]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/pci/pci.c
clk: renesas: Add CPG core wrapper for RZ/G2L SoC
[mirror_ubuntu-jammy-kernel.git] / drivers / pci / pci.c
CommitLineData
7328c8f4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
df62ab5e 3 * PCI Bus Services, see include/linux/pci.h for further explanation.
1da177e4 4 *
df62ab5e
BH
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
1da177e4 7 *
df62ab5e 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
1da177e4
LT
9 */
10
2ab51dde 11#include <linux/acpi.h>
1da177e4
LT
12#include <linux/kernel.h>
13#include <linux/delay.h>
9d26d3a8 14#include <linux/dmi.h>
1da177e4 15#include <linux/init.h>
bbd8810d 16#include <linux/msi.h>
7c674700 17#include <linux/of.h>
1da177e4 18#include <linux/pci.h>
075c1771 19#include <linux/pm.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/module.h>
22#include <linux/spinlock.h>
4e57b681 23#include <linux/string.h>
229f5afd 24#include <linux/log2.h>
5745392e 25#include <linux/logic_pio.h>
c300bd2f 26#include <linux/pm_wakeup.h>
8dd7f803 27#include <linux/interrupt.h>
32a9a682 28#include <linux/device.h>
b67ea761 29#include <linux/pm_runtime.h>
608c3881 30#include <linux/pci_hotplug.h>
4d3f1384 31#include <linux/vmalloc.h>
2a2aca31 32#include <asm/dma.h>
b07461a8 33#include <linux/aer.h>
bc56b9e0 34#include "pci.h"
1da177e4 35
c4eed62a
KB
36DEFINE_MUTEX(pci_slot_mutex);
37
00240c38
AS
38const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40};
41EXPORT_SYMBOL_GPL(pci_power_names);
42
93177a74
RW
43int isa_dma_bridge_buggy;
44EXPORT_SYMBOL(isa_dma_bridge_buggy);
45
46int pci_pci_problems;
47EXPORT_SYMBOL(pci_pci_problems);
48
3789af9a 49unsigned int pci_pm_d3hot_delay;
1ae861e6 50
df17e62e
MG
51static void pci_pme_list_scan(struct work_struct *work);
52
53static LIST_HEAD(pci_pme_list);
54static DEFINE_MUTEX(pci_pme_list_mutex);
55static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56
57struct pci_pme_device {
58 struct list_head list;
59 struct pci_dev *dev;
60};
61
62#define PME_TIMEOUT 1000 /* How long between PME checks */
63
1ae861e6
RW
64static void pci_dev_d3_sleep(struct pci_dev *dev)
65{
3789af9a 66 unsigned int delay = dev->d3hot_delay;
1ae861e6 67
3789af9a
KW
68 if (delay < pci_pm_d3hot_delay)
69 delay = pci_pm_d3hot_delay;
1ae861e6 70
50b2b540
AH
71 if (delay)
72 msleep(delay);
1ae861e6 73}
1da177e4 74
32a2eea7
JG
75#ifdef CONFIG_PCI_DOMAINS
76int pci_domains_supported = 1;
77#endif
78
4516a618
AN
79#define DEFAULT_CARDBUS_IO_SIZE (256)
80#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
81/* pci=cbmemsize=nnM,cbiosize=nn can override this */
82unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84
28760489 85#define DEFAULT_HOTPLUG_IO_SIZE (256)
d7b8a217
NJ
86#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
87#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
88/* hpiosize=nn can override this */
28760489 89unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
d7b8a217
NJ
90/*
91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
93 * pci=hpmemsize=nnM overrides both
94 */
95unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
96unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
28760489 97
e16b4660
KB
98#define DEFAULT_HOTPLUG_BUS_SIZE 1
99unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
100
b0e85c3c
JQ
101
102/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
103#ifdef CONFIG_PCIE_BUS_TUNE_OFF
104enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
105#elif defined CONFIG_PCIE_BUS_SAFE
106enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
107#elif defined CONFIG_PCIE_BUS_PERFORMANCE
108enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
109#elif defined CONFIG_PCIE_BUS_PEER2PEER
110enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
111#else
27d868b5 112enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
b0e85c3c 113#endif
b03e7495 114
ac1aa47b
JB
115/*
116 * The default CLS is used if arch didn't set CLS explicitly and not
117 * all pci devices agree on the same value. Arch can override either
118 * the dfl or actual value as it sees fit. Don't forget this is
119 * measured in 32-bit words, not bytes.
120 */
15856ad5 121u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
ac1aa47b
JB
122u8 pci_cache_line_size;
123
96c55900
MS
124/*
125 * If we set up a device for bus mastering, we need to check the latency
126 * timer as certain BIOSes forget to set it properly.
127 */
128unsigned int pcibios_max_latency = 255;
129
6748dcc2
RW
130/* If set, the PCIe ARI capability will not be used. */
131static bool pcie_ari_disabled;
132
cef74409
GK
133/* If set, the PCIe ATS capability will not be used. */
134static bool pcie_ats_disabled;
135
11eb0e0e
SK
136/* If set, the PCI config space of each device is printed during boot. */
137bool pci_early_dump;
138
cef74409
GK
139bool pci_ats_disabled(void)
140{
141 return pcie_ats_disabled;
142}
1a373a78 143EXPORT_SYMBOL_GPL(pci_ats_disabled);
cef74409 144
9d26d3a8
MW
145/* Disable bridge_d3 for all PCIe ports */
146static bool pci_bridge_d3_disable;
147/* Force bridge_d3 for all PCIe ports */
148static bool pci_bridge_d3_force;
149
150static int __init pcie_port_pm_setup(char *str)
151{
152 if (!strcmp(str, "off"))
153 pci_bridge_d3_disable = true;
154 else if (!strcmp(str, "force"))
155 pci_bridge_d3_force = true;
156 return 1;
157}
158__setup("pcie_port_pm=", pcie_port_pm_setup);
159
a2758b6b
SK
160/* Time to wait after a reset for device to become responsive */
161#define PCIE_RESET_READY_POLL_MS 60000
162
1da177e4
LT
163/**
164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
165 * @bus: pointer to PCI bus structure to search
166 *
167 * Given a PCI bus, returns the highest PCI bus number present in the set
168 * including the given PCI bus and its list of child PCI buses.
169 */
07656d83 170unsigned char pci_bus_max_busnr(struct pci_bus *bus)
1da177e4 171{
94e6a9b9 172 struct pci_bus *tmp;
1da177e4
LT
173 unsigned char max, n;
174
b918c62e 175 max = bus->busn_res.end;
94e6a9b9
YW
176 list_for_each_entry(tmp, &bus->children, node) {
177 n = pci_bus_max_busnr(tmp);
3c78bc61 178 if (n > max)
1da177e4
LT
179 max = n;
180 }
181 return max;
182}
b82db5ce 183EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
1da177e4 184
ec5d9e87
HK
185/**
186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
187 * @pdev: the PCI device
188 *
189 * Returns error bits set in PCI_STATUS and clears them.
190 */
191int pci_status_get_and_clear_errors(struct pci_dev *pdev)
192{
193 u16 status;
194 int ret;
195
196 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
197 if (ret != PCIBIOS_SUCCESSFUL)
198 return -EIO;
199
200 status &= PCI_STATUS_ERROR_BITS;
201 if (status)
202 pci_write_config_word(pdev, PCI_STATUS, status);
203
204 return status;
205}
206EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
207
1684f5dd
AM
208#ifdef CONFIG_HAS_IOMEM
209void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
210{
1f7bf3bf
BH
211 struct resource *res = &pdev->resource[bar];
212
1684f5dd
AM
213 /*
214 * Make sure the BAR is actually a memory resource, not an IO resource
215 */
646c0282 216 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
7506dc79 217 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
1684f5dd
AM
218 return NULL;
219 }
4bdc0d67 220 return ioremap(res->start, resource_size(res));
1684f5dd
AM
221}
222EXPORT_SYMBOL_GPL(pci_ioremap_bar);
c43996f4
LR
223
224void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
225{
226 /*
227 * Make sure the BAR is actually a memory resource, not an IO resource
228 */
229 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
230 WARN_ON(1);
231 return NULL;
232 }
233 return ioremap_wc(pci_resource_start(pdev, bar),
234 pci_resource_len(pdev, bar));
235}
236EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
1684f5dd
AM
237#endif
238
45db3370
LG
239/**
240 * pci_dev_str_match_path - test if a path string matches a device
74356add
BH
241 * @dev: the PCI device to test
242 * @path: string to match the device against
45db3370
LG
243 * @endptr: pointer to the string after the match
244 *
245 * Test if a string (typically from a kernel parameter) formatted as a
246 * path of device/function addresses matches a PCI device. The string must
247 * be of the form:
248 *
249 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
250 *
251 * A path for a device can be obtained using 'lspci -t'. Using a path
252 * is more robust against bus renumbering than using only a single bus,
253 * device and function address.
254 *
255 * Returns 1 if the string matches the device, 0 if it does not and
256 * a negative error code if it fails to parse the string.
257 */
258static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
259 const char **endptr)
260{
261 int ret;
262 int seg, bus, slot, func;
263 char *wpath, *p;
264 char end;
265
266 *endptr = strchrnul(path, ';');
267
268 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
269 if (!wpath)
270 return -ENOMEM;
271
272 while (1) {
273 p = strrchr(wpath, '/');
274 if (!p)
275 break;
276 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
277 if (ret != 2) {
278 ret = -EINVAL;
279 goto free_and_exit;
280 }
281
282 if (dev->devfn != PCI_DEVFN(slot, func)) {
283 ret = 0;
284 goto free_and_exit;
285 }
286
287 /*
288 * Note: we don't need to get a reference to the upstream
289 * bridge because we hold a reference to the top level
290 * device which should hold a reference to the bridge,
291 * and so on.
292 */
293 dev = pci_upstream_bridge(dev);
294 if (!dev) {
295 ret = 0;
296 goto free_and_exit;
297 }
298
299 *p = 0;
300 }
301
302 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
303 &func, &end);
304 if (ret != 4) {
305 seg = 0;
306 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
307 if (ret != 3) {
308 ret = -EINVAL;
309 goto free_and_exit;
310 }
311 }
312
313 ret = (seg == pci_domain_nr(dev->bus) &&
314 bus == dev->bus->number &&
315 dev->devfn == PCI_DEVFN(slot, func));
316
317free_and_exit:
318 kfree(wpath);
319 return ret;
320}
321
07d8d7e5
LG
322/**
323 * pci_dev_str_match - test if a string matches a device
74356add
BH
324 * @dev: the PCI device to test
325 * @p: string to match the device against
07d8d7e5
LG
326 * @endptr: pointer to the string after the match
327 *
328 * Test if a string (typically from a kernel parameter) matches a specified
329 * PCI device. The string may be of one of the following formats:
330 *
45db3370 331 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
07d8d7e5
LG
332 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
333 *
334 * The first format specifies a PCI bus/device/function address which
335 * may change if new hardware is inserted, if motherboard firmware changes,
336 * or due to changes caused in kernel parameters. If the domain is
45db3370
LG
337 * left unspecified, it is taken to be 0. In order to be robust against
338 * bus renumbering issues, a path of PCI device/function numbers may be used
339 * to address the specific device. The path for a device can be determined
340 * through the use of 'lspci -t'.
07d8d7e5
LG
341 *
342 * The second format matches devices using IDs in the configuration
343 * space which may match multiple devices in the system. A value of 0
344 * for any field will match all devices. (Note: this differs from
345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
346 * legacy reasons and convenience so users don't have to specify
347 * FFFFFFFFs on the command line.)
348 *
349 * Returns 1 if the string matches the device, 0 if it does not and
350 * a negative error code if the string cannot be parsed.
351 */
352static int pci_dev_str_match(struct pci_dev *dev, const char *p,
353 const char **endptr)
354{
355 int ret;
45db3370 356 int count;
07d8d7e5
LG
357 unsigned short vendor, device, subsystem_vendor, subsystem_device;
358
359 if (strncmp(p, "pci:", 4) == 0) {
360 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
361 p += 4;
362 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
363 &subsystem_vendor, &subsystem_device, &count);
364 if (ret != 4) {
365 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
366 if (ret != 2)
367 return -EINVAL;
368
369 subsystem_vendor = 0;
370 subsystem_device = 0;
371 }
372
373 p += count;
374
375 if ((!vendor || vendor == dev->vendor) &&
376 (!device || device == dev->device) &&
377 (!subsystem_vendor ||
378 subsystem_vendor == dev->subsystem_vendor) &&
379 (!subsystem_device ||
380 subsystem_device == dev->subsystem_device))
381 goto found;
07d8d7e5 382 } else {
45db3370
LG
383 /*
384 * PCI Bus, Device, Function IDs are specified
74356add 385 * (optionally, may include a path of devfns following it)
45db3370
LG
386 */
387 ret = pci_dev_str_match_path(dev, p, &p);
388 if (ret < 0)
389 return ret;
390 else if (ret)
07d8d7e5
LG
391 goto found;
392 }
393
394 *endptr = p;
395 return 0;
396
397found:
398 *endptr = p;
399 return 1;
400}
687d5fe3 401
f646c2a0
PM
402static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
403 u8 pos, int cap, int *ttl)
24a4e377
RD
404{
405 u8 id;
55db3208
SS
406 u16 ent;
407
408 pci_bus_read_config_byte(bus, devfn, pos, &pos);
24a4e377 409
687d5fe3 410 while ((*ttl)--) {
24a4e377
RD
411 if (pos < 0x40)
412 break;
413 pos &= ~3;
55db3208
SS
414 pci_bus_read_config_word(bus, devfn, pos, &ent);
415
416 id = ent & 0xff;
24a4e377
RD
417 if (id == 0xff)
418 break;
419 if (id == cap)
420 return pos;
55db3208 421 pos = (ent >> 8);
24a4e377
RD
422 }
423 return 0;
424}
425
f646c2a0
PM
426static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
427 u8 pos, int cap)
687d5fe3
ME
428{
429 int ttl = PCI_FIND_CAP_TTL;
430
431 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
432}
433
f646c2a0 434u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
24a4e377
RD
435{
436 return __pci_find_next_cap(dev->bus, dev->devfn,
437 pos + PCI_CAP_LIST_NEXT, cap);
438}
439EXPORT_SYMBOL_GPL(pci_find_next_capability);
440
f646c2a0 441static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
d3bac118 442 unsigned int devfn, u8 hdr_type)
1da177e4
LT
443{
444 u16 status;
1da177e4
LT
445
446 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
447 if (!(status & PCI_STATUS_CAP_LIST))
448 return 0;
449
450 switch (hdr_type) {
451 case PCI_HEADER_TYPE_NORMAL:
452 case PCI_HEADER_TYPE_BRIDGE:
d3bac118 453 return PCI_CAPABILITY_LIST;
1da177e4 454 case PCI_HEADER_TYPE_CARDBUS:
d3bac118 455 return PCI_CB_CAPABILITY_LIST;
1da177e4 456 }
d3bac118
ME
457
458 return 0;
1da177e4
LT
459}
460
461/**
f7625980 462 * pci_find_capability - query for devices' capabilities
1da177e4
LT
463 * @dev: PCI device to query
464 * @cap: capability code
465 *
466 * Tell if a device supports a given PCI capability.
467 * Returns the address of the requested capability structure within the
468 * device's PCI configuration space or 0 in case the device does not
74356add 469 * support it. Possible values for @cap include:
1da177e4 470 *
f7625980
BH
471 * %PCI_CAP_ID_PM Power Management
472 * %PCI_CAP_ID_AGP Accelerated Graphics Port
473 * %PCI_CAP_ID_VPD Vital Product Data
474 * %PCI_CAP_ID_SLOTID Slot Identification
1da177e4 475 * %PCI_CAP_ID_MSI Message Signalled Interrupts
f7625980 476 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
1da177e4
LT
477 * %PCI_CAP_ID_PCIX PCI-X
478 * %PCI_CAP_ID_EXP PCI Express
479 */
f646c2a0 480u8 pci_find_capability(struct pci_dev *dev, int cap)
1da177e4 481{
f646c2a0 482 u8 pos;
d3bac118
ME
483
484 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
485 if (pos)
486 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
487
488 return pos;
1da177e4 489}
b7fe9434 490EXPORT_SYMBOL(pci_find_capability);
1da177e4
LT
491
492/**
f7625980 493 * pci_bus_find_capability - query for devices' capabilities
74356add 494 * @bus: the PCI bus to query
1da177e4 495 * @devfn: PCI device to query
74356add 496 * @cap: capability code
1da177e4 497 *
74356add 498 * Like pci_find_capability() but works for PCI devices that do not have a
f7625980 499 * pci_dev structure set up yet.
1da177e4
LT
500 *
501 * Returns the address of the requested capability structure within the
502 * device's PCI configuration space or 0 in case the device does not
503 * support it.
504 */
f646c2a0 505u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
1da177e4 506{
f646c2a0 507 u8 hdr_type, pos;
1da177e4
LT
508
509 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
510
d3bac118
ME
511 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
512 if (pos)
513 pos = __pci_find_next_cap(bus, devfn, pos, cap);
514
515 return pos;
1da177e4 516}
b7fe9434 517EXPORT_SYMBOL(pci_bus_find_capability);
1da177e4
LT
518
519/**
44a9a36f 520 * pci_find_next_ext_capability - Find an extended capability
1da177e4 521 * @dev: PCI device to query
44a9a36f 522 * @start: address at which to start looking (0 to start at beginning of list)
1da177e4
LT
523 * @cap: capability code
524 *
44a9a36f 525 * Returns the address of the next matching extended capability structure
1da177e4 526 * within the device's PCI configuration space or 0 if the device does
44a9a36f
BH
527 * not support it. Some capabilities can occur several times, e.g., the
528 * vendor-specific capability, and this provides a way to find them all.
1da177e4 529 */
ee8b1c47 530u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
1da177e4
LT
531{
532 u32 header;
557848c3 533 int ttl;
ee8b1c47 534 u16 pos = PCI_CFG_SPACE_SIZE;
1da177e4 535
557848c3
ZY
536 /* minimum 8 bytes per capability */
537 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
538
539 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
1da177e4
LT
540 return 0;
541
44a9a36f
BH
542 if (start)
543 pos = start;
544
1da177e4
LT
545 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
546 return 0;
547
548 /*
549 * If we have no capabilities, this is indicated by cap ID,
550 * cap version and next pointer all being 0.
551 */
552 if (header == 0)
553 return 0;
554
555 while (ttl-- > 0) {
44a9a36f 556 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
1da177e4
LT
557 return pos;
558
559 pos = PCI_EXT_CAP_NEXT(header);
557848c3 560 if (pos < PCI_CFG_SPACE_SIZE)
1da177e4
LT
561 break;
562
563 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
564 break;
565 }
566
567 return 0;
568}
44a9a36f
BH
569EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
570
571/**
572 * pci_find_ext_capability - Find an extended capability
573 * @dev: PCI device to query
574 * @cap: capability code
575 *
576 * Returns the address of the requested extended capability structure
577 * within the device's PCI configuration space or 0 if the device does
74356add 578 * not support it. Possible values for @cap include:
44a9a36f
BH
579 *
580 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
581 * %PCI_EXT_CAP_ID_VC Virtual Channel
582 * %PCI_EXT_CAP_ID_DSN Device Serial Number
583 * %PCI_EXT_CAP_ID_PWR Power Budgeting
584 */
ee8b1c47 585u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
44a9a36f
BH
586{
587 return pci_find_next_ext_capability(dev, 0, cap);
588}
3a720d72 589EXPORT_SYMBOL_GPL(pci_find_ext_capability);
1da177e4 590
70c0923b
JK
591/**
592 * pci_get_dsn - Read and return the 8-byte Device Serial Number
593 * @dev: PCI device to query
594 *
595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
596 * Number.
597 *
598 * Returns the DSN, or zero if the capability does not exist.
599 */
600u64 pci_get_dsn(struct pci_dev *dev)
601{
602 u32 dword;
603 u64 dsn;
604 int pos;
605
606 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
607 if (!pos)
608 return 0;
609
610 /*
611 * The Device Serial Number is two dwords offset 4 bytes from the
612 * capability position. The specification says that the first dword is
613 * the lower half, and the second dword is the upper half.
614 */
615 pos += 4;
616 pci_read_config_dword(dev, pos, &dword);
617 dsn = (u64)dword;
618 pci_read_config_dword(dev, pos + 4, &dword);
619 dsn |= ((u64)dword) << 32;
620
621 return dsn;
622}
623EXPORT_SYMBOL_GPL(pci_get_dsn);
624
f646c2a0 625static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
687d5fe3
ME
626{
627 int rc, ttl = PCI_FIND_CAP_TTL;
628 u8 cap, mask;
629
630 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
631 mask = HT_3BIT_CAP_MASK;
632 else
633 mask = HT_5BIT_CAP_MASK;
634
635 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
636 PCI_CAP_ID_HT, &ttl);
637 while (pos) {
638 rc = pci_read_config_byte(dev, pos + 3, &cap);
639 if (rc != PCIBIOS_SUCCESSFUL)
640 return 0;
641
642 if ((cap & mask) == ht_cap)
643 return pos;
644
47a4d5be
BG
645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
646 pos + PCI_CAP_LIST_NEXT,
687d5fe3
ME
647 PCI_CAP_ID_HT, &ttl);
648 }
649
650 return 0;
651}
f646c2a0 652
687d5fe3 653/**
f646c2a0 654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
687d5fe3
ME
655 * @dev: PCI device to query
656 * @pos: Position from which to continue searching
f646c2a0 657 * @ht_cap: HyperTransport capability code
687d5fe3
ME
658 *
659 * To be used in conjunction with pci_find_ht_capability() to search for
660 * all capabilities matching @ht_cap. @pos should always be a value returned
661 * from pci_find_ht_capability().
662 *
663 * NB. To be 100% safe against broken PCI devices, the caller should take
664 * steps to avoid an infinite loop.
665 */
f646c2a0 666u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
687d5fe3
ME
667{
668 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
669}
670EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
671
672/**
f646c2a0 673 * pci_find_ht_capability - query a device's HyperTransport capabilities
687d5fe3 674 * @dev: PCI device to query
f646c2a0 675 * @ht_cap: HyperTransport capability code
687d5fe3 676 *
f646c2a0 677 * Tell if a device supports a given HyperTransport capability.
687d5fe3
ME
678 * Returns an address within the device's PCI configuration space
679 * or 0 in case the device does not support the request capability.
680 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
f646c2a0 681 * which has a HyperTransport capability matching @ht_cap.
687d5fe3 682 */
f646c2a0 683u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
687d5fe3 684{
f646c2a0 685 u8 pos;
687d5fe3
ME
686
687 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
688 if (pos)
689 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
690
691 return pos;
692}
693EXPORT_SYMBOL_GPL(pci_find_ht_capability);
694
c124fd9a
GP
695/**
696 * pci_find_vsec_capability - Find a vendor-specific extended capability
697 * @dev: PCI device to query
698 * @vendor: Vendor ID for which capability is defined
699 * @cap: Vendor-specific capability ID
700 *
701 * If @dev has Vendor ID @vendor, search for a VSEC capability with
702 * VSEC ID @cap. If found, return the capability offset in
703 * config space; otherwise return 0.
704 */
705u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
706{
707 u16 vsec = 0;
708 u32 header;
709
710 if (vendor != dev->vendor)
711 return 0;
712
713 while ((vsec = pci_find_next_ext_capability(dev, vsec,
714 PCI_EXT_CAP_ID_VNDR))) {
715 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
716 &header) == PCIBIOS_SUCCESSFUL &&
717 PCI_VNDR_HEADER_ID(header) == cap)
718 return vsec;
719 }
720
721 return 0;
722}
723EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
724
1da177e4 725/**
74356add
BH
726 * pci_find_parent_resource - return resource region of parent bus of given
727 * region
1da177e4
LT
728 * @dev: PCI device structure contains resources to be searched
729 * @res: child resource record for which parent is sought
730 *
74356add
BH
731 * For given resource region of given device, return the resource region of
732 * parent bus the given region is contained in.
1da177e4 733 */
3c78bc61
RD
734struct resource *pci_find_parent_resource(const struct pci_dev *dev,
735 struct resource *res)
1da177e4
LT
736{
737 const struct pci_bus *bus = dev->bus;
f44116ae 738 struct resource *r;
1da177e4 739 int i;
1da177e4 740
89a74ecc 741 pci_bus_for_each_resource(bus, r, i) {
1da177e4
LT
742 if (!r)
743 continue;
31342330 744 if (resource_contains(r, res)) {
f44116ae
BH
745
746 /*
747 * If the window is prefetchable but the BAR is
748 * not, the allocator made a mistake.
749 */
750 if (r->flags & IORESOURCE_PREFETCH &&
751 !(res->flags & IORESOURCE_PREFETCH))
752 return NULL;
753
754 /*
755 * If we're below a transparent bridge, there may
756 * be both a positively-decoded aperture and a
757 * subtractively-decoded region that contain the BAR.
758 * We want the positively-decoded one, so this depends
759 * on pci_bus_for_each_resource() giving us those
760 * first.
761 */
762 return r;
763 }
1da177e4 764 }
f44116ae 765 return NULL;
1da177e4 766}
b7fe9434 767EXPORT_SYMBOL(pci_find_parent_resource);
1da177e4 768
afd29f90
MW
769/**
770 * pci_find_resource - Return matching PCI device resource
771 * @dev: PCI device to query
772 * @res: Resource to look for
773 *
774 * Goes over standard PCI resources (BARs) and checks if the given resource
775 * is partially or fully contained in any of them. In that case the
776 * matching resource is returned, %NULL otherwise.
777 */
778struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
779{
780 int i;
781
c9c13ba4 782 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
afd29f90
MW
783 struct resource *r = &dev->resource[i];
784
785 if (r->start && resource_contains(r, res))
786 return r;
787 }
788
789 return NULL;
790}
791EXPORT_SYMBOL(pci_find_resource);
792
157e876f
AW
793/**
794 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
795 * @dev: the PCI device to operate on
796 * @pos: config space offset of status word
797 * @mask: mask of bit(s) to care about in status word
798 *
799 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
800 */
801int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
802{
803 int i;
804
805 /* Wait for Transaction Pending bit clean */
806 for (i = 0; i < 4; i++) {
807 u16 status;
808 if (i)
809 msleep((1 << (i - 1)) * 100);
810
811 pci_read_config_word(dev, pos, &status);
812 if (!(status & mask))
813 return 1;
814 }
815
816 return 0;
817}
818
cbe42036
RJ
819static int pci_acs_enable;
820
821/**
822 * pci_request_acs - ask for ACS to be enabled if supported
823 */
824void pci_request_acs(void)
825{
826 pci_acs_enable = 1;
827}
828
829static const char *disable_acs_redir_param;
830
831/**
832 * pci_disable_acs_redir - disable ACS redirect capabilities
833 * @dev: the PCI device
834 *
835 * For only devices specified in the disable_acs_redir parameter.
836 */
837static void pci_disable_acs_redir(struct pci_dev *dev)
838{
839 int ret = 0;
840 const char *p;
841 int pos;
842 u16 ctrl;
843
844 if (!disable_acs_redir_param)
845 return;
846
847 p = disable_acs_redir_param;
848 while (*p) {
849 ret = pci_dev_str_match(dev, p, &p);
850 if (ret < 0) {
851 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
852 disable_acs_redir_param);
853
854 break;
855 } else if (ret == 1) {
856 /* Found a match */
857 break;
858 }
859
860 if (*p != ';' && *p != ',') {
861 /* End of param or invalid format */
862 break;
863 }
864 p++;
865 }
866
867 if (ret != 1)
868 return;
869
870 if (!pci_dev_specific_disable_acs_redir(dev))
871 return;
872
52fbf5bd 873 pos = dev->acs_cap;
cbe42036
RJ
874 if (!pos) {
875 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
876 return;
877 }
878
879 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
880
881 /* P2P Request & Completion Redirect */
882 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
883
884 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
885
886 pci_info(dev, "disabled ACS redirect\n");
887}
888
889/**
890 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
891 * @dev: the PCI device
892 */
893static void pci_std_enable_acs(struct pci_dev *dev)
894{
895 int pos;
896 u16 cap;
897 u16 ctrl;
898
52fbf5bd 899 pos = dev->acs_cap;
cbe42036
RJ
900 if (!pos)
901 return;
902
903 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
904 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
905
906 /* Source Validation */
907 ctrl |= (cap & PCI_ACS_SV);
908
909 /* P2P Request Redirect */
910 ctrl |= (cap & PCI_ACS_RR);
911
912 /* P2P Completion Redirect */
913 ctrl |= (cap & PCI_ACS_CR);
914
915 /* Upstream Forwarding */
916 ctrl |= (cap & PCI_ACS_UF);
917
76fc8e85
RJ
918 /* Enable Translation Blocking for external devices */
919 if (dev->external_facing || dev->untrusted)
920 ctrl |= (cap & PCI_ACS_TB);
921
cbe42036
RJ
922 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
923}
924
925/**
926 * pci_enable_acs - enable ACS if hardware support it
927 * @dev: the PCI device
928 */
52fbf5bd 929static void pci_enable_acs(struct pci_dev *dev)
cbe42036
RJ
930{
931 if (!pci_acs_enable)
932 goto disable_acs_redir;
933
934 if (!pci_dev_specific_enable_acs(dev))
935 goto disable_acs_redir;
936
937 pci_std_enable_acs(dev);
938
939disable_acs_redir:
940 /*
941 * Note: pci_disable_acs_redir() must be called even if ACS was not
942 * enabled by the kernel because it may have been enabled by
943 * platform firmware. So if we are told to disable it, we should
944 * always disable it after setting the kernel's default
945 * preferences.
946 */
947 pci_disable_acs_redir(dev);
948}
949
064b53db 950/**
70675e0b 951 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
064b53db
JL
952 * @dev: PCI device to have its BARs restored
953 *
954 * Restore the BAR values for a given device, so as to make it
955 * accessible by its driver.
956 */
3c78bc61 957static void pci_restore_bars(struct pci_dev *dev)
064b53db 958{
bc5f5a82 959 int i;
064b53db 960
bc5f5a82 961 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
14add80b 962 pci_update_resource(dev, i);
064b53db
JL
963}
964
299f2ffe 965static const struct pci_platform_pm_ops *pci_platform_pm;
961d9120 966
299f2ffe 967int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
961d9120 968{
cc7cc02b 969 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
0847684c 970 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
961d9120
RW
971 return -EINVAL;
972 pci_platform_pm = ops;
973 return 0;
974}
975
976static inline bool platform_pci_power_manageable(struct pci_dev *dev)
977{
978 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
979}
980
981static inline int platform_pci_set_power_state(struct pci_dev *dev,
3c78bc61 982 pci_power_t t)
961d9120
RW
983{
984 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
985}
986
cc7cc02b
LW
987static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
988{
989 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
990}
991
b51033e0
RW
992static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
993{
994 if (pci_platform_pm && pci_platform_pm->refresh_state)
995 pci_platform_pm->refresh_state(dev);
996}
997
961d9120
RW
998static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
999{
1000 return pci_platform_pm ?
1001 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1002}
8f7020d3 1003
0847684c 1004static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
eb9d0fe4
RW
1005{
1006 return pci_platform_pm ?
0847684c 1007 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
b67ea761
RW
1008}
1009
bac2a909
RW
1010static inline bool platform_pci_need_resume(struct pci_dev *dev)
1011{
1012 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1013}
1014
26ad34d5
MW
1015static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1016{
c3aaf086
BH
1017 if (pci_platform_pm && pci_platform_pm->bridge_d3)
1018 return pci_platform_pm->bridge_d3(dev);
1019 return false;
26ad34d5
MW
1020}
1021
1da177e4 1022/**
44e4e66e 1023 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
74356add 1024 * given PCI device
44e4e66e 1025 * @dev: PCI device to handle.
44e4e66e 1026 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1da177e4 1027 *
44e4e66e
RW
1028 * RETURN VALUE:
1029 * -EINVAL if the requested state is invalid.
1030 * -EIO if device does not support PCI PM or its PM capabilities register has a
1031 * wrong version, or device doesn't support the requested state.
1032 * 0 if device already is in the requested state.
1033 * 0 if device's power state has been successfully changed.
1da177e4 1034 */
f00a20ef 1035static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1da177e4 1036{
337001b6 1037 u16 pmcsr;
44e4e66e 1038 bool need_restore = false;
1da177e4 1039
4a865905
RW
1040 /* Check if we're already there */
1041 if (dev->current_state == state)
1042 return 0;
1043
337001b6 1044 if (!dev->pm_cap)
cca03dec
AL
1045 return -EIO;
1046
44e4e66e
RW
1047 if (state < PCI_D0 || state > PCI_D3hot)
1048 return -EINVAL;
1049
74356add 1050 /*
e43f15ea
BH
1051 * Validate transition: We can enter D0 from any state, but if
1052 * we're already in a low-power state, we can only go deeper. E.g.,
1053 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1054 * we'd have to go from D3 to D0, then to D1.
1da177e4 1055 */
4a865905 1056 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
44e4e66e 1057 && dev->current_state > state) {
e43f15ea
BH
1058 pci_err(dev, "invalid power transition (from %s to %s)\n",
1059 pci_power_name(dev->current_state),
1060 pci_power_name(state));
1da177e4 1061 return -EINVAL;
44e4e66e 1062 }
1da177e4 1063
74356add 1064 /* Check if this device supports the desired state */
337001b6
RW
1065 if ((state == PCI_D1 && !dev->d1_support)
1066 || (state == PCI_D2 && !dev->d2_support))
3fe9d19f 1067 return -EIO;
1da177e4 1068
337001b6 1069 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
327ccbbc
BH
1070 if (pmcsr == (u16) ~0) {
1071 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1072 pci_power_name(dev->current_state),
1073 pci_power_name(state));
1074 return -EIO;
1075 }
064b53db 1076
74356add
BH
1077 /*
1078 * If we're (effectively) in D3, force entire word to 0.
1da177e4
LT
1079 * This doesn't affect PME_Status, disables PME_En, and
1080 * sets PowerState to 0.
1081 */
32a36585 1082 switch (dev->current_state) {
d3535fbb
JL
1083 case PCI_D0:
1084 case PCI_D1:
1085 case PCI_D2:
1086 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1087 pmcsr |= state;
1088 break;
f62795f1
RW
1089 case PCI_D3hot:
1090 case PCI_D3cold:
32a36585
JL
1091 case PCI_UNKNOWN: /* Boot-up */
1092 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
f00a20ef 1093 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
44e4e66e 1094 need_restore = true;
df561f66 1095 fallthrough; /* force to D0 */
32a36585 1096 default:
d3535fbb 1097 pmcsr = 0;
32a36585 1098 break;
1da177e4
LT
1099 }
1100
74356add 1101 /* Enter specified state */
337001b6 1102 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1da177e4 1103
74356add
BH
1104 /*
1105 * Mandatory power management transition delays; see PCI PM 1.1
1106 * 5.6.1 table 18
1107 */
1da177e4 1108 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1ae861e6 1109 pci_dev_d3_sleep(dev);
1da177e4 1110 else if (state == PCI_D2 || dev->current_state == PCI_D2)
638c133e 1111 udelay(PCI_PM_D2_DELAY);
1da177e4 1112
e13cdbd7
RW
1113 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1114 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
7f1c62c4 1115 if (dev->current_state != state)
e43f15ea
BH
1116 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1117 pci_power_name(dev->current_state),
1118 pci_power_name(state));
064b53db 1119
448bd857
HY
1120 /*
1121 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
064b53db
JL
1122 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1123 * from D3hot to D0 _may_ perform an internal reset, thereby
1124 * going to "D0 Uninitialized" rather than "D0 Initialized".
1125 * For example, at least some versions of the 3c905B and the
1126 * 3c556B exhibit this behaviour.
1127 *
1128 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1129 * devices in a D3hot state at boot. Consequently, we need to
1130 * restore at least the BARs so that the device will be
1131 * accessible to its driver.
1132 */
1133 if (need_restore)
1134 pci_restore_bars(dev);
1135
f00a20ef 1136 if (dev->bus->self)
7d715a6c
SL
1137 pcie_aspm_pm_state_change(dev->bus->self);
1138
1da177e4
LT
1139 return 0;
1140}
1141
44e4e66e 1142/**
a6a64026 1143 * pci_update_current_state - Read power state of given device and cache it
44e4e66e 1144 * @dev: PCI device to handle.
f06fc0b6 1145 * @state: State to cache in case the device doesn't have the PM capability
a6a64026
LW
1146 *
1147 * The power state is read from the PMCSR register, which however is
1148 * inaccessible in D3cold. The platform firmware is therefore queried first
1149 * to detect accessibility of the register. In case the platform firmware
1150 * reports an incorrect state or the device isn't power manageable by the
1151 * platform at all, we try to detect D3cold by testing accessibility of the
1152 * vendor ID in config space.
44e4e66e 1153 */
73410429 1154void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
44e4e66e 1155{
a6a64026
LW
1156 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1157 !pci_device_is_present(dev)) {
1158 dev->current_state = PCI_D3cold;
1159 } else if (dev->pm_cap) {
44e4e66e
RW
1160 u16 pmcsr;
1161
337001b6 1162 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
44e4e66e 1163 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
f06fc0b6
RW
1164 } else {
1165 dev->current_state = state;
44e4e66e
RW
1166 }
1167}
1168
b51033e0
RW
1169/**
1170 * pci_refresh_power_state - Refresh the given device's power state data
1171 * @dev: Target PCI device.
1172 *
1173 * Ask the platform to refresh the devices power state information and invoke
1174 * pci_update_current_state() to update its current PCI power state.
1175 */
1176void pci_refresh_power_state(struct pci_dev *dev)
1177{
1178 if (platform_pci_power_manageable(dev))
1179 platform_pci_refresh_power_state(dev);
1180
1181 pci_update_current_state(dev, dev->current_state);
1182}
1183
0e5dd46b
RW
1184/**
1185 * pci_platform_power_transition - Use platform to change device power state
1186 * @dev: PCI device to handle.
1187 * @state: State to put the device into.
1188 */
d6aa37cd 1189int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
0e5dd46b
RW
1190{
1191 int error;
1192
1193 if (platform_pci_power_manageable(dev)) {
1194 error = platform_pci_set_power_state(dev, state);
1195 if (!error)
1196 pci_update_current_state(dev, state);
769ba721 1197 } else
0e5dd46b 1198 error = -ENODEV;
769ba721
RW
1199
1200 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1201 dev->current_state = PCI_D0;
0e5dd46b
RW
1202
1203 return error;
1204}
d6aa37cd 1205EXPORT_SYMBOL_GPL(pci_platform_power_transition);
0e5dd46b 1206
99efde6c 1207static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
0b950f0f 1208{
0b950f0f
SH
1209 pm_request_resume(&pci_dev->dev);
1210 return 0;
1211}
1212
1213/**
99efde6c 1214 * pci_resume_bus - Walk given bus and runtime resume devices on it
0b950f0f
SH
1215 * @bus: Top bus of the subtree to walk.
1216 */
99efde6c 1217void pci_resume_bus(struct pci_bus *bus)
0b950f0f
SH
1218{
1219 if (bus)
99efde6c 1220 pci_walk_bus(bus, pci_resume_one, NULL);
0b950f0f
SH
1221}
1222
bae26849
VS
1223static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1224{
1225 int delay = 1;
1226 u32 id;
1227
1228 /*
1229 * After reset, the device should not silently discard config
1230 * requests, but it may still indicate that it needs more time by
1231 * responding to them with CRS completions. The Root Port will
1232 * generally synthesize ~0 data to complete the read (except when
1233 * CRS SV is enabled and the read was for the Vendor ID; in that
1234 * case it synthesizes 0x0001 data).
1235 *
1236 * Wait for the device to return a non-CRS completion. Read the
1237 * Command register instead of Vendor ID so we don't have to
1238 * contend with the CRS SV value.
1239 */
1240 pci_read_config_dword(dev, PCI_COMMAND, &id);
1241 while (id == ~0) {
1242 if (delay > timeout) {
1243 pci_warn(dev, "not ready %dms after %s; giving up\n",
1244 delay - 1, reset_type);
1245 return -ENOTTY;
1246 }
1247
1248 if (delay > 1000)
1249 pci_info(dev, "not ready %dms after %s; waiting\n",
1250 delay - 1, reset_type);
1251
1252 msleep(delay);
1253 delay *= 2;
1254 pci_read_config_dword(dev, PCI_COMMAND, &id);
1255 }
1256
1257 if (delay > 1000)
1258 pci_info(dev, "ready %dms after %s\n", delay - 1,
1259 reset_type);
1260
1261 return 0;
1262}
1263
0e5dd46b 1264/**
dc2256b0
RW
1265 * pci_power_up - Put the given device into D0
1266 * @dev: PCI device to power up
0e5dd46b 1267 */
dc2256b0 1268int pci_power_up(struct pci_dev *dev)
0e5dd46b 1269{
dc2256b0
RW
1270 pci_platform_power_transition(dev, PCI_D0);
1271
1272 /*
ad9001f2
MW
1273 * Mandatory power management transition delays are handled in
1274 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1275 * corresponding bridge.
dc2256b0
RW
1276 */
1277 if (dev->runtime_d3cold) {
448bd857 1278 /*
dc2256b0
RW
1279 * When powering on a bridge from D3cold, the whole hierarchy
1280 * may be powered on into D0uninitialized state, resume them to
1281 * give them a chance to suspend again
448bd857 1282 */
99efde6c 1283 pci_resume_bus(dev->subordinate);
448bd857 1284 }
448bd857 1285
adfac8f6 1286 return pci_raw_set_power_state(dev, PCI_D0);
448bd857
HY
1287}
1288
1289/**
1290 * __pci_dev_set_current_state - Set current state of a PCI device
1291 * @dev: Device to handle
1292 * @data: pointer to state to be set
1293 */
1294static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1295{
1296 pci_power_t state = *(pci_power_t *)data;
1297
1298 dev->current_state = state;
1299 return 0;
1300}
1301
1302/**
2a4d2c42 1303 * pci_bus_set_current_state - Walk given bus and set current state of devices
448bd857
HY
1304 * @bus: Top bus of the subtree to walk.
1305 * @state: state to be set
1306 */
2a4d2c42 1307void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
448bd857
HY
1308{
1309 if (bus)
1310 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
0e5dd46b
RW
1311}
1312
44e4e66e
RW
1313/**
1314 * pci_set_power_state - Set the power state of a PCI device
1315 * @dev: PCI device to handle.
1316 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1317 *
877d0310 1318 * Transition a device to a new power state, using the platform firmware and/or
44e4e66e
RW
1319 * the device's PCI PM registers.
1320 *
1321 * RETURN VALUE:
1322 * -EINVAL if the requested state is invalid.
1323 * -EIO if device does not support PCI PM or its PM capabilities register has a
1324 * wrong version, or device doesn't support the requested state.
ab4b8a47 1325 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
44e4e66e 1326 * 0 if device already is in the requested state.
ab4b8a47 1327 * 0 if the transition is to D3 but D3 is not supported.
44e4e66e
RW
1328 * 0 if device's power state has been successfully changed.
1329 */
1330int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1331{
337001b6 1332 int error;
44e4e66e 1333
74356add 1334 /* Bound the state we're entering */
448bd857
HY
1335 if (state > PCI_D3cold)
1336 state = PCI_D3cold;
44e4e66e
RW
1337 else if (state < PCI_D0)
1338 state = PCI_D0;
1339 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
74356add 1340
44e4e66e 1341 /*
74356add
BH
1342 * If the device or the parent bridge do not support PCI
1343 * PM, ignore the request if we're doing anything other
1344 * than putting it into D0 (which would only happen on
1345 * boot).
44e4e66e
RW
1346 */
1347 return 0;
1348
db288c9c
RW
1349 /* Check if we're already there */
1350 if (dev->current_state == state)
1351 return 0;
1352
adfac8f6
RW
1353 if (state == PCI_D0)
1354 return pci_power_up(dev);
0e5dd46b 1355
74356add
BH
1356 /*
1357 * This device is quirked not to be put into D3, so don't put it in
1358 * D3
1359 */
448bd857 1360 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
979b1791 1361 return 0;
44e4e66e 1362
448bd857
HY
1363 /*
1364 * To put device in D3cold, we put device into D3hot in native
1365 * way, then put device into D3cold with platform ops
1366 */
1367 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1368 PCI_D3hot : state);
44e4e66e 1369
9c77e63b
RW
1370 if (pci_platform_power_transition(dev, state))
1371 return error;
44e4e66e 1372
9c77e63b
RW
1373 /* Powering off a bridge may power off the whole hierarchy */
1374 if (state == PCI_D3cold)
1375 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
44e4e66e 1376
9c77e63b 1377 return 0;
45144d42 1378}
b7fe9434 1379EXPORT_SYMBOL(pci_set_power_state);
45144d42 1380
1da177e4
LT
1381/**
1382 * pci_choose_state - Choose the power state of a PCI device
1383 * @dev: PCI device to be suspended
1384 * @state: target sleep state for the whole system. This is the value
74356add 1385 * that is passed to suspend() function.
1da177e4
LT
1386 *
1387 * Returns PCI power state suitable for given device and given system
1388 * message.
1389 */
1da177e4
LT
1390pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1391{
ab826ca4 1392 pci_power_t ret;
0f64474b 1393
728cdb75 1394 if (!dev->pm_cap)
1da177e4
LT
1395 return PCI_D0;
1396
961d9120
RW
1397 ret = platform_pci_choose_state(dev);
1398 if (ret != PCI_POWER_ERROR)
1399 return ret;
ca078bae
PM
1400
1401 switch (state.event) {
1402 case PM_EVENT_ON:
1403 return PCI_D0;
1404 case PM_EVENT_FREEZE:
b887d2e6
DB
1405 case PM_EVENT_PRETHAW:
1406 /* REVISIT both freeze and pre-thaw "should" use D0 */
ca078bae 1407 case PM_EVENT_SUSPEND:
3a2d5b70 1408 case PM_EVENT_HIBERNATE:
ca078bae 1409 return PCI_D3hot;
1da177e4 1410 default:
7506dc79 1411 pci_info(dev, "unrecognized suspend event %d\n",
80ccba11 1412 state.event);
1da177e4
LT
1413 BUG();
1414 }
1415 return PCI_D0;
1416}
1da177e4
LT
1417EXPORT_SYMBOL(pci_choose_state);
1418
89858517
YZ
1419#define PCI_EXP_SAVE_REGS 7
1420
fd0f7f73
AW
1421static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1422 u16 cap, bool extended)
34a4876e
YL
1423{
1424 struct pci_cap_saved_state *tmp;
34a4876e 1425
b67bfe0d 1426 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
fd0f7f73 1427 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
34a4876e
YL
1428 return tmp;
1429 }
1430 return NULL;
1431}
1432
fd0f7f73
AW
1433struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1434{
1435 return _pci_find_saved_cap(dev, cap, false);
1436}
1437
1438struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1439{
1440 return _pci_find_saved_cap(dev, cap, true);
1441}
1442
b56a5a23
MT
1443static int pci_save_pcie_state(struct pci_dev *dev)
1444{
59875ae4 1445 int i = 0;
b56a5a23
MT
1446 struct pci_cap_saved_state *save_state;
1447 u16 *cap;
1448
59875ae4 1449 if (!pci_is_pcie(dev))
b56a5a23
MT
1450 return 0;
1451
9f35575d 1452 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
b56a5a23 1453 if (!save_state) {
7506dc79 1454 pci_err(dev, "buffer not found in %s\n", __func__);
b56a5a23
MT
1455 return -ENOMEM;
1456 }
63f4898a 1457
59875ae4
JL
1458 cap = (u16 *)&save_state->cap.data[0];
1459 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1460 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1461 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1462 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1463 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1464 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1465 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
9cb604ed 1466
b56a5a23
MT
1467 return 0;
1468}
1469
1470static void pci_restore_pcie_state(struct pci_dev *dev)
1471{
59875ae4 1472 int i = 0;
b56a5a23
MT
1473 struct pci_cap_saved_state *save_state;
1474 u16 *cap;
1475
1476 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
59875ae4 1477 if (!save_state)
9cb604ed
MS
1478 return;
1479
59875ae4
JL
1480 cap = (u16 *)&save_state->cap.data[0];
1481 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1482 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1483 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1484 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1485 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1486 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1487 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
b56a5a23
MT
1488}
1489
cc692a5f
SH
1490static int pci_save_pcix_state(struct pci_dev *dev)
1491{
63f4898a 1492 int pos;
cc692a5f 1493 struct pci_cap_saved_state *save_state;
cc692a5f
SH
1494
1495 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
0a1a9b49 1496 if (!pos)
cc692a5f
SH
1497 return 0;
1498
f34303de 1499 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
cc692a5f 1500 if (!save_state) {
7506dc79 1501 pci_err(dev, "buffer not found in %s\n", __func__);
cc692a5f
SH
1502 return -ENOMEM;
1503 }
cc692a5f 1504
24a4742f
AW
1505 pci_read_config_word(dev, pos + PCI_X_CMD,
1506 (u16 *)save_state->cap.data);
63f4898a 1507
cc692a5f
SH
1508 return 0;
1509}
1510
1511static void pci_restore_pcix_state(struct pci_dev *dev)
1512{
1513 int i = 0, pos;
1514 struct pci_cap_saved_state *save_state;
1515 u16 *cap;
1516
1517 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1518 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
0a1a9b49 1519 if (!save_state || !pos)
cc692a5f 1520 return;
24a4742f 1521 cap = (u16 *)&save_state->cap.data[0];
cc692a5f
SH
1522
1523 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
cc692a5f
SH
1524}
1525
dbbfadf2
BH
1526static void pci_save_ltr_state(struct pci_dev *dev)
1527{
1528 int ltr;
1529 struct pci_cap_saved_state *save_state;
1530 u16 *cap;
1531
1532 if (!pci_is_pcie(dev))
1533 return;
1534
1535 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1536 if (!ltr)
1537 return;
1538
1539 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1540 if (!save_state) {
1541 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1542 return;
1543 }
1544
1545 cap = (u16 *)&save_state->cap.data[0];
1546 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1547 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1548}
1549
1550static void pci_restore_ltr_state(struct pci_dev *dev)
1551{
1552 struct pci_cap_saved_state *save_state;
1553 int ltr;
1554 u16 *cap;
1555
1556 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1557 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1558 if (!save_state || !ltr)
1559 return;
1560
1561 cap = (u16 *)&save_state->cap.data[0];
1562 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1563 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1564}
cc692a5f 1565
1da177e4 1566/**
74356add
BH
1567 * pci_save_state - save the PCI configuration space of a device before
1568 * suspending
1569 * @dev: PCI device that we're dealing with
1da177e4 1570 */
3c78bc61 1571int pci_save_state(struct pci_dev *dev)
1da177e4
LT
1572{
1573 int i;
1574 /* XXX: 100% dword access ok here? */
47b802d5 1575 for (i = 0; i < 16; i++) {
9e0b5b2c 1576 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
47b802d5
CY
1577 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1578 i * 4, dev->saved_config_space[i]);
1579 }
aa8c6c93 1580 dev->state_saved = true;
79e50e72
QL
1581
1582 i = pci_save_pcie_state(dev);
1583 if (i != 0)
b56a5a23 1584 return i;
79e50e72
QL
1585
1586 i = pci_save_pcix_state(dev);
1587 if (i != 0)
cc692a5f 1588 return i;
79e50e72 1589
dbbfadf2 1590 pci_save_ltr_state(dev);
4f802170 1591 pci_save_dpc_state(dev);
af65d1ad 1592 pci_save_aer_state(dev);
39850ed5 1593 pci_save_ptm_state(dev);
754834b9 1594 return pci_save_vc_state(dev);
1da177e4 1595}
b7fe9434 1596EXPORT_SYMBOL(pci_save_state);
1da177e4 1597
ebfc5b80 1598static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
08387454 1599 u32 saved_val, int retry, bool force)
ebfc5b80
RW
1600{
1601 u32 val;
1602
1603 pci_read_config_dword(pdev, offset, &val);
08387454 1604 if (!force && val == saved_val)
ebfc5b80
RW
1605 return;
1606
1607 for (;;) {
7506dc79 1608 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
227f0647 1609 offset, val, saved_val);
ebfc5b80
RW
1610 pci_write_config_dword(pdev, offset, saved_val);
1611 if (retry-- <= 0)
1612 return;
1613
1614 pci_read_config_dword(pdev, offset, &val);
1615 if (val == saved_val)
1616 return;
1617
1618 mdelay(1);
1619 }
1620}
1621
a6cb9ee7 1622static void pci_restore_config_space_range(struct pci_dev *pdev,
08387454
DD
1623 int start, int end, int retry,
1624 bool force)
ebfc5b80
RW
1625{
1626 int index;
1627
1628 for (index = end; index >= start; index--)
1629 pci_restore_config_dword(pdev, 4 * index,
1630 pdev->saved_config_space[index],
08387454 1631 retry, force);
ebfc5b80
RW
1632}
1633
a6cb9ee7
RW
1634static void pci_restore_config_space(struct pci_dev *pdev)
1635{
1636 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
08387454 1637 pci_restore_config_space_range(pdev, 10, 15, 0, false);
a6cb9ee7 1638 /* Restore BARs before the command register. */
08387454
DD
1639 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1640 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1641 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1642 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1643
1644 /*
1645 * Force rewriting of prefetch registers to avoid S3 resume
1646 * issues on Intel PCI bridges that occur when these
1647 * registers are not explicitly written.
1648 */
1649 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1650 pci_restore_config_space_range(pdev, 0, 8, 0, false);
a6cb9ee7 1651 } else {
08387454 1652 pci_restore_config_space_range(pdev, 0, 15, 0, false);
a6cb9ee7
RW
1653 }
1654}
1655
d3252ace
CK
1656static void pci_restore_rebar_state(struct pci_dev *pdev)
1657{
1658 unsigned int pos, nbars, i;
1659 u32 ctrl;
1660
1661 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1662 if (!pos)
1663 return;
1664
1665 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1666 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1667 PCI_REBAR_CTRL_NBAR_SHIFT;
1668
1669 for (i = 0; i < nbars; i++, pos += 8) {
1670 struct resource *res;
1671 int bar_idx, size;
1672
1673 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1674 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1675 res = pdev->resource + bar_idx;
192f1bf7 1676 size = pci_rebar_bytes_to_size(resource_size(res));
d3252ace 1677 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
b1277a22 1678 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
d3252ace
CK
1679 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1680 }
1681}
1682
f7625980 1683/**
1da177e4 1684 * pci_restore_state - Restore the saved state of a PCI device
74356add 1685 * @dev: PCI device that we're dealing with
1da177e4 1686 */
1d3c16a8 1687void pci_restore_state(struct pci_dev *dev)
1da177e4 1688{
c82f63e4 1689 if (!dev->state_saved)
1d3c16a8 1690 return;
4b77b0a2 1691
dbbfadf2
BH
1692 /*
1693 * Restore max latencies (in the LTR capability) before enabling
1694 * LTR itself (in the PCIe capability).
1695 */
1696 pci_restore_ltr_state(dev);
1697
b56a5a23 1698 pci_restore_pcie_state(dev);
4ebeb1ec
CT
1699 pci_restore_pasid_state(dev);
1700 pci_restore_pri_state(dev);
1900ca13 1701 pci_restore_ats_state(dev);
425c1b22 1702 pci_restore_vc_state(dev);
d3252ace 1703 pci_restore_rebar_state(dev);
4f802170 1704 pci_restore_dpc_state(dev);
39850ed5 1705 pci_restore_ptm_state(dev);
b56a5a23 1706
894020fd 1707 pci_aer_clear_status(dev);
af65d1ad 1708 pci_restore_aer_state(dev);
b07461a8 1709
a6cb9ee7 1710 pci_restore_config_space(dev);
ebfc5b80 1711
cc692a5f 1712 pci_restore_pcix_state(dev);
41017f0c 1713 pci_restore_msi_state(dev);
ccbc175a
AD
1714
1715 /* Restore ACS and IOV configuration state */
1716 pci_enable_acs(dev);
8c5cdb6a 1717 pci_restore_iov_state(dev);
8fed4b65 1718
4b77b0a2 1719 dev->state_saved = false;
1da177e4 1720}
b7fe9434 1721EXPORT_SYMBOL(pci_restore_state);
1da177e4 1722
ffbdd3f7
AW
1723struct pci_saved_state {
1724 u32 config_space[16];
914a1951 1725 struct pci_cap_saved_data cap[];
ffbdd3f7
AW
1726};
1727
1728/**
1729 * pci_store_saved_state - Allocate and return an opaque struct containing
1730 * the device saved state.
1731 * @dev: PCI device that we're dealing with
1732 *
f7625980 1733 * Return NULL if no state or error.
ffbdd3f7
AW
1734 */
1735struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1736{
1737 struct pci_saved_state *state;
1738 struct pci_cap_saved_state *tmp;
1739 struct pci_cap_saved_data *cap;
ffbdd3f7
AW
1740 size_t size;
1741
1742 if (!dev->state_saved)
1743 return NULL;
1744
1745 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1746
b67bfe0d 1747 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
ffbdd3f7
AW
1748 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1749
1750 state = kzalloc(size, GFP_KERNEL);
1751 if (!state)
1752 return NULL;
1753
1754 memcpy(state->config_space, dev->saved_config_space,
1755 sizeof(state->config_space));
1756
1757 cap = state->cap;
b67bfe0d 1758 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
ffbdd3f7
AW
1759 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1760 memcpy(cap, &tmp->cap, len);
1761 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1762 }
1763 /* Empty cap_save terminates list */
1764
1765 return state;
1766}
1767EXPORT_SYMBOL_GPL(pci_store_saved_state);
1768
1769/**
1770 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1771 * @dev: PCI device that we're dealing with
1772 * @state: Saved state returned from pci_store_saved_state()
1773 */
98d9b271
KRW
1774int pci_load_saved_state(struct pci_dev *dev,
1775 struct pci_saved_state *state)
ffbdd3f7
AW
1776{
1777 struct pci_cap_saved_data *cap;
1778
1779 dev->state_saved = false;
1780
1781 if (!state)
1782 return 0;
1783
1784 memcpy(dev->saved_config_space, state->config_space,
1785 sizeof(state->config_space));
1786
1787 cap = state->cap;
1788 while (cap->size) {
1789 struct pci_cap_saved_state *tmp;
1790
fd0f7f73 1791 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
ffbdd3f7
AW
1792 if (!tmp || tmp->cap.size != cap->size)
1793 return -EINVAL;
1794
1795 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1796 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1797 sizeof(struct pci_cap_saved_data) + cap->size);
1798 }
1799
1800 dev->state_saved = true;
1801 return 0;
1802}
98d9b271 1803EXPORT_SYMBOL_GPL(pci_load_saved_state);
ffbdd3f7
AW
1804
1805/**
1806 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1807 * and free the memory allocated for it.
1808 * @dev: PCI device that we're dealing with
1809 * @state: Pointer to saved state returned from pci_store_saved_state()
1810 */
1811int pci_load_and_free_saved_state(struct pci_dev *dev,
1812 struct pci_saved_state **state)
1813{
1814 int ret = pci_load_saved_state(dev, *state);
1815 kfree(*state);
1816 *state = NULL;
1817 return ret;
1818}
1819EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1820
8a9d5609
BH
1821int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1822{
1823 return pci_enable_resources(dev, bars);
1824}
1825
38cc1302
HS
1826static int do_pci_enable_device(struct pci_dev *dev, int bars)
1827{
1828 int err;
1f6ae47e 1829 struct pci_dev *bridge;
1e2571a7
BH
1830 u16 cmd;
1831 u8 pin;
38cc1302
HS
1832
1833 err = pci_set_power_state(dev, PCI_D0);
1834 if (err < 0 && err != -EIO)
1835 return err;
1f6ae47e
VS
1836
1837 bridge = pci_upstream_bridge(dev);
1838 if (bridge)
1839 pcie_aspm_powersave_config_link(bridge);
1840
38cc1302
HS
1841 err = pcibios_enable_device(dev, bars);
1842 if (err < 0)
1843 return err;
1844 pci_fixup_device(pci_fixup_enable, dev);
1845
866d5417
BH
1846 if (dev->msi_enabled || dev->msix_enabled)
1847 return 0;
1848
1e2571a7
BH
1849 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1850 if (pin) {
1851 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1852 if (cmd & PCI_COMMAND_INTX_DISABLE)
1853 pci_write_config_word(dev, PCI_COMMAND,
1854 cmd & ~PCI_COMMAND_INTX_DISABLE);
1855 }
1856
38cc1302
HS
1857 return 0;
1858}
1859
1860/**
0b62e13b 1861 * pci_reenable_device - Resume abandoned device
38cc1302
HS
1862 * @dev: PCI device to be resumed
1863 *
74356add
BH
1864 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1865 * to be called by normal code, write proper resume handler and use it instead.
38cc1302 1866 */
0b62e13b 1867int pci_reenable_device(struct pci_dev *dev)
38cc1302 1868{
296ccb08 1869 if (pci_is_enabled(dev))
38cc1302
HS
1870 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1871 return 0;
1872}
b7fe9434 1873EXPORT_SYMBOL(pci_reenable_device);
38cc1302 1874
928bea96
YL
1875static void pci_enable_bridge(struct pci_dev *dev)
1876{
79272138 1877 struct pci_dev *bridge;
928bea96
YL
1878 int retval;
1879
79272138
BH
1880 bridge = pci_upstream_bridge(dev);
1881 if (bridge)
1882 pci_enable_bridge(bridge);
928bea96 1883
cf3e1feb 1884 if (pci_is_enabled(dev)) {
fbeeb822 1885 if (!dev->is_busmaster)
cf3e1feb 1886 pci_set_master(dev);
0f50a49e 1887 return;
cf3e1feb
YL
1888 }
1889
928bea96
YL
1890 retval = pci_enable_device(dev);
1891 if (retval)
7506dc79 1892 pci_err(dev, "Error enabling bridge (%d), continuing\n",
928bea96
YL
1893 retval);
1894 pci_set_master(dev);
1895}
1896
b4b4fbba 1897static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1da177e4 1898{
79272138 1899 struct pci_dev *bridge;
1da177e4 1900 int err;
b718989d 1901 int i, bars = 0;
1da177e4 1902
4514d991
RW
1903 if (atomic_inc_return(&dev->enable_cnt) > 1) {
1904 pci_update_current_state(dev, dev->current_state);
9fb625c3 1905 return 0; /* already enabled */
4514d991 1906 }
9fb625c3 1907
79272138 1908 bridge = pci_upstream_bridge(dev);
0f50a49e 1909 if (bridge)
79272138 1910 pci_enable_bridge(bridge);
928bea96 1911
497f16f2
YL
1912 /* only skip sriov related */
1913 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1914 if (dev->resource[i].flags & flags)
1915 bars |= (1 << i);
1916 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
b718989d
BH
1917 if (dev->resource[i].flags & flags)
1918 bars |= (1 << i);
1919
38cc1302 1920 err = do_pci_enable_device(dev, bars);
95a62965 1921 if (err < 0)
38cc1302 1922 atomic_dec(&dev->enable_cnt);
9fb625c3 1923 return err;
1da177e4
LT
1924}
1925
b718989d
BH
1926/**
1927 * pci_enable_device_io - Initialize a device for use with IO space
1928 * @dev: PCI device to be initialized
1929 *
74356add
BH
1930 * Initialize device before it's used by a driver. Ask low-level code
1931 * to enable I/O resources. Wake up the device if it was suspended.
1932 * Beware, this function can fail.
b718989d
BH
1933 */
1934int pci_enable_device_io(struct pci_dev *dev)
1935{
b4b4fbba 1936 return pci_enable_device_flags(dev, IORESOURCE_IO);
b718989d 1937}
b7fe9434 1938EXPORT_SYMBOL(pci_enable_device_io);
b718989d
BH
1939
1940/**
1941 * pci_enable_device_mem - Initialize a device for use with Memory space
1942 * @dev: PCI device to be initialized
1943 *
74356add
BH
1944 * Initialize device before it's used by a driver. Ask low-level code
1945 * to enable Memory resources. Wake up the device if it was suspended.
1946 * Beware, this function can fail.
b718989d
BH
1947 */
1948int pci_enable_device_mem(struct pci_dev *dev)
1949{
b4b4fbba 1950 return pci_enable_device_flags(dev, IORESOURCE_MEM);
b718989d 1951}
b7fe9434 1952EXPORT_SYMBOL(pci_enable_device_mem);
b718989d 1953
bae94d02
IPG
1954/**
1955 * pci_enable_device - Initialize device before it's used by a driver.
1956 * @dev: PCI device to be initialized
1957 *
74356add
BH
1958 * Initialize device before it's used by a driver. Ask low-level code
1959 * to enable I/O and memory. Wake up the device if it was suspended.
1960 * Beware, this function can fail.
bae94d02 1961 *
74356add
BH
1962 * Note we don't actually enable the device many times if we call
1963 * this function repeatedly (we just increment the count).
bae94d02
IPG
1964 */
1965int pci_enable_device(struct pci_dev *dev)
1966{
b4b4fbba 1967 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
bae94d02 1968}
b7fe9434 1969EXPORT_SYMBOL(pci_enable_device);
bae94d02 1970
9ac7849e 1971/*
74356add
BH
1972 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1973 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
9ac7849e
TH
1974 * there's no need to track it separately. pci_devres is initialized
1975 * when a device is enabled using managed PCI device enable interface.
1976 */
1977struct pci_devres {
7f375f32
TH
1978 unsigned int enabled:1;
1979 unsigned int pinned:1;
9ac7849e
TH
1980 unsigned int orig_intx:1;
1981 unsigned int restore_intx:1;
fc0f9f4d 1982 unsigned int mwi:1;
9ac7849e
TH
1983 u32 region_mask;
1984};
1985
1986static void pcim_release(struct device *gendev, void *res)
1987{
f3d2f165 1988 struct pci_dev *dev = to_pci_dev(gendev);
9ac7849e
TH
1989 struct pci_devres *this = res;
1990 int i;
1991
1992 if (dev->msi_enabled)
1993 pci_disable_msi(dev);
1994 if (dev->msix_enabled)
1995 pci_disable_msix(dev);
1996
1997 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1998 if (this->region_mask & (1 << i))
1999 pci_release_region(dev, i);
2000
fc0f9f4d
HK
2001 if (this->mwi)
2002 pci_clear_mwi(dev);
2003
9ac7849e
TH
2004 if (this->restore_intx)
2005 pci_intx(dev, this->orig_intx);
2006
7f375f32 2007 if (this->enabled && !this->pinned)
9ac7849e
TH
2008 pci_disable_device(dev);
2009}
2010
07656d83 2011static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
9ac7849e
TH
2012{
2013 struct pci_devres *dr, *new_dr;
2014
2015 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2016 if (dr)
2017 return dr;
2018
2019 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2020 if (!new_dr)
2021 return NULL;
2022 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2023}
2024
07656d83 2025static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
9ac7849e
TH
2026{
2027 if (pci_is_managed(pdev))
2028 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2029 return NULL;
2030}
2031
2032/**
2033 * pcim_enable_device - Managed pci_enable_device()
2034 * @pdev: PCI device to be initialized
2035 *
2036 * Managed pci_enable_device().
2037 */
2038int pcim_enable_device(struct pci_dev *pdev)
2039{
2040 struct pci_devres *dr;
2041 int rc;
2042
2043 dr = get_pci_dr(pdev);
2044 if (unlikely(!dr))
2045 return -ENOMEM;
b95d58ea
TH
2046 if (dr->enabled)
2047 return 0;
9ac7849e
TH
2048
2049 rc = pci_enable_device(pdev);
2050 if (!rc) {
2051 pdev->is_managed = 1;
7f375f32 2052 dr->enabled = 1;
9ac7849e
TH
2053 }
2054 return rc;
2055}
b7fe9434 2056EXPORT_SYMBOL(pcim_enable_device);
9ac7849e
TH
2057
2058/**
2059 * pcim_pin_device - Pin managed PCI device
2060 * @pdev: PCI device to pin
2061 *
2062 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2063 * driver detach. @pdev must have been enabled with
2064 * pcim_enable_device().
2065 */
2066void pcim_pin_device(struct pci_dev *pdev)
2067{
2068 struct pci_devres *dr;
2069
2070 dr = find_pci_dr(pdev);
7f375f32 2071 WARN_ON(!dr || !dr->enabled);
9ac7849e 2072 if (dr)
7f375f32 2073 dr->pinned = 1;
9ac7849e 2074}
b7fe9434 2075EXPORT_SYMBOL(pcim_pin_device);
9ac7849e 2076
eca0d467
MG
2077/*
2078 * pcibios_add_device - provide arch specific hooks when adding device dev
2079 * @dev: the PCI device being added
2080 *
2081 * Permits the platform to provide architecture specific functionality when
2082 * devices are added. This is the default implementation. Architecture
2083 * implementations can override this.
2084 */
3c78bc61 2085int __weak pcibios_add_device(struct pci_dev *dev)
eca0d467
MG
2086{
2087 return 0;
2088}
2089
6ae32c53 2090/**
74356add
BH
2091 * pcibios_release_device - provide arch specific hooks when releasing
2092 * device dev
6ae32c53
SO
2093 * @dev: the PCI device being released
2094 *
2095 * Permits the platform to provide architecture specific functionality when
2096 * devices are released. This is the default implementation. Architecture
2097 * implementations can override this.
2098 */
2099void __weak pcibios_release_device(struct pci_dev *dev) {}
2100
1da177e4
LT
2101/**
2102 * pcibios_disable_device - disable arch specific PCI resources for device dev
2103 * @dev: the PCI device to disable
2104 *
2105 * Disables architecture specific PCI resources for the device. This
2106 * is the default implementation. Architecture implementations can
2107 * override this.
2108 */
ff3ce480 2109void __weak pcibios_disable_device(struct pci_dev *dev) {}
1da177e4 2110
a43ae58c
HG
2111/**
2112 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2113 * @irq: ISA IRQ to penalize
2114 * @active: IRQ active or not
2115 *
2116 * Permits the platform to provide architecture-specific functionality when
2117 * penalizing ISA IRQs. This is the default implementation. Architecture
2118 * implementations can override this.
2119 */
2120void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2121
fa58d305
RW
2122static void do_pci_disable_device(struct pci_dev *dev)
2123{
2124 u16 pci_command;
2125
2126 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2127 if (pci_command & PCI_COMMAND_MASTER) {
2128 pci_command &= ~PCI_COMMAND_MASTER;
2129 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2130 }
2131
2132 pcibios_disable_device(dev);
2133}
2134
2135/**
2136 * pci_disable_enabled_device - Disable device without updating enable_cnt
2137 * @dev: PCI device to disable
2138 *
2139 * NOTE: This function is a backend of PCI power management routines and is
2140 * not supposed to be called drivers.
2141 */
2142void pci_disable_enabled_device(struct pci_dev *dev)
2143{
296ccb08 2144 if (pci_is_enabled(dev))
fa58d305
RW
2145 do_pci_disable_device(dev);
2146}
2147
1da177e4
LT
2148/**
2149 * pci_disable_device - Disable PCI device after use
2150 * @dev: PCI device to be disabled
2151 *
2152 * Signal to the system that the PCI device is not in use by the system
2153 * anymore. This only involves disabling PCI bus-mastering, if active.
bae94d02
IPG
2154 *
2155 * Note we don't actually disable the device until all callers of
ee6583f6 2156 * pci_enable_device() have called pci_disable_device().
1da177e4 2157 */
3c78bc61 2158void pci_disable_device(struct pci_dev *dev)
1da177e4 2159{
9ac7849e 2160 struct pci_devres *dr;
99dc804d 2161
9ac7849e
TH
2162 dr = find_pci_dr(dev);
2163 if (dr)
7f375f32 2164 dr->enabled = 0;
9ac7849e 2165
fd6dceab
KK
2166 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2167 "disabling already-disabled device");
2168
cc7ba39b 2169 if (atomic_dec_return(&dev->enable_cnt) != 0)
bae94d02
IPG
2170 return;
2171
fa58d305 2172 do_pci_disable_device(dev);
1da177e4 2173
fa58d305 2174 dev->is_busmaster = 0;
1da177e4 2175}
b7fe9434 2176EXPORT_SYMBOL(pci_disable_device);
1da177e4 2177
f7bdd12d
BK
2178/**
2179 * pcibios_set_pcie_reset_state - set reset state for device dev
45e829ea 2180 * @dev: the PCIe device reset
f7bdd12d
BK
2181 * @state: Reset state to enter into
2182 *
74356add 2183 * Set the PCIe reset state for the device. This is the default
f7bdd12d
BK
2184 * implementation. Architecture implementations can override this.
2185 */
d6d88c83
BH
2186int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2187 enum pcie_reset_state state)
f7bdd12d
BK
2188{
2189 return -EINVAL;
2190}
2191
2192/**
2193 * pci_set_pcie_reset_state - set reset state for device dev
45e829ea 2194 * @dev: the PCIe device reset
f7bdd12d
BK
2195 * @state: Reset state to enter into
2196 *
f7bdd12d
BK
2197 * Sets the PCI reset state for the device.
2198 */
2199int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2200{
2201 return pcibios_set_pcie_reset_state(dev, state);
2202}
b7fe9434 2203EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
f7bdd12d 2204
600a5b4f
BH
2205void pcie_clear_device_status(struct pci_dev *dev)
2206{
2207 u16 sta;
2208
2209 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2210 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2211}
2212
dcb0453d
BH
2213/**
2214 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2215 * @dev: PCIe root port or event collector.
2216 */
2217void pcie_clear_root_pme_status(struct pci_dev *dev)
2218{
2219 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2220}
2221
58ff4633
RW
2222/**
2223 * pci_check_pme_status - Check if given device has generated PME.
2224 * @dev: Device to check.
2225 *
2226 * Check the PME status of the device and if set, clear it and clear PME enable
2227 * (if set). Return 'true' if PME status and PME enable were both set or
2228 * 'false' otherwise.
2229 */
2230bool pci_check_pme_status(struct pci_dev *dev)
2231{
2232 int pmcsr_pos;
2233 u16 pmcsr;
2234 bool ret = false;
2235
2236 if (!dev->pm_cap)
2237 return false;
2238
2239 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2240 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2241 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2242 return false;
2243
2244 /* Clear PME status. */
2245 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2246 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2247 /* Disable PME to avoid interrupt flood. */
2248 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2249 ret = true;
2250 }
2251
2252 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2253
2254 return ret;
2255}
2256
b67ea761
RW
2257/**
2258 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2259 * @dev: Device to handle.
379021d5 2260 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
b67ea761
RW
2261 *
2262 * Check if @dev has generated PME and queue a resume request for it in that
2263 * case.
2264 */
379021d5 2265static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
b67ea761 2266{
379021d5
RW
2267 if (pme_poll_reset && dev->pme_poll)
2268 dev->pme_poll = false;
2269
c125e96f 2270 if (pci_check_pme_status(dev)) {
c125e96f 2271 pci_wakeup_event(dev);
0f953bf6 2272 pm_request_resume(&dev->dev);
c125e96f 2273 }
b67ea761
RW
2274 return 0;
2275}
2276
2277/**
2278 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2279 * @bus: Top bus of the subtree to walk.
2280 */
2281void pci_pme_wakeup_bus(struct pci_bus *bus)
2282{
2283 if (bus)
379021d5 2284 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
b67ea761
RW
2285}
2286
448bd857 2287
eb9d0fe4
RW
2288/**
2289 * pci_pme_capable - check the capability of PCI device to generate PME#
2290 * @dev: PCI device to handle.
eb9d0fe4
RW
2291 * @state: PCI state from which device will issue PME#.
2292 */
e5899e1b 2293bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
eb9d0fe4 2294{
337001b6 2295 if (!dev->pm_cap)
eb9d0fe4
RW
2296 return false;
2297
337001b6 2298 return !!(dev->pme_support & (1 << state));
eb9d0fe4 2299}
b7fe9434 2300EXPORT_SYMBOL(pci_pme_capable);
eb9d0fe4 2301
df17e62e
MG
2302static void pci_pme_list_scan(struct work_struct *work)
2303{
379021d5 2304 struct pci_pme_device *pme_dev, *n;
df17e62e
MG
2305
2306 mutex_lock(&pci_pme_list_mutex);
ce300008
BH
2307 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2308 if (pme_dev->dev->pme_poll) {
2309 struct pci_dev *bridge;
2310
2311 bridge = pme_dev->dev->bus->self;
2312 /*
2313 * If bridge is in low power state, the
2314 * configuration space of subordinate devices
2315 * may be not accessible
2316 */
2317 if (bridge && bridge->current_state != PCI_D0)
2318 continue;
000dd531
MW
2319 /*
2320 * If the device is in D3cold it should not be
2321 * polled either.
2322 */
2323 if (pme_dev->dev->current_state == PCI_D3cold)
2324 continue;
2325
ce300008
BH
2326 pci_pme_wakeup(pme_dev->dev, NULL);
2327 } else {
2328 list_del(&pme_dev->list);
2329 kfree(pme_dev);
379021d5 2330 }
df17e62e 2331 }
ce300008 2332 if (!list_empty(&pci_pme_list))
ea00353f
LW
2333 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2334 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
2335 mutex_unlock(&pci_pme_list_mutex);
2336}
2337
2cef548a 2338static void __pci_pme_active(struct pci_dev *dev, bool enable)
eb9d0fe4
RW
2339{
2340 u16 pmcsr;
2341
ffaddbe8 2342 if (!dev->pme_support)
eb9d0fe4
RW
2343 return;
2344
337001b6 2345 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
eb9d0fe4
RW
2346 /* Clear PME_Status by writing 1 to it and enable PME# */
2347 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2348 if (!enable)
2349 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2350
337001b6 2351 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2cef548a
RW
2352}
2353
0ce3fcaf
RW
2354/**
2355 * pci_pme_restore - Restore PME configuration after config space restore.
2356 * @dev: PCI device to update.
2357 */
2358void pci_pme_restore(struct pci_dev *dev)
dc15e71e
RW
2359{
2360 u16 pmcsr;
2361
2362 if (!dev->pme_support)
2363 return;
2364
2365 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2366 if (dev->wakeup_prepared) {
2367 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
0ce3fcaf 2368 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
dc15e71e
RW
2369 } else {
2370 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2371 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2372 }
2373 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2374}
2375
2cef548a
RW
2376/**
2377 * pci_pme_active - enable or disable PCI device's PME# function
2378 * @dev: PCI device to handle.
2379 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2380 *
2381 * The caller must verify that the device is capable of generating PME# before
2382 * calling this function with @enable equal to 'true'.
2383 */
2384void pci_pme_active(struct pci_dev *dev, bool enable)
2385{
2386 __pci_pme_active(dev, enable);
eb9d0fe4 2387
6e965e0d
HY
2388 /*
2389 * PCI (as opposed to PCIe) PME requires that the device have
2390 * its PME# line hooked up correctly. Not all hardware vendors
2391 * do this, so the PME never gets delivered and the device
2392 * remains asleep. The easiest way around this is to
2393 * periodically walk the list of suspended devices and check
2394 * whether any have their PME flag set. The assumption is that
2395 * we'll wake up often enough anyway that this won't be a huge
2396 * hit, and the power savings from the devices will still be a
2397 * win.
2398 *
2399 * Although PCIe uses in-band PME message instead of PME# line
2400 * to report PME, PME does not work for some PCIe devices in
2401 * reality. For example, there are devices that set their PME
2402 * status bits, but don't really bother to send a PME message;
2403 * there are PCI Express Root Ports that don't bother to
2404 * trigger interrupts when they receive PME messages from the
2405 * devices below. So PME poll is used for PCIe devices too.
2406 */
df17e62e 2407
379021d5 2408 if (dev->pme_poll) {
df17e62e
MG
2409 struct pci_pme_device *pme_dev;
2410 if (enable) {
2411 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2412 GFP_KERNEL);
0394cb19 2413 if (!pme_dev) {
7506dc79 2414 pci_warn(dev, "can't enable PME#\n");
0394cb19
BH
2415 return;
2416 }
df17e62e
MG
2417 pme_dev->dev = dev;
2418 mutex_lock(&pci_pme_list_mutex);
2419 list_add(&pme_dev->list, &pci_pme_list);
2420 if (list_is_singular(&pci_pme_list))
ea00353f
LW
2421 queue_delayed_work(system_freezable_wq,
2422 &pci_pme_work,
2423 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
2424 mutex_unlock(&pci_pme_list_mutex);
2425 } else {
2426 mutex_lock(&pci_pme_list_mutex);
2427 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2428 if (pme_dev->dev == dev) {
2429 list_del(&pme_dev->list);
2430 kfree(pme_dev);
2431 break;
2432 }
2433 }
2434 mutex_unlock(&pci_pme_list_mutex);
2435 }
2436 }
2437
7506dc79 2438 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
eb9d0fe4 2439}
b7fe9434 2440EXPORT_SYMBOL(pci_pme_active);
eb9d0fe4 2441
1da177e4 2442/**
cfcadfaa 2443 * __pci_enable_wake - enable PCI device as wakeup event source
075c1771
DB
2444 * @dev: PCI device affected
2445 * @state: PCI state from which device will issue wakeup events
2446 * @enable: True to enable event generation; false to disable
2447 *
2448 * This enables the device as a wakeup event source, or disables it.
2449 * When such events involves platform-specific hooks, those hooks are
2450 * called automatically by this routine.
2451 *
2452 * Devices with legacy power management (no standard PCI PM capabilities)
eb9d0fe4 2453 * always require such platform hooks.
075c1771 2454 *
eb9d0fe4
RW
2455 * RETURN VALUE:
2456 * 0 is returned on success
2457 * -EINVAL is returned if device is not supposed to wake up the system
2458 * Error code depending on the platform is returned if both the platform and
2459 * the native mechanism fail to enable the generation of wake-up events
1da177e4 2460 */
cfcadfaa 2461static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1da177e4 2462{
5bcc2fb4 2463 int ret = 0;
075c1771 2464
baecc470 2465 /*
ac86e8ee
MW
2466 * Bridges that are not power-manageable directly only signal
2467 * wakeup on behalf of subordinate devices which is set up
2468 * elsewhere, so skip them. However, bridges that are
2469 * power-manageable may signal wakeup for themselves (for example,
2470 * on a hotplug event) and they need to be covered here.
baecc470 2471 */
ac86e8ee 2472 if (!pci_power_manageable(dev))
baecc470
RW
2473 return 0;
2474
0ce3fcaf
RW
2475 /* Don't do the same thing twice in a row for one device. */
2476 if (!!enable == !!dev->wakeup_prepared)
e80bb09d
RW
2477 return 0;
2478
eb9d0fe4
RW
2479 /*
2480 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2481 * Anderson we should be doing PME# wake enable followed by ACPI wake
2482 * enable. To disable wake-up we call the platform first, for symmetry.
075c1771 2483 */
1da177e4 2484
5bcc2fb4
RW
2485 if (enable) {
2486 int error;
1da177e4 2487
5bcc2fb4
RW
2488 if (pci_pme_capable(dev, state))
2489 pci_pme_active(dev, true);
2490 else
2491 ret = 1;
0847684c 2492 error = platform_pci_set_wakeup(dev, true);
5bcc2fb4
RW
2493 if (ret)
2494 ret = error;
e80bb09d
RW
2495 if (!ret)
2496 dev->wakeup_prepared = true;
5bcc2fb4 2497 } else {
0847684c 2498 platform_pci_set_wakeup(dev, false);
5bcc2fb4 2499 pci_pme_active(dev, false);
e80bb09d 2500 dev->wakeup_prepared = false;
5bcc2fb4 2501 }
1da177e4 2502
5bcc2fb4 2503 return ret;
eb9d0fe4 2504}
cfcadfaa
RW
2505
2506/**
2507 * pci_enable_wake - change wakeup settings for a PCI device
2508 * @pci_dev: Target device
2509 * @state: PCI state from which device will issue wakeup events
2510 * @enable: Whether or not to enable event generation
2511 *
2512 * If @enable is set, check device_may_wakeup() for the device before calling
2513 * __pci_enable_wake() for it.
2514 */
2515int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2516{
2517 if (enable && !device_may_wakeup(&pci_dev->dev))
2518 return -EINVAL;
2519
2520 return __pci_enable_wake(pci_dev, state, enable);
2521}
0847684c 2522EXPORT_SYMBOL(pci_enable_wake);
1da177e4 2523
0235c4fc
RW
2524/**
2525 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2526 * @dev: PCI device to prepare
2527 * @enable: True to enable wake-up event generation; false to disable
2528 *
2529 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2530 * and this function allows them to set that up cleanly - pci_enable_wake()
2531 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2532 * ordering constraints.
2533 *
cfcadfaa
RW
2534 * This function only returns error code if the device is not allowed to wake
2535 * up the system from sleep or it is not capable of generating PME# from both
2536 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
0235c4fc
RW
2537 */
2538int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2539{
2540 return pci_pme_capable(dev, PCI_D3cold) ?
2541 pci_enable_wake(dev, PCI_D3cold, enable) :
2542 pci_enable_wake(dev, PCI_D3hot, enable);
2543}
b7fe9434 2544EXPORT_SYMBOL(pci_wake_from_d3);
0235c4fc 2545
404cc2d8 2546/**
37139074
JB
2547 * pci_target_state - find an appropriate low power state for a given PCI dev
2548 * @dev: PCI device
666ff6f8 2549 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
37139074
JB
2550 *
2551 * Use underlying platform code to find a supported low power state for @dev.
2552 * If the platform can't manage @dev, return the deepest state from which it
2553 * can generate wake events, based on any available PME info.
404cc2d8 2554 */
666ff6f8 2555static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
404cc2d8
RW
2556{
2557 pci_power_t target_state = PCI_D3hot;
404cc2d8
RW
2558
2559 if (platform_pci_power_manageable(dev)) {
2560 /*
60ee031a 2561 * Call the platform to find the target state for the device.
404cc2d8
RW
2562 */
2563 pci_power_t state = platform_pci_choose_state(dev);
2564
2565 switch (state) {
2566 case PCI_POWER_ERROR:
2567 case PCI_UNKNOWN:
2568 break;
2569 case PCI_D1:
2570 case PCI_D2:
2571 if (pci_no_d1d2(dev))
2572 break;
df561f66 2573 fallthrough;
404cc2d8
RW
2574 default:
2575 target_state = state;
404cc2d8 2576 }
4132a577
LW
2577
2578 return target_state;
2579 }
2580
2581 if (!dev->pm_cap)
d2abdf62 2582 target_state = PCI_D0;
4132a577
LW
2583
2584 /*
2585 * If the device is in D3cold even though it's not power-manageable by
2586 * the platform, it may have been powered down by non-standard means.
2587 * Best to let it slumber.
2588 */
2589 if (dev->current_state == PCI_D3cold)
2590 target_state = PCI_D3cold;
2591
666ff6f8 2592 if (wakeup) {
404cc2d8
RW
2593 /*
2594 * Find the deepest state from which the device can generate
60ee031a 2595 * PME#.
404cc2d8 2596 */
337001b6
RW
2597 if (dev->pme_support) {
2598 while (target_state
2599 && !(dev->pme_support & (1 << target_state)))
2600 target_state--;
404cc2d8
RW
2601 }
2602 }
2603
e5899e1b
RW
2604 return target_state;
2605}
2606
2607/**
74356add
BH
2608 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2609 * into a sleep state
e5899e1b
RW
2610 * @dev: Device to handle.
2611 *
2612 * Choose the power state appropriate for the device depending on whether
2613 * it can wake up the system and/or is power manageable by the platform
2614 * (PCI_D3hot is the default) and put the device into that state.
2615 */
2616int pci_prepare_to_sleep(struct pci_dev *dev)
2617{
666ff6f8
RW
2618 bool wakeup = device_may_wakeup(&dev->dev);
2619 pci_power_t target_state = pci_target_state(dev, wakeup);
e5899e1b
RW
2620 int error;
2621
2622 if (target_state == PCI_POWER_ERROR)
2623 return -EIO;
2624
a697f072
DB
2625 /*
2626 * There are systems (for example, Intel mobile chips since Coffee
2627 * Lake) where the power drawn while suspended can be significantly
2628 * reduced by disabling PTM on PCIe root ports as this allows the
2629 * port to enter a lower-power PM state and the SoC to reach a
2630 * lower-power idle state as a whole.
2631 */
2632 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2633 pci_disable_ptm(dev);
2634
666ff6f8 2635 pci_enable_wake(dev, target_state, wakeup);
c157dfa3 2636
404cc2d8
RW
2637 error = pci_set_power_state(dev, target_state);
2638
a697f072 2639 if (error) {
404cc2d8 2640 pci_enable_wake(dev, target_state, false);
a697f072
DB
2641 pci_restore_ptm_state(dev);
2642 }
404cc2d8
RW
2643
2644 return error;
2645}
b7fe9434 2646EXPORT_SYMBOL(pci_prepare_to_sleep);
404cc2d8
RW
2647
2648/**
74356add
BH
2649 * pci_back_from_sleep - turn PCI device on during system-wide transition
2650 * into working state
404cc2d8
RW
2651 * @dev: Device to handle.
2652 *
88393161 2653 * Disable device's system wake-up capability and put it into D0.
404cc2d8
RW
2654 */
2655int pci_back_from_sleep(struct pci_dev *dev)
2656{
2657 pci_enable_wake(dev, PCI_D0, false);
2658 return pci_set_power_state(dev, PCI_D0);
2659}
b7fe9434 2660EXPORT_SYMBOL(pci_back_from_sleep);
404cc2d8 2661
6cbf8214
RW
2662/**
2663 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2664 * @dev: PCI device being suspended.
2665 *
2666 * Prepare @dev to generate wake-up events at run time and put it into a low
2667 * power state.
2668 */
2669int pci_finish_runtime_suspend(struct pci_dev *dev)
2670{
666ff6f8 2671 pci_power_t target_state;
6cbf8214
RW
2672 int error;
2673
666ff6f8 2674 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
6cbf8214
RW
2675 if (target_state == PCI_POWER_ERROR)
2676 return -EIO;
2677
448bd857
HY
2678 dev->runtime_d3cold = target_state == PCI_D3cold;
2679
a697f072
DB
2680 /*
2681 * There are systems (for example, Intel mobile chips since Coffee
2682 * Lake) where the power drawn while suspended can be significantly
2683 * reduced by disabling PTM on PCIe root ports as this allows the
2684 * port to enter a lower-power PM state and the SoC to reach a
2685 * lower-power idle state as a whole.
2686 */
2687 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2688 pci_disable_ptm(dev);
2689
cfcadfaa 2690 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
6cbf8214
RW
2691
2692 error = pci_set_power_state(dev, target_state);
2693
448bd857 2694 if (error) {
0847684c 2695 pci_enable_wake(dev, target_state, false);
a697f072 2696 pci_restore_ptm_state(dev);
448bd857
HY
2697 dev->runtime_d3cold = false;
2698 }
6cbf8214
RW
2699
2700 return error;
2701}
2702
b67ea761
RW
2703/**
2704 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2705 * @dev: Device to check.
2706 *
f7625980 2707 * Return true if the device itself is capable of generating wake-up events
b67ea761
RW
2708 * (through the platform or using the native PCIe PME) or if the device supports
2709 * PME and one of its upstream bridges can generate wake-up events.
2710 */
2711bool pci_dev_run_wake(struct pci_dev *dev)
2712{
2713 struct pci_bus *bus = dev->bus;
2714
b67ea761
RW
2715 if (!dev->pme_support)
2716 return false;
2717
666ff6f8 2718 /* PME-capable in principle, but not from the target power state */
8feaec33 2719 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
6496ebd7
AS
2720 return false;
2721
8feaec33
KHF
2722 if (device_can_wakeup(&dev->dev))
2723 return true;
2724
b67ea761
RW
2725 while (bus->parent) {
2726 struct pci_dev *bridge = bus->self;
2727
de3ef1eb 2728 if (device_can_wakeup(&bridge->dev))
b67ea761
RW
2729 return true;
2730
2731 bus = bus->parent;
2732 }
2733
2734 /* We have reached the root bus. */
2735 if (bus->bridge)
de3ef1eb 2736 return device_can_wakeup(bus->bridge);
b67ea761
RW
2737
2738 return false;
2739}
2740EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2741
bac2a909 2742/**
0c7376ad 2743 * pci_dev_need_resume - Check if it is necessary to resume the device.
bac2a909
RW
2744 * @pci_dev: Device to check.
2745 *
0c7376ad 2746 * Return 'true' if the device is not runtime-suspended or it has to be
bac2a909 2747 * reconfigured due to wakeup settings difference between system and runtime
0c7376ad
RW
2748 * suspend, or the current power state of it is not suitable for the upcoming
2749 * (system-wide) transition.
bac2a909 2750 */
0c7376ad 2751bool pci_dev_need_resume(struct pci_dev *pci_dev)
bac2a909
RW
2752{
2753 struct device *dev = &pci_dev->dev;
234f223d
RW
2754 pci_power_t target_state;
2755
2756 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
0c7376ad 2757 return true;
bac2a909 2758
0c7376ad 2759 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
234f223d
RW
2760
2761 /*
2762 * If the earlier platform check has not triggered, D3cold is just power
2763 * removal on top of D3hot, so no need to resume the device in that
2764 * case.
2765 */
0c7376ad
RW
2766 return target_state != pci_dev->current_state &&
2767 target_state != PCI_D3cold &&
2768 pci_dev->current_state != PCI_D3hot;
2769}
2770
2771/**
2772 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2773 * @pci_dev: Device to check.
2774 *
2775 * If the device is suspended and it is not configured for system wakeup,
2776 * disable PME for it to prevent it from waking up the system unnecessarily.
2777 *
2778 * Note that if the device's power state is D3cold and the platform check in
2779 * pci_dev_need_resume() has not triggered, the device's configuration need not
2780 * be changed.
2781 */
2782void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2783{
2784 struct device *dev = &pci_dev->dev;
bac2a909 2785
2cef548a
RW
2786 spin_lock_irq(&dev->power.lock);
2787
0c7376ad
RW
2788 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2789 pci_dev->current_state < PCI_D3cold)
2cef548a
RW
2790 __pci_pme_active(pci_dev, false);
2791
2792 spin_unlock_irq(&dev->power.lock);
2cef548a
RW
2793}
2794
2795/**
2796 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2797 * @pci_dev: Device to handle.
2798 *
2799 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2800 * it might have been disabled during the prepare phase of system suspend if
2801 * the device was not configured for system wakeup.
2802 */
2803void pci_dev_complete_resume(struct pci_dev *pci_dev)
2804{
2805 struct device *dev = &pci_dev->dev;
2806
2807 if (!pci_dev_run_wake(pci_dev))
2808 return;
2809
2810 spin_lock_irq(&dev->power.lock);
2811
2812 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2813 __pci_pme_active(pci_dev, true);
2814
2815 spin_unlock_irq(&dev->power.lock);
bac2a909
RW
2816}
2817
b3c32c4f
HY
2818void pci_config_pm_runtime_get(struct pci_dev *pdev)
2819{
2820 struct device *dev = &pdev->dev;
2821 struct device *parent = dev->parent;
2822
2823 if (parent)
2824 pm_runtime_get_sync(parent);
2825 pm_runtime_get_noresume(dev);
2826 /*
2827 * pdev->current_state is set to PCI_D3cold during suspending,
2828 * so wait until suspending completes
2829 */
2830 pm_runtime_barrier(dev);
2831 /*
2832 * Only need to resume devices in D3cold, because config
2833 * registers are still accessible for devices suspended but
2834 * not in D3cold.
2835 */
2836 if (pdev->current_state == PCI_D3cold)
2837 pm_runtime_resume(dev);
2838}
2839
2840void pci_config_pm_runtime_put(struct pci_dev *pdev)
2841{
2842 struct device *dev = &pdev->dev;
2843 struct device *parent = dev->parent;
2844
2845 pm_runtime_put(dev);
2846 if (parent)
2847 pm_runtime_put_sync(parent);
2848}
2849
85b0cae8
MW
2850static const struct dmi_system_id bridge_d3_blacklist[] = {
2851#ifdef CONFIG_X86
2852 {
2853 /*
2854 * Gigabyte X299 root port is not marked as hotplug capable
2855 * which allows Linux to power manage it. However, this
2856 * confuses the BIOS SMI handler so don't power manage root
2857 * ports on that system.
2858 */
2859 .ident = "X299 DESIGNARE EX-CF",
2860 .matches = {
2861 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2862 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2863 },
2864 },
2865#endif
2866 { }
2867};
2868
9d26d3a8
MW
2869/**
2870 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2871 * @bridge: Bridge to check
2872 *
2873 * This function checks if it is possible to move the bridge to D3.
47a8e237 2874 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
9d26d3a8 2875 */
c6a63307 2876bool pci_bridge_d3_possible(struct pci_dev *bridge)
9d26d3a8 2877{
9d26d3a8
MW
2878 if (!pci_is_pcie(bridge))
2879 return false;
2880
2881 switch (pci_pcie_type(bridge)) {
2882 case PCI_EXP_TYPE_ROOT_PORT:
2883 case PCI_EXP_TYPE_UPSTREAM:
2884 case PCI_EXP_TYPE_DOWNSTREAM:
2885 if (pci_bridge_d3_disable)
2886 return false;
97a90aee
LW
2887
2888 /*
eb3b5bf1 2889 * Hotplug ports handled by firmware in System Management Mode
97a90aee 2890 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
97a90aee 2891 */
eb3b5bf1 2892 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
97a90aee
LW
2893 return false;
2894
9d26d3a8
MW
2895 if (pci_bridge_d3_force)
2896 return true;
2897
47a8e237
LW
2898 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2899 if (bridge->is_thunderbolt)
2900 return true;
2901
26ad34d5
MW
2902 /* Platform might know better if the bridge supports D3 */
2903 if (platform_pci_bridge_d3(bridge))
2904 return true;
2905
eb3b5bf1
LW
2906 /*
2907 * Hotplug ports handled natively by the OS were not validated
2908 * by vendors for runtime D3 at least until 2018 because there
2909 * was no OS support.
2910 */
2911 if (bridge->is_hotplug_bridge)
2912 return false;
2913
85b0cae8
MW
2914 if (dmi_check_system(bridge_d3_blacklist))
2915 return false;
2916
9d26d3a8
MW
2917 /*
2918 * It should be safe to put PCIe ports from 2015 or newer
2919 * to D3.
2920 */
ac95090a 2921 if (dmi_get_bios_year() >= 2015)
9d26d3a8 2922 return true;
9d26d3a8
MW
2923 break;
2924 }
2925
2926 return false;
2927}
2928
2929static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2930{
2931 bool *d3cold_ok = data;
9d26d3a8 2932
718a0609
LW
2933 if (/* The device needs to be allowed to go D3cold ... */
2934 dev->no_d3cold || !dev->d3cold_allowed ||
2935
2936 /* ... and if it is wakeup capable to do so from D3cold. */
2937 (device_may_wakeup(&dev->dev) &&
2938 !pci_pme_capable(dev, PCI_D3cold)) ||
2939
2940 /* If it is a bridge it must be allowed to go to D3. */
d98e0929 2941 !pci_power_manageable(dev))
9d26d3a8 2942
718a0609 2943 *d3cold_ok = false;
9d26d3a8 2944
718a0609 2945 return !*d3cold_ok;
9d26d3a8
MW
2946}
2947
2948/*
2949 * pci_bridge_d3_update - Update bridge D3 capabilities
2950 * @dev: PCI device which is changed
9d26d3a8
MW
2951 *
2952 * Update upstream bridge PM capabilities accordingly depending on if the
2953 * device PM configuration was changed or the device is being removed. The
2954 * change is also propagated upstream.
2955 */
1ed276a7 2956void pci_bridge_d3_update(struct pci_dev *dev)
9d26d3a8 2957{
1ed276a7 2958 bool remove = !device_is_registered(&dev->dev);
9d26d3a8
MW
2959 struct pci_dev *bridge;
2960 bool d3cold_ok = true;
2961
2962 bridge = pci_upstream_bridge(dev);
2963 if (!bridge || !pci_bridge_d3_possible(bridge))
2964 return;
2965
9d26d3a8 2966 /*
e8559b71
LW
2967 * If D3 is currently allowed for the bridge, removing one of its
2968 * children won't change that.
2969 */
2970 if (remove && bridge->bridge_d3)
2971 return;
2972
2973 /*
2974 * If D3 is currently allowed for the bridge and a child is added or
2975 * changed, disallowance of D3 can only be caused by that child, so
2976 * we only need to check that single device, not any of its siblings.
2977 *
2978 * If D3 is currently not allowed for the bridge, checking the device
2979 * first may allow us to skip checking its siblings.
9d26d3a8
MW
2980 */
2981 if (!remove)
2982 pci_dev_check_d3cold(dev, &d3cold_ok);
2983
e8559b71
LW
2984 /*
2985 * If D3 is currently not allowed for the bridge, this may be caused
2986 * either by the device being changed/removed or any of its siblings,
2987 * so we need to go through all children to find out if one of them
2988 * continues to block D3.
2989 */
2990 if (d3cold_ok && !bridge->bridge_d3)
9d26d3a8
MW
2991 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2992 &d3cold_ok);
9d26d3a8
MW
2993
2994 if (bridge->bridge_d3 != d3cold_ok) {
2995 bridge->bridge_d3 = d3cold_ok;
2996 /* Propagate change to upstream bridges */
1ed276a7 2997 pci_bridge_d3_update(bridge);
9d26d3a8 2998 }
9d26d3a8
MW
2999}
3000
9d26d3a8
MW
3001/**
3002 * pci_d3cold_enable - Enable D3cold for device
3003 * @dev: PCI device to handle
3004 *
3005 * This function can be used in drivers to enable D3cold from the device
3006 * they handle. It also updates upstream PCI bridge PM capabilities
3007 * accordingly.
3008 */
3009void pci_d3cold_enable(struct pci_dev *dev)
3010{
3011 if (dev->no_d3cold) {
3012 dev->no_d3cold = false;
1ed276a7 3013 pci_bridge_d3_update(dev);
9d26d3a8
MW
3014 }
3015}
3016EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3017
3018/**
3019 * pci_d3cold_disable - Disable D3cold for device
3020 * @dev: PCI device to handle
3021 *
3022 * This function can be used in drivers to disable D3cold from the device
3023 * they handle. It also updates upstream PCI bridge PM capabilities
3024 * accordingly.
3025 */
3026void pci_d3cold_disable(struct pci_dev *dev)
3027{
3028 if (!dev->no_d3cold) {
3029 dev->no_d3cold = true;
1ed276a7 3030 pci_bridge_d3_update(dev);
9d26d3a8
MW
3031 }
3032}
3033EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3034
eb9d0fe4
RW
3035/**
3036 * pci_pm_init - Initialize PM functions of given PCI device
3037 * @dev: PCI device to handle.
3038 */
3039void pci_pm_init(struct pci_dev *dev)
3040{
3041 int pm;
d6112f8d 3042 u16 status;
eb9d0fe4 3043 u16 pmc;
1da177e4 3044
bb910a70 3045 pm_runtime_forbid(&dev->dev);
967577b0
HY
3046 pm_runtime_set_active(&dev->dev);
3047 pm_runtime_enable(&dev->dev);
a1e4d72c 3048 device_enable_async_suspend(&dev->dev);
e80bb09d 3049 dev->wakeup_prepared = false;
bb910a70 3050
337001b6 3051 dev->pm_cap = 0;
ffaddbe8 3052 dev->pme_support = 0;
337001b6 3053
eb9d0fe4
RW
3054 /* find PCI PM capability in list */
3055 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3056 if (!pm)
50246dd4 3057 return;
eb9d0fe4
RW
3058 /* Check device's ability to generate PME# */
3059 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
075c1771 3060
eb9d0fe4 3061 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
7506dc79 3062 pci_err(dev, "unsupported PM cap regs version (%u)\n",
eb9d0fe4 3063 pmc & PCI_PM_CAP_VER_MASK);
50246dd4 3064 return;
eb9d0fe4
RW
3065 }
3066
337001b6 3067 dev->pm_cap = pm;
3789af9a 3068 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
448bd857 3069 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
9d26d3a8 3070 dev->bridge_d3 = pci_bridge_d3_possible(dev);
4f9c1397 3071 dev->d3cold_allowed = true;
337001b6
RW
3072
3073 dev->d1_support = false;
3074 dev->d2_support = false;
3075 if (!pci_no_d1d2(dev)) {
c9ed77ee 3076 if (pmc & PCI_PM_CAP_D1)
337001b6 3077 dev->d1_support = true;
c9ed77ee 3078 if (pmc & PCI_PM_CAP_D2)
337001b6 3079 dev->d2_support = true;
c9ed77ee
BH
3080
3081 if (dev->d1_support || dev->d2_support)
34c6b710 3082 pci_info(dev, "supports%s%s\n",
ec84f126
JB
3083 dev->d1_support ? " D1" : "",
3084 dev->d2_support ? " D2" : "");
337001b6
RW
3085 }
3086
3087 pmc &= PCI_PM_CAP_PME_MASK;
3088 if (pmc) {
34c6b710 3089 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
c9ed77ee
BH
3090 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3091 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3092 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3789af9a 3093 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
c9ed77ee 3094 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
337001b6 3095 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
379021d5 3096 dev->pme_poll = true;
eb9d0fe4
RW
3097 /*
3098 * Make device's PM flags reflect the wake-up capability, but
3099 * let the user space enable it to wake up the system as needed.
3100 */
3101 device_set_wakeup_capable(&dev->dev, true);
eb9d0fe4 3102 /* Disable the PME# generation functionality */
337001b6 3103 pci_pme_active(dev, false);
eb9d0fe4 3104 }
d6112f8d
FB
3105
3106 pci_read_config_word(dev, PCI_STATUS, &status);
3107 if (status & PCI_STATUS_IMM_READY)
3108 dev->imm_ready = 1;
1da177e4
LT
3109}
3110
938174e5
SS
3111static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3112{
92efb1bd 3113 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
938174e5
SS
3114
3115 switch (prop) {
3116 case PCI_EA_P_MEM:
3117 case PCI_EA_P_VF_MEM:
3118 flags |= IORESOURCE_MEM;
3119 break;
3120 case PCI_EA_P_MEM_PREFETCH:
3121 case PCI_EA_P_VF_MEM_PREFETCH:
3122 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3123 break;
3124 case PCI_EA_P_IO:
3125 flags |= IORESOURCE_IO;
3126 break;
3127 default:
3128 return 0;
3129 }
3130
3131 return flags;
3132}
3133
3134static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3135 u8 prop)
3136{
3137 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3138 return &dev->resource[bei];
11183991
DD
3139#ifdef CONFIG_PCI_IOV
3140 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3141 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3142 return &dev->resource[PCI_IOV_RESOURCES +
3143 bei - PCI_EA_BEI_VF_BAR0];
3144#endif
938174e5
SS
3145 else if (bei == PCI_EA_BEI_ROM)
3146 return &dev->resource[PCI_ROM_RESOURCE];
3147 else
3148 return NULL;
3149}
3150
3151/* Read an Enhanced Allocation (EA) entry */
3152static int pci_ea_read(struct pci_dev *dev, int offset)
3153{
3154 struct resource *res;
3155 int ent_size, ent_offset = offset;
3156 resource_size_t start, end;
3157 unsigned long flags;
26635112 3158 u32 dw0, bei, base, max_offset;
938174e5
SS
3159 u8 prop;
3160 bool support_64 = (sizeof(resource_size_t) >= 8);
3161
3162 pci_read_config_dword(dev, ent_offset, &dw0);
3163 ent_offset += 4;
3164
3165 /* Entry size field indicates DWORDs after 1st */
3166 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3167
3168 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3169 goto out;
3170
26635112
BH
3171 bei = (dw0 & PCI_EA_BEI) >> 4;
3172 prop = (dw0 & PCI_EA_PP) >> 8;
3173
938174e5
SS
3174 /*
3175 * If the Property is in the reserved range, try the Secondary
3176 * Property instead.
3177 */
3178 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
26635112 3179 prop = (dw0 & PCI_EA_SP) >> 16;
938174e5
SS
3180 if (prop > PCI_EA_P_BRIDGE_IO)
3181 goto out;
3182
26635112 3183 res = pci_ea_get_resource(dev, bei, prop);
938174e5 3184 if (!res) {
7506dc79 3185 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
938174e5
SS
3186 goto out;
3187 }
3188
3189 flags = pci_ea_flags(dev, prop);
3190 if (!flags) {
7506dc79 3191 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
938174e5
SS
3192 goto out;
3193 }
3194
3195 /* Read Base */
3196 pci_read_config_dword(dev, ent_offset, &base);
3197 start = (base & PCI_EA_FIELD_MASK);
3198 ent_offset += 4;
3199
3200 /* Read MaxOffset */
3201 pci_read_config_dword(dev, ent_offset, &max_offset);
3202 ent_offset += 4;
3203
3204 /* Read Base MSBs (if 64-bit entry) */
3205 if (base & PCI_EA_IS_64) {
3206 u32 base_upper;
3207
3208 pci_read_config_dword(dev, ent_offset, &base_upper);
3209 ent_offset += 4;
3210
3211 flags |= IORESOURCE_MEM_64;
3212
3213 /* entry starts above 32-bit boundary, can't use */
3214 if (!support_64 && base_upper)
3215 goto out;
3216
3217 if (support_64)
3218 start |= ((u64)base_upper << 32);
3219 }
3220
3221 end = start + (max_offset | 0x03);
3222
3223 /* Read MaxOffset MSBs (if 64-bit entry) */
3224 if (max_offset & PCI_EA_IS_64) {
3225 u32 max_offset_upper;
3226
3227 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3228 ent_offset += 4;
3229
3230 flags |= IORESOURCE_MEM_64;
3231
3232 /* entry too big, can't use */
3233 if (!support_64 && max_offset_upper)
3234 goto out;
3235
3236 if (support_64)
3237 end += ((u64)max_offset_upper << 32);
3238 }
3239
3240 if (end < start) {
7506dc79 3241 pci_err(dev, "EA Entry crosses address boundary\n");
938174e5
SS
3242 goto out;
3243 }
3244
3245 if (ent_size != ent_offset - offset) {
7506dc79 3246 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
938174e5
SS
3247 ent_size, ent_offset - offset);
3248 goto out;
3249 }
3250
3251 res->name = pci_name(dev);
3252 res->start = start;
3253 res->end = end;
3254 res->flags = flags;
597becb4
BH
3255
3256 if (bei <= PCI_EA_BEI_BAR5)
34c6b710 3257 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
597becb4
BH
3258 bei, res, prop);
3259 else if (bei == PCI_EA_BEI_ROM)
34c6b710 3260 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
597becb4
BH
3261 res, prop);
3262 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
34c6b710 3263 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
597becb4
BH
3264 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3265 else
34c6b710 3266 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
597becb4
BH
3267 bei, res, prop);
3268
938174e5
SS
3269out:
3270 return offset + ent_size;
3271}
3272
dcbb408a 3273/* Enhanced Allocation Initialization */
938174e5
SS
3274void pci_ea_init(struct pci_dev *dev)
3275{
3276 int ea;
3277 u8 num_ent;
3278 int offset;
3279 int i;
3280
3281 /* find PCI EA capability in list */
3282 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3283 if (!ea)
3284 return;
3285
3286 /* determine the number of entries */
3287 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3288 &num_ent);
3289 num_ent &= PCI_EA_NUM_ENT_MASK;
3290
3291 offset = ea + PCI_EA_FIRST_ENT;
3292
3293 /* Skip DWORD 2 for type 1 functions */
3294 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3295 offset += 4;
3296
3297 /* parse each EA entry */
3298 for (i = 0; i < num_ent; ++i)
3299 offset = pci_ea_read(dev, offset);
3300}
3301
34a4876e
YL
3302static void pci_add_saved_cap(struct pci_dev *pci_dev,
3303 struct pci_cap_saved_state *new_cap)
3304{
3305 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3306}
3307
63f4898a 3308/**
fd0f7f73 3309 * _pci_add_cap_save_buffer - allocate buffer for saving given
74356add 3310 * capability registers
63f4898a
RW
3311 * @dev: the PCI device
3312 * @cap: the capability to allocate the buffer for
fd0f7f73 3313 * @extended: Standard or Extended capability ID
63f4898a
RW
3314 * @size: requested size of the buffer
3315 */
fd0f7f73
AW
3316static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3317 bool extended, unsigned int size)
63f4898a
RW
3318{
3319 int pos;
3320 struct pci_cap_saved_state *save_state;
3321
fd0f7f73
AW
3322 if (extended)
3323 pos = pci_find_ext_capability(dev, cap);
3324 else
3325 pos = pci_find_capability(dev, cap);
3326
0a1a9b49 3327 if (!pos)
63f4898a
RW
3328 return 0;
3329
3330 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3331 if (!save_state)
3332 return -ENOMEM;
3333
24a4742f 3334 save_state->cap.cap_nr = cap;
fd0f7f73 3335 save_state->cap.cap_extended = extended;
24a4742f 3336 save_state->cap.size = size;
63f4898a
RW
3337 pci_add_saved_cap(dev, save_state);
3338
3339 return 0;
3340}
3341
fd0f7f73
AW
3342int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3343{
3344 return _pci_add_cap_save_buffer(dev, cap, false, size);
3345}
3346
3347int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3348{
3349 return _pci_add_cap_save_buffer(dev, cap, true, size);
3350}
3351
63f4898a
RW
3352/**
3353 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3354 * @dev: the PCI device
3355 */
3356void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3357{
3358 int error;
3359
89858517
YZ
3360 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3361 PCI_EXP_SAVE_REGS * sizeof(u16));
63f4898a 3362 if (error)
7506dc79 3363 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
63f4898a
RW
3364
3365 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3366 if (error)
7506dc79 3367 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
425c1b22 3368
dbbfadf2
BH
3369 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3370 2 * sizeof(u16));
3371 if (error)
3372 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3373
425c1b22 3374 pci_allocate_vc_save_buffers(dev);
63f4898a
RW
3375}
3376
f796841e
YL
3377void pci_free_cap_save_buffers(struct pci_dev *dev)
3378{
3379 struct pci_cap_saved_state *tmp;
b67bfe0d 3380 struct hlist_node *n;
f796841e 3381
b67bfe0d 3382 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
f796841e
YL
3383 kfree(tmp);
3384}
3385
58c3a727 3386/**
31ab2476 3387 * pci_configure_ari - enable or disable ARI forwarding
58c3a727 3388 * @dev: the PCI device
b0cc6020
YW
3389 *
3390 * If @dev and its upstream bridge both support ARI, enable ARI in the
3391 * bridge. Otherwise, disable ARI in the bridge.
58c3a727 3392 */
31ab2476 3393void pci_configure_ari(struct pci_dev *dev)
58c3a727 3394{
58c3a727 3395 u32 cap;
8113587c 3396 struct pci_dev *bridge;
58c3a727 3397
6748dcc2 3398 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
58c3a727
YZ
3399 return;
3400
8113587c 3401 bridge = dev->bus->self;
cb97ae34 3402 if (!bridge)
8113587c
ZY
3403 return;
3404
59875ae4 3405 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
58c3a727
YZ
3406 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3407 return;
3408
b0cc6020
YW
3409 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3410 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3411 PCI_EXP_DEVCTL2_ARI);
3412 bridge->ari_enabled = 1;
3413 } else {
3414 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3415 PCI_EXP_DEVCTL2_ARI);
3416 bridge->ari_enabled = 0;
3417 }
58c3a727
YZ
3418}
3419
0a67119f
AW
3420static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3421{
3422 int pos;
83db7e0b 3423 u16 cap, ctrl;
0a67119f 3424
52fbf5bd 3425 pos = pdev->acs_cap;
0a67119f
AW
3426 if (!pos)
3427 return false;
3428
83db7e0b
AW
3429 /*
3430 * Except for egress control, capabilities are either required
3431 * or only required if controllable. Features missing from the
3432 * capability field can therefore be assumed as hard-wired enabled.
3433 */
3434 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3435 acs_flags &= (cap | PCI_ACS_EC);
3436
0a67119f
AW
3437 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3438 return (ctrl & acs_flags) == acs_flags;
3439}
3440
ad805758
AW
3441/**
3442 * pci_acs_enabled - test ACS against required flags for a given device
3443 * @pdev: device to test
3444 * @acs_flags: required PCI ACS flags
3445 *
3446 * Return true if the device supports the provided flags. Automatically
3447 * filters out flags that are not implemented on multifunction devices.
0a67119f
AW
3448 *
3449 * Note that this interface checks the effective ACS capabilities of the
3450 * device rather than the actual capabilities. For instance, most single
3451 * function endpoints are not required to support ACS because they have no
3452 * opportunity for peer-to-peer access. We therefore return 'true'
3453 * regardless of whether the device exposes an ACS capability. This makes
3454 * it much easier for callers of this function to ignore the actual type
3455 * or topology of the device when testing ACS support.
ad805758
AW
3456 */
3457bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3458{
0a67119f 3459 int ret;
ad805758
AW
3460
3461 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3462 if (ret >= 0)
3463 return ret > 0;
3464
0a67119f
AW
3465 /*
3466 * Conventional PCI and PCI-X devices never support ACS, either
3467 * effectively or actually. The shared bus topology implies that
3468 * any device on the bus can receive or snoop DMA.
3469 */
ad805758
AW
3470 if (!pci_is_pcie(pdev))
3471 return false;
3472
0a67119f
AW
3473 switch (pci_pcie_type(pdev)) {
3474 /*
3475 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
f7625980 3476 * but since their primary interface is PCI/X, we conservatively
0a67119f
AW
3477 * handle them as we would a non-PCIe device.
3478 */
3479 case PCI_EXP_TYPE_PCIE_BRIDGE:
3480 /*
3481 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3482 * applicable... must never implement an ACS Extended Capability...".
3483 * This seems arbitrary, but we take a conservative interpretation
3484 * of this statement.
3485 */
3486 case PCI_EXP_TYPE_PCI_BRIDGE:
3487 case PCI_EXP_TYPE_RC_EC:
3488 return false;
3489 /*
3490 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3491 * implement ACS in order to indicate their peer-to-peer capabilities,
3492 * regardless of whether they are single- or multi-function devices.
3493 */
3494 case PCI_EXP_TYPE_DOWNSTREAM:
3495 case PCI_EXP_TYPE_ROOT_PORT:
3496 return pci_acs_flags_enabled(pdev, acs_flags);
3497 /*
3498 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3499 * implemented by the remaining PCIe types to indicate peer-to-peer
f7625980 3500 * capabilities, but only when they are part of a multifunction
0a67119f
AW
3501 * device. The footnote for section 6.12 indicates the specific
3502 * PCIe types included here.
3503 */
3504 case PCI_EXP_TYPE_ENDPOINT:
3505 case PCI_EXP_TYPE_UPSTREAM:
3506 case PCI_EXP_TYPE_LEG_END:
3507 case PCI_EXP_TYPE_RC_END:
3508 if (!pdev->multifunction)
3509 break;
3510
0a67119f 3511 return pci_acs_flags_enabled(pdev, acs_flags);
ad805758
AW
3512 }
3513
0a67119f 3514 /*
f7625980 3515 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
0a67119f
AW
3516 * to single function devices with the exception of downstream ports.
3517 */
ad805758
AW
3518 return true;
3519}
3520
3521/**
2f0cd59c 3522 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
ad805758
AW
3523 * @start: starting downstream device
3524 * @end: ending upstream device or NULL to search to the root bus
3525 * @acs_flags: required flags
3526 *
3527 * Walk up a device tree from start to end testing PCI ACS support. If
3528 * any step along the way does not support the required flags, return false.
3529 */
3530bool pci_acs_path_enabled(struct pci_dev *start,
3531 struct pci_dev *end, u16 acs_flags)
3532{
3533 struct pci_dev *pdev, *parent = start;
3534
3535 do {
3536 pdev = parent;
3537
3538 if (!pci_acs_enabled(pdev, acs_flags))
3539 return false;
3540
3541 if (pci_is_root_bus(pdev->bus))
3542 return (end == NULL);
3543
3544 parent = pdev->bus->self;
3545 } while (pdev != end);
3546
3547 return true;
3548}
3549
52fbf5bd
RJ
3550/**
3551 * pci_acs_init - Initialize ACS if hardware supports it
3552 * @dev: the PCI device
3553 */
3554void pci_acs_init(struct pci_dev *dev)
3555{
3556 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3557
462b58fb
RJ
3558 /*
3559 * Attempt to enable ACS regardless of capability because some Root
3560 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3561 * the standard ACS capability but still support ACS via those
3562 * quirks.
3563 */
3564 pci_enable_acs(dev);
52fbf5bd
RJ
3565}
3566
276b738d
CK
3567/**
3568 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3569 * @pdev: PCI device
3570 * @bar: BAR to find
3571 *
3572 * Helper to find the position of the ctrl register for a BAR.
3573 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3574 * Returns -ENOENT if no ctrl register for the BAR could be found.
3575 */
3576static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3577{
3578 unsigned int pos, nbars, i;
3579 u32 ctrl;
3580
3581 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3582 if (!pos)
3583 return -ENOTSUPP;
3584
3585 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3586 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3587 PCI_REBAR_CTRL_NBAR_SHIFT;
3588
3589 for (i = 0; i < nbars; i++, pos += 8) {
3590 int bar_idx;
3591
3592 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3593 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3594 if (bar_idx == bar)
3595 return pos;
3596 }
3597
3598 return -ENOENT;
3599}
3600
3601/**
3602 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3603 * @pdev: PCI device
3604 * @bar: BAR to query
3605 *
3606 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3607 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3608 */
3609u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3610{
3611 int pos;
3612 u32 cap;
3613
3614 pos = pci_rebar_find_pos(pdev, bar);
3615 if (pos < 0)
3616 return 0;
3617
3618 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
907830b0
ND
3619 cap &= PCI_REBAR_CAP_SIZES;
3620
3621 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3622 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3623 bar == 0 && cap == 0x7000)
3624 cap = 0x3f000;
3625
3626 return cap >> 4;
276b738d 3627}
8fbdbb66 3628EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
276b738d
CK
3629
3630/**
3631 * pci_rebar_get_current_size - get the current size of a BAR
3632 * @pdev: PCI device
3633 * @bar: BAR to set size to
3634 *
3635 * Read the size of a BAR from the resizable BAR config.
3636 * Returns size if found or negative error code.
3637 */
3638int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3639{
3640 int pos;
3641 u32 ctrl;
3642
3643 pos = pci_rebar_find_pos(pdev, bar);
3644 if (pos < 0)
3645 return pos;
3646
3647 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
b1277a22 3648 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
276b738d
CK
3649}
3650
3651/**
3652 * pci_rebar_set_size - set a new size for a BAR
3653 * @pdev: PCI device
3654 * @bar: BAR to set size to
3655 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3656 *
3657 * Set the new size of a BAR as defined in the spec.
3658 * Returns zero if resizing was successful, error code otherwise.
3659 */
3660int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3661{
3662 int pos;
3663 u32 ctrl;
3664
3665 pos = pci_rebar_find_pos(pdev, bar);
3666 if (pos < 0)
3667 return pos;
3668
3669 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3670 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
b1277a22 3671 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
276b738d
CK
3672 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3673 return 0;
3674}
3675
430a2368
JC
3676/**
3677 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3678 * @dev: the PCI device
3679 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3680 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3681 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3682 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3683 *
3684 * Return 0 if all upstream bridges support AtomicOp routing, egress
3685 * blocking is disabled on all upstream ports, and the root port supports
3686 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3687 * AtomicOp completion), or negative otherwise.
3688 */
3689int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3690{
3691 struct pci_bus *bus = dev->bus;
3692 struct pci_dev *bridge;
3693 u32 cap, ctl2;
3694
3695 if (!pci_is_pcie(dev))
3696 return -EINVAL;
3697
3698 /*
3699 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3700 * AtomicOp requesters. For now, we only support endpoints as
3701 * requesters and root ports as completers. No endpoints as
3702 * completers, and no peer-to-peer.
3703 */
3704
3705 switch (pci_pcie_type(dev)) {
3706 case PCI_EXP_TYPE_ENDPOINT:
3707 case PCI_EXP_TYPE_LEG_END:
3708 case PCI_EXP_TYPE_RC_END:
3709 break;
3710 default:
3711 return -EINVAL;
3712 }
3713
3714 while (bus->parent) {
3715 bridge = bus->self;
3716
3717 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3718
3719 switch (pci_pcie_type(bridge)) {
3720 /* Ensure switch ports support AtomicOp routing */
3721 case PCI_EXP_TYPE_UPSTREAM:
3722 case PCI_EXP_TYPE_DOWNSTREAM:
3723 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3724 return -EINVAL;
3725 break;
3726
3727 /* Ensure root port supports all the sizes we care about */
3728 case PCI_EXP_TYPE_ROOT_PORT:
3729 if ((cap & cap_mask) != cap_mask)
3730 return -EINVAL;
3731 break;
3732 }
3733
3734 /* Ensure upstream ports don't block AtomicOps on egress */
ca784104 3735 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
430a2368
JC
3736 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3737 &ctl2);
3738 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3739 return -EINVAL;
3740 }
3741
3742 bus = bus->parent;
3743 }
3744
3745 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3746 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3747 return 0;
3748}
3749EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3750
57c2cf71
BH
3751/**
3752 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3753 * @dev: the PCI device
bb5c2de2 3754 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
57c2cf71
BH
3755 *
3756 * Perform INTx swizzling for a device behind one level of bridge. This is
3757 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
46b952a3
MW
3758 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3759 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3760 * the PCI Express Base Specification, Revision 2.1)
57c2cf71 3761 */
3df425f3 3762u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
57c2cf71 3763{
46b952a3
MW
3764 int slot;
3765
3766 if (pci_ari_enabled(dev->bus))
3767 slot = 0;
3768 else
3769 slot = PCI_SLOT(dev->devfn);
3770
3771 return (((pin - 1) + slot) % 4) + 1;
57c2cf71
BH
3772}
3773
3c78bc61 3774int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1da177e4
LT
3775{
3776 u8 pin;
3777
514d207d 3778 pin = dev->pin;
1da177e4
LT
3779 if (!pin)
3780 return -1;
878f2e50 3781
8784fd4d 3782 while (!pci_is_root_bus(dev->bus)) {
57c2cf71 3783 pin = pci_swizzle_interrupt_pin(dev, pin);
1da177e4
LT
3784 dev = dev->bus->self;
3785 }
3786 *bridge = dev;
3787 return pin;
3788}
3789
68feac87
BH
3790/**
3791 * pci_common_swizzle - swizzle INTx all the way to root bridge
3792 * @dev: the PCI device
3793 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3794 *
3795 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3796 * bridges all the way up to a PCI root bus.
3797 */
3798u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3799{
3800 u8 pin = *pinp;
3801
1eb39487 3802 while (!pci_is_root_bus(dev->bus)) {
68feac87
BH
3803 pin = pci_swizzle_interrupt_pin(dev, pin);
3804 dev = dev->bus->self;
3805 }
3806 *pinp = pin;
3807 return PCI_SLOT(dev->devfn);
3808}
e6b29dea 3809EXPORT_SYMBOL_GPL(pci_common_swizzle);
68feac87 3810
1da177e4 3811/**
74356add
BH
3812 * pci_release_region - Release a PCI bar
3813 * @pdev: PCI device whose resources were previously reserved by
3814 * pci_request_region()
3815 * @bar: BAR to release
1da177e4 3816 *
74356add
BH
3817 * Releases the PCI I/O and memory resources previously reserved by a
3818 * successful call to pci_request_region(). Call this function only
3819 * after all use of the PCI regions has ceased.
1da177e4
LT
3820 */
3821void pci_release_region(struct pci_dev *pdev, int bar)
3822{
9ac7849e
TH
3823 struct pci_devres *dr;
3824
1da177e4
LT
3825 if (pci_resource_len(pdev, bar) == 0)
3826 return;
3827 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3828 release_region(pci_resource_start(pdev, bar),
3829 pci_resource_len(pdev, bar));
3830 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3831 release_mem_region(pci_resource_start(pdev, bar),
3832 pci_resource_len(pdev, bar));
9ac7849e
TH
3833
3834 dr = find_pci_dr(pdev);
3835 if (dr)
3836 dr->region_mask &= ~(1 << bar);
1da177e4 3837}
b7fe9434 3838EXPORT_SYMBOL(pci_release_region);
1da177e4
LT
3839
3840/**
74356add
BH
3841 * __pci_request_region - Reserved PCI I/O and memory resource
3842 * @pdev: PCI device whose resources are to be reserved
3843 * @bar: BAR to be reserved
3844 * @res_name: Name to be associated with resource.
3845 * @exclusive: whether the region access is exclusive or not
1da177e4 3846 *
74356add
BH
3847 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3848 * being reserved by owner @res_name. Do not access any
3849 * address inside the PCI regions unless this call returns
3850 * successfully.
1da177e4 3851 *
74356add
BH
3852 * If @exclusive is set, then the region is marked so that userspace
3853 * is explicitly not allowed to map the resource via /dev/mem or
3854 * sysfs MMIO access.
f5ddcac4 3855 *
74356add
BH
3856 * Returns 0 on success, or %EBUSY on error. A warning
3857 * message is also printed on failure.
1da177e4 3858 */
3c78bc61
RD
3859static int __pci_request_region(struct pci_dev *pdev, int bar,
3860 const char *res_name, int exclusive)
1da177e4 3861{
9ac7849e
TH
3862 struct pci_devres *dr;
3863
1da177e4
LT
3864 if (pci_resource_len(pdev, bar) == 0)
3865 return 0;
f7625980 3866
1da177e4
LT
3867 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3868 if (!request_region(pci_resource_start(pdev, bar),
3869 pci_resource_len(pdev, bar), res_name))
3870 goto err_out;
3c78bc61 3871 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
e8de1481
AV
3872 if (!__request_mem_region(pci_resource_start(pdev, bar),
3873 pci_resource_len(pdev, bar), res_name,
3874 exclusive))
1da177e4
LT
3875 goto err_out;
3876 }
9ac7849e
TH
3877
3878 dr = find_pci_dr(pdev);
3879 if (dr)
3880 dr->region_mask |= 1 << bar;
3881
1da177e4
LT
3882 return 0;
3883
3884err_out:
7506dc79 3885 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
096e6f67 3886 &pdev->resource[bar]);
1da177e4
LT
3887 return -EBUSY;
3888}
3889
e8de1481 3890/**
74356add
BH
3891 * pci_request_region - Reserve PCI I/O and memory resource
3892 * @pdev: PCI device whose resources are to be reserved
3893 * @bar: BAR to be reserved
3894 * @res_name: Name to be associated with resource
e8de1481 3895 *
74356add
BH
3896 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3897 * being reserved by owner @res_name. Do not access any
3898 * address inside the PCI regions unless this call returns
3899 * successfully.
e8de1481 3900 *
74356add
BH
3901 * Returns 0 on success, or %EBUSY on error. A warning
3902 * message is also printed on failure.
e8de1481
AV
3903 */
3904int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3905{
3906 return __pci_request_region(pdev, bar, res_name, 0);
3907}
b7fe9434 3908EXPORT_SYMBOL(pci_request_region);
e8de1481 3909
c87deff7
HS
3910/**
3911 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3912 * @pdev: PCI device whose resources were previously reserved
3913 * @bars: Bitmask of BARs to be released
3914 *
3915 * Release selected PCI I/O and memory resources previously reserved.
3916 * Call this function only after all use of the PCI regions has ceased.
3917 */
3918void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3919{
3920 int i;
3921
c9c13ba4 3922 for (i = 0; i < PCI_STD_NUM_BARS; i++)
c87deff7
HS
3923 if (bars & (1 << i))
3924 pci_release_region(pdev, i);
3925}
b7fe9434 3926EXPORT_SYMBOL(pci_release_selected_regions);
c87deff7 3927
9738abed 3928static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3c78bc61 3929 const char *res_name, int excl)
c87deff7
HS
3930{
3931 int i;
3932
c9c13ba4 3933 for (i = 0; i < PCI_STD_NUM_BARS; i++)
c87deff7 3934 if (bars & (1 << i))
e8de1481 3935 if (__pci_request_region(pdev, i, res_name, excl))
c87deff7
HS
3936 goto err_out;
3937 return 0;
3938
3939err_out:
3c78bc61 3940 while (--i >= 0)
c87deff7
HS
3941 if (bars & (1 << i))
3942 pci_release_region(pdev, i);
3943
3944 return -EBUSY;
3945}
1da177e4 3946
e8de1481
AV
3947
3948/**
3949 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3950 * @pdev: PCI device whose resources are to be reserved
3951 * @bars: Bitmask of BARs to be requested
3952 * @res_name: Name to be associated with resource
3953 */
3954int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3955 const char *res_name)
3956{
3957 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3958}
b7fe9434 3959EXPORT_SYMBOL(pci_request_selected_regions);
e8de1481 3960
3c78bc61
RD
3961int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3962 const char *res_name)
e8de1481
AV
3963{
3964 return __pci_request_selected_regions(pdev, bars, res_name,
3965 IORESOURCE_EXCLUSIVE);
3966}
b7fe9434 3967EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
e8de1481 3968
1da177e4 3969/**
74356add
BH
3970 * pci_release_regions - Release reserved PCI I/O and memory resources
3971 * @pdev: PCI device whose resources were previously reserved by
3972 * pci_request_regions()
1da177e4 3973 *
74356add
BH
3974 * Releases all PCI I/O and memory resources previously reserved by a
3975 * successful call to pci_request_regions(). Call this function only
3976 * after all use of the PCI regions has ceased.
1da177e4
LT
3977 */
3978
3979void pci_release_regions(struct pci_dev *pdev)
3980{
c9c13ba4 3981 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
1da177e4 3982}
b7fe9434 3983EXPORT_SYMBOL(pci_release_regions);
1da177e4
LT
3984
3985/**
74356add
BH
3986 * pci_request_regions - Reserve PCI I/O and memory resources
3987 * @pdev: PCI device whose resources are to be reserved
3988 * @res_name: Name to be associated with resource.
1da177e4 3989 *
74356add
BH
3990 * Mark all PCI regions associated with PCI device @pdev as
3991 * being reserved by owner @res_name. Do not access any
3992 * address inside the PCI regions unless this call returns
3993 * successfully.
1da177e4 3994 *
74356add
BH
3995 * Returns 0 on success, or %EBUSY on error. A warning
3996 * message is also printed on failure.
1da177e4 3997 */
3c990e92 3998int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1da177e4 3999{
c9c13ba4
DE
4000 return pci_request_selected_regions(pdev,
4001 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
1da177e4 4002}
b7fe9434 4003EXPORT_SYMBOL(pci_request_regions);
1da177e4 4004
e8de1481 4005/**
74356add
BH
4006 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4007 * @pdev: PCI device whose resources are to be reserved
4008 * @res_name: Name to be associated with resource.
e8de1481 4009 *
74356add
BH
4010 * Mark all PCI regions associated with PCI device @pdev as being reserved
4011 * by owner @res_name. Do not access any address inside the PCI regions
4012 * unless this call returns successfully.
e8de1481 4013 *
74356add
BH
4014 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4015 * and the sysfs MMIO access will not be allowed.
e8de1481 4016 *
74356add
BH
4017 * Returns 0 on success, or %EBUSY on error. A warning message is also
4018 * printed on failure.
e8de1481
AV
4019 */
4020int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4021{
4022 return pci_request_selected_regions_exclusive(pdev,
c9c13ba4 4023 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
e8de1481 4024}
b7fe9434 4025EXPORT_SYMBOL(pci_request_regions_exclusive);
e8de1481 4026
c5076cfe
TN
4027/*
4028 * Record the PCI IO range (expressed as CPU physical address + size).
74356add 4029 * Return a negative value if an error has occurred, zero otherwise
c5076cfe 4030 */
fcfaab30
GP
4031int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4032 resource_size_t size)
c5076cfe 4033{
5745392e 4034 int ret = 0;
c5076cfe 4035#ifdef PCI_IOBASE
5745392e 4036 struct logic_pio_hwaddr *range;
c5076cfe 4037
5745392e
ZY
4038 if (!size || addr + size < addr)
4039 return -EINVAL;
c5076cfe 4040
c5076cfe 4041 range = kzalloc(sizeof(*range), GFP_ATOMIC);
5745392e
ZY
4042 if (!range)
4043 return -ENOMEM;
c5076cfe 4044
5745392e 4045 range->fwnode = fwnode;
c5076cfe 4046 range->size = size;
5745392e
ZY
4047 range->hw_start = addr;
4048 range->flags = LOGIC_PIO_CPU_MMIO;
c5076cfe 4049
5745392e
ZY
4050 ret = logic_pio_register_range(range);
4051 if (ret)
4052 kfree(range);
f6bda644
GU
4053
4054 /* Ignore duplicates due to deferred probing */
4055 if (ret == -EEXIST)
4056 ret = 0;
c5076cfe
TN
4057#endif
4058
5745392e 4059 return ret;
c5076cfe
TN
4060}
4061
4062phys_addr_t pci_pio_to_address(unsigned long pio)
4063{
4064 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4065
4066#ifdef PCI_IOBASE
5745392e 4067 if (pio >= MMIO_UPPER_LIMIT)
c5076cfe
TN
4068 return address;
4069
5745392e 4070 address = logic_pio_to_hwaddr(pio);
c5076cfe
TN
4071#endif
4072
4073 return address;
4074}
9cc74207 4075EXPORT_SYMBOL_GPL(pci_pio_to_address);
c5076cfe
TN
4076
4077unsigned long __weak pci_address_to_pio(phys_addr_t address)
4078{
4079#ifdef PCI_IOBASE
5745392e 4080 return logic_pio_trans_cpuaddr(address);
c5076cfe
TN
4081#else
4082 if (address > IO_SPACE_LIMIT)
4083 return (unsigned long)-1;
4084
4085 return (unsigned long) address;
4086#endif
4087}
4088
8b921acf 4089/**
74356add
BH
4090 * pci_remap_iospace - Remap the memory mapped I/O space
4091 * @res: Resource describing the I/O space
4092 * @phys_addr: physical address of range to be mapped
8b921acf 4093 *
74356add
BH
4094 * Remap the memory mapped I/O space described by the @res and the CPU
4095 * physical address @phys_addr into virtual address space. Only
4096 * architectures that have memory mapped IO functions defined (and the
4097 * PCI_IOBASE value defined) should call this function.
8b921acf 4098 */
7b309aef 4099int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
8b921acf
LD
4100{
4101#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4102 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4103
4104 if (!(res->flags & IORESOURCE_IO))
4105 return -EINVAL;
4106
4107 if (res->end > IO_SPACE_LIMIT)
4108 return -EINVAL;
4109
4110 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4111 pgprot_device(PAGE_KERNEL));
4112#else
74356add
BH
4113 /*
4114 * This architecture does not have memory mapped I/O space,
4115 * so this function should never be called
4116 */
8b921acf
LD
4117 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4118 return -ENODEV;
4119#endif
4120}
f90b0875 4121EXPORT_SYMBOL(pci_remap_iospace);
8b921acf 4122
4d3f1384 4123/**
74356add
BH
4124 * pci_unmap_iospace - Unmap the memory mapped I/O space
4125 * @res: resource to be unmapped
4d3f1384 4126 *
74356add
BH
4127 * Unmap the CPU virtual address @res from virtual address space. Only
4128 * architectures that have memory mapped IO functions defined (and the
4129 * PCI_IOBASE value defined) should call this function.
4d3f1384
SK
4130 */
4131void pci_unmap_iospace(struct resource *res)
4132{
4133#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4134 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4135
4ad0ae8c 4136 vunmap_range(vaddr, vaddr + resource_size(res));
4d3f1384
SK
4137#endif
4138}
f90b0875 4139EXPORT_SYMBOL(pci_unmap_iospace);
4d3f1384 4140
a5fb9fb0
SS
4141static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4142{
4143 struct resource **res = ptr;
4144
4145 pci_unmap_iospace(*res);
4146}
4147
4148/**
4149 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4150 * @dev: Generic device to remap IO address for
4151 * @res: Resource describing the I/O space
4152 * @phys_addr: physical address of range to be mapped
4153 *
4154 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4155 * detach.
4156 */
4157int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4158 phys_addr_t phys_addr)
4159{
4160 const struct resource **ptr;
4161 int error;
4162
4163 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4164 if (!ptr)
4165 return -ENOMEM;
4166
4167 error = pci_remap_iospace(res, phys_addr);
4168 if (error) {
4169 devres_free(ptr);
4170 } else {
4171 *ptr = res;
4172 devres_add(dev, ptr);
4173 }
4174
4175 return error;
4176}
4177EXPORT_SYMBOL(devm_pci_remap_iospace);
4178
490cb6dd
LP
4179/**
4180 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4181 * @dev: Generic device to remap IO address for
4182 * @offset: Resource address to map
4183 * @size: Size of map
4184 *
4185 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4186 * detach.
4187 */
4188void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4189 resource_size_t offset,
4190 resource_size_t size)
4191{
4192 void __iomem **ptr, *addr;
4193
4194 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4195 if (!ptr)
4196 return NULL;
4197
4198 addr = pci_remap_cfgspace(offset, size);
4199 if (addr) {
4200 *ptr = addr;
4201 devres_add(dev, ptr);
4202 } else
4203 devres_free(ptr);
4204
4205 return addr;
4206}
4207EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4208
4209/**
4210 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4211 * @dev: generic device to handle the resource for
4212 * @res: configuration space resource to be handled
4213 *
4214 * Checks that a resource is a valid memory region, requests the memory
4215 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4216 * proper PCI configuration space memory attributes are guaranteed.
4217 *
4218 * All operations are managed and will be undone on driver detach.
4219 *
4220 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
505fb746 4221 * on failure. Usage example::
490cb6dd
LP
4222 *
4223 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4224 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4225 * if (IS_ERR(base))
4226 * return PTR_ERR(base);
4227 */
4228void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4229 struct resource *res)
4230{
4231 resource_size_t size;
4232 const char *name;
4233 void __iomem *dest_ptr;
4234
4235 BUG_ON(!dev);
4236
4237 if (!res || resource_type(res) != IORESOURCE_MEM) {
4238 dev_err(dev, "invalid resource\n");
4239 return IOMEM_ERR_PTR(-EINVAL);
4240 }
4241
4242 size = resource_size(res);
0af6e21e
AL
4243
4244 if (res->name)
4245 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4246 res->name);
4247 else
4248 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4249 if (!name)
4250 return IOMEM_ERR_PTR(-ENOMEM);
490cb6dd
LP
4251
4252 if (!devm_request_mem_region(dev, res->start, size, name)) {
4253 dev_err(dev, "can't request region for resource %pR\n", res);
4254 return IOMEM_ERR_PTR(-EBUSY);
4255 }
4256
4257 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4258 if (!dest_ptr) {
4259 dev_err(dev, "ioremap failed for resource %pR\n", res);
4260 devm_release_mem_region(dev, res->start, size);
4261 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4262 }
4263
4264 return dest_ptr;
4265}
4266EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4267
6a479079
BH
4268static void __pci_set_master(struct pci_dev *dev, bool enable)
4269{
4270 u16 old_cmd, cmd;
4271
4272 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4273 if (enable)
4274 cmd = old_cmd | PCI_COMMAND_MASTER;
4275 else
4276 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4277 if (cmd != old_cmd) {
7506dc79 4278 pci_dbg(dev, "%s bus mastering\n",
6a479079
BH
4279 enable ? "enabling" : "disabling");
4280 pci_write_config_word(dev, PCI_COMMAND, cmd);
4281 }
4282 dev->is_busmaster = enable;
4283}
e8de1481 4284
2b6f2c35
MS
4285/**
4286 * pcibios_setup - process "pci=" kernel boot arguments
4287 * @str: string used to pass in "pci=" kernel boot arguments
4288 *
4289 * Process kernel boot arguments. This is the default implementation.
4290 * Architecture specific implementations can override this as necessary.
4291 */
4292char * __weak __init pcibios_setup(char *str)
4293{
4294 return str;
4295}
4296
96c55900
MS
4297/**
4298 * pcibios_set_master - enable PCI bus-mastering for device dev
4299 * @dev: the PCI device to enable
4300 *
4301 * Enables PCI bus-mastering for the device. This is the default
4302 * implementation. Architecture specific implementations can override
4303 * this if necessary.
4304 */
4305void __weak pcibios_set_master(struct pci_dev *dev)
4306{
4307 u8 lat;
4308
f676678f
MS
4309 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4310 if (pci_is_pcie(dev))
4311 return;
4312
96c55900
MS
4313 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4314 if (lat < 16)
4315 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4316 else if (lat > pcibios_max_latency)
4317 lat = pcibios_max_latency;
4318 else
4319 return;
a006482b 4320
96c55900
MS
4321 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4322}
4323
1da177e4
LT
4324/**
4325 * pci_set_master - enables bus-mastering for device dev
4326 * @dev: the PCI device to enable
4327 *
4328 * Enables bus-mastering on the device and calls pcibios_set_master()
4329 * to do the needed arch specific settings.
4330 */
6a479079 4331void pci_set_master(struct pci_dev *dev)
1da177e4 4332{
6a479079 4333 __pci_set_master(dev, true);
1da177e4
LT
4334 pcibios_set_master(dev);
4335}
b7fe9434 4336EXPORT_SYMBOL(pci_set_master);
1da177e4 4337
6a479079
BH
4338/**
4339 * pci_clear_master - disables bus-mastering for device dev
4340 * @dev: the PCI device to disable
4341 */
4342void pci_clear_master(struct pci_dev *dev)
4343{
4344 __pci_set_master(dev, false);
4345}
b7fe9434 4346EXPORT_SYMBOL(pci_clear_master);
6a479079 4347
1da177e4 4348/**
edb2d97e
MW
4349 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4350 * @dev: the PCI device for which MWI is to be enabled
1da177e4 4351 *
edb2d97e
MW
4352 * Helper function for pci_set_mwi.
4353 * Originally copied from drivers/net/acenic.c.
1da177e4
LT
4354 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4355 *
4356 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4357 */
15ea76d4 4358int pci_set_cacheline_size(struct pci_dev *dev)
1da177e4
LT
4359{
4360 u8 cacheline_size;
4361
4362 if (!pci_cache_line_size)
15ea76d4 4363 return -EINVAL;
1da177e4
LT
4364
4365 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4366 equal to or multiple of the right value. */
4367 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4368 if (cacheline_size >= pci_cache_line_size &&
4369 (cacheline_size % pci_cache_line_size) == 0)
4370 return 0;
4371
4372 /* Write the correct value. */
4373 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4374 /* Read it back. */
4375 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4376 if (cacheline_size == pci_cache_line_size)
4377 return 0;
4378
0aec75a5 4379 pci_dbg(dev, "cache line size of %d is not supported\n",
227f0647 4380 pci_cache_line_size << 2);
1da177e4
LT
4381
4382 return -EINVAL;
4383}
15ea76d4
TH
4384EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4385
1da177e4
LT
4386/**
4387 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4388 * @dev: the PCI device for which MWI is enabled
4389 *
694625c0 4390 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1da177e4
LT
4391 *
4392 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4393 */
3c78bc61 4394int pci_set_mwi(struct pci_dev *dev)
1da177e4 4395{
b7fe9434
RD
4396#ifdef PCI_DISABLE_MWI
4397 return 0;
4398#else
1da177e4
LT
4399 int rc;
4400 u16 cmd;
4401
edb2d97e 4402 rc = pci_set_cacheline_size(dev);
1da177e4
LT
4403 if (rc)
4404 return rc;
4405
4406 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3c78bc61 4407 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
7506dc79 4408 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
1da177e4
LT
4409 cmd |= PCI_COMMAND_INVALIDATE;
4410 pci_write_config_word(dev, PCI_COMMAND, cmd);
4411 }
1da177e4 4412 return 0;
b7fe9434 4413#endif
1da177e4 4414}
b7fe9434 4415EXPORT_SYMBOL(pci_set_mwi);
1da177e4 4416
fc0f9f4d
HK
4417/**
4418 * pcim_set_mwi - a device-managed pci_set_mwi()
4419 * @dev: the PCI device for which MWI is enabled
4420 *
4421 * Managed pci_set_mwi().
4422 *
4423 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4424 */
4425int pcim_set_mwi(struct pci_dev *dev)
4426{
4427 struct pci_devres *dr;
4428
4429 dr = find_pci_dr(dev);
4430 if (!dr)
4431 return -ENOMEM;
4432
4433 dr->mwi = 1;
4434 return pci_set_mwi(dev);
4435}
4436EXPORT_SYMBOL(pcim_set_mwi);
4437
694625c0
RD
4438/**
4439 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4440 * @dev: the PCI device for which MWI is enabled
4441 *
4442 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4443 * Callers are not required to check the return value.
4444 *
4445 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4446 */
4447int pci_try_set_mwi(struct pci_dev *dev)
4448{
b7fe9434
RD
4449#ifdef PCI_DISABLE_MWI
4450 return 0;
4451#else
4452 return pci_set_mwi(dev);
4453#endif
694625c0 4454}
b7fe9434 4455EXPORT_SYMBOL(pci_try_set_mwi);
694625c0 4456
1da177e4
LT
4457/**
4458 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4459 * @dev: the PCI device to disable
4460 *
4461 * Disables PCI Memory-Write-Invalidate transaction on the device
4462 */
3c78bc61 4463void pci_clear_mwi(struct pci_dev *dev)
1da177e4 4464{
b7fe9434 4465#ifndef PCI_DISABLE_MWI
1da177e4
LT
4466 u16 cmd;
4467
4468 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4469 if (cmd & PCI_COMMAND_INVALIDATE) {
4470 cmd &= ~PCI_COMMAND_INVALIDATE;
4471 pci_write_config_word(dev, PCI_COMMAND, cmd);
4472 }
b7fe9434 4473#endif
1da177e4 4474}
b7fe9434 4475EXPORT_SYMBOL(pci_clear_mwi);
1da177e4 4476
1fd3dde5
BH
4477/**
4478 * pci_disable_parity - disable parity checking for device
4479 * @dev: the PCI device to operate on
4480 *
4481 * Disable parity checking for device @dev
4482 */
4483void pci_disable_parity(struct pci_dev *dev)
4484{
4485 u16 cmd;
4486
4487 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4488 if (cmd & PCI_COMMAND_PARITY) {
4489 cmd &= ~PCI_COMMAND_PARITY;
4490 pci_write_config_word(dev, PCI_COMMAND, cmd);
4491 }
4492}
4493
a04ce0ff
BR
4494/**
4495 * pci_intx - enables/disables PCI INTx for device dev
8f7020d3
RD
4496 * @pdev: the PCI device to operate on
4497 * @enable: boolean: whether to enable or disable PCI INTx
a04ce0ff 4498 *
74356add 4499 * Enables/disables PCI INTx for device @pdev
a04ce0ff 4500 */
3c78bc61 4501void pci_intx(struct pci_dev *pdev, int enable)
a04ce0ff
BR
4502{
4503 u16 pci_command, new;
4504
4505 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4506
3c78bc61 4507 if (enable)
a04ce0ff 4508 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3c78bc61 4509 else
a04ce0ff 4510 new = pci_command | PCI_COMMAND_INTX_DISABLE;
a04ce0ff
BR
4511
4512 if (new != pci_command) {
9ac7849e
TH
4513 struct pci_devres *dr;
4514
2fd9d74b 4515 pci_write_config_word(pdev, PCI_COMMAND, new);
9ac7849e
TH
4516
4517 dr = find_pci_dr(pdev);
4518 if (dr && !dr->restore_intx) {
4519 dr->restore_intx = 1;
4520 dr->orig_intx = !enable;
4521 }
a04ce0ff
BR
4522 }
4523}
b7fe9434 4524EXPORT_SYMBOL_GPL(pci_intx);
a04ce0ff 4525
a2e27787
JK
4526static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4527{
4528 struct pci_bus *bus = dev->bus;
4529 bool mask_updated = true;
4530 u32 cmd_status_dword;
4531 u16 origcmd, newcmd;
4532 unsigned long flags;
4533 bool irq_pending;
4534
4535 /*
4536 * We do a single dword read to retrieve both command and status.
4537 * Document assumptions that make this possible.
4538 */
4539 BUILD_BUG_ON(PCI_COMMAND % 4);
4540 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4541
4542 raw_spin_lock_irqsave(&pci_lock, flags);
4543
4544 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4545
4546 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4547
4548 /*
4549 * Check interrupt status register to see whether our device
4550 * triggered the interrupt (when masking) or the next IRQ is
4551 * already pending (when unmasking).
4552 */
4553 if (mask != irq_pending) {
4554 mask_updated = false;
4555 goto done;
4556 }
4557
4558 origcmd = cmd_status_dword;
4559 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4560 if (mask)
4561 newcmd |= PCI_COMMAND_INTX_DISABLE;
4562 if (newcmd != origcmd)
4563 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4564
4565done:
4566 raw_spin_unlock_irqrestore(&pci_lock, flags);
4567
4568 return mask_updated;
4569}
4570
4571/**
4572 * pci_check_and_mask_intx - mask INTx on pending interrupt
6e9292c5 4573 * @dev: the PCI device to operate on
a2e27787 4574 *
74356add
BH
4575 * Check if the device dev has its INTx line asserted, mask it and return
4576 * true in that case. False is returned if no interrupt was pending.
a2e27787
JK
4577 */
4578bool pci_check_and_mask_intx(struct pci_dev *dev)
4579{
4580 return pci_check_and_set_intx_mask(dev, true);
4581}
4582EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4583
4584/**
ebd50b93 4585 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
6e9292c5 4586 * @dev: the PCI device to operate on
a2e27787 4587 *
74356add
BH
4588 * Check if the device dev has its INTx line asserted, unmask it if not and
4589 * return true. False is returned and the mask remains active if there was
4590 * still an interrupt pending.
a2e27787
JK
4591 */
4592bool pci_check_and_unmask_intx(struct pci_dev *dev)
4593{
4594 return pci_check_and_set_intx_mask(dev, false);
4595}
4596EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4597
3775a209 4598/**
74356add 4599 * pci_wait_for_pending_transaction - wait for pending transaction
3775a209
CL
4600 * @dev: the PCI device to operate on
4601 *
4602 * Return 0 if transaction is pending 1 otherwise.
4603 */
4604int pci_wait_for_pending_transaction(struct pci_dev *dev)
8dd7f803 4605{
157e876f
AW
4606 if (!pci_is_pcie(dev))
4607 return 1;
8c1c699f 4608
d0b4cc4e
GS
4609 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4610 PCI_EXP_DEVSTA_TRPND);
3775a209
CL
4611}
4612EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4613
a60a2b73
CH
4614/**
4615 * pcie_has_flr - check if a device supports function level resets
74356add 4616 * @dev: device to check
a60a2b73
CH
4617 *
4618 * Returns true if the device advertises support for PCIe function level
4619 * resets.
4620 */
2d2917f7 4621bool pcie_has_flr(struct pci_dev *dev)
3775a209
CL
4622{
4623 u32 cap;
4624
f65fd1aa 4625 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
a60a2b73 4626 return false;
3775a209 4627
a60a2b73
CH
4628 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4629 return cap & PCI_EXP_DEVCAP_FLR;
4630}
2d2917f7 4631EXPORT_SYMBOL_GPL(pcie_has_flr);
3775a209 4632
a60a2b73
CH
4633/**
4634 * pcie_flr - initiate a PCIe function level reset
74356add 4635 * @dev: device to reset
a60a2b73
CH
4636 *
4637 * Initiate a function level reset on @dev. The caller should ensure the
4638 * device supports FLR before calling this function, e.g. by using the
4639 * pcie_has_flr() helper.
4640 */
91295d79 4641int pcie_flr(struct pci_dev *dev)
a60a2b73 4642{
3775a209 4643 if (!pci_wait_for_pending_transaction(dev))
7506dc79 4644 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
8c1c699f 4645
59875ae4 4646 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
a2758b6b 4647
d6112f8d
FB
4648 if (dev->imm_ready)
4649 return 0;
4650
a2758b6b
SK
4651 /*
4652 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4653 * 100ms, but may silently discard requests while the FLR is in
4654 * progress. Wait 100ms before trying to access the device.
4655 */
4656 msleep(100);
4657
4658 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
8dd7f803 4659}
a60a2b73 4660EXPORT_SYMBOL_GPL(pcie_flr);
d91cdc74 4661
8c1c699f 4662static int pci_af_flr(struct pci_dev *dev, int probe)
1ca88797 4663{
8c1c699f 4664 int pos;
1ca88797
SY
4665 u8 cap;
4666
8c1c699f
YZ
4667 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4668 if (!pos)
1ca88797 4669 return -ENOTTY;
8c1c699f 4670
f65fd1aa
SN
4671 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4672 return -ENOTTY;
4673
8c1c699f 4674 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
1ca88797
SY
4675 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4676 return -ENOTTY;
4677
4678 if (probe)
4679 return 0;
4680
d066c946
AW
4681 /*
4682 * Wait for Transaction Pending bit to clear. A word-aligned test
f6b6aefe 4683 * is used, so we use the control offset rather than status and shift
d066c946
AW
4684 * the test bit to match.
4685 */
bb383e28 4686 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
d066c946 4687 PCI_AF_STATUS_TP << 8))
7506dc79 4688 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
5fe5db05 4689
8c1c699f 4690 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
a2758b6b 4691
d6112f8d
FB
4692 if (dev->imm_ready)
4693 return 0;
4694
a2758b6b
SK
4695 /*
4696 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4697 * updated 27 July 2006; a device must complete an FLR within
4698 * 100ms, but may silently discard requests while the FLR is in
4699 * progress. Wait 100ms before trying to access the device.
4700 */
4701 msleep(100);
4702
4703 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
1ca88797
SY
4704}
4705
83d74e03
RW
4706/**
4707 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4708 * @dev: Device to reset.
4709 * @probe: If set, only check if the device can be reset this way.
4710 *
4711 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4712 * unset, it will be reinitialized internally when going from PCI_D3hot to
4713 * PCI_D0. If that's the case and the device is not in a low-power state
4714 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4715 *
4716 * NOTE: This causes the caller to sleep for twice the device power transition
4717 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3789af9a 4718 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
83d74e03
RW
4719 * Moreover, only devices in D0 can be reset by this function.
4720 */
f85876ba 4721static int pci_pm_reset(struct pci_dev *dev, int probe)
d91cdc74 4722{
f85876ba
YZ
4723 u16 csr;
4724
51e53738 4725 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
f85876ba 4726 return -ENOTTY;
d91cdc74 4727
f85876ba
YZ
4728 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4729 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4730 return -ENOTTY;
d91cdc74 4731
f85876ba
YZ
4732 if (probe)
4733 return 0;
1ca88797 4734
f85876ba
YZ
4735 if (dev->current_state != PCI_D0)
4736 return -EINVAL;
4737
4738 csr &= ~PCI_PM_CTRL_STATE_MASK;
4739 csr |= PCI_D3hot;
4740 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 4741 pci_dev_d3_sleep(dev);
f85876ba
YZ
4742
4743 csr &= ~PCI_PM_CTRL_STATE_MASK;
4744 csr |= PCI_D0;
4745 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 4746 pci_dev_d3_sleep(dev);
f85876ba 4747
993cc6d1 4748 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
f85876ba 4749}
4827d638 4750
9f5a70f1 4751/**
4827d638 4752 * pcie_wait_for_link_delay - Wait until link is active or inactive
9f5a70f1
OP
4753 * @pdev: Bridge device
4754 * @active: waiting for active or inactive?
d08c30d7 4755 * @delay: Delay to wait after link has become active (in ms)
9f5a70f1
OP
4756 *
4757 * Use this to wait till link becomes active or inactive.
4758 */
4827d638
MW
4759static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4760 int delay)
9f5a70f1
OP
4761{
4762 int timeout = 1000;
4763 bool ret;
4764 u16 lnk_status;
4765
f0157160
KB
4766 /*
4767 * Some controllers might not implement link active reporting. In this
f044baaf 4768 * case, we wait for 1000 ms + any delay requested by the caller.
f0157160
KB
4769 */
4770 if (!pdev->link_active_reporting) {
f044baaf 4771 msleep(timeout + delay);
f0157160
KB
4772 return true;
4773 }
4774
4775 /*
4776 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4777 * after which we should expect an link active if the reset was
4778 * successful. If so, software must wait a minimum 100ms before sending
4779 * configuration requests to devices downstream this port.
4780 *
4781 * If the link fails to activate, either the device was physically
4782 * removed or the link is permanently failed.
4783 */
4784 if (active)
4785 msleep(20);
9f5a70f1
OP
4786 for (;;) {
4787 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4788 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4789 if (ret == active)
f0157160 4790 break;
9f5a70f1
OP
4791 if (timeout <= 0)
4792 break;
4793 msleep(10);
4794 timeout -= 10;
4795 }
d08c30d7 4796 if (active && ret)
4827d638 4797 msleep(delay);
8a614499 4798
f0157160 4799 return ret == active;
9f5a70f1 4800}
f85876ba 4801
4827d638
MW
4802/**
4803 * pcie_wait_for_link - Wait until link is active or inactive
4804 * @pdev: Bridge device
4805 * @active: waiting for active or inactive?
4806 *
4807 * Use this to wait till link becomes active or inactive.
4808 */
4809bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4810{
4811 return pcie_wait_for_link_delay(pdev, active, 100);
4812}
4813
ad9001f2
MW
4814/*
4815 * Find maximum D3cold delay required by all the devices on the bus. The
4816 * spec says 100 ms, but firmware can lower it and we allow drivers to
4817 * increase it as well.
4818 *
4819 * Called with @pci_bus_sem locked for reading.
4820 */
4821static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4822{
4823 const struct pci_dev *pdev;
4824 int min_delay = 100;
4825 int max_delay = 0;
4826
4827 list_for_each_entry(pdev, &bus->devices, bus_list) {
4828 if (pdev->d3cold_delay < min_delay)
4829 min_delay = pdev->d3cold_delay;
4830 if (pdev->d3cold_delay > max_delay)
4831 max_delay = pdev->d3cold_delay;
4832 }
4833
4834 return max(min_delay, max_delay);
4835}
4836
4837/**
4838 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4839 * @dev: PCI bridge
4840 *
4841 * Handle necessary delays before access to the devices on the secondary
4842 * side of the bridge are permitted after D3cold to D0 transition.
4843 *
4844 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4845 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4846 * 4.3.2.
4847 */
4848void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4849{
4850 struct pci_dev *child;
4851 int delay;
4852
4853 if (pci_dev_is_disconnected(dev))
4854 return;
4855
4856 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4857 return;
4858
4859 down_read(&pci_bus_sem);
4860
4861 /*
4862 * We only deal with devices that are present currently on the bus.
4863 * For any hot-added devices the access delay is handled in pciehp
4864 * board_added(). In case of ACPI hotplug the firmware is expected
4865 * to configure the devices before OS is notified.
4866 */
4867 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4868 up_read(&pci_bus_sem);
4869 return;
4870 }
4871
4872 /* Take d3cold_delay requirements into account */
4873 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4874 if (!delay) {
4875 up_read(&pci_bus_sem);
4876 return;
4877 }
4878
4879 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4880 bus_list);
4881 up_read(&pci_bus_sem);
4882
4883 /*
4884 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4885 * accessing the device after reset (that is 1000 ms + 100 ms). In
4886 * practice this should not be needed because we don't do power
4887 * management for them (see pci_bridge_d3_possible()).
4888 */
4889 if (!pci_is_pcie(dev)) {
4890 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4891 msleep(1000 + delay);
4892 return;
4893 }
4894
4895 /*
4896 * For PCIe downstream and root ports that do not support speeds
4897 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4898 * speeds (gen3) we need to wait first for the data link layer to
4899 * become active.
4900 *
4901 * However, 100 ms is the minimum and the PCIe spec says the
4902 * software must allow at least 1s before it can determine that the
4903 * device that did not respond is a broken device. There is
4904 * evidence that 100 ms is not always enough, for example certain
4905 * Titan Ridge xHCI controller does not always respond to
4906 * configuration requests if we only wait for 100 ms (see
4907 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4908 *
4909 * Therefore we wait for 100 ms and check for the device presence.
4910 * If it is still not present give it an additional 100 ms.
4911 */
4912 if (!pcie_downstream_port(dev))
4913 return;
4914
d08c30d7
BH
4915 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4916 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4917 msleep(delay);
4918 } else {
4919 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4920 delay);
4921 if (!pcie_wait_for_link_delay(dev, true, delay)) {
ad9001f2 4922 /* Did not train, no need to wait any further */
8a614499 4923 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
ad9001f2
MW
4924 return;
4925 }
4926 }
4927
4928 if (!pci_device_is_present(child)) {
4929 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4930 msleep(delay);
4931 }
4932}
4933
9e33002f 4934void pci_reset_secondary_bus(struct pci_dev *dev)
c12ff1df
YZ
4935{
4936 u16 ctrl;
64e8674f
AW
4937
4938 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4939 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4940 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
df62ab5e 4941
de0c548c
AW
4942 /*
4943 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
f7625980 4944 * this to 2ms to ensure that we meet the minimum requirement.
de0c548c
AW
4945 */
4946 msleep(2);
64e8674f
AW
4947
4948 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4949 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
de0c548c
AW
4950
4951 /*
4952 * Trhfa for conventional PCI is 2^25 clock cycles.
4953 * Assuming a minimum 33MHz clock this results in a 1s
4954 * delay before we can consider subordinate devices to
4955 * be re-initialized. PCIe has some ways to shorten this,
4956 * but we don't make use of them yet.
4957 */
4958 ssleep(1);
64e8674f 4959}
d92a208d 4960
9e33002f
GS
4961void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4962{
4963 pci_reset_secondary_bus(dev);
4964}
4965
d92a208d 4966/**
381634ca 4967 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
d92a208d
GS
4968 * @dev: Bridge device
4969 *
4970 * Use the bridge control register to assert reset on the secondary bus.
4971 * Devices on the secondary bus are left in power-on state.
4972 */
381634ca 4973int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
d92a208d
GS
4974{
4975 pcibios_reset_secondary_bus(dev);
01fd61c0 4976
6b2f1351 4977 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
d92a208d 4978}
bfc45606 4979EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
64e8674f
AW
4980
4981static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4982{
c12ff1df
YZ
4983 struct pci_dev *pdev;
4984
f331a859
AW
4985 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4986 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
c12ff1df
YZ
4987 return -ENOTTY;
4988
4989 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4990 if (pdev != dev)
4991 return -ENOTTY;
4992
4993 if (probe)
4994 return 0;
4995
381634ca 4996 return pci_bridge_secondary_bus_reset(dev->bus->self);
c12ff1df
YZ
4997}
4998
608c3881
AW
4999static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
5000{
5001 int rc = -ENOTTY;
5002
81c4b5bf 5003 if (!hotplug || !try_module_get(hotplug->owner))
608c3881
AW
5004 return rc;
5005
5006 if (hotplug->ops->reset_slot)
5007 rc = hotplug->ops->reset_slot(hotplug, probe);
5008
81c4b5bf 5009 module_put(hotplug->owner);
608c3881
AW
5010
5011 return rc;
5012}
5013
5014static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
5015{
10791141 5016 if (dev->multifunction || dev->subordinate || !dev->slot ||
f331a859 5017 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
608c3881
AW
5018 return -ENOTTY;
5019
608c3881
AW
5020 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5021}
5022
77cb985a
AW
5023static void pci_dev_lock(struct pci_dev *dev)
5024{
5025 pci_cfg_access_lock(dev);
5026 /* block PM suspend, driver probe, etc. */
5027 device_lock(&dev->dev);
5028}
5029
61cf16d8
AW
5030/* Return 1 on successful lock, 0 on contention */
5031static int pci_dev_trylock(struct pci_dev *dev)
5032{
5033 if (pci_cfg_access_trylock(dev)) {
5034 if (device_trylock(&dev->dev))
5035 return 1;
5036 pci_cfg_access_unlock(dev);
5037 }
5038
5039 return 0;
5040}
5041
77cb985a
AW
5042static void pci_dev_unlock(struct pci_dev *dev)
5043{
5044 device_unlock(&dev->dev);
5045 pci_cfg_access_unlock(dev);
5046}
5047
775755ed 5048static void pci_dev_save_and_disable(struct pci_dev *dev)
3ebe7f9f
KB
5049{
5050 const struct pci_error_handlers *err_handler =
5051 dev->driver ? dev->driver->err_handler : NULL;
3ebe7f9f 5052
b014e96d 5053 /*
775755ed 5054 * dev->driver->err_handler->reset_prepare() is protected against
b014e96d
CH
5055 * races with ->remove() by the device lock, which must be held by
5056 * the caller.
5057 */
775755ed
CH
5058 if (err_handler && err_handler->reset_prepare)
5059 err_handler->reset_prepare(dev);
3ebe7f9f 5060
a6cbaade
AW
5061 /*
5062 * Wake-up device prior to save. PM registers default to D0 after
5063 * reset and a simple register restore doesn't reliably return
5064 * to a non-D0 state anyway.
5065 */
5066 pci_set_power_state(dev, PCI_D0);
5067
77cb985a
AW
5068 pci_save_state(dev);
5069 /*
5070 * Disable the device by clearing the Command register, except for
5071 * INTx-disable which is set. This not only disables MMIO and I/O port
5072 * BARs, but also prevents the device from being Bus Master, preventing
5073 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5074 * compliant devices, INTx-disable prevents legacy interrupts.
5075 */
5076 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5077}
5078
5079static void pci_dev_restore(struct pci_dev *dev)
5080{
775755ed
CH
5081 const struct pci_error_handlers *err_handler =
5082 dev->driver ? dev->driver->err_handler : NULL;
977f857c 5083
77cb985a 5084 pci_restore_state(dev);
77cb985a 5085
775755ed
CH
5086 /*
5087 * dev->driver->err_handler->reset_done() is protected against
5088 * races with ->remove() by the device lock, which must be held by
5089 * the caller.
5090 */
5091 if (err_handler && err_handler->reset_done)
5092 err_handler->reset_done(dev);
d91cdc74 5093}
3ebe7f9f 5094
6fbf9e7a
KRW
5095/**
5096 * __pci_reset_function_locked - reset a PCI device function while holding
5097 * the @dev mutex lock.
5098 * @dev: PCI device to reset
5099 *
5100 * Some devices allow an individual function to be reset without affecting
5101 * other functions in the same device. The PCI device must be responsive
5102 * to PCI config space in order to use this function.
5103 *
5104 * The device function is presumed to be unused and the caller is holding
5105 * the device mutex lock when this function is called.
74356add 5106 *
6fbf9e7a
KRW
5107 * Resetting the device will make the contents of PCI configuration space
5108 * random, so any caller of this must be prepared to reinitialise the
5109 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5110 * etc.
5111 *
5112 * Returns 0 if the device function was successfully reset or negative if the
5113 * device doesn't support resetting a single function.
5114 */
5115int __pci_reset_function_locked(struct pci_dev *dev)
5116{
52354b9d
CH
5117 int rc;
5118
5119 might_sleep();
5120
832c418a
BH
5121 /*
5122 * A reset method returns -ENOTTY if it doesn't support this device
5123 * and we should try the next method.
5124 *
5125 * If it returns 0 (success), we're finished. If it returns any
5126 * other error, we're also finished: this indicates that further
5127 * reset mechanisms might be broken on the device.
5128 */
52354b9d
CH
5129 rc = pci_dev_specific_reset(dev, 0);
5130 if (rc != -ENOTTY)
5131 return rc;
5132 if (pcie_has_flr(dev)) {
91295d79
SK
5133 rc = pcie_flr(dev);
5134 if (rc != -ENOTTY)
5135 return rc;
52354b9d
CH
5136 }
5137 rc = pci_af_flr(dev, 0);
5138 if (rc != -ENOTTY)
5139 return rc;
5140 rc = pci_pm_reset(dev, 0);
5141 if (rc != -ENOTTY)
5142 return rc;
5143 rc = pci_dev_reset_slot_function(dev, 0);
5144 if (rc != -ENOTTY)
5145 return rc;
5146 return pci_parent_bus_reset(dev, 0);
6fbf9e7a
KRW
5147}
5148EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5149
711d5779
MT
5150/**
5151 * pci_probe_reset_function - check whether the device can be safely reset
5152 * @dev: PCI device to reset
5153 *
5154 * Some devices allow an individual function to be reset without affecting
5155 * other functions in the same device. The PCI device must be responsive
5156 * to PCI config space in order to use this function.
5157 *
5158 * Returns 0 if the device function can be reset or negative if the
5159 * device doesn't support resetting a single function.
5160 */
5161int pci_probe_reset_function(struct pci_dev *dev)
5162{
52354b9d
CH
5163 int rc;
5164
5165 might_sleep();
5166
5167 rc = pci_dev_specific_reset(dev, 1);
5168 if (rc != -ENOTTY)
5169 return rc;
5170 if (pcie_has_flr(dev))
5171 return 0;
5172 rc = pci_af_flr(dev, 1);
5173 if (rc != -ENOTTY)
5174 return rc;
5175 rc = pci_pm_reset(dev, 1);
5176 if (rc != -ENOTTY)
5177 return rc;
5178 rc = pci_dev_reset_slot_function(dev, 1);
5179 if (rc != -ENOTTY)
5180 return rc;
5181
5182 return pci_parent_bus_reset(dev, 1);
711d5779
MT
5183}
5184
8dd7f803 5185/**
8c1c699f
YZ
5186 * pci_reset_function - quiesce and reset a PCI device function
5187 * @dev: PCI device to reset
8dd7f803
SY
5188 *
5189 * Some devices allow an individual function to be reset without affecting
5190 * other functions in the same device. The PCI device must be responsive
5191 * to PCI config space in order to use this function.
5192 *
5193 * This function does not just reset the PCI portion of a device, but
5194 * clears all the state associated with the device. This function differs
79e699b6
JS
5195 * from __pci_reset_function_locked() in that it saves and restores device state
5196 * over the reset and takes the PCI device lock.
8dd7f803 5197 *
8c1c699f 5198 * Returns 0 if the device function was successfully reset or negative if the
8dd7f803
SY
5199 * device doesn't support resetting a single function.
5200 */
5201int pci_reset_function(struct pci_dev *dev)
5202{
8c1c699f 5203 int rc;
8dd7f803 5204
204f4afa
BH
5205 if (!dev->reset_fn)
5206 return -ENOTTY;
8dd7f803 5207
b014e96d 5208 pci_dev_lock(dev);
77cb985a 5209 pci_dev_save_and_disable(dev);
8dd7f803 5210
52354b9d 5211 rc = __pci_reset_function_locked(dev);
8dd7f803 5212
77cb985a 5213 pci_dev_restore(dev);
b014e96d 5214 pci_dev_unlock(dev);
8dd7f803 5215
8c1c699f 5216 return rc;
8dd7f803
SY
5217}
5218EXPORT_SYMBOL_GPL(pci_reset_function);
5219
a477b9cd
MZ
5220/**
5221 * pci_reset_function_locked - quiesce and reset a PCI device function
5222 * @dev: PCI device to reset
5223 *
5224 * Some devices allow an individual function to be reset without affecting
5225 * other functions in the same device. The PCI device must be responsive
5226 * to PCI config space in order to use this function.
5227 *
5228 * This function does not just reset the PCI portion of a device, but
5229 * clears all the state associated with the device. This function differs
79e699b6 5230 * from __pci_reset_function_locked() in that it saves and restores device state
a477b9cd
MZ
5231 * over the reset. It also differs from pci_reset_function() in that it
5232 * requires the PCI device lock to be held.
5233 *
5234 * Returns 0 if the device function was successfully reset or negative if the
5235 * device doesn't support resetting a single function.
5236 */
5237int pci_reset_function_locked(struct pci_dev *dev)
5238{
5239 int rc;
5240
204f4afa
BH
5241 if (!dev->reset_fn)
5242 return -ENOTTY;
a477b9cd
MZ
5243
5244 pci_dev_save_and_disable(dev);
5245
5246 rc = __pci_reset_function_locked(dev);
5247
5248 pci_dev_restore(dev);
5249
5250 return rc;
5251}
5252EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5253
61cf16d8
AW
5254/**
5255 * pci_try_reset_function - quiesce and reset a PCI device function
5256 * @dev: PCI device to reset
5257 *
5258 * Same as above, except return -EAGAIN if unable to lock device.
5259 */
5260int pci_try_reset_function(struct pci_dev *dev)
5261{
5262 int rc;
5263
204f4afa
BH
5264 if (!dev->reset_fn)
5265 return -ENOTTY;
61cf16d8 5266
b014e96d
CH
5267 if (!pci_dev_trylock(dev))
5268 return -EAGAIN;
61cf16d8 5269
b014e96d 5270 pci_dev_save_and_disable(dev);
52354b9d 5271 rc = __pci_reset_function_locked(dev);
cb5e0d06 5272 pci_dev_restore(dev);
b014e96d 5273 pci_dev_unlock(dev);
61cf16d8 5274
61cf16d8
AW
5275 return rc;
5276}
5277EXPORT_SYMBOL_GPL(pci_try_reset_function);
5278
f331a859
AW
5279/* Do any devices on or below this bus prevent a bus reset? */
5280static bool pci_bus_resetable(struct pci_bus *bus)
5281{
5282 struct pci_dev *dev;
5283
35702778
DD
5284
5285 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5286 return false;
5287
f331a859
AW
5288 list_for_each_entry(dev, &bus->devices, bus_list) {
5289 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5290 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5291 return false;
5292 }
5293
5294 return true;
5295}
5296
090a3c53
AW
5297/* Lock devices from the top of the tree down */
5298static void pci_bus_lock(struct pci_bus *bus)
5299{
5300 struct pci_dev *dev;
5301
5302 list_for_each_entry(dev, &bus->devices, bus_list) {
5303 pci_dev_lock(dev);
5304 if (dev->subordinate)
5305 pci_bus_lock(dev->subordinate);
5306 }
5307}
5308
5309/* Unlock devices from the bottom of the tree up */
5310static void pci_bus_unlock(struct pci_bus *bus)
5311{
5312 struct pci_dev *dev;
5313
5314 list_for_each_entry(dev, &bus->devices, bus_list) {
5315 if (dev->subordinate)
5316 pci_bus_unlock(dev->subordinate);
5317 pci_dev_unlock(dev);
5318 }
5319}
5320
61cf16d8
AW
5321/* Return 1 on successful lock, 0 on contention */
5322static int pci_bus_trylock(struct pci_bus *bus)
5323{
5324 struct pci_dev *dev;
5325
5326 list_for_each_entry(dev, &bus->devices, bus_list) {
5327 if (!pci_dev_trylock(dev))
5328 goto unlock;
5329 if (dev->subordinate) {
5330 if (!pci_bus_trylock(dev->subordinate)) {
5331 pci_dev_unlock(dev);
5332 goto unlock;
5333 }
5334 }
5335 }
5336 return 1;
5337
5338unlock:
5339 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5340 if (dev->subordinate)
5341 pci_bus_unlock(dev->subordinate);
5342 pci_dev_unlock(dev);
5343 }
5344 return 0;
5345}
5346
f331a859
AW
5347/* Do any devices on or below this slot prevent a bus reset? */
5348static bool pci_slot_resetable(struct pci_slot *slot)
5349{
5350 struct pci_dev *dev;
5351
33ba90aa
JG
5352 if (slot->bus->self &&
5353 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5354 return false;
5355
f331a859
AW
5356 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5357 if (!dev->slot || dev->slot != slot)
5358 continue;
5359 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5360 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5361 return false;
5362 }
5363
5364 return true;
5365}
5366
090a3c53
AW
5367/* Lock devices from the top of the tree down */
5368static void pci_slot_lock(struct pci_slot *slot)
5369{
5370 struct pci_dev *dev;
5371
5372 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5373 if (!dev->slot || dev->slot != slot)
5374 continue;
5375 pci_dev_lock(dev);
5376 if (dev->subordinate)
5377 pci_bus_lock(dev->subordinate);
5378 }
5379}
5380
5381/* Unlock devices from the bottom of the tree up */
5382static void pci_slot_unlock(struct pci_slot *slot)
5383{
5384 struct pci_dev *dev;
5385
5386 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5387 if (!dev->slot || dev->slot != slot)
5388 continue;
5389 if (dev->subordinate)
5390 pci_bus_unlock(dev->subordinate);
5391 pci_dev_unlock(dev);
5392 }
5393}
5394
61cf16d8
AW
5395/* Return 1 on successful lock, 0 on contention */
5396static int pci_slot_trylock(struct pci_slot *slot)
5397{
5398 struct pci_dev *dev;
5399
5400 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5401 if (!dev->slot || dev->slot != slot)
5402 continue;
5403 if (!pci_dev_trylock(dev))
5404 goto unlock;
5405 if (dev->subordinate) {
5406 if (!pci_bus_trylock(dev->subordinate)) {
5407 pci_dev_unlock(dev);
5408 goto unlock;
5409 }
5410 }
5411 }
5412 return 1;
5413
5414unlock:
5415 list_for_each_entry_continue_reverse(dev,
5416 &slot->bus->devices, bus_list) {
5417 if (!dev->slot || dev->slot != slot)
5418 continue;
5419 if (dev->subordinate)
5420 pci_bus_unlock(dev->subordinate);
5421 pci_dev_unlock(dev);
5422 }
5423 return 0;
5424}
5425
ddefc033
AW
5426/*
5427 * Save and disable devices from the top of the tree down while holding
5428 * the @dev mutex lock for the entire tree.
5429 */
5430static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
090a3c53
AW
5431{
5432 struct pci_dev *dev;
5433
5434 list_for_each_entry(dev, &bus->devices, bus_list) {
5435 pci_dev_save_and_disable(dev);
5436 if (dev->subordinate)
ddefc033 5437 pci_bus_save_and_disable_locked(dev->subordinate);
090a3c53
AW
5438 }
5439}
5440
5441/*
ddefc033
AW
5442 * Restore devices from top of the tree down while holding @dev mutex lock
5443 * for the entire tree. Parent bridges need to be restored before we can
5444 * get to subordinate devices.
090a3c53 5445 */
ddefc033 5446static void pci_bus_restore_locked(struct pci_bus *bus)
090a3c53
AW
5447{
5448 struct pci_dev *dev;
5449
5450 list_for_each_entry(dev, &bus->devices, bus_list) {
5451 pci_dev_restore(dev);
5452 if (dev->subordinate)
ddefc033 5453 pci_bus_restore_locked(dev->subordinate);
090a3c53
AW
5454 }
5455}
5456
ddefc033
AW
5457/*
5458 * Save and disable devices from the top of the tree down while holding
5459 * the @dev mutex lock for the entire tree.
5460 */
5461static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
090a3c53
AW
5462{
5463 struct pci_dev *dev;
5464
5465 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5466 if (!dev->slot || dev->slot != slot)
5467 continue;
5468 pci_dev_save_and_disable(dev);
5469 if (dev->subordinate)
ddefc033 5470 pci_bus_save_and_disable_locked(dev->subordinate);
090a3c53
AW
5471 }
5472}
5473
5474/*
ddefc033
AW
5475 * Restore devices from top of the tree down while holding @dev mutex lock
5476 * for the entire tree. Parent bridges need to be restored before we can
5477 * get to subordinate devices.
090a3c53 5478 */
ddefc033 5479static void pci_slot_restore_locked(struct pci_slot *slot)
090a3c53
AW
5480{
5481 struct pci_dev *dev;
5482
5483 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5484 if (!dev->slot || dev->slot != slot)
5485 continue;
5486 pci_dev_restore(dev);
5487 if (dev->subordinate)
ddefc033 5488 pci_bus_restore_locked(dev->subordinate);
090a3c53
AW
5489 }
5490}
5491
5492static int pci_slot_reset(struct pci_slot *slot, int probe)
5493{
5494 int rc;
5495
f331a859 5496 if (!slot || !pci_slot_resetable(slot))
090a3c53
AW
5497 return -ENOTTY;
5498
5499 if (!probe)
5500 pci_slot_lock(slot);
5501
5502 might_sleep();
5503
5504 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5505
5506 if (!probe)
5507 pci_slot_unlock(slot);
5508
5509 return rc;
5510}
5511
9a3d2b9b
AW
5512/**
5513 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5514 * @slot: PCI slot to probe
5515 *
5516 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5517 */
5518int pci_probe_reset_slot(struct pci_slot *slot)
5519{
5520 return pci_slot_reset(slot, 1);
5521}
5522EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5523
090a3c53 5524/**
c6a44ba9 5525 * __pci_reset_slot - Try to reset a PCI slot
090a3c53
AW
5526 * @slot: PCI slot to reset
5527 *
5528 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5529 * independent of other slots. For instance, some slots may support slot power
5530 * control. In the case of a 1:1 bus to slot architecture, this function may
5531 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5532 * Generally a slot reset should be attempted before a bus reset. All of the
5533 * function of the slot and any subordinate buses behind the slot are reset
5534 * through this function. PCI config space of all devices in the slot and
5535 * behind the slot is saved before and restored after reset.
5536 *
61cf16d8
AW
5537 * Same as above except return -EAGAIN if the slot cannot be locked
5538 */
c6a44ba9 5539static int __pci_reset_slot(struct pci_slot *slot)
61cf16d8
AW
5540{
5541 int rc;
5542
5543 rc = pci_slot_reset(slot, 1);
5544 if (rc)
5545 return rc;
5546
61cf16d8 5547 if (pci_slot_trylock(slot)) {
ddefc033 5548 pci_slot_save_and_disable_locked(slot);
61cf16d8
AW
5549 might_sleep();
5550 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
ddefc033 5551 pci_slot_restore_locked(slot);
61cf16d8
AW
5552 pci_slot_unlock(slot);
5553 } else
5554 rc = -EAGAIN;
5555
61cf16d8
AW
5556 return rc;
5557}
61cf16d8 5558
090a3c53
AW
5559static int pci_bus_reset(struct pci_bus *bus, int probe)
5560{
18426238
SK
5561 int ret;
5562
f331a859 5563 if (!bus->self || !pci_bus_resetable(bus))
090a3c53
AW
5564 return -ENOTTY;
5565
5566 if (probe)
5567 return 0;
5568
5569 pci_bus_lock(bus);
5570
5571 might_sleep();
5572
381634ca 5573 ret = pci_bridge_secondary_bus_reset(bus->self);
090a3c53
AW
5574
5575 pci_bus_unlock(bus);
5576
18426238 5577 return ret;
090a3c53
AW
5578}
5579
c4eed62a
KB
5580/**
5581 * pci_bus_error_reset - reset the bridge's subordinate bus
5582 * @bridge: The parent device that connects to the bus to reset
5583 *
5584 * This function will first try to reset the slots on this bus if the method is
5585 * available. If slot reset fails or is not available, this will fall back to a
5586 * secondary bus reset.
5587 */
5588int pci_bus_error_reset(struct pci_dev *bridge)
5589{
5590 struct pci_bus *bus = bridge->subordinate;
5591 struct pci_slot *slot;
5592
5593 if (!bus)
5594 return -ENOTTY;
5595
5596 mutex_lock(&pci_slot_mutex);
5597 if (list_empty(&bus->slots))
5598 goto bus_reset;
5599
5600 list_for_each_entry(slot, &bus->slots, list)
5601 if (pci_probe_reset_slot(slot))
5602 goto bus_reset;
5603
5604 list_for_each_entry(slot, &bus->slots, list)
5605 if (pci_slot_reset(slot, 0))
5606 goto bus_reset;
5607
5608 mutex_unlock(&pci_slot_mutex);
5609 return 0;
5610bus_reset:
5611 mutex_unlock(&pci_slot_mutex);
5612 return pci_bus_reset(bridge->subordinate, 0);
5613}
5614
9a3d2b9b
AW
5615/**
5616 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5617 * @bus: PCI bus to probe
5618 *
5619 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5620 */
5621int pci_probe_reset_bus(struct pci_bus *bus)
5622{
5623 return pci_bus_reset(bus, 1);
5624}
5625EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5626
090a3c53 5627/**
c6a44ba9 5628 * __pci_reset_bus - Try to reset a PCI bus
090a3c53
AW
5629 * @bus: top level PCI bus to reset
5630 *
61cf16d8 5631 * Same as above except return -EAGAIN if the bus cannot be locked
090a3c53 5632 */
c6a44ba9 5633static int __pci_reset_bus(struct pci_bus *bus)
090a3c53
AW
5634{
5635 int rc;
5636
5637 rc = pci_bus_reset(bus, 1);
5638 if (rc)
5639 return rc;
5640
61cf16d8 5641 if (pci_bus_trylock(bus)) {
ddefc033 5642 pci_bus_save_and_disable_locked(bus);
61cf16d8 5643 might_sleep();
381634ca 5644 rc = pci_bridge_secondary_bus_reset(bus->self);
ddefc033 5645 pci_bus_restore_locked(bus);
61cf16d8
AW
5646 pci_bus_unlock(bus);
5647 } else
5648 rc = -EAGAIN;
090a3c53 5649
090a3c53
AW
5650 return rc;
5651}
090a3c53 5652
61cf16d8 5653/**
c6a44ba9 5654 * pci_reset_bus - Try to reset a PCI bus
811c5cb3 5655 * @pdev: top level PCI device to reset via slot/bus
61cf16d8
AW
5656 *
5657 * Same as above except return -EAGAIN if the bus cannot be locked
5658 */
c6a44ba9 5659int pci_reset_bus(struct pci_dev *pdev)
61cf16d8 5660{
d8a52810 5661 return (!pci_probe_reset_slot(pdev->slot)) ?
c6a44ba9 5662 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
61cf16d8 5663}
c6a44ba9 5664EXPORT_SYMBOL_GPL(pci_reset_bus);
61cf16d8 5665
d556ad4b
PO
5666/**
5667 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5668 * @dev: PCI device to query
5669 *
74356add
BH
5670 * Returns mmrbc: maximum designed memory read count in bytes or
5671 * appropriate error value.
d556ad4b
PO
5672 */
5673int pcix_get_max_mmrbc(struct pci_dev *dev)
5674{
7c9e2b1c 5675 int cap;
d556ad4b
PO
5676 u32 stat;
5677
5678 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5679 if (!cap)
5680 return -EINVAL;
5681
7c9e2b1c 5682 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
d556ad4b
PO
5683 return -EINVAL;
5684
25daeb55 5685 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
d556ad4b
PO
5686}
5687EXPORT_SYMBOL(pcix_get_max_mmrbc);
5688
5689/**
5690 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5691 * @dev: PCI device to query
5692 *
74356add
BH
5693 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5694 * value.
d556ad4b
PO
5695 */
5696int pcix_get_mmrbc(struct pci_dev *dev)
5697{
7c9e2b1c 5698 int cap;
bdc2bda7 5699 u16 cmd;
d556ad4b
PO
5700
5701 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5702 if (!cap)
5703 return -EINVAL;
5704
7c9e2b1c
DN
5705 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5706 return -EINVAL;
d556ad4b 5707
7c9e2b1c 5708 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
d556ad4b
PO
5709}
5710EXPORT_SYMBOL(pcix_get_mmrbc);
5711
5712/**
5713 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5714 * @dev: PCI device to query
5715 * @mmrbc: maximum memory read count in bytes
5716 * valid values are 512, 1024, 2048, 4096
5717 *
74356add 5718 * If possible sets maximum memory read byte count, some bridges have errata
d556ad4b
PO
5719 * that prevent this.
5720 */
5721int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5722{
7c9e2b1c 5723 int cap;
bdc2bda7
DN
5724 u32 stat, v, o;
5725 u16 cmd;
d556ad4b 5726
229f5afd 5727 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
7c9e2b1c 5728 return -EINVAL;
d556ad4b
PO
5729
5730 v = ffs(mmrbc) - 10;
5731
5732 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5733 if (!cap)
7c9e2b1c 5734 return -EINVAL;
d556ad4b 5735
7c9e2b1c
DN
5736 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5737 return -EINVAL;
d556ad4b
PO
5738
5739 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5740 return -E2BIG;
5741
7c9e2b1c
DN
5742 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5743 return -EINVAL;
d556ad4b
PO
5744
5745 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5746 if (o != v) {
809a3bf9 5747 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
d556ad4b
PO
5748 return -EIO;
5749
5750 cmd &= ~PCI_X_CMD_MAX_READ;
5751 cmd |= v << 2;
7c9e2b1c
DN
5752 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5753 return -EIO;
d556ad4b 5754 }
7c9e2b1c 5755 return 0;
d556ad4b
PO
5756}
5757EXPORT_SYMBOL(pcix_set_mmrbc);
5758
5759/**
5760 * pcie_get_readrq - get PCI Express read request size
5761 * @dev: PCI device to query
5762 *
74356add 5763 * Returns maximum memory read request in bytes or appropriate error value.
d556ad4b
PO
5764 */
5765int pcie_get_readrq(struct pci_dev *dev)
5766{
d556ad4b
PO
5767 u16 ctl;
5768
59875ae4 5769 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
d556ad4b 5770
59875ae4 5771 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
d556ad4b
PO
5772}
5773EXPORT_SYMBOL(pcie_get_readrq);
5774
5775/**
5776 * pcie_set_readrq - set PCI Express maximum memory read request
5777 * @dev: PCI device to query
42e61f4a 5778 * @rq: maximum memory read count in bytes
d556ad4b
PO
5779 * valid values are 128, 256, 512, 1024, 2048, 4096
5780 *
c9b378c7 5781 * If possible sets maximum memory read request in bytes
d556ad4b
PO
5782 */
5783int pcie_set_readrq(struct pci_dev *dev, int rq)
5784{
59875ae4 5785 u16 v;
d20df83b 5786 int ret;
d556ad4b 5787
229f5afd 5788 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
59875ae4 5789 return -EINVAL;
d556ad4b 5790
a1c473aa 5791 /*
74356add
BH
5792 * If using the "performance" PCIe config, we clamp the read rq
5793 * size to the max packet size to keep the host bridge from
5794 * generating requests larger than we can cope with.
a1c473aa
BH
5795 */
5796 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5797 int mps = pcie_get_mps(dev);
5798
a1c473aa
BH
5799 if (mps < rq)
5800 rq = mps;
5801 }
5802
5803 v = (ffs(rq) - 8) << 12;
d556ad4b 5804
d20df83b 5805 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
59875ae4 5806 PCI_EXP_DEVCTL_READRQ, v);
d20df83b
BOS
5807
5808 return pcibios_err_to_errno(ret);
d556ad4b
PO
5809}
5810EXPORT_SYMBOL(pcie_set_readrq);
5811
b03e7495
JM
5812/**
5813 * pcie_get_mps - get PCI Express maximum payload size
5814 * @dev: PCI device to query
5815 *
5816 * Returns maximum payload size in bytes
b03e7495
JM
5817 */
5818int pcie_get_mps(struct pci_dev *dev)
5819{
b03e7495
JM
5820 u16 ctl;
5821
59875ae4 5822 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
b03e7495 5823
59875ae4 5824 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
b03e7495 5825}
f1c66c46 5826EXPORT_SYMBOL(pcie_get_mps);
b03e7495
JM
5827
5828/**
5829 * pcie_set_mps - set PCI Express maximum payload size
5830 * @dev: PCI device to query
47c08f31 5831 * @mps: maximum payload size in bytes
b03e7495
JM
5832 * valid values are 128, 256, 512, 1024, 2048, 4096
5833 *
5834 * If possible sets maximum payload size
5835 */
5836int pcie_set_mps(struct pci_dev *dev, int mps)
5837{
59875ae4 5838 u16 v;
d20df83b 5839 int ret;
b03e7495
JM
5840
5841 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
59875ae4 5842 return -EINVAL;
b03e7495
JM
5843
5844 v = ffs(mps) - 8;
f7625980 5845 if (v > dev->pcie_mpss)
59875ae4 5846 return -EINVAL;
b03e7495
JM
5847 v <<= 5;
5848
d20df83b 5849 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
59875ae4 5850 PCI_EXP_DEVCTL_PAYLOAD, v);
d20df83b
BOS
5851
5852 return pcibios_err_to_errno(ret);
b03e7495 5853}
f1c66c46 5854EXPORT_SYMBOL(pcie_set_mps);
b03e7495 5855
6db79a88
TG
5856/**
5857 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5858 * device and its bandwidth limitation
5859 * @dev: PCI device to query
5860 * @limiting_dev: storage for device causing the bandwidth limitation
5861 * @speed: storage for speed of limiting device
5862 * @width: storage for width of limiting device
5863 *
5864 * Walk up the PCI device chain and find the point where the minimum
5865 * bandwidth is available. Return the bandwidth available there and (if
5866 * limiting_dev, speed, and width pointers are supplied) information about
5867 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5868 * raw bandwidth.
5869 */
5870u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5871 enum pci_bus_speed *speed,
5872 enum pcie_link_width *width)
5873{
5874 u16 lnksta;
5875 enum pci_bus_speed next_speed;
5876 enum pcie_link_width next_width;
5877 u32 bw, next_bw;
5878
5879 if (speed)
5880 *speed = PCI_SPEED_UNKNOWN;
5881 if (width)
5882 *width = PCIE_LNK_WIDTH_UNKNOWN;
5883
5884 bw = 0;
5885
5886 while (dev) {
5887 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5888
5889 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5890 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5891 PCI_EXP_LNKSTA_NLW_SHIFT;
5892
5893 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5894
5895 /* Check if current device limits the total bandwidth */
5896 if (!bw || next_bw <= bw) {
5897 bw = next_bw;
5898
5899 if (limiting_dev)
5900 *limiting_dev = dev;
5901 if (speed)
5902 *speed = next_speed;
5903 if (width)
5904 *width = next_width;
5905 }
5906
5907 dev = pci_upstream_bridge(dev);
5908 }
5909
5910 return bw;
5911}
5912EXPORT_SYMBOL(pcie_bandwidth_available);
5913
6cf57be0
TG
5914/**
5915 * pcie_get_speed_cap - query for the PCI device's link speed capability
5916 * @dev: PCI device to query
5917 *
5918 * Query the PCI device speed capability. Return the maximum link speed
5919 * supported by the device.
5920 */
5921enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5922{
5923 u32 lnkcap2, lnkcap;
5924
5925 /*
f1f90e25
MP
5926 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5927 * implementation note there recommends using the Supported Link
5928 * Speeds Vector in Link Capabilities 2 when supported.
5929 *
5930 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5931 * should use the Supported Link Speeds field in Link Capabilities,
5932 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6cf57be0
TG
5933 */
5934 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
757bfaa2
YY
5935
5936 /* PCIe r3.0-compliant */
5937 if (lnkcap2)
5938 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6cf57be0
TG
5939
5940 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
f1f90e25
MP
5941 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5942 return PCIE_SPEED_5_0GT;
5943 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5944 return PCIE_SPEED_2_5GT;
6cf57be0
TG
5945
5946 return PCI_SPEED_UNKNOWN;
5947}
576c7218 5948EXPORT_SYMBOL(pcie_get_speed_cap);
6cf57be0 5949
c70b65fb
TG
5950/**
5951 * pcie_get_width_cap - query for the PCI device's link width capability
5952 * @dev: PCI device to query
5953 *
5954 * Query the PCI device width capability. Return the maximum link width
5955 * supported by the device.
5956 */
5957enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5958{
5959 u32 lnkcap;
5960
5961 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5962 if (lnkcap)
5963 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5964
5965 return PCIE_LNK_WIDTH_UNKNOWN;
5966}
576c7218 5967EXPORT_SYMBOL(pcie_get_width_cap);
c70b65fb 5968
b852f63a
TG
5969/**
5970 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5971 * @dev: PCI device
5972 * @speed: storage for link speed
5973 * @width: storage for link width
5974 *
5975 * Calculate a PCI device's link bandwidth by querying for its link speed
5976 * and width, multiplying them, and applying encoding overhead. The result
5977 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5978 */
5979u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5980 enum pcie_link_width *width)
5981{
5982 *speed = pcie_get_speed_cap(dev);
5983 *width = pcie_get_width_cap(dev);
5984
5985 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5986 return 0;
5987
5988 return *width * PCIE_SPEED2MBS_ENC(*speed);
5989}
5990
9e506a7b 5991/**
2d1ce5ec 5992 * __pcie_print_link_status - Report the PCI device's link speed and width
9e506a7b 5993 * @dev: PCI device to query
2d1ce5ec 5994 * @verbose: Print info even when enough bandwidth is available
9e506a7b 5995 *
2d1ce5ec
AG
5996 * If the available bandwidth at the device is less than the device is
5997 * capable of, report the device's maximum possible bandwidth and the
5998 * upstream link that limits its performance. If @verbose, always print
5999 * the available bandwidth, even if the device isn't constrained.
9e506a7b 6000 */
2d1ce5ec 6001void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
9e506a7b
TG
6002{
6003 enum pcie_link_width width, width_cap;
6004 enum pci_bus_speed speed, speed_cap;
6005 struct pci_dev *limiting_dev = NULL;
6006 u32 bw_avail, bw_cap;
6007
6008 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6009 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6010
2d1ce5ec 6011 if (bw_avail >= bw_cap && verbose)
0cf22d6b 6012 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
9e506a7b 6013 bw_cap / 1000, bw_cap % 1000,
6348a34d 6014 pci_speed_string(speed_cap), width_cap);
2d1ce5ec 6015 else if (bw_avail < bw_cap)
0cf22d6b 6016 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
9e506a7b 6017 bw_avail / 1000, bw_avail % 1000,
6348a34d 6018 pci_speed_string(speed), width,
9e506a7b
TG
6019 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6020 bw_cap / 1000, bw_cap % 1000,
6348a34d 6021 pci_speed_string(speed_cap), width_cap);
9e506a7b 6022}
2d1ce5ec
AG
6023
6024/**
6025 * pcie_print_link_status - Report the PCI device's link speed and width
6026 * @dev: PCI device to query
6027 *
6028 * Report the available bandwidth at the device.
6029 */
6030void pcie_print_link_status(struct pci_dev *dev)
6031{
6032 __pcie_print_link_status(dev, true);
6033}
9e506a7b
TG
6034EXPORT_SYMBOL(pcie_print_link_status);
6035
c87deff7
HS
6036/**
6037 * pci_select_bars - Make BAR mask from the type of resource
f95d882d 6038 * @dev: the PCI device for which BAR mask is made
c87deff7
HS
6039 * @flags: resource type mask to be selected
6040 *
6041 * This helper routine makes bar mask from the type of resource.
6042 */
6043int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6044{
6045 int i, bars = 0;
6046 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6047 if (pci_resource_flags(dev, i) & flags)
6048 bars |= (1 << i);
6049 return bars;
6050}
b7fe9434 6051EXPORT_SYMBOL(pci_select_bars);
c87deff7 6052
95a8b6ef
MT
6053/* Some architectures require additional programming to enable VGA */
6054static arch_set_vga_state_t arch_set_vga_state;
6055
6056void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6057{
6058 arch_set_vga_state = func; /* NULL disables */
6059}
6060
6061static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3c78bc61 6062 unsigned int command_bits, u32 flags)
95a8b6ef
MT
6063{
6064 if (arch_set_vga_state)
6065 return arch_set_vga_state(dev, decode, command_bits,
7ad35cf2 6066 flags);
95a8b6ef
MT
6067 return 0;
6068}
6069
deb2d2ec
BH
6070/**
6071 * pci_set_vga_state - set VGA decode state on device and parents if requested
19eea630
RD
6072 * @dev: the PCI device
6073 * @decode: true = enable decoding, false = disable decoding
6074 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3f37d622 6075 * @flags: traverse ancestors and change bridges
3448a19d 6076 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
deb2d2ec
BH
6077 */
6078int pci_set_vga_state(struct pci_dev *dev, bool decode,
3448a19d 6079 unsigned int command_bits, u32 flags)
deb2d2ec
BH
6080{
6081 struct pci_bus *bus;
6082 struct pci_dev *bridge;
6083 u16 cmd;
95a8b6ef 6084 int rc;
deb2d2ec 6085
67ebd814 6086 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
deb2d2ec 6087
95a8b6ef 6088 /* ARCH specific VGA enables */
3448a19d 6089 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
95a8b6ef
MT
6090 if (rc)
6091 return rc;
6092
3448a19d
DA
6093 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6094 pci_read_config_word(dev, PCI_COMMAND, &cmd);
0a98bb98 6095 if (decode)
3448a19d
DA
6096 cmd |= command_bits;
6097 else
6098 cmd &= ~command_bits;
6099 pci_write_config_word(dev, PCI_COMMAND, cmd);
6100 }
deb2d2ec 6101
3448a19d 6102 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
deb2d2ec
BH
6103 return 0;
6104
6105 bus = dev->bus;
6106 while (bus) {
6107 bridge = bus->self;
6108 if (bridge) {
6109 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6110 &cmd);
0a98bb98 6111 if (decode)
deb2d2ec
BH
6112 cmd |= PCI_BRIDGE_CTL_VGA;
6113 else
6114 cmd &= ~PCI_BRIDGE_CTL_VGA;
6115 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6116 cmd);
6117 }
6118 bus = bus->parent;
6119 }
6120 return 0;
6121}
6122
52525b7a
KHF
6123#ifdef CONFIG_ACPI
6124bool pci_pr3_present(struct pci_dev *pdev)
6125{
6126 struct acpi_device *adev;
6127
6128 if (acpi_disabled)
6129 return false;
6130
6131 adev = ACPI_COMPANION(&pdev->dev);
6132 if (!adev)
6133 return false;
6134
6135 return adev->power.flags.power_resources &&
6136 acpi_has_method(adev->handle, "_PR3");
6137}
6138EXPORT_SYMBOL_GPL(pci_pr3_present);
6139#endif
6140
f0af9593
BH
6141/**
6142 * pci_add_dma_alias - Add a DMA devfn alias for a device
6143 * @dev: the PCI device for which alias is added
09298542
JS
6144 * @devfn_from: alias slot and function
6145 * @nr_devfns: number of subsequent devfns to alias
f0af9593 6146 *
f778a0d2
LG
6147 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6148 * which is used to program permissible bus-devfn source addresses for DMA
6149 * requests in an IOMMU. These aliases factor into IOMMU group creation
6150 * and are useful for devices generating DMA requests beyond or different
6151 * from their logical bus-devfn. Examples include device quirks where the
6152 * device simply uses the wrong devfn, as well as non-transparent bridges
6153 * where the alias may be a proxy for devices in another domain.
6154 *
6155 * IOMMU group creation is performed during device discovery or addition,
6156 * prior to any potential DMA mapping and therefore prior to driver probing
6157 * (especially for userspace assigned devices where IOMMU group definition
6158 * cannot be left as a userspace activity). DMA aliases should therefore
6159 * be configured via quirks, such as the PCI fixup header quirk.
f0af9593 6160 */
09298542 6161void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
f0af9593 6162{
09298542
JS
6163 int devfn_to;
6164
6165 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6166 devfn_to = devfn_from + nr_devfns - 1;
6167
338c3149 6168 if (!dev->dma_alias_mask)
f8bf2aeb 6169 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
338c3149 6170 if (!dev->dma_alias_mask) {
7506dc79 6171 pci_warn(dev, "Unable to allocate DMA alias mask\n");
338c3149
JL
6172 return;
6173 }
6174
09298542
JS
6175 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6176
6177 if (nr_devfns == 1)
6178 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6179 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6180 else if (nr_devfns > 1)
6181 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6182 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6183 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
f0af9593
BH
6184}
6185
338c3149
JL
6186bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6187{
6188 return (dev1->dma_alias_mask &&
6189 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6190 (dev2->dma_alias_mask &&
2856ba60
JD
6191 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6192 pci_real_dma_dev(dev1) == dev2 ||
6193 pci_real_dma_dev(dev2) == dev1;
338c3149
JL
6194}
6195
8496e85c
RW
6196bool pci_device_is_present(struct pci_dev *pdev)
6197{
6198 u32 v;
6199
fe2bd75b
KB
6200 if (pci_dev_is_disconnected(pdev))
6201 return false;
8496e85c
RW
6202 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6203}
6204EXPORT_SYMBOL_GPL(pci_device_is_present);
6205
08249651
RW
6206void pci_ignore_hotplug(struct pci_dev *dev)
6207{
6208 struct pci_dev *bridge = dev->bus->self;
6209
6210 dev->ignore_hotplug = 1;
6211 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6212 if (bridge)
6213 bridge->ignore_hotplug = 1;
6214}
6215EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6216
2856ba60
JD
6217/**
6218 * pci_real_dma_dev - Get PCI DMA device for PCI device
6219 * @dev: the PCI device that may have a PCI DMA alias
6220 *
6221 * Permits the platform to provide architecture-specific functionality to
6222 * devices needing to alias DMA to another PCI device on another PCI bus. If
6223 * the PCI device is on the same bus, it is recommended to use
6224 * pci_add_dma_alias(). This is the default implementation. Architecture
6225 * implementations can override this.
6226 */
6227struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6228{
6229 return dev;
6230}
6231
0a701aa6
YX
6232resource_size_t __weak pcibios_default_alignment(void)
6233{
6234 return 0;
6235}
6236
b8074aa2
DE
6237/*
6238 * Arches that don't want to expose struct resource to userland as-is in
6239 * sysfs and /proc can implement their own pci_resource_to_user().
6240 */
6241void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6242 const struct resource *rsrc,
6243 resource_size_t *start, resource_size_t *end)
6244{
6245 *start = rsrc->start;
6246 *end = rsrc->end;
6247}
6248
70aaf61a 6249static char *resource_alignment_param;
e9d1e492 6250static DEFINE_SPINLOCK(resource_alignment_lock);
32a9a682
YS
6251
6252/**
6253 * pci_specified_resource_alignment - get resource alignment specified by user.
6254 * @dev: the PCI device to get
e3adec72 6255 * @resize: whether or not to change resources' size when reassigning alignment
32a9a682
YS
6256 *
6257 * RETURNS: Resource alignment if it is specified.
6258 * Zero if it is not specified.
6259 */
e3adec72
YX
6260static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6261 bool *resize)
32a9a682 6262{
07d8d7e5 6263 int align_order, count;
0a701aa6 6264 resource_size_t align = pcibios_default_alignment();
07d8d7e5
LG
6265 const char *p;
6266 int ret;
32a9a682
YS
6267
6268 spin_lock(&resource_alignment_lock);
6269 p = resource_alignment_param;
70aaf61a 6270 if (!p || !*p)
f0b99f70
YX
6271 goto out;
6272 if (pci_has_flag(PCI_PROBE_ONLY)) {
0a701aa6 6273 align = 0;
f0b99f70
YX
6274 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6275 goto out;
6276 }
6277
32a9a682
YS
6278 while (*p) {
6279 count = 0;
6280 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6534aac1 6281 p[count] == '@') {
32a9a682 6282 p += count + 1;
6534aac1
BH
6283 if (align_order > 63) {
6284 pr_err("PCI: Invalid requested alignment (order %d)\n",
6285 align_order);
6286 align_order = PAGE_SHIFT;
6287 }
32a9a682 6288 } else {
6534aac1 6289 align_order = PAGE_SHIFT;
32a9a682 6290 }
07d8d7e5
LG
6291
6292 ret = pci_dev_str_match(dev, p, &p);
6293 if (ret == 1) {
6294 *resize = true;
cc73eb32 6295 align = 1ULL << align_order;
07d8d7e5
LG
6296 break;
6297 } else if (ret < 0) {
6298 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6299 p);
6300 break;
32a9a682 6301 }
07d8d7e5 6302
32a9a682
YS
6303 if (*p != ';' && *p != ',') {
6304 /* End of param or invalid format */
6305 break;
6306 }
6307 p++;
6308 }
f0b99f70 6309out:
32a9a682
YS
6310 spin_unlock(&resource_alignment_lock);
6311 return align;
6312}
6313
81a5e70e 6314static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
e3adec72 6315 resource_size_t align, bool resize)
81a5e70e
BH
6316{
6317 struct resource *r = &dev->resource[bar];
6318 resource_size_t size;
6319
6320 if (!(r->flags & IORESOURCE_MEM))
6321 return;
6322
6323 if (r->flags & IORESOURCE_PCI_FIXED) {
7506dc79 6324 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
81a5e70e
BH
6325 bar, r, (unsigned long long)align);
6326 return;
6327 }
6328
6329 size = resource_size(r);
0dde1c08
BH
6330 if (size >= align)
6331 return;
81a5e70e 6332
0dde1c08 6333 /*
e3adec72
YX
6334 * Increase the alignment of the resource. There are two ways we
6335 * can do this:
0dde1c08 6336 *
e3adec72
YX
6337 * 1) Increase the size of the resource. BARs are aligned on their
6338 * size, so when we reallocate space for this resource, we'll
6339 * allocate it with the larger alignment. This also prevents
6340 * assignment of any other BARs inside the alignment region, so
6341 * if we're requesting page alignment, this means no other BARs
6342 * will share the page.
6343 *
6344 * The disadvantage is that this makes the resource larger than
6345 * the hardware BAR, which may break drivers that compute things
6346 * based on the resource size, e.g., to find registers at a
6347 * fixed offset before the end of the BAR.
6348 *
6349 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6350 * set r->start to the desired alignment. By itself this
6351 * doesn't prevent other BARs being put inside the alignment
6352 * region, but if we realign *every* resource of every device in
6353 * the system, none of them will share an alignment region.
6354 *
6355 * When the user has requested alignment for only some devices via
6356 * the "pci=resource_alignment" argument, "resize" is true and we
6357 * use the first method. Otherwise we assume we're aligning all
6358 * devices and we use the second.
0dde1c08 6359 */
e3adec72 6360
7506dc79 6361 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
0dde1c08 6362 bar, r, (unsigned long long)align);
81a5e70e 6363
e3adec72
YX
6364 if (resize) {
6365 r->start = 0;
6366 r->end = align - 1;
6367 } else {
6368 r->flags &= ~IORESOURCE_SIZEALIGN;
6369 r->flags |= IORESOURCE_STARTALIGN;
6370 r->start = align;
6371 r->end = r->start + size - 1;
6372 }
0dde1c08 6373 r->flags |= IORESOURCE_UNSET;
81a5e70e
BH
6374}
6375
2069ecfb
YL
6376/*
6377 * This function disables memory decoding and releases memory resources
6378 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6379 * It also rounds up size to specified alignment.
6380 * Later on, the kernel will assign page-aligned memory resource back
6381 * to the device.
6382 */
6383void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6384{
6385 int i;
6386 struct resource *r;
81a5e70e 6387 resource_size_t align;
2069ecfb 6388 u16 command;
e3adec72 6389 bool resize = false;
2069ecfb 6390
62d9a78f
YX
6391 /*
6392 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6393 * 3.4.1.11. Their resources are allocated from the space
6394 * described by the VF BARx register in the PF's SR-IOV capability.
6395 * We can't influence their alignment here.
6396 */
6397 if (dev->is_virtfn)
6398 return;
6399
10c463a7 6400 /* check if specified PCI is target device to reassign */
e3adec72 6401 align = pci_specified_resource_alignment(dev, &resize);
10c463a7 6402 if (!align)
2069ecfb
YL
6403 return;
6404
6405 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6406 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
7506dc79 6407 pci_warn(dev, "Can't reassign resources to host bridge\n");
2069ecfb
YL
6408 return;
6409 }
6410
2069ecfb
YL
6411 pci_read_config_word(dev, PCI_COMMAND, &command);
6412 command &= ~PCI_COMMAND_MEMORY;
6413 pci_write_config_word(dev, PCI_COMMAND, command);
6414
81a5e70e 6415 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
e3adec72 6416 pci_request_resource_alignment(dev, i, align, resize);
f0b99f70 6417
81a5e70e
BH
6418 /*
6419 * Need to disable bridge's resource window,
2069ecfb
YL
6420 * to enable the kernel to reassign new resource
6421 * window later on.
6422 */
b2fb5cc5 6423 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
2069ecfb
YL
6424 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6425 r = &dev->resource[i];
6426 if (!(r->flags & IORESOURCE_MEM))
6427 continue;
bd064f0a 6428 r->flags |= IORESOURCE_UNSET;
2069ecfb
YL
6429 r->end = resource_size(r) - 1;
6430 r->start = 0;
6431 }
6432 pci_disable_bridge_window(dev);
6433 }
6434}
6435
273b177c 6436static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
32a9a682 6437{
70aaf61a 6438 size_t count = 0;
32a9a682 6439
32a9a682 6440 spin_lock(&resource_alignment_lock);
70aaf61a 6441 if (resource_alignment_param)
e7a7499d 6442 count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
32a9a682 6443 spin_unlock(&resource_alignment_lock);
32a9a682 6444
e499081d
LG
6445 /*
6446 * When set by the command line, resource_alignment_param will not
6447 * have a trailing line feed, which is ugly. So conditionally add
6448 * it here.
6449 */
6450 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6451 buf[count - 1] = '\n';
6452 buf[count++] = 0;
6453 }
6454
32a9a682 6455 return count;
32a9a682
YS
6456}
6457
d61dfafc 6458static ssize_t resource_alignment_store(struct bus_type *bus,
32a9a682
YS
6459 const char *buf, size_t count)
6460{
273b177c
LG
6461 char *param = kstrndup(buf, count, GFP_KERNEL);
6462
6463 if (!param)
6464 return -ENOMEM;
6465
6466 spin_lock(&resource_alignment_lock);
6467 kfree(resource_alignment_param);
6468 resource_alignment_param = param;
6469 spin_unlock(&resource_alignment_lock);
6470 return count;
32a9a682
YS
6471}
6472
d61dfafc 6473static BUS_ATTR_RW(resource_alignment);
32a9a682
YS
6474
6475static int __init pci_resource_alignment_sysfs_init(void)
6476{
6477 return bus_create_file(&pci_bus_type,
6478 &bus_attr_resource_alignment);
6479}
32a9a682
YS
6480late_initcall(pci_resource_alignment_sysfs_init);
6481
15856ad5 6482static void pci_no_domains(void)
32a2eea7
JG
6483{
6484#ifdef CONFIG_PCI_DOMAINS
6485 pci_domains_supported = 0;
6486#endif
6487}
6488
ae07b786 6489#ifdef CONFIG_PCI_DOMAINS_GENERIC
41e5c0f8
LD
6490static atomic_t __domain_nr = ATOMIC_INIT(-1);
6491
ae07b786 6492static int pci_get_new_domain_nr(void)
41e5c0f8
LD
6493{
6494 return atomic_inc_return(&__domain_nr);
6495}
7c674700 6496
1a4f93f7 6497static int of_pci_bus_find_domain_nr(struct device *parent)
7c674700
LP
6498{
6499 static int use_dt_domains = -1;
54c6e2dd 6500 int domain = -1;
7c674700 6501
54c6e2dd
KHC
6502 if (parent)
6503 domain = of_get_pci_domain_nr(parent->of_node);
74356add 6504
7c674700
LP
6505 /*
6506 * Check DT domain and use_dt_domains values.
6507 *
6508 * If DT domain property is valid (domain >= 0) and
6509 * use_dt_domains != 0, the DT assignment is valid since this means
6510 * we have not previously allocated a domain number by using
6511 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6512 * 1, to indicate that we have just assigned a domain number from
6513 * DT.
6514 *
6515 * If DT domain property value is not valid (ie domain < 0), and we
6516 * have not previously assigned a domain number from DT
6517 * (use_dt_domains != 1) we should assign a domain number by
6518 * using the:
6519 *
6520 * pci_get_new_domain_nr()
6521 *
6522 * API and update the use_dt_domains value to keep track of method we
6523 * are using to assign domain numbers (use_dt_domains = 0).
6524 *
6525 * All other combinations imply we have a platform that is trying
6526 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6527 * which is a recipe for domain mishandling and it is prevented by
6528 * invalidating the domain value (domain = -1) and printing a
6529 * corresponding error.
6530 */
6531 if (domain >= 0 && use_dt_domains) {
6532 use_dt_domains = 1;
6533 } else if (domain < 0 && use_dt_domains != 1) {
6534 use_dt_domains = 0;
6535 domain = pci_get_new_domain_nr();
6536 } else {
9df1c6ec
SL
6537 if (parent)
6538 pr_err("Node %pOF has ", parent->of_node);
6539 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
7c674700
LP
6540 domain = -1;
6541 }
6542
9c7cb891 6543 return domain;
7c674700 6544}
1a4f93f7
TN
6545
6546int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6547{
2ab51dde
TN
6548 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6549 acpi_pci_bus_find_domain_nr(bus);
7c674700
LP
6550}
6551#endif
41e5c0f8 6552
0ef5f8f6 6553/**
642c92da 6554 * pci_ext_cfg_avail - can we access extended PCI config space?
0ef5f8f6
AP
6555 *
6556 * Returns 1 if we can access PCI extended config space (offsets
6557 * greater than 0xff). This is the default implementation. Architecture
6558 * implementations can override this.
6559 */
642c92da 6560int __weak pci_ext_cfg_avail(void)
0ef5f8f6
AP
6561{
6562 return 1;
6563}
6564
2d1c8618
BH
6565void __weak pci_fixup_cardbus(struct pci_bus *bus)
6566{
6567}
6568EXPORT_SYMBOL(pci_fixup_cardbus);
6569
ad04d31e 6570static int __init pci_setup(char *str)
1da177e4
LT
6571{
6572 while (str) {
6573 char *k = strchr(str, ',');
6574 if (k)
6575 *k++ = 0;
6576 if (*str && (str = pcibios_setup(str)) && *str) {
309e57df
MW
6577 if (!strcmp(str, "nomsi")) {
6578 pci_no_msi();
cef74409
GK
6579 } else if (!strncmp(str, "noats", 5)) {
6580 pr_info("PCIe: ATS is disabled\n");
6581 pcie_ats_disabled = true;
7f785763
RD
6582 } else if (!strcmp(str, "noaer")) {
6583 pci_no_aer();
11eb0e0e
SK
6584 } else if (!strcmp(str, "earlydump")) {
6585 pci_early_dump = true;
b55438fd
YL
6586 } else if (!strncmp(str, "realloc=", 8)) {
6587 pci_realloc_get_opt(str + 8);
f483d392 6588 } else if (!strncmp(str, "realloc", 7)) {
b55438fd 6589 pci_realloc_get_opt("on");
32a2eea7
JG
6590 } else if (!strcmp(str, "nodomains")) {
6591 pci_no_domains();
6748dcc2
RW
6592 } else if (!strncmp(str, "noari", 5)) {
6593 pcie_ari_disabled = true;
4516a618
AN
6594 } else if (!strncmp(str, "cbiosize=", 9)) {
6595 pci_cardbus_io_size = memparse(str + 9, &str);
6596 } else if (!strncmp(str, "cbmemsize=", 10)) {
6597 pci_cardbus_mem_size = memparse(str + 10, &str);
32a9a682 6598 } else if (!strncmp(str, "resource_alignment=", 19)) {
70aaf61a 6599 resource_alignment_param = str + 19;
43c16408
AP
6600 } else if (!strncmp(str, "ecrc=", 5)) {
6601 pcie_ecrc_get_policy(str + 5);
28760489
EB
6602 } else if (!strncmp(str, "hpiosize=", 9)) {
6603 pci_hotplug_io_size = memparse(str + 9, &str);
d7b8a217
NJ
6604 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6605 pci_hotplug_mmio_size = memparse(str + 11, &str);
6606 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6607 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
28760489 6608 } else if (!strncmp(str, "hpmemsize=", 10)) {
d7b8a217
NJ
6609 pci_hotplug_mmio_size = memparse(str + 10, &str);
6610 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
e16b4660
KB
6611 } else if (!strncmp(str, "hpbussize=", 10)) {
6612 pci_hotplug_bus_size =
6613 simple_strtoul(str + 10, &str, 0);
6614 if (pci_hotplug_bus_size > 0xff)
6615 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5f39e670
JM
6616 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6617 pcie_bus_config = PCIE_BUS_TUNE_OFF;
b03e7495
JM
6618 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6619 pcie_bus_config = PCIE_BUS_SAFE;
6620 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6621 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5f39e670
JM
6622 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6623 pcie_bus_config = PCIE_BUS_PEER2PEER;
284f5f9d
BH
6624 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6625 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
aaca43fd 6626 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
d5bc73f3 6627 disable_acs_redir_param = str + 18;
309e57df 6628 } else {
25da8dba 6629 pr_err("PCI: Unknown option `%s'\n", str);
309e57df 6630 }
1da177e4
LT
6631 }
6632 str = k;
6633 }
0637a70a 6634 return 0;
1da177e4 6635}
0637a70a 6636early_param("pci", pci_setup);
d5bc73f3
LG
6637
6638/*
70aaf61a
LG
6639 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6640 * in pci_setup(), above, to point to data in the __initdata section which
6641 * will be freed after the init sequence is complete. We can't allocate memory
6642 * in pci_setup() because some architectures do not have any memory allocation
6643 * service available during an early_param() call. So we allocate memory and
6644 * copy the variable here before the init section is freed.
6645 *
d5bc73f3
LG
6646 */
6647static int __init pci_realloc_setup_params(void)
6648{
70aaf61a
LG
6649 resource_alignment_param = kstrdup(resource_alignment_param,
6650 GFP_KERNEL);
d5bc73f3
LG
6651 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6652
6653 return 0;
6654}
6655pure_initcall(pci_realloc_setup_params);