_run_wake(pci_dev))
2223 return;
2224
2225 spin_lock_irq(&dev->power.lock);
2226
2227 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2228 __pci_pme_active(pci_dev, true);
2229
2230 spin_unlock_irq(&dev->power.lock);
bac2a909
RW
2231}
2232
b3c32c4f
HY
2233void pci_config_pm_runtime_get(struct pci_dev *pdev)
2234{
2235 struct device *dev = &pdev->dev;
2236 struct device *parent = dev->parent;
2237
2238 if (parent)
2239 pm_runtime_get_sync(parent);
2240 pm_runtime_get_noresume(dev);
2241 /*
2242 * pdev->current_state is set to PCI_D3cold during suspending,
2243 * so wait until suspending completes
2244 */
2245 pm_runtime_barrier(dev);
2246 /*
2247 * Only need to resume devices in D3cold, because config
2248 * registers are still accessible for devices suspended but
2249 * not in D3cold.
2250 */
2251 if (pdev->current_state == PCI_D3cold)
2252 pm_runtime_resume(dev);
2253}
2254
2255void pci_config_pm_runtime_put(struct pci_dev *pdev)
2256{
2257 struct device *dev = &pdev->dev;
2258 struct device *parent = dev->parent;
2259
2260 pm_runtime_put(dev);
2261 if (parent)
2262 pm_runtime_put_sync(parent);
2263}
2264
9d26d3a8
MW
2265/**
2266 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2267 * @bridge: Bridge to check
2268 *
2269 * This function checks if it is possible to move the bridge to D3.
2270 * Currently we only allow D3 for recent enough PCIe ports.
2271 */
c6a63307 2272bool pci_bridge_d3_possible(struct pci_dev *bridge)
9d26d3a8
MW
2273{
2274 unsigned int year;
2275
2276 if (!pci_is_pcie(bridge))
2277 return false;
2278
2279 switch (pci_pcie_type(bridge)) {
2280 case PCI_EXP_TYPE_ROOT_PORT:
2281 case PCI_EXP_TYPE_UPSTREAM:
2282 case PCI_EXP_TYPE_DOWNSTREAM:
2283 if (pci_bridge_d3_disable)
2284 return false;
97a90aee
LW
2285
2286 /*
d98e0929
BH
2287 * Hotplug interrupts cannot be delivered if the link is down,
2288 * so parents of a hotplug port must stay awake. In addition,
2289 * hotplug ports handled by firmware in System Management Mode
97a90aee 2290 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
d98e0929 2291 * For simplicity, disallow in general for now.
97a90aee 2292 */
d98e0929 2293 if (bridge->is_hotplug_bridge)
97a90aee
LW
2294 return false;
2295
9d26d3a8
MW
2296 if (pci_bridge_d3_force)
2297 return true;
2298
2299 /*
2300 * It should be safe to put PCIe ports from 2015 or newer
2301 * to D3.
2302 */
2303 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2304 year >= 2015) {
2305 return true;
2306 }
2307 break;
2308 }
2309
2310 return false;
2311}
2312
2313static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2314{
2315 bool *d3cold_ok = data;
9d26d3a8 2316
718a0609
LW
2317 if (/* The device needs to be allowed to go D3cold ... */
2318 dev->no_d3cold || !dev->d3cold_allowed ||
2319
2320 /* ... and if it is wakeup capable to do so from D3cold. */
2321 (device_may_wakeup(&dev->dev) &&
2322 !pci_pme_capable(dev, PCI_D3cold)) ||
2323
2324 /* If it is a bridge it must be allowed to go to D3. */
d98e0929 2325 !pci_power_manageable(dev))
9d26d3a8 2326
718a0609 2327 *d3cold_ok = false;
9d26d3a8 2328
718a0609 2329 return !*d3cold_ok;
9d26d3a8
MW
2330}
2331
2332/*
2333 * pci_bridge_d3_update - Update bridge D3 capabilities
2334 * @dev: PCI device which is changed
9d26d3a8
MW
2335 *
2336 * Update upstream bridge PM capabilities accordingly depending on if the
2337 * device PM configuration was changed or the device is being removed. The
2338 * change is also propagated upstream.
2339 */
1ed276a7 2340void pci_bridge_d3_update(struct pci_dev *dev)
9d26d3a8 2341{
1ed276a7 2342 bool remove = !device_is_registered(&dev->dev);
9d26d3a8
MW
2343 struct pci_dev *bridge;
2344 bool d3cold_ok = true;
2345
2346 bridge = pci_upstream_bridge(dev);
2347 if (!bridge || !pci_bridge_d3_possible(bridge))
2348 return;
2349
9d26d3a8 2350 /*
e8559b71
LW
2351 * If D3 is currently allowed for the bridge, removing one of its
2352 * children won't change that.
2353 */
2354 if (remove && bridge->bridge_d3)
2355 return;
2356
2357 /*
2358 * If D3 is currently allowed for the bridge and a child is added or
2359 * changed, disallowance of D3 can only be caused by that child, so
2360 * we only need to check that single device, not any of its siblings.
2361 *
2362 * If D3 is currently not allowed for the bridge, checking the device
2363 * first may allow us to skip checking its siblings.
9d26d3a8
MW
2364 */
2365 if (!remove)
2366 pci_dev_check_d3cold(dev, &d3cold_ok);
2367
e8559b71
LW
2368 /*
2369 * If D3 is currently not allowed for the bridge, this may be caused
2370 * either by the device being changed/removed or any of its siblings,
2371 * so we need to go through all children to find out if one of them
2372 * continues to block D3.
2373 */
2374 if (d3cold_ok && !bridge->bridge_d3)
9d26d3a8
MW
2375 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2376 &d3cold_ok);
9d26d3a8
MW
2377
2378 if (bridge->bridge_d3 != d3cold_ok) {
2379 bridge->bridge_d3 = d3cold_ok;
2380 /* Propagate change to upstream bridges */
1ed276a7 2381 pci_bridge_d3_update(bridge);
9d26d3a8 2382 }
9d26d3a8
MW
2383}
2384
9d26d3a8
MW
2385/**
2386 * pci_d3cold_enable - Enable D3cold for device
2387 * @dev: PCI device to handle
2388 *
2389 * This function can be used in drivers to enable D3cold from the device
2390 * they handle. It also updates upstream PCI bridge PM capabilities
2391 * accordingly.
2392 */
2393void pci_d3cold_enable(struct pci_dev *dev)
2394{
2395 if (dev->no_d3cold) {
2396 dev->no_d3cold = false;
1ed276a7 2397 pci_bridge_d3_update(dev);
9d26d3a8
MW
2398 }
2399}
2400EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2401
2402/**
2403 * pci_d3cold_disable - Disable D3cold for device
2404 * @dev: PCI device to handle
2405 *
2406 * This function can be used in drivers to disable D3cold from the device
2407 * they handle. It also updates upstream PCI bridge PM capabilities
2408 * accordingly.
2409 */
2410void pci_d3cold_disable(struct pci_dev *dev)
2411{
2412 if (!dev->no_d3cold) {
2413 dev->no_d3cold = true;
1ed276a7 2414 pci_bridge_d3_update(dev);
9d26d3a8
MW
2415 }
2416}
2417EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2418
eb9d0fe4
RW
2419/**
2420 * pci_pm_init - Initialize PM functions of given PCI device
2421 * @dev: PCI device to handle.
2422 */
2423void pci_pm_init(struct pci_dev *dev)
2424{
2425 int pm;
2426 u16 pmc;
1da177e4 2427
bb910a70 2428 pm_runtime_forbid(&dev->dev);
967577b0
HY
2429 pm_runtime_set_active(&dev->dev);
2430 pm_runtime_enable(&dev->dev);
a1e4d72c 2431 device_enable_async_suspend(&dev->dev);
e80bb09d 2432 dev->wakeup_prepared = false;
bb910a70 2433
337001b6 2434 dev->pm_cap = 0;
ffaddbe8 2435 dev->pme_support = 0;
337001b6 2436
eb9d0fe4
RW
2437 /* find PCI PM capability in list */
2438 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2439 if (!pm)
50246dd4 2440 return;
eb9d0fe4
RW
2441 /* Check device's ability to generate PME# */
2442 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
075c1771 2443
eb9d0fe4
RW
2444 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2445 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2446 pmc & PCI_PM_CAP_VER_MASK);
50246dd4 2447 return;
eb9d0fe4
RW
2448 }
2449
337001b6 2450 dev->pm_cap = pm;
1ae861e6 2451 dev->d3_delay = PCI_PM_D3_WAIT;
448bd857 2452 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
9d26d3a8 2453 dev->bridge_d3 = pci_bridge_d3_possible(dev);
4f9c1397 2454 dev->d3cold_allowed = true;
337001b6
RW
2455
2456 dev->d1_support = false;
2457 dev->d2_support = false;
2458 if (!pci_no_d1d2(dev)) {
c9ed77ee 2459 if (pmc & PCI_PM_CAP_D1)
337001b6 2460 dev->d1_support = true;
c9ed77ee 2461 if (pmc & PCI_PM_CAP_D2)
337001b6 2462 dev->d2_support = true;
c9ed77ee
BH
2463
2464 if (dev->d1_support || dev->d2_support)
2465 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
ec84f126
JB
2466 dev->d1_support ? " D1" : "",
2467 dev->d2_support ? " D2" : "");
337001b6
RW
2468 }
2469
2470 pmc &= PCI_PM_CAP_PME_MASK;
2471 if (pmc) {
10c3d71d
BH
2472 dev_printk(KERN_DEBUG, &dev->dev,
2473 "PME# supported from%s%s%s%s%s\n",
c9ed77ee
BH
2474 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2475 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2476 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2477 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2478 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
337001b6 2479 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
379021d5 2480 dev->pme_poll = true;
eb9d0fe4
RW
2481 /*
2482 * Make device's PM flags reflect the wake-up capability, but
2483 * let the user space enable it to wake up the system as needed.
2484 */
2485 device_set_wakeup_capable(&dev->dev, true);
eb9d0fe4 2486 /* Disable the PME# generation functionality */
337001b6 2487 pci_pme_active(dev, false);
eb9d0fe4 2488 }
1da177e4
LT
2489}
2490
938174e5
SS
2491static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2492{
92efb1bd 2493 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
938174e5
SS
2494
2495 switch (prop) {
2496 case PCI_EA_P_MEM:
2497 case PCI_EA_P_VF_MEM:
2498 flags |= IORESOURCE_MEM;
2499 break;
2500 case PCI_EA_P_MEM_PREFETCH:
2501 case PCI_EA_P_VF_MEM_PREFETCH:
2502 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2503 break;
2504 case PCI_EA_P_IO:
2505 flags |= IORESOURCE_IO;
2506 break;
2507 default:
2508 return 0;
2509 }
2510
2511 return flags;
2512}
2513
2514static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2515 u8 prop)
2516{
2517 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2518 return &dev->resource[bei];
11183991
DD
2519#ifdef CONFIG_PCI_IOV
2520 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2521 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2522 return &dev->resource[PCI_IOV_RESOURCES +
2523 bei - PCI_EA_BEI_VF_BAR0];
2524#endif
938174e5
SS
2525 else if (bei == PCI_EA_BEI_ROM)
2526 return &dev->resource[PCI_ROM_RESOURCE];
2527 else
2528 return NULL;
2529}
2530
2531/* Read an Enhanced Allocation (EA) entry */
2532static int pci_ea_read(struct pci_dev *dev, int offset)
2533{
2534 struct resource *res;
2535 int ent_size, ent_offset = offset;
2536 resource_size_t start, end;
2537 unsigned long flags;
26635112 2538 u32 dw0, bei, base, max_offset;
938174e5
SS
2539 u8 prop;
2540 bool support_64 = (sizeof(resource_size_t) >= 8);
2541
2542 pci_read_config_dword(dev, ent_offset, &dw0);
2543 ent_offset += 4;
2544
2545 /* Entry size field indicates DWORDs after 1st */
2546 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2547
2548 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2549 goto out;
2550
26635112
BH
2551 bei = (dw0 & PCI_EA_BEI) >> 4;
2552 prop = (dw0 & PCI_EA_PP) >> 8;
2553
938174e5
SS
2554 /*
2555 * If the Property is in the reserved range, try the Secondary
2556 * Property instead.
2557 */
2558 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
26635112 2559 prop = (dw0 & PCI_EA_SP) >> 16;
938174e5
SS
2560 if (prop > PCI_EA_P_BRIDGE_IO)
2561 goto out;
2562
26635112 2563 res = pci_ea_get_resource(dev, bei, prop);
938174e5 2564 if (!res) {
26635112 2565 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
938174e5
SS
2566 goto out;
2567 }
2568
2569 flags = pci_ea_flags(dev, prop);
2570 if (!flags) {
2571 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2572 goto out;
2573 }
2574
2575 /* Read Base */
2576 pci_read_config_dword(dev, ent_offset, &base);
2577 start = (base & PCI_EA_FIELD_MASK);
2578 ent_offset += 4;
2579
2580 /* Read MaxOffset */
2581 pci_read_config_dword(dev, ent_offset, &max_offset);
2582 ent_offset += 4;
2583
2584 /* Read Base MSBs (if 64-bit entry) */
2585 if (base & PCI_EA_IS_64) {
2586 u32 base_upper;
2587
2588 pci_read_config_dword(dev, ent_offset, &base_upper);
2589 ent_offset += 4;
2590
2591 flags |= IORESOURCE_MEM_64;
2592
2593 /* entry starts above 32-bit boundary, can't use */
2594 if (!support_64 && base_upper)
2595 goto out;
2596
2597 if (support_64)
2598 start |= ((u64)base_upper << 32);
2599 }
2600
2601 end = start + (max_offset | 0x03);
2602
2603 /* Read MaxOffset MSBs (if 64-bit entry) */
2604 if (max_offset & PCI_EA_IS_64) {
2605 u32 max_offset_upper;
2606
2607 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2608 ent_offset += 4;
2609
2610 flags |= IORESOURCE_MEM_64;
2611
2612 /* entry too big, can't use */
2613 if (!support_64 && max_offset_upper)
2614 goto out;
2615
2616 if (support_64)
2617 end += ((u64)max_offset_upper << 32);
2618 }
2619
2620 if (end < start) {
2621 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2622 goto out;
2623 }
2624
2625 if (ent_size != ent_offset - offset) {
2626 dev_err(&dev->dev,
2627 "EA Entry Size (%d) does not match length read (%d)\n",
2628 ent_size, ent_offset - offset);
2629 goto out;
2630 }
2631
2632 res->name = pci_name(dev);
2633 res->start = start;
2634 res->end = end;
2635 res->flags = flags;
597becb4
BH
2636
2637 if (bei <= PCI_EA_BEI_BAR5)
2638 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2639 bei, res, prop);
2640 else if (bei == PCI_EA_BEI_ROM)
2641 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2642 res, prop);
2643 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2644 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2645 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2646 else
2647 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2648 bei, res, prop);
2649
938174e5
SS
2650out:
2651 return offset + ent_size;
2652}
2653
dcbb408a 2654/* Enhanced Allocation Initialization */
938174e5
SS
2655void pci_ea_init(struct pci_dev *dev)
2656{
2657 int ea;
2658 u8 num_ent;
2659 int offset;
2660 int i;
2661
2662 /* find PCI EA capability in list */
2663 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2664 if (!ea)
2665 return;
2666
2667 /* determine the number of entries */
2668 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2669 &num_ent);
2670 num_ent &= PCI_EA_NUM_ENT_MASK;
2671
2672 offset = ea + PCI_EA_FIRST_ENT;
2673
2674 /* Skip DWORD 2 for type 1 functions */
2675 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2676 offset += 4;
2677
2678 /* parse each EA entry */
2679 for (i = 0; i < num_ent; ++i)
2680 offset = pci_ea_read(dev, offset);
2681}
2682
34a4876e
YL
2683static void pci_add_saved_cap(struct pci_dev *pci_dev,
2684 struct pci_cap_saved_state *new_cap)
2685{
2686 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2687}
2688
63f4898a 2689/**
fd0f7f73
AW
2690 * _pci_add_cap_save_buffer - allocate buffer for saving given
2691 * capability registers
63f4898a
RW
2692 * @dev: the PCI device
2693 * @cap: the capability to allocate the buffer for
fd0f7f73 2694 * @extended: Standard or Extended capability ID
63f4898a
RW
2695 * @size: requested size of the buffer
2696 */
fd0f7f73
AW
2697static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2698 bool extended, unsigned int size)
63f4898a
RW
2699{
2700 int pos;
2701 struct pci_cap_saved_state *save_state;
2702
fd0f7f73
AW
2703 if (extended)
2704 pos = pci_find_ext_capability(dev, cap);
2705 else
2706 pos = pci_find_capability(dev, cap);
2707
0a1a9b49 2708 if (!pos)
63f4898a
RW
2709 return 0;
2710
2711 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2712 if (!save_state)
2713 return -ENOMEM;
2714
24a4742f 2715 save_state->cap.cap_nr = cap;
fd0f7f73 2716 save_state->cap.cap_extended = extended;
24a4742f 2717 save_state->cap.size = size;
63f4898a
RW
2718 pci_add_saved_cap(dev, save_state);
2719
2720 return 0;
2721}
2722
fd0f7f73
AW
2723int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2724{
2725 return _pci_add_cap_save_buffer(dev, cap, false, size);
2726}
2727
2728int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2729{
2730 return _pci_add_cap_save_buffer(dev, cap, true, size);
2731}
2732
63f4898a
RW
2733/**
2734 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2735 * @dev: the PCI device
2736 */
2737void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2738{
2739 int error;
2740
89858517
YZ
2741 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2742 PCI_EXP_SAVE_REGS * sizeof(u16));
63f4898a
RW
2743 if (error)
2744 dev_err(&dev->dev,
2745 "unable to preallocate PCI Express save buffer\n");
2746
2747 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2748 if (error)
2749 dev_err(&dev->dev,
2750 "unable to preallocate PCI-X save buffer\n");
425c1b22
AW
2751
2752 pci_allocate_vc_save_buffers(dev);
63f4898a
RW
2753}
2754
f796841e
YL
2755void pci_free_cap_save_buffers(struct pci_dev *dev)
2756{
2757 struct pci_cap_saved_state *tmp;
b67bfe0d 2758 struct hlist_node *n;
f796841e 2759
b67bfe0d 2760 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
f796841e
YL
2761 kfree(tmp);
2762}
2763
58c3a727 2764/**
31ab2476 2765 * pci_configure_ari - enable or disable ARI forwarding
58c3a727 2766 * @dev: the PCI device
b0cc6020
YW
2767 *
2768 * If @dev and its upstream bridge both support ARI, enable ARI in the
2769 * bridge. Otherwise, disable ARI in the bridge.
58c3a727 2770 */
31ab2476 2771void pci_configure_ari(struct pci_dev *dev)
58c3a727 2772{
58c3a727 2773 u32 cap;
8113587c 2774 struct pci_dev *bridge;
58c3a727 2775
6748dcc2 2776 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
58c3a727
YZ
2777 return;
2778
8113587c 2779 bridge = dev->bus->self;
cb97ae34 2780 if (!bridge)
8113587c
ZY
2781 return;
2782
59875ae4 2783 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
58c3a727
YZ
2784 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2785 return;
2786
b0cc6020
YW
2787 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2788 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2789 PCI_EXP_DEVCTL2_ARI);
2790 bridge->ari_enabled = 1;
2791 } else {
2792 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2793 PCI_EXP_DEVCTL2_ARI);
2794 bridge->ari_enabled = 0;
2795 }
58c3a727
YZ
2796}
2797
5d990b62
CW
2798static int pci_acs_enable;
2799
2800/**
2801 * pci_request_acs - ask for ACS to be enabled if supported
2802 */
2803void pci_request_acs(void)
2804{
2805 pci_acs_enable = 1;
2806}
2807
ae21ee65 2808/**
2c744244 2809 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
ae21ee65
AK
2810 * @dev: the PCI device
2811 */
c1d61c9b 2812static void pci_std_enable_acs(struct pci_dev *dev)
ae21ee65
AK
2813{
2814 int pos;
2815 u16 cap;
2816 u16 ctrl;
2817
ae21ee65
AK
2818 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2819 if (!pos)
c1d61c9b 2820 return;
ae21ee65
AK
2821
2822 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2823 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2824
2825 /* Source Validation */
2826 ctrl |= (cap & PCI_ACS_SV);
2827
2828 /* P2P Request Redirect */
2829 ctrl |= (cap & PCI_ACS_RR);
2830
2831 /* P2P Completion Redirect */
2832 ctrl |= (cap & PCI_ACS_CR);
2833
2834 /* Upstream Forwarding */
2835 ctrl |= (cap & PCI_ACS_UF);
2836
2837 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2c744244
AW
2838}
2839
2840/**
2841 * pci_enable_acs - enable ACS if hardware support it
2842 * @dev: the PCI device
2843 */
2844void pci_enable_acs(struct pci_dev *dev)
2845{
2846 if (!pci_acs_enable)
2847 return;
2848
c1d61c9b 2849 if (!pci_dev_specific_enable_acs(dev))
2c744244
AW
2850 return;
2851
c1d61c9b 2852 pci_std_enable_acs(dev);
ae21ee65
AK
2853}
2854
0a67119f
AW
2855static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2856{
2857 int pos;
83db7e0b 2858 u16 cap, ctrl;
0a67119f
AW
2859
2860 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2861 if (!pos)
2862 return false;
2863
83db7e0b
AW
2864 /*
2865 * Except for egress control, capabilities are either required
2866 * or only required if controllable. Features missing from the
2867 * capability field can therefore be assumed as hard-wired enabled.
2868 */
2869 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2870 acs_flags &= (cap | PCI_ACS_EC);
2871
0a67119f
AW
2872 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2873 return (ctrl & acs_flags) == acs_flags;
2874}
2875
ad805758
AW
2876/**
2877 * pci_acs_enabled - test ACS against required flags for a given device
2878 * @pdev: device to test
2879 * @acs_flags: required PCI ACS flags
2880 *
2881 * Return true if the device supports the provided flags. Automatically
2882 * filters out flags that are not implemented on multifunction devices.
0a67119f
AW
2883 *
2884 * Note that this interface checks the effective ACS capabilities of the
2885 * device rather than the actual capabilities. For instance, most single
2886 * function endpoints are not required to support ACS because they have no
2887 * opportunity for peer-to-peer access. We therefore return 'true'
2888 * regardless of whether the device exposes an ACS capability. This makes
2889 * it much easier for callers of this function to ignore the actual type
2890 * or topology of the device when testing ACS support.
ad805758
AW
2891 */
2892bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2893{
0a67119f 2894 int ret;
ad805758
AW
2895
2896 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2897 if (ret >= 0)
2898 return ret > 0;
2899
0a67119f
AW
2900 /*
2901 * Conventional PCI and PCI-X devices never support ACS, either
2902 * effectively or actually. The shared bus topology implies that
2903 * any device on the bus can receive or snoop DMA.
2904 */
ad805758
AW
2905 if (!pci_is_pcie(pdev))
2906 return false;
2907
0a67119f
AW
2908 switch (pci_pcie_type(pdev)) {
2909 /*
2910 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
f7625980 2911 * but since their primary interface is PCI/X, we conservatively
0a67119f
AW
2912 * handle them as we would a non-PCIe device.
2913 */
2914 case PCI_EXP_TYPE_PCIE_BRIDGE:
2915 /*
2916 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2917 * applicable... must never implement an ACS Extended Capability...".
2918 * This seems arbitrary, but we take a conservative interpretation
2919 * of this statement.
2920 */
2921 case PCI_EXP_TYPE_PCI_BRIDGE:
2922 case PCI_EXP_TYPE_RC_EC:
2923 return false;
2924 /*
2925 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2926 * implement ACS in order to indicate their peer-to-peer capabilities,
2927 * regardless of whether they are single- or multi-function devices.
2928 */
2929 case PCI_EXP_TYPE_DOWNSTREAM:
2930 case PCI_EXP_TYPE_ROOT_PORT:
2931 return pci_acs_flags_enabled(pdev, acs_flags);
2932 /*
2933 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2934 * implemented by the remaining PCIe types to indicate peer-to-peer
f7625980 2935 * capabilities, but only when they are part of a multifunction
0a67119f
AW
2936 * device. The footnote for section 6.12 indicates the specific
2937 * PCIe types included here.
2938 */
2939 case PCI_EXP_TYPE_ENDPOINT:
2940 case PCI_EXP_TYPE_UPSTREAM:
2941 case PCI_EXP_TYPE_LEG_END:
2942 case PCI_EXP_TYPE_RC_END:
2943 if (!pdev->multifunction)
2944 break;
2945
0a67119f 2946 return pci_acs_flags_enabled(pdev, acs_flags);
ad805758
AW
2947 }
2948
0a67119f 2949 /*
f7625980 2950 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
0a67119f
AW
2951 * to single function devices with the exception of downstream ports.
2952 */
ad805758
AW
2953 return true;
2954}
2955
2956/**
2957 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2958 * @start: starting downstream device
2959 * @end: ending upstream device or NULL to search to the root bus
2960 * @acs_flags: required flags
2961 *
2962 * Walk up a device tree from start to end testing PCI ACS support. If
2963 * any step along the way does not support the required flags, return false.
2964 */
2965bool pci_acs_path_enabled(struct pci_dev *start,
2966 struct pci_dev *end, u16 acs_flags)
2967{
2968 struct pci_dev *pdev, *parent = start;
2969
2970 do {
2971 pdev = parent;
2972
2973 if (!pci_acs_enabled(pdev, acs_flags))
2974 return false;
2975
2976 if (pci_is_root_bus(pdev->bus))
2977 return (end == NULL);
2978
2979 parent = pdev->bus->self;
2980 } while (pdev != end);
2981
2982 return true;
2983}
2984
276b738d
CK
2985/**
2986 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
2987 * @pdev: PCI device
2988 * @bar: BAR to find
2989 *
2990 * Helper to find the position of the ctrl register for a BAR.
2991 * Returns -ENOTSUPP if resizable BARs are not supported at all.
2992 * Returns -ENOENT if no ctrl register for the BAR could be found.
2993 */
2994static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
2995{
2996 unsigned int pos, nbars, i;
2997 u32 ctrl;
2998
2999 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3000 if (!pos)
3001 return -ENOTSUPP;
3002
3003 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3004 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3005 PCI_REBAR_CTRL_NBAR_SHIFT;
3006
3007 for (i = 0; i < nbars; i++, pos += 8) {
3008 int bar_idx;
3009
3010 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3011 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3012 if (bar_idx == bar)
3013 return pos;
3014 }
3015
3016 return -ENOENT;
3017}
3018
3019/**
3020 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3021 * @pdev: PCI device
3022 * @bar: BAR to query
3023 *
3024 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3025 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3026 */
3027u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3028{
3029 int pos;
3030 u32 cap;
3031
3032 pos = pci_rebar_find_pos(pdev, bar);
3033 if (pos < 0)
3034 return 0;
3035
3036 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3037 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3038}
3039
3040/**
3041 * pci_rebar_get_current_size - get the current size of a BAR
3042 * @pdev: PCI device
3043 * @bar: BAR to set size to
3044 *
3045 * Read the size of a BAR from the resizable BAR config.
3046 * Returns size if found or negative error code.
3047 */
3048int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3049{
3050 int pos;
3051 u32 ctrl;
3052
3053 pos = pci_rebar_find_pos(pdev, bar);
3054 if (pos < 0)
3055 return pos;
3056
3057 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3058 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3059}
3060
3061/**
3062 * pci_rebar_set_size - set a new size for a BAR
3063 * @pdev: PCI device
3064 * @bar: BAR to set size to
3065 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3066 *
3067 * Set the new size of a BAR as defined in the spec.
3068 * Returns zero if resizing was successful, error code otherwise.
3069 */
3070int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3071{
3072 int pos;
3073 u32 ctrl;
3074
3075 pos = pci_rebar_find_pos(pdev, bar);
3076 if (pos < 0)
3077 return pos;
3078
3079 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3080 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3081 ctrl |= size << 8;
3082 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3083 return 0;
3084}
3085
57c2cf71
BH
3086/**
3087 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3088 * @dev: the PCI device
bb5c2de2 3089 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
57c2cf71
BH
3090 *
3091 * Perform INTx swizzling for a device behind one level of bridge. This is
3092 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
46b952a3
MW
3093 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3094 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3095 * the PCI Express Base Specification, Revision 2.1)
57c2cf71 3096 */
3df425f3 3097u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
57c2cf71 3098{
46b952a3
MW
3099 int slot;
3100
3101 if (pci_ari_enabled(dev->bus))
3102 slot = 0;
3103 else
3104 slot = PCI_SLOT(dev->devfn);
3105
3106 return (((pin - 1) + slot) % 4) + 1;
57c2cf71
BH
3107}
3108
3c78bc61 3109int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1da177e4
LT
3110{
3111 u8 pin;
3112
514d207d 3113 pin = dev->pin;
1da177e4
LT
3114 if (!pin)
3115 return -1;
878f2e50 3116
8784fd4d 3117 while (!pci_is_root_bus(dev->bus)) {
57c2cf71 3118 pin = pci_swizzle_interrupt_pin(dev, pin);
1da177e4
LT
3119 dev = dev->bus->self;
3120 }
3121 *bridge = dev;
3122 return pin;
3123}
3124
68feac87
BH
3125/**
3126 * pci_common_swizzle - swizzle INTx all the way to root bridge
3127 * @dev: the PCI device
3128 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3129 *
3130 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3131 * bridges all the way up to a PCI root bus.
3132 */
3133u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3134{
3135 u8 pin = *pinp;
3136
1eb39487 3137 while (!pci_is_root_bus(dev->bus)) {
68feac87
BH
3138 pin = pci_swizzle_interrupt_pin(dev, pin);
3139 dev = dev->bus->self;
3140 }
3141 *pinp = pin;
3142 return PCI_SLOT(dev->devfn);
3143}
e6b29dea 3144EXPORT_SYMBOL_GPL(pci_common_swizzle);
68feac87 3145
1da177e4
LT
3146/**
3147 * pci_release_region - Release a PCI bar
3148 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3149 * @bar: BAR to release
3150 *
3151 * Releases the PCI I/O and memory resources previously reserved by a
3152 * successful call to pci_request_region. Call this function only
3153 * after all use of the PCI regions has ceased.
3154 */
3155void pci_release_region(struct pci_dev *pdev, int bar)
3156{
9ac7849e
TH
3157 struct pci_devres *dr;
3158
1da177e4
LT
3159 if (pci_resource_len(pdev, bar) == 0)
3160 return;
3161 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3162 release_region(pci_resource_start(pdev, bar),
3163 pci_resource_len(pdev, bar));
3164 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3165 release_mem_region(pci_resource_start(pdev, bar),
3166 pci_resource_len(pdev, bar));
9ac7849e
TH
3167
3168 dr = find_pci_dr(pdev);
3169 if (dr)
3170 dr->region_mask &= ~(1 << bar);
1da177e4 3171}
b7fe9434 3172EXPORT_SYMBOL(pci_release_region);
1da177e4
LT
3173
3174/**
f5ddcac4 3175 * __pci_request_region - Reserved PCI I/O and memory resource
1da177e4
LT
3176 * @pdev: PCI device whose resources are to be reserved
3177 * @bar: BAR to be reserved
3178 * @res_name: Name to be associated with resource.
f5ddcac4 3179 * @exclusive: whether the region access is exclusive or not
1da177e4
LT
3180 *
3181 * Mark the PCI region associated with PCI device @pdev BR @bar as
3182 * being reserved by owner @res_name. Do not access any
3183 * address inside the PCI regions unless this call returns
3184 * successfully.
3185 *
f5ddcac4
RD
3186 * If @exclusive is set, then the region is marked so that userspace
3187 * is explicitly not allowed to map the resource via /dev/mem or
f7625980 3188 * sysfs MMIO access.
f5ddcac4 3189 *
1da177e4
LT
3190 * Returns 0 on success, or %EBUSY on error. A warning
3191 * message is also printed on failure.
3192 */
3c78bc61
RD
3193static int __pci_request_region(struct pci_dev *pdev, int bar,
3194 const char *res_name, int exclusive)
1da177e4 3195{
9ac7849e
TH
3196 struct pci_devres *dr;
3197
1da177e4
LT
3198 if (pci_resource_len(pdev, bar) == 0)
3199 return 0;
f7625980 3200
1da177e4
LT
3201 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3202 if (!request_region(pci_resource_start(pdev, bar),
3203 pci_resource_len(pdev, bar), res_name))
3204 goto err_out;
3c78bc61 3205 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
e8de1481
AV
3206 if (!__request_mem_region(pci_resource_start(pdev, bar),
3207 pci_resource_len(pdev, bar), res_name,
3208 exclusive))
1da177e4
LT
3209 goto err_out;
3210 }
9ac7849e
TH
3211
3212 dr = find_pci_dr(pdev);
3213 if (dr)
3214 dr->region_mask |= 1 << bar;
3215
1da177e4
LT
3216 return 0;
3217
3218err_out:
c7dabef8 3219 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
096e6f67 3220 &pdev->resource[bar]);
1da177e4
LT
3221 return -EBUSY;
3222}
3223
e8de1481 3224/**
f5ddcac4 3225 * pci_request_region - Reserve PCI I/O and memory resource
e8de1481
AV
3226 * @pdev: PCI device whose resources are to be reserved
3227 * @bar: BAR to be reserved
f5ddcac4 3228 * @res_name: Name to be associated with resource
e8de1481 3229 *
f5ddcac4 3230 * Mark the PCI region associated with PCI device @pdev BAR @bar as
e8de1481
AV
3231 * being reserved by owner @res_name. Do not access any
3232 * address inside the PCI regions unless this call returns
3233 * successfully.
3234 *
3235 * Returns 0 on success, or %EBUSY on error. A warning
3236 * message is also printed on failure.
3237 */
3238int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3239{
3240 return __pci_request_region(pdev, bar, res_name, 0);
3241}
b7fe9434 3242EXPORT_SYMBOL(pci_request_region);
e8de1481
AV
3243
3244/**
3245 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3246 * @pdev: PCI device whose resources are to be reserved
3247 * @bar: BAR to be reserved
3248 * @res_name: Name to be associated with resource.
3249 *
3250 * Mark the PCI region associated with PCI device @pdev BR @bar as
3251 * being reserved by owner @res_name. Do not access any
3252 * address inside the PCI regions unless this call returns
3253 * successfully.
3254 *
3255 * Returns 0 on success, or %EBUSY on error. A warning
3256 * message is also printed on failure.
3257 *
3258 * The key difference that _exclusive makes it that userspace is
3259 * explicitly not allowed to map the resource via /dev/mem or
f7625980 3260 * sysfs.
e8de1481 3261 */
3c78bc61
RD
3262int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3263 const char *res_name)
e8de1481
AV
3264{
3265 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3266}
b7fe9434
RD
3267EXPORT_SYMBOL(pci_request_region_exclusive);
3268
c87deff7
HS
3269/**
3270 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3271 * @pdev: PCI device whose resources were previously reserved
3272 * @bars: Bitmask of BARs to be released
3273 *
3274 * Release selected PCI I/O and memory resources previously reserved.
3275 * Call this function only after all use of the PCI regions has ceased.
3276 */
3277void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3278{
3279 int i;
3280
3281 for (i = 0; i < 6; i++)
3282 if (bars & (1 << i))
3283 pci_release_region(pdev, i);
3284}
b7fe9434 3285EXPORT_SYMBOL(pci_release_selected_regions);
c87deff7 3286
9738abed 3287static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3c78bc61 3288 const char *res_name, int excl)
c87deff7
HS
3289{
3290 int i;
3291
3292 for (i = 0; i < 6; i++)
3293 if (bars & (1 << i))
e8de1481 3294 if (__pci_request_region(pdev, i, res_name, excl))
c87deff7
HS
3295 goto err_out;
3296 return 0;
3297
3298err_out:
3c78bc61 3299 while (--i >= 0)
c87deff7
HS
3300 if (bars & (1 << i))
3301 pci_release_region(pdev, i);
3302
3303 return -EBUSY;
3304}
1da177e4 3305
e8de1481
AV
3306
3307/**
3308 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3309 * @pdev: PCI device whose resources are to be reserved
3310 * @bars: Bitmask of BARs to be requested
3311 * @res_name: Name to be associated with resource
3312 */
3313int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3314 const char *res_name)
3315{
3316 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3317}
b7fe9434 3318EXPORT_SYMBOL(pci_request_selected_regions);
e8de1481 3319
3c78bc61
RD
3320int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3321 const char *res_name)
e8de1481
AV
3322{
3323 return __pci_request_selected_regions(pdev, bars, res_name,
3324 IORESOURCE_EXCLUSIVE);
3325}
b7fe9434 3326EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
e8de1481 3327
1da177e4
LT
3328/**
3329 * pci_release_regions - Release reserved PCI I/O and memory resources
3330 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3331 *
3332 * Releases all PCI I/O and memory resources previously reserved by a
3333 * successful call to pci_request_regions. Call this function only
3334 * after all use of the PCI regions has ceased.
3335 */
3336
3337void pci_release_regions(struct pci_dev *pdev)
3338{
c87deff7 3339 pci_release_selected_regions(pdev, (1 << 6) - 1);
1da177e4 3340}
b7fe9434 3341EXPORT_SYMBOL(pci_release_regions);
1da177e4
LT
3342
3343/**
3344 * pci_request_regions - Reserved PCI I/O and memory resources
3345 * @pdev: PCI device whose resources are to be reserved
3346 * @res_name: Name to be associated with resource.
3347 *
3348 * Mark all PCI regions associated with PCI device @pdev as
3349 * being reserved by owner @res_name. Do not access any
3350 * address inside the PCI regions unless this call returns
3351 * successfully.
3352 *
3353 * Returns 0 on success, or %EBUSY on error. A warning
3354 * message is also printed on failure.
3355 */
3c990e92 3356int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1da177e4 3357{
c87deff7 3358 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1da177e4 3359}
b7fe9434 3360EXPORT_SYMBOL(pci_request_regions);
1da177e4 3361
e8de1481
AV
3362/**
3363 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3364 * @pdev: PCI device whose resources are to be reserved
3365 * @res_name: Name to be associated with resource.
3366 *
3367 * Mark all PCI regions associated with PCI device @pdev as
3368 * being reserved by owner @res_name. Do not access any
3369 * address inside the PCI regions unless this call returns
3370 * successfully.
3371 *
3372 * pci_request_regions_exclusive() will mark the region so that
f7625980 3373 * /dev/mem and the sysfs MMIO access will not be allowed.
e8de1481
AV
3374 *
3375 * Returns 0 on success, or %EBUSY on error. A warning
3376 * message is also printed on failure.
3377 */
3378int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3379{
3380 return pci_request_selected_regions_exclusive(pdev,
3381 ((1 << 6) - 1), res_name);
3382}
b7fe9434 3383EXPORT_SYMBOL(pci_request_regions_exclusive);
e8de1481 3384
c5076cfe
TN
3385/*
3386 * Record the PCI IO range (expressed as CPU physical address + size).
3387 * Return a negative value if an error has occured, zero otherwise
3388 */
36e6f3d4
GP
3389int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3390 resource_size_t size)
c5076cfe 3391{
046ff9e6 3392 int ret = 0;
c5076cfe 3393#ifdef PCI_IOBASE
046ff9e6 3394 struct logic_pio_hwaddr *range;
c5076cfe 3395
046ff9e6
ZY
3396 if (!size || addr + size < addr)
3397 return -EINVAL;
c5076cfe 3398
c5076cfe 3399 range = kzalloc(sizeof(*range), GFP_ATOMIC);
046ff9e6
ZY
3400 if (!range)
3401 return -ENOMEM;
c5076cfe 3402
046ff9e6 3403 range->fwnode = fwnode;
c5076cfe 3404 range->size = size;
046ff9e6
ZY
3405 range->hw_start = addr;
3406 range->flags = LOGIC_PIO_CPU_MMIO;
c5076cfe 3407
046ff9e6
ZY
3408 ret = logic_pio_register_range(range);
3409 if (ret)
3410 kfree(range);
c5076cfe
TN
3411#endif
3412
046ff9e6 3413 return ret;
c5076cfe
TN
3414}
3415
3416phys_addr_t pci_pio_to_address(unsigned long pio)
3417{
3418 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3419
3420#ifdef PCI_IOBASE
046ff9e6 3421 if (pio >= MMIO_UPPER_LIMIT)
c5076cfe
TN
3422 return address;
3423
046ff9e6 3424 address = logic_pio_to_hwaddr(pio);
c5076cfe
TN
3425#endif
3426
3427 return address;
3428}
3429
3430unsigned long __weak pci_address_to_pio(phys_addr_t address)
3431{
3432#ifdef PCI_IOBASE
046ff9e6 3433 return logic_pio_trans_cpuaddr(address);
c5076cfe
TN
3434#else
3435 if (address > IO_SPACE_LIMIT)
3436 return (unsigned long)-1;
3437
3438 return (unsigned long) address;
3439#endif
3440}
3441
8b921acf
LD
3442/**
3443 * pci_remap_iospace - Remap the memory mapped I/O space
3444 * @res: Resource describing the I/O space
3445 * @phys_addr: physical address of range to be mapped
3446 *
3447 * Remap the memory mapped I/O space described by the @res
3448 * and the CPU physical address @phys_addr into virtual address space.
3449 * Only architectures that have memory mapped IO functions defined
3450 * (and the PCI_IOBASE value defined) should call this function.
3451 */
7b309aef 3452int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
8b921acf
LD
3453{
3454#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3455 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3456
3457 if (!(res->flags & IORESOURCE_IO))
3458 return -EINVAL;
3459
3460 if (res->end > IO_SPACE_LIMIT)
3461 return -EINVAL;
3462
3463 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3464 pgprot_device(PAGE_KERNEL));
3465#else
3466 /* this architecture does not have memory mapped I/O space,
3467 so this function should never be called */
3468 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3469 return -ENODEV;
3470#endif
3471}
f90b0875 3472EXPORT_SYMBOL(pci_remap_iospace);
8b921acf 3473
4d3f1384
SK
3474/**
3475 * pci_unmap_iospace - Unmap the memory mapped I/O space
3476 * @res: resource to be unmapped
3477 *
3478 * Unmap the CPU virtual address @res from virtual address space.
3479 * Only architectures that have memory mapped IO functions defined
3480 * (and the PCI_IOBASE value defined) should call this function.
3481 */
3482void pci_unmap_iospace(struct resource *res)
3483{
3484#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3485 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3486
3487 unmap_kernel_range(vaddr, resource_size(res));
3488#endif
3489}
f90b0875 3490EXPORT_SYMBOL(pci_unmap_iospace);
4d3f1384 3491
490cb6dd
LP
3492/**
3493 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3494 * @dev: Generic device to remap IO address for
3495 * @offset: Resource address to map
3496 * @size: Size of map
3497 *
3498 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3499 * detach.
3500 */
3501void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3502 resource_size_t offset,
3503 resource_size_t size)
3504{
3505 void __iomem **ptr, *addr;
3506
3507 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3508 if (!ptr)
3509 return NULL;
3510
3511 addr = pci_remap_cfgspace(offset, size);
3512 if (addr) {
3513 *ptr = addr;
3514 devres_add(dev, ptr);
3515 } else
3516 devres_free(ptr);
3517
3518 return addr;
3519}
3520EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3521
3522/**
3523 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3524 * @dev: generic device to handle the resource for
3525 * @res: configuration space resource to be handled
3526 *
3527 * Checks that a resource is a valid memory region, requests the memory
3528 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3529 * proper PCI configuration space memory attributes are guaranteed.
3530 *
3531 * All operations are managed and will be undone on driver detach.
3532 *
3533 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
505fb746 3534 * on failure. Usage example::
490cb6dd
LP
3535 *
3536 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3537 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3538 * if (IS_ERR(base))
3539 * return PTR_ERR(base);
3540 */
3541void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3542 struct resource *res)
3543{
3544 resource_size_t size;
3545 const char *name;
3546 void __iomem *dest_ptr;
3547
3548 BUG_ON(!dev);
3549
3550 if (!res || resource_type(res) != IORESOURCE_MEM) {
3551 dev_err(dev, "invalid resource\n");
3552 return IOMEM_ERR_PTR(-EINVAL);
3553 }
3554
3555 size = resource_size(res);
3556 name = res->name ?: dev_name(dev);
3557
3558 if (!devm_request_mem_region(dev, res->start, size, name)) {
3559 dev_err(dev, "can't request region for resource %pR\n", res);
3560 return IOMEM_ERR_PTR(-EBUSY);
3561 }
3562
3563 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3564 if (!dest_ptr) {
3565 dev_err(dev, "ioremap failed for resource %pR\n", res);
3566 devm_release_mem_region(dev, res->start, size);
3567 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3568 }
3569
3570 return dest_ptr;
3571}
3572EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3573
6a479079
BH
3574static void __pci_set_master(struct pci_dev *dev, bool enable)
3575{
3576 u16 old_cmd, cmd;
3577
3578 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3579 if (enable)
3580 cmd = old_cmd | PCI_COMMAND_MASTER;
3581 else
3582 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3583 if (cmd != old_cmd) {
3584 dev_dbg(&dev->dev, "%s bus mastering\n",
3585 enable ? "enabling" : "disabling");
3586 pci_write_config_word(dev, PCI_COMMAND, cmd);
3587 }
3588 dev->is_busmaster = enable;
3589}
e8de1481 3590
2b6f2c35
MS
3591/**
3592 * pcibios_setup - process "pci=" kernel boot arguments
3593 * @str: string used to pass in "pci=" kernel boot arguments
3594 *
3595 * Process kernel boot arguments. This is the default implementation.
3596 * Architecture specific implementations can override this as necessary.
3597 */
3598char * __weak __init pcibios_setup(char *str)
3599{
3600 return str;
3601}
3602
96c55900
MS
3603/**
3604 * pcibios_set_master - enable PCI bus-mastering for device dev
3605 * @dev: the PCI device to enable
3606 *
3607 * Enables PCI bus-mastering for the device. This is the default
3608 * implementation. Architecture specific implementations can override
3609 * this if necessary.
3610 */
3611void __weak pcibios_set_master(struct pci_dev *dev)
3612{
3613 u8 lat;
3614
f676678f
MS
3615 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3616 if (pci_is_pcie(dev))
3617 return;
3618
96c55900
MS
3619 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3620 if (lat < 16)
3621 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3622 else if (lat > pcibios_max_latency)
3623 lat = pcibios_max_latency;
3624 else
3625 return;
a006482b 3626
96c55900
MS
3627 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3628}
3629
1da177e4
LT
3630/**
3631 * pci_set_master - enables bus-mastering for device dev
3632 * @dev: the PCI device to enable
3633 *
3634 * Enables bus-mastering on the device and calls pcibios_set_master()
3635 * to do the needed arch specific settings.
3636 */
6a479079 3637void pci_set_master(struct pci_dev *dev)
1da177e4 3638{
6a479079 3639 __pci_set_master(dev, true);
1da177e4
LT
3640 pcibios_set_master(dev);
3641}
b7fe9434 3642EXPORT_SYMBOL(pci_set_master);
1da177e4 3643
6a479079
BH
3644/**
3645 * pci_clear_master - disables bus-mastering for device dev
3646 * @dev: the PCI device to disable
3647 */
3648void pci_clear_master(struct pci_dev *dev)
3649{
3650 __pci_set_master(dev, false);
3651}
b7fe9434 3652EXPORT_SYMBOL(pci_clear_master);
6a479079 3653
1da177e4 3654/**
edb2d97e
MW
3655 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3656 * @dev: the PCI device for which MWI is to be enabled
1da177e4 3657 *
edb2d97e
MW
3658 * Helper function for pci_set_mwi.
3659 * Originally copied from drivers/net/acenic.c.
1da177e4
LT
3660 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3661 *
3662 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3663 */
15ea76d4 3664int pci_set_cacheline_size(struct pci_dev *dev)
1da177e4
LT
3665{
3666 u8 cacheline_size;
3667
3668 if (!pci_cache_line_size)
15ea76d4 3669 return -EINVAL;
1da177e4
LT
3670
3671 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3672 equal to or multiple of the right value. */
3673 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3674 if (cacheline_size >= pci_cache_line_size &&
3675 (cacheline_size % pci_cache_line_size) == 0)
3676 return 0;
3677
3678 /* Write the correct value. */
3679 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3680 /* Read it back. */
3681 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3682 if (cacheline_size == pci_cache_line_size)
3683 return 0;
3684
227f0647
RD
3685 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3686 pci_cache_line_size << 2);
1da177e4
LT
3687
3688 return -EINVAL;
3689}
15ea76d4
TH
3690EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3691
1da177e4
LT
3692/**
3693 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3694 * @dev: the PCI device for which MWI is enabled
3695 *
694625c0 3696 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1da177e4
LT
3697 *
3698 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3699 */
3c78bc61 3700int pci_set_mwi(struct pci_dev *dev)
1da177e4 3701{
b7fe9434
RD
3702#ifdef PCI_DISABLE_MWI
3703 return 0;
3704#else
1da177e4
LT
3705 int rc;
3706 u16 cmd;
3707
edb2d97e 3708 rc = pci_set_cacheline_size(dev);
1da177e4
LT
3709 if (rc)
3710 return rc;
3711
3712 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3c78bc61 3713 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
80ccba11 3714 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1da177e4
LT
3715 cmd |= PCI_COMMAND_INVALIDATE;
3716 pci_write_config_word(dev, PCI_COMMAND, cmd);
3717 }
1da177e4 3718 return 0;
b7fe9434 3719#endif
1da177e4 3720}
b7fe9434 3721EXPORT_SYMBOL(pci_set_mwi);
1da177e4 3722
694625c0
RD
3723/**
3724 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3725 * @dev: the PCI device for which MWI is enabled
3726 *
3727 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3728 * Callers are not required to check the return value.
3729 *
3730 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3731 */
3732int pci_try_set_mwi(struct pci_dev *dev)
3733{
b7fe9434
RD
3734#ifdef PCI_DISABLE_MWI
3735 return 0;
3736#else
3737 return pci_set_mwi(dev);
3738#endif
694625c0 3739}
b7fe9434 3740EXPORT_SYMBOL(pci_try_set_mwi);
694625c0 3741
1da177e4
LT
3742/**
3743 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3744 * @dev: the PCI device to disable
3745 *
3746 * Disables PCI Memory-Write-Invalidate transaction on the device
3747 */
3c78bc61 3748void pci_clear_mwi(struct pci_dev *dev)
1da177e4 3749{
b7fe9434 3750#ifndef PCI_DISABLE_MWI
1da177e4
LT
3751 u16 cmd;
3752
3753 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3754 if (cmd & PCI_COMMAND_INVALIDATE) {
3755 cmd &= ~PCI_COMMAND_INVALIDATE;
3756 pci_write_config_word(dev, PCI_COMMAND, cmd);
3757 }
b7fe9434 3758#endif
1da177e4 3759}
b7fe9434 3760EXPORT_SYMBOL(pci_clear_mwi);
1da177e4 3761
a04ce0ff
BR
3762/**
3763 * pci_intx - enables/disables PCI INTx for device dev
8f7020d3
RD
3764 * @pdev: the PCI device to operate on
3765 * @enable: boolean: whether to enable or disable PCI INTx
a04ce0ff
BR
3766 *
3767 * Enables/disables PCI INTx for device dev
3768 */
3c78bc61 3769void pci_intx(struct pci_dev *pdev, int enable)
a04ce0ff
BR
3770{
3771 u16 pci_command, new;
3772
3773 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3774
3c78bc61 3775 if (enable)
a04ce0ff 3776 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3c78bc61 3777 else
a04ce0ff 3778 new = pci_command | PCI_COMMAND_INTX_DISABLE;
a04ce0ff
BR
3779
3780 if (new != pci_command) {
9ac7849e
TH
3781 struct pci_devres *dr;
3782
2fd9d74b 3783 pci_write_config_word(pdev, PCI_COMMAND, new);
9ac7849e
TH
3784
3785 dr = find_pci_dr(pdev);
3786 if (dr && !dr->restore_intx) {
3787 dr->restore_intx = 1;
3788 dr->orig_intx = !enable;
3789 }
a04ce0ff
BR
3790 }
3791}
b7fe9434 3792EXPORT_SYMBOL_GPL(pci_intx);
a04ce0ff 3793
a2e27787
JK
3794static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3795{
3796 struct pci_bus *bus = dev->bus;
3797 bool mask_updated = true;
3798 u32 cmd_status_dword;
3799 u16 origcmd, newcmd;
3800 unsigned long flags;
3801 bool irq_pending;
3802
3803 /*
3804 * We do a single dword read to retrieve both command and status.
3805 * Document assumptions that make this possible.
3806 */
3807 BUILD_BUG_ON(PCI_COMMAND % 4);
3808 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3809
3810 raw_spin_lock_irqsave(&pci_lock, flags);
3811
3812 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3813
3814 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3815
3816 /*
3817 * Check interrupt status register to see whether our device
3818 * triggered the interrupt (when masking) or the next IRQ is
3819 * already pending (when unmasking).
3820 */
3821 if (mask != irq_pending) {
3822 mask_updated = false;
3823 goto done;
3824 }
3825
3826 origcmd = cmd_status_dword;
3827 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3828 if (mask)
3829 newcmd |= PCI_COMMAND_INTX_DISABLE;
3830 if (newcmd != origcmd)
3831 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3832
3833done:
3834 raw_spin_unlock_irqrestore(&pci_lock, flags);
3835
3836 return mask_updated;
3837}
3838
3839/**
3840 * pci_check_and_mask_intx - mask INTx on pending interrupt
6e9292c5 3841 * @dev: the PCI device to operate on
a2e27787
JK
3842 *
3843 * Check if the device dev has its INTx line asserted, mask it and
99b3c58f 3844 * return true in that case. False is returned if no interrupt was
a2e27787
JK
3845 * pending.
3846 */
3847bool pci_check_and_mask_intx(struct pci_dev *dev)
3848{
3849 return pci_check_and_set_intx_mask(dev, true);
3850}
3851EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3852
3853/**
ebd50b93 3854 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
6e9292c5 3855 * @dev: the PCI device to operate on
a2e27787
JK
3856 *
3857 * Check if the device dev has its INTx line asserted, unmask it if not
3858 * and return true. False is returned and the mask remains active if
3859 * there was still an interrupt pending.
3860 */
3861bool pci_check_and_unmask_intx(struct pci_dev *dev)
3862{
3863 return pci_check_and_set_intx_mask(dev, false);
3864}
3865EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3866
3775a209
CL
3867/**
3868 * pci_wait_for_pending_transaction - waits for pending transaction
3869 * @dev: the PCI device to operate on
3870 *
3871 * Return 0 if transaction is pending 1 otherwise.
3872 */
3873int pci_wait_for_pending_transaction(struct pci_dev *dev)
8dd7f803 3874{
157e876f
AW
3875 if (!pci_is_pcie(dev))
3876 return 1;
8c1c699f 3877
d0b4cc4e
GS
3878 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3879 PCI_EXP_DEVSTA_TRPND);
3775a209
CL
3880}
3881EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3882
5adecf81
AW
3883static void pci_flr_wait(struct pci_dev *dev)
3884{
821cdad5 3885 int delay = 1, timeout = 60000;
5adecf81
AW
3886 u32 id;
3887
821cdad5
SK
3888 /*
3889 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
3890 * 100ms, but may silently discard requests while the FLR is in
3891 * progress. Wait 100ms before trying to access the device.
3892 */
3893 msleep(100);
3894
3895 /*
3896 * After 100ms, the device should not silently discard config
3897 * requests, but it may still indicate that it needs more time by
3898 * responding to them with CRS completions. The Root Port will
3899 * generally synthesize ~0 data to complete the read (except when
3900 * CRS SV is enabled and the read was for the Vendor ID; in that
3901 * case it synthesizes 0x0001 data).
3902 *
3903 * Wait for the device to return a non-CRS completion. Read the
3904 * Command register instead of Vendor ID so we don't have to
3905 * contend with the CRS SV value.
3906 */
3907 pci_read_config_dword(dev, PCI_COMMAND, &id);
3908 while (id == ~0) {
3909 if (delay > timeout) {
3910 dev_warn(&dev->dev, "not ready %dms after FLR; giving up\n",
3911 100 + delay - 1);
3912 return;
3913 }
3914
3915 if (delay > 1000)
3916 dev_info(&dev->dev, "not ready %dms after FLR; waiting\n",
3917 100 + delay - 1);
3918
3919 msleep(delay);
3920 delay *= 2;
5adecf81 3921 pci_read_config_dword(dev, PCI_COMMAND, &id);
821cdad5 3922 }
5adecf81 3923
821cdad5
SK
3924 if (delay > 1000)
3925 dev_info(&dev->dev, "ready %dms after FLR\n", 100 + delay - 1);
5adecf81
AW
3926}
3927
a60a2b73
CH
3928/**
3929 * pcie_has_flr - check if a device supports function level resets
3930 * @dev: device to check
3931 *
3932 * Returns true if the device advertises support for PCIe function level
3933 * resets.
3934 */
3935static bool pcie_has_flr(struct pci_dev *dev)
3775a209
CL
3936{
3937 u32 cap;
3938
f65fd1aa 3939 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
a60a2b73 3940 return false;
3775a209 3941
a60a2b73
CH
3942 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3943 return cap & PCI_EXP_DEVCAP_FLR;
3944}
3775a209 3945
a60a2b73
CH
3946/**
3947 * pcie_flr - initiate a PCIe function level reset
3948 * @dev: device to reset
3949 *
3950 * Initiate a function level reset on @dev. The caller should ensure the
3951 * device supports FLR before calling this function, e.g. by using the
3952 * pcie_has_flr() helper.
3953 */
3954void pcie_flr(struct pci_dev *dev)
3955{
3775a209 3956 if (!pci_wait_for_pending_transaction(dev))
bb383e28 3957 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
8c1c699f 3958
59875ae4 3959 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
5adecf81 3960 pci_flr_wait(dev);
8dd7f803 3961}
a60a2b73 3962EXPORT_SYMBOL_GPL(pcie_flr);
d91cdc74 3963
8c1c699f 3964static int pci_af_flr(struct pci_dev *dev, int probe)
1ca88797 3965{
8c1c699f 3966 int pos;
1ca88797
SY
3967 u8 cap;
3968
8c1c699f
YZ
3969 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3970 if (!pos)
1ca88797 3971 return -ENOTTY;
8c1c699f 3972
f65fd1aa
SN
3973 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3974 return -ENOTTY;
3975
8c1c699f 3976 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
1ca88797
SY
3977 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3978 return -ENOTTY;
3979
3980 if (probe)
3981 return 0;
3982
d066c946
AW
3983 /*
3984 * Wait for Transaction Pending bit to clear. A word-aligned test
3985 * is used, so we use the conrol offset rather than status and shift
3986 * the test bit to match.
3987 */
bb383e28 3988 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
d066c946 3989 PCI_AF_STATUS_TP << 8))
bb383e28 3990 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
5fe5db05 3991
8c1c699f 3992 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
5adecf81 3993 pci_flr_wait(dev);
1ca88797
SY
3994 return 0;
3995}
3996
83d74e03
RW
3997/**
3998 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3999 * @dev: Device to reset.
4000 * @probe: If set, only check if the device can be reset this way.
4001 *
4002 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4003 * unset, it will be reinitialized internally when going from PCI_D3hot to
4004 * PCI_D0. If that's the case and the device is not in a low-power state
4005 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4006 *
4007 * NOTE: This causes the caller to sleep for twice the device power transition
4008 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
f7625980 4009 * by default (i.e. unless the @dev's d3_delay field has a different value).
83d74e03
RW
4010 * Moreover, only devices in D0 can be reset by this function.
4011 */
f85876ba 4012static int pci_pm_reset(struct pci_dev *dev, int probe)
d91cdc74 4013{
f85876ba
YZ
4014 u16 csr;
4015
51e53738 4016 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
f85876ba 4017 return -ENOTTY;
d91cdc74 4018
f85876ba
YZ
4019 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4020 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4021 return -ENOTTY;
d91cdc74 4022
f85876ba
YZ
4023 if (probe)
4024 return 0;
1ca88797 4025
f85876ba
YZ
4026 if (dev->current_state != PCI_D0)
4027 return -EINVAL;
4028
4029 csr &= ~PCI_PM_CTRL_STATE_MASK;
4030 csr |= PCI_D3hot;
4031 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 4032 pci_dev_d3_sleep(dev);
f85876ba
YZ
4033
4034 csr &= ~PCI_PM_CTRL_STATE_MASK;
4035 csr |= PCI_D0;
4036 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 4037 pci_dev_d3_sleep(dev);
f85876ba
YZ
4038
4039 return 0;
4040}
4041
9e33002f 4042void pci_reset_secondary_bus(struct pci_dev *dev)
c12ff1df
YZ
4043{
4044 u16 ctrl;
64e8674f
AW
4045
4046 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4047 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4048 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
de0c548c
AW
4049 /*
4050 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
f7625980 4051 * this to 2ms to ensure that we meet the minimum requirement.
de0c548c
AW
4052 */
4053 msleep(2);
64e8674f
AW
4054
4055 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4056 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
de0c548c
AW
4057
4058 /*
4059 * Trhfa for conventional PCI is 2^25 clock cycles.
4060 * Assuming a minimum 33MHz clock this results in a 1s
4061 * delay before we can consider subordinate devices to
4062 * be re-initialized. PCIe has some ways to shorten this,
4063 * but we don't make use of them yet.
4064 */
4065 ssleep(1);
64e8674f 4066}
d92a208d 4067
9e33002f
GS
4068void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4069{
4070 pci_reset_secondary_bus(dev);
4071}
4072
d92a208d
GS
4073/**
4074 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4075 * @dev: Bridge device
4076 *
4077 * Use the bridge control register to assert reset on the secondary bus.
4078 * Devices on the secondary bus are left in power-on state.
4079 */
4080void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4081{
4082 pcibios_reset_secondary_bus(dev);
4083}
64e8674f
AW
4084EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4085
4086static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4087{
c12ff1df
YZ
4088 struct pci_dev *pdev;
4089
f331a859
AW
4090 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4091 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
c12ff1df
YZ
4092 return -ENOTTY;
4093
4094 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4095 if (pdev != dev)
4096 return -ENOTTY;
4097
4098 if (probe)
4099 return 0;
4100
64e8674f 4101 pci_reset_bridge_secondary_bus(dev->bus->self);
c12ff1df
YZ
4102
4103 return 0;
4104}
4105
608c3881
AW
4106static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4107{
4108 int rc = -ENOTTY;
4109
4110 if (!hotplug || !try_module_get(hotplug->ops->owner))
4111 return rc;
4112
4113 if (hotplug->ops->reset_slot)
4114 rc = hotplug->ops->reset_slot(hotplug, probe);
4115
4116 module_put(hotplug->ops->owner);
4117
4118 return rc;
4119}
4120
4121static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4122{
4123 struct pci_dev *pdev;
4124
f331a859
AW
4125 if (dev->subordinate || !dev->slot ||
4126 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
608c3881
AW
4127 return -ENOTTY;
4128
4129 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4130 if (pdev != dev && pdev->slot == dev->slot)
4131 return -ENOTTY;
4132
4133 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4134}
4135
77cb985a
AW
4136static void pci_dev_lock(struct pci_dev *dev)
4137{
4138 pci_cfg_access_lock(dev);
4139 /* block PM suspend, driver probe, etc. */
4140 device_lock(&dev->dev);
4141}
4142
61cf16d8
AW
4143/* Return 1 on successful lock, 0 on contention */
4144static int pci_dev_trylock(struct pci_dev *dev)
4145{
4146 if (pci_cfg_access_trylock(dev)) {
4147 if (device_trylock(&dev->dev))
4148 return 1;
4149 pci_cfg_access_unlock(dev);
4150 }
4151
4152 return 0;
4153}
4154
77cb985a
AW
4155static void pci_dev_unlock(struct pci_dev *dev)
4156{
4157 device_unlock(&dev->dev);
4158 pci_cfg_access_unlock(dev);
4159}
4160
775755ed 4161static void pci_dev_save_and_disable(struct pci_dev *dev)
3ebe7f9f
KB
4162{
4163 const struct pci_error_handlers *err_handler =
4164 dev->driver ? dev->driver->err_handler : NULL;
3ebe7f9f 4165
b014e96d 4166 /*
775755ed 4167 * dev->driver->err_handler->reset_prepare() is protected against
b014e96d
CH
4168 * races with ->remove() by the device lock, which must be held by
4169 * the caller.
4170 */
775755ed
CH
4171 if (err_handler && err_handler->reset_prepare)
4172 err_handler->reset_prepare(dev);
3ebe7f9f 4173
a6cbaade
AW
4174 /*
4175 * Wake-up device prior to save. PM registers default to D0 after
4176 * reset and a simple register restore doesn't reliably return
4177 * to a non-D0 state anyway.
4178 */
4179 pci_set_power_state(dev, PCI_D0);
4180
77cb985a
AW
4181 pci_save_state(dev);
4182 /*
4183 * Disable the device by clearing the Command register, except for
4184 * INTx-disable which is set. This not only disables MMIO and I/O port
4185 * BARs, but also prevents the device from being Bus Master, preventing
4186 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4187 * compliant devices, INTx-disable prevents legacy interrupts.
4188 */
4189 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4190}
4191
4192static void pci_dev_restore(struct pci_dev *dev)
4193{
775755ed
CH
4194 const struct pci_error_handlers *err_handler =
4195 dev->driver ? dev->driver->err_handler : NULL;
977f857c 4196
77cb985a 4197 pci_restore_state(dev);
77cb985a 4198
775755ed
CH
4199 /*
4200 * dev->driver->err_handler->reset_done() is protected against
4201 * races with ->remove() by the device lock, which must be held by
4202 * the caller.
4203 */
4204 if (err_handler && err_handler->reset_done)
4205 err_handler->reset_done(dev);
d91cdc74 4206}
3ebe7f9f 4207
6fbf9e7a
KRW
4208/**
4209 * __pci_reset_function_locked - reset a PCI device function while holding
4210 * the @dev mutex lock.
4211 * @dev: PCI device to reset
4212 *
4213 * Some devices allow an individual function to be reset without affecting
4214 * other functions in the same device. The PCI device must be responsive
4215 * to PCI config space in order to use this function.
4216 *
4217 * The device function is presumed to be unused and the caller is holding
4218 * the device mutex lock when this function is called.
4219 * Resetting the device will make the contents of PCI configuration space
4220 * random, so any caller of this must be prepared to reinitialise the
4221 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4222 * etc.
4223 *
4224 * Returns 0 if the device function was successfully reset or negative if the
4225 * device doesn't support resetting a single function.
4226 */
4227int __pci_reset_function_locked(struct pci_dev *dev)
4228{
52354b9d
CH
4229 int rc;
4230
4231 might_sleep();
4232
832c418a
BH
4233 /*
4234 * A reset method returns -ENOTTY if it doesn't support this device
4235 * and we should try the next method.
4236 *
4237 * If it returns 0 (success), we're finished. If it returns any
4238 * other error, we're also finished: this indicates that further
4239 * reset mechanisms might be broken on the device.
4240 */
52354b9d
CH
4241 rc = pci_dev_specific_reset(dev, 0);
4242 if (rc != -ENOTTY)
4243 return rc;
4244 if (pcie_has_flr(dev)) {
4245 pcie_flr(dev);
4246 return 0;
4247 }
4248 rc = pci_af_flr(dev, 0);
4249 if (rc != -ENOTTY)
4250 return rc;
4251 rc = pci_pm_reset(dev, 0);
4252 if (rc != -ENOTTY)
4253 return rc;
4254 rc = pci_dev_reset_slot_function(dev, 0);
4255 if (rc != -ENOTTY)
4256 return rc;
4257 return pci_parent_bus_reset(dev, 0);
6fbf9e7a
KRW
4258}
4259EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4260
711d5779
MT
4261/**
4262 * pci_probe_reset_function - check whether the device can be safely reset
4263 * @dev: PCI device to reset
4264 *
4265 * Some devices allow an individual function to be reset without affecting
4266 * other functions in the same device. The PCI device must be responsive
4267 * to PCI config space in order to use this function.
4268 *
4269 * Returns 0 if the device function can be reset or negative if the
4270 * device doesn't support resetting a single function.
4271 */
4272int pci_probe_reset_function(struct pci_dev *dev)
4273{
52354b9d
CH
4274 int rc;
4275
4276 might_sleep();
4277
4278 rc = pci_dev_specific_reset(dev, 1);
4279 if (rc != -ENOTTY)
4280 return rc;
4281 if (pcie_has_flr(dev))
4282 return 0;
4283 rc = pci_af_flr(dev, 1);
4284 if (rc != -ENOTTY)
4285 return rc;
4286 rc = pci_pm_reset(dev, 1);
4287 if (rc != -ENOTTY)
4288 return rc;
4289 rc = pci_dev_reset_slot_function(dev, 1);
4290 if (rc != -ENOTTY)
4291 return rc;
4292
4293 return pci_parent_bus_reset(dev, 1);
711d5779
MT
4294}
4295
8dd7f803 4296/**
8c1c699f
YZ
4297 * pci_reset_function - quiesce and reset a PCI device function
4298 * @dev: PCI device to reset
8dd7f803
SY
4299 *
4300 * Some devices allow an individual function to be reset without affecting
4301 * other functions in the same device. The PCI device must be responsive
4302 * to PCI config space in order to use this function.
4303 *
4304 * This function does not just reset the PCI portion of a device, but
4305 * clears all the state associated with the device. This function differs
79e699b6
JS
4306 * from __pci_reset_function_locked() in that it saves and restores device state
4307 * over the reset and takes the PCI device lock.
8dd7f803 4308 *
8c1c699f 4309 * Returns 0 if the device function was successfully reset or negative if the
8dd7f803
SY
4310 * device doesn't support resetting a single function.
4311 */
4312int pci_reset_function(struct pci_dev *dev)
4313{
8c1c699f 4314 int rc;
8dd7f803 4315
52354b9d 4316 rc = pci_probe_reset_function(dev);
8c1c699f
YZ
4317 if (rc)
4318 return rc;
8dd7f803 4319
b014e96d 4320 pci_dev_lock(dev);
77cb985a 4321 pci_dev_save_and_disable(dev);
8dd7f803 4322
52354b9d 4323 rc = __pci_reset_function_locked(dev);
8dd7f803 4324
77cb985a 4325 pci_dev_restore(dev);
b014e96d 4326 pci_dev_unlock(dev);
8dd7f803 4327
8c1c699f 4328 return rc;
8dd7f803
SY
4329}
4330EXPORT_SYMBOL_GPL(pci_reset_function);
4331
a477b9cd
MZ
4332/**
4333 * pci_reset_function_locked - quiesce and reset a PCI device function
4334 * @dev: PCI device to reset
4335 *
4336 * Some devices allow an individual function to be reset without affecting
4337 * other functions in the same device. The PCI device must be responsive
4338 * to PCI config space in order to use this function.
4339 *
4340 * This function does not just reset the PCI portion of a device, but
4341 * clears all the state associated with the device. This function differs
79e699b6 4342 * from __pci_reset_function_locked() in that it saves and restores device state
a477b9cd
MZ
4343 * over the reset. It also differs from pci_reset_function() in that it
4344 * requires the PCI device lock to be held.
4345 *
4346 * Returns 0 if the device function was successfully reset or negative if the
4347 * device doesn't support resetting a single function.
4348 */
4349int pci_reset_function_locked(struct pci_dev *dev)
4350{
4351 int rc;
4352
4353 rc = pci_probe_reset_function(dev);
4354 if (rc)
4355 return rc;
4356
4357 pci_dev_save_and_disable(dev);
4358
4359 rc = __pci_reset_function_locked(dev);
4360
4361 pci_dev_restore(dev);
4362
4363 return rc;
4364}
4365EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4366
61cf16d8
AW
4367/**
4368 * pci_try_reset_function - quiesce and reset a PCI device function
4369 * @dev: PCI device to reset
4370 *
4371 * Same as above, except return -EAGAIN if unable to lock device.
4372 */
4373int pci_try_reset_function(struct pci_dev *dev)
4374{
4375 int rc;
4376
52354b9d 4377 rc = pci_probe_reset_function(dev);
61cf16d8
AW
4378 if (rc)
4379 return rc;
4380
b014e96d
CH
4381 if (!pci_dev_trylock(dev))
4382 return -EAGAIN;
61cf16d8 4383
b014e96d 4384 pci_dev_save_and_disable(dev);
52354b9d 4385 rc = __pci_reset_function_locked(dev);
b014e96d 4386 pci_dev_unlock(dev);
61cf16d8
AW
4387
4388 pci_dev_restore(dev);
61cf16d8
AW
4389 return rc;
4390}
4391EXPORT_SYMBOL_GPL(pci_try_reset_function);
4392
f331a859
AW
4393/* Do any devices on or below this bus prevent a bus reset? */
4394static bool pci_bus_resetable(struct pci_bus *bus)
4395{
4396 struct pci_dev *dev;
4397
35702778
DD
4398
4399 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4400 return false;
4401
f331a859
AW
4402 list_for_each_entry(dev, &bus->devices, bus_list) {
4403 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4404 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4405 return false;
4406 }
4407
4408 return true;
4409}
4410
090a3c53
AW
4411/* Lock devices from the top of the tree down */
4412static void pci_bus_lock(struct pci_bus *bus)
4413{
4414 struct pci_dev *dev;
4415
4416 list_for_each_entry(dev, &bus->devices, bus_list) {
4417 pci_dev_lock(dev);
4418 if (dev->subordinate)
4419 pci_bus_lock(dev->subordinate);
4420 }
4421}
4422
4423/* Unlock devices from the bottom of the tree up */
4424static void pci_bus_unlock(struct pci_bus *bus)
4425{
4426 struct pci_dev *dev;
4427
4428 list_for_each_entry(dev, &bus->devices, bus_list) {
4429 if (dev->subordinate)
4430 pci_bus_unlock(dev->subordinate);
4431 pci_dev_unlock(dev);
4432 }
4433}
4434
61cf16d8
AW
4435/* Return 1 on successful lock, 0 on contention */
4436static int pci_bus_trylock(struct pci_bus *bus)
4437{
4438 struct pci_dev *dev;
4439
4440 list_for_each_entry(dev, &bus->devices, bus_list) {
4441 if (!pci_dev_trylock(dev))
4442 goto unlock;
4443 if (dev->subordinate) {
4444 if (!pci_bus_trylock(dev->subordinate)) {
4445 pci_dev_unlock(dev);
4446 goto unlock;
4447 }
4448 }
4449 }
4450 return 1;
4451
4452unlock:
4453 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4454 if (dev->subordinate)
4455 pci_bus_unlock(dev->subordinate);
4456 pci_dev_unlock(dev);
4457 }
4458 return 0;
4459}
4460
f331a859
AW
4461/* Do any devices on or below this slot prevent a bus reset? */
4462static bool pci_slot_resetable(struct pci_slot *slot)
4463{
4464 struct pci_dev *dev;
4465
33ba90aa
JG
4466 if (slot->bus->self &&
4467 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4468 return false;
4469
f331a859
AW
4470 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4471 if (!dev->slot || dev->slot != slot)
4472 continue;
4473 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4474 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4475 return false;
4476 }
4477
4478 return true;
4479}
4480
090a3c53
AW
4481/* Lock devices from the top of the tree down */
4482static void pci_slot_lock(struct pci_slot *slot)
4483{
4484 struct pci_dev *dev;
4485
4486 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4487 if (!dev->slot || dev->slot != slot)
4488 continue;
4489 pci_dev_lock(dev);
4490 if (dev->subordinate)
4491 pci_bus_lock(dev->subordinate);
4492 }
4493}
4494
4495/* Unlock devices from the bottom of the tree up */
4496static void pci_slot_unlock(struct pci_slot *slot)
4497{
4498 struct pci_dev *dev;
4499
4500 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4501 if (!dev->slot || dev->slot != slot)
4502 continue;
4503 if (dev->subordinate)
4504 pci_bus_unlock(dev->subordinate);
4505 pci_dev_unlock(dev);
4506 }
4507}
4508
61cf16d8
AW
4509/* Return 1 on successful lock, 0 on contention */
4510static int pci_slot_trylock(struct pci_slot *slot)
4511{
4512 struct pci_dev *dev;
4513
4514 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4515 if (!dev->slot || dev->slot != slot)
4516 continue;
4517 if (!pci_dev_trylock(dev))
4518 goto unlock;
4519 if (dev->subordinate) {
4520 if (!pci_bus_trylock(dev->subordinate)) {
4521 pci_dev_unlock(dev);
4522 goto unlock;
4523 }
4524 }
4525 }
4526 return 1;
4527
4528unlock:
4529 list_for_each_entry_continue_reverse(dev,
4530 &slot->bus->devices, bus_list) {
4531 if (!dev->slot || dev->slot != slot)
4532 continue;
4533 if (dev->subordinate)
4534 pci_bus_unlock(dev->subordinate);
4535 pci_dev_unlock(dev);
4536 }
4537 return 0;
4538}
4539
090a3c53
AW
4540/* Save and disable devices from the top of the tree down */
4541static void pci_bus_save_and_disable(struct pci_bus *bus)
4542{
4543 struct pci_dev *dev;
4544
4545 list_for_each_entry(dev, &bus->devices, bus_list) {
b014e96d 4546 pci_dev_lock(dev);
090a3c53 4547 pci_dev_save_and_disable(dev);
b014e96d 4548 pci_dev_unlock(dev);
090a3c53
AW
4549 if (dev->subordinate)
4550 pci_bus_save_and_disable(dev->subordinate);
4551 }
4552}
4553
4554/*
4555 * Restore devices from top of the tree down - parent bridges need to be
4556 * restored before we can get to subordinate devices.
4557 */
4558static void pci_bus_restore(struct pci_bus *bus)
4559{
4560 struct pci_dev *dev;
4561
4562 list_for_each_entry(dev, &bus->devices, bus_list) {
b014e96d 4563 pci_dev_lock(dev);
090a3c53 4564 pci_dev_restore(dev);
b014e96d 4565 pci_dev_unlock(dev);
090a3c53
AW
4566 if (dev->subordinate)
4567 pci_bus_restore(dev->subordinate);
4568 }
4569}
4570
4571/* Save and disable devices from the top of the tree down */
4572static void pci_slot_save_and_disable(struct pci_slot *slot)
4573{
4574 struct pci_dev *dev;
4575
4576 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4577 if (!dev->slot || dev->slot != slot)
4578 continue;
4579 pci_dev_save_and_disable(dev);
4580 if (dev->subordinate)
4581 pci_bus_save_and_disable(dev->subordinate);
4582 }
4583}
4584
4585/*
4586 * Restore devices from top of the tree down - parent bridges need to be
4587 * restored before we can get to subordinate devices.
4588 */
4589static void pci_slot_restore(struct pci_slot *slot)
4590{
4591 struct pci_dev *dev;
4592
4593 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4594 if (!dev->slot || dev->slot != slot)
4595 continue;
4596 pci_dev_restore(dev);
4597 if (dev->subordinate)
4598 pci_bus_restore(dev->subordinate);
4599 }
4600}
4601
4602static int pci_slot_reset(struct pci_slot *slot, int probe)
4603{
4604 int rc;
4605
f331a859 4606 if (!slot || !pci_slot_resetable(slot))
090a3c53
AW
4607 return -ENOTTY;
4608
4609 if (!probe)
4610 pci_slot_lock(slot);
4611
4612 might_sleep();
4613
4614 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4615
4616 if (!probe)
4617 pci_slot_unlock(slot);
4618
4619 return rc;
4620}
4621
9a3d2b9b
AW
4622/**
4623 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4624 * @slot: PCI slot to probe
4625 *
4626 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4627 */
4628int pci_probe_reset_slot(struct pci_slot *slot)
4629{
4630 return pci_slot_reset(slot, 1);
4631}
4632EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4633
090a3c53
AW
4634/**
4635 * pci_reset_slot - reset a PCI slot
4636 * @slot: PCI slot to reset
4637 *
4638 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4639 * independent of other slots. For instance, some slots may support slot power
4640 * control. In the case of a 1:1 bus to slot architecture, this function may
4641 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4642 * Generally a slot reset should be attempted before a bus reset. All of the
4643 * function of the slot and any subordinate buses behind the slot are reset
4644 * through this function. PCI config space of all devices in the slot and
4645 * behind the slot is saved before and restored after reset.
4646 *
4647 * Return 0 on success, non-zero on error.
4648 */
4649int pci_reset_slot(struct pci_slot *slot)
4650{
4651 int rc;
4652
4653 rc = pci_slot_reset(slot, 1);
4654 if (rc)
4655 return rc;
4656
4657 pci_slot_save_and_disable(slot);
4658
4659 rc = pci_slot_reset(slot, 0);
4660
4661 pci_slot_restore(slot);
4662
4663 return rc;
4664}
4665EXPORT_SYMBOL_GPL(pci_reset_slot);
4666
61cf16d8
AW
4667/**
4668 * pci_try_reset_slot - Try to reset a PCI slot
4669 * @slot: PCI slot to reset
4670 *
4671 * Same as above except return -EAGAIN if the slot cannot be locked
4672 */
4673int pci_try_reset_slot(struct pci_slot *slot)
4674{
4675 int rc;
4676
4677 rc = pci_slot_reset(slot, 1);
4678 if (rc)
4679 return rc;
4680
4681 pci_slot_save_and_disable(slot);
4682
4683 if (pci_slot_trylock(slot)) {
4684 might_sleep();
4685 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4686 pci_slot_unlock(slot);
4687 } else
4688 rc = -EAGAIN;
4689
4690 pci_slot_restore(slot);
4691
4692 return rc;
4693}
4694EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4695
090a3c53
AW
4696static int pci_bus_reset(struct pci_bus *bus, int probe)
4697{
f331a859 4698 if (!bus->self || !pci_bus_resetable(bus))
090a3c53
AW
4699 return -ENOTTY;
4700
4701 if (probe)
4702 return 0;
4703
4704 pci_bus_lock(bus);
4705
4706 might_sleep();
4707
4708 pci_reset_bridge_secondary_bus(bus->self);
4709
4710 pci_bus_unlock(bus);
4711
4712 return 0;
4713}
4714
9a3d2b9b
AW
4715/**
4716 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4717 * @bus: PCI bus to probe
4718 *
4719 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4720 */
4721int pci_probe_reset_bus(struct pci_bus *bus)
4722{
4723 return pci_bus_reset(bus, 1);
4724}
4725EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4726
090a3c53
AW
4727/**
4728 * pci_reset_bus - reset a PCI bus
4729 * @bus: top level PCI bus to reset
4730 *
4731 * Do a bus reset on the given bus and any subordinate buses, saving
4732 * and restoring state of all devices.
4733 *
4734 * Return 0 on success, non-zero on error.
4735 */
4736int pci_reset_bus(struct pci_bus *bus)
4737{
4738 int rc;
4739
4740 rc = pci_bus_reset(bus, 1);
4741 if (rc)
4742 return rc;
4743
4744 pci_bus_save_and_disable(bus);
4745
4746 rc = pci_bus_reset(bus, 0);
4747
4748 pci_bus_restore(bus);
4749
4750 return rc;
4751}
4752EXPORT_SYMBOL_GPL(pci_reset_bus);
4753
61cf16d8
AW
4754/**
4755 * pci_try_reset_bus - Try to reset a PCI bus
4756 * @bus: top level PCI bus to reset
4757 *
4758 * Same as above except return -EAGAIN if the bus cannot be locked
4759 */
4760int pci_try_reset_bus(struct pci_bus *bus)
4761{
4762 int rc;
4763
4764 rc = pci_bus_reset(bus, 1);
4765 if (rc)
4766 return rc;
4767
4768 pci_bus_save_and_disable(bus);
4769
4770 if (pci_bus_trylock(bus)) {
4771 might_sleep();
4772 pci_reset_bridge_secondary_bus(bus->self);
4773 pci_bus_unlock(bus);
4774 } else
4775 rc = -EAGAIN;
4776
4777 pci_bus_restore(bus);
4778
4779 return rc;
4780}
4781EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4782
d556ad4b
PO
4783/**
4784 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4785 * @dev: PCI device to query
4786 *
4787 * Returns mmrbc: maximum designed memory read count in bytes
4788 * or appropriate error value.
4789 */
4790int pcix_get_max_mmrbc(struct pci_dev *dev)
4791{
7c9e2b1c 4792 int cap;
d556ad4b
PO
4793 u32 stat;
4794
4795 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4796 if (!cap)
4797 return -EINVAL;
4798
7c9e2b1c 4799 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
d556ad4b
PO
4800 return -EINVAL;
4801
25daeb55 4802 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
d556ad4b
PO
4803}
4804EXPORT_SYMBOL(pcix_get_max_mmrbc);
4805
4806/**
4807 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4808 * @dev: PCI device to query
4809 *
4810 * Returns mmrbc: maximum memory read count in bytes
4811 * or appropriate error value.
4812 */
4813int pcix_get_mmrbc(struct pci_dev *dev)
4814{
7c9e2b1c 4815 int cap;
bdc2bda7 4816 u16 cmd;
d556ad4b
PO
4817
4818 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4819 if (!cap)
4820 return -EINVAL;
4821
7c9e2b1c
DN
4822 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4823 return -EINVAL;
d556ad4b 4824
7c9e2b1c 4825 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
d556ad4b
PO
4826}
4827EXPORT_SYMBOL(pcix_get_mmrbc);
4828
4829/**
4830 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4831 * @dev: PCI device to query
4832 * @mmrbc: maximum memory read count in bytes
4833 * valid values are 512, 1024, 2048, 4096
4834 *
4835 * If possible sets maximum memory read byte count, some bridges have erratas
4836 * that prevent this.
4837 */
4838int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4839{
7c9e2b1c 4840 int cap;
bdc2bda7
DN
4841 u32 stat, v, o;
4842 u16 cmd;
d556ad4b 4843
229f5afd 4844 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
7c9e2b1c 4845 return -EINVAL;
d556ad4b
PO
4846
4847 v = ffs(mmrbc) - 10;
4848
4849 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4850 if (!cap)
7c9e2b1c 4851 return -EINVAL;
d556ad4b 4852
7c9e2b1c
DN
4853 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4854 return -EINVAL;
d556ad4b
PO
4855
4856 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4857 return -E2BIG;
4858
7c9e2b1c
DN
4859 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4860 return -EINVAL;
d556ad4b
PO
4861
4862 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4863 if (o != v) {
809a3bf9 4864 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
d556ad4b
PO
4865 return -EIO;
4866
4867 cmd &= ~PCI_X_CMD_MAX_READ;
4868 cmd |= v << 2;
7c9e2b1c
DN
4869 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4870 return -EIO;
d556ad4b 4871 }
7c9e2b1c 4872 return 0;
d556ad4b
PO
4873}
4874EXPORT_SYMBOL(pcix_set_mmrbc);
4875
4876/**
4877 * pcie_get_readrq - get PCI Express read request size
4878 * @dev: PCI device to query
4879 *
4880 * Returns maximum memory read request in bytes
4881 * or appropriate error value.
4882 */
4883int pcie_get_readrq(struct pci_dev *dev)
4884{
d556ad4b
PO
4885 u16 ctl;
4886
59875ae4 4887 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
d556ad4b 4888
59875ae4 4889 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
d556ad4b
PO
4890}
4891EXPORT_SYMBOL(pcie_get_readrq);
4892
4893/**
4894 * pcie_set_readrq - set PCI Express maximum memory read request
4895 * @dev: PCI device to query
42e61f4a 4896 * @rq: maximum memory read count in bytes
d556ad4b
PO
4897 * valid values are 128, 256, 512, 1024, 2048, 4096
4898 *
c9b378c7 4899 * If possible sets maximum memory read request in bytes
d556ad4b
PO
4900 */
4901int pcie_set_readrq(struct pci_dev *dev, int rq)
4902{
59875ae4 4903 u16 v;
d556ad4b 4904
229f5afd 4905 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
59875ae4 4906 return -EINVAL;
d556ad4b 4907
a1c473aa
BH
4908 /*
4909 * If using the "performance" PCIe config, we clamp the
4910 * read rq size to the max packet size to prevent the
4911 * host bridge generating requests larger than we can
4912 * cope with
4913 */
4914 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4915 int mps = pcie_get_mps(dev);
4916
a1c473aa
BH
4917 if (mps < rq)
4918 rq = mps;
4919 }
4920
4921 v = (ffs(rq) - 8) << 12;
d556ad4b 4922
59875ae4
JL
4923 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4924 PCI_EXP_DEVCTL_READRQ, v);
d556ad4b
PO
4925}
4926EXPORT_SYMBOL(pcie_set_readrq);
4927
b03e7495
JM
4928/**
4929 * pcie_get_mps - get PCI Express maximum payload size
4930 * @dev: PCI device to query
4931 *
4932 * Returns maximum payload size in bytes
b03e7495
JM
4933 */
4934int pcie_get_mps(struct pci_dev *dev)
4935{
b03e7495
JM
4936 u16 ctl;
4937
59875ae4 4938 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
b03e7495 4939
59875ae4 4940 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
b03e7495 4941}
f1c66c46 4942EXPORT_SYMBOL(pcie_get_mps);
b03e7495
JM
4943
4944/**
4945 * pcie_set_mps - set PCI Express maximum payload size
4946 * @dev: PCI device to query
47c08f31 4947 * @mps: maximum payload size in bytes
b03e7495
JM
4948 * valid values are 128, 256, 512, 1024, 2048, 4096
4949 *
4950 * If possible sets maximum payload size
4951 */
4952int pcie_set_mps(struct pci_dev *dev, int mps)
4953{
59875ae4 4954 u16 v;
b03e7495
JM
4955
4956 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
59875ae4 4957 return -EINVAL;
b03e7495
JM
4958
4959 v = ffs(mps) - 8;
f7625980 4960 if (v > dev->pcie_mpss)
59875ae4 4961 return -EINVAL;
b03e7495
JM
4962 v <<= 5;
4963
59875ae4
JL
4964 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4965 PCI_EXP_DEVCTL_PAYLOAD, v);
b03e7495 4966}
f1c66c46 4967EXPORT_SYMBOL(pcie_set_mps);
b03e7495 4968
81377c8d
JK
4969/**
4970 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4971 * @dev: PCI device to query
4972 * @speed: storage for minimum speed
4973 * @width: storage for minimum width
4974 *
4975 * This function will walk up the PCI device chain and determine the minimum
4976 * link width and speed of the device.
4977 */
4978int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4979 enum pcie_link_width *width)
4980{
4981 int ret;
4982
4983 *speed = PCI_SPEED_UNKNOWN;
4984 *width = PCIE_LNK_WIDTH_UNKNOWN;
4985
4986 while (dev) {
4987 u16 lnksta;
4988 enum pci_bus_speed next_speed;
4989 enum pcie_link_width next_width;
4990
4991 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4992 if (ret)
4993 return ret;
4994
4995 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4996 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4997 PCI_EXP_LNKSTA_NLW_SHIFT;
4998
4999 if (next_speed < *speed)
5000 *speed = next_speed;
5001
5002 if (next_width < *width)
5003 *width = next_width;
5004
5005 dev = dev->bus->self;
5006 }
5007
5008 return 0;
5009}
5010EXPORT_SYMBOL(pcie_get_minimum_link);
5011
c87deff7
HS
5012/**
5013 * pci_select_bars - Make BAR mask from the type of resource
f95d882d 5014 * @dev: the PCI device for which BAR mask is made
c87deff7
HS
5015 * @flags: resource type mask to be selected
5016 *
5017 * This helper routine makes bar mask from the type of resource.
5018 */
5019int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5020{
5021 int i, bars = 0;
5022 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5023 if (pci_resource_flags(dev, i) & flags)
5024 bars |= (1 << i);
5025 return bars;
5026}
b7fe9434 5027EXPORT_SYMBOL(pci_select_bars);
c87deff7 5028
95a8b6ef
MT
5029/* Some architectures require additional programming to enable VGA */
5030static arch_set_vga_state_t arch_set_vga_state;
5031
5032void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5033{
5034 arch_set_vga_state = func; /* NULL disables */
5035}
5036
5037static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3c78bc61 5038 unsigned int command_bits, u32 flags)
95a8b6ef
MT
5039{
5040 if (arch_set_vga_state)
5041 return arch_set_vga_state(dev, decode, command_bits,
7ad35cf2 5042 flags);
95a8b6ef
MT
5043 return 0;
5044}
5045
deb2d2ec
BH
5046/**
5047 * pci_set_vga_state - set VGA decode state on device and parents if requested
19eea630
RD
5048 * @dev: the PCI device
5049 * @decode: true = enable decoding, false = disable decoding
5050 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3f37d622 5051 * @flags: traverse ancestors and change bridges
3448a19d 5052 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
deb2d2ec
BH
5053 */
5054int pci_set_vga_state(struct pci_dev *dev, bool decode,
3448a19d 5055 unsigned int command_bits, u32 flags)
deb2d2ec
BH
5056{
5057 struct pci_bus *bus;
5058 struct pci_dev *bridge;
5059 u16 cmd;
95a8b6ef 5060 int rc;
deb2d2ec 5061
67ebd814 5062 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
deb2d2ec 5063
95a8b6ef 5064 /* ARCH specific VGA enables */
3448a19d 5065 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
95a8b6ef
MT
5066 if (rc)
5067 return rc;
5068
3448a19d
DA
5069 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5070 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5071 if (decode == true)
5072 cmd |= command_bits;
5073 else
5074 cmd &= ~command_bits;
5075 pci_write_config_word(dev, PCI_COMMAND, cmd);
5076 }
deb2d2ec 5077
3448a19d 5078 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
deb2d2ec
BH
5079 return 0;
5080
5081 bus = dev->bus;
5082 while (bus) {
5083 bridge = bus->self;
5084 if (bridge) {
5085 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5086 &cmd);
5087 if (decode == true)
5088 cmd |= PCI_BRIDGE_CTL_VGA;
5089 else
5090 cmd &= ~PCI_BRIDGE_CTL_VGA;
5091 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5092 cmd);
5093 }
5094 bus = bus->parent;
5095 }
5096 return 0;
5097}
5098
f0af9593
BH
5099/**
5100 * pci_add_dma_alias - Add a DMA devfn alias for a device
5101 * @dev: the PCI device for which alias is added
5102 * @devfn: alias slot and function
5103 *
5104 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5105 * It should be called early, preferably as PCI fixup header quirk.
5106 */
5107void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5108{
338c3149
JL
5109 if (!dev->dma_alias_mask)
5110 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5111 sizeof(long), GFP_KERNEL);
5112 if (!dev->dma_alias_mask) {
5113 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5114 return;
5115 }
5116
5117 set_bit(devfn, dev->dma_alias_mask);
48c83080
BH
5118 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5119 PCI_SLOT(devfn), PCI_FUNC(devfn));
f0af9593
BH
5120}
5121
338c3149
JL
5122bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5123{
5124 return (dev1->dma_alias_mask &&
5125 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5126 (dev2->dma_alias_mask &&
5127 test_bit(dev1->devfn, dev2->dma_alias_mask));
5128}
5129
8496e85c
RW
5130bool pci_device_is_present(struct pci_dev *pdev)
5131{
5132 u32 v;
5133
fe2bd75b
KB
5134 if (pci_dev_is_disconnected(pdev))
5135 return false;
8496e85c
RW
5136 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5137}
5138EXPORT_SYMBOL_GPL(pci_device_is_present);
5139
08249651
RW
5140void pci_ignore_hotplug(struct pci_dev *dev)
5141{
5142 struct pci_dev *bridge = dev->bus->self;
5143
5144 dev->ignore_hotplug = 1;
5145 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5146 if (bridge)
5147 bridge->ignore_hotplug = 1;
5148}
5149EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5150
0a701aa6
YX
5151resource_size_t __weak pcibios_default_alignment(void)
5152{
5153 return 0;
5154}
5155
32a9a682
YS
5156#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5157static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
e9d1e492 5158static DEFINE_SPINLOCK(resource_alignment_lock);
32a9a682
YS
5159
5160/**
5161 * pci_specified_resource_alignment - get resource alignment specified by user.
5162 * @dev: the PCI device to get
e3adec72 5163 * @resize: whether or not to change resources' size when reassigning alignment
32a9a682
YS
5164 *
5165 * RETURNS: Resource alignment if it is specified.
5166 * Zero if it is not specified.
5167 */
e3adec72
YX
5168static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5169 bool *resize)
32a9a682
YS
5170{
5171 int seg, bus, slot, func, align_order, count;
644a544f 5172 unsigned short vendor, device, subsystem_vendor, subsystem_device;
0a701aa6 5173 resource_size_t align = pcibios_default_alignment();
32a9a682
YS
5174 char *p;
5175
5176 spin_lock(&resource_alignment_lock);
5177 p = resource_alignment_param;
0a701aa6 5178 if (!*p && !align)
f0b99f70
YX
5179 goto out;
5180 if (pci_has_flag(PCI_PROBE_ONLY)) {
0a701aa6 5181 align = 0;
f0b99f70
YX
5182 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5183 goto out;
5184 }
5185
32a9a682
YS
5186 while (*p) {
5187 count = 0;
5188 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5189 p[count] == '@') {
5190 p += count + 1;
5191 } else {
5192 align_order = -1;
5193 }
644a544f
KMEE
5194 if (strncmp(p, "pci:", 4) == 0) {
5195 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5196 p += 4;
5197 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5198 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5199 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5200 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5201 p);
5202 break;
5203 }
5204 subsystem_vendor = subsystem_device = 0;
5205 }
5206 p += count;
5207 if ((!vendor || (vendor == dev->vendor)) &&
5208 (!device || (device == dev->device)) &&
5209 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5210 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
e3adec72 5211 *resize = true;
644a544f
KMEE
5212 if (align_order == -1)
5213 align = PAGE_SIZE;
5214 else
5215 align = 1 << align_order;
5216 /* Found */
32a9a682
YS
5217 break;
5218 }
5219 }
644a544f
KMEE
5220 else {
5221 if (sscanf(p, "%x:%x:%x.%x%n",
5222 &seg, &bus, &slot, &func, &count) != 4) {
5223 seg = 0;
5224 if (sscanf(p, "%x:%x.%x%n",
5225 &bus, &slot, &func, &count) != 3) {
5226 /* Invalid format */
5227 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5228 p);
5229 break;
5230 }
5231 }
5232 p += count;
5233 if (seg == pci_domain_nr(dev->bus) &&
5234 bus == dev->bus->number &&
5235 slot == PCI_SLOT(dev->devfn) &&
5236 func == PCI_FUNC(dev->devfn)) {
e3adec72 5237 *resize = true;
644a544f
KMEE
5238 if (align_order == -1)
5239 align = PAGE_SIZE;
5240 else
5241 align = 1 << align_order;
5242 /* Found */
5243 break;
5244 }
32a9a682
YS
5245 }
5246 if (*p != ';' && *p != ',') {
5247 /* End of param or invalid format */
5248 break;
5249 }
5250 p++;
5251 }
f0b99f70 5252out:
32a9a682
YS
5253 spin_unlock(&resource_alignment_lock);
5254 return align;
5255}
5256
81a5e70e 5257static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
e3adec72 5258 resource_size_t align, bool resize)
81a5e70e
BH
5259{
5260 struct resource *r = &dev->resource[bar];
5261 resource_size_t size;
5262
5263 if (!(r->flags & IORESOURCE_MEM))
5264 return;
5265
5266 if (r->flags & IORESOURCE_PCI_FIXED) {
5267 dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5268 bar, r, (unsigned long long)align);
5269 return;
5270 }
5271
5272 size = resource_size(r);
0dde1c08
BH
5273 if (size >= align)
5274 return;
81a5e70e 5275
0dde1c08 5276 /*
e3adec72
YX
5277 * Increase the alignment of the resource. There are two ways we
5278 * can do this:
0dde1c08 5279 *
e3adec72
YX
5280 * 1) Increase the size of the resource. BARs are aligned on their
5281 * size, so when we reallocate space for this resource, we'll
5282 * allocate it with the larger alignment. This also prevents
5283 * assignment of any other BARs inside the alignment region, so
5284 * if we're requesting page alignment, this means no other BARs
5285 * will share the page.
5286 *
5287 * The disadvantage is that this makes the resource larger than
5288 * the hardware BAR, which may break drivers that compute things
5289 * based on the resource size, e.g., to find registers at a
5290 * fixed offset before the end of the BAR.
5291 *
5292 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5293 * set r->start to the desired alignment. By itself this
5294 * doesn't prevent other BARs being put inside the alignment
5295 * region, but if we realign *every* resource of every device in
5296 * the system, none of them will share an alignment region.
5297 *
5298 * When the user has requested alignment for only some devices via
5299 * the "pci=resource_alignment" argument, "resize" is true and we
5300 * use the first method. Otherwise we assume we're aligning all
5301 * devices and we use the second.
0dde1c08 5302 */
e3adec72 5303
0dde1c08
BH
5304 dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n",
5305 bar, r, (unsigned long long)align);
81a5e70e 5306
e3adec72
YX
5307 if (resize) {
5308 r->start = 0;
5309 r->end = align - 1;
5310 } else {
5311 r->flags &= ~IORESOURCE_SIZEALIGN;
5312 r->flags |= IORESOURCE_STARTALIGN;
5313 r->start = align;
5314 r->end = r->start + size - 1;
5315 }
0dde1c08 5316 r->flags |= IORESOURCE_UNSET;
81a5e70e
BH
5317}
5318
2069ecfb
YL
5319/*
5320 * This function disables memory decoding and releases memory resources
5321 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5322 * It also rounds up size to specified alignment.
5323 * Later on, the kernel will assign page-aligned memory resource back
5324 * to the device.
5325 */
5326void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5327{
5328 int i;
5329 struct resource *r;
81a5e70e 5330 resource_size_t align;
2069ecfb 5331 u16 command;
e3adec72 5332 bool resize = false;
2069ecfb 5333
62d9a78f
YX
5334 /*
5335 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5336 * 3.4.1.11. Their resources are allocated from the space
5337 * described by the VF BARx register in the PF's SR-IOV capability.
5338 * We can't influence their alignment here.
5339 */
5340 if (dev->is_virtfn)
5341 return;
5342
10c463a7 5343 /* check if specified PCI is target device to reassign */
e3adec72 5344 align = pci_specified_resource_alignment(dev, &resize);
10c463a7 5345 if (!align)
2069ecfb
YL
5346 return;
5347
5348 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5349 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5350 dev_warn(&dev->dev,
5351 "Can't reassign resources to host bridge.\n");
5352 return;
5353 }
5354
5355 dev_info(&dev->dev,
5356 "Disabling memory decoding and releasing memory resources.\n");
5357 pci_read_config_word(dev, PCI_COMMAND, &command);
5358 command &= ~PCI_COMMAND_MEMORY;
5359 pci_write_config_word(dev, PCI_COMMAND, command);
5360
81a5e70e 5361 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
e3adec72 5362 pci_request_resource_alignment(dev, i, align, resize);
f0b99f70 5363
81a5e70e
BH
5364 /*
5365 * Need to disable bridge's resource window,
2069ecfb
YL
5366 * to enable the kernel to reassign new resource
5367 * window later on.
5368 */
5369 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5370 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5371 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5372 r = &dev->resource[i];
5373 if (!(r->flags & IORESOURCE_MEM))
5374 continue;
bd064f0a 5375 r->flags |= IORESOURCE_UNSET;
2069ecfb
YL
5376 r->end = resource_size(r) - 1;
5377 r->start = 0;
5378 }
5379 pci_disable_bridge_window(dev);
5380 }
5381}
5382
9738abed 5383static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
32a9a682
YS
5384{
5385 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5386 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5387 spin_lock(&resource_alignment_lock);
5388 strncpy(resource_alignment_param, buf, count);
5389 resource_alignment_param[count] = '\0';
5390 spin_unlock(&resource_alignment_lock);
5391 return count;
5392}
5393
9738abed 5394static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
32a9a682
YS
5395{
5396 size_t count;
5397 spin_lock(&resource_alignment_lock);
5398 count = snprintf(buf, size, "%s", resource_alignment_param);
5399 spin_unlock(&resource_alignment_lock);
5400 return count;
5401}
5402
5403static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5404{
5405 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5406}
5407
5408static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5409 const char *buf, size_t count)
5410{
5411 return pci_set_resource_alignment_param(buf, count);
5412}
5413
21751a9a 5414static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
32a9a682
YS
5415 pci_resource_alignment_store);
5416
5417static int __init pci_resource_alignment_sysfs_init(void)
5418{
5419 return bus_create_file(&pci_bus_type,
5420 &bus_attr_resource_alignment);
5421}
32a9a682
YS
5422late_initcall(pci_resource_alignment_sysfs_init);
5423
15856ad5 5424static void pci_no_domains(void)
32a2eea7
JG
5425{
5426#ifdef CONFIG_PCI_DOMAINS
5427 pci_domains_supported = 0;
5428#endif
5429}
5430
41e5c0f8
LD
5431#ifdef CONFIG_PCI_DOMAINS
5432static atomic_t __domain_nr = ATOMIC_INIT(-1);
5433
5434int pci_get_new_domain_nr(void)
5435{
5436 return atomic_inc_return(&__domain_nr);
5437}
7c674700
LP
5438
5439#ifdef CONFIG_PCI_DOMAINS_GENERIC
1a4f93f7 5440static int of_pci_bus_find_domain_nr(struct device *parent)
7c674700
LP
5441{
5442 static int use_dt_domains = -1;
54c6e2dd 5443 int domain = -1;
7c674700 5444
54c6e2dd
KHC
5445 if (parent)
5446 domain = of_get_pci_domain_nr(parent->of_node);
7c674700
LP
5447 /*
5448 * Check DT domain and use_dt_domains values.
5449 *
5450 * If DT domain property is valid (domain >= 0) and
5451 * use_dt_domains != 0, the DT assignment is valid since this means
5452 * we have not previously allocated a domain number by using
5453 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5454 * 1, to indicate that we have just assigned a domain number from
5455 * DT.
5456 *
5457 * If DT domain property value is not valid (ie domain < 0), and we
5458 * have not previously assigned a domain number from DT
5459 * (use_dt_domains != 1) we should assign a domain number by
5460 * using the:
5461 *
5462 * pci_get_new_domain_nr()
5463 *
5464 * API and update the use_dt_domains value to keep track of method we
5465 * are using to assign domain numbers (use_dt_domains = 0).
5466 *
5467 * All other combinations imply we have a platform that is trying
5468 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5469 * which is a recipe for domain mishandling and it is prevented by
5470 * invalidating the domain value (domain = -1) and printing a
5471 * corresponding error.
5472 */
5473 if (domain >= 0 && use_dt_domains) {
5474 use_dt_domains = 1;
5475 } else if (domain < 0 && use_dt_domains != 1) {
5476 use_dt_domains = 0;
5477 domain = pci_get_new_domain_nr();
5478 } else {
b63773a8
RH
5479 dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n",
5480 parent->of_node);
7c674700
LP
5481 domain = -1;
5482 }
5483
9c7cb891 5484 return domain;
7c674700 5485}
1a4f93f7
TN
5486
5487int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5488{
2ab51dde
TN
5489 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5490 acpi_pci_bus_find_domain_nr(bus);
7c674700
LP
5491}
5492#endif
41e5c0f8
LD
5493#endif
5494
0ef5f8f6 5495/**
642c92da 5496 * pci_ext_cfg_avail - can we access extended PCI config space?
0ef5f8f6
AP
5497 *
5498 * Returns 1 if we can access PCI extended config space (offsets
5499 * greater than 0xff). This is the default implementation. Architecture
5500 * implementations can override this.
5501 */
642c92da 5502int __weak pci_ext_cfg_avail(void)
0ef5f8f6
AP
5503{
5504 return 1;
5505}
5506
2d1c8618
BH
5507void __weak pci_fixup_cardbus(struct pci_bus *bus)
5508{
5509}
5510EXPORT_SYMBOL(pci_fixup_cardbus);
5511
ad04d31e 5512static int __init pci_setup(char *str)
1da177e4
LT
5513{
5514 while (str) {
5515 char *k = strchr(str, ',');
5516 if (k)
5517 *k++ = 0;
5518 if (*str && (str = pcibios_setup(str)) && *str) {
309e57df
MW
5519 if (!strcmp(str, "nomsi")) {
5520 pci_no_msi();
7f785763
RD
5521 } else if (!strcmp(str, "noaer")) {
5522 pci_no_aer();
b55438fd
YL
5523 } else if (!strncmp(str, "realloc=", 8)) {
5524 pci_realloc_get_opt(str + 8);
f483d392 5525 } else if (!strncmp(str, "realloc", 7)) {
b55438fd 5526 pci_realloc_get_opt("on");
32a2eea7
JG
5527 } else if (!strcmp(str, "nodomains")) {
5528 pci_no_domains();
6748dcc2
RW
5529 } else if (!strncmp(str, "noari", 5)) {
5530 pcie_ari_disabled = true;
4516a618
AN
5531 } else if (!strncmp(str, "cbiosize=", 9)) {
5532 pci_cardbus_io_size = memparse(str + 9, &str);
5533 } else if (!strncmp(str, "cbmemsize=", 10)) {
5534 pci_cardbus_mem_size = memparse(str + 10, &str);
32a9a682
YS
5535 } else if (!strncmp(str, "resource_alignment=", 19)) {
5536 pci_set_resource_alignment_param(str + 19,
5537 strlen(str + 19));
43c16408
AP
5538 } else if (!strncmp(str, "ecrc=", 5)) {
5539 pcie_ecrc_get_policy(str + 5);
28760489
EB
5540 } else if (!strncmp(str, "hpiosize=", 9)) {
5541 pci_hotplug_io_size = memparse(str + 9, &str);
5542 } else if (!strncmp(str, "hpmemsize=", 10)) {
5543 pci_hotplug_mem_size = memparse(str + 10, &str);
e16b4660
KB
5544 } else if (!strncmp(str, "hpbussize=", 10)) {
5545 pci_hotplug_bus_size =
5546 simple_strtoul(str + 10, &str, 0);
5547 if (pci_hotplug_bus_size > 0xff)
5548 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5f39e670
JM
5549 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5550 pcie_bus_config = PCIE_BUS_TUNE_OFF;
b03e7495
JM
5551 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5552 pcie_bus_config = PCIE_BUS_SAFE;
5553 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5554 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5f39e670
JM
5555 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5556 pcie_bus_config = PCIE_BUS_PEER2PEER;
284f5f9d
BH
5557 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5558 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
309e57df
MW
5559 } else {
5560 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5561 str);
5562 }
1da177e4
LT
5563 }
5564 str = k;
5565 }
0637a70a 5566 return 0;
1da177e4 5567}
0637a70a 5568early_param("pci", pci_setup);