]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/pci/pci.c
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / drivers / pci / pci.c
CommitLineData
7328c8f4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
df62ab5e 3 * PCI Bus Services, see include/linux/pci.h for further explanation.
1da177e4 4 *
df62ab5e
BH
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
1da177e4 7 *
df62ab5e 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
1da177e4
LT
9 */
10
2ab51dde 11#include <linux/acpi.h>
1da177e4
LT
12#include <linux/kernel.h>
13#include <linux/delay.h>
9d26d3a8 14#include <linux/dmi.h>
1da177e4 15#include <linux/init.h>
bbd8810d 16#include <linux/msi.h>
7c674700
LP
17#include <linux/of.h>
18#include <linux/of_pci.h>
1da177e4 19#include <linux/pci.h>
075c1771 20#include <linux/pm.h>
5a0e3ad6 21#include <linux/slab.h>
1da177e4
LT
22#include <linux/module.h>
23#include <linux/spinlock.h>
4e57b681 24#include <linux/string.h>
229f5afd 25#include <linux/log2.h>
5745392e 26#include <linux/logic_pio.h>
c300bd2f 27#include <linux/pm_wakeup.h>
8dd7f803 28#include <linux/interrupt.h>
32a9a682 29#include <linux/device.h>
b67ea761 30#include <linux/pm_runtime.h>
608c3881 31#include <linux/pci_hotplug.h>
4d3f1384 32#include <linux/vmalloc.h>
4ebeb1ec 33#include <linux/pci-ats.h>
32a9a682 34#include <asm/setup.h>
2a2aca31 35#include <asm/dma.h>
b07461a8 36#include <linux/aer.h>
bc56b9e0 37#include "pci.h"
1da177e4 38
c4eed62a
KB
39DEFINE_MUTEX(pci_slot_mutex);
40
00240c38
AS
41const char *pci_power_names[] = {
42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
43};
44EXPORT_SYMBOL_GPL(pci_power_names);
45
93177a74
RW
46int isa_dma_bridge_buggy;
47EXPORT_SYMBOL(isa_dma_bridge_buggy);
48
49int pci_pci_problems;
50EXPORT_SYMBOL(pci_pci_problems);
51
1ae861e6
RW
52unsigned int pci_pm_d3_delay;
53
df17e62e
MG
54static void pci_pme_list_scan(struct work_struct *work);
55
56static LIST_HEAD(pci_pme_list);
57static DEFINE_MUTEX(pci_pme_list_mutex);
58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59
60struct pci_pme_device {
61 struct list_head list;
62 struct pci_dev *dev;
63};
64
65#define PME_TIMEOUT 1000 /* How long between PME checks */
66
1ae861e6
RW
67static void pci_dev_d3_sleep(struct pci_dev *dev)
68{
69 unsigned int delay = dev->d3_delay;
70
71 if (delay < pci_pm_d3_delay)
72 delay = pci_pm_d3_delay;
73
50b2b540
AH
74 if (delay)
75 msleep(delay);
1ae861e6 76}
1da177e4 77
32a2eea7
JG
78#ifdef CONFIG_PCI_DOMAINS
79int pci_domains_supported = 1;
80#endif
81
4516a618
AN
82#define DEFAULT_CARDBUS_IO_SIZE (256)
83#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
84/* pci=cbmemsize=nnM,cbiosize=nn can override this */
85unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
86unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
87
28760489 88#define DEFAULT_HOTPLUG_IO_SIZE (256)
d7b8a217
NJ
89#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
90#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
91/* hpiosize=nn can override this */
28760489 92unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
d7b8a217
NJ
93/*
94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
96 * pci=hpmemsize=nnM overrides both
97 */
98unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
99unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
28760489 100
e16b4660
KB
101#define DEFAULT_HOTPLUG_BUS_SIZE 1
102unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
103
27d868b5 104enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
b03e7495 105
ac1aa47b
JB
106/*
107 * The default CLS is used if arch didn't set CLS explicitly and not
108 * all pci devices agree on the same value. Arch can override either
109 * the dfl or actual value as it sees fit. Don't forget this is
110 * measured in 32-bit words, not bytes.
111 */
15856ad5 112u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
ac1aa47b
JB
113u8 pci_cache_line_size;
114
96c55900
MS
115/*
116 * If we set up a device for bus mastering, we need to check the latency
117 * timer as certain BIOSes forget to set it properly.
118 */
119unsigned int pcibios_max_latency = 255;
120
6748dcc2
RW
121/* If set, the PCIe ARI capability will not be used. */
122static bool pcie_ari_disabled;
123
cef74409
GK
124/* If set, the PCIe ATS capability will not be used. */
125static bool pcie_ats_disabled;
126
11eb0e0e
SK
127/* If set, the PCI config space of each device is printed during boot. */
128bool pci_early_dump;
129
cef74409
GK
130bool pci_ats_disabled(void)
131{
132 return pcie_ats_disabled;
133}
1a373a78 134EXPORT_SYMBOL_GPL(pci_ats_disabled);
cef74409 135
9d26d3a8
MW
136/* Disable bridge_d3 for all PCIe ports */
137static bool pci_bridge_d3_disable;
138/* Force bridge_d3 for all PCIe ports */
139static bool pci_bridge_d3_force;
140
141static int __init pcie_port_pm_setup(char *str)
142{
143 if (!strcmp(str, "off"))
144 pci_bridge_d3_disable = true;
145 else if (!strcmp(str, "force"))
146 pci_bridge_d3_force = true;
147 return 1;
148}
149__setup("pcie_port_pm=", pcie_port_pm_setup);
150
a2758b6b
SK
151/* Time to wait after a reset for device to become responsive */
152#define PCIE_RESET_READY_POLL_MS 60000
153
1da177e4
LT
154/**
155 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
156 * @bus: pointer to PCI bus structure to search
157 *
158 * Given a PCI bus, returns the highest PCI bus number present in the set
159 * including the given PCI bus and its list of child PCI buses.
160 */
07656d83 161unsigned char pci_bus_max_busnr(struct pci_bus *bus)
1da177e4 162{
94e6a9b9 163 struct pci_bus *tmp;
1da177e4
LT
164 unsigned char max, n;
165
b918c62e 166 max = bus->busn_res.end;
94e6a9b9
YW
167 list_for_each_entry(tmp, &bus->children, node) {
168 n = pci_bus_max_busnr(tmp);
3c78bc61 169 if (n > max)
1da177e4
LT
170 max = n;
171 }
172 return max;
173}
b82db5ce 174EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
1da177e4 175
1684f5dd
AM
176#ifdef CONFIG_HAS_IOMEM
177void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
178{
1f7bf3bf
BH
179 struct resource *res = &pdev->resource[bar];
180
1684f5dd
AM
181 /*
182 * Make sure the BAR is actually a memory resource, not an IO resource
183 */
646c0282 184 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
7506dc79 185 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
1684f5dd
AM
186 return NULL;
187 }
4bdc0d67 188 return ioremap(res->start, resource_size(res));
1684f5dd
AM
189}
190EXPORT_SYMBOL_GPL(pci_ioremap_bar);
c43996f4
LR
191
192void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
193{
194 /*
195 * Make sure the BAR is actually a memory resource, not an IO resource
196 */
197 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
198 WARN_ON(1);
199 return NULL;
200 }
201 return ioremap_wc(pci_resource_start(pdev, bar),
202 pci_resource_len(pdev, bar));
203}
204EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
1684f5dd
AM
205#endif
206
45db3370
LG
207/**
208 * pci_dev_str_match_path - test if a path string matches a device
74356add
BH
209 * @dev: the PCI device to test
210 * @path: string to match the device against
45db3370
LG
211 * @endptr: pointer to the string after the match
212 *
213 * Test if a string (typically from a kernel parameter) formatted as a
214 * path of device/function addresses matches a PCI device. The string must
215 * be of the form:
216 *
217 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
218 *
219 * A path for a device can be obtained using 'lspci -t'. Using a path
220 * is more robust against bus renumbering than using only a single bus,
221 * device and function address.
222 *
223 * Returns 1 if the string matches the device, 0 if it does not and
224 * a negative error code if it fails to parse the string.
225 */
226static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
227 const char **endptr)
228{
229 int ret;
230 int seg, bus, slot, func;
231 char *wpath, *p;
232 char end;
233
234 *endptr = strchrnul(path, ';');
235
236 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
237 if (!wpath)
238 return -ENOMEM;
239
240 while (1) {
241 p = strrchr(wpath, '/');
242 if (!p)
243 break;
244 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
245 if (ret != 2) {
246 ret = -EINVAL;
247 goto free_and_exit;
248 }
249
250 if (dev->devfn != PCI_DEVFN(slot, func)) {
251 ret = 0;
252 goto free_and_exit;
253 }
254
255 /*
256 * Note: we don't need to get a reference to the upstream
257 * bridge because we hold a reference to the top level
258 * device which should hold a reference to the bridge,
259 * and so on.
260 */
261 dev = pci_upstream_bridge(dev);
262 if (!dev) {
263 ret = 0;
264 goto free_and_exit;
265 }
266
267 *p = 0;
268 }
269
270 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
271 &func, &end);
272 if (ret != 4) {
273 seg = 0;
274 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
275 if (ret != 3) {
276 ret = -EINVAL;
277 goto free_and_exit;
278 }
279 }
280
281 ret = (seg == pci_domain_nr(dev->bus) &&
282 bus == dev->bus->number &&
283 dev->devfn == PCI_DEVFN(slot, func));
284
285free_and_exit:
286 kfree(wpath);
287 return ret;
288}
289
07d8d7e5
LG
290/**
291 * pci_dev_str_match - test if a string matches a device
74356add
BH
292 * @dev: the PCI device to test
293 * @p: string to match the device against
07d8d7e5
LG
294 * @endptr: pointer to the string after the match
295 *
296 * Test if a string (typically from a kernel parameter) matches a specified
297 * PCI device. The string may be of one of the following formats:
298 *
45db3370 299 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
07d8d7e5
LG
300 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
301 *
302 * The first format specifies a PCI bus/device/function address which
303 * may change if new hardware is inserted, if motherboard firmware changes,
304 * or due to changes caused in kernel parameters. If the domain is
45db3370
LG
305 * left unspecified, it is taken to be 0. In order to be robust against
306 * bus renumbering issues, a path of PCI device/function numbers may be used
307 * to address the specific device. The path for a device can be determined
308 * through the use of 'lspci -t'.
07d8d7e5
LG
309 *
310 * The second format matches devices using IDs in the configuration
311 * space which may match multiple devices in the system. A value of 0
312 * for any field will match all devices. (Note: this differs from
313 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
314 * legacy reasons and convenience so users don't have to specify
315 * FFFFFFFFs on the command line.)
316 *
317 * Returns 1 if the string matches the device, 0 if it does not and
318 * a negative error code if the string cannot be parsed.
319 */
320static int pci_dev_str_match(struct pci_dev *dev, const char *p,
321 const char **endptr)
322{
323 int ret;
45db3370 324 int count;
07d8d7e5
LG
325 unsigned short vendor, device, subsystem_vendor, subsystem_device;
326
327 if (strncmp(p, "pci:", 4) == 0) {
328 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
329 p += 4;
330 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
331 &subsystem_vendor, &subsystem_device, &count);
332 if (ret != 4) {
333 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
334 if (ret != 2)
335 return -EINVAL;
336
337 subsystem_vendor = 0;
338 subsystem_device = 0;
339 }
340
341 p += count;
342
343 if ((!vendor || vendor == dev->vendor) &&
344 (!device || device == dev->device) &&
345 (!subsystem_vendor ||
346 subsystem_vendor == dev->subsystem_vendor) &&
347 (!subsystem_device ||
348 subsystem_device == dev->subsystem_device))
349 goto found;
07d8d7e5 350 } else {
45db3370
LG
351 /*
352 * PCI Bus, Device, Function IDs are specified
74356add 353 * (optionally, may include a path of devfns following it)
45db3370
LG
354 */
355 ret = pci_dev_str_match_path(dev, p, &p);
356 if (ret < 0)
357 return ret;
358 else if (ret)
07d8d7e5
LG
359 goto found;
360 }
361
362 *endptr = p;
363 return 0;
364
365found:
366 *endptr = p;
367 return 1;
368}
687d5fe3
ME
369
370static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
371 u8 pos, int cap, int *ttl)
24a4e377
RD
372{
373 u8 id;
55db3208
SS
374 u16 ent;
375
376 pci_bus_read_config_byte(bus, devfn, pos, &pos);
24a4e377 377
687d5fe3 378 while ((*ttl)--) {
24a4e377
RD
379 if (pos < 0x40)
380 break;
381 pos &= ~3;
55db3208
SS
382 pci_bus_read_config_word(bus, devfn, pos, &ent);
383
384 id = ent & 0xff;
24a4e377
RD
385 if (id == 0xff)
386 break;
387 if (id == cap)
388 return pos;
55db3208 389 pos = (ent >> 8);
24a4e377
RD
390 }
391 return 0;
392}
393
687d5fe3
ME
394static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
395 u8 pos, int cap)
396{
397 int ttl = PCI_FIND_CAP_TTL;
398
399 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
400}
401
24a4e377
RD
402int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
403{
404 return __pci_find_next_cap(dev->bus, dev->devfn,
405 pos + PCI_CAP_LIST_NEXT, cap);
406}
407EXPORT_SYMBOL_GPL(pci_find_next_capability);
408
d3bac118
ME
409static int __pci_bus_find_cap_start(struct pci_bus *bus,
410 unsigned int devfn, u8 hdr_type)
1da177e4
LT
411{
412 u16 status;
1da177e4
LT
413
414 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
415 if (!(status & PCI_STATUS_CAP_LIST))
416 return 0;
417
418 switch (hdr_type) {
419 case PCI_HEADER_TYPE_NORMAL:
420 case PCI_HEADER_TYPE_BRIDGE:
d3bac118 421 return PCI_CAPABILITY_LIST;
1da177e4 422 case PCI_HEADER_TYPE_CARDBUS:
d3bac118 423 return PCI_CB_CAPABILITY_LIST;
1da177e4 424 }
d3bac118
ME
425
426 return 0;
1da177e4
LT
427}
428
429/**
f7625980 430 * pci_find_capability - query for devices' capabilities
1da177e4
LT
431 * @dev: PCI device to query
432 * @cap: capability code
433 *
434 * Tell if a device supports a given PCI capability.
435 * Returns the address of the requested capability structure within the
436 * device's PCI configuration space or 0 in case the device does not
74356add 437 * support it. Possible values for @cap include:
1da177e4 438 *
f7625980
BH
439 * %PCI_CAP_ID_PM Power Management
440 * %PCI_CAP_ID_AGP Accelerated Graphics Port
441 * %PCI_CAP_ID_VPD Vital Product Data
442 * %PCI_CAP_ID_SLOTID Slot Identification
1da177e4 443 * %PCI_CAP_ID_MSI Message Signalled Interrupts
f7625980 444 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
1da177e4
LT
445 * %PCI_CAP_ID_PCIX PCI-X
446 * %PCI_CAP_ID_EXP PCI Express
447 */
448int pci_find_capability(struct pci_dev *dev, int cap)
449{
d3bac118
ME
450 int pos;
451
452 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
453 if (pos)
454 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
455
456 return pos;
1da177e4 457}
b7fe9434 458EXPORT_SYMBOL(pci_find_capability);
1da177e4
LT
459
460/**
f7625980 461 * pci_bus_find_capability - query for devices' capabilities
74356add 462 * @bus: the PCI bus to query
1da177e4 463 * @devfn: PCI device to query
74356add 464 * @cap: capability code
1da177e4 465 *
74356add 466 * Like pci_find_capability() but works for PCI devices that do not have a
f7625980 467 * pci_dev structure set up yet.
1da177e4
LT
468 *
469 * Returns the address of the requested capability structure within the
470 * device's PCI configuration space or 0 in case the device does not
471 * support it.
472 */
473int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
474{
d3bac118 475 int pos;
1da177e4
LT
476 u8 hdr_type;
477
478 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
479
d3bac118
ME
480 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
481 if (pos)
482 pos = __pci_find_next_cap(bus, devfn, pos, cap);
483
484 return pos;
1da177e4 485}
b7fe9434 486EXPORT_SYMBOL(pci_bus_find_capability);
1da177e4
LT
487
488/**
44a9a36f 489 * pci_find_next_ext_capability - Find an extended capability
1da177e4 490 * @dev: PCI device to query
44a9a36f 491 * @start: address at which to start looking (0 to start at beginning of list)
1da177e4
LT
492 * @cap: capability code
493 *
44a9a36f 494 * Returns the address of the next matching extended capability structure
1da177e4 495 * within the device's PCI configuration space or 0 if the device does
44a9a36f
BH
496 * not support it. Some capabilities can occur several times, e.g., the
497 * vendor-specific capability, and this provides a way to find them all.
1da177e4 498 */
44a9a36f 499int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
1da177e4
LT
500{
501 u32 header;
557848c3
ZY
502 int ttl;
503 int pos = PCI_CFG_SPACE_SIZE;
1da177e4 504
557848c3
ZY
505 /* minimum 8 bytes per capability */
506 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
507
508 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
1da177e4
LT
509 return 0;
510
44a9a36f
BH
511 if (start)
512 pos = start;
513
1da177e4
LT
514 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
515 return 0;
516
517 /*
518 * If we have no capabilities, this is indicated by cap ID,
519 * cap version and next pointer all being 0.
520 */
521 if (header == 0)
522 return 0;
523
524 while (ttl-- > 0) {
44a9a36f 525 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
1da177e4
LT
526 return pos;
527
528 pos = PCI_EXT_CAP_NEXT(header);
557848c3 529 if (pos < PCI_CFG_SPACE_SIZE)
1da177e4
LT
530 break;
531
532 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
533 break;
534 }
535
536 return 0;
537}
44a9a36f
BH
538EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
539
540/**
541 * pci_find_ext_capability - Find an extended capability
542 * @dev: PCI device to query
543 * @cap: capability code
544 *
545 * Returns the address of the requested extended capability structure
546 * within the device's PCI configuration space or 0 if the device does
74356add 547 * not support it. Possible values for @cap include:
44a9a36f
BH
548 *
549 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
550 * %PCI_EXT_CAP_ID_VC Virtual Channel
551 * %PCI_EXT_CAP_ID_DSN Device Serial Number
552 * %PCI_EXT_CAP_ID_PWR Power Budgeting
553 */
554int pci_find_ext_capability(struct pci_dev *dev, int cap)
555{
556 return pci_find_next_ext_capability(dev, 0, cap);
557}
3a720d72 558EXPORT_SYMBOL_GPL(pci_find_ext_capability);
1da177e4 559
687d5fe3
ME
560static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
561{
562 int rc, ttl = PCI_FIND_CAP_TTL;
563 u8 cap, mask;
564
565 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
566 mask = HT_3BIT_CAP_MASK;
567 else
568 mask = HT_5BIT_CAP_MASK;
569
570 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
571 PCI_CAP_ID_HT, &ttl);
572 while (pos) {
573 rc = pci_read_config_byte(dev, pos + 3, &cap);
574 if (rc != PCIBIOS_SUCCESSFUL)
575 return 0;
576
577 if ((cap & mask) == ht_cap)
578 return pos;
579
47a4d5be
BG
580 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
581 pos + PCI_CAP_LIST_NEXT,
687d5fe3
ME
582 PCI_CAP_ID_HT, &ttl);
583 }
584
585 return 0;
586}
587/**
588 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
589 * @dev: PCI device to query
590 * @pos: Position from which to continue searching
591 * @ht_cap: Hypertransport capability code
592 *
593 * To be used in conjunction with pci_find_ht_capability() to search for
594 * all capabilities matching @ht_cap. @pos should always be a value returned
595 * from pci_find_ht_capability().
596 *
597 * NB. To be 100% safe against broken PCI devices, the caller should take
598 * steps to avoid an infinite loop.
599 */
600int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
601{
602 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
603}
604EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
605
606/**
607 * pci_find_ht_capability - query a device's Hypertransport capabilities
608 * @dev: PCI device to query
609 * @ht_cap: Hypertransport capability code
610 *
611 * Tell if a device supports a given Hypertransport capability.
612 * Returns an address within the device's PCI configuration space
613 * or 0 in case the device does not support the request capability.
614 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
615 * which has a Hypertransport capability matching @ht_cap.
616 */
617int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
618{
619 int pos;
620
621 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
622 if (pos)
623 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
624
625 return pos;
626}
627EXPORT_SYMBOL_GPL(pci_find_ht_capability);
628
1da177e4 629/**
74356add
BH
630 * pci_find_parent_resource - return resource region of parent bus of given
631 * region
1da177e4
LT
632 * @dev: PCI device structure contains resources to be searched
633 * @res: child resource record for which parent is sought
634 *
74356add
BH
635 * For given resource region of given device, return the resource region of
636 * parent bus the given region is contained in.
1da177e4 637 */
3c78bc61
RD
638struct resource *pci_find_parent_resource(const struct pci_dev *dev,
639 struct resource *res)
1da177e4
LT
640{
641 const struct pci_bus *bus = dev->bus;
f44116ae 642 struct resource *r;
1da177e4 643 int i;
1da177e4 644
89a74ecc 645 pci_bus_for_each_resource(bus, r, i) {
1da177e4
LT
646 if (!r)
647 continue;
31342330 648 if (resource_contains(r, res)) {
f44116ae
BH
649
650 /*
651 * If the window is prefetchable but the BAR is
652 * not, the allocator made a mistake.
653 */
654 if (r->flags & IORESOURCE_PREFETCH &&
655 !(res->flags & IORESOURCE_PREFETCH))
656 return NULL;
657
658 /*
659 * If we're below a transparent bridge, there may
660 * be both a positively-decoded aperture and a
661 * subtractively-decoded region that contain the BAR.
662 * We want the positively-decoded one, so this depends
663 * on pci_bus_for_each_resource() giving us those
664 * first.
665 */
666 return r;
667 }
1da177e4 668 }
f44116ae 669 return NULL;
1da177e4 670}
b7fe9434 671EXPORT_SYMBOL(pci_find_parent_resource);
1da177e4 672
afd29f90
MW
673/**
674 * pci_find_resource - Return matching PCI device resource
675 * @dev: PCI device to query
676 * @res: Resource to look for
677 *
678 * Goes over standard PCI resources (BARs) and checks if the given resource
679 * is partially or fully contained in any of them. In that case the
680 * matching resource is returned, %NULL otherwise.
681 */
682struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
683{
684 int i;
685
c9c13ba4 686 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
afd29f90
MW
687 struct resource *r = &dev->resource[i];
688
689 if (r->start && resource_contains(r, res))
690 return r;
691 }
692
693 return NULL;
694}
695EXPORT_SYMBOL(pci_find_resource);
696
c56d4450
HS
697/**
698 * pci_find_pcie_root_port - return PCIe Root Port
699 * @dev: PCI device to query
700 *
701 * Traverse up the parent chain and return the PCIe Root Port PCI Device
702 * for a given PCI Device.
703 */
704struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
705{
b6f6d56c 706 struct pci_dev *bridge, *highest_pcie_bridge = dev;
c56d4450
HS
707
708 bridge = pci_upstream_bridge(dev);
709 while (bridge && pci_is_pcie(bridge)) {
710 highest_pcie_bridge = bridge;
711 bridge = pci_upstream_bridge(bridge);
712 }
713
b6f6d56c
TR
714 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
715 return NULL;
c56d4450 716
b6f6d56c 717 return highest_pcie_bridge;
c56d4450
HS
718}
719EXPORT_SYMBOL(pci_find_pcie_root_port);
720
157e876f
AW
721/**
722 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
723 * @dev: the PCI device to operate on
724 * @pos: config space offset of status word
725 * @mask: mask of bit(s) to care about in status word
726 *
727 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
728 */
729int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
730{
731 int i;
732
733 /* Wait for Transaction Pending bit clean */
734 for (i = 0; i < 4; i++) {
735 u16 status;
736 if (i)
737 msleep((1 << (i - 1)) * 100);
738
739 pci_read_config_word(dev, pos, &status);
740 if (!(status & mask))
741 return 1;
742 }
743
744 return 0;
745}
746
064b53db 747/**
70675e0b 748 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
064b53db
JL
749 * @dev: PCI device to have its BARs restored
750 *
751 * Restore the BAR values for a given device, so as to make it
752 * accessible by its driver.
753 */
3c78bc61 754static void pci_restore_bars(struct pci_dev *dev)
064b53db 755{
bc5f5a82 756 int i;
064b53db 757
bc5f5a82 758 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
14add80b 759 pci_update_resource(dev, i);
064b53db
JL
760}
761
299f2ffe 762static const struct pci_platform_pm_ops *pci_platform_pm;
961d9120 763
299f2ffe 764int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
961d9120 765{
cc7cc02b 766 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
0847684c 767 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
961d9120
RW
768 return -EINVAL;
769 pci_platform_pm = ops;
770 return 0;
771}
772
773static inline bool platform_pci_power_manageable(struct pci_dev *dev)
774{
775 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
776}
777
778static inline int platform_pci_set_power_state(struct pci_dev *dev,
3c78bc61 779 pci_power_t t)
961d9120
RW
780{
781 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
782}
783
cc7cc02b
LW
784static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
785{
786 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
787}
788
b51033e0
RW
789static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
790{
791 if (pci_platform_pm && pci_platform_pm->refresh_state)
792 pci_platform_pm->refresh_state(dev);
793}
794
961d9120
RW
795static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
796{
797 return pci_platform_pm ?
798 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
799}
8f7020d3 800
0847684c 801static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
eb9d0fe4
RW
802{
803 return pci_platform_pm ?
0847684c 804 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
b67ea761
RW
805}
806
bac2a909
RW
807static inline bool platform_pci_need_resume(struct pci_dev *dev)
808{
809 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
810}
811
26ad34d5
MW
812static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
813{
814 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
815}
816
1da177e4 817/**
44e4e66e 818 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
74356add 819 * given PCI device
44e4e66e 820 * @dev: PCI device to handle.
44e4e66e 821 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1da177e4 822 *
44e4e66e
RW
823 * RETURN VALUE:
824 * -EINVAL if the requested state is invalid.
825 * -EIO if device does not support PCI PM or its PM capabilities register has a
826 * wrong version, or device doesn't support the requested state.
827 * 0 if device already is in the requested state.
828 * 0 if device's power state has been successfully changed.
1da177e4 829 */
f00a20ef 830static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1da177e4 831{
337001b6 832 u16 pmcsr;
44e4e66e 833 bool need_restore = false;
1da177e4 834
4a865905
RW
835 /* Check if we're already there */
836 if (dev->current_state == state)
837 return 0;
838
337001b6 839 if (!dev->pm_cap)
cca03dec
AL
840 return -EIO;
841
44e4e66e
RW
842 if (state < PCI_D0 || state > PCI_D3hot)
843 return -EINVAL;
844
74356add 845 /*
e43f15ea
BH
846 * Validate transition: We can enter D0 from any state, but if
847 * we're already in a low-power state, we can only go deeper. E.g.,
848 * we can go from D1 to D3, but we can't go directly from D3 to D1;
849 * we'd have to go from D3 to D0, then to D1.
1da177e4 850 */
4a865905 851 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
44e4e66e 852 && dev->current_state > state) {
e43f15ea
BH
853 pci_err(dev, "invalid power transition (from %s to %s)\n",
854 pci_power_name(dev->current_state),
855 pci_power_name(state));
1da177e4 856 return -EINVAL;
44e4e66e 857 }
1da177e4 858
74356add 859 /* Check if this device supports the desired state */
337001b6
RW
860 if ((state == PCI_D1 && !dev->d1_support)
861 || (state == PCI_D2 && !dev->d2_support))
3fe9d19f 862 return -EIO;
1da177e4 863
337001b6 864 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
327ccbbc
BH
865 if (pmcsr == (u16) ~0) {
866 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
867 pci_power_name(dev->current_state),
868 pci_power_name(state));
869 return -EIO;
870 }
064b53db 871
74356add
BH
872 /*
873 * If we're (effectively) in D3, force entire word to 0.
1da177e4
LT
874 * This doesn't affect PME_Status, disables PME_En, and
875 * sets PowerState to 0.
876 */
32a36585 877 switch (dev->current_state) {
d3535fbb
JL
878 case PCI_D0:
879 case PCI_D1:
880 case PCI_D2:
881 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
882 pmcsr |= state;
883 break;
f62795f1
RW
884 case PCI_D3hot:
885 case PCI_D3cold:
32a36585
JL
886 case PCI_UNKNOWN: /* Boot-up */
887 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
f00a20ef 888 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
44e4e66e 889 need_restore = true;
1d09d577 890 /* Fall-through - force to D0 */
32a36585 891 default:
d3535fbb 892 pmcsr = 0;
32a36585 893 break;
1da177e4
LT
894 }
895
74356add 896 /* Enter specified state */
337001b6 897 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1da177e4 898
74356add
BH
899 /*
900 * Mandatory power management transition delays; see PCI PM 1.1
901 * 5.6.1 table 18
902 */
1da177e4 903 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1ae861e6 904 pci_dev_d3_sleep(dev);
1da177e4 905 else if (state == PCI_D2 || dev->current_state == PCI_D2)
7e24bc34 906 msleep(PCI_PM_D2_DELAY);
1da177e4 907
e13cdbd7
RW
908 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
909 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
7f1c62c4 910 if (dev->current_state != state)
e43f15ea
BH
911 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
912 pci_power_name(dev->current_state),
913 pci_power_name(state));
064b53db 914
448bd857
HY
915 /*
916 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
064b53db
JL
917 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
918 * from D3hot to D0 _may_ perform an internal reset, thereby
919 * going to "D0 Uninitialized" rather than "D0 Initialized".
920 * For example, at least some versions of the 3c905B and the
921 * 3c556B exhibit this behaviour.
922 *
923 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
924 * devices in a D3hot state at boot. Consequently, we need to
925 * restore at least the BARs so that the device will be
926 * accessible to its driver.
927 */
928 if (need_restore)
929 pci_restore_bars(dev);
930
f00a20ef 931 if (dev->bus->self)
7d715a6c
SL
932 pcie_aspm_pm_state_change(dev->bus->self);
933
1da177e4
LT
934 return 0;
935}
936
44e4e66e 937/**
a6a64026 938 * pci_update_current_state - Read power state of given device and cache it
44e4e66e 939 * @dev: PCI device to handle.
f06fc0b6 940 * @state: State to cache in case the device doesn't have the PM capability
a6a64026
LW
941 *
942 * The power state is read from the PMCSR register, which however is
943 * inaccessible in D3cold. The platform firmware is therefore queried first
944 * to detect accessibility of the register. In case the platform firmware
945 * reports an incorrect state or the device isn't power manageable by the
946 * platform at all, we try to detect D3cold by testing accessibility of the
947 * vendor ID in config space.
44e4e66e 948 */
73410429 949void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
44e4e66e 950{
a6a64026
LW
951 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
952 !pci_device_is_present(dev)) {
953 dev->current_state = PCI_D3cold;
954 } else if (dev->pm_cap) {
44e4e66e
RW
955 u16 pmcsr;
956
337001b6 957 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
44e4e66e 958 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
f06fc0b6
RW
959 } else {
960 dev->current_state = state;
44e4e66e
RW
961 }
962}
963
b51033e0
RW
964/**
965 * pci_refresh_power_state - Refresh the given device's power state data
966 * @dev: Target PCI device.
967 *
968 * Ask the platform to refresh the devices power state information and invoke
969 * pci_update_current_state() to update its current PCI power state.
970 */
971void pci_refresh_power_state(struct pci_dev *dev)
972{
973 if (platform_pci_power_manageable(dev))
974 platform_pci_refresh_power_state(dev);
975
976 pci_update_current_state(dev, dev->current_state);
977}
978
0e5dd46b
RW
979/**
980 * pci_platform_power_transition - Use platform to change device power state
981 * @dev: PCI device to handle.
982 * @state: State to put the device into.
983 */
d6aa37cd 984int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
0e5dd46b
RW
985{
986 int error;
987
988 if (platform_pci_power_manageable(dev)) {
989 error = platform_pci_set_power_state(dev, state);
990 if (!error)
991 pci_update_current_state(dev, state);
769ba721 992 } else
0e5dd46b 993 error = -ENODEV;
769ba721
RW
994
995 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
996 dev->current_state = PCI_D0;
0e5dd46b
RW
997
998 return error;
999}
d6aa37cd 1000EXPORT_SYMBOL_GPL(pci_platform_power_transition);
0e5dd46b 1001
0b950f0f
SH
1002/**
1003 * pci_wakeup - Wake up a PCI device
1004 * @pci_dev: Device to handle.
1005 * @ign: ignored parameter
1006 */
1007static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1008{
1009 pci_wakeup_event(pci_dev);
1010 pm_request_resume(&pci_dev->dev);
1011 return 0;
1012}
1013
1014/**
1015 * pci_wakeup_bus - Walk given bus and wake up devices on it
1016 * @bus: Top bus of the subtree to walk.
1017 */
2a4d2c42 1018void pci_wakeup_bus(struct pci_bus *bus)
0b950f0f
SH
1019{
1020 if (bus)
1021 pci_walk_bus(bus, pci_wakeup, NULL);
1022}
1023
bae26849
VS
1024static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1025{
1026 int delay = 1;
1027 u32 id;
1028
1029 /*
1030 * After reset, the device should not silently discard config
1031 * requests, but it may still indicate that it needs more time by
1032 * responding to them with CRS completions. The Root Port will
1033 * generally synthesize ~0 data to complete the read (except when
1034 * CRS SV is enabled and the read was for the Vendor ID; in that
1035 * case it synthesizes 0x0001 data).
1036 *
1037 * Wait for the device to return a non-CRS completion. Read the
1038 * Command register instead of Vendor ID so we don't have to
1039 * contend with the CRS SV value.
1040 */
1041 pci_read_config_dword(dev, PCI_COMMAND, &id);
1042 while (id == ~0) {
1043 if (delay > timeout) {
1044 pci_warn(dev, "not ready %dms after %s; giving up\n",
1045 delay - 1, reset_type);
1046 return -ENOTTY;
1047 }
1048
1049 if (delay > 1000)
1050 pci_info(dev, "not ready %dms after %s; waiting\n",
1051 delay - 1, reset_type);
1052
1053 msleep(delay);
1054 delay *= 2;
1055 pci_read_config_dword(dev, PCI_COMMAND, &id);
1056 }
1057
1058 if (delay > 1000)
1059 pci_info(dev, "ready %dms after %s\n", delay - 1,
1060 reset_type);
1061
1062 return 0;
1063}
1064
0e5dd46b 1065/**
dc2256b0
RW
1066 * pci_power_up - Put the given device into D0
1067 * @dev: PCI device to power up
0e5dd46b 1068 */
dc2256b0 1069int pci_power_up(struct pci_dev *dev)
0e5dd46b 1070{
dc2256b0
RW
1071 pci_platform_power_transition(dev, PCI_D0);
1072
1073 /*
ad9001f2
MW
1074 * Mandatory power management transition delays are handled in
1075 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1076 * corresponding bridge.
dc2256b0
RW
1077 */
1078 if (dev->runtime_d3cold) {
448bd857 1079 /*
dc2256b0
RW
1080 * When powering on a bridge from D3cold, the whole hierarchy
1081 * may be powered on into D0uninitialized state, resume them to
1082 * give them a chance to suspend again
448bd857 1083 */
dc2256b0 1084 pci_wakeup_bus(dev->subordinate);
448bd857 1085 }
448bd857 1086
adfac8f6 1087 return pci_raw_set_power_state(dev, PCI_D0);
448bd857
HY
1088}
1089
1090/**
1091 * __pci_dev_set_current_state - Set current state of a PCI device
1092 * @dev: Device to handle
1093 * @data: pointer to state to be set
1094 */
1095static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1096{
1097 pci_power_t state = *(pci_power_t *)data;
1098
1099 dev->current_state = state;
1100 return 0;
1101}
1102
1103/**
2a4d2c42 1104 * pci_bus_set_current_state - Walk given bus and set current state of devices
448bd857
HY
1105 * @bus: Top bus of the subtree to walk.
1106 * @state: state to be set
1107 */
2a4d2c42 1108void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
448bd857
HY
1109{
1110 if (bus)
1111 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
0e5dd46b
RW
1112}
1113
44e4e66e
RW
1114/**
1115 * pci_set_power_state - Set the power state of a PCI device
1116 * @dev: PCI device to handle.
1117 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1118 *
877d0310 1119 * Transition a device to a new power state, using the platform firmware and/or
44e4e66e
RW
1120 * the device's PCI PM registers.
1121 *
1122 * RETURN VALUE:
1123 * -EINVAL if the requested state is invalid.
1124 * -EIO if device does not support PCI PM or its PM capabilities register has a
1125 * wrong version, or device doesn't support the requested state.
ab4b8a47 1126 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
44e4e66e 1127 * 0 if device already is in the requested state.
ab4b8a47 1128 * 0 if the transition is to D3 but D3 is not supported.
44e4e66e
RW
1129 * 0 if device's power state has been successfully changed.
1130 */
1131int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1132{
337001b6 1133 int error;
44e4e66e 1134
74356add 1135 /* Bound the state we're entering */
448bd857
HY
1136 if (state > PCI_D3cold)
1137 state = PCI_D3cold;
44e4e66e
RW
1138 else if (state < PCI_D0)
1139 state = PCI_D0;
1140 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
74356add 1141
44e4e66e 1142 /*
74356add
BH
1143 * If the device or the parent bridge do not support PCI
1144 * PM, ignore the request if we're doing anything other
1145 * than putting it into D0 (which would only happen on
1146 * boot).
44e4e66e
RW
1147 */
1148 return 0;
1149
db288c9c
RW
1150 /* Check if we're already there */
1151 if (dev->current_state == state)
1152 return 0;
1153
adfac8f6
RW
1154 if (state == PCI_D0)
1155 return pci_power_up(dev);
0e5dd46b 1156
74356add
BH
1157 /*
1158 * This device is quirked not to be put into D3, so don't put it in
1159 * D3
1160 */
448bd857 1161 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
979b1791 1162 return 0;
44e4e66e 1163
448bd857
HY
1164 /*
1165 * To put device in D3cold, we put device into D3hot in native
1166 * way, then put device into D3cold with platform ops
1167 */
1168 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1169 PCI_D3hot : state);
44e4e66e 1170
9c77e63b
RW
1171 if (pci_platform_power_transition(dev, state))
1172 return error;
44e4e66e 1173
9c77e63b
RW
1174 /* Powering off a bridge may power off the whole hierarchy */
1175 if (state == PCI_D3cold)
1176 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
44e4e66e 1177
9c77e63b 1178 return 0;
45144d42 1179}
b7fe9434 1180EXPORT_SYMBOL(pci_set_power_state);
45144d42 1181
1da177e4
LT
1182/**
1183 * pci_choose_state - Choose the power state of a PCI device
1184 * @dev: PCI device to be suspended
1185 * @state: target sleep state for the whole system. This is the value
74356add 1186 * that is passed to suspend() function.
1da177e4
LT
1187 *
1188 * Returns PCI power state suitable for given device and given system
1189 * message.
1190 */
1da177e4
LT
1191pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1192{
ab826ca4 1193 pci_power_t ret;
0f64474b 1194
728cdb75 1195 if (!dev->pm_cap)
1da177e4
LT
1196 return PCI_D0;
1197
961d9120
RW
1198 ret = platform_pci_choose_state(dev);
1199 if (ret != PCI_POWER_ERROR)
1200 return ret;
ca078bae
PM
1201
1202 switch (state.event) {
1203 case PM_EVENT_ON:
1204 return PCI_D0;
1205 case PM_EVENT_FREEZE:
b887d2e6
DB
1206 case PM_EVENT_PRETHAW:
1207 /* REVISIT both freeze and pre-thaw "should" use D0 */
ca078bae 1208 case PM_EVENT_SUSPEND:
3a2d5b70 1209 case PM_EVENT_HIBERNATE:
ca078bae 1210 return PCI_D3hot;
1da177e4 1211 default:
7506dc79 1212 pci_info(dev, "unrecognized suspend event %d\n",
80ccba11 1213 state.event);
1da177e4
LT
1214 BUG();
1215 }
1216 return PCI_D0;
1217}
1da177e4
LT
1218EXPORT_SYMBOL(pci_choose_state);
1219
89858517
YZ
1220#define PCI_EXP_SAVE_REGS 7
1221
fd0f7f73
AW
1222static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1223 u16 cap, bool extended)
34a4876e
YL
1224{
1225 struct pci_cap_saved_state *tmp;
34a4876e 1226
b67bfe0d 1227 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
fd0f7f73 1228 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
34a4876e
YL
1229 return tmp;
1230 }
1231 return NULL;
1232}
1233
fd0f7f73
AW
1234struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1235{
1236 return _pci_find_saved_cap(dev, cap, false);
1237}
1238
1239struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1240{
1241 return _pci_find_saved_cap(dev, cap, true);
1242}
1243
b56a5a23
MT
1244static int pci_save_pcie_state(struct pci_dev *dev)
1245{
59875ae4 1246 int i = 0;
b56a5a23
MT
1247 struct pci_cap_saved_state *save_state;
1248 u16 *cap;
1249
59875ae4 1250 if (!pci_is_pcie(dev))
b56a5a23
MT
1251 return 0;
1252
9f35575d 1253 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
b56a5a23 1254 if (!save_state) {
7506dc79 1255 pci_err(dev, "buffer not found in %s\n", __func__);
b56a5a23
MT
1256 return -ENOMEM;
1257 }
63f4898a 1258
59875ae4
JL
1259 cap = (u16 *)&save_state->cap.data[0];
1260 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1261 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1262 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1263 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1264 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1265 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1266 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
9cb604ed 1267
b56a5a23
MT
1268 return 0;
1269}
1270
1271static void pci_restore_pcie_state(struct pci_dev *dev)
1272{
59875ae4 1273 int i = 0;
b56a5a23
MT
1274 struct pci_cap_saved_state *save_state;
1275 u16 *cap;
1276
1277 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
59875ae4 1278 if (!save_state)
9cb604ed
MS
1279 return;
1280
59875ae4
JL
1281 cap = (u16 *)&save_state->cap.data[0];
1282 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1283 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1284 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1285 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1286 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1287 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1288 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
b56a5a23
MT
1289}
1290
cc692a5f
SH
1291static int pci_save_pcix_state(struct pci_dev *dev)
1292{
63f4898a 1293 int pos;
cc692a5f 1294 struct pci_cap_saved_state *save_state;
cc692a5f
SH
1295
1296 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
0a1a9b49 1297 if (!pos)
cc692a5f
SH
1298 return 0;
1299
f34303de 1300 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
cc692a5f 1301 if (!save_state) {
7506dc79 1302 pci_err(dev, "buffer not found in %s\n", __func__);
cc692a5f
SH
1303 return -ENOMEM;
1304 }
cc692a5f 1305
24a4742f
AW
1306 pci_read_config_word(dev, pos + PCI_X_CMD,
1307 (u16 *)save_state->cap.data);
63f4898a 1308
cc692a5f
SH
1309 return 0;
1310}
1311
1312static void pci_restore_pcix_state(struct pci_dev *dev)
1313{
1314 int i = 0, pos;
1315 struct pci_cap_saved_state *save_state;
1316 u16 *cap;
1317
1318 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1319 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
0a1a9b49 1320 if (!save_state || !pos)
cc692a5f 1321 return;
24a4742f 1322 cap = (u16 *)&save_state->cap.data[0];
cc692a5f
SH
1323
1324 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
cc692a5f
SH
1325}
1326
dbbfadf2
BH
1327static void pci_save_ltr_state(struct pci_dev *dev)
1328{
1329 int ltr;
1330 struct pci_cap_saved_state *save_state;
1331 u16 *cap;
1332
1333 if (!pci_is_pcie(dev))
1334 return;
1335
1336 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1337 if (!ltr)
1338 return;
1339
1340 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1341 if (!save_state) {
1342 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1343 return;
1344 }
1345
1346 cap = (u16 *)&save_state->cap.data[0];
1347 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1348 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1349}
1350
1351static void pci_restore_ltr_state(struct pci_dev *dev)
1352{
1353 struct pci_cap_saved_state *save_state;
1354 int ltr;
1355 u16 *cap;
1356
1357 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1358 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1359 if (!save_state || !ltr)
1360 return;
1361
1362 cap = (u16 *)&save_state->cap.data[0];
1363 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1364 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1365}
cc692a5f 1366
1da177e4 1367/**
74356add
BH
1368 * pci_save_state - save the PCI configuration space of a device before
1369 * suspending
1370 * @dev: PCI device that we're dealing with
1da177e4 1371 */
3c78bc61 1372int pci_save_state(struct pci_dev *dev)
1da177e4
LT
1373{
1374 int i;
1375 /* XXX: 100% dword access ok here? */
47b802d5 1376 for (i = 0; i < 16; i++) {
9e0b5b2c 1377 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
47b802d5
CY
1378 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1379 i * 4, dev->saved_config_space[i]);
1380 }
aa8c6c93 1381 dev->state_saved = true;
79e50e72
QL
1382
1383 i = pci_save_pcie_state(dev);
1384 if (i != 0)
b56a5a23 1385 return i;
79e50e72
QL
1386
1387 i = pci_save_pcix_state(dev);
1388 if (i != 0)
cc692a5f 1389 return i;
79e50e72 1390
dbbfadf2 1391 pci_save_ltr_state(dev);
4f802170 1392 pci_save_dpc_state(dev);
af65d1ad 1393 pci_save_aer_state(dev);
754834b9 1394 return pci_save_vc_state(dev);
1da177e4 1395}
b7fe9434 1396EXPORT_SYMBOL(pci_save_state);
1da177e4 1397
ebfc5b80 1398static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
08387454 1399 u32 saved_val, int retry, bool force)
ebfc5b80
RW
1400{
1401 u32 val;
1402
1403 pci_read_config_dword(pdev, offset, &val);
08387454 1404 if (!force && val == saved_val)
ebfc5b80
RW
1405 return;
1406
1407 for (;;) {
7506dc79 1408 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
227f0647 1409 offset, val, saved_val);
ebfc5b80
RW
1410 pci_write_config_dword(pdev, offset, saved_val);
1411 if (retry-- <= 0)
1412 return;
1413
1414 pci_read_config_dword(pdev, offset, &val);
1415 if (val == saved_val)
1416 return;
1417
1418 mdelay(1);
1419 }
1420}
1421
a6cb9ee7 1422static void pci_restore_config_space_range(struct pci_dev *pdev,
08387454
DD
1423 int start, int end, int retry,
1424 bool force)
ebfc5b80
RW
1425{
1426 int index;
1427
1428 for (index = end; index >= start; index--)
1429 pci_restore_config_dword(pdev, 4 * index,
1430 pdev->saved_config_space[index],
08387454 1431 retry, force);
ebfc5b80
RW
1432}
1433
a6cb9ee7
RW
1434static void pci_restore_config_space(struct pci_dev *pdev)
1435{
1436 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
08387454 1437 pci_restore_config_space_range(pdev, 10, 15, 0, false);
a6cb9ee7 1438 /* Restore BARs before the command register. */
08387454
DD
1439 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1440 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1441 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1442 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1443
1444 /*
1445 * Force rewriting of prefetch registers to avoid S3 resume
1446 * issues on Intel PCI bridges that occur when these
1447 * registers are not explicitly written.
1448 */
1449 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1450 pci_restore_config_space_range(pdev, 0, 8, 0, false);
a6cb9ee7 1451 } else {
08387454 1452 pci_restore_config_space_range(pdev, 0, 15, 0, false);
a6cb9ee7
RW
1453 }
1454}
1455
d3252ace
CK
1456static void pci_restore_rebar_state(struct pci_dev *pdev)
1457{
1458 unsigned int pos, nbars, i;
1459 u32 ctrl;
1460
1461 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1462 if (!pos)
1463 return;
1464
1465 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1466 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1467 PCI_REBAR_CTRL_NBAR_SHIFT;
1468
1469 for (i = 0; i < nbars; i++, pos += 8) {
1470 struct resource *res;
1471 int bar_idx, size;
1472
1473 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1474 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1475 res = pdev->resource + bar_idx;
d2182b2d 1476 size = ilog2(resource_size(res)) - 20;
d3252ace 1477 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
b1277a22 1478 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
d3252ace
CK
1479 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1480 }
1481}
1482
f7625980 1483/**
1da177e4 1484 * pci_restore_state - Restore the saved state of a PCI device
74356add 1485 * @dev: PCI device that we're dealing with
1da177e4 1486 */
1d3c16a8 1487void pci_restore_state(struct pci_dev *dev)
1da177e4 1488{
c82f63e4 1489 if (!dev->state_saved)
1d3c16a8 1490 return;
4b77b0a2 1491
dbbfadf2
BH
1492 /*
1493 * Restore max latencies (in the LTR capability) before enabling
1494 * LTR itself (in the PCIe capability).
1495 */
1496 pci_restore_ltr_state(dev);
1497
b56a5a23 1498 pci_restore_pcie_state(dev);
4ebeb1ec
CT
1499 pci_restore_pasid_state(dev);
1500 pci_restore_pri_state(dev);
1900ca13 1501 pci_restore_ats_state(dev);
425c1b22 1502 pci_restore_vc_state(dev);
d3252ace 1503 pci_restore_rebar_state(dev);
4f802170 1504 pci_restore_dpc_state(dev);
b56a5a23 1505
b07461a8 1506 pci_cleanup_aer_error_status_regs(dev);
af65d1ad 1507 pci_restore_aer_state(dev);
b07461a8 1508
a6cb9ee7 1509 pci_restore_config_space(dev);
ebfc5b80 1510
cc692a5f 1511 pci_restore_pcix_state(dev);
41017f0c 1512 pci_restore_msi_state(dev);
ccbc175a
AD
1513
1514 /* Restore ACS and IOV configuration state */
1515 pci_enable_acs(dev);
8c5cdb6a 1516 pci_restore_iov_state(dev);
8fed4b65 1517
4b77b0a2 1518 dev->state_saved = false;
1da177e4 1519}
b7fe9434 1520EXPORT_SYMBOL(pci_restore_state);
1da177e4 1521
ffbdd3f7
AW
1522struct pci_saved_state {
1523 u32 config_space[16];
1524 struct pci_cap_saved_data cap[0];
1525};
1526
1527/**
1528 * pci_store_saved_state - Allocate and return an opaque struct containing
1529 * the device saved state.
1530 * @dev: PCI device that we're dealing with
1531 *
f7625980 1532 * Return NULL if no state or error.
ffbdd3f7
AW
1533 */
1534struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1535{
1536 struct pci_saved_state *state;
1537 struct pci_cap_saved_state *tmp;
1538 struct pci_cap_saved_data *cap;
ffbdd3f7
AW
1539 size_t size;
1540
1541 if (!dev->state_saved)
1542 return NULL;
1543
1544 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1545
b67bfe0d 1546 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
ffbdd3f7
AW
1547 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1548
1549 state = kzalloc(size, GFP_KERNEL);
1550 if (!state)
1551 return NULL;
1552
1553 memcpy(state->config_space, dev->saved_config_space,
1554 sizeof(state->config_space));
1555
1556 cap = state->cap;
b67bfe0d 1557 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
ffbdd3f7
AW
1558 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1559 memcpy(cap, &tmp->cap, len);
1560 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1561 }
1562 /* Empty cap_save terminates list */
1563
1564 return state;
1565}
1566EXPORT_SYMBOL_GPL(pci_store_saved_state);
1567
1568/**
1569 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1570 * @dev: PCI device that we're dealing with
1571 * @state: Saved state returned from pci_store_saved_state()
1572 */
98d9b271
KRW
1573int pci_load_saved_state(struct pci_dev *dev,
1574 struct pci_saved_state *state)
ffbdd3f7
AW
1575{
1576 struct pci_cap_saved_data *cap;
1577
1578 dev->state_saved = false;
1579
1580 if (!state)
1581 return 0;
1582
1583 memcpy(dev->saved_config_space, state->config_space,
1584 sizeof(state->config_space));
1585
1586 cap = state->cap;
1587 while (cap->size) {
1588 struct pci_cap_saved_state *tmp;
1589
fd0f7f73 1590 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
ffbdd3f7
AW
1591 if (!tmp || tmp->cap.size != cap->size)
1592 return -EINVAL;
1593
1594 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1595 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1596 sizeof(struct pci_cap_saved_data) + cap->size);
1597 }
1598
1599 dev->state_saved = true;
1600 return 0;
1601}
98d9b271 1602EXPORT_SYMBOL_GPL(pci_load_saved_state);
ffbdd3f7
AW
1603
1604/**
1605 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1606 * and free the memory allocated for it.
1607 * @dev: PCI device that we're dealing with
1608 * @state: Pointer to saved state returned from pci_store_saved_state()
1609 */
1610int pci_load_and_free_saved_state(struct pci_dev *dev,
1611 struct pci_saved_state **state)
1612{
1613 int ret = pci_load_saved_state(dev, *state);
1614 kfree(*state);
1615 *state = NULL;
1616 return ret;
1617}
1618EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1619
8a9d5609
BH
1620int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1621{
1622 return pci_enable_resources(dev, bars);
1623}
1624
38cc1302
HS
1625static int do_pci_enable_device(struct pci_dev *dev, int bars)
1626{
1627 int err;
1f6ae47e 1628 struct pci_dev *bridge;
1e2571a7
BH
1629 u16 cmd;
1630 u8 pin;
38cc1302
HS
1631
1632 err = pci_set_power_state(dev, PCI_D0);
1633 if (err < 0 && err != -EIO)
1634 return err;
1f6ae47e
VS
1635
1636 bridge = pci_upstream_bridge(dev);
1637 if (bridge)
1638 pcie_aspm_powersave_config_link(bridge);
1639
38cc1302
HS
1640 err = pcibios_enable_device(dev, bars);
1641 if (err < 0)
1642 return err;
1643 pci_fixup_device(pci_fixup_enable, dev);
1644
866d5417
BH
1645 if (dev->msi_enabled || dev->msix_enabled)
1646 return 0;
1647
1e2571a7
BH
1648 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1649 if (pin) {
1650 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1651 if (cmd & PCI_COMMAND_INTX_DISABLE)
1652 pci_write_config_word(dev, PCI_COMMAND,
1653 cmd & ~PCI_COMMAND_INTX_DISABLE);
1654 }
1655
38cc1302
HS
1656 return 0;
1657}
1658
1659/**
0b62e13b 1660 * pci_reenable_device - Resume abandoned device
38cc1302
HS
1661 * @dev: PCI device to be resumed
1662 *
74356add
BH
1663 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1664 * to be called by normal code, write proper resume handler and use it instead.
38cc1302 1665 */
0b62e13b 1666int pci_reenable_device(struct pci_dev *dev)
38cc1302 1667{
296ccb08 1668 if (pci_is_enabled(dev))
38cc1302
HS
1669 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1670 return 0;
1671}
b7fe9434 1672EXPORT_SYMBOL(pci_reenable_device);
38cc1302 1673
928bea96
YL
1674static void pci_enable_bridge(struct pci_dev *dev)
1675{
79272138 1676 struct pci_dev *bridge;
928bea96
YL
1677 int retval;
1678
79272138
BH
1679 bridge = pci_upstream_bridge(dev);
1680 if (bridge)
1681 pci_enable_bridge(bridge);
928bea96 1682
cf3e1feb 1683 if (pci_is_enabled(dev)) {
fbeeb822 1684 if (!dev->is_busmaster)
cf3e1feb 1685 pci_set_master(dev);
0f50a49e 1686 return;
cf3e1feb
YL
1687 }
1688
928bea96
YL
1689 retval = pci_enable_device(dev);
1690 if (retval)
7506dc79 1691 pci_err(dev, "Error enabling bridge (%d), continuing\n",
928bea96
YL
1692 retval);
1693 pci_set_master(dev);
1694}
1695
b4b4fbba 1696static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1da177e4 1697{
79272138 1698 struct pci_dev *bridge;
1da177e4 1699 int err;
b718989d 1700 int i, bars = 0;
1da177e4 1701
97c145f7
JB
1702 /*
1703 * Power state could be unknown at this point, either due to a fresh
1704 * boot or a device removal call. So get the current power state
1705 * so that things like MSI message writing will behave as expected
1706 * (e.g. if the device really is in D0 at enable time).
1707 */
1708 if (dev->pm_cap) {
1709 u16 pmcsr;
1710 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1711 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1712 }
1713
cc7ba39b 1714 if (atomic_inc_return(&dev->enable_cnt) > 1)
9fb625c3
HS
1715 return 0; /* already enabled */
1716
79272138 1717 bridge = pci_upstream_bridge(dev);
0f50a49e 1718 if (bridge)
79272138 1719 pci_enable_bridge(bridge);
928bea96 1720
497f16f2
YL
1721 /* only skip sriov related */
1722 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1723 if (dev->resource[i].flags & flags)
1724 bars |= (1 << i);
1725 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
b718989d
BH
1726 if (dev->resource[i].flags & flags)
1727 bars |= (1 << i);
1728
38cc1302 1729 err = do_pci_enable_device(dev, bars);
95a62965 1730 if (err < 0)
38cc1302 1731 atomic_dec(&dev->enable_cnt);
9fb625c3 1732 return err;
1da177e4
LT
1733}
1734
b718989d
BH
1735/**
1736 * pci_enable_device_io - Initialize a device for use with IO space
1737 * @dev: PCI device to be initialized
1738 *
74356add
BH
1739 * Initialize device before it's used by a driver. Ask low-level code
1740 * to enable I/O resources. Wake up the device if it was suspended.
1741 * Beware, this function can fail.
b718989d
BH
1742 */
1743int pci_enable_device_io(struct pci_dev *dev)
1744{
b4b4fbba 1745 return pci_enable_device_flags(dev, IORESOURCE_IO);
b718989d 1746}
b7fe9434 1747EXPORT_SYMBOL(pci_enable_device_io);
b718989d
BH
1748
1749/**
1750 * pci_enable_device_mem - Initialize a device for use with Memory space
1751 * @dev: PCI device to be initialized
1752 *
74356add
BH
1753 * Initialize device before it's used by a driver. Ask low-level code
1754 * to enable Memory resources. Wake up the device if it was suspended.
1755 * Beware, this function can fail.
b718989d
BH
1756 */
1757int pci_enable_device_mem(struct pci_dev *dev)
1758{
b4b4fbba 1759 return pci_enable_device_flags(dev, IORESOURCE_MEM);
b718989d 1760}
b7fe9434 1761EXPORT_SYMBOL(pci_enable_device_mem);
b718989d 1762
bae94d02
IPG
1763/**
1764 * pci_enable_device - Initialize device before it's used by a driver.
1765 * @dev: PCI device to be initialized
1766 *
74356add
BH
1767 * Initialize device before it's used by a driver. Ask low-level code
1768 * to enable I/O and memory. Wake up the device if it was suspended.
1769 * Beware, this function can fail.
bae94d02 1770 *
74356add
BH
1771 * Note we don't actually enable the device many times if we call
1772 * this function repeatedly (we just increment the count).
bae94d02
IPG
1773 */
1774int pci_enable_device(struct pci_dev *dev)
1775{
b4b4fbba 1776 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
bae94d02 1777}
b7fe9434 1778EXPORT_SYMBOL(pci_enable_device);
bae94d02 1779
9ac7849e 1780/*
74356add
BH
1781 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1782 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
9ac7849e
TH
1783 * there's no need to track it separately. pci_devres is initialized
1784 * when a device is enabled using managed PCI device enable interface.
1785 */
1786struct pci_devres {
7f375f32
TH
1787 unsigned int enabled:1;
1788 unsigned int pinned:1;
9ac7849e
TH
1789 unsigned int orig_intx:1;
1790 unsigned int restore_intx:1;
fc0f9f4d 1791 unsigned int mwi:1;
9ac7849e
TH
1792 u32 region_mask;
1793};
1794
1795static void pcim_release(struct device *gendev, void *res)
1796{
f3d2f165 1797 struct pci_dev *dev = to_pci_dev(gendev);
9ac7849e
TH
1798 struct pci_devres *this = res;
1799 int i;
1800
1801 if (dev->msi_enabled)
1802 pci_disable_msi(dev);
1803 if (dev->msix_enabled)
1804 pci_disable_msix(dev);
1805
1806 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1807 if (this->region_mask & (1 << i))
1808 pci_release_region(dev, i);
1809
fc0f9f4d
HK
1810 if (this->mwi)
1811 pci_clear_mwi(dev);
1812
9ac7849e
TH
1813 if (this->restore_intx)
1814 pci_intx(dev, this->orig_intx);
1815
7f375f32 1816 if (this->enabled && !this->pinned)
9ac7849e
TH
1817 pci_disable_device(dev);
1818}
1819
07656d83 1820static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
9ac7849e
TH
1821{
1822 struct pci_devres *dr, *new_dr;
1823
1824 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1825 if (dr)
1826 return dr;
1827
1828 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1829 if (!new_dr)
1830 return NULL;
1831 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1832}
1833
07656d83 1834static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
9ac7849e
TH
1835{
1836 if (pci_is_managed(pdev))
1837 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1838 return NULL;
1839}
1840
1841/**
1842 * pcim_enable_device - Managed pci_enable_device()
1843 * @pdev: PCI device to be initialized
1844 *
1845 * Managed pci_enable_device().
1846 */
1847int pcim_enable_device(struct pci_dev *pdev)
1848{
1849 struct pci_devres *dr;
1850 int rc;
1851
1852 dr = get_pci_dr(pdev);
1853 if (unlikely(!dr))
1854 return -ENOMEM;
b95d58ea
TH
1855 if (dr->enabled)
1856 return 0;
9ac7849e
TH
1857
1858 rc = pci_enable_device(pdev);
1859 if (!rc) {
1860 pdev->is_managed = 1;
7f375f32 1861 dr->enabled = 1;
9ac7849e
TH
1862 }
1863 return rc;
1864}
b7fe9434 1865EXPORT_SYMBOL(pcim_enable_device);
9ac7849e
TH
1866
1867/**
1868 * pcim_pin_device - Pin managed PCI device
1869 * @pdev: PCI device to pin
1870 *
1871 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1872 * driver detach. @pdev must have been enabled with
1873 * pcim_enable_device().
1874 */
1875void pcim_pin_device(struct pci_dev *pdev)
1876{
1877 struct pci_devres *dr;
1878
1879 dr = find_pci_dr(pdev);
7f375f32 1880 WARN_ON(!dr || !dr->enabled);
9ac7849e 1881 if (dr)
7f375f32 1882 dr->pinned = 1;
9ac7849e 1883}
b7fe9434 1884EXPORT_SYMBOL(pcim_pin_device);
9ac7849e 1885
eca0d467
MG
1886/*
1887 * pcibios_add_device - provide arch specific hooks when adding device dev
1888 * @dev: the PCI device being added
1889 *
1890 * Permits the platform to provide architecture specific functionality when
1891 * devices are added. This is the default implementation. Architecture
1892 * implementations can override this.
1893 */
3c78bc61 1894int __weak pcibios_add_device(struct pci_dev *dev)
eca0d467
MG
1895{
1896 return 0;
1897}
1898
6ae32c53 1899/**
74356add
BH
1900 * pcibios_release_device - provide arch specific hooks when releasing
1901 * device dev
6ae32c53
SO
1902 * @dev: the PCI device being released
1903 *
1904 * Permits the platform to provide architecture specific functionality when
1905 * devices are released. This is the default implementation. Architecture
1906 * implementations can override this.
1907 */
1908void __weak pcibios_release_device(struct pci_dev *dev) {}
1909
1da177e4
LT
1910/**
1911 * pcibios_disable_device - disable arch specific PCI resources for device dev
1912 * @dev: the PCI device to disable
1913 *
1914 * Disables architecture specific PCI resources for the device. This
1915 * is the default implementation. Architecture implementations can
1916 * override this.
1917 */
ff3ce480 1918void __weak pcibios_disable_device(struct pci_dev *dev) {}
1da177e4 1919
a43ae58c
HG
1920/**
1921 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1922 * @irq: ISA IRQ to penalize
1923 * @active: IRQ active or not
1924 *
1925 * Permits the platform to provide architecture-specific functionality when
1926 * penalizing ISA IRQs. This is the default implementation. Architecture
1927 * implementations can override this.
1928 */
1929void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1930
fa58d305
RW
1931static void do_pci_disable_device(struct pci_dev *dev)
1932{
1933 u16 pci_command;
1934
1935 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1936 if (pci_command & PCI_COMMAND_MASTER) {
1937 pci_command &= ~PCI_COMMAND_MASTER;
1938 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1939 }
1940
1941 pcibios_disable_device(dev);
1942}
1943
1944/**
1945 * pci_disable_enabled_device - Disable device without updating enable_cnt
1946 * @dev: PCI device to disable
1947 *
1948 * NOTE: This function is a backend of PCI power management routines and is
1949 * not supposed to be called drivers.
1950 */
1951void pci_disable_enabled_device(struct pci_dev *dev)
1952{
296ccb08 1953 if (pci_is_enabled(dev))
fa58d305
RW
1954 do_pci_disable_device(dev);
1955}
1956
1da177e4
LT
1957/**
1958 * pci_disable_device - Disable PCI device after use
1959 * @dev: PCI device to be disabled
1960 *
1961 * Signal to the system that the PCI device is not in use by the system
1962 * anymore. This only involves disabling PCI bus-mastering, if active.
bae94d02
IPG
1963 *
1964 * Note we don't actually disable the device until all callers of
ee6583f6 1965 * pci_enable_device() have called pci_disable_device().
1da177e4 1966 */
3c78bc61 1967void pci_disable_device(struct pci_dev *dev)
1da177e4 1968{
9ac7849e 1969 struct pci_devres *dr;
99dc804d 1970
9ac7849e
TH
1971 dr = find_pci_dr(dev);
1972 if (dr)
7f375f32 1973 dr->enabled = 0;
9ac7849e 1974
fd6dceab
KK
1975 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1976 "disabling already-disabled device");
1977
cc7ba39b 1978 if (atomic_dec_return(&dev->enable_cnt) != 0)
bae94d02
IPG
1979 return;
1980
fa58d305 1981 do_pci_disable_device(dev);
1da177e4 1982
fa58d305 1983 dev->is_busmaster = 0;
1da177e4 1984}
b7fe9434 1985EXPORT_SYMBOL(pci_disable_device);
1da177e4 1986
f7bdd12d
BK
1987/**
1988 * pcibios_set_pcie_reset_state - set reset state for device dev
45e829ea 1989 * @dev: the PCIe device reset
f7bdd12d
BK
1990 * @state: Reset state to enter into
1991 *
74356add 1992 * Set the PCIe reset state for the device. This is the default
f7bdd12d
BK
1993 * implementation. Architecture implementations can override this.
1994 */
d6d88c83
BH
1995int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1996 enum pcie_reset_state state)
f7bdd12d
BK
1997{
1998 return -EINVAL;
1999}
2000
2001/**
2002 * pci_set_pcie_reset_state - set reset state for device dev
45e829ea 2003 * @dev: the PCIe device reset
f7bdd12d
BK
2004 * @state: Reset state to enter into
2005 *
f7bdd12d
BK
2006 * Sets the PCI reset state for the device.
2007 */
2008int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2009{
2010 return pcibios_set_pcie_reset_state(dev, state);
2011}
b7fe9434 2012EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
f7bdd12d 2013
dcb0453d
BH
2014/**
2015 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2016 * @dev: PCIe root port or event collector.
2017 */
2018void pcie_clear_root_pme_status(struct pci_dev *dev)
2019{
2020 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2021}
2022
58ff4633
RW
2023/**
2024 * pci_check_pme_status - Check if given device has generated PME.
2025 * @dev: Device to check.
2026 *
2027 * Check the PME status of the device and if set, clear it and clear PME enable
2028 * (if set). Return 'true' if PME status and PME enable were both set or
2029 * 'false' otherwise.
2030 */
2031bool pci_check_pme_status(struct pci_dev *dev)
2032{
2033 int pmcsr_pos;
2034 u16 pmcsr;
2035 bool ret = false;
2036
2037 if (!dev->pm_cap)
2038 return false;
2039
2040 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2041 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2042 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2043 return false;
2044
2045 /* Clear PME status. */
2046 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2047 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2048 /* Disable PME to avoid interrupt flood. */
2049 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2050 ret = true;
2051 }
2052
2053 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2054
2055 return ret;
2056}
2057
b67ea761
RW
2058/**
2059 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2060 * @dev: Device to handle.
379021d5 2061 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
b67ea761
RW
2062 *
2063 * Check if @dev has generated PME and queue a resume request for it in that
2064 * case.
2065 */
379021d5 2066static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
b67ea761 2067{
379021d5
RW
2068 if (pme_poll_reset && dev->pme_poll)
2069 dev->pme_poll = false;
2070
c125e96f 2071 if (pci_check_pme_status(dev)) {
c125e96f 2072 pci_wakeup_event(dev);
0f953bf6 2073 pm_request_resume(&dev->dev);
c125e96f 2074 }
b67ea761
RW
2075 return 0;
2076}
2077
2078/**
2079 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2080 * @bus: Top bus of the subtree to walk.
2081 */
2082void pci_pme_wakeup_bus(struct pci_bus *bus)
2083{
2084 if (bus)
379021d5 2085 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
b67ea761
RW
2086}
2087
448bd857 2088
eb9d0fe4
RW
2089/**
2090 * pci_pme_capable - check the capability of PCI device to generate PME#
2091 * @dev: PCI device to handle.
eb9d0fe4
RW
2092 * @state: PCI state from which device will issue PME#.
2093 */
e5899e1b 2094bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
eb9d0fe4 2095{
337001b6 2096 if (!dev->pm_cap)
eb9d0fe4
RW
2097 return false;
2098
337001b6 2099 return !!(dev->pme_support & (1 << state));
eb9d0fe4 2100}
b7fe9434 2101EXPORT_SYMBOL(pci_pme_capable);
eb9d0fe4 2102
df17e62e
MG
2103static void pci_pme_list_scan(struct work_struct *work)
2104{
379021d5 2105 struct pci_pme_device *pme_dev, *n;
df17e62e
MG
2106
2107 mutex_lock(&pci_pme_list_mutex);
ce300008
BH
2108 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2109 if (pme_dev->dev->pme_poll) {
2110 struct pci_dev *bridge;
2111
2112 bridge = pme_dev->dev->bus->self;
2113 /*
2114 * If bridge is in low power state, the
2115 * configuration space of subordinate devices
2116 * may be not accessible
2117 */
2118 if (bridge && bridge->current_state != PCI_D0)
2119 continue;
000dd531
MW
2120 /*
2121 * If the device is in D3cold it should not be
2122 * polled either.
2123 */
2124 if (pme_dev->dev->current_state == PCI_D3cold)
2125 continue;
2126
ce300008
BH
2127 pci_pme_wakeup(pme_dev->dev, NULL);
2128 } else {
2129 list_del(&pme_dev->list);
2130 kfree(pme_dev);
379021d5 2131 }
df17e62e 2132 }
ce300008 2133 if (!list_empty(&pci_pme_list))
ea00353f
LW
2134 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2135 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
2136 mutex_unlock(&pci_pme_list_mutex);
2137}
2138
2cef548a 2139static void __pci_pme_active(struct pci_dev *dev, bool enable)
eb9d0fe4
RW
2140{
2141 u16 pmcsr;
2142
ffaddbe8 2143 if (!dev->pme_support)
eb9d0fe4
RW
2144 return;
2145
337001b6 2146 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
eb9d0fe4
RW
2147 /* Clear PME_Status by writing 1 to it and enable PME# */
2148 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2149 if (!enable)
2150 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2151
337001b6 2152 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2cef548a
RW
2153}
2154
0ce3fcaf
RW
2155/**
2156 * pci_pme_restore - Restore PME configuration after config space restore.
2157 * @dev: PCI device to update.
2158 */
2159void pci_pme_restore(struct pci_dev *dev)
dc15e71e
RW
2160{
2161 u16 pmcsr;
2162
2163 if (!dev->pme_support)
2164 return;
2165
2166 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2167 if (dev->wakeup_prepared) {
2168 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
0ce3fcaf 2169 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
dc15e71e
RW
2170 } else {
2171 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2172 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2173 }
2174 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2175}
2176
2cef548a
RW
2177/**
2178 * pci_pme_active - enable or disable PCI device's PME# function
2179 * @dev: PCI device to handle.
2180 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2181 *
2182 * The caller must verify that the device is capable of generating PME# before
2183 * calling this function with @enable equal to 'true'.
2184 */
2185void pci_pme_active(struct pci_dev *dev, bool enable)
2186{
2187 __pci_pme_active(dev, enable);
eb9d0fe4 2188
6e965e0d
HY
2189 /*
2190 * PCI (as opposed to PCIe) PME requires that the device have
2191 * its PME# line hooked up correctly. Not all hardware vendors
2192 * do this, so the PME never gets delivered and the device
2193 * remains asleep. The easiest way around this is to
2194 * periodically walk the list of suspended devices and check
2195 * whether any have their PME flag set. The assumption is that
2196 * we'll wake up often enough anyway that this won't be a huge
2197 * hit, and the power savings from the devices will still be a
2198 * win.
2199 *
2200 * Although PCIe uses in-band PME message instead of PME# line
2201 * to report PME, PME does not work for some PCIe devices in
2202 * reality. For example, there are devices that set their PME
2203 * status bits, but don't really bother to send a PME message;
2204 * there are PCI Express Root Ports that don't bother to
2205 * trigger interrupts when they receive PME messages from the
2206 * devices below. So PME poll is used for PCIe devices too.
2207 */
df17e62e 2208
379021d5 2209 if (dev->pme_poll) {
df17e62e
MG
2210 struct pci_pme_device *pme_dev;
2211 if (enable) {
2212 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2213 GFP_KERNEL);
0394cb19 2214 if (!pme_dev) {
7506dc79 2215 pci_warn(dev, "can't enable PME#\n");
0394cb19
BH
2216 return;
2217 }
df17e62e
MG
2218 pme_dev->dev = dev;
2219 mutex_lock(&pci_pme_list_mutex);
2220 list_add(&pme_dev->list, &pci_pme_list);
2221 if (list_is_singular(&pci_pme_list))
ea00353f
LW
2222 queue_delayed_work(system_freezable_wq,
2223 &pci_pme_work,
2224 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
2225 mutex_unlock(&pci_pme_list_mutex);
2226 } else {
2227 mutex_lock(&pci_pme_list_mutex);
2228 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2229 if (pme_dev->dev == dev) {
2230 list_del(&pme_dev->list);
2231 kfree(pme_dev);
2232 break;
2233 }
2234 }
2235 mutex_unlock(&pci_pme_list_mutex);
2236 }
2237 }
2238
7506dc79 2239 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
eb9d0fe4 2240}
b7fe9434 2241EXPORT_SYMBOL(pci_pme_active);
eb9d0fe4 2242
1da177e4 2243/**
cfcadfaa 2244 * __pci_enable_wake - enable PCI device as wakeup event source
075c1771
DB
2245 * @dev: PCI device affected
2246 * @state: PCI state from which device will issue wakeup events
2247 * @enable: True to enable event generation; false to disable
2248 *
2249 * This enables the device as a wakeup event source, or disables it.
2250 * When such events involves platform-specific hooks, those hooks are
2251 * called automatically by this routine.
2252 *
2253 * Devices with legacy power management (no standard PCI PM capabilities)
eb9d0fe4 2254 * always require such platform hooks.
075c1771 2255 *
eb9d0fe4
RW
2256 * RETURN VALUE:
2257 * 0 is returned on success
2258 * -EINVAL is returned if device is not supposed to wake up the system
2259 * Error code depending on the platform is returned if both the platform and
2260 * the native mechanism fail to enable the generation of wake-up events
1da177e4 2261 */
cfcadfaa 2262static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1da177e4 2263{
5bcc2fb4 2264 int ret = 0;
075c1771 2265
baecc470 2266 /*
ac86e8ee
MW
2267 * Bridges that are not power-manageable directly only signal
2268 * wakeup on behalf of subordinate devices which is set up
2269 * elsewhere, so skip them. However, bridges that are
2270 * power-manageable may signal wakeup for themselves (for example,
2271 * on a hotplug event) and they need to be covered here.
baecc470 2272 */
ac86e8ee 2273 if (!pci_power_manageable(dev))
baecc470
RW
2274 return 0;
2275
0ce3fcaf
RW
2276 /* Don't do the same thing twice in a row for one device. */
2277 if (!!enable == !!dev->wakeup_prepared)
e80bb09d
RW
2278 return 0;
2279
eb9d0fe4
RW
2280 /*
2281 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2282 * Anderson we should be doing PME# wake enable followed by ACPI wake
2283 * enable. To disable wake-up we call the platform first, for symmetry.
075c1771 2284 */
1da177e4 2285
5bcc2fb4
RW
2286 if (enable) {
2287 int error;
1da177e4 2288
5bcc2fb4
RW
2289 if (pci_pme_capable(dev, state))
2290 pci_pme_active(dev, true);
2291 else
2292 ret = 1;
0847684c 2293 error = platform_pci_set_wakeup(dev, true);
5bcc2fb4
RW
2294 if (ret)
2295 ret = error;
e80bb09d
RW
2296 if (!ret)
2297 dev->wakeup_prepared = true;
5bcc2fb4 2298 } else {
0847684c 2299 platform_pci_set_wakeup(dev, false);
5bcc2fb4 2300 pci_pme_active(dev, false);
e80bb09d 2301 dev->wakeup_prepared = false;
5bcc2fb4 2302 }
1da177e4 2303
5bcc2fb4 2304 return ret;
eb9d0fe4 2305}
cfcadfaa
RW
2306
2307/**
2308 * pci_enable_wake - change wakeup settings for a PCI device
2309 * @pci_dev: Target device
2310 * @state: PCI state from which device will issue wakeup events
2311 * @enable: Whether or not to enable event generation
2312 *
2313 * If @enable is set, check device_may_wakeup() for the device before calling
2314 * __pci_enable_wake() for it.
2315 */
2316int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2317{
2318 if (enable && !device_may_wakeup(&pci_dev->dev))
2319 return -EINVAL;
2320
2321 return __pci_enable_wake(pci_dev, state, enable);
2322}
0847684c 2323EXPORT_SYMBOL(pci_enable_wake);
1da177e4 2324
0235c4fc
RW
2325/**
2326 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2327 * @dev: PCI device to prepare
2328 * @enable: True to enable wake-up event generation; false to disable
2329 *
2330 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2331 * and this function allows them to set that up cleanly - pci_enable_wake()
2332 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2333 * ordering constraints.
2334 *
cfcadfaa
RW
2335 * This function only returns error code if the device is not allowed to wake
2336 * up the system from sleep or it is not capable of generating PME# from both
2337 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
0235c4fc
RW
2338 */
2339int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2340{
2341 return pci_pme_capable(dev, PCI_D3cold) ?
2342 pci_enable_wake(dev, PCI_D3cold, enable) :
2343 pci_enable_wake(dev, PCI_D3hot, enable);
2344}
b7fe9434 2345EXPORT_SYMBOL(pci_wake_from_d3);
0235c4fc 2346
404cc2d8 2347/**
37139074
JB
2348 * pci_target_state - find an appropriate low power state for a given PCI dev
2349 * @dev: PCI device
666ff6f8 2350 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
37139074
JB
2351 *
2352 * Use underlying platform code to find a supported low power state for @dev.
2353 * If the platform can't manage @dev, return the deepest state from which it
2354 * can generate wake events, based on any available PME info.
404cc2d8 2355 */
666ff6f8 2356static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
404cc2d8
RW
2357{
2358 pci_power_t target_state = PCI_D3hot;
404cc2d8
RW
2359
2360 if (platform_pci_power_manageable(dev)) {
2361 /*
60ee031a 2362 * Call the platform to find the target state for the device.
404cc2d8
RW
2363 */
2364 pci_power_t state = platform_pci_choose_state(dev);
2365
2366 switch (state) {
2367 case PCI_POWER_ERROR:
2368 case PCI_UNKNOWN:
2369 break;
2370 case PCI_D1:
2371 case PCI_D2:
2372 if (pci_no_d1d2(dev))
2373 break;
1d09d577 2374 /* else, fall through */
404cc2d8
RW
2375 default:
2376 target_state = state;
404cc2d8 2377 }
4132a577
LW
2378
2379 return target_state;
2380 }
2381
2382 if (!dev->pm_cap)
d2abdf62 2383 target_state = PCI_D0;
4132a577
LW
2384
2385 /*
2386 * If the device is in D3cold even though it's not power-manageable by
2387 * the platform, it may have been powered down by non-standard means.
2388 * Best to let it slumber.
2389 */
2390 if (dev->current_state == PCI_D3cold)
2391 target_state = PCI_D3cold;
2392
666ff6f8 2393 if (wakeup) {
404cc2d8
RW
2394 /*
2395 * Find the deepest state from which the device can generate
60ee031a 2396 * PME#.
404cc2d8 2397 */
337001b6
RW
2398 if (dev->pme_support) {
2399 while (target_state
2400 && !(dev->pme_support & (1 << target_state)))
2401 target_state--;
404cc2d8
RW
2402 }
2403 }
2404
e5899e1b
RW
2405 return target_state;
2406}
2407
2408/**
74356add
BH
2409 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2410 * into a sleep state
e5899e1b
RW
2411 * @dev: Device to handle.
2412 *
2413 * Choose the power state appropriate for the device depending on whether
2414 * it can wake up the system and/or is power manageable by the platform
2415 * (PCI_D3hot is the default) and put the device into that state.
2416 */
2417int pci_prepare_to_sleep(struct pci_dev *dev)
2418{
666ff6f8
RW
2419 bool wakeup = device_may_wakeup(&dev->dev);
2420 pci_power_t target_state = pci_target_state(dev, wakeup);
e5899e1b
RW
2421 int error;
2422
2423 if (target_state == PCI_POWER_ERROR)
2424 return -EIO;
2425
666ff6f8 2426 pci_enable_wake(dev, target_state, wakeup);
c157dfa3 2427
404cc2d8
RW
2428 error = pci_set_power_state(dev, target_state);
2429
2430 if (error)
2431 pci_enable_wake(dev, target_state, false);
2432
2433 return error;
2434}
b7fe9434 2435EXPORT_SYMBOL(pci_prepare_to_sleep);
404cc2d8
RW
2436
2437/**
74356add
BH
2438 * pci_back_from_sleep - turn PCI device on during system-wide transition
2439 * into working state
404cc2d8
RW
2440 * @dev: Device to handle.
2441 *
88393161 2442 * Disable device's system wake-up capability and put it into D0.
404cc2d8
RW
2443 */
2444int pci_back_from_sleep(struct pci_dev *dev)
2445{
2446 pci_enable_wake(dev, PCI_D0, false);
2447 return pci_set_power_state(dev, PCI_D0);
2448}
b7fe9434 2449EXPORT_SYMBOL(pci_back_from_sleep);
404cc2d8 2450
6cbf8214
RW
2451/**
2452 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2453 * @dev: PCI device being suspended.
2454 *
2455 * Prepare @dev to generate wake-up events at run time and put it into a low
2456 * power state.
2457 */
2458int pci_finish_runtime_suspend(struct pci_dev *dev)
2459{
666ff6f8 2460 pci_power_t target_state;
6cbf8214
RW
2461 int error;
2462
666ff6f8 2463 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
6cbf8214
RW
2464 if (target_state == PCI_POWER_ERROR)
2465 return -EIO;
2466
448bd857
HY
2467 dev->runtime_d3cold = target_state == PCI_D3cold;
2468
cfcadfaa 2469 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
6cbf8214
RW
2470
2471 error = pci_set_power_state(dev, target_state);
2472
448bd857 2473 if (error) {
0847684c 2474 pci_enable_wake(dev, target_state, false);
448bd857
HY
2475 dev->runtime_d3cold = false;
2476 }
6cbf8214
RW
2477
2478 return error;
2479}
2480
b67ea761
RW
2481/**
2482 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2483 * @dev: Device to check.
2484 *
f7625980 2485 * Return true if the device itself is capable of generating wake-up events
b67ea761
RW
2486 * (through the platform or using the native PCIe PME) or if the device supports
2487 * PME and one of its upstream bridges can generate wake-up events.
2488 */
2489bool pci_dev_run_wake(struct pci_dev *dev)
2490{
2491 struct pci_bus *bus = dev->bus;
2492
b67ea761
RW
2493 if (!dev->pme_support)
2494 return false;
2495
666ff6f8 2496 /* PME-capable in principle, but not from the target power state */
8feaec33 2497 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
6496ebd7
AS
2498 return false;
2499
8feaec33
KHF
2500 if (device_can_wakeup(&dev->dev))
2501 return true;
2502
b67ea761
RW
2503 while (bus->parent) {
2504 struct pci_dev *bridge = bus->self;
2505
de3ef1eb 2506 if (device_can_wakeup(&bridge->dev))
b67ea761
RW
2507 return true;
2508
2509 bus = bus->parent;
2510 }
2511
2512 /* We have reached the root bus. */
2513 if (bus->bridge)
de3ef1eb 2514 return device_can_wakeup(bus->bridge);
b67ea761
RW
2515
2516 return false;
2517}
2518EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2519
bac2a909 2520/**
0c7376ad 2521 * pci_dev_need_resume - Check if it is necessary to resume the device.
bac2a909
RW
2522 * @pci_dev: Device to check.
2523 *
0c7376ad 2524 * Return 'true' if the device is not runtime-suspended or it has to be
bac2a909 2525 * reconfigured due to wakeup settings difference between system and runtime
0c7376ad
RW
2526 * suspend, or the current power state of it is not suitable for the upcoming
2527 * (system-wide) transition.
bac2a909 2528 */
0c7376ad 2529bool pci_dev_need_resume(struct pci_dev *pci_dev)
bac2a909
RW
2530{
2531 struct device *dev = &pci_dev->dev;
234f223d
RW
2532 pci_power_t target_state;
2533
2534 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
0c7376ad 2535 return true;
bac2a909 2536
0c7376ad 2537 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
234f223d
RW
2538
2539 /*
2540 * If the earlier platform check has not triggered, D3cold is just power
2541 * removal on top of D3hot, so no need to resume the device in that
2542 * case.
2543 */
0c7376ad
RW
2544 return target_state != pci_dev->current_state &&
2545 target_state != PCI_D3cold &&
2546 pci_dev->current_state != PCI_D3hot;
2547}
2548
2549/**
2550 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2551 * @pci_dev: Device to check.
2552 *
2553 * If the device is suspended and it is not configured for system wakeup,
2554 * disable PME for it to prevent it from waking up the system unnecessarily.
2555 *
2556 * Note that if the device's power state is D3cold and the platform check in
2557 * pci_dev_need_resume() has not triggered, the device's configuration need not
2558 * be changed.
2559 */
2560void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2561{
2562 struct device *dev = &pci_dev->dev;
bac2a909 2563
2cef548a
RW
2564 spin_lock_irq(&dev->power.lock);
2565
0c7376ad
RW
2566 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2567 pci_dev->current_state < PCI_D3cold)
2cef548a
RW
2568 __pci_pme_active(pci_dev, false);
2569
2570 spin_unlock_irq(&dev->power.lock);
2cef548a
RW
2571}
2572
2573/**
2574 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2575 * @pci_dev: Device to handle.
2576 *
2577 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2578 * it might have been disabled during the prepare phase of system suspend if
2579 * the device was not configured for system wakeup.
2580 */
2581void pci_dev_complete_resume(struct pci_dev *pci_dev)
2582{
2583 struct device *dev = &pci_dev->dev;
2584
2585 if (!pci_dev_run_wake(pci_dev))
2586 return;
2587
2588 spin_lock_irq(&dev->power.lock);
2589
2590 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2591 __pci_pme_active(pci_dev, true);
2592
2593 spin_unlock_irq(&dev->power.lock);
bac2a909
RW
2594}
2595
b3c32c4f
HY
2596void pci_config_pm_runtime_get(struct pci_dev *pdev)
2597{
2598 struct device *dev = &pdev->dev;
2599 struct device *parent = dev->parent;
2600
2601 if (parent)
2602 pm_runtime_get_sync(parent);
2603 pm_runtime_get_noresume(dev);
2604 /*
2605 * pdev->current_state is set to PCI_D3cold during suspending,
2606 * so wait until suspending completes
2607 */
2608 pm_runtime_barrier(dev);
2609 /*
2610 * Only need to resume devices in D3cold, because config
2611 * registers are still accessible for devices suspended but
2612 * not in D3cold.
2613 */
2614 if (pdev->current_state == PCI_D3cold)
2615 pm_runtime_resume(dev);
2616}
2617
2618void pci_config_pm_runtime_put(struct pci_dev *pdev)
2619{
2620 struct device *dev = &pdev->dev;
2621 struct device *parent = dev->parent;
2622
2623 pm_runtime_put(dev);
2624 if (parent)
2625 pm_runtime_put_sync(parent);
2626}
2627
85b0cae8
MW
2628static const struct dmi_system_id bridge_d3_blacklist[] = {
2629#ifdef CONFIG_X86
2630 {
2631 /*
2632 * Gigabyte X299 root port is not marked as hotplug capable
2633 * which allows Linux to power manage it. However, this
2634 * confuses the BIOS SMI handler so don't power manage root
2635 * ports on that system.
2636 */
2637 .ident = "X299 DESIGNARE EX-CF",
2638 .matches = {
2639 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2640 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2641 },
2642 },
2643#endif
2644 { }
2645};
2646
9d26d3a8
MW
2647/**
2648 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2649 * @bridge: Bridge to check
2650 *
2651 * This function checks if it is possible to move the bridge to D3.
47a8e237 2652 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
9d26d3a8 2653 */
c6a63307 2654bool pci_bridge_d3_possible(struct pci_dev *bridge)
9d26d3a8 2655{
9d26d3a8
MW
2656 if (!pci_is_pcie(bridge))
2657 return false;
2658
2659 switch (pci_pcie_type(bridge)) {
2660 case PCI_EXP_TYPE_ROOT_PORT:
2661 case PCI_EXP_TYPE_UPSTREAM:
2662 case PCI_EXP_TYPE_DOWNSTREAM:
2663 if (pci_bridge_d3_disable)
2664 return false;
97a90aee
LW
2665
2666 /*
eb3b5bf1 2667 * Hotplug ports handled by firmware in System Management Mode
97a90aee 2668 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
97a90aee 2669 */
eb3b5bf1 2670 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
97a90aee
LW
2671 return false;
2672
9d26d3a8
MW
2673 if (pci_bridge_d3_force)
2674 return true;
2675
47a8e237
LW
2676 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2677 if (bridge->is_thunderbolt)
2678 return true;
2679
26ad34d5
MW
2680 /* Platform might know better if the bridge supports D3 */
2681 if (platform_pci_bridge_d3(bridge))
2682 return true;
2683
eb3b5bf1
LW
2684 /*
2685 * Hotplug ports handled natively by the OS were not validated
2686 * by vendors for runtime D3 at least until 2018 because there
2687 * was no OS support.
2688 */
2689 if (bridge->is_hotplug_bridge)
2690 return false;
2691
85b0cae8
MW
2692 if (dmi_check_system(bridge_d3_blacklist))
2693 return false;
2694
9d26d3a8
MW
2695 /*
2696 * It should be safe to put PCIe ports from 2015 or newer
2697 * to D3.
2698 */
ac95090a 2699 if (dmi_get_bios_year() >= 2015)
9d26d3a8 2700 return true;
9d26d3a8
MW
2701 break;
2702 }
2703
2704 return false;
2705}
2706
2707static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2708{
2709 bool *d3cold_ok = data;
9d26d3a8 2710
718a0609
LW
2711 if (/* The device needs to be allowed to go D3cold ... */
2712 dev->no_d3cold || !dev->d3cold_allowed ||
2713
2714 /* ... and if it is wakeup capable to do so from D3cold. */
2715 (device_may_wakeup(&dev->dev) &&
2716 !pci_pme_capable(dev, PCI_D3cold)) ||
2717
2718 /* If it is a bridge it must be allowed to go to D3. */
d98e0929 2719 !pci_power_manageable(dev))
9d26d3a8 2720
718a0609 2721 *d3cold_ok = false;
9d26d3a8 2722
718a0609 2723 return !*d3cold_ok;
9d26d3a8
MW
2724}
2725
2726/*
2727 * pci_bridge_d3_update - Update bridge D3 capabilities
2728 * @dev: PCI device which is changed
9d26d3a8
MW
2729 *
2730 * Update upstream bridge PM capabilities accordingly depending on if the
2731 * device PM configuration was changed or the device is being removed. The
2732 * change is also propagated upstream.
2733 */
1ed276a7 2734void pci_bridge_d3_update(struct pci_dev *dev)
9d26d3a8 2735{
1ed276a7 2736 bool remove = !device_is_registered(&dev->dev);
9d26d3a8
MW
2737 struct pci_dev *bridge;
2738 bool d3cold_ok = true;
2739
2740 bridge = pci_upstream_bridge(dev);
2741 if (!bridge || !pci_bridge_d3_possible(bridge))
2742 return;
2743
9d26d3a8 2744 /*
e8559b71
LW
2745 * If D3 is currently allowed for the bridge, removing one of its
2746 * children won't change that.
2747 */
2748 if (remove && bridge->bridge_d3)
2749 return;
2750
2751 /*
2752 * If D3 is currently allowed for the bridge and a child is added or
2753 * changed, disallowance of D3 can only be caused by that child, so
2754 * we only need to check that single device, not any of its siblings.
2755 *
2756 * If D3 is currently not allowed for the bridge, checking the device
2757 * first may allow us to skip checking its siblings.
9d26d3a8
MW
2758 */
2759 if (!remove)
2760 pci_dev_check_d3cold(dev, &d3cold_ok);
2761
e8559b71
LW
2762 /*
2763 * If D3 is currently not allowed for the bridge, this may be caused
2764 * either by the device being changed/removed or any of its siblings,
2765 * so we need to go through all children to find out if one of them
2766 * continues to block D3.
2767 */
2768 if (d3cold_ok && !bridge->bridge_d3)
9d26d3a8
MW
2769 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2770 &d3cold_ok);
9d26d3a8
MW
2771
2772 if (bridge->bridge_d3 != d3cold_ok) {
2773 bridge->bridge_d3 = d3cold_ok;
2774 /* Propagate change to upstream bridges */
1ed276a7 2775 pci_bridge_d3_update(bridge);
9d26d3a8 2776 }
9d26d3a8
MW
2777}
2778
9d26d3a8
MW
2779/**
2780 * pci_d3cold_enable - Enable D3cold for device
2781 * @dev: PCI device to handle
2782 *
2783 * This function can be used in drivers to enable D3cold from the device
2784 * they handle. It also updates upstream PCI bridge PM capabilities
2785 * accordingly.
2786 */
2787void pci_d3cold_enable(struct pci_dev *dev)
2788{
2789 if (dev->no_d3cold) {
2790 dev->no_d3cold = false;
1ed276a7 2791 pci_bridge_d3_update(dev);
9d26d3a8
MW
2792 }
2793}
2794EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2795
2796/**
2797 * pci_d3cold_disable - Disable D3cold for device
2798 * @dev: PCI device to handle
2799 *
2800 * This function can be used in drivers to disable D3cold from the device
2801 * they handle. It also updates upstream PCI bridge PM capabilities
2802 * accordingly.
2803 */
2804void pci_d3cold_disable(struct pci_dev *dev)
2805{
2806 if (!dev->no_d3cold) {
2807 dev->no_d3cold = true;
1ed276a7 2808 pci_bridge_d3_update(dev);
9d26d3a8
MW
2809 }
2810}
2811EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2812
eb9d0fe4
RW
2813/**
2814 * pci_pm_init - Initialize PM functions of given PCI device
2815 * @dev: PCI device to handle.
2816 */
2817void pci_pm_init(struct pci_dev *dev)
2818{
2819 int pm;
d6112f8d 2820 u16 status;
eb9d0fe4 2821 u16 pmc;
1da177e4 2822
bb910a70 2823 pm_runtime_forbid(&dev->dev);
967577b0
HY
2824 pm_runtime_set_active(&dev->dev);
2825 pm_runtime_enable(&dev->dev);
a1e4d72c 2826 device_enable_async_suspend(&dev->dev);
e80bb09d 2827 dev->wakeup_prepared = false;
bb910a70 2828
337001b6 2829 dev->pm_cap = 0;
ffaddbe8 2830 dev->pme_support = 0;
337001b6 2831
eb9d0fe4
RW
2832 /* find PCI PM capability in list */
2833 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2834 if (!pm)
50246dd4 2835 return;
eb9d0fe4
RW
2836 /* Check device's ability to generate PME# */
2837 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
075c1771 2838
eb9d0fe4 2839 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
7506dc79 2840 pci_err(dev, "unsupported PM cap regs version (%u)\n",
eb9d0fe4 2841 pmc & PCI_PM_CAP_VER_MASK);
50246dd4 2842 return;
eb9d0fe4
RW
2843 }
2844
337001b6 2845 dev->pm_cap = pm;
1ae861e6 2846 dev->d3_delay = PCI_PM_D3_WAIT;
448bd857 2847 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
9d26d3a8 2848 dev->bridge_d3 = pci_bridge_d3_possible(dev);
4f9c1397 2849 dev->d3cold_allowed = true;
337001b6
RW
2850
2851 dev->d1_support = false;
2852 dev->d2_support = false;
2853 if (!pci_no_d1d2(dev)) {
c9ed77ee 2854 if (pmc & PCI_PM_CAP_D1)
337001b6 2855 dev->d1_support = true;
c9ed77ee 2856 if (pmc & PCI_PM_CAP_D2)
337001b6 2857 dev->d2_support = true;
c9ed77ee
BH
2858
2859 if (dev->d1_support || dev->d2_support)
34c6b710 2860 pci_info(dev, "supports%s%s\n",
ec84f126
JB
2861 dev->d1_support ? " D1" : "",
2862 dev->d2_support ? " D2" : "");
337001b6
RW
2863 }
2864
2865 pmc &= PCI_PM_CAP_PME_MASK;
2866 if (pmc) {
34c6b710 2867 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
c9ed77ee
BH
2868 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2869 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2870 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2871 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2872 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
337001b6 2873 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
379021d5 2874 dev->pme_poll = true;
eb9d0fe4
RW
2875 /*
2876 * Make device's PM flags reflect the wake-up capability, but
2877 * let the user space enable it to wake up the system as needed.
2878 */
2879 device_set_wakeup_capable(&dev->dev, true);
eb9d0fe4 2880 /* Disable the PME# generation functionality */
337001b6 2881 pci_pme_active(dev, false);
eb9d0fe4 2882 }
d6112f8d
FB
2883
2884 pci_read_config_word(dev, PCI_STATUS, &status);
2885 if (status & PCI_STATUS_IMM_READY)
2886 dev->imm_ready = 1;
1da177e4
LT
2887}
2888
938174e5
SS
2889static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2890{
92efb1bd 2891 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
938174e5
SS
2892
2893 switch (prop) {
2894 case PCI_EA_P_MEM:
2895 case PCI_EA_P_VF_MEM:
2896 flags |= IORESOURCE_MEM;
2897 break;
2898 case PCI_EA_P_MEM_PREFETCH:
2899 case PCI_EA_P_VF_MEM_PREFETCH:
2900 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2901 break;
2902 case PCI_EA_P_IO:
2903 flags |= IORESOURCE_IO;
2904 break;
2905 default:
2906 return 0;
2907 }
2908
2909 return flags;
2910}
2911
2912static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2913 u8 prop)
2914{
2915 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2916 return &dev->resource[bei];
11183991
DD
2917#ifdef CONFIG_PCI_IOV
2918 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2919 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2920 return &dev->resource[PCI_IOV_RESOURCES +
2921 bei - PCI_EA_BEI_VF_BAR0];
2922#endif
938174e5
SS
2923 else if (bei == PCI_EA_BEI_ROM)
2924 return &dev->resource[PCI_ROM_RESOURCE];
2925 else
2926 return NULL;
2927}
2928
2929/* Read an Enhanced Allocation (EA) entry */
2930static int pci_ea_read(struct pci_dev *dev, int offset)
2931{
2932 struct resource *res;
2933 int ent_size, ent_offset = offset;
2934 resource_size_t start, end;
2935 unsigned long flags;
26635112 2936 u32 dw0, bei, base, max_offset;
938174e5
SS
2937 u8 prop;
2938 bool support_64 = (sizeof(resource_size_t) >= 8);
2939
2940 pci_read_config_dword(dev, ent_offset, &dw0);
2941 ent_offset += 4;
2942
2943 /* Entry size field indicates DWORDs after 1st */
2944 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2945
2946 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2947 goto out;
2948
26635112
BH
2949 bei = (dw0 & PCI_EA_BEI) >> 4;
2950 prop = (dw0 & PCI_EA_PP) >> 8;
2951
938174e5
SS
2952 /*
2953 * If the Property is in the reserved range, try the Secondary
2954 * Property instead.
2955 */
2956 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
26635112 2957 prop = (dw0 & PCI_EA_SP) >> 16;
938174e5
SS
2958 if (prop > PCI_EA_P_BRIDGE_IO)
2959 goto out;
2960
26635112 2961 res = pci_ea_get_resource(dev, bei, prop);
938174e5 2962 if (!res) {
7506dc79 2963 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
938174e5
SS
2964 goto out;
2965 }
2966
2967 flags = pci_ea_flags(dev, prop);
2968 if (!flags) {
7506dc79 2969 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
938174e5
SS
2970 goto out;
2971 }
2972
2973 /* Read Base */
2974 pci_read_config_dword(dev, ent_offset, &base);
2975 start = (base & PCI_EA_FIELD_MASK);
2976 ent_offset += 4;
2977
2978 /* Read MaxOffset */
2979 pci_read_config_dword(dev, ent_offset, &max_offset);
2980 ent_offset += 4;
2981
2982 /* Read Base MSBs (if 64-bit entry) */
2983 if (base & PCI_EA_IS_64) {
2984 u32 base_upper;
2985
2986 pci_read_config_dword(dev, ent_offset, &base_upper);
2987 ent_offset += 4;
2988
2989 flags |= IORESOURCE_MEM_64;
2990
2991 /* entry starts above 32-bit boundary, can't use */
2992 if (!support_64 && base_upper)
2993 goto out;
2994
2995 if (support_64)
2996 start |= ((u64)base_upper << 32);
2997 }
2998
2999 end = start + (max_offset | 0x03);
3000
3001 /* Read MaxOffset MSBs (if 64-bit entry) */
3002 if (max_offset & PCI_EA_IS_64) {
3003 u32 max_offset_upper;
3004
3005 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3006 ent_offset += 4;
3007
3008 flags |= IORESOURCE_MEM_64;
3009
3010 /* entry too big, can't use */
3011 if (!support_64 && max_offset_upper)
3012 goto out;
3013
3014 if (support_64)
3015 end += ((u64)max_offset_upper << 32);
3016 }
3017
3018 if (end < start) {
7506dc79 3019 pci_err(dev, "EA Entry crosses address boundary\n");
938174e5
SS
3020 goto out;
3021 }
3022
3023 if (ent_size != ent_offset - offset) {
7506dc79 3024 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
938174e5
SS
3025 ent_size, ent_offset - offset);
3026 goto out;
3027 }
3028
3029 res->name = pci_name(dev);
3030 res->start = start;
3031 res->end = end;
3032 res->flags = flags;
597becb4
BH
3033
3034 if (bei <= PCI_EA_BEI_BAR5)
34c6b710 3035 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
597becb4
BH
3036 bei, res, prop);
3037 else if (bei == PCI_EA_BEI_ROM)
34c6b710 3038 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
597becb4
BH
3039 res, prop);
3040 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
34c6b710 3041 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
597becb4
BH
3042 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3043 else
34c6b710 3044 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
597becb4
BH
3045 bei, res, prop);
3046
938174e5
SS
3047out:
3048 return offset + ent_size;
3049}
3050
dcbb408a 3051/* Enhanced Allocation Initialization */
938174e5
SS
3052void pci_ea_init(struct pci_dev *dev)
3053{
3054 int ea;
3055 u8 num_ent;
3056 int offset;
3057 int i;
3058
3059 /* find PCI EA capability in list */
3060 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3061 if (!ea)
3062 return;
3063
3064 /* determine the number of entries */
3065 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3066 &num_ent);
3067 num_ent &= PCI_EA_NUM_ENT_MASK;
3068
3069 offset = ea + PCI_EA_FIRST_ENT;
3070
3071 /* Skip DWORD 2 for type 1 functions */
3072 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3073 offset += 4;
3074
3075 /* parse each EA entry */
3076 for (i = 0; i < num_ent; ++i)
3077 offset = pci_ea_read(dev, offset);
3078}
3079
34a4876e
YL
3080static void pci_add_saved_cap(struct pci_dev *pci_dev,
3081 struct pci_cap_saved_state *new_cap)
3082{
3083 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3084}
3085
63f4898a 3086/**
fd0f7f73 3087 * _pci_add_cap_save_buffer - allocate buffer for saving given
74356add 3088 * capability registers
63f4898a
RW
3089 * @dev: the PCI device
3090 * @cap: the capability to allocate the buffer for
fd0f7f73 3091 * @extended: Standard or Extended capability ID
63f4898a
RW
3092 * @size: requested size of the buffer
3093 */
fd0f7f73
AW
3094static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3095 bool extended, unsigned int size)
63f4898a
RW
3096{
3097 int pos;
3098 struct pci_cap_saved_state *save_state;
3099
fd0f7f73
AW
3100 if (extended)
3101 pos = pci_find_ext_capability(dev, cap);
3102 else
3103 pos = pci_find_capability(dev, cap);
3104
0a1a9b49 3105 if (!pos)
63f4898a
RW
3106 return 0;
3107
3108 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3109 if (!save_state)
3110 return -ENOMEM;
3111
24a4742f 3112 save_state->cap.cap_nr = cap;
fd0f7f73 3113 save_state->cap.cap_extended = extended;
24a4742f 3114 save_state->cap.size = size;
63f4898a
RW
3115 pci_add_saved_cap(dev, save_state);
3116
3117 return 0;
3118}
3119
fd0f7f73
AW
3120int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3121{
3122 return _pci_add_cap_save_buffer(dev, cap, false, size);
3123}
3124
3125int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3126{
3127 return _pci_add_cap_save_buffer(dev, cap, true, size);
3128}
3129
63f4898a
RW
3130/**
3131 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3132 * @dev: the PCI device
3133 */
3134void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3135{
3136 int error;
3137
89858517
YZ
3138 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3139 PCI_EXP_SAVE_REGS * sizeof(u16));
63f4898a 3140 if (error)
7506dc79 3141 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
63f4898a
RW
3142
3143 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3144 if (error)
7506dc79 3145 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
425c1b22 3146
dbbfadf2
BH
3147 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3148 2 * sizeof(u16));
3149 if (error)
3150 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3151
425c1b22 3152 pci_allocate_vc_save_buffers(dev);
63f4898a
RW
3153}
3154
f796841e
YL
3155void pci_free_cap_save_buffers(struct pci_dev *dev)
3156{
3157 struct pci_cap_saved_state *tmp;
b67bfe0d 3158 struct hlist_node *n;
f796841e 3159
b67bfe0d 3160 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
f796841e
YL
3161 kfree(tmp);
3162}
3163
58c3a727 3164/**
31ab2476 3165 * pci_configure_ari - enable or disable ARI forwarding
58c3a727 3166 * @dev: the PCI device
b0cc6020
YW
3167 *
3168 * If @dev and its upstream bridge both support ARI, enable ARI in the
3169 * bridge. Otherwise, disable ARI in the bridge.
58c3a727 3170 */
31ab2476 3171void pci_configure_ari(struct pci_dev *dev)
58c3a727 3172{
58c3a727 3173 u32 cap;
8113587c 3174 struct pci_dev *bridge;
58c3a727 3175
6748dcc2 3176 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
58c3a727
YZ
3177 return;
3178
8113587c 3179 bridge = dev->bus->self;
cb97ae34 3180 if (!bridge)
8113587c
ZY
3181 return;
3182
59875ae4 3183 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
58c3a727
YZ
3184 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3185 return;
3186
b0cc6020
YW
3187 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3188 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3189 PCI_EXP_DEVCTL2_ARI);
3190 bridge->ari_enabled = 1;
3191 } else {
3192 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3193 PCI_EXP_DEVCTL2_ARI);
3194 bridge->ari_enabled = 0;
3195 }
58c3a727
YZ
3196}
3197
5d990b62
CW
3198static int pci_acs_enable;
3199
3200/**
3201 * pci_request_acs - ask for ACS to be enabled if supported
3202 */
3203void pci_request_acs(void)
3204{
3205 pci_acs_enable = 1;
3206}
3207
aaca43fd
LG
3208static const char *disable_acs_redir_param;
3209
3210/**
3211 * pci_disable_acs_redir - disable ACS redirect capabilities
3212 * @dev: the PCI device
3213 *
3214 * For only devices specified in the disable_acs_redir parameter.
3215 */
3216static void pci_disable_acs_redir(struct pci_dev *dev)
3217{
3218 int ret = 0;
3219 const char *p;
3220 int pos;
3221 u16 ctrl;
3222
3223 if (!disable_acs_redir_param)
3224 return;
3225
3226 p = disable_acs_redir_param;
3227 while (*p) {
3228 ret = pci_dev_str_match(dev, p, &p);
3229 if (ret < 0) {
3230 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3231 disable_acs_redir_param);
3232
3233 break;
3234 } else if (ret == 1) {
3235 /* Found a match */
3236 break;
3237 }
3238
3239 if (*p != ';' && *p != ',') {
3240 /* End of param or invalid format */
3241 break;
3242 }
3243 p++;
3244 }
3245
3246 if (ret != 1)
3247 return;
3248
73c47dde
LG
3249 if (!pci_dev_specific_disable_acs_redir(dev))
3250 return;
3251
aaca43fd
LG
3252 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3253 if (!pos) {
3254 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3255 return;
3256 }
3257
3258 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3259
3260 /* P2P Request & Completion Redirect */
3261 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3262
3263 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3264
3265 pci_info(dev, "disabled ACS redirect\n");
3266}
3267
ae21ee65 3268/**
74356add 3269 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
ae21ee65
AK
3270 * @dev: the PCI device
3271 */
c1d61c9b 3272static void pci_std_enable_acs(struct pci_dev *dev)
ae21ee65
AK
3273{
3274 int pos;
3275 u16 cap;
3276 u16 ctrl;
3277
ae21ee65
AK
3278 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3279 if (!pos)
c1d61c9b 3280 return;
ae21ee65
AK
3281
3282 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3283 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3284
3285 /* Source Validation */
3286 ctrl |= (cap & PCI_ACS_SV);
3287
3288 /* P2P Request Redirect */
3289 ctrl |= (cap & PCI_ACS_RR);
3290
3291 /* P2P Completion Redirect */
3292 ctrl |= (cap & PCI_ACS_CR);
3293
3294 /* Upstream Forwarding */
3295 ctrl |= (cap & PCI_ACS_UF);
3296
3297 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2c744244
AW
3298}
3299
3300/**
3301 * pci_enable_acs - enable ACS if hardware support it
3302 * @dev: the PCI device
3303 */
3304void pci_enable_acs(struct pci_dev *dev)
3305{
3306 if (!pci_acs_enable)
aaca43fd 3307 goto disable_acs_redir;
2c744244 3308
c1d61c9b 3309 if (!pci_dev_specific_enable_acs(dev))
aaca43fd 3310 goto disable_acs_redir;
2c744244 3311
c1d61c9b 3312 pci_std_enable_acs(dev);
aaca43fd
LG
3313
3314disable_acs_redir:
3315 /*
3316 * Note: pci_disable_acs_redir() must be called even if ACS was not
3317 * enabled by the kernel because it may have been enabled by
3318 * platform firmware. So if we are told to disable it, we should
3319 * always disable it after setting the kernel's default
3320 * preferences.
3321 */
3322 pci_disable_acs_redir(dev);
ae21ee65
AK
3323}
3324
0a67119f
AW
3325static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3326{
3327 int pos;
83db7e0b 3328 u16 cap, ctrl;
0a67119f
AW
3329
3330 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3331 if (!pos)
3332 return false;
3333
83db7e0b
AW
3334 /*
3335 * Except for egress control, capabilities are either required
3336 * or only required if controllable. Features missing from the
3337 * capability field can therefore be assumed as hard-wired enabled.
3338 */
3339 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3340 acs_flags &= (cap | PCI_ACS_EC);
3341
0a67119f
AW
3342 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3343 return (ctrl & acs_flags) == acs_flags;
3344}
3345
ad805758
AW
3346/**
3347 * pci_acs_enabled - test ACS against required flags for a given device
3348 * @pdev: device to test
3349 * @acs_flags: required PCI ACS flags
3350 *
3351 * Return true if the device supports the provided flags. Automatically
3352 * filters out flags that are not implemented on multifunction devices.
0a67119f
AW
3353 *
3354 * Note that this interface checks the effective ACS capabilities of the
3355 * device rather than the actual capabilities. For instance, most single
3356 * function endpoints are not required to support ACS because they have no
3357 * opportunity for peer-to-peer access. We therefore return 'true'
3358 * regardless of whether the device exposes an ACS capability. This makes
3359 * it much easier for callers of this function to ignore the actual type
3360 * or topology of the device when testing ACS support.
ad805758
AW
3361 */
3362bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3363{
0a67119f 3364 int ret;
ad805758
AW
3365
3366 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3367 if (ret >= 0)
3368 return ret > 0;
3369
0a67119f
AW
3370 /*
3371 * Conventional PCI and PCI-X devices never support ACS, either
3372 * effectively or actually. The shared bus topology implies that
3373 * any device on the bus can receive or snoop DMA.
3374 */
ad805758
AW
3375 if (!pci_is_pcie(pdev))
3376 return false;
3377
0a67119f
AW
3378 switch (pci_pcie_type(pdev)) {
3379 /*
3380 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
f7625980 3381 * but since their primary interface is PCI/X, we conservatively
0a67119f
AW
3382 * handle them as we would a non-PCIe device.
3383 */
3384 case PCI_EXP_TYPE_PCIE_BRIDGE:
3385 /*
3386 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3387 * applicable... must never implement an ACS Extended Capability...".
3388 * This seems arbitrary, but we take a conservative interpretation
3389 * of this statement.
3390 */
3391 case PCI_EXP_TYPE_PCI_BRIDGE:
3392 case PCI_EXP_TYPE_RC_EC:
3393 return false;
3394 /*
3395 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3396 * implement ACS in order to indicate their peer-to-peer capabilities,
3397 * regardless of whether they are single- or multi-function devices.
3398 */
3399 case PCI_EXP_TYPE_DOWNSTREAM:
3400 case PCI_EXP_TYPE_ROOT_PORT:
3401 return pci_acs_flags_enabled(pdev, acs_flags);
3402 /*
3403 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3404 * implemented by the remaining PCIe types to indicate peer-to-peer
f7625980 3405 * capabilities, but only when they are part of a multifunction
0a67119f
AW
3406 * device. The footnote for section 6.12 indicates the specific
3407 * PCIe types included here.
3408 */
3409 case PCI_EXP_TYPE_ENDPOINT:
3410 case PCI_EXP_TYPE_UPSTREAM:
3411 case PCI_EXP_TYPE_LEG_END:
3412 case PCI_EXP_TYPE_RC_END:
3413 if (!pdev->multifunction)
3414 break;
3415
0a67119f 3416 return pci_acs_flags_enabled(pdev, acs_flags);
ad805758
AW
3417 }
3418
0a67119f 3419 /*
f7625980 3420 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
0a67119f
AW
3421 * to single function devices with the exception of downstream ports.
3422 */
ad805758
AW
3423 return true;
3424}
3425
3426/**
3427 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3428 * @start: starting downstream device
3429 * @end: ending upstream device or NULL to search to the root bus
3430 * @acs_flags: required flags
3431 *
3432 * Walk up a device tree from start to end testing PCI ACS support. If
3433 * any step along the way does not support the required flags, return false.
3434 */
3435bool pci_acs_path_enabled(struct pci_dev *start,
3436 struct pci_dev *end, u16 acs_flags)
3437{
3438 struct pci_dev *pdev, *parent = start;
3439
3440 do {
3441 pdev = parent;
3442
3443 if (!pci_acs_enabled(pdev, acs_flags))
3444 return false;
3445
3446 if (pci_is_root_bus(pdev->bus))
3447 return (end == NULL);
3448
3449 parent = pdev->bus->self;
3450 } while (pdev != end);
3451
3452 return true;
3453}
3454
276b738d
CK
3455/**
3456 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3457 * @pdev: PCI device
3458 * @bar: BAR to find
3459 *
3460 * Helper to find the position of the ctrl register for a BAR.
3461 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3462 * Returns -ENOENT if no ctrl register for the BAR could be found.
3463 */
3464static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3465{
3466 unsigned int pos, nbars, i;
3467 u32 ctrl;
3468
3469 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3470 if (!pos)
3471 return -ENOTSUPP;
3472
3473 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3474 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3475 PCI_REBAR_CTRL_NBAR_SHIFT;
3476
3477 for (i = 0; i < nbars; i++, pos += 8) {
3478 int bar_idx;
3479
3480 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3481 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3482 if (bar_idx == bar)
3483 return pos;
3484 }
3485
3486 return -ENOENT;
3487}
3488
3489/**
3490 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3491 * @pdev: PCI device
3492 * @bar: BAR to query
3493 *
3494 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3495 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3496 */
3497u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3498{
3499 int pos;
3500 u32 cap;
3501
3502 pos = pci_rebar_find_pos(pdev, bar);
3503 if (pos < 0)
3504 return 0;
3505
3506 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3507 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3508}
3509
3510/**
3511 * pci_rebar_get_current_size - get the current size of a BAR
3512 * @pdev: PCI device
3513 * @bar: BAR to set size to
3514 *
3515 * Read the size of a BAR from the resizable BAR config.
3516 * Returns size if found or negative error code.
3517 */
3518int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3519{
3520 int pos;
3521 u32 ctrl;
3522
3523 pos = pci_rebar_find_pos(pdev, bar);
3524 if (pos < 0)
3525 return pos;
3526
3527 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
b1277a22 3528 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
276b738d
CK
3529}
3530
3531/**
3532 * pci_rebar_set_size - set a new size for a BAR
3533 * @pdev: PCI device
3534 * @bar: BAR to set size to
3535 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3536 *
3537 * Set the new size of a BAR as defined in the spec.
3538 * Returns zero if resizing was successful, error code otherwise.
3539 */
3540int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3541{
3542 int pos;
3543 u32 ctrl;
3544
3545 pos = pci_rebar_find_pos(pdev, bar);
3546 if (pos < 0)
3547 return pos;
3548
3549 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3550 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
b1277a22 3551 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
276b738d
CK
3552 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3553 return 0;
3554}
3555
430a2368
JC
3556/**
3557 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3558 * @dev: the PCI device
3559 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3560 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3561 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3562 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3563 *
3564 * Return 0 if all upstream bridges support AtomicOp routing, egress
3565 * blocking is disabled on all upstream ports, and the root port supports
3566 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3567 * AtomicOp completion), or negative otherwise.
3568 */
3569int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3570{
3571 struct pci_bus *bus = dev->bus;
3572 struct pci_dev *bridge;
3573 u32 cap, ctl2;
3574
3575 if (!pci_is_pcie(dev))
3576 return -EINVAL;
3577
3578 /*
3579 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3580 * AtomicOp requesters. For now, we only support endpoints as
3581 * requesters and root ports as completers. No endpoints as
3582 * completers, and no peer-to-peer.
3583 */
3584
3585 switch (pci_pcie_type(dev)) {
3586 case PCI_EXP_TYPE_ENDPOINT:
3587 case PCI_EXP_TYPE_LEG_END:
3588 case PCI_EXP_TYPE_RC_END:
3589 break;
3590 default:
3591 return -EINVAL;
3592 }
3593
3594 while (bus->parent) {
3595 bridge = bus->self;
3596
3597 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3598
3599 switch (pci_pcie_type(bridge)) {
3600 /* Ensure switch ports support AtomicOp routing */
3601 case PCI_EXP_TYPE_UPSTREAM:
3602 case PCI_EXP_TYPE_DOWNSTREAM:
3603 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3604 return -EINVAL;
3605 break;
3606
3607 /* Ensure root port supports all the sizes we care about */
3608 case PCI_EXP_TYPE_ROOT_PORT:
3609 if ((cap & cap_mask) != cap_mask)
3610 return -EINVAL;
3611 break;
3612 }
3613
3614 /* Ensure upstream ports don't block AtomicOps on egress */
ca784104 3615 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
430a2368
JC
3616 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3617 &ctl2);
3618 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3619 return -EINVAL;
3620 }
3621
3622 bus = bus->parent;
3623 }
3624
3625 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3626 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3627 return 0;
3628}
3629EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3630
57c2cf71
BH
3631/**
3632 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3633 * @dev: the PCI device
bb5c2de2 3634 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
57c2cf71
BH
3635 *
3636 * Perform INTx swizzling for a device behind one level of bridge. This is
3637 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
46b952a3
MW
3638 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3639 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3640 * the PCI Express Base Specification, Revision 2.1)
57c2cf71 3641 */
3df425f3 3642u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
57c2cf71 3643{
46b952a3
MW
3644 int slot;
3645
3646 if (pci_ari_enabled(dev->bus))
3647 slot = 0;
3648 else
3649 slot = PCI_SLOT(dev->devfn);
3650
3651 return (((pin - 1) + slot) % 4) + 1;
57c2cf71
BH
3652}
3653
3c78bc61 3654int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1da177e4
LT
3655{
3656 u8 pin;
3657
514d207d 3658 pin = dev->pin;
1da177e4
LT
3659 if (!pin)
3660 return -1;
878f2e50 3661
8784fd4d 3662 while (!pci_is_root_bus(dev->bus)) {
57c2cf71 3663 pin = pci_swizzle_interrupt_pin(dev, pin);
1da177e4
LT
3664 dev = dev->bus->self;
3665 }
3666 *bridge = dev;
3667 return pin;
3668}
3669
68feac87
BH
3670/**
3671 * pci_common_swizzle - swizzle INTx all the way to root bridge
3672 * @dev: the PCI device
3673 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3674 *
3675 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3676 * bridges all the way up to a PCI root bus.
3677 */
3678u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3679{
3680 u8 pin = *pinp;
3681
1eb39487 3682 while (!pci_is_root_bus(dev->bus)) {
68feac87
BH
3683 pin = pci_swizzle_interrupt_pin(dev, pin);
3684 dev = dev->bus->self;
3685 }
3686 *pinp = pin;
3687 return PCI_SLOT(dev->devfn);
3688}
e6b29dea 3689EXPORT_SYMBOL_GPL(pci_common_swizzle);
68feac87 3690
1da177e4 3691/**
74356add
BH
3692 * pci_release_region - Release a PCI bar
3693 * @pdev: PCI device whose resources were previously reserved by
3694 * pci_request_region()
3695 * @bar: BAR to release
1da177e4 3696 *
74356add
BH
3697 * Releases the PCI I/O and memory resources previously reserved by a
3698 * successful call to pci_request_region(). Call this function only
3699 * after all use of the PCI regions has ceased.
1da177e4
LT
3700 */
3701void pci_release_region(struct pci_dev *pdev, int bar)
3702{
9ac7849e
TH
3703 struct pci_devres *dr;
3704
1da177e4
LT
3705 if (pci_resource_len(pdev, bar) == 0)
3706 return;
3707 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3708 release_region(pci_resource_start(pdev, bar),
3709 pci_resource_len(pdev, bar));
3710 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3711 release_mem_region(pci_resource_start(pdev, bar),
3712 pci_resource_len(pdev, bar));
9ac7849e
TH
3713
3714 dr = find_pci_dr(pdev);
3715 if (dr)
3716 dr->region_mask &= ~(1 << bar);
1da177e4 3717}
b7fe9434 3718EXPORT_SYMBOL(pci_release_region);
1da177e4
LT
3719
3720/**
74356add
BH
3721 * __pci_request_region - Reserved PCI I/O and memory resource
3722 * @pdev: PCI device whose resources are to be reserved
3723 * @bar: BAR to be reserved
3724 * @res_name: Name to be associated with resource.
3725 * @exclusive: whether the region access is exclusive or not
1da177e4 3726 *
74356add
BH
3727 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3728 * being reserved by owner @res_name. Do not access any
3729 * address inside the PCI regions unless this call returns
3730 * successfully.
1da177e4 3731 *
74356add
BH
3732 * If @exclusive is set, then the region is marked so that userspace
3733 * is explicitly not allowed to map the resource via /dev/mem or
3734 * sysfs MMIO access.
f5ddcac4 3735 *
74356add
BH
3736 * Returns 0 on success, or %EBUSY on error. A warning
3737 * message is also printed on failure.
1da177e4 3738 */
3c78bc61
RD
3739static int __pci_request_region(struct pci_dev *pdev, int bar,
3740 const char *res_name, int exclusive)
1da177e4 3741{
9ac7849e
TH
3742 struct pci_devres *dr;
3743
1da177e4
LT
3744 if (pci_resource_len(pdev, bar) == 0)
3745 return 0;
f7625980 3746
1da177e4
LT
3747 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3748 if (!request_region(pci_resource_start(pdev, bar),
3749 pci_resource_len(pdev, bar), res_name))
3750 goto err_out;
3c78bc61 3751 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
e8de1481
AV
3752 if (!__request_mem_region(pci_resource_start(pdev, bar),
3753 pci_resource_len(pdev, bar), res_name,
3754 exclusive))
1da177e4
LT
3755 goto err_out;
3756 }
9ac7849e
TH
3757
3758 dr = find_pci_dr(pdev);
3759 if (dr)
3760 dr->region_mask |= 1 << bar;
3761
1da177e4
LT
3762 return 0;
3763
3764err_out:
7506dc79 3765 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
096e6f67 3766 &pdev->resource[bar]);
1da177e4
LT
3767 return -EBUSY;
3768}
3769
e8de1481 3770/**
74356add
BH
3771 * pci_request_region - Reserve PCI I/O and memory resource
3772 * @pdev: PCI device whose resources are to be reserved
3773 * @bar: BAR to be reserved
3774 * @res_name: Name to be associated with resource
e8de1481 3775 *
74356add
BH
3776 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3777 * being reserved by owner @res_name. Do not access any
3778 * address inside the PCI regions unless this call returns
3779 * successfully.
e8de1481 3780 *
74356add
BH
3781 * Returns 0 on success, or %EBUSY on error. A warning
3782 * message is also printed on failure.
e8de1481
AV
3783 */
3784int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3785{
3786 return __pci_request_region(pdev, bar, res_name, 0);
3787}
b7fe9434 3788EXPORT_SYMBOL(pci_request_region);
e8de1481 3789
c87deff7
HS
3790/**
3791 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3792 * @pdev: PCI device whose resources were previously reserved
3793 * @bars: Bitmask of BARs to be released
3794 *
3795 * Release selected PCI I/O and memory resources previously reserved.
3796 * Call this function only after all use of the PCI regions has ceased.
3797 */
3798void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3799{
3800 int i;
3801
c9c13ba4 3802 for (i = 0; i < PCI_STD_NUM_BARS; i++)
c87deff7
HS
3803 if (bars & (1 << i))
3804 pci_release_region(pdev, i);
3805}
b7fe9434 3806EXPORT_SYMBOL(pci_release_selected_regions);
c87deff7 3807
9738abed 3808static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3c78bc61 3809 const char *res_name, int excl)
c87deff7
HS
3810{
3811 int i;
3812
c9c13ba4 3813 for (i = 0; i < PCI_STD_NUM_BARS; i++)
c87deff7 3814 if (bars & (1 << i))
e8de1481 3815 if (__pci_request_region(pdev, i, res_name, excl))
c87deff7
HS
3816 goto err_out;
3817 return 0;
3818
3819err_out:
3c78bc61 3820 while (--i >= 0)
c87deff7
HS
3821 if (bars & (1 << i))
3822 pci_release_region(pdev, i);
3823
3824 return -EBUSY;
3825}
1da177e4 3826
e8de1481
AV
3827
3828/**
3829 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3830 * @pdev: PCI device whose resources are to be reserved
3831 * @bars: Bitmask of BARs to be requested
3832 * @res_name: Name to be associated with resource
3833 */
3834int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3835 const char *res_name)
3836{
3837 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3838}
b7fe9434 3839EXPORT_SYMBOL(pci_request_selected_regions);
e8de1481 3840
3c78bc61
RD
3841int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3842 const char *res_name)
e8de1481
AV
3843{
3844 return __pci_request_selected_regions(pdev, bars, res_name,
3845 IORESOURCE_EXCLUSIVE);
3846}
b7fe9434 3847EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
e8de1481 3848
1da177e4 3849/**
74356add
BH
3850 * pci_release_regions - Release reserved PCI I/O and memory resources
3851 * @pdev: PCI device whose resources were previously reserved by
3852 * pci_request_regions()
1da177e4 3853 *
74356add
BH
3854 * Releases all PCI I/O and memory resources previously reserved by a
3855 * successful call to pci_request_regions(). Call this function only
3856 * after all use of the PCI regions has ceased.
1da177e4
LT
3857 */
3858
3859void pci_release_regions(struct pci_dev *pdev)
3860{
c9c13ba4 3861 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
1da177e4 3862}
b7fe9434 3863EXPORT_SYMBOL(pci_release_regions);
1da177e4
LT
3864
3865/**
74356add
BH
3866 * pci_request_regions - Reserve PCI I/O and memory resources
3867 * @pdev: PCI device whose resources are to be reserved
3868 * @res_name: Name to be associated with resource.
1da177e4 3869 *
74356add
BH
3870 * Mark all PCI regions associated with PCI device @pdev as
3871 * being reserved by owner @res_name. Do not access any
3872 * address inside the PCI regions unless this call returns
3873 * successfully.
1da177e4 3874 *
74356add
BH
3875 * Returns 0 on success, or %EBUSY on error. A warning
3876 * message is also printed on failure.
1da177e4 3877 */
3c990e92 3878int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1da177e4 3879{
c9c13ba4
DE
3880 return pci_request_selected_regions(pdev,
3881 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
1da177e4 3882}
b7fe9434 3883EXPORT_SYMBOL(pci_request_regions);
1da177e4 3884
e8de1481 3885/**
74356add
BH
3886 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3887 * @pdev: PCI device whose resources are to be reserved
3888 * @res_name: Name to be associated with resource.
e8de1481 3889 *
74356add
BH
3890 * Mark all PCI regions associated with PCI device @pdev as being reserved
3891 * by owner @res_name. Do not access any address inside the PCI regions
3892 * unless this call returns successfully.
e8de1481 3893 *
74356add
BH
3894 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3895 * and the sysfs MMIO access will not be allowed.
e8de1481 3896 *
74356add
BH
3897 * Returns 0 on success, or %EBUSY on error. A warning message is also
3898 * printed on failure.
e8de1481
AV
3899 */
3900int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3901{
3902 return pci_request_selected_regions_exclusive(pdev,
c9c13ba4 3903 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
e8de1481 3904}
b7fe9434 3905EXPORT_SYMBOL(pci_request_regions_exclusive);
e8de1481 3906
c5076cfe
TN
3907/*
3908 * Record the PCI IO range (expressed as CPU physical address + size).
74356add 3909 * Return a negative value if an error has occurred, zero otherwise
c5076cfe 3910 */
fcfaab30
GP
3911int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3912 resource_size_t size)
c5076cfe 3913{
5745392e 3914 int ret = 0;
c5076cfe 3915#ifdef PCI_IOBASE
5745392e 3916 struct logic_pio_hwaddr *range;
c5076cfe 3917
5745392e
ZY
3918 if (!size || addr + size < addr)
3919 return -EINVAL;
c5076cfe 3920
c5076cfe 3921 range = kzalloc(sizeof(*range), GFP_ATOMIC);
5745392e
ZY
3922 if (!range)
3923 return -ENOMEM;
c5076cfe 3924
5745392e 3925 range->fwnode = fwnode;
c5076cfe 3926 range->size = size;
5745392e
ZY
3927 range->hw_start = addr;
3928 range->flags = LOGIC_PIO_CPU_MMIO;
c5076cfe 3929
5745392e
ZY
3930 ret = logic_pio_register_range(range);
3931 if (ret)
3932 kfree(range);
c5076cfe
TN
3933#endif
3934
5745392e 3935 return ret;
c5076cfe
TN
3936}
3937
3938phys_addr_t pci_pio_to_address(unsigned long pio)
3939{
3940 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3941
3942#ifdef PCI_IOBASE
5745392e 3943 if (pio >= MMIO_UPPER_LIMIT)
c5076cfe
TN
3944 return address;
3945
5745392e 3946 address = logic_pio_to_hwaddr(pio);
c5076cfe
TN
3947#endif
3948
3949 return address;
3950}
3951
3952unsigned long __weak pci_address_to_pio(phys_addr_t address)
3953{
3954#ifdef PCI_IOBASE
5745392e 3955 return logic_pio_trans_cpuaddr(address);
c5076cfe
TN
3956#else
3957 if (address > IO_SPACE_LIMIT)
3958 return (unsigned long)-1;
3959
3960 return (unsigned long) address;
3961#endif
3962}
3963
8b921acf 3964/**
74356add
BH
3965 * pci_remap_iospace - Remap the memory mapped I/O space
3966 * @res: Resource describing the I/O space
3967 * @phys_addr: physical address of range to be mapped
8b921acf 3968 *
74356add
BH
3969 * Remap the memory mapped I/O space described by the @res and the CPU
3970 * physical address @phys_addr into virtual address space. Only
3971 * architectures that have memory mapped IO functions defined (and the
3972 * PCI_IOBASE value defined) should call this function.
8b921acf 3973 */
7b309aef 3974int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
8b921acf
LD
3975{
3976#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3977 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3978
3979 if (!(res->flags & IORESOURCE_IO))
3980 return -EINVAL;
3981
3982 if (res->end > IO_SPACE_LIMIT)
3983 return -EINVAL;
3984
3985 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3986 pgprot_device(PAGE_KERNEL));
3987#else
74356add
BH
3988 /*
3989 * This architecture does not have memory mapped I/O space,
3990 * so this function should never be called
3991 */
8b921acf
LD
3992 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3993 return -ENODEV;
3994#endif
3995}
f90b0875 3996EXPORT_SYMBOL(pci_remap_iospace);
8b921acf 3997
4d3f1384 3998/**
74356add
BH
3999 * pci_unmap_iospace - Unmap the memory mapped I/O space
4000 * @res: resource to be unmapped
4d3f1384 4001 *
74356add
BH
4002 * Unmap the CPU virtual address @res from virtual address space. Only
4003 * architectures that have memory mapped IO functions defined (and the
4004 * PCI_IOBASE value defined) should call this function.
4d3f1384
SK
4005 */
4006void pci_unmap_iospace(struct resource *res)
4007{
4008#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4009 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4010
4011 unmap_kernel_range(vaddr, resource_size(res));
4012#endif
4013}
f90b0875 4014EXPORT_SYMBOL(pci_unmap_iospace);
4d3f1384 4015
a5fb9fb0
SS
4016static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4017{
4018 struct resource **res = ptr;
4019
4020 pci_unmap_iospace(*res);
4021}
4022
4023/**
4024 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4025 * @dev: Generic device to remap IO address for
4026 * @res: Resource describing the I/O space
4027 * @phys_addr: physical address of range to be mapped
4028 *
4029 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4030 * detach.
4031 */
4032int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4033 phys_addr_t phys_addr)
4034{
4035 const struct resource **ptr;
4036 int error;
4037
4038 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4039 if (!ptr)
4040 return -ENOMEM;
4041
4042 error = pci_remap_iospace(res, phys_addr);
4043 if (error) {
4044 devres_free(ptr);
4045 } else {
4046 *ptr = res;
4047 devres_add(dev, ptr);
4048 }
4049
4050 return error;
4051}
4052EXPORT_SYMBOL(devm_pci_remap_iospace);
4053
490cb6dd
LP
4054/**
4055 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4056 * @dev: Generic device to remap IO address for
4057 * @offset: Resource address to map
4058 * @size: Size of map
4059 *
4060 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4061 * detach.
4062 */
4063void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4064 resource_size_t offset,
4065 resource_size_t size)
4066{
4067 void __iomem **ptr, *addr;
4068
4069 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4070 if (!ptr)
4071 return NULL;
4072
4073 addr = pci_remap_cfgspace(offset, size);
4074 if (addr) {
4075 *ptr = addr;
4076 devres_add(dev, ptr);
4077 } else
4078 devres_free(ptr);
4079
4080 return addr;
4081}
4082EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4083
4084/**
4085 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4086 * @dev: generic device to handle the resource for
4087 * @res: configuration space resource to be handled
4088 *
4089 * Checks that a resource is a valid memory region, requests the memory
4090 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4091 * proper PCI configuration space memory attributes are guaranteed.
4092 *
4093 * All operations are managed and will be undone on driver detach.
4094 *
4095 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
505fb746 4096 * on failure. Usage example::
490cb6dd
LP
4097 *
4098 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4099 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4100 * if (IS_ERR(base))
4101 * return PTR_ERR(base);
4102 */
4103void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4104 struct resource *res)
4105{
4106 resource_size_t size;
4107 const char *name;
4108 void __iomem *dest_ptr;
4109
4110 BUG_ON(!dev);
4111
4112 if (!res || resource_type(res) != IORESOURCE_MEM) {
4113 dev_err(dev, "invalid resource\n");
4114 return IOMEM_ERR_PTR(-EINVAL);
4115 }
4116
4117 size = resource_size(res);
4118 name = res->name ?: dev_name(dev);
4119
4120 if (!devm_request_mem_region(dev, res->start, size, name)) {
4121 dev_err(dev, "can't request region for resource %pR\n", res);
4122 return IOMEM_ERR_PTR(-EBUSY);
4123 }
4124
4125 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4126 if (!dest_ptr) {
4127 dev_err(dev, "ioremap failed for resource %pR\n", res);
4128 devm_release_mem_region(dev, res->start, size);
4129 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4130 }
4131
4132 return dest_ptr;
4133}
4134EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4135
6a479079
BH
4136static void __pci_set_master(struct pci_dev *dev, bool enable)
4137{
4138 u16 old_cmd, cmd;
4139
4140 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4141 if (enable)
4142 cmd = old_cmd | PCI_COMMAND_MASTER;
4143 else
4144 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4145 if (cmd != old_cmd) {
7506dc79 4146 pci_dbg(dev, "%s bus mastering\n",
6a479079
BH
4147 enable ? "enabling" : "disabling");
4148 pci_write_config_word(dev, PCI_COMMAND, cmd);
4149 }
4150 dev->is_busmaster = enable;
4151}
e8de1481 4152
2b6f2c35
MS
4153/**
4154 * pcibios_setup - process "pci=" kernel boot arguments
4155 * @str: string used to pass in "pci=" kernel boot arguments
4156 *
4157 * Process kernel boot arguments. This is the default implementation.
4158 * Architecture specific implementations can override this as necessary.
4159 */
4160char * __weak __init pcibios_setup(char *str)
4161{
4162 return str;
4163}
4164
96c55900
MS
4165/**
4166 * pcibios_set_master - enable PCI bus-mastering for device dev
4167 * @dev: the PCI device to enable
4168 *
4169 * Enables PCI bus-mastering for the device. This is the default
4170 * implementation. Architecture specific implementations can override
4171 * this if necessary.
4172 */
4173void __weak pcibios_set_master(struct pci_dev *dev)
4174{
4175 u8 lat;
4176
f676678f
MS
4177 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4178 if (pci_is_pcie(dev))
4179 return;
4180
96c55900
MS
4181 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4182 if (lat < 16)
4183 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4184 else if (lat > pcibios_max_latency)
4185 lat = pcibios_max_latency;
4186 else
4187 return;
a006482b 4188
96c55900
MS
4189 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4190}
4191
1da177e4
LT
4192/**
4193 * pci_set_master - enables bus-mastering for device dev
4194 * @dev: the PCI device to enable
4195 *
4196 * Enables bus-mastering on the device and calls pcibios_set_master()
4197 * to do the needed arch specific settings.
4198 */
6a479079 4199void pci_set_master(struct pci_dev *dev)
1da177e4 4200{
6a479079 4201 __pci_set_master(dev, true);
1da177e4
LT
4202 pcibios_set_master(dev);
4203}
b7fe9434 4204EXPORT_SYMBOL(pci_set_master);
1da177e4 4205
6a479079
BH
4206/**
4207 * pci_clear_master - disables bus-mastering for device dev
4208 * @dev: the PCI device to disable
4209 */
4210void pci_clear_master(struct pci_dev *dev)
4211{
4212 __pci_set_master(dev, false);
4213}
b7fe9434 4214EXPORT_SYMBOL(pci_clear_master);
6a479079 4215
1da177e4 4216/**
edb2d97e
MW
4217 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4218 * @dev: the PCI device for which MWI is to be enabled
1da177e4 4219 *
edb2d97e
MW
4220 * Helper function for pci_set_mwi.
4221 * Originally copied from drivers/net/acenic.c.
1da177e4
LT
4222 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4223 *
4224 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4225 */
15ea76d4 4226int pci_set_cacheline_size(struct pci_dev *dev)
1da177e4
LT
4227{
4228 u8 cacheline_size;
4229
4230 if (!pci_cache_line_size)
15ea76d4 4231 return -EINVAL;
1da177e4
LT
4232
4233 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4234 equal to or multiple of the right value. */
4235 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4236 if (cacheline_size >= pci_cache_line_size &&
4237 (cacheline_size % pci_cache_line_size) == 0)
4238 return 0;
4239
4240 /* Write the correct value. */
4241 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4242 /* Read it back. */
4243 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4244 if (cacheline_size == pci_cache_line_size)
4245 return 0;
4246
34c6b710 4247 pci_info(dev, "cache line size of %d is not supported\n",
227f0647 4248 pci_cache_line_size << 2);
1da177e4
LT
4249
4250 return -EINVAL;
4251}
15ea76d4
TH
4252EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4253
1da177e4
LT
4254/**
4255 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4256 * @dev: the PCI device for which MWI is enabled
4257 *
694625c0 4258 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1da177e4
LT
4259 *
4260 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4261 */
3c78bc61 4262int pci_set_mwi(struct pci_dev *dev)
1da177e4 4263{
b7fe9434
RD
4264#ifdef PCI_DISABLE_MWI
4265 return 0;
4266#else
1da177e4
LT
4267 int rc;
4268 u16 cmd;
4269
edb2d97e 4270 rc = pci_set_cacheline_size(dev);
1da177e4
LT
4271 if (rc)
4272 return rc;
4273
4274 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3c78bc61 4275 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
7506dc79 4276 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
1da177e4
LT
4277 cmd |= PCI_COMMAND_INVALIDATE;
4278 pci_write_config_word(dev, PCI_COMMAND, cmd);
4279 }
1da177e4 4280 return 0;
b7fe9434 4281#endif
1da177e4 4282}
b7fe9434 4283EXPORT_SYMBOL(pci_set_mwi);
1da177e4 4284
fc0f9f4d
HK
4285/**
4286 * pcim_set_mwi - a device-managed pci_set_mwi()
4287 * @dev: the PCI device for which MWI is enabled
4288 *
4289 * Managed pci_set_mwi().
4290 *
4291 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4292 */
4293int pcim_set_mwi(struct pci_dev *dev)
4294{
4295 struct pci_devres *dr;
4296
4297 dr = find_pci_dr(dev);
4298 if (!dr)
4299 return -ENOMEM;
4300
4301 dr->mwi = 1;
4302 return pci_set_mwi(dev);
4303}
4304EXPORT_SYMBOL(pcim_set_mwi);
4305
694625c0
RD
4306/**
4307 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4308 * @dev: the PCI device for which MWI is enabled
4309 *
4310 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4311 * Callers are not required to check the return value.
4312 *
4313 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4314 */
4315int pci_try_set_mwi(struct pci_dev *dev)
4316{
b7fe9434
RD
4317#ifdef PCI_DISABLE_MWI
4318 return 0;
4319#else
4320 return pci_set_mwi(dev);
4321#endif
694625c0 4322}
b7fe9434 4323EXPORT_SYMBOL(pci_try_set_mwi);
694625c0 4324
1da177e4
LT
4325/**
4326 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4327 * @dev: the PCI device to disable
4328 *
4329 * Disables PCI Memory-Write-Invalidate transaction on the device
4330 */
3c78bc61 4331void pci_clear_mwi(struct pci_dev *dev)
1da177e4 4332{
b7fe9434 4333#ifndef PCI_DISABLE_MWI
1da177e4
LT
4334 u16 cmd;
4335
4336 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4337 if (cmd & PCI_COMMAND_INVALIDATE) {
4338 cmd &= ~PCI_COMMAND_INVALIDATE;
4339 pci_write_config_word(dev, PCI_COMMAND, cmd);
4340 }
b7fe9434 4341#endif
1da177e4 4342}
b7fe9434 4343EXPORT_SYMBOL(pci_clear_mwi);
1da177e4 4344
a04ce0ff
BR
4345/**
4346 * pci_intx - enables/disables PCI INTx for device dev
8f7020d3
RD
4347 * @pdev: the PCI device to operate on
4348 * @enable: boolean: whether to enable or disable PCI INTx
a04ce0ff 4349 *
74356add 4350 * Enables/disables PCI INTx for device @pdev
a04ce0ff 4351 */
3c78bc61 4352void pci_intx(struct pci_dev *pdev, int enable)
a04ce0ff
BR
4353{
4354 u16 pci_command, new;
4355
4356 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4357
3c78bc61 4358 if (enable)
a04ce0ff 4359 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3c78bc61 4360 else
a04ce0ff 4361 new = pci_command | PCI_COMMAND_INTX_DISABLE;
a04ce0ff
BR
4362
4363 if (new != pci_command) {
9ac7849e
TH
4364 struct pci_devres *dr;
4365
2fd9d74b 4366 pci_write_config_word(pdev, PCI_COMMAND, new);
9ac7849e
TH
4367
4368 dr = find_pci_dr(pdev);
4369 if (dr && !dr->restore_intx) {
4370 dr->restore_intx = 1;
4371 dr->orig_intx = !enable;
4372 }
a04ce0ff
BR
4373 }
4374}
b7fe9434 4375EXPORT_SYMBOL_GPL(pci_intx);
a04ce0ff 4376
a2e27787
JK
4377static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4378{
4379 struct pci_bus *bus = dev->bus;
4380 bool mask_updated = true;
4381 u32 cmd_status_dword;
4382 u16 origcmd, newcmd;
4383 unsigned long flags;
4384 bool irq_pending;
4385
4386 /*
4387 * We do a single dword read to retrieve both command and status.
4388 * Document assumptions that make this possible.
4389 */
4390 BUILD_BUG_ON(PCI_COMMAND % 4);
4391 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4392
4393 raw_spin_lock_irqsave(&pci_lock, flags);
4394
4395 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4396
4397 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4398
4399 /*
4400 * Check interrupt status register to see whether our device
4401 * triggered the interrupt (when masking) or the next IRQ is
4402 * already pending (when unmasking).
4403 */
4404 if (mask != irq_pending) {
4405 mask_updated = false;
4406 goto done;
4407 }
4408
4409 origcmd = cmd_status_dword;
4410 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4411 if (mask)
4412 newcmd |= PCI_COMMAND_INTX_DISABLE;
4413 if (newcmd != origcmd)
4414 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4415
4416done:
4417 raw_spin_unlock_irqrestore(&pci_lock, flags);
4418
4419 return mask_updated;
4420}
4421
4422/**
4423 * pci_check_and_mask_intx - mask INTx on pending interrupt
6e9292c5 4424 * @dev: the PCI device to operate on
a2e27787 4425 *
74356add
BH
4426 * Check if the device dev has its INTx line asserted, mask it and return
4427 * true in that case. False is returned if no interrupt was pending.
a2e27787
JK
4428 */
4429bool pci_check_and_mask_intx(struct pci_dev *dev)
4430{
4431 return pci_check_and_set_intx_mask(dev, true);
4432}
4433EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4434
4435/**
ebd50b93 4436 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
6e9292c5 4437 * @dev: the PCI device to operate on
a2e27787 4438 *
74356add
BH
4439 * Check if the device dev has its INTx line asserted, unmask it if not and
4440 * return true. False is returned and the mask remains active if there was
4441 * still an interrupt pending.
a2e27787
JK
4442 */
4443bool pci_check_and_unmask_intx(struct pci_dev *dev)
4444{
4445 return pci_check_and_set_intx_mask(dev, false);
4446}
4447EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4448
3775a209 4449/**
74356add 4450 * pci_wait_for_pending_transaction - wait for pending transaction
3775a209
CL
4451 * @dev: the PCI device to operate on
4452 *
4453 * Return 0 if transaction is pending 1 otherwise.
4454 */
4455int pci_wait_for_pending_transaction(struct pci_dev *dev)
8dd7f803 4456{
157e876f
AW
4457 if (!pci_is_pcie(dev))
4458 return 1;
8c1c699f 4459
d0b4cc4e
GS
4460 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4461 PCI_EXP_DEVSTA_TRPND);
3775a209
CL
4462}
4463EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4464
a60a2b73
CH
4465/**
4466 * pcie_has_flr - check if a device supports function level resets
74356add 4467 * @dev: device to check
a60a2b73
CH
4468 *
4469 * Returns true if the device advertises support for PCIe function level
4470 * resets.
4471 */
2d2917f7 4472bool pcie_has_flr(struct pci_dev *dev)
3775a209
CL
4473{
4474 u32 cap;
4475
f65fd1aa 4476 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
a60a2b73 4477 return false;
3775a209 4478
a60a2b73
CH
4479 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4480 return cap & PCI_EXP_DEVCAP_FLR;
4481}
2d2917f7 4482EXPORT_SYMBOL_GPL(pcie_has_flr);
3775a209 4483
a60a2b73
CH
4484/**
4485 * pcie_flr - initiate a PCIe function level reset
74356add 4486 * @dev: device to reset
a60a2b73
CH
4487 *
4488 * Initiate a function level reset on @dev. The caller should ensure the
4489 * device supports FLR before calling this function, e.g. by using the
4490 * pcie_has_flr() helper.
4491 */
91295d79 4492int pcie_flr(struct pci_dev *dev)
a60a2b73 4493{
3775a209 4494 if (!pci_wait_for_pending_transaction(dev))
7506dc79 4495 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
8c1c699f 4496
59875ae4 4497 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
a2758b6b 4498
d6112f8d
FB
4499 if (dev->imm_ready)
4500 return 0;
4501
a2758b6b
SK
4502 /*
4503 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4504 * 100ms, but may silently discard requests while the FLR is in
4505 * progress. Wait 100ms before trying to access the device.
4506 */
4507 msleep(100);
4508
4509 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
8dd7f803 4510}
a60a2b73 4511EXPORT_SYMBOL_GPL(pcie_flr);
d91cdc74 4512
8c1c699f 4513static int pci_af_flr(struct pci_dev *dev, int probe)
1ca88797 4514{
8c1c699f 4515 int pos;
1ca88797
SY
4516 u8 cap;
4517
8c1c699f
YZ
4518 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4519 if (!pos)
1ca88797 4520 return -ENOTTY;
8c1c699f 4521
f65fd1aa
SN
4522 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4523 return -ENOTTY;
4524
8c1c699f 4525 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
1ca88797
SY
4526 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4527 return -ENOTTY;
4528
4529 if (probe)
4530 return 0;
4531
d066c946
AW
4532 /*
4533 * Wait for Transaction Pending bit to clear. A word-aligned test
f6b6aefe 4534 * is used, so we use the control offset rather than status and shift
d066c946
AW
4535 * the test bit to match.
4536 */
bb383e28 4537 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
d066c946 4538 PCI_AF_STATUS_TP << 8))
7506dc79 4539 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
5fe5db05 4540
8c1c699f 4541 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
a2758b6b 4542
d6112f8d
FB
4543 if (dev->imm_ready)
4544 return 0;
4545
a2758b6b
SK
4546 /*
4547 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4548 * updated 27 July 2006; a device must complete an FLR within
4549 * 100ms, but may silently discard requests while the FLR is in
4550 * progress. Wait 100ms before trying to access the device.
4551 */
4552 msleep(100);
4553
4554 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
1ca88797
SY
4555}
4556
83d74e03
RW
4557/**
4558 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4559 * @dev: Device to reset.
4560 * @probe: If set, only check if the device can be reset this way.
4561 *
4562 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4563 * unset, it will be reinitialized internally when going from PCI_D3hot to
4564 * PCI_D0. If that's the case and the device is not in a low-power state
4565 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4566 *
4567 * NOTE: This causes the caller to sleep for twice the device power transition
4568 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
f7625980 4569 * by default (i.e. unless the @dev's d3_delay field has a different value).
83d74e03
RW
4570 * Moreover, only devices in D0 can be reset by this function.
4571 */
f85876ba 4572static int pci_pm_reset(struct pci_dev *dev, int probe)
d91cdc74 4573{
f85876ba
YZ
4574 u16 csr;
4575
51e53738 4576 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
f85876ba 4577 return -ENOTTY;
d91cdc74 4578
f85876ba
YZ
4579 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4580 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4581 return -ENOTTY;
d91cdc74 4582
f85876ba
YZ
4583 if (probe)
4584 return 0;
1ca88797 4585
f85876ba
YZ
4586 if (dev->current_state != PCI_D0)
4587 return -EINVAL;
4588
4589 csr &= ~PCI_PM_CTRL_STATE_MASK;
4590 csr |= PCI_D3hot;
4591 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 4592 pci_dev_d3_sleep(dev);
f85876ba
YZ
4593
4594 csr &= ~PCI_PM_CTRL_STATE_MASK;
4595 csr |= PCI_D0;
4596 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 4597 pci_dev_d3_sleep(dev);
f85876ba 4598
993cc6d1 4599 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
f85876ba 4600}
4827d638 4601
9f5a70f1 4602/**
4827d638 4603 * pcie_wait_for_link_delay - Wait until link is active or inactive
9f5a70f1
OP
4604 * @pdev: Bridge device
4605 * @active: waiting for active or inactive?
4827d638 4606 * @delay: Delay to wait after link has become active (in ms)
9f5a70f1
OP
4607 *
4608 * Use this to wait till link becomes active or inactive.
4609 */
4827d638
MW
4610static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4611 int delay)
9f5a70f1
OP
4612{
4613 int timeout = 1000;
4614 bool ret;
4615 u16 lnk_status;
4616
f0157160
KB
4617 /*
4618 * Some controllers might not implement link active reporting. In this
4619 * case, we wait for 1000 + 100 ms.
4620 */
4621 if (!pdev->link_active_reporting) {
4622 msleep(1100);
4623 return true;
4624 }
4625
4626 /*
4627 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4628 * after which we should expect an link active if the reset was
4629 * successful. If so, software must wait a minimum 100ms before sending
4630 * configuration requests to devices downstream this port.
4631 *
4632 * If the link fails to activate, either the device was physically
4633 * removed or the link is permanently failed.
4634 */
4635 if (active)
4636 msleep(20);
9f5a70f1
OP
4637 for (;;) {
4638 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4639 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4640 if (ret == active)
f0157160 4641 break;
9f5a70f1
OP
4642 if (timeout <= 0)
4643 break;
4644 msleep(10);
4645 timeout -= 10;
4646 }
f0157160 4647 if (active && ret)
4827d638 4648 msleep(delay);
f0157160
KB
4649 else if (ret != active)
4650 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4651 active ? "set" : "cleared");
4652 return ret == active;
9f5a70f1 4653}
f85876ba 4654
4827d638
MW
4655/**
4656 * pcie_wait_for_link - Wait until link is active or inactive
4657 * @pdev: Bridge device
4658 * @active: waiting for active or inactive?
4659 *
4660 * Use this to wait till link becomes active or inactive.
4661 */
4662bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4663{
4664 return pcie_wait_for_link_delay(pdev, active, 100);
4665}
4666
ad9001f2
MW
4667/*
4668 * Find maximum D3cold delay required by all the devices on the bus. The
4669 * spec says 100 ms, but firmware can lower it and we allow drivers to
4670 * increase it as well.
4671 *
4672 * Called with @pci_bus_sem locked for reading.
4673 */
4674static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4675{
4676 const struct pci_dev *pdev;
4677 int min_delay = 100;
4678 int max_delay = 0;
4679
4680 list_for_each_entry(pdev, &bus->devices, bus_list) {
4681 if (pdev->d3cold_delay < min_delay)
4682 min_delay = pdev->d3cold_delay;
4683 if (pdev->d3cold_delay > max_delay)
4684 max_delay = pdev->d3cold_delay;
4685 }
4686
4687 return max(min_delay, max_delay);
4688}
4689
4690/**
4691 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4692 * @dev: PCI bridge
4693 *
4694 * Handle necessary delays before access to the devices on the secondary
4695 * side of the bridge are permitted after D3cold to D0 transition.
4696 *
4697 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4698 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4699 * 4.3.2.
4700 */
4701void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4702{
4703 struct pci_dev *child;
4704 int delay;
4705
4706 if (pci_dev_is_disconnected(dev))
4707 return;
4708
4709 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4710 return;
4711
4712 down_read(&pci_bus_sem);
4713
4714 /*
4715 * We only deal with devices that are present currently on the bus.
4716 * For any hot-added devices the access delay is handled in pciehp
4717 * board_added(). In case of ACPI hotplug the firmware is expected
4718 * to configure the devices before OS is notified.
4719 */
4720 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4721 up_read(&pci_bus_sem);
4722 return;
4723 }
4724
4725 /* Take d3cold_delay requirements into account */
4726 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4727 if (!delay) {
4728 up_read(&pci_bus_sem);
4729 return;
4730 }
4731
4732 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4733 bus_list);
4734 up_read(&pci_bus_sem);
4735
4736 /*
4737 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4738 * accessing the device after reset (that is 1000 ms + 100 ms). In
4739 * practice this should not be needed because we don't do power
4740 * management for them (see pci_bridge_d3_possible()).
4741 */
4742 if (!pci_is_pcie(dev)) {
4743 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4744 msleep(1000 + delay);
4745 return;
4746 }
4747
4748 /*
4749 * For PCIe downstream and root ports that do not support speeds
4750 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4751 * speeds (gen3) we need to wait first for the data link layer to
4752 * become active.
4753 *
4754 * However, 100 ms is the minimum and the PCIe spec says the
4755 * software must allow at least 1s before it can determine that the
4756 * device that did not respond is a broken device. There is
4757 * evidence that 100 ms is not always enough, for example certain
4758 * Titan Ridge xHCI controller does not always respond to
4759 * configuration requests if we only wait for 100 ms (see
4760 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4761 *
4762 * Therefore we wait for 100 ms and check for the device presence.
4763 * If it is still not present give it an additional 100 ms.
4764 */
4765 if (!pcie_downstream_port(dev))
4766 return;
4767
4768 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4769 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4770 msleep(delay);
4771 } else {
4772 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4773 delay);
4774 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4775 /* Did not train, no need to wait any further */
4776 return;
4777 }
4778 }
4779
4780 if (!pci_device_is_present(child)) {
4781 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4782 msleep(delay);
4783 }
4784}
4785
9e33002f 4786void pci_reset_secondary_bus(struct pci_dev *dev)
c12ff1df
YZ
4787{
4788 u16 ctrl;
64e8674f
AW
4789
4790 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4791 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4792 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
df62ab5e 4793
de0c548c
AW
4794 /*
4795 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
f7625980 4796 * this to 2ms to ensure that we meet the minimum requirement.
de0c548c
AW
4797 */
4798 msleep(2);
64e8674f
AW
4799
4800 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4801 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
de0c548c
AW
4802
4803 /*
4804 * Trhfa for conventional PCI is 2^25 clock cycles.
4805 * Assuming a minimum 33MHz clock this results in a 1s
4806 * delay before we can consider subordinate devices to
4807 * be re-initialized. PCIe has some ways to shorten this,
4808 * but we don't make use of them yet.
4809 */
4810 ssleep(1);
64e8674f 4811}
d92a208d 4812
9e33002f
GS
4813void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4814{
4815 pci_reset_secondary_bus(dev);
4816}
4817
d92a208d 4818/**
381634ca 4819 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
d92a208d
GS
4820 * @dev: Bridge device
4821 *
4822 * Use the bridge control register to assert reset on the secondary bus.
4823 * Devices on the secondary bus are left in power-on state.
4824 */
381634ca 4825int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
d92a208d
GS
4826{
4827 pcibios_reset_secondary_bus(dev);
01fd61c0 4828
6b2f1351 4829 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
d92a208d 4830}
bfc45606 4831EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
64e8674f
AW
4832
4833static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4834{
c12ff1df
YZ
4835 struct pci_dev *pdev;
4836
f331a859
AW
4837 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4838 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
c12ff1df
YZ
4839 return -ENOTTY;
4840
4841 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4842 if (pdev != dev)
4843 return -ENOTTY;
4844
4845 if (probe)
4846 return 0;
4847
381634ca 4848 return pci_bridge_secondary_bus_reset(dev->bus->self);
c12ff1df
YZ
4849}
4850
608c3881
AW
4851static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4852{
4853 int rc = -ENOTTY;
4854
81c4b5bf 4855 if (!hotplug || !try_module_get(hotplug->owner))
608c3881
AW
4856 return rc;
4857
4858 if (hotplug->ops->reset_slot)
4859 rc = hotplug->ops->reset_slot(hotplug, probe);
4860
81c4b5bf 4861 module_put(hotplug->owner);
608c3881
AW
4862
4863 return rc;
4864}
4865
4866static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4867{
4868 struct pci_dev *pdev;
4869
f331a859
AW
4870 if (dev->subordinate || !dev->slot ||
4871 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
608c3881
AW
4872 return -ENOTTY;
4873
4874 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4875 if (pdev != dev && pdev->slot == dev->slot)
4876 return -ENOTTY;
4877
4878 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4879}
4880
77cb985a
AW
4881static void pci_dev_lock(struct pci_dev *dev)
4882{
4883 pci_cfg_access_lock(dev);
4884 /* block PM suspend, driver probe, etc. */
4885 device_lock(&dev->dev);
4886}
4887
61cf16d8
AW
4888/* Return 1 on successful lock, 0 on contention */
4889static int pci_dev_trylock(struct pci_dev *dev)
4890{
4891 if (pci_cfg_access_trylock(dev)) {
4892 if (device_trylock(&dev->dev))
4893 return 1;
4894 pci_cfg_access_unlock(dev);
4895 }
4896
4897 return 0;
4898}
4899
77cb985a
AW
4900static void pci_dev_unlock(struct pci_dev *dev)
4901{
4902 device_unlock(&dev->dev);
4903 pci_cfg_access_unlock(dev);
4904}
4905
775755ed 4906static void pci_dev_save_and_disable(struct pci_dev *dev)
3ebe7f9f
KB
4907{
4908 const struct pci_error_handlers *err_handler =
4909 dev->driver ? dev->driver->err_handler : NULL;
3ebe7f9f 4910
b014e96d 4911 /*
775755ed 4912 * dev->driver->err_handler->reset_prepare() is protected against
b014e96d
CH
4913 * races with ->remove() by the device lock, which must be held by
4914 * the caller.
4915 */
775755ed
CH
4916 if (err_handler && err_handler->reset_prepare)
4917 err_handler->reset_prepare(dev);
3ebe7f9f 4918
a6cbaade
AW
4919 /*
4920 * Wake-up device prior to save. PM registers default to D0 after
4921 * reset and a simple register restore doesn't reliably return
4922 * to a non-D0 state anyway.
4923 */
4924 pci_set_power_state(dev, PCI_D0);
4925
77cb985a
AW
4926 pci_save_state(dev);
4927 /*
4928 * Disable the device by clearing the Command register, except for
4929 * INTx-disable which is set. This not only disables MMIO and I/O port
4930 * BARs, but also prevents the device from being Bus Master, preventing
4931 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4932 * compliant devices, INTx-disable prevents legacy interrupts.
4933 */
4934 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4935}
4936
4937static void pci_dev_restore(struct pci_dev *dev)
4938{
775755ed
CH
4939 const struct pci_error_handlers *err_handler =
4940 dev->driver ? dev->driver->err_handler : NULL;
977f857c 4941
77cb985a 4942 pci_restore_state(dev);
77cb985a 4943
775755ed
CH
4944 /*
4945 * dev->driver->err_handler->reset_done() is protected against
4946 * races with ->remove() by the device lock, which must be held by
4947 * the caller.
4948 */
4949 if (err_handler && err_handler->reset_done)
4950 err_handler->reset_done(dev);
d91cdc74 4951}
3ebe7f9f 4952
6fbf9e7a
KRW
4953/**
4954 * __pci_reset_function_locked - reset a PCI device function while holding
4955 * the @dev mutex lock.
4956 * @dev: PCI device to reset
4957 *
4958 * Some devices allow an individual function to be reset without affecting
4959 * other functions in the same device. The PCI device must be responsive
4960 * to PCI config space in order to use this function.
4961 *
4962 * The device function is presumed to be unused and the caller is holding
4963 * the device mutex lock when this function is called.
74356add 4964 *
6fbf9e7a
KRW
4965 * Resetting the device will make the contents of PCI configuration space
4966 * random, so any caller of this must be prepared to reinitialise the
4967 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4968 * etc.
4969 *
4970 * Returns 0 if the device function was successfully reset or negative if the
4971 * device doesn't support resetting a single function.
4972 */
4973int __pci_reset_function_locked(struct pci_dev *dev)
4974{
52354b9d
CH
4975 int rc;
4976
4977 might_sleep();
4978
832c418a
BH
4979 /*
4980 * A reset method returns -ENOTTY if it doesn't support this device
4981 * and we should try the next method.
4982 *
4983 * If it returns 0 (success), we're finished. If it returns any
4984 * other error, we're also finished: this indicates that further
4985 * reset mechanisms might be broken on the device.
4986 */
52354b9d
CH
4987 rc = pci_dev_specific_reset(dev, 0);
4988 if (rc != -ENOTTY)
4989 return rc;
4990 if (pcie_has_flr(dev)) {
91295d79
SK
4991 rc = pcie_flr(dev);
4992 if (rc != -ENOTTY)
4993 return rc;
52354b9d
CH
4994 }
4995 rc = pci_af_flr(dev, 0);
4996 if (rc != -ENOTTY)
4997 return rc;
4998 rc = pci_pm_reset(dev, 0);
4999 if (rc != -ENOTTY)
5000 return rc;
5001 rc = pci_dev_reset_slot_function(dev, 0);
5002 if (rc != -ENOTTY)
5003 return rc;
5004 return pci_parent_bus_reset(dev, 0);
6fbf9e7a
KRW
5005}
5006EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5007
711d5779
MT
5008/**
5009 * pci_probe_reset_function - check whether the device can be safely reset
5010 * @dev: PCI device to reset
5011 *
5012 * Some devices allow an individual function to be reset without affecting
5013 * other functions in the same device. The PCI device must be responsive
5014 * to PCI config space in order to use this function.
5015 *
5016 * Returns 0 if the device function can be reset or negative if the
5017 * device doesn't support resetting a single function.
5018 */
5019int pci_probe_reset_function(struct pci_dev *dev)
5020{
52354b9d
CH
5021 int rc;
5022
5023 might_sleep();
5024
5025 rc = pci_dev_specific_reset(dev, 1);
5026 if (rc != -ENOTTY)
5027 return rc;
5028 if (pcie_has_flr(dev))
5029 return 0;
5030 rc = pci_af_flr(dev, 1);
5031 if (rc != -ENOTTY)
5032 return rc;
5033 rc = pci_pm_reset(dev, 1);
5034 if (rc != -ENOTTY)
5035 return rc;
5036 rc = pci_dev_reset_slot_function(dev, 1);
5037 if (rc != -ENOTTY)
5038 return rc;
5039
5040 return pci_parent_bus_reset(dev, 1);
711d5779
MT
5041}
5042
8dd7f803 5043/**
8c1c699f
YZ
5044 * pci_reset_function - quiesce and reset a PCI device function
5045 * @dev: PCI device to reset
8dd7f803
SY
5046 *
5047 * Some devices allow an individual function to be reset without affecting
5048 * other functions in the same device. The PCI device must be responsive
5049 * to PCI config space in order to use this function.
5050 *
5051 * This function does not just reset the PCI portion of a device, but
5052 * clears all the state associated with the device. This function differs
79e699b6
JS
5053 * from __pci_reset_function_locked() in that it saves and restores device state
5054 * over the reset and takes the PCI device lock.
8dd7f803 5055 *
8c1c699f 5056 * Returns 0 if the device function was successfully reset or negative if the
8dd7f803
SY
5057 * device doesn't support resetting a single function.
5058 */
5059int pci_reset_function(struct pci_dev *dev)
5060{
8c1c699f 5061 int rc;
8dd7f803 5062
204f4afa
BH
5063 if (!dev->reset_fn)
5064 return -ENOTTY;
8dd7f803 5065
b014e96d 5066 pci_dev_lock(dev);
77cb985a 5067 pci_dev_save_and_disable(dev);
8dd7f803 5068
52354b9d 5069 rc = __pci_reset_function_locked(dev);
8dd7f803 5070
77cb985a 5071 pci_dev_restore(dev);
b014e96d 5072 pci_dev_unlock(dev);
8dd7f803 5073
8c1c699f 5074 return rc;
8dd7f803
SY
5075}
5076EXPORT_SYMBOL_GPL(pci_reset_function);
5077
a477b9cd
MZ
5078/**
5079 * pci_reset_function_locked - quiesce and reset a PCI device function
5080 * @dev: PCI device to reset
5081 *
5082 * Some devices allow an individual function to be reset without affecting
5083 * other functions in the same device. The PCI device must be responsive
5084 * to PCI config space in order to use this function.
5085 *
5086 * This function does not just reset the PCI portion of a device, but
5087 * clears all the state associated with the device. This function differs
79e699b6 5088 * from __pci_reset_function_locked() in that it saves and restores device state
a477b9cd
MZ
5089 * over the reset. It also differs from pci_reset_function() in that it
5090 * requires the PCI device lock to be held.
5091 *
5092 * Returns 0 if the device function was successfully reset or negative if the
5093 * device doesn't support resetting a single function.
5094 */
5095int pci_reset_function_locked(struct pci_dev *dev)
5096{
5097 int rc;
5098
204f4afa
BH
5099 if (!dev->reset_fn)
5100 return -ENOTTY;
a477b9cd
MZ
5101
5102 pci_dev_save_and_disable(dev);
5103
5104 rc = __pci_reset_function_locked(dev);
5105
5106 pci_dev_restore(dev);
5107
5108 return rc;
5109}
5110EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5111
61cf16d8
AW
5112/**
5113 * pci_try_reset_function - quiesce and reset a PCI device function
5114 * @dev: PCI device to reset
5115 *
5116 * Same as above, except return -EAGAIN if unable to lock device.
5117 */
5118int pci_try_reset_function(struct pci_dev *dev)
5119{
5120 int rc;
5121
204f4afa
BH
5122 if (!dev->reset_fn)
5123 return -ENOTTY;
61cf16d8 5124
b014e96d
CH
5125 if (!pci_dev_trylock(dev))
5126 return -EAGAIN;
61cf16d8 5127
b014e96d 5128 pci_dev_save_and_disable(dev);
52354b9d 5129 rc = __pci_reset_function_locked(dev);
cb5e0d06 5130 pci_dev_restore(dev);
b014e96d 5131 pci_dev_unlock(dev);
61cf16d8 5132
61cf16d8
AW
5133 return rc;
5134}
5135EXPORT_SYMBOL_GPL(pci_try_reset_function);
5136
f331a859
AW
5137/* Do any devices on or below this bus prevent a bus reset? */
5138static bool pci_bus_resetable(struct pci_bus *bus)
5139{
5140 struct pci_dev *dev;
5141
35702778
DD
5142
5143 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5144 return false;
5145
f331a859
AW
5146 list_for_each_entry(dev, &bus->devices, bus_list) {
5147 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5148 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5149 return false;
5150 }
5151
5152 return true;
5153}
5154
090a3c53
AW
5155/* Lock devices from the top of the tree down */
5156static void pci_bus_lock(struct pci_bus *bus)
5157{
5158 struct pci_dev *dev;
5159
5160 list_for_each_entry(dev, &bus->devices, bus_list) {
5161 pci_dev_lock(dev);
5162 if (dev->subordinate)
5163 pci_bus_lock(dev->subordinate);
5164 }
5165}
5166
5167/* Unlock devices from the bottom of the tree up */
5168static void pci_bus_unlock(struct pci_bus *bus)
5169{
5170 struct pci_dev *dev;
5171
5172 list_for_each_entry(dev, &bus->devices, bus_list) {
5173 if (dev->subordinate)
5174 pci_bus_unlock(dev->subordinate);
5175 pci_dev_unlock(dev);
5176 }
5177}
5178
61cf16d8
AW
5179/* Return 1 on successful lock, 0 on contention */
5180static int pci_bus_trylock(struct pci_bus *bus)
5181{
5182 struct pci_dev *dev;
5183
5184 list_for_each_entry(dev, &bus->devices, bus_list) {
5185 if (!pci_dev_trylock(dev))
5186 goto unlock;
5187 if (dev->subordinate) {
5188 if (!pci_bus_trylock(dev->subordinate)) {
5189 pci_dev_unlock(dev);
5190 goto unlock;
5191 }
5192 }
5193 }
5194 return 1;
5195
5196unlock:
5197 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5198 if (dev->subordinate)
5199 pci_bus_unlock(dev->subordinate);
5200 pci_dev_unlock(dev);
5201 }
5202 return 0;
5203}
5204
f331a859
AW
5205/* Do any devices on or below this slot prevent a bus reset? */
5206static bool pci_slot_resetable(struct pci_slot *slot)
5207{
5208 struct pci_dev *dev;
5209
33ba90aa
JG
5210 if (slot->bus->self &&
5211 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5212 return false;
5213
f331a859
AW
5214 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5215 if (!dev->slot || dev->slot != slot)
5216 continue;
5217 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5218 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5219 return false;
5220 }
5221
5222 return true;
5223}
5224
090a3c53
AW
5225/* Lock devices from the top of the tree down */
5226static void pci_slot_lock(struct pci_slot *slot)
5227{
5228 struct pci_dev *dev;
5229
5230 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5231 if (!dev->slot || dev->slot != slot)
5232 continue;
5233 pci_dev_lock(dev);
5234 if (dev->subordinate)
5235 pci_bus_lock(dev->subordinate);
5236 }
5237}
5238
5239/* Unlock devices from the bottom of the tree up */
5240static void pci_slot_unlock(struct pci_slot *slot)
5241{
5242 struct pci_dev *dev;
5243
5244 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5245 if (!dev->slot || dev->slot != slot)
5246 continue;
5247 if (dev->subordinate)
5248 pci_bus_unlock(dev->subordinate);
5249 pci_dev_unlock(dev);
5250 }
5251}
5252
61cf16d8
AW
5253/* Return 1 on successful lock, 0 on contention */
5254static int pci_slot_trylock(struct pci_slot *slot)
5255{
5256 struct pci_dev *dev;
5257
5258 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5259 if (!dev->slot || dev->slot != slot)
5260 continue;
5261 if (!pci_dev_trylock(dev))
5262 goto unlock;
5263 if (dev->subordinate) {
5264 if (!pci_bus_trylock(dev->subordinate)) {
5265 pci_dev_unlock(dev);
5266 goto unlock;
5267 }
5268 }
5269 }
5270 return 1;
5271
5272unlock:
5273 list_for_each_entry_continue_reverse(dev,
5274 &slot->bus->devices, bus_list) {
5275 if (!dev->slot || dev->slot != slot)
5276 continue;
5277 if (dev->subordinate)
5278 pci_bus_unlock(dev->subordinate);
5279 pci_dev_unlock(dev);
5280 }
5281 return 0;
5282}
5283
ddefc033
AW
5284/*
5285 * Save and disable devices from the top of the tree down while holding
5286 * the @dev mutex lock for the entire tree.
5287 */
5288static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
090a3c53
AW
5289{
5290 struct pci_dev *dev;
5291
5292 list_for_each_entry(dev, &bus->devices, bus_list) {
5293 pci_dev_save_and_disable(dev);
5294 if (dev->subordinate)
ddefc033 5295 pci_bus_save_and_disable_locked(dev->subordinate);
090a3c53
AW
5296 }
5297}
5298
5299/*
ddefc033
AW
5300 * Restore devices from top of the tree down while holding @dev mutex lock
5301 * for the entire tree. Parent bridges need to be restored before we can
5302 * get to subordinate devices.
090a3c53 5303 */
ddefc033 5304static void pci_bus_restore_locked(struct pci_bus *bus)
090a3c53
AW
5305{
5306 struct pci_dev *dev;
5307
5308 list_for_each_entry(dev, &bus->devices, bus_list) {
5309 pci_dev_restore(dev);
5310 if (dev->subordinate)
ddefc033 5311 pci_bus_restore_locked(dev->subordinate);
090a3c53
AW
5312 }
5313}
5314
ddefc033
AW
5315/*
5316 * Save and disable devices from the top of the tree down while holding
5317 * the @dev mutex lock for the entire tree.
5318 */
5319static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
090a3c53
AW
5320{
5321 struct pci_dev *dev;
5322
5323 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5324 if (!dev->slot || dev->slot != slot)
5325 continue;
5326 pci_dev_save_and_disable(dev);
5327 if (dev->subordinate)
ddefc033 5328 pci_bus_save_and_disable_locked(dev->subordinate);
090a3c53
AW
5329 }
5330}
5331
5332/*
ddefc033
AW
5333 * Restore devices from top of the tree down while holding @dev mutex lock
5334 * for the entire tree. Parent bridges need to be restored before we can
5335 * get to subordinate devices.
090a3c53 5336 */
ddefc033 5337static void pci_slot_restore_locked(struct pci_slot *slot)
090a3c53
AW
5338{
5339 struct pci_dev *dev;
5340
5341 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5342 if (!dev->slot || dev->slot != slot)
5343 continue;
5344 pci_dev_restore(dev);
5345 if (dev->subordinate)
ddefc033 5346 pci_bus_restore_locked(dev->subordinate);
090a3c53
AW
5347 }
5348}
5349
5350static int pci_slot_reset(struct pci_slot *slot, int probe)
5351{
5352 int rc;
5353
f331a859 5354 if (!slot || !pci_slot_resetable(slot))
090a3c53
AW
5355 return -ENOTTY;
5356
5357 if (!probe)
5358 pci_slot_lock(slot);
5359
5360 might_sleep();
5361
5362 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5363
5364 if (!probe)
5365 pci_slot_unlock(slot);
5366
5367 return rc;
5368}
5369
9a3d2b9b
AW
5370/**
5371 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5372 * @slot: PCI slot to probe
5373 *
5374 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5375 */
5376int pci_probe_reset_slot(struct pci_slot *slot)
5377{
5378 return pci_slot_reset(slot, 1);
5379}
5380EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5381
090a3c53 5382/**
c6a44ba9 5383 * __pci_reset_slot - Try to reset a PCI slot
090a3c53
AW
5384 * @slot: PCI slot to reset
5385 *
5386 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5387 * independent of other slots. For instance, some slots may support slot power
5388 * control. In the case of a 1:1 bus to slot architecture, this function may
5389 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5390 * Generally a slot reset should be attempted before a bus reset. All of the
5391 * function of the slot and any subordinate buses behind the slot are reset
5392 * through this function. PCI config space of all devices in the slot and
5393 * behind the slot is saved before and restored after reset.
5394 *
61cf16d8
AW
5395 * Same as above except return -EAGAIN if the slot cannot be locked
5396 */
c6a44ba9 5397static int __pci_reset_slot(struct pci_slot *slot)
61cf16d8
AW
5398{
5399 int rc;
5400
5401 rc = pci_slot_reset(slot, 1);
5402 if (rc)
5403 return rc;
5404
61cf16d8 5405 if (pci_slot_trylock(slot)) {
ddefc033 5406 pci_slot_save_and_disable_locked(slot);
61cf16d8
AW
5407 might_sleep();
5408 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
ddefc033 5409 pci_slot_restore_locked(slot);
61cf16d8
AW
5410 pci_slot_unlock(slot);
5411 } else
5412 rc = -EAGAIN;
5413
61cf16d8
AW
5414 return rc;
5415}
61cf16d8 5416
090a3c53
AW
5417static int pci_bus_reset(struct pci_bus *bus, int probe)
5418{
18426238
SK
5419 int ret;
5420
f331a859 5421 if (!bus->self || !pci_bus_resetable(bus))
090a3c53
AW
5422 return -ENOTTY;
5423
5424 if (probe)
5425 return 0;
5426
5427 pci_bus_lock(bus);
5428
5429 might_sleep();
5430
381634ca 5431 ret = pci_bridge_secondary_bus_reset(bus->self);
090a3c53
AW
5432
5433 pci_bus_unlock(bus);
5434
18426238 5435 return ret;
090a3c53
AW
5436}
5437
c4eed62a
KB
5438/**
5439 * pci_bus_error_reset - reset the bridge's subordinate bus
5440 * @bridge: The parent device that connects to the bus to reset
5441 *
5442 * This function will first try to reset the slots on this bus if the method is
5443 * available. If slot reset fails or is not available, this will fall back to a
5444 * secondary bus reset.
5445 */
5446int pci_bus_error_reset(struct pci_dev *bridge)
5447{
5448 struct pci_bus *bus = bridge->subordinate;
5449 struct pci_slot *slot;
5450
5451 if (!bus)
5452 return -ENOTTY;
5453
5454 mutex_lock(&pci_slot_mutex);
5455 if (list_empty(&bus->slots))
5456 goto bus_reset;
5457
5458 list_for_each_entry(slot, &bus->slots, list)
5459 if (pci_probe_reset_slot(slot))
5460 goto bus_reset;
5461
5462 list_for_each_entry(slot, &bus->slots, list)
5463 if (pci_slot_reset(slot, 0))
5464 goto bus_reset;
5465
5466 mutex_unlock(&pci_slot_mutex);
5467 return 0;
5468bus_reset:
5469 mutex_unlock(&pci_slot_mutex);
5470 return pci_bus_reset(bridge->subordinate, 0);
5471}
5472
9a3d2b9b
AW
5473/**
5474 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5475 * @bus: PCI bus to probe
5476 *
5477 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5478 */
5479int pci_probe_reset_bus(struct pci_bus *bus)
5480{
5481 return pci_bus_reset(bus, 1);
5482}
5483EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5484
090a3c53 5485/**
c6a44ba9 5486 * __pci_reset_bus - Try to reset a PCI bus
090a3c53
AW
5487 * @bus: top level PCI bus to reset
5488 *
61cf16d8 5489 * Same as above except return -EAGAIN if the bus cannot be locked
090a3c53 5490 */
c6a44ba9 5491static int __pci_reset_bus(struct pci_bus *bus)
090a3c53
AW
5492{
5493 int rc;
5494
5495 rc = pci_bus_reset(bus, 1);
5496 if (rc)
5497 return rc;
5498
61cf16d8 5499 if (pci_bus_trylock(bus)) {
ddefc033 5500 pci_bus_save_and_disable_locked(bus);
61cf16d8 5501 might_sleep();
381634ca 5502 rc = pci_bridge_secondary_bus_reset(bus->self);
ddefc033 5503 pci_bus_restore_locked(bus);
61cf16d8
AW
5504 pci_bus_unlock(bus);
5505 } else
5506 rc = -EAGAIN;
090a3c53 5507
090a3c53
AW
5508 return rc;
5509}
090a3c53 5510
61cf16d8 5511/**
c6a44ba9 5512 * pci_reset_bus - Try to reset a PCI bus
811c5cb3 5513 * @pdev: top level PCI device to reset via slot/bus
61cf16d8
AW
5514 *
5515 * Same as above except return -EAGAIN if the bus cannot be locked
5516 */
c6a44ba9 5517int pci_reset_bus(struct pci_dev *pdev)
61cf16d8 5518{
d8a52810 5519 return (!pci_probe_reset_slot(pdev->slot)) ?
c6a44ba9 5520 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
61cf16d8 5521}
c6a44ba9 5522EXPORT_SYMBOL_GPL(pci_reset_bus);
61cf16d8 5523
d556ad4b
PO
5524/**
5525 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5526 * @dev: PCI device to query
5527 *
74356add
BH
5528 * Returns mmrbc: maximum designed memory read count in bytes or
5529 * appropriate error value.
d556ad4b
PO
5530 */
5531int pcix_get_max_mmrbc(struct pci_dev *dev)
5532{
7c9e2b1c 5533 int cap;
d556ad4b
PO
5534 u32 stat;
5535
5536 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5537 if (!cap)
5538 return -EINVAL;
5539
7c9e2b1c 5540 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
d556ad4b
PO
5541 return -EINVAL;
5542
25daeb55 5543 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
d556ad4b
PO
5544}
5545EXPORT_SYMBOL(pcix_get_max_mmrbc);
5546
5547/**
5548 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5549 * @dev: PCI device to query
5550 *
74356add
BH
5551 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5552 * value.
d556ad4b
PO
5553 */
5554int pcix_get_mmrbc(struct pci_dev *dev)
5555{
7c9e2b1c 5556 int cap;
bdc2bda7 5557 u16 cmd;
d556ad4b
PO
5558
5559 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5560 if (!cap)
5561 return -EINVAL;
5562
7c9e2b1c
DN
5563 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5564 return -EINVAL;
d556ad4b 5565
7c9e2b1c 5566 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
d556ad4b
PO
5567}
5568EXPORT_SYMBOL(pcix_get_mmrbc);
5569
5570/**
5571 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5572 * @dev: PCI device to query
5573 * @mmrbc: maximum memory read count in bytes
5574 * valid values are 512, 1024, 2048, 4096
5575 *
74356add 5576 * If possible sets maximum memory read byte count, some bridges have errata
d556ad4b
PO
5577 * that prevent this.
5578 */
5579int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5580{
7c9e2b1c 5581 int cap;
bdc2bda7
DN
5582 u32 stat, v, o;
5583 u16 cmd;
d556ad4b 5584
229f5afd 5585 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
7c9e2b1c 5586 return -EINVAL;
d556ad4b
PO
5587
5588 v = ffs(mmrbc) - 10;
5589
5590 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5591 if (!cap)
7c9e2b1c 5592 return -EINVAL;
d556ad4b 5593
7c9e2b1c
DN
5594 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5595 return -EINVAL;
d556ad4b
PO
5596
5597 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5598 return -E2BIG;
5599
7c9e2b1c
DN
5600 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5601 return -EINVAL;
d556ad4b
PO
5602
5603 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5604 if (o != v) {
809a3bf9 5605 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
d556ad4b
PO
5606 return -EIO;
5607
5608 cmd &= ~PCI_X_CMD_MAX_READ;
5609 cmd |= v << 2;
7c9e2b1c
DN
5610 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5611 return -EIO;
d556ad4b 5612 }
7c9e2b1c 5613 return 0;
d556ad4b
PO
5614}
5615EXPORT_SYMBOL(pcix_set_mmrbc);
5616
5617/**
5618 * pcie_get_readrq - get PCI Express read request size
5619 * @dev: PCI device to query
5620 *
74356add 5621 * Returns maximum memory read request in bytes or appropriate error value.
d556ad4b
PO
5622 */
5623int pcie_get_readrq(struct pci_dev *dev)
5624{
d556ad4b
PO
5625 u16 ctl;
5626
59875ae4 5627 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
d556ad4b 5628
59875ae4 5629 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
d556ad4b
PO
5630}
5631EXPORT_SYMBOL(pcie_get_readrq);
5632
5633/**
5634 * pcie_set_readrq - set PCI Express maximum memory read request
5635 * @dev: PCI device to query
42e61f4a 5636 * @rq: maximum memory read count in bytes
d556ad4b
PO
5637 * valid values are 128, 256, 512, 1024, 2048, 4096
5638 *
c9b378c7 5639 * If possible sets maximum memory read request in bytes
d556ad4b
PO
5640 */
5641int pcie_set_readrq(struct pci_dev *dev, int rq)
5642{
59875ae4 5643 u16 v;
d556ad4b 5644
229f5afd 5645 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
59875ae4 5646 return -EINVAL;
d556ad4b 5647
a1c473aa 5648 /*
74356add
BH
5649 * If using the "performance" PCIe config, we clamp the read rq
5650 * size to the max packet size to keep the host bridge from
5651 * generating requests larger than we can cope with.
a1c473aa
BH
5652 */
5653 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5654 int mps = pcie_get_mps(dev);
5655
a1c473aa
BH
5656 if (mps < rq)
5657 rq = mps;
5658 }
5659
5660 v = (ffs(rq) - 8) << 12;
d556ad4b 5661
59875ae4
JL
5662 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5663 PCI_EXP_DEVCTL_READRQ, v);
d556ad4b
PO
5664}
5665EXPORT_SYMBOL(pcie_set_readrq);
5666
b03e7495
JM
5667/**
5668 * pcie_get_mps - get PCI Express maximum payload size
5669 * @dev: PCI device to query
5670 *
5671 * Returns maximum payload size in bytes
b03e7495
JM
5672 */
5673int pcie_get_mps(struct pci_dev *dev)
5674{
b03e7495
JM
5675 u16 ctl;
5676
59875ae4 5677 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
b03e7495 5678
59875ae4 5679 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
b03e7495 5680}
f1c66c46 5681EXPORT_SYMBOL(pcie_get_mps);
b03e7495
JM
5682
5683/**
5684 * pcie_set_mps - set PCI Express maximum payload size
5685 * @dev: PCI device to query
47c08f31 5686 * @mps: maximum payload size in bytes
b03e7495
JM
5687 * valid values are 128, 256, 512, 1024, 2048, 4096
5688 *
5689 * If possible sets maximum payload size
5690 */
5691int pcie_set_mps(struct pci_dev *dev, int mps)
5692{
59875ae4 5693 u16 v;
b03e7495
JM
5694
5695 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
59875ae4 5696 return -EINVAL;
b03e7495
JM
5697
5698 v = ffs(mps) - 8;
f7625980 5699 if (v > dev->pcie_mpss)
59875ae4 5700 return -EINVAL;
b03e7495
JM
5701 v <<= 5;
5702
59875ae4
JL
5703 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5704 PCI_EXP_DEVCTL_PAYLOAD, v);
b03e7495 5705}
f1c66c46 5706EXPORT_SYMBOL(pcie_set_mps);
b03e7495 5707
6db79a88
TG
5708/**
5709 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5710 * device and its bandwidth limitation
5711 * @dev: PCI device to query
5712 * @limiting_dev: storage for device causing the bandwidth limitation
5713 * @speed: storage for speed of limiting device
5714 * @width: storage for width of limiting device
5715 *
5716 * Walk up the PCI device chain and find the point where the minimum
5717 * bandwidth is available. Return the bandwidth available there and (if
5718 * limiting_dev, speed, and width pointers are supplied) information about
5719 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5720 * raw bandwidth.
5721 */
5722u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5723 enum pci_bus_speed *speed,
5724 enum pcie_link_width *width)
5725{
5726 u16 lnksta;
5727 enum pci_bus_speed next_speed;
5728 enum pcie_link_width next_width;
5729 u32 bw, next_bw;
5730
5731 if (speed)
5732 *speed = PCI_SPEED_UNKNOWN;
5733 if (width)
5734 *width = PCIE_LNK_WIDTH_UNKNOWN;
5735
5736 bw = 0;
5737
5738 while (dev) {
5739 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5740
5741 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5742 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5743 PCI_EXP_LNKSTA_NLW_SHIFT;
5744
5745 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5746
5747 /* Check if current device limits the total bandwidth */
5748 if (!bw || next_bw <= bw) {
5749 bw = next_bw;
5750
5751 if (limiting_dev)
5752 *limiting_dev = dev;
5753 if (speed)
5754 *speed = next_speed;
5755 if (width)
5756 *width = next_width;
5757 }
5758
5759 dev = pci_upstream_bridge(dev);
5760 }
5761
5762 return bw;
5763}
5764EXPORT_SYMBOL(pcie_bandwidth_available);
5765
6cf57be0
TG
5766/**
5767 * pcie_get_speed_cap - query for the PCI device's link speed capability
5768 * @dev: PCI device to query
5769 *
5770 * Query the PCI device speed capability. Return the maximum link speed
5771 * supported by the device.
5772 */
5773enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5774{
5775 u32 lnkcap2, lnkcap;
5776
5777 /*
f1f90e25
MP
5778 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5779 * implementation note there recommends using the Supported Link
5780 * Speeds Vector in Link Capabilities 2 when supported.
5781 *
5782 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5783 * should use the Supported Link Speeds field in Link Capabilities,
5784 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6cf57be0
TG
5785 */
5786 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5787 if (lnkcap2) { /* PCIe r3.0-compliant */
de76cda2
GP
5788 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5789 return PCIE_SPEED_32_0GT;
5790 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
6cf57be0
TG
5791 return PCIE_SPEED_16_0GT;
5792 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5793 return PCIE_SPEED_8_0GT;
5794 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5795 return PCIE_SPEED_5_0GT;
5796 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5797 return PCIE_SPEED_2_5GT;
5798 return PCI_SPEED_UNKNOWN;
5799 }
5800
5801 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
f1f90e25
MP
5802 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5803 return PCIE_SPEED_5_0GT;
5804 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5805 return PCIE_SPEED_2_5GT;
6cf57be0
TG
5806
5807 return PCI_SPEED_UNKNOWN;
5808}
576c7218 5809EXPORT_SYMBOL(pcie_get_speed_cap);
6cf57be0 5810
c70b65fb
TG
5811/**
5812 * pcie_get_width_cap - query for the PCI device's link width capability
5813 * @dev: PCI device to query
5814 *
5815 * Query the PCI device width capability. Return the maximum link width
5816 * supported by the device.
5817 */
5818enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5819{
5820 u32 lnkcap;
5821
5822 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5823 if (lnkcap)
5824 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5825
5826 return PCIE_LNK_WIDTH_UNKNOWN;
5827}
576c7218 5828EXPORT_SYMBOL(pcie_get_width_cap);
c70b65fb 5829
b852f63a
TG
5830/**
5831 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5832 * @dev: PCI device
5833 * @speed: storage for link speed
5834 * @width: storage for link width
5835 *
5836 * Calculate a PCI device's link bandwidth by querying for its link speed
5837 * and width, multiplying them, and applying encoding overhead. The result
5838 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5839 */
5840u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5841 enum pcie_link_width *width)
5842{
5843 *speed = pcie_get_speed_cap(dev);
5844 *width = pcie_get_width_cap(dev);
5845
5846 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5847 return 0;
5848
5849 return *width * PCIE_SPEED2MBS_ENC(*speed);
5850}
5851
9e506a7b 5852/**
2d1ce5ec 5853 * __pcie_print_link_status - Report the PCI device's link speed and width
9e506a7b 5854 * @dev: PCI device to query
2d1ce5ec 5855 * @verbose: Print info even when enough bandwidth is available
9e506a7b 5856 *
2d1ce5ec
AG
5857 * If the available bandwidth at the device is less than the device is
5858 * capable of, report the device's maximum possible bandwidth and the
5859 * upstream link that limits its performance. If @verbose, always print
5860 * the available bandwidth, even if the device isn't constrained.
9e506a7b 5861 */
2d1ce5ec 5862void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
9e506a7b
TG
5863{
5864 enum pcie_link_width width, width_cap;
5865 enum pci_bus_speed speed, speed_cap;
5866 struct pci_dev *limiting_dev = NULL;
5867 u32 bw_avail, bw_cap;
5868
5869 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5870 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5871
2d1ce5ec 5872 if (bw_avail >= bw_cap && verbose)
0cf22d6b 5873 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
9e506a7b
TG
5874 bw_cap / 1000, bw_cap % 1000,
5875 PCIE_SPEED2STR(speed_cap), width_cap);
2d1ce5ec 5876 else if (bw_avail < bw_cap)
0cf22d6b 5877 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
9e506a7b
TG
5878 bw_avail / 1000, bw_avail % 1000,
5879 PCIE_SPEED2STR(speed), width,
5880 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5881 bw_cap / 1000, bw_cap % 1000,
5882 PCIE_SPEED2STR(speed_cap), width_cap);
5883}
2d1ce5ec
AG
5884
5885/**
5886 * pcie_print_link_status - Report the PCI device's link speed and width
5887 * @dev: PCI device to query
5888 *
5889 * Report the available bandwidth at the device.
5890 */
5891void pcie_print_link_status(struct pci_dev *dev)
5892{
5893 __pcie_print_link_status(dev, true);
5894}
9e506a7b
TG
5895EXPORT_SYMBOL(pcie_print_link_status);
5896
c87deff7
HS
5897/**
5898 * pci_select_bars - Make BAR mask from the type of resource
f95d882d 5899 * @dev: the PCI device for which BAR mask is made
c87deff7
HS
5900 * @flags: resource type mask to be selected
5901 *
5902 * This helper routine makes bar mask from the type of resource.
5903 */
5904int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5905{
5906 int i, bars = 0;
5907 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5908 if (pci_resource_flags(dev, i) & flags)
5909 bars |= (1 << i);
5910 return bars;
5911}
b7fe9434 5912EXPORT_SYMBOL(pci_select_bars);
c87deff7 5913
95a8b6ef
MT
5914/* Some architectures require additional programming to enable VGA */
5915static arch_set_vga_state_t arch_set_vga_state;
5916
5917void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5918{
5919 arch_set_vga_state = func; /* NULL disables */
5920}
5921
5922static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3c78bc61 5923 unsigned int command_bits, u32 flags)
95a8b6ef
MT
5924{
5925 if (arch_set_vga_state)
5926 return arch_set_vga_state(dev, decode, command_bits,
7ad35cf2 5927 flags);
95a8b6ef
MT
5928 return 0;
5929}
5930
deb2d2ec
BH
5931/**
5932 * pci_set_vga_state - set VGA decode state on device and parents if requested
19eea630
RD
5933 * @dev: the PCI device
5934 * @decode: true = enable decoding, false = disable decoding
5935 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3f37d622 5936 * @flags: traverse ancestors and change bridges
3448a19d 5937 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
deb2d2ec
BH
5938 */
5939int pci_set_vga_state(struct pci_dev *dev, bool decode,
3448a19d 5940 unsigned int command_bits, u32 flags)
deb2d2ec
BH
5941{
5942 struct pci_bus *bus;
5943 struct pci_dev *bridge;
5944 u16 cmd;
95a8b6ef 5945 int rc;
deb2d2ec 5946
67ebd814 5947 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
deb2d2ec 5948
95a8b6ef 5949 /* ARCH specific VGA enables */
3448a19d 5950 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
95a8b6ef
MT
5951 if (rc)
5952 return rc;
5953
3448a19d
DA
5954 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5955 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5956 if (decode == true)
5957 cmd |= command_bits;
5958 else
5959 cmd &= ~command_bits;
5960 pci_write_config_word(dev, PCI_COMMAND, cmd);
5961 }
deb2d2ec 5962
3448a19d 5963 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
deb2d2ec
BH
5964 return 0;
5965
5966 bus = dev->bus;
5967 while (bus) {
5968 bridge = bus->self;
5969 if (bridge) {
5970 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5971 &cmd);
5972 if (decode == true)
5973 cmd |= PCI_BRIDGE_CTL_VGA;
5974 else
5975 cmd &= ~PCI_BRIDGE_CTL_VGA;
5976 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5977 cmd);
5978 }
5979 bus = bus->parent;
5980 }
5981 return 0;
5982}
5983
52525b7a
KHF
5984#ifdef CONFIG_ACPI
5985bool pci_pr3_present(struct pci_dev *pdev)
5986{
5987 struct acpi_device *adev;
5988
5989 if (acpi_disabled)
5990 return false;
5991
5992 adev = ACPI_COMPANION(&pdev->dev);
5993 if (!adev)
5994 return false;
5995
5996 return adev->power.flags.power_resources &&
5997 acpi_has_method(adev->handle, "_PR3");
5998}
5999EXPORT_SYMBOL_GPL(pci_pr3_present);
6000#endif
6001
f0af9593
BH
6002/**
6003 * pci_add_dma_alias - Add a DMA devfn alias for a device
6004 * @dev: the PCI device for which alias is added
09298542
JS
6005 * @devfn_from: alias slot and function
6006 * @nr_devfns: number of subsequent devfns to alias
f0af9593 6007 *
f778a0d2
LG
6008 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6009 * which is used to program permissible bus-devfn source addresses for DMA
6010 * requests in an IOMMU. These aliases factor into IOMMU group creation
6011 * and are useful for devices generating DMA requests beyond or different
6012 * from their logical bus-devfn. Examples include device quirks where the
6013 * device simply uses the wrong devfn, as well as non-transparent bridges
6014 * where the alias may be a proxy for devices in another domain.
6015 *
6016 * IOMMU group creation is performed during device discovery or addition,
6017 * prior to any potential DMA mapping and therefore prior to driver probing
6018 * (especially for userspace assigned devices where IOMMU group definition
6019 * cannot be left as a userspace activity). DMA aliases should therefore
6020 * be configured via quirks, such as the PCI fixup header quirk.
f0af9593 6021 */
09298542 6022void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
f0af9593 6023{
09298542
JS
6024 int devfn_to;
6025
6026 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6027 devfn_to = devfn_from + nr_devfns - 1;
6028
338c3149 6029 if (!dev->dma_alias_mask)
f8bf2aeb 6030 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
338c3149 6031 if (!dev->dma_alias_mask) {
7506dc79 6032 pci_warn(dev, "Unable to allocate DMA alias mask\n");
338c3149
JL
6033 return;
6034 }
6035
09298542
JS
6036 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6037
6038 if (nr_devfns == 1)
6039 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6040 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6041 else if (nr_devfns > 1)
6042 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6043 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6044 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
f0af9593
BH
6045}
6046
338c3149
JL
6047bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6048{
6049 return (dev1->dma_alias_mask &&
6050 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6051 (dev2->dma_alias_mask &&
2856ba60
JD
6052 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6053 pci_real_dma_dev(dev1) == dev2 ||
6054 pci_real_dma_dev(dev2) == dev1;
338c3149
JL
6055}
6056
8496e85c
RW
6057bool pci_device_is_present(struct pci_dev *pdev)
6058{
6059 u32 v;
6060
fe2bd75b
KB
6061 if (pci_dev_is_disconnected(pdev))
6062 return false;
8496e85c
RW
6063 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6064}
6065EXPORT_SYMBOL_GPL(pci_device_is_present);
6066
08249651
RW
6067void pci_ignore_hotplug(struct pci_dev *dev)
6068{
6069 struct pci_dev *bridge = dev->bus->self;
6070
6071 dev->ignore_hotplug = 1;
6072 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6073 if (bridge)
6074 bridge->ignore_hotplug = 1;
6075}
6076EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6077
2856ba60
JD
6078/**
6079 * pci_real_dma_dev - Get PCI DMA device for PCI device
6080 * @dev: the PCI device that may have a PCI DMA alias
6081 *
6082 * Permits the platform to provide architecture-specific functionality to
6083 * devices needing to alias DMA to another PCI device on another PCI bus. If
6084 * the PCI device is on the same bus, it is recommended to use
6085 * pci_add_dma_alias(). This is the default implementation. Architecture
6086 * implementations can override this.
6087 */
6088struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6089{
6090 return dev;
6091}
6092
0a701aa6
YX
6093resource_size_t __weak pcibios_default_alignment(void)
6094{
6095 return 0;
6096}
6097
b8074aa2
DE
6098/*
6099 * Arches that don't want to expose struct resource to userland as-is in
6100 * sysfs and /proc can implement their own pci_resource_to_user().
6101 */
6102void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6103 const struct resource *rsrc,
6104 resource_size_t *start, resource_size_t *end)
6105{
6106 *start = rsrc->start;
6107 *end = rsrc->end;
6108}
6109
70aaf61a 6110static char *resource_alignment_param;
e9d1e492 6111static DEFINE_SPINLOCK(resource_alignment_lock);
32a9a682
YS
6112
6113/**
6114 * pci_specified_resource_alignment - get resource alignment specified by user.
6115 * @dev: the PCI device to get
e3adec72 6116 * @resize: whether or not to change resources' size when reassigning alignment
32a9a682
YS
6117 *
6118 * RETURNS: Resource alignment if it is specified.
6119 * Zero if it is not specified.
6120 */
e3adec72
YX
6121static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6122 bool *resize)
32a9a682 6123{
07d8d7e5 6124 int align_order, count;
0a701aa6 6125 resource_size_t align = pcibios_default_alignment();
07d8d7e5
LG
6126 const char *p;
6127 int ret;
32a9a682
YS
6128
6129 spin_lock(&resource_alignment_lock);
6130 p = resource_alignment_param;
70aaf61a 6131 if (!p || !*p)
f0b99f70
YX
6132 goto out;
6133 if (pci_has_flag(PCI_PROBE_ONLY)) {
0a701aa6 6134 align = 0;
f0b99f70
YX
6135 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6136 goto out;
6137 }
6138
32a9a682
YS
6139 while (*p) {
6140 count = 0;
6141 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6142 p[count] == '@') {
6143 p += count + 1;
6144 } else {
6145 align_order = -1;
6146 }
07d8d7e5
LG
6147
6148 ret = pci_dev_str_match(dev, p, &p);
6149 if (ret == 1) {
6150 *resize = true;
6151 if (align_order == -1)
6152 align = PAGE_SIZE;
6153 else
6154 align = 1 << align_order;
6155 break;
6156 } else if (ret < 0) {
6157 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6158 p);
6159 break;
32a9a682 6160 }
07d8d7e5 6161
32a9a682
YS
6162 if (*p != ';' && *p != ',') {
6163 /* End of param or invalid format */
6164 break;
6165 }
6166 p++;
6167 }
f0b99f70 6168out:
32a9a682
YS
6169 spin_unlock(&resource_alignment_lock);
6170 return align;
6171}
6172
81a5e70e 6173static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
e3adec72 6174 resource_size_t align, bool resize)
81a5e70e
BH
6175{
6176 struct resource *r = &dev->resource[bar];
6177 resource_size_t size;
6178
6179 if (!(r->flags & IORESOURCE_MEM))
6180 return;
6181
6182 if (r->flags & IORESOURCE_PCI_FIXED) {
7506dc79 6183 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
81a5e70e
BH
6184 bar, r, (unsigned long long)align);
6185 return;
6186 }
6187
6188 size = resource_size(r);
0dde1c08
BH
6189 if (size >= align)
6190 return;
81a5e70e 6191
0dde1c08 6192 /*
e3adec72
YX
6193 * Increase the alignment of the resource. There are two ways we
6194 * can do this:
0dde1c08 6195 *
e3adec72
YX
6196 * 1) Increase the size of the resource. BARs are aligned on their
6197 * size, so when we reallocate space for this resource, we'll
6198 * allocate it with the larger alignment. This also prevents
6199 * assignment of any other BARs inside the alignment region, so
6200 * if we're requesting page alignment, this means no other BARs
6201 * will share the page.
6202 *
6203 * The disadvantage is that this makes the resource larger than
6204 * the hardware BAR, which may break drivers that compute things
6205 * based on the resource size, e.g., to find registers at a
6206 * fixed offset before the end of the BAR.
6207 *
6208 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6209 * set r->start to the desired alignment. By itself this
6210 * doesn't prevent other BARs being put inside the alignment
6211 * region, but if we realign *every* resource of every device in
6212 * the system, none of them will share an alignment region.
6213 *
6214 * When the user has requested alignment for only some devices via
6215 * the "pci=resource_alignment" argument, "resize" is true and we
6216 * use the first method. Otherwise we assume we're aligning all
6217 * devices and we use the second.
0dde1c08 6218 */
e3adec72 6219
7506dc79 6220 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
0dde1c08 6221 bar, r, (unsigned long long)align);
81a5e70e 6222
e3adec72
YX
6223 if (resize) {
6224 r->start = 0;
6225 r->end = align - 1;
6226 } else {
6227 r->flags &= ~IORESOURCE_SIZEALIGN;
6228 r->flags |= IORESOURCE_STARTALIGN;
6229 r->start = align;
6230 r->end = r->start + size - 1;
6231 }
0dde1c08 6232 r->flags |= IORESOURCE_UNSET;
81a5e70e
BH
6233}
6234
2069ecfb
YL
6235/*
6236 * This function disables memory decoding and releases memory resources
6237 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6238 * It also rounds up size to specified alignment.
6239 * Later on, the kernel will assign page-aligned memory resource back
6240 * to the device.
6241 */
6242void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6243{
6244 int i;
6245 struct resource *r;
81a5e70e 6246 resource_size_t align;
2069ecfb 6247 u16 command;
e3adec72 6248 bool resize = false;
2069ecfb 6249
62d9a78f
YX
6250 /*
6251 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6252 * 3.4.1.11. Their resources are allocated from the space
6253 * described by the VF BARx register in the PF's SR-IOV capability.
6254 * We can't influence their alignment here.
6255 */
6256 if (dev->is_virtfn)
6257 return;
6258
10c463a7 6259 /* check if specified PCI is target device to reassign */
e3adec72 6260 align = pci_specified_resource_alignment(dev, &resize);
10c463a7 6261 if (!align)
2069ecfb
YL
6262 return;
6263
6264 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6265 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
7506dc79 6266 pci_warn(dev, "Can't reassign resources to host bridge\n");
2069ecfb
YL
6267 return;
6268 }
6269
2069ecfb
YL
6270 pci_read_config_word(dev, PCI_COMMAND, &command);
6271 command &= ~PCI_COMMAND_MEMORY;
6272 pci_write_config_word(dev, PCI_COMMAND, command);
6273
81a5e70e 6274 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
e3adec72 6275 pci_request_resource_alignment(dev, i, align, resize);
f0b99f70 6276
81a5e70e
BH
6277 /*
6278 * Need to disable bridge's resource window,
2069ecfb
YL
6279 * to enable the kernel to reassign new resource
6280 * window later on.
6281 */
b2fb5cc5 6282 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
2069ecfb
YL
6283 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6284 r = &dev->resource[i];
6285 if (!(r->flags & IORESOURCE_MEM))
6286 continue;
bd064f0a 6287 r->flags |= IORESOURCE_UNSET;
2069ecfb
YL
6288 r->end = resource_size(r) - 1;
6289 r->start = 0;
6290 }
6291 pci_disable_bridge_window(dev);
6292 }
6293}
6294
273b177c 6295static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
32a9a682 6296{
70aaf61a 6297 size_t count = 0;
32a9a682 6298
32a9a682 6299 spin_lock(&resource_alignment_lock);
70aaf61a 6300 if (resource_alignment_param)
273b177c 6301 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
32a9a682 6302 spin_unlock(&resource_alignment_lock);
32a9a682 6303
e499081d
LG
6304 /*
6305 * When set by the command line, resource_alignment_param will not
6306 * have a trailing line feed, which is ugly. So conditionally add
6307 * it here.
6308 */
6309 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6310 buf[count - 1] = '\n';
6311 buf[count++] = 0;
6312 }
6313
32a9a682 6314 return count;
32a9a682
YS
6315}
6316
d61dfafc 6317static ssize_t resource_alignment_store(struct bus_type *bus,
32a9a682
YS
6318 const char *buf, size_t count)
6319{
273b177c
LG
6320 char *param = kstrndup(buf, count, GFP_KERNEL);
6321
6322 if (!param)
6323 return -ENOMEM;
6324
6325 spin_lock(&resource_alignment_lock);
6326 kfree(resource_alignment_param);
6327 resource_alignment_param = param;
6328 spin_unlock(&resource_alignment_lock);
6329 return count;
32a9a682
YS
6330}
6331
d61dfafc 6332static BUS_ATTR_RW(resource_alignment);
32a9a682
YS
6333
6334static int __init pci_resource_alignment_sysfs_init(void)
6335{
6336 return bus_create_file(&pci_bus_type,
6337 &bus_attr_resource_alignment);
6338}
32a9a682
YS
6339late_initcall(pci_resource_alignment_sysfs_init);
6340
15856ad5 6341static void pci_no_domains(void)
32a2eea7
JG
6342{
6343#ifdef CONFIG_PCI_DOMAINS
6344 pci_domains_supported = 0;
6345#endif
6346}
6347
ae07b786 6348#ifdef CONFIG_PCI_DOMAINS_GENERIC
41e5c0f8
LD
6349static atomic_t __domain_nr = ATOMIC_INIT(-1);
6350
ae07b786 6351static int pci_get_new_domain_nr(void)
41e5c0f8
LD
6352{
6353 return atomic_inc_return(&__domain_nr);
6354}
7c674700 6355
1a4f93f7 6356static int of_pci_bus_find_domain_nr(struct device *parent)
7c674700
LP
6357{
6358 static int use_dt_domains = -1;
54c6e2dd 6359 int domain = -1;
7c674700 6360
54c6e2dd
KHC
6361 if (parent)
6362 domain = of_get_pci_domain_nr(parent->of_node);
74356add 6363
7c674700
LP
6364 /*
6365 * Check DT domain and use_dt_domains values.
6366 *
6367 * If DT domain property is valid (domain >= 0) and
6368 * use_dt_domains != 0, the DT assignment is valid since this means
6369 * we have not previously allocated a domain number by using
6370 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6371 * 1, to indicate that we have just assigned a domain number from
6372 * DT.
6373 *
6374 * If DT domain property value is not valid (ie domain < 0), and we
6375 * have not previously assigned a domain number from DT
6376 * (use_dt_domains != 1) we should assign a domain number by
6377 * using the:
6378 *
6379 * pci_get_new_domain_nr()
6380 *
6381 * API and update the use_dt_domains value to keep track of method we
6382 * are using to assign domain numbers (use_dt_domains = 0).
6383 *
6384 * All other combinations imply we have a platform that is trying
6385 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6386 * which is a recipe for domain mishandling and it is prevented by
6387 * invalidating the domain value (domain = -1) and printing a
6388 * corresponding error.
6389 */
6390 if (domain >= 0 && use_dt_domains) {
6391 use_dt_domains = 1;
6392 } else if (domain < 0 && use_dt_domains != 1) {
6393 use_dt_domains = 0;
6394 domain = pci_get_new_domain_nr();
6395 } else {
9df1c6ec
SL
6396 if (parent)
6397 pr_err("Node %pOF has ", parent->of_node);
6398 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
7c674700
LP
6399 domain = -1;
6400 }
6401
9c7cb891 6402 return domain;
7c674700 6403}
1a4f93f7
TN
6404
6405int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6406{
2ab51dde
TN
6407 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6408 acpi_pci_bus_find_domain_nr(bus);
7c674700
LP
6409}
6410#endif
41e5c0f8 6411
0ef5f8f6 6412/**
642c92da 6413 * pci_ext_cfg_avail - can we access extended PCI config space?
0ef5f8f6
AP
6414 *
6415 * Returns 1 if we can access PCI extended config space (offsets
6416 * greater than 0xff). This is the default implementation. Architecture
6417 * implementations can override this.
6418 */
642c92da 6419int __weak pci_ext_cfg_avail(void)
0ef5f8f6
AP
6420{
6421 return 1;
6422}
6423
2d1c8618
BH
6424void __weak pci_fixup_cardbus(struct pci_bus *bus)
6425{
6426}
6427EXPORT_SYMBOL(pci_fixup_cardbus);
6428
ad04d31e 6429static int __init pci_setup(char *str)
1da177e4
LT
6430{
6431 while (str) {
6432 char *k = strchr(str, ',');
6433 if (k)
6434 *k++ = 0;
6435 if (*str && (str = pcibios_setup(str)) && *str) {
309e57df
MW
6436 if (!strcmp(str, "nomsi")) {
6437 pci_no_msi();
cef74409
GK
6438 } else if (!strncmp(str, "noats", 5)) {
6439 pr_info("PCIe: ATS is disabled\n");
6440 pcie_ats_disabled = true;
7f785763
RD
6441 } else if (!strcmp(str, "noaer")) {
6442 pci_no_aer();
11eb0e0e
SK
6443 } else if (!strcmp(str, "earlydump")) {
6444 pci_early_dump = true;
b55438fd
YL
6445 } else if (!strncmp(str, "realloc=", 8)) {
6446 pci_realloc_get_opt(str + 8);
f483d392 6447 } else if (!strncmp(str, "realloc", 7)) {
b55438fd 6448 pci_realloc_get_opt("on");
32a2eea7
JG
6449 } else if (!strcmp(str, "nodomains")) {
6450 pci_no_domains();
6748dcc2
RW
6451 } else if (!strncmp(str, "noari", 5)) {
6452 pcie_ari_disabled = true;
4516a618
AN
6453 } else if (!strncmp(str, "cbiosize=", 9)) {
6454 pci_cardbus_io_size = memparse(str + 9, &str);
6455 } else if (!strncmp(str, "cbmemsize=", 10)) {
6456 pci_cardbus_mem_size = memparse(str + 10, &str);
32a9a682 6457 } else if (!strncmp(str, "resource_alignment=", 19)) {
70aaf61a 6458 resource_alignment_param = str + 19;
43c16408
AP
6459 } else if (!strncmp(str, "ecrc=", 5)) {
6460 pcie_ecrc_get_policy(str + 5);
28760489
EB
6461 } else if (!strncmp(str, "hpiosize=", 9)) {
6462 pci_hotplug_io_size = memparse(str + 9, &str);
d7b8a217
NJ
6463 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6464 pci_hotplug_mmio_size = memparse(str + 11, &str);
6465 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6466 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
28760489 6467 } else if (!strncmp(str, "hpmemsize=", 10)) {
d7b8a217
NJ
6468 pci_hotplug_mmio_size = memparse(str + 10, &str);
6469 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
e16b4660
KB
6470 } else if (!strncmp(str, "hpbussize=", 10)) {
6471 pci_hotplug_bus_size =
6472 simple_strtoul(str + 10, &str, 0);
6473 if (pci_hotplug_bus_size > 0xff)
6474 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5f39e670
JM
6475 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6476 pcie_bus_config = PCIE_BUS_TUNE_OFF;
b03e7495
JM
6477 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6478 pcie_bus_config = PCIE_BUS_SAFE;
6479 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6480 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5f39e670
JM
6481 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6482 pcie_bus_config = PCIE_BUS_PEER2PEER;
284f5f9d
BH
6483 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6484 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
aaca43fd 6485 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
d5bc73f3 6486 disable_acs_redir_param = str + 18;
309e57df 6487 } else {
25da8dba 6488 pr_err("PCI: Unknown option `%s'\n", str);
309e57df 6489 }
1da177e4
LT
6490 }
6491 str = k;
6492 }
0637a70a 6493 return 0;
1da177e4 6494}
0637a70a 6495early_param("pci", pci_setup);
d5bc73f3
LG
6496
6497/*
70aaf61a
LG
6498 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6499 * in pci_setup(), above, to point to data in the __initdata section which
6500 * will be freed after the init sequence is complete. We can't allocate memory
6501 * in pci_setup() because some architectures do not have any memory allocation
6502 * service available during an early_param() call. So we allocate memory and
6503 * copy the variable here before the init section is freed.
6504 *
d5bc73f3
LG
6505 */
6506static int __init pci_realloc_setup_params(void)
6507{
70aaf61a
LG
6508 resource_alignment_param = kstrdup(resource_alignment_param,
6509 GFP_KERNEL);
d5bc73f3
LG
6510 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6511
6512 return 0;
6513}
6514pure_initcall(pci_realloc_setup_params);