]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/pci/pci.c
PCI: Restore PRI and PASID state after Function-Level Reset
[mirror_ubuntu-artful-kernel.git] / drivers / pci / pci.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
2ab51dde 10#include <linux/acpi.h>
1da177e4
LT
11#include <linux/kernel.h>
12#include <linux/delay.h>
9d26d3a8 13#include <linux/dmi.h>
1da177e4 14#include <linux/init.h>
7c674700
LP
15#include <linux/of.h>
16#include <linux/of_pci.h>
1da177e4 17#include <linux/pci.h>
075c1771 18#include <linux/pm.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/module.h>
21#include <linux/spinlock.h>
4e57b681 22#include <linux/string.h>
229f5afd 23#include <linux/log2.h>
7d715a6c 24#include <linux/pci-aspm.h>
c300bd2f 25#include <linux/pm_wakeup.h>
8dd7f803 26#include <linux/interrupt.h>
32a9a682 27#include <linux/device.h>
b67ea761 28#include <linux/pm_runtime.h>
608c3881 29#include <linux/pci_hotplug.h>
4d3f1384 30#include <linux/vmalloc.h>
4ebeb1ec 31#include <linux/pci-ats.h>
32a9a682 32#include <asm/setup.h>
2a2aca31 33#include <asm/dma.h>
b07461a8 34#include <linux/aer.h>
bc56b9e0 35#include "pci.h"
1da177e4 36
00240c38
AS
37const char *pci_power_names[] = {
38 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39};
40EXPORT_SYMBOL_GPL(pci_power_names);
41
93177a74
RW
42int isa_dma_bridge_buggy;
43EXPORT_SYMBOL(isa_dma_bridge_buggy);
44
45int pci_pci_problems;
46EXPORT_SYMBOL(pci_pci_problems);
47
1ae861e6
RW
48unsigned int pci_pm_d3_delay;
49
df17e62e
MG
50static void pci_pme_list_scan(struct work_struct *work);
51
52static LIST_HEAD(pci_pme_list);
53static DEFINE_MUTEX(pci_pme_list_mutex);
54static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
55
56struct pci_pme_device {
57 struct list_head list;
58 struct pci_dev *dev;
59};
60
61#define PME_TIMEOUT 1000 /* How long between PME checks */
62
1ae861e6
RW
63static void pci_dev_d3_sleep(struct pci_dev *dev)
64{
65 unsigned int delay = dev->d3_delay;
66
67 if (delay < pci_pm_d3_delay)
68 delay = pci_pm_d3_delay;
69
50b2b540
AH
70 if (delay)
71 msleep(delay);
1ae861e6 72}
1da177e4 73
32a2eea7
JG
74#ifdef CONFIG_PCI_DOMAINS
75int pci_domains_supported = 1;
76#endif
77
4516a618
AN
78#define DEFAULT_CARDBUS_IO_SIZE (256)
79#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
80/* pci=cbmemsize=nnM,cbiosize=nn can override this */
81unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
82unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
83
28760489
EB
84#define DEFAULT_HOTPLUG_IO_SIZE (256)
85#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
86/* pci=hpmemsize=nnM,hpiosize=nn can override this */
87unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
88unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
89
e16b4660
KB
90#define DEFAULT_HOTPLUG_BUS_SIZE 1
91unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
92
27d868b5 93enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
b03e7495 94
ac1aa47b
JB
95/*
96 * The default CLS is used if arch didn't set CLS explicitly and not
97 * all pci devices agree on the same value. Arch can override either
98 * the dfl or actual value as it sees fit. Don't forget this is
99 * measured in 32-bit words, not bytes.
100 */
15856ad5 101u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
ac1aa47b
JB
102u8 pci_cache_line_size;
103
96c55900
MS
104/*
105 * If we set up a device for bus mastering, we need to check the latency
106 * timer as certain BIOSes forget to set it properly.
107 */
108unsigned int pcibios_max_latency = 255;
109
6748dcc2
RW
110/* If set, the PCIe ARI capability will not be used. */
111static bool pcie_ari_disabled;
112
9d26d3a8
MW
113/* Disable bridge_d3 for all PCIe ports */
114static bool pci_bridge_d3_disable;
115/* Force bridge_d3 for all PCIe ports */
116static bool pci_bridge_d3_force;
117
118static int __init pcie_port_pm_setup(char *str)
119{
120 if (!strcmp(str, "off"))
121 pci_bridge_d3_disable = true;
122 else if (!strcmp(str, "force"))
123 pci_bridge_d3_force = true;
124 return 1;
125}
126__setup("pcie_port_pm=", pcie_port_pm_setup);
127
1da177e4
LT
128/**
129 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
130 * @bus: pointer to PCI bus structure to search
131 *
132 * Given a PCI bus, returns the highest PCI bus number present in the set
133 * including the given PCI bus and its list of child PCI buses.
134 */
07656d83 135unsigned char pci_bus_max_busnr(struct pci_bus *bus)
1da177e4 136{
94e6a9b9 137 struct pci_bus *tmp;
1da177e4
LT
138 unsigned char max, n;
139
b918c62e 140 max = bus->busn_res.end;
94e6a9b9
YW
141 list_for_each_entry(tmp, &bus->children, node) {
142 n = pci_bus_max_busnr(tmp);
3c78bc61 143 if (n > max)
1da177e4
LT
144 max = n;
145 }
146 return max;
147}
b82db5ce 148EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
1da177e4 149
1684f5dd
AM
150#ifdef CONFIG_HAS_IOMEM
151void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
152{
1f7bf3bf
BH
153 struct resource *res = &pdev->resource[bar];
154
1684f5dd
AM
155 /*
156 * Make sure the BAR is actually a memory resource, not an IO resource
157 */
646c0282 158 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
1f7bf3bf 159 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
1684f5dd
AM
160 return NULL;
161 }
1f7bf3bf 162 return ioremap_nocache(res->start, resource_size(res));
1684f5dd
AM
163}
164EXPORT_SYMBOL_GPL(pci_ioremap_bar);
c43996f4
LR
165
166void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
167{
168 /*
169 * Make sure the BAR is actually a memory resource, not an IO resource
170 */
171 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
172 WARN_ON(1);
173 return NULL;
174 }
175 return ioremap_wc(pci_resource_start(pdev, bar),
176 pci_resource_len(pdev, bar));
177}
178EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
1684f5dd
AM
179#endif
180
687d5fe3
ME
181
182static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
183 u8 pos, int cap, int *ttl)
24a4e377
RD
184{
185 u8 id;
55db3208
SS
186 u16 ent;
187
188 pci_bus_read_config_byte(bus, devfn, pos, &pos);
24a4e377 189
687d5fe3 190 while ((*ttl)--) {
24a4e377
RD
191 if (pos < 0x40)
192 break;
193 pos &= ~3;
55db3208
SS
194 pci_bus_read_config_word(bus, devfn, pos, &ent);
195
196 id = ent & 0xff;
24a4e377
RD
197 if (id == 0xff)
198 break;
199 if (id == cap)
200 return pos;
55db3208 201 pos = (ent >> 8);
24a4e377
RD
202 }
203 return 0;
204}
205
687d5fe3
ME
206static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
207 u8 pos, int cap)
208{
209 int ttl = PCI_FIND_CAP_TTL;
210
211 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
212}
213
24a4e377
RD
214int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
215{
216 return __pci_find_next_cap(dev->bus, dev->devfn,
217 pos + PCI_CAP_LIST_NEXT, cap);
218}
219EXPORT_SYMBOL_GPL(pci_find_next_capability);
220
d3bac118
ME
221static int __pci_bus_find_cap_start(struct pci_bus *bus,
222 unsigned int devfn, u8 hdr_type)
1da177e4
LT
223{
224 u16 status;
1da177e4
LT
225
226 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
227 if (!(status & PCI_STATUS_CAP_LIST))
228 return 0;
229
230 switch (hdr_type) {
231 case PCI_HEADER_TYPE_NORMAL:
232 case PCI_HEADER_TYPE_BRIDGE:
d3bac118 233 return PCI_CAPABILITY_LIST;
1da177e4 234 case PCI_HEADER_TYPE_CARDBUS:
d3bac118 235 return PCI_CB_CAPABILITY_LIST;
1da177e4 236 }
d3bac118
ME
237
238 return 0;
1da177e4
LT
239}
240
241/**
f7625980 242 * pci_find_capability - query for devices' capabilities
1da177e4
LT
243 * @dev: PCI device to query
244 * @cap: capability code
245 *
246 * Tell if a device supports a given PCI capability.
247 * Returns the address of the requested capability structure within the
248 * device's PCI configuration space or 0 in case the device does not
249 * support it. Possible values for @cap:
250 *
f7625980
BH
251 * %PCI_CAP_ID_PM Power Management
252 * %PCI_CAP_ID_AGP Accelerated Graphics Port
253 * %PCI_CAP_ID_VPD Vital Product Data
254 * %PCI_CAP_ID_SLOTID Slot Identification
1da177e4 255 * %PCI_CAP_ID_MSI Message Signalled Interrupts
f7625980 256 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
1da177e4
LT
257 * %PCI_CAP_ID_PCIX PCI-X
258 * %PCI_CAP_ID_EXP PCI Express
259 */
260int pci_find_capability(struct pci_dev *dev, int cap)
261{
d3bac118
ME
262 int pos;
263
264 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
265 if (pos)
266 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
267
268 return pos;
1da177e4 269}
b7fe9434 270EXPORT_SYMBOL(pci_find_capability);
1da177e4
LT
271
272/**
f7625980 273 * pci_bus_find_capability - query for devices' capabilities
1da177e4
LT
274 * @bus: the PCI bus to query
275 * @devfn: PCI device to query
276 * @cap: capability code
277 *
278 * Like pci_find_capability() but works for pci devices that do not have a
f7625980 279 * pci_dev structure set up yet.
1da177e4
LT
280 *
281 * Returns the address of the requested capability structure within the
282 * device's PCI configuration space or 0 in case the device does not
283 * support it.
284 */
285int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
286{
d3bac118 287 int pos;
1da177e4
LT
288 u8 hdr_type;
289
290 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
291
d3bac118
ME
292 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
293 if (pos)
294 pos = __pci_find_next_cap(bus, devfn, pos, cap);
295
296 return pos;
1da177e4 297}
b7fe9434 298EXPORT_SYMBOL(pci_bus_find_capability);
1da177e4
LT
299
300/**
44a9a36f 301 * pci_find_next_ext_capability - Find an extended capability
1da177e4 302 * @dev: PCI device to query
44a9a36f 303 * @start: address at which to start looking (0 to start at beginning of list)
1da177e4
LT
304 * @cap: capability code
305 *
44a9a36f 306 * Returns the address of the next matching extended capability structure
1da177e4 307 * within the device's PCI configuration space or 0 if the device does
44a9a36f
BH
308 * not support it. Some capabilities can occur several times, e.g., the
309 * vendor-specific capability, and this provides a way to find them all.
1da177e4 310 */
44a9a36f 311int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
1da177e4
LT
312{
313 u32 header;
557848c3
ZY
314 int ttl;
315 int pos = PCI_CFG_SPACE_SIZE;
1da177e4 316
557848c3
ZY
317 /* minimum 8 bytes per capability */
318 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
319
320 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
1da177e4
LT
321 return 0;
322
44a9a36f
BH
323 if (start)
324 pos = start;
325
1da177e4
LT
326 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
327 return 0;
328
329 /*
330 * If we have no capabilities, this is indicated by cap ID,
331 * cap version and next pointer all being 0.
332 */
333 if (header == 0)
334 return 0;
335
336 while (ttl-- > 0) {
44a9a36f 337 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
1da177e4
LT
338 return pos;
339
340 pos = PCI_EXT_CAP_NEXT(header);
557848c3 341 if (pos < PCI_CFG_SPACE_SIZE)
1da177e4
LT
342 break;
343
344 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
345 break;
346 }
347
348 return 0;
349}
44a9a36f
BH
350EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
351
352/**
353 * pci_find_ext_capability - Find an extended capability
354 * @dev: PCI device to query
355 * @cap: capability code
356 *
357 * Returns the address of the requested extended capability structure
358 * within the device's PCI configuration space or 0 if the device does
359 * not support it. Possible values for @cap:
360 *
361 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
362 * %PCI_EXT_CAP_ID_VC Virtual Channel
363 * %PCI_EXT_CAP_ID_DSN Device Serial Number
364 * %PCI_EXT_CAP_ID_PWR Power Budgeting
365 */
366int pci_find_ext_capability(struct pci_dev *dev, int cap)
367{
368 return pci_find_next_ext_capability(dev, 0, cap);
369}
3a720d72 370EXPORT_SYMBOL_GPL(pci_find_ext_capability);
1da177e4 371
687d5fe3
ME
372static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
373{
374 int rc, ttl = PCI_FIND_CAP_TTL;
375 u8 cap, mask;
376
377 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
378 mask = HT_3BIT_CAP_MASK;
379 else
380 mask = HT_5BIT_CAP_MASK;
381
382 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
383 PCI_CAP_ID_HT, &ttl);
384 while (pos) {
385 rc = pci_read_config_byte(dev, pos + 3, &cap);
386 if (rc != PCIBIOS_SUCCESSFUL)
387 return 0;
388
389 if ((cap & mask) == ht_cap)
390 return pos;
391
47a4d5be
BG
392 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
393 pos + PCI_CAP_LIST_NEXT,
687d5fe3
ME
394 PCI_CAP_ID_HT, &ttl);
395 }
396
397 return 0;
398}
399/**
400 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
401 * @dev: PCI device to query
402 * @pos: Position from which to continue searching
403 * @ht_cap: Hypertransport capability code
404 *
405 * To be used in conjunction with pci_find_ht_capability() to search for
406 * all capabilities matching @ht_cap. @pos should always be a value returned
407 * from pci_find_ht_capability().
408 *
409 * NB. To be 100% safe against broken PCI devices, the caller should take
410 * steps to avoid an infinite loop.
411 */
412int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
413{
414 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
415}
416EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
417
418/**
419 * pci_find_ht_capability - query a device's Hypertransport capabilities
420 * @dev: PCI device to query
421 * @ht_cap: Hypertransport capability code
422 *
423 * Tell if a device supports a given Hypertransport capability.
424 * Returns an address within the device's PCI configuration space
425 * or 0 in case the device does not support the request capability.
426 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
427 * which has a Hypertransport capability matching @ht_cap.
428 */
429int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
430{
431 int pos;
432
433 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
434 if (pos)
435 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
436
437 return pos;
438}
439EXPORT_SYMBOL_GPL(pci_find_ht_capability);
440
1da177e4
LT
441/**
442 * pci_find_parent_resource - return resource region of parent bus of given region
443 * @dev: PCI device structure contains resources to be searched
444 * @res: child resource record for which parent is sought
445 *
446 * For given resource region of given device, return the resource
f44116ae 447 * region of parent bus the given region is contained in.
1da177e4 448 */
3c78bc61
RD
449struct resource *pci_find_parent_resource(const struct pci_dev *dev,
450 struct resource *res)
1da177e4
LT
451{
452 const struct pci_bus *bus = dev->bus;
f44116ae 453 struct resource *r;
1da177e4 454 int i;
1da177e4 455
89a74ecc 456 pci_bus_for_each_resource(bus, r, i) {
1da177e4
LT
457 if (!r)
458 continue;
f44116ae
BH
459 if (res->start && resource_contains(r, res)) {
460
461 /*
462 * If the window is prefetchable but the BAR is
463 * not, the allocator made a mistake.
464 */
465 if (r->flags & IORESOURCE_PREFETCH &&
466 !(res->flags & IORESOURCE_PREFETCH))
467 return NULL;
468
469 /*
470 * If we're below a transparent bridge, there may
471 * be both a positively-decoded aperture and a
472 * subtractively-decoded region that contain the BAR.
473 * We want the positively-decoded one, so this depends
474 * on pci_bus_for_each_resource() giving us those
475 * first.
476 */
477 return r;
478 }
1da177e4 479 }
f44116ae 480 return NULL;
1da177e4 481}
b7fe9434 482EXPORT_SYMBOL(pci_find_parent_resource);
1da177e4 483
afd29f90
MW
484/**
485 * pci_find_resource - Return matching PCI device resource
486 * @dev: PCI device to query
487 * @res: Resource to look for
488 *
489 * Goes over standard PCI resources (BARs) and checks if the given resource
490 * is partially or fully contained in any of them. In that case the
491 * matching resource is returned, %NULL otherwise.
492 */
493struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
494{
495 int i;
496
497 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
498 struct resource *r = &dev->resource[i];
499
500 if (r->start && resource_contains(r, res))
501 return r;
502 }
503
504 return NULL;
505}
506EXPORT_SYMBOL(pci_find_resource);
507
c56d4450
HS
508/**
509 * pci_find_pcie_root_port - return PCIe Root Port
510 * @dev: PCI device to query
511 *
512 * Traverse up the parent chain and return the PCIe Root Port PCI Device
513 * for a given PCI Device.
514 */
515struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
516{
517 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
518
519 bridge = pci_upstream_bridge(dev);
520 while (bridge && pci_is_pcie(bridge)) {
521 highest_pcie_bridge = bridge;
522 bridge = pci_upstream_bridge(bridge);
523 }
524
525 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
526 return NULL;
527
528 return highest_pcie_bridge;
529}
530EXPORT_SYMBOL(pci_find_pcie_root_port);
531
157e876f
AW
532/**
533 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
534 * @dev: the PCI device to operate on
535 * @pos: config space offset of status word
536 * @mask: mask of bit(s) to care about in status word
537 *
538 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
539 */
540int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
541{
542 int i;
543
544 /* Wait for Transaction Pending bit clean */
545 for (i = 0; i < 4; i++) {
546 u16 status;
547 if (i)
548 msleep((1 << (i - 1)) * 100);
549
550 pci_read_config_word(dev, pos, &status);
551 if (!(status & mask))
552 return 1;
553 }
554
555 return 0;
556}
557
064b53db 558/**
70675e0b 559 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
064b53db
JL
560 * @dev: PCI device to have its BARs restored
561 *
562 * Restore the BAR values for a given device, so as to make it
563 * accessible by its driver.
564 */
3c78bc61 565static void pci_restore_bars(struct pci_dev *dev)
064b53db 566{
bc5f5a82 567 int i;
064b53db 568
bc5f5a82 569 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
14add80b 570 pci_update_resource(dev, i);
064b53db
JL
571}
572
299f2ffe 573static const struct pci_platform_pm_ops *pci_platform_pm;
961d9120 574
299f2ffe 575int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
961d9120 576{
cc7cc02b
LW
577 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
578 !ops->choose_state || !ops->sleep_wake || !ops->run_wake ||
579 !ops->need_resume)
961d9120
RW
580 return -EINVAL;
581 pci_platform_pm = ops;
582 return 0;
583}
584
585static inline bool platform_pci_power_manageable(struct pci_dev *dev)
586{
587 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
588}
589
590static inline int platform_pci_set_power_state(struct pci_dev *dev,
3c78bc61 591 pci_power_t t)
961d9120
RW
592{
593 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
594}
595
cc7cc02b
LW
596static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
597{
598 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
599}
600
961d9120
RW
601static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
602{
603 return pci_platform_pm ?
604 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
605}
8f7020d3 606
eb9d0fe4
RW
607static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
608{
609 return pci_platform_pm ?
610 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
611}
612
b67ea761
RW
613static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
614{
615 return pci_platform_pm ?
616 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
617}
618
bac2a909
RW
619static inline bool platform_pci_need_resume(struct pci_dev *dev)
620{
621 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
622}
623
1da177e4 624/**
44e4e66e
RW
625 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
626 * given PCI device
627 * @dev: PCI device to handle.
44e4e66e 628 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1da177e4 629 *
44e4e66e
RW
630 * RETURN VALUE:
631 * -EINVAL if the requested state is invalid.
632 * -EIO if device does not support PCI PM or its PM capabilities register has a
633 * wrong version, or device doesn't support the requested state.
634 * 0 if device already is in the requested state.
635 * 0 if device's power state has been successfully changed.
1da177e4 636 */
f00a20ef 637static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1da177e4 638{
337001b6 639 u16 pmcsr;
44e4e66e 640 bool need_restore = false;
1da177e4 641
4a865905
RW
642 /* Check if we're already there */
643 if (dev->current_state == state)
644 return 0;
645
337001b6 646 if (!dev->pm_cap)
cca03dec
AL
647 return -EIO;
648
44e4e66e
RW
649 if (state < PCI_D0 || state > PCI_D3hot)
650 return -EINVAL;
651
1da177e4 652 /* Validate current state:
f7625980 653 * Can enter D0 from any state, but if we can only go deeper
1da177e4
LT
654 * to sleep if we're already in a low power state
655 */
4a865905 656 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
44e4e66e 657 && dev->current_state > state) {
227f0647
RD
658 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
659 dev->current_state, state);
1da177e4 660 return -EINVAL;
44e4e66e 661 }
1da177e4 662
1da177e4 663 /* check if this device supports the desired state */
337001b6
RW
664 if ((state == PCI_D1 && !dev->d1_support)
665 || (state == PCI_D2 && !dev->d2_support))
3fe9d19f 666 return -EIO;
1da177e4 667
337001b6 668 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
064b53db 669
32a36585 670 /* If we're (effectively) in D3, force entire word to 0.
1da177e4
LT
671 * This doesn't affect PME_Status, disables PME_En, and
672 * sets PowerState to 0.
673 */
32a36585 674 switch (dev->current_state) {
d3535fbb
JL
675 case PCI_D0:
676 case PCI_D1:
677 case PCI_D2:
678 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
679 pmcsr |= state;
680 break;
f62795f1
RW
681 case PCI_D3hot:
682 case PCI_D3cold:
32a36585
JL
683 case PCI_UNKNOWN: /* Boot-up */
684 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
f00a20ef 685 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
44e4e66e 686 need_restore = true;
32a36585 687 /* Fall-through: force to D0 */
32a36585 688 default:
d3535fbb 689 pmcsr = 0;
32a36585 690 break;
1da177e4
LT
691 }
692
693 /* enter specified state */
337001b6 694 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1da177e4
LT
695
696 /* Mandatory power management transition delays */
697 /* see PCI PM 1.1 5.6.1 table 18 */
698 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1ae861e6 699 pci_dev_d3_sleep(dev);
1da177e4 700 else if (state == PCI_D2 || dev->current_state == PCI_D2)
aa8c6c93 701 udelay(PCI_PM_D2_DELAY);
1da177e4 702
e13cdbd7
RW
703 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
704 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
705 if (dev->current_state != state && printk_ratelimit())
227f0647
RD
706 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
707 dev->current_state);
064b53db 708
448bd857
HY
709 /*
710 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
064b53db
JL
711 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
712 * from D3hot to D0 _may_ perform an internal reset, thereby
713 * going to "D0 Uninitialized" rather than "D0 Initialized".
714 * For example, at least some versions of the 3c905B and the
715 * 3c556B exhibit this behaviour.
716 *
717 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
718 * devices in a D3hot state at boot. Consequently, we need to
719 * restore at least the BARs so that the device will be
720 * accessible to its driver.
721 */
722 if (need_restore)
723 pci_restore_bars(dev);
724
f00a20ef 725 if (dev->bus->self)
7d715a6c
SL
726 pcie_aspm_pm_state_change(dev->bus->self);
727
1da177e4
LT
728 return 0;
729}
730
44e4e66e 731/**
a6a64026 732 * pci_update_current_state - Read power state of given device and cache it
44e4e66e 733 * @dev: PCI device to handle.
f06fc0b6 734 * @state: State to cache in case the device doesn't have the PM capability
a6a64026
LW
735 *
736 * The power state is read from the PMCSR register, which however is
737 * inaccessible in D3cold. The platform firmware is therefore queried first
738 * to detect accessibility of the register. In case the platform firmware
739 * reports an incorrect state or the device isn't power manageable by the
740 * platform at all, we try to detect D3cold by testing accessibility of the
741 * vendor ID in config space.
44e4e66e 742 */
73410429 743void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
44e4e66e 744{
a6a64026
LW
745 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
746 !pci_device_is_present(dev)) {
747 dev->current_state = PCI_D3cold;
748 } else if (dev->pm_cap) {
44e4e66e
RW
749 u16 pmcsr;
750
337001b6 751 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
44e4e66e 752 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
f06fc0b6
RW
753 } else {
754 dev->current_state = state;
44e4e66e
RW
755 }
756}
757
db288c9c
RW
758/**
759 * pci_power_up - Put the given device into D0 forcibly
760 * @dev: PCI device to power up
761 */
762void pci_power_up(struct pci_dev *dev)
763{
764 if (platform_pci_power_manageable(dev))
765 platform_pci_set_power_state(dev, PCI_D0);
766
767 pci_raw_set_power_state(dev, PCI_D0);
768 pci_update_current_state(dev, PCI_D0);
769}
770
0e5dd46b
RW
771/**
772 * pci_platform_power_transition - Use platform to change device power state
773 * @dev: PCI device to handle.
774 * @state: State to put the device into.
775 */
776static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
777{
778 int error;
779
780 if (platform_pci_power_manageable(dev)) {
781 error = platform_pci_set_power_state(dev, state);
782 if (!error)
783 pci_update_current_state(dev, state);
769ba721 784 } else
0e5dd46b 785 error = -ENODEV;
769ba721
RW
786
787 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
788 dev->current_state = PCI_D0;
0e5dd46b
RW
789
790 return error;
791}
792
0b950f0f
SH
793/**
794 * pci_wakeup - Wake up a PCI device
795 * @pci_dev: Device to handle.
796 * @ign: ignored parameter
797 */
798static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
799{
800 pci_wakeup_event(pci_dev);
801 pm_request_resume(&pci_dev->dev);
802 return 0;
803}
804
805/**
806 * pci_wakeup_bus - Walk given bus and wake up devices on it
807 * @bus: Top bus of the subtree to walk.
808 */
809static void pci_wakeup_bus(struct pci_bus *bus)
810{
811 if (bus)
812 pci_walk_bus(bus, pci_wakeup, NULL);
813}
814
0e5dd46b
RW
815/**
816 * __pci_start_power_transition - Start power transition of a PCI device
817 * @dev: PCI device to handle.
818 * @state: State to put the device into.
819 */
820static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
821{
448bd857 822 if (state == PCI_D0) {
0e5dd46b 823 pci_platform_power_transition(dev, PCI_D0);
448bd857
HY
824 /*
825 * Mandatory power management transition delays, see
826 * PCI Express Base Specification Revision 2.0 Section
827 * 6.6.1: Conventional Reset. Do not delay for
828 * devices powered on/off by corresponding bridge,
829 * because have already delayed for the bridge.
830 */
831 if (dev->runtime_d3cold) {
50b2b540
AH
832 if (dev->d3cold_delay)
833 msleep(dev->d3cold_delay);
448bd857
HY
834 /*
835 * When powering on a bridge from D3cold, the
836 * whole hierarchy may be powered on into
837 * D0uninitialized state, resume them to give
838 * them a chance to suspend again
839 */
840 pci_wakeup_bus(dev->subordinate);
841 }
842 }
843}
844
845/**
846 * __pci_dev_set_current_state - Set current state of a PCI device
847 * @dev: Device to handle
848 * @data: pointer to state to be set
849 */
850static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
851{
852 pci_power_t state = *(pci_power_t *)data;
853
854 dev->current_state = state;
855 return 0;
856}
857
858/**
859 * __pci_bus_set_current_state - Walk given bus and set current state of devices
860 * @bus: Top bus of the subtree to walk.
861 * @state: state to be set
862 */
863static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
864{
865 if (bus)
866 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
0e5dd46b
RW
867}
868
869/**
870 * __pci_complete_power_transition - Complete power transition of a PCI device
871 * @dev: PCI device to handle.
872 * @state: State to put the device into.
873 *
874 * This function should not be called directly by device drivers.
875 */
876int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
877{
448bd857
HY
878 int ret;
879
db288c9c 880 if (state <= PCI_D0)
448bd857
HY
881 return -EINVAL;
882 ret = pci_platform_power_transition(dev, state);
883 /* Power off the bridge may power off the whole hierarchy */
884 if (!ret && state == PCI_D3cold)
885 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
886 return ret;
0e5dd46b
RW
887}
888EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
889
44e4e66e
RW
890/**
891 * pci_set_power_state - Set the power state of a PCI device
892 * @dev: PCI device to handle.
893 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
894 *
877d0310 895 * Transition a device to a new power state, using the platform firmware and/or
44e4e66e
RW
896 * the device's PCI PM registers.
897 *
898 * RETURN VALUE:
899 * -EINVAL if the requested state is invalid.
900 * -EIO if device does not support PCI PM or its PM capabilities register has a
901 * wrong version, or device doesn't support the requested state.
902 * 0 if device already is in the requested state.
903 * 0 if device's power state has been successfully changed.
904 */
905int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
906{
337001b6 907 int error;
44e4e66e
RW
908
909 /* bound the state we're entering */
448bd857
HY
910 if (state > PCI_D3cold)
911 state = PCI_D3cold;
44e4e66e
RW
912 else if (state < PCI_D0)
913 state = PCI_D0;
914 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
915 /*
916 * If the device or the parent bridge do not support PCI PM,
917 * ignore the request if we're doing anything other than putting
918 * it into D0 (which would only happen on boot).
919 */
920 return 0;
921
db288c9c
RW
922 /* Check if we're already there */
923 if (dev->current_state == state)
924 return 0;
925
0e5dd46b
RW
926 __pci_start_power_transition(dev, state);
927
979b1791
AC
928 /* This device is quirked not to be put into D3, so
929 don't put it in D3 */
448bd857 930 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
979b1791 931 return 0;
44e4e66e 932
448bd857
HY
933 /*
934 * To put device in D3cold, we put device into D3hot in native
935 * way, then put device into D3cold with platform ops
936 */
937 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
938 PCI_D3hot : state);
44e4e66e 939
0e5dd46b
RW
940 if (!__pci_complete_power_transition(dev, state))
941 error = 0;
44e4e66e
RW
942
943 return error;
944}
b7fe9434 945EXPORT_SYMBOL(pci_set_power_state);
44e4e66e 946
1da177e4
LT
947/**
948 * pci_choose_state - Choose the power state of a PCI device
949 * @dev: PCI device to be suspended
950 * @state: target sleep state for the whole system. This is the value
951 * that is passed to suspend() function.
952 *
953 * Returns PCI power state suitable for given device and given system
954 * message.
955 */
956
957pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
958{
ab826ca4 959 pci_power_t ret;
0f64474b 960
728cdb75 961 if (!dev->pm_cap)
1da177e4
LT
962 return PCI_D0;
963
961d9120
RW
964 ret = platform_pci_choose_state(dev);
965 if (ret != PCI_POWER_ERROR)
966 return ret;
ca078bae
PM
967
968 switch (state.event) {
969 case PM_EVENT_ON:
970 return PCI_D0;
971 case PM_EVENT_FREEZE:
b887d2e6
DB
972 case PM_EVENT_PRETHAW:
973 /* REVISIT both freeze and pre-thaw "should" use D0 */
ca078bae 974 case PM_EVENT_SUSPEND:
3a2d5b70 975 case PM_EVENT_HIBERNATE:
ca078bae 976 return PCI_D3hot;
1da177e4 977 default:
80ccba11
BH
978 dev_info(&dev->dev, "unrecognized suspend event %d\n",
979 state.event);
1da177e4
LT
980 BUG();
981 }
982 return PCI_D0;
983}
1da177e4
LT
984EXPORT_SYMBOL(pci_choose_state);
985
89858517
YZ
986#define PCI_EXP_SAVE_REGS 7
987
fd0f7f73
AW
988static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
989 u16 cap, bool extended)
34a4876e
YL
990{
991 struct pci_cap_saved_state *tmp;
34a4876e 992
b67bfe0d 993 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
fd0f7f73 994 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
34a4876e
YL
995 return tmp;
996 }
997 return NULL;
998}
999
fd0f7f73
AW
1000struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1001{
1002 return _pci_find_saved_cap(dev, cap, false);
1003}
1004
1005struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1006{
1007 return _pci_find_saved_cap(dev, cap, true);
1008}
1009
b56a5a23
MT
1010static int pci_save_pcie_state(struct pci_dev *dev)
1011{
59875ae4 1012 int i = 0;
b56a5a23
MT
1013 struct pci_cap_saved_state *save_state;
1014 u16 *cap;
1015
59875ae4 1016 if (!pci_is_pcie(dev))
b56a5a23
MT
1017 return 0;
1018
9f35575d 1019 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
b56a5a23 1020 if (!save_state) {
e496b617 1021 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
b56a5a23
MT
1022 return -ENOMEM;
1023 }
63f4898a 1024
59875ae4
JL
1025 cap = (u16 *)&save_state->cap.data[0];
1026 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1029 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1030 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1031 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1032 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
9cb604ed 1033
b56a5a23
MT
1034 return 0;
1035}
1036
1037static void pci_restore_pcie_state(struct pci_dev *dev)
1038{
59875ae4 1039 int i = 0;
b56a5a23
MT
1040 struct pci_cap_saved_state *save_state;
1041 u16 *cap;
1042
1043 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
59875ae4 1044 if (!save_state)
9cb604ed
MS
1045 return;
1046
59875ae4
JL
1047 cap = (u16 *)&save_state->cap.data[0];
1048 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1051 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1052 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1053 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1054 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
b56a5a23
MT
1055}
1056
cc692a5f
SH
1057
1058static int pci_save_pcix_state(struct pci_dev *dev)
1059{
63f4898a 1060 int pos;
cc692a5f 1061 struct pci_cap_saved_state *save_state;
cc692a5f
SH
1062
1063 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
0a1a9b49 1064 if (!pos)
cc692a5f
SH
1065 return 0;
1066
f34303de 1067 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
cc692a5f 1068 if (!save_state) {
e496b617 1069 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
cc692a5f
SH
1070 return -ENOMEM;
1071 }
cc692a5f 1072
24a4742f
AW
1073 pci_read_config_word(dev, pos + PCI_X_CMD,
1074 (u16 *)save_state->cap.data);
63f4898a 1075
cc692a5f
SH
1076 return 0;
1077}
1078
1079static void pci_restore_pcix_state(struct pci_dev *dev)
1080{
1081 int i = 0, pos;
1082 struct pci_cap_saved_state *save_state;
1083 u16 *cap;
1084
1085 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1086 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
0a1a9b49 1087 if (!save_state || !pos)
cc692a5f 1088 return;
24a4742f 1089 cap = (u16 *)&save_state->cap.data[0];
cc692a5f
SH
1090
1091 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
cc692a5f
SH
1092}
1093
1094
1da177e4
LT
1095/**
1096 * pci_save_state - save the PCI configuration space of a device before suspending
1097 * @dev: - PCI device that we're dealing with
1da177e4 1098 */
3c78bc61 1099int pci_save_state(struct pci_dev *dev)
1da177e4
LT
1100{
1101 int i;
1102 /* XXX: 100% dword access ok here? */
1103 for (i = 0; i < 16; i++)
9e0b5b2c 1104 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
aa8c6c93 1105 dev->state_saved = true;
79e50e72
QL
1106
1107 i = pci_save_pcie_state(dev);
1108 if (i != 0)
b56a5a23 1109 return i;
79e50e72
QL
1110
1111 i = pci_save_pcix_state(dev);
1112 if (i != 0)
cc692a5f 1113 return i;
79e50e72 1114
754834b9 1115 return pci_save_vc_state(dev);
1da177e4 1116}
b7fe9434 1117EXPORT_SYMBOL(pci_save_state);
1da177e4 1118
ebfc5b80
RW
1119static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1120 u32 saved_val, int retry)
1121{
1122 u32 val;
1123
1124 pci_read_config_dword(pdev, offset, &val);
1125 if (val == saved_val)
1126 return;
1127
1128 for (;;) {
227f0647
RD
1129 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1130 offset, val, saved_val);
ebfc5b80
RW
1131 pci_write_config_dword(pdev, offset, saved_val);
1132 if (retry-- <= 0)
1133 return;
1134
1135 pci_read_config_dword(pdev, offset, &val);
1136 if (val == saved_val)
1137 return;
1138
1139 mdelay(1);
1140 }
1141}
1142
a6cb9ee7
RW
1143static void pci_restore_config_space_range(struct pci_dev *pdev,
1144 int start, int end, int retry)
ebfc5b80
RW
1145{
1146 int index;
1147
1148 for (index = end; index >= start; index--)
1149 pci_restore_config_dword(pdev, 4 * index,
1150 pdev->saved_config_space[index],
1151 retry);
1152}
1153
a6cb9ee7
RW
1154static void pci_restore_config_space(struct pci_dev *pdev)
1155{
1156 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1157 pci_restore_config_space_range(pdev, 10, 15, 0);
1158 /* Restore BARs before the command register. */
1159 pci_restore_config_space_range(pdev, 4, 9, 10);
1160 pci_restore_config_space_range(pdev, 0, 3, 0);
1161 } else {
1162 pci_restore_config_space_range(pdev, 0, 15, 0);
1163 }
1164}
1165
f7625980 1166/**
1da177e4
LT
1167 * pci_restore_state - Restore the saved state of a PCI device
1168 * @dev: - PCI device that we're dealing with
1da177e4 1169 */
1d3c16a8 1170void pci_restore_state(struct pci_dev *dev)
1da177e4 1171{
c82f63e4 1172 if (!dev->state_saved)
1d3c16a8 1173 return;
4b77b0a2 1174
b56a5a23
MT
1175 /* PCI Express register must be restored first */
1176 pci_restore_pcie_state(dev);
4ebeb1ec
CT
1177 pci_restore_pasid_state(dev);
1178 pci_restore_pri_state(dev);
1900ca13 1179 pci_restore_ats_state(dev);
425c1b22 1180 pci_restore_vc_state(dev);
b56a5a23 1181
b07461a8
TI
1182 pci_cleanup_aer_error_status_regs(dev);
1183
a6cb9ee7 1184 pci_restore_config_space(dev);
ebfc5b80 1185
cc692a5f 1186 pci_restore_pcix_state(dev);
41017f0c 1187 pci_restore_msi_state(dev);
ccbc175a
AD
1188
1189 /* Restore ACS and IOV configuration state */
1190 pci_enable_acs(dev);
8c5cdb6a 1191 pci_restore_iov_state(dev);
8fed4b65 1192
4b77b0a2 1193 dev->state_saved = false;
1da177e4 1194}
b7fe9434 1195EXPORT_SYMBOL(pci_restore_state);
1da177e4 1196
ffbdd3f7
AW
1197struct pci_saved_state {
1198 u32 config_space[16];
1199 struct pci_cap_saved_data cap[0];
1200};
1201
1202/**
1203 * pci_store_saved_state - Allocate and return an opaque struct containing
1204 * the device saved state.
1205 * @dev: PCI device that we're dealing with
1206 *
f7625980 1207 * Return NULL if no state or error.
ffbdd3f7
AW
1208 */
1209struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1210{
1211 struct pci_saved_state *state;
1212 struct pci_cap_saved_state *tmp;
1213 struct pci_cap_saved_data *cap;
ffbdd3f7
AW
1214 size_t size;
1215
1216 if (!dev->state_saved)
1217 return NULL;
1218
1219 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1220
b67bfe0d 1221 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
ffbdd3f7
AW
1222 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1223
1224 state = kzalloc(size, GFP_KERNEL);
1225 if (!state)
1226 return NULL;
1227
1228 memcpy(state->config_space, dev->saved_config_space,
1229 sizeof(state->config_space));
1230
1231 cap = state->cap;
b67bfe0d 1232 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
ffbdd3f7
AW
1233 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1234 memcpy(cap, &tmp->cap, len);
1235 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1236 }
1237 /* Empty cap_save terminates list */
1238
1239 return state;
1240}
1241EXPORT_SYMBOL_GPL(pci_store_saved_state);
1242
1243/**
1244 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1245 * @dev: PCI device that we're dealing with
1246 * @state: Saved state returned from pci_store_saved_state()
1247 */
98d9b271
KRW
1248int pci_load_saved_state(struct pci_dev *dev,
1249 struct pci_saved_state *state)
ffbdd3f7
AW
1250{
1251 struct pci_cap_saved_data *cap;
1252
1253 dev->state_saved = false;
1254
1255 if (!state)
1256 return 0;
1257
1258 memcpy(dev->saved_config_space, state->config_space,
1259 sizeof(state->config_space));
1260
1261 cap = state->cap;
1262 while (cap->size) {
1263 struct pci_cap_saved_state *tmp;
1264
fd0f7f73 1265 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
ffbdd3f7
AW
1266 if (!tmp || tmp->cap.size != cap->size)
1267 return -EINVAL;
1268
1269 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1270 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1271 sizeof(struct pci_cap_saved_data) + cap->size);
1272 }
1273
1274 dev->state_saved = true;
1275 return 0;
1276}
98d9b271 1277EXPORT_SYMBOL_GPL(pci_load_saved_state);
ffbdd3f7
AW
1278
1279/**
1280 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1281 * and free the memory allocated for it.
1282 * @dev: PCI device that we're dealing with
1283 * @state: Pointer to saved state returned from pci_store_saved_state()
1284 */
1285int pci_load_and_free_saved_state(struct pci_dev *dev,
1286 struct pci_saved_state **state)
1287{
1288 int ret = pci_load_saved_state(dev, *state);
1289 kfree(*state);
1290 *state = NULL;
1291 return ret;
1292}
1293EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1294
8a9d5609
BH
1295int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1296{
1297 return pci_enable_resources(dev, bars);
1298}
1299
38cc1302
HS
1300static int do_pci_enable_device(struct pci_dev *dev, int bars)
1301{
1302 int err;
1f6ae47e 1303 struct pci_dev *bridge;
1e2571a7
BH
1304 u16 cmd;
1305 u8 pin;
38cc1302
HS
1306
1307 err = pci_set_power_state(dev, PCI_D0);
1308 if (err < 0 && err != -EIO)
1309 return err;
1f6ae47e
VS
1310
1311 bridge = pci_upstream_bridge(dev);
1312 if (bridge)
1313 pcie_aspm_powersave_config_link(bridge);
1314
38cc1302
HS
1315 err = pcibios_enable_device(dev, bars);
1316 if (err < 0)
1317 return err;
1318 pci_fixup_device(pci_fixup_enable, dev);
1319
866d5417
BH
1320 if (dev->msi_enabled || dev->msix_enabled)
1321 return 0;
1322
1e2571a7
BH
1323 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1324 if (pin) {
1325 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1326 if (cmd & PCI_COMMAND_INTX_DISABLE)
1327 pci_write_config_word(dev, PCI_COMMAND,
1328 cmd & ~PCI_COMMAND_INTX_DISABLE);
1329 }
1330
38cc1302
HS
1331 return 0;
1332}
1333
1334/**
0b62e13b 1335 * pci_reenable_device - Resume abandoned device
38cc1302
HS
1336 * @dev: PCI device to be resumed
1337 *
1338 * Note this function is a backend of pci_default_resume and is not supposed
1339 * to be called by normal code, write proper resume handler and use it instead.
1340 */
0b62e13b 1341int pci_reenable_device(struct pci_dev *dev)
38cc1302 1342{
296ccb08 1343 if (pci_is_enabled(dev))
38cc1302
HS
1344 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1345 return 0;
1346}
b7fe9434 1347EXPORT_SYMBOL(pci_reenable_device);
38cc1302 1348
928bea96
YL
1349static void pci_enable_bridge(struct pci_dev *dev)
1350{
79272138 1351 struct pci_dev *bridge;
928bea96
YL
1352 int retval;
1353
79272138
BH
1354 bridge = pci_upstream_bridge(dev);
1355 if (bridge)
1356 pci_enable_bridge(bridge);
928bea96 1357
cf3e1feb 1358 if (pci_is_enabled(dev)) {
fbeeb822 1359 if (!dev->is_busmaster)
cf3e1feb 1360 pci_set_master(dev);
928bea96 1361 return;
cf3e1feb
YL
1362 }
1363
928bea96
YL
1364 retval = pci_enable_device(dev);
1365 if (retval)
1366 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1367 retval);
1368 pci_set_master(dev);
1369}
1370
b4b4fbba 1371static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1da177e4 1372{
79272138 1373 struct pci_dev *bridge;
1da177e4 1374 int err;
b718989d 1375 int i, bars = 0;
1da177e4 1376
97c145f7
JB
1377 /*
1378 * Power state could be unknown at this point, either due to a fresh
1379 * boot or a device removal call. So get the current power state
1380 * so that things like MSI message writing will behave as expected
1381 * (e.g. if the device really is in D0 at enable time).
1382 */
1383 if (dev->pm_cap) {
1384 u16 pmcsr;
1385 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1386 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1387 }
1388
cc7ba39b 1389 if (atomic_inc_return(&dev->enable_cnt) > 1)
9fb625c3
HS
1390 return 0; /* already enabled */
1391
79272138
BH
1392 bridge = pci_upstream_bridge(dev);
1393 if (bridge)
1394 pci_enable_bridge(bridge);
928bea96 1395
497f16f2
YL
1396 /* only skip sriov related */
1397 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1398 if (dev->resource[i].flags & flags)
1399 bars |= (1 << i);
1400 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
b718989d
BH
1401 if (dev->resource[i].flags & flags)
1402 bars |= (1 << i);
1403
38cc1302 1404 err = do_pci_enable_device(dev, bars);
95a62965 1405 if (err < 0)
38cc1302 1406 atomic_dec(&dev->enable_cnt);
9fb625c3 1407 return err;
1da177e4
LT
1408}
1409
b718989d
BH
1410/**
1411 * pci_enable_device_io - Initialize a device for use with IO space
1412 * @dev: PCI device to be initialized
1413 *
1414 * Initialize device before it's used by a driver. Ask low-level code
1415 * to enable I/O resources. Wake up the device if it was suspended.
1416 * Beware, this function can fail.
1417 */
1418int pci_enable_device_io(struct pci_dev *dev)
1419{
b4b4fbba 1420 return pci_enable_device_flags(dev, IORESOURCE_IO);
b718989d 1421}
b7fe9434 1422EXPORT_SYMBOL(pci_enable_device_io);
b718989d
BH
1423
1424/**
1425 * pci_enable_device_mem - Initialize a device for use with Memory space
1426 * @dev: PCI device to be initialized
1427 *
1428 * Initialize device before it's used by a driver. Ask low-level code
1429 * to enable Memory resources. Wake up the device if it was suspended.
1430 * Beware, this function can fail.
1431 */
1432int pci_enable_device_mem(struct pci_dev *dev)
1433{
b4b4fbba 1434 return pci_enable_device_flags(dev, IORESOURCE_MEM);
b718989d 1435}
b7fe9434 1436EXPORT_SYMBOL(pci_enable_device_mem);
b718989d 1437
bae94d02
IPG
1438/**
1439 * pci_enable_device - Initialize device before it's used by a driver.
1440 * @dev: PCI device to be initialized
1441 *
1442 * Initialize device before it's used by a driver. Ask low-level code
1443 * to enable I/O and memory. Wake up the device if it was suspended.
1444 * Beware, this function can fail.
1445 *
1446 * Note we don't actually enable the device many times if we call
1447 * this function repeatedly (we just increment the count).
1448 */
1449int pci_enable_device(struct pci_dev *dev)
1450{
b4b4fbba 1451 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
bae94d02 1452}
b7fe9434 1453EXPORT_SYMBOL(pci_enable_device);
bae94d02 1454
9ac7849e
TH
1455/*
1456 * Managed PCI resources. This manages device on/off, intx/msi/msix
1457 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1458 * there's no need to track it separately. pci_devres is initialized
1459 * when a device is enabled using managed PCI device enable interface.
1460 */
1461struct pci_devres {
7f375f32
TH
1462 unsigned int enabled:1;
1463 unsigned int pinned:1;
9ac7849e
TH
1464 unsigned int orig_intx:1;
1465 unsigned int restore_intx:1;
1466 u32 region_mask;
1467};
1468
1469static void pcim_release(struct device *gendev, void *res)
1470{
f3d2f165 1471 struct pci_dev *dev = to_pci_dev(gendev);
9ac7849e
TH
1472 struct pci_devres *this = res;
1473 int i;
1474
1475 if (dev->msi_enabled)
1476 pci_disable_msi(dev);
1477 if (dev->msix_enabled)
1478 pci_disable_msix(dev);
1479
1480 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1481 if (this->region_mask & (1 << i))
1482 pci_release_region(dev, i);
1483
1484 if (this->restore_intx)
1485 pci_intx(dev, this->orig_intx);
1486
7f375f32 1487 if (this->enabled && !this->pinned)
9ac7849e
TH
1488 pci_disable_device(dev);
1489}
1490
07656d83 1491static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
9ac7849e
TH
1492{
1493 struct pci_devres *dr, *new_dr;
1494
1495 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1496 if (dr)
1497 return dr;
1498
1499 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1500 if (!new_dr)
1501 return NULL;
1502 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1503}
1504
07656d83 1505static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
9ac7849e
TH
1506{
1507 if (pci_is_managed(pdev))
1508 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1509 return NULL;
1510}
1511
1512/**
1513 * pcim_enable_device - Managed pci_enable_device()
1514 * @pdev: PCI device to be initialized
1515 *
1516 * Managed pci_enable_device().
1517 */
1518int pcim_enable_device(struct pci_dev *pdev)
1519{
1520 struct pci_devres *dr;
1521 int rc;
1522
1523 dr = get_pci_dr(pdev);
1524 if (unlikely(!dr))
1525 return -ENOMEM;
b95d58ea
TH
1526 if (dr->enabled)
1527 return 0;
9ac7849e
TH
1528
1529 rc = pci_enable_device(pdev);
1530 if (!rc) {
1531 pdev->is_managed = 1;
7f375f32 1532 dr->enabled = 1;
9ac7849e
TH
1533 }
1534 return rc;
1535}
b7fe9434 1536EXPORT_SYMBOL(pcim_enable_device);
9ac7849e
TH
1537
1538/**
1539 * pcim_pin_device - Pin managed PCI device
1540 * @pdev: PCI device to pin
1541 *
1542 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1543 * driver detach. @pdev must have been enabled with
1544 * pcim_enable_device().
1545 */
1546void pcim_pin_device(struct pci_dev *pdev)
1547{
1548 struct pci_devres *dr;
1549
1550 dr = find_pci_dr(pdev);
7f375f32 1551 WARN_ON(!dr || !dr->enabled);
9ac7849e 1552 if (dr)
7f375f32 1553 dr->pinned = 1;
9ac7849e 1554}
b7fe9434 1555EXPORT_SYMBOL(pcim_pin_device);
9ac7849e 1556
eca0d467
MG
1557/*
1558 * pcibios_add_device - provide arch specific hooks when adding device dev
1559 * @dev: the PCI device being added
1560 *
1561 * Permits the platform to provide architecture specific functionality when
1562 * devices are added. This is the default implementation. Architecture
1563 * implementations can override this.
1564 */
3c78bc61 1565int __weak pcibios_add_device(struct pci_dev *dev)
eca0d467
MG
1566{
1567 return 0;
1568}
1569
6ae32c53
SO
1570/**
1571 * pcibios_release_device - provide arch specific hooks when releasing device dev
1572 * @dev: the PCI device being released
1573 *
1574 * Permits the platform to provide architecture specific functionality when
1575 * devices are released. This is the default implementation. Architecture
1576 * implementations can override this.
1577 */
1578void __weak pcibios_release_device(struct pci_dev *dev) {}
1579
1da177e4
LT
1580/**
1581 * pcibios_disable_device - disable arch specific PCI resources for device dev
1582 * @dev: the PCI device to disable
1583 *
1584 * Disables architecture specific PCI resources for the device. This
1585 * is the default implementation. Architecture implementations can
1586 * override this.
1587 */
ff3ce480 1588void __weak pcibios_disable_device(struct pci_dev *dev) {}
1da177e4 1589
a43ae58c
HG
1590/**
1591 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1592 * @irq: ISA IRQ to penalize
1593 * @active: IRQ active or not
1594 *
1595 * Permits the platform to provide architecture-specific functionality when
1596 * penalizing ISA IRQs. This is the default implementation. Architecture
1597 * implementations can override this.
1598 */
1599void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1600
fa58d305
RW
1601static void do_pci_disable_device(struct pci_dev *dev)
1602{
1603 u16 pci_command;
1604
1605 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1606 if (pci_command & PCI_COMMAND_MASTER) {
1607 pci_command &= ~PCI_COMMAND_MASTER;
1608 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1609 }
1610
1611 pcibios_disable_device(dev);
1612}
1613
1614/**
1615 * pci_disable_enabled_device - Disable device without updating enable_cnt
1616 * @dev: PCI device to disable
1617 *
1618 * NOTE: This function is a backend of PCI power management routines and is
1619 * not supposed to be called drivers.
1620 */
1621void pci_disable_enabled_device(struct pci_dev *dev)
1622{
296ccb08 1623 if (pci_is_enabled(dev))
fa58d305
RW
1624 do_pci_disable_device(dev);
1625}
1626
1da177e4
LT
1627/**
1628 * pci_disable_device - Disable PCI device after use
1629 * @dev: PCI device to be disabled
1630 *
1631 * Signal to the system that the PCI device is not in use by the system
1632 * anymore. This only involves disabling PCI bus-mastering, if active.
bae94d02
IPG
1633 *
1634 * Note we don't actually disable the device until all callers of
ee6583f6 1635 * pci_enable_device() have called pci_disable_device().
1da177e4 1636 */
3c78bc61 1637void pci_disable_device(struct pci_dev *dev)
1da177e4 1638{
9ac7849e 1639 struct pci_devres *dr;
99dc804d 1640
9ac7849e
TH
1641 dr = find_pci_dr(dev);
1642 if (dr)
7f375f32 1643 dr->enabled = 0;
9ac7849e 1644
fd6dceab
KK
1645 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1646 "disabling already-disabled device");
1647
cc7ba39b 1648 if (atomic_dec_return(&dev->enable_cnt) != 0)
bae94d02
IPG
1649 return;
1650
fa58d305 1651 do_pci_disable_device(dev);
1da177e4 1652
fa58d305 1653 dev->is_busmaster = 0;
1da177e4 1654}
b7fe9434 1655EXPORT_SYMBOL(pci_disable_device);
1da177e4 1656
f7bdd12d
BK
1657/**
1658 * pcibios_set_pcie_reset_state - set reset state for device dev
45e829ea 1659 * @dev: the PCIe device reset
f7bdd12d
BK
1660 * @state: Reset state to enter into
1661 *
1662 *
45e829ea 1663 * Sets the PCIe reset state for the device. This is the default
f7bdd12d
BK
1664 * implementation. Architecture implementations can override this.
1665 */
d6d88c83
BH
1666int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1667 enum pcie_reset_state state)
f7bdd12d
BK
1668{
1669 return -EINVAL;
1670}
1671
1672/**
1673 * pci_set_pcie_reset_state - set reset state for device dev
45e829ea 1674 * @dev: the PCIe device reset
f7bdd12d
BK
1675 * @state: Reset state to enter into
1676 *
1677 *
1678 * Sets the PCI reset state for the device.
1679 */
1680int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1681{
1682 return pcibios_set_pcie_reset_state(dev, state);
1683}
b7fe9434 1684EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
f7bdd12d 1685
58ff4633
RW
1686/**
1687 * pci_check_pme_status - Check if given device has generated PME.
1688 * @dev: Device to check.
1689 *
1690 * Check the PME status of the device and if set, clear it and clear PME enable
1691 * (if set). Return 'true' if PME status and PME enable were both set or
1692 * 'false' otherwise.
1693 */
1694bool pci_check_pme_status(struct pci_dev *dev)
1695{
1696 int pmcsr_pos;
1697 u16 pmcsr;
1698 bool ret = false;
1699
1700 if (!dev->pm_cap)
1701 return false;
1702
1703 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1704 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1705 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1706 return false;
1707
1708 /* Clear PME status. */
1709 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1710 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1711 /* Disable PME to avoid interrupt flood. */
1712 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1713 ret = true;
1714 }
1715
1716 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1717
1718 return ret;
1719}
1720
b67ea761
RW
1721/**
1722 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1723 * @dev: Device to handle.
379021d5 1724 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
b67ea761
RW
1725 *
1726 * Check if @dev has generated PME and queue a resume request for it in that
1727 * case.
1728 */
379021d5 1729static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
b67ea761 1730{
379021d5
RW
1731 if (pme_poll_reset && dev->pme_poll)
1732 dev->pme_poll = false;
1733
c125e96f 1734 if (pci_check_pme_status(dev)) {
c125e96f 1735 pci_wakeup_event(dev);
0f953bf6 1736 pm_request_resume(&dev->dev);
c125e96f 1737 }
b67ea761
RW
1738 return 0;
1739}
1740
1741/**
1742 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1743 * @bus: Top bus of the subtree to walk.
1744 */
1745void pci_pme_wakeup_bus(struct pci_bus *bus)
1746{
1747 if (bus)
379021d5 1748 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
b67ea761
RW
1749}
1750
448bd857 1751
eb9d0fe4
RW
1752/**
1753 * pci_pme_capable - check the capability of PCI device to generate PME#
1754 * @dev: PCI device to handle.
eb9d0fe4
RW
1755 * @state: PCI state from which device will issue PME#.
1756 */
e5899e1b 1757bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
eb9d0fe4 1758{
337001b6 1759 if (!dev->pm_cap)
eb9d0fe4
RW
1760 return false;
1761
337001b6 1762 return !!(dev->pme_support & (1 << state));
eb9d0fe4 1763}
b7fe9434 1764EXPORT_SYMBOL(pci_pme_capable);
eb9d0fe4 1765
df17e62e
MG
1766static void pci_pme_list_scan(struct work_struct *work)
1767{
379021d5 1768 struct pci_pme_device *pme_dev, *n;
df17e62e
MG
1769
1770 mutex_lock(&pci_pme_list_mutex);
ce300008
BH
1771 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1772 if (pme_dev->dev->pme_poll) {
1773 struct pci_dev *bridge;
1774
1775 bridge = pme_dev->dev->bus->self;
1776 /*
1777 * If bridge is in low power state, the
1778 * configuration space of subordinate devices
1779 * may be not accessible
1780 */
1781 if (bridge && bridge->current_state != PCI_D0)
1782 continue;
1783 pci_pme_wakeup(pme_dev->dev, NULL);
1784 } else {
1785 list_del(&pme_dev->list);
1786 kfree(pme_dev);
379021d5 1787 }
df17e62e 1788 }
ce300008 1789 if (!list_empty(&pci_pme_list))
ea00353f
LW
1790 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1791 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
1792 mutex_unlock(&pci_pme_list_mutex);
1793}
1794
2cef548a 1795static void __pci_pme_active(struct pci_dev *dev, bool enable)
eb9d0fe4
RW
1796{
1797 u16 pmcsr;
1798
ffaddbe8 1799 if (!dev->pme_support)
eb9d0fe4
RW
1800 return;
1801
337001b6 1802 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
eb9d0fe4
RW
1803 /* Clear PME_Status by writing 1 to it and enable PME# */
1804 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1805 if (!enable)
1806 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1807
337001b6 1808 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2cef548a
RW
1809}
1810
1811/**
1812 * pci_pme_active - enable or disable PCI device's PME# function
1813 * @dev: PCI device to handle.
1814 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1815 *
1816 * The caller must verify that the device is capable of generating PME# before
1817 * calling this function with @enable equal to 'true'.
1818 */
1819void pci_pme_active(struct pci_dev *dev, bool enable)
1820{
1821 __pci_pme_active(dev, enable);
eb9d0fe4 1822
6e965e0d
HY
1823 /*
1824 * PCI (as opposed to PCIe) PME requires that the device have
1825 * its PME# line hooked up correctly. Not all hardware vendors
1826 * do this, so the PME never gets delivered and the device
1827 * remains asleep. The easiest way around this is to
1828 * periodically walk the list of suspended devices and check
1829 * whether any have their PME flag set. The assumption is that
1830 * we'll wake up often enough anyway that this won't be a huge
1831 * hit, and the power savings from the devices will still be a
1832 * win.
1833 *
1834 * Although PCIe uses in-band PME message instead of PME# line
1835 * to report PME, PME does not work for some PCIe devices in
1836 * reality. For example, there are devices that set their PME
1837 * status bits, but don't really bother to send a PME message;
1838 * there are PCI Express Root Ports that don't bother to
1839 * trigger interrupts when they receive PME messages from the
1840 * devices below. So PME poll is used for PCIe devices too.
1841 */
df17e62e 1842
379021d5 1843 if (dev->pme_poll) {
df17e62e
MG
1844 struct pci_pme_device *pme_dev;
1845 if (enable) {
1846 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1847 GFP_KERNEL);
0394cb19
BH
1848 if (!pme_dev) {
1849 dev_warn(&dev->dev, "can't enable PME#\n");
1850 return;
1851 }
df17e62e
MG
1852 pme_dev->dev = dev;
1853 mutex_lock(&pci_pme_list_mutex);
1854 list_add(&pme_dev->list, &pci_pme_list);
1855 if (list_is_singular(&pci_pme_list))
ea00353f
LW
1856 queue_delayed_work(system_freezable_wq,
1857 &pci_pme_work,
1858 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
1859 mutex_unlock(&pci_pme_list_mutex);
1860 } else {
1861 mutex_lock(&pci_pme_list_mutex);
1862 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1863 if (pme_dev->dev == dev) {
1864 list_del(&pme_dev->list);
1865 kfree(pme_dev);
1866 break;
1867 }
1868 }
1869 mutex_unlock(&pci_pme_list_mutex);
1870 }
1871 }
1872
85b8582d 1873 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
eb9d0fe4 1874}
b7fe9434 1875EXPORT_SYMBOL(pci_pme_active);
eb9d0fe4 1876
1da177e4 1877/**
6cbf8214 1878 * __pci_enable_wake - enable PCI device as wakeup event source
075c1771
DB
1879 * @dev: PCI device affected
1880 * @state: PCI state from which device will issue wakeup events
6cbf8214 1881 * @runtime: True if the events are to be generated at run time
075c1771
DB
1882 * @enable: True to enable event generation; false to disable
1883 *
1884 * This enables the device as a wakeup event source, or disables it.
1885 * When such events involves platform-specific hooks, those hooks are
1886 * called automatically by this routine.
1887 *
1888 * Devices with legacy power management (no standard PCI PM capabilities)
eb9d0fe4 1889 * always require such platform hooks.
075c1771 1890 *
eb9d0fe4
RW
1891 * RETURN VALUE:
1892 * 0 is returned on success
1893 * -EINVAL is returned if device is not supposed to wake up the system
1894 * Error code depending on the platform is returned if both the platform and
1895 * the native mechanism fail to enable the generation of wake-up events
1da177e4 1896 */
6cbf8214
RW
1897int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1898 bool runtime, bool enable)
1da177e4 1899{
5bcc2fb4 1900 int ret = 0;
075c1771 1901
6cbf8214 1902 if (enable && !runtime && !device_may_wakeup(&dev->dev))
eb9d0fe4 1903 return -EINVAL;
1da177e4 1904
e80bb09d
RW
1905 /* Don't do the same thing twice in a row for one device. */
1906 if (!!enable == !!dev->wakeup_prepared)
1907 return 0;
1908
eb9d0fe4
RW
1909 /*
1910 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1911 * Anderson we should be doing PME# wake enable followed by ACPI wake
1912 * enable. To disable wake-up we call the platform first, for symmetry.
075c1771 1913 */
1da177e4 1914
5bcc2fb4
RW
1915 if (enable) {
1916 int error;
1da177e4 1917
5bcc2fb4
RW
1918 if (pci_pme_capable(dev, state))
1919 pci_pme_active(dev, true);
1920 else
1921 ret = 1;
6cbf8214
RW
1922 error = runtime ? platform_pci_run_wake(dev, true) :
1923 platform_pci_sleep_wake(dev, true);
5bcc2fb4
RW
1924 if (ret)
1925 ret = error;
e80bb09d
RW
1926 if (!ret)
1927 dev->wakeup_prepared = true;
5bcc2fb4 1928 } else {
6cbf8214
RW
1929 if (runtime)
1930 platform_pci_run_wake(dev, false);
1931 else
1932 platform_pci_sleep_wake(dev, false);
5bcc2fb4 1933 pci_pme_active(dev, false);
e80bb09d 1934 dev->wakeup_prepared = false;
5bcc2fb4 1935 }
1da177e4 1936
5bcc2fb4 1937 return ret;
eb9d0fe4 1938}
6cbf8214 1939EXPORT_SYMBOL(__pci_enable_wake);
1da177e4 1940
0235c4fc
RW
1941/**
1942 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1943 * @dev: PCI device to prepare
1944 * @enable: True to enable wake-up event generation; false to disable
1945 *
1946 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1947 * and this function allows them to set that up cleanly - pci_enable_wake()
1948 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1949 * ordering constraints.
1950 *
1951 * This function only returns error code if the device is not capable of
1952 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1953 * enable wake-up power for it.
1954 */
1955int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1956{
1957 return pci_pme_capable(dev, PCI_D3cold) ?
1958 pci_enable_wake(dev, PCI_D3cold, enable) :
1959 pci_enable_wake(dev, PCI_D3hot, enable);
1960}
b7fe9434 1961EXPORT_SYMBOL(pci_wake_from_d3);
0235c4fc 1962
404cc2d8 1963/**
37139074
JB
1964 * pci_target_state - find an appropriate low power state for a given PCI dev
1965 * @dev: PCI device
1966 *
1967 * Use underlying platform code to find a supported low power state for @dev.
1968 * If the platform can't manage @dev, return the deepest state from which it
1969 * can generate wake events, based on any available PME info.
404cc2d8 1970 */
0b950f0f 1971static pci_power_t pci_target_state(struct pci_dev *dev)
404cc2d8
RW
1972{
1973 pci_power_t target_state = PCI_D3hot;
404cc2d8
RW
1974
1975 if (platform_pci_power_manageable(dev)) {
1976 /*
1977 * Call the platform to choose the target state of the device
1978 * and enable wake-up from this state if supported.
1979 */
1980 pci_power_t state = platform_pci_choose_state(dev);
1981
1982 switch (state) {
1983 case PCI_POWER_ERROR:
1984 case PCI_UNKNOWN:
1985 break;
1986 case PCI_D1:
1987 case PCI_D2:
1988 if (pci_no_d1d2(dev))
1989 break;
1990 default:
1991 target_state = state;
404cc2d8 1992 }
4132a577
LW
1993
1994 return target_state;
1995 }
1996
1997 if (!dev->pm_cap)
d2abdf62 1998 target_state = PCI_D0;
4132a577
LW
1999
2000 /*
2001 * If the device is in D3cold even though it's not power-manageable by
2002 * the platform, it may have been powered down by non-standard means.
2003 * Best to let it slumber.
2004 */
2005 if (dev->current_state == PCI_D3cold)
2006 target_state = PCI_D3cold;
2007
2008 if (device_may_wakeup(&dev->dev)) {
404cc2d8
RW
2009 /*
2010 * Find the deepest state from which the device can generate
2011 * wake-up events, make it the target state and enable device
2012 * to generate PME#.
2013 */
337001b6
RW
2014 if (dev->pme_support) {
2015 while (target_state
2016 && !(dev->pme_support & (1 << target_state)))
2017 target_state--;
404cc2d8
RW
2018 }
2019 }
2020
e5899e1b
RW
2021 return target_state;
2022}
2023
2024/**
2025 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2026 * @dev: Device to handle.
2027 *
2028 * Choose the power state appropriate for the device depending on whether
2029 * it can wake up the system and/or is power manageable by the platform
2030 * (PCI_D3hot is the default) and put the device into that state.
2031 */
2032int pci_prepare_to_sleep(struct pci_dev *dev)
2033{
2034 pci_power_t target_state = pci_target_state(dev);
2035 int error;
2036
2037 if (target_state == PCI_POWER_ERROR)
2038 return -EIO;
2039
8efb8c76 2040 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
c157dfa3 2041
404cc2d8
RW
2042 error = pci_set_power_state(dev, target_state);
2043
2044 if (error)
2045 pci_enable_wake(dev, target_state, false);
2046
2047 return error;
2048}
b7fe9434 2049EXPORT_SYMBOL(pci_prepare_to_sleep);
404cc2d8
RW
2050
2051/**
443bd1c4 2052 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
404cc2d8
RW
2053 * @dev: Device to handle.
2054 *
88393161 2055 * Disable device's system wake-up capability and put it into D0.
404cc2d8
RW
2056 */
2057int pci_back_from_sleep(struct pci_dev *dev)
2058{
2059 pci_enable_wake(dev, PCI_D0, false);
2060 return pci_set_power_state(dev, PCI_D0);
2061}
b7fe9434 2062EXPORT_SYMBOL(pci_back_from_sleep);
404cc2d8 2063
6cbf8214
RW
2064/**
2065 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2066 * @dev: PCI device being suspended.
2067 *
2068 * Prepare @dev to generate wake-up events at run time and put it into a low
2069 * power state.
2070 */
2071int pci_finish_runtime_suspend(struct pci_dev *dev)
2072{
2073 pci_power_t target_state = pci_target_state(dev);
2074 int error;
2075
2076 if (target_state == PCI_POWER_ERROR)
2077 return -EIO;
2078
448bd857
HY
2079 dev->runtime_d3cold = target_state == PCI_D3cold;
2080
6cbf8214
RW
2081 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2082
2083 error = pci_set_power_state(dev, target_state);
2084
448bd857 2085 if (error) {
6cbf8214 2086 __pci_enable_wake(dev, target_state, true, false);
448bd857
HY
2087 dev->runtime_d3cold = false;
2088 }
6cbf8214
RW
2089
2090 return error;
2091}
2092
b67ea761
RW
2093/**
2094 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2095 * @dev: Device to check.
2096 *
f7625980 2097 * Return true if the device itself is capable of generating wake-up events
b67ea761
RW
2098 * (through the platform or using the native PCIe PME) or if the device supports
2099 * PME and one of its upstream bridges can generate wake-up events.
2100 */
2101bool pci_dev_run_wake(struct pci_dev *dev)
2102{
2103 struct pci_bus *bus = dev->bus;
2104
2105 if (device_run_wake(&dev->dev))
2106 return true;
2107
2108 if (!dev->pme_support)
2109 return false;
2110
6496ebd7
AS
2111 /* PME-capable in principle, but not from the intended sleep state */
2112 if (!pci_pme_capable(dev, pci_target_state(dev)))
2113 return false;
2114
b67ea761
RW
2115 while (bus->parent) {
2116 struct pci_dev *bridge = bus->self;
2117
2118 if (device_run_wake(&bridge->dev))
2119 return true;
2120
2121 bus = bus->parent;
2122 }
2123
2124 /* We have reached the root bus. */
2125 if (bus->bridge)
2126 return device_run_wake(bus->bridge);
2127
2128 return false;
2129}
2130EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2131
bac2a909
RW
2132/**
2133 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2134 * @pci_dev: Device to check.
2135 *
2136 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2137 * reconfigured due to wakeup settings difference between system and runtime
2138 * suspend and the current power state of it is suitable for the upcoming
2139 * (system) transition.
2cef548a
RW
2140 *
2141 * If the device is not configured for system wakeup, disable PME for it before
2142 * returning 'true' to prevent it from waking up the system unnecessarily.
bac2a909
RW
2143 */
2144bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2145{
2146 struct device *dev = &pci_dev->dev;
2147
2148 if (!pm_runtime_suspended(dev)
2cef548a 2149 || pci_target_state(pci_dev) != pci_dev->current_state
bac2a909
RW
2150 || platform_pci_need_resume(pci_dev))
2151 return false;
2152
2cef548a
RW
2153 /*
2154 * At this point the device is good to go unless it's been configured
2155 * to generate PME at the runtime suspend time, but it is not supposed
2156 * to wake up the system. In that case, simply disable PME for it
2157 * (it will have to be re-enabled on exit from system resume).
2158 *
2159 * If the device's power state is D3cold and the platform check above
2160 * hasn't triggered, the device's configuration is suitable and we don't
2161 * need to manipulate it at all.
2162 */
2163 spin_lock_irq(&dev->power.lock);
2164
2165 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2166 !device_may_wakeup(dev))
2167 __pci_pme_active(pci_dev, false);
2168
2169 spin_unlock_irq(&dev->power.lock);
2170 return true;
2171}
2172
2173/**
2174 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2175 * @pci_dev: Device to handle.
2176 *
2177 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2178 * it might have been disabled during the prepare phase of system suspend if
2179 * the device was not configured for system wakeup.
2180 */
2181void pci_dev_complete_resume(struct pci_dev *pci_dev)
2182{
2183 struct device *dev = &pci_dev->dev;
2184
2185 if (!pci_dev_run_wake(pci_dev))
2186 return;
2187
2188 spin_lock_irq(&dev->power.lock);
2189
2190 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2191 __pci_pme_active(pci_dev, true);
2192
2193 spin_unlock_irq(&dev->power.lock);
bac2a909
RW
2194}
2195
b3c32c4f
HY
2196void pci_config_pm_runtime_get(struct pci_dev *pdev)
2197{
2198 struct device *dev = &pdev->dev;
2199 struct device *parent = dev->parent;
2200
2201 if (parent)
2202 pm_runtime_get_sync(parent);
2203 pm_runtime_get_noresume(dev);
2204 /*
2205 * pdev->current_state is set to PCI_D3cold during suspending,
2206 * so wait until suspending completes
2207 */
2208 pm_runtime_barrier(dev);
2209 /*
2210 * Only need to resume devices in D3cold, because config
2211 * registers are still accessible for devices suspended but
2212 * not in D3cold.
2213 */
2214 if (pdev->current_state == PCI_D3cold)
2215 pm_runtime_resume(dev);
2216}
2217
2218void pci_config_pm_runtime_put(struct pci_dev *pdev)
2219{
2220 struct device *dev = &pdev->dev;
2221 struct device *parent = dev->parent;
2222
2223 pm_runtime_put(dev);
2224 if (parent)
2225 pm_runtime_put_sync(parent);
2226}
2227
9d26d3a8
MW
2228/**
2229 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2230 * @bridge: Bridge to check
2231 *
2232 * This function checks if it is possible to move the bridge to D3.
2233 * Currently we only allow D3 for recent enough PCIe ports.
2234 */
c6a63307 2235bool pci_bridge_d3_possible(struct pci_dev *bridge)
9d26d3a8
MW
2236{
2237 unsigned int year;
2238
2239 if (!pci_is_pcie(bridge))
2240 return false;
2241
2242 switch (pci_pcie_type(bridge)) {
2243 case PCI_EXP_TYPE_ROOT_PORT:
2244 case PCI_EXP_TYPE_UPSTREAM:
2245 case PCI_EXP_TYPE_DOWNSTREAM:
2246 if (pci_bridge_d3_disable)
2247 return false;
97a90aee
LW
2248
2249 /*
d98e0929
BH
2250 * Hotplug interrupts cannot be delivered if the link is down,
2251 * so parents of a hotplug port must stay awake. In addition,
2252 * hotplug ports handled by firmware in System Management Mode
97a90aee 2253 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
d98e0929 2254 * For simplicity, disallow in general for now.
97a90aee 2255 */
d98e0929 2256 if (bridge->is_hotplug_bridge)
97a90aee
LW
2257 return false;
2258
9d26d3a8
MW
2259 if (pci_bridge_d3_force)
2260 return true;
2261
2262 /*
2263 * It should be safe to put PCIe ports from 2015 or newer
2264 * to D3.
2265 */
2266 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2267 year >= 2015) {
2268 return true;
2269 }
2270 break;
2271 }
2272
2273 return false;
2274}
2275
2276static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2277{
2278 bool *d3cold_ok = data;
9d26d3a8 2279
718a0609
LW
2280 if (/* The device needs to be allowed to go D3cold ... */
2281 dev->no_d3cold || !dev->d3cold_allowed ||
2282
2283 /* ... and if it is wakeup capable to do so from D3cold. */
2284 (device_may_wakeup(&dev->dev) &&
2285 !pci_pme_capable(dev, PCI_D3cold)) ||
2286
2287 /* If it is a bridge it must be allowed to go to D3. */
d98e0929 2288 !pci_power_manageable(dev))
9d26d3a8 2289
718a0609 2290 *d3cold_ok = false;
9d26d3a8 2291
718a0609 2292 return !*d3cold_ok;
9d26d3a8
MW
2293}
2294
2295/*
2296 * pci_bridge_d3_update - Update bridge D3 capabilities
2297 * @dev: PCI device which is changed
9d26d3a8
MW
2298 *
2299 * Update upstream bridge PM capabilities accordingly depending on if the
2300 * device PM configuration was changed or the device is being removed. The
2301 * change is also propagated upstream.
2302 */
1ed276a7 2303void pci_bridge_d3_update(struct pci_dev *dev)
9d26d3a8 2304{
1ed276a7 2305 bool remove = !device_is_registered(&dev->dev);
9d26d3a8
MW
2306 struct pci_dev *bridge;
2307 bool d3cold_ok = true;
2308
2309 bridge = pci_upstream_bridge(dev);
2310 if (!bridge || !pci_bridge_d3_possible(bridge))
2311 return;
2312
9d26d3a8 2313 /*
e8559b71
LW
2314 * If D3 is currently allowed for the bridge, removing one of its
2315 * children won't change that.
2316 */
2317 if (remove && bridge->bridge_d3)
2318 return;
2319
2320 /*
2321 * If D3 is currently allowed for the bridge and a child is added or
2322 * changed, disallowance of D3 can only be caused by that child, so
2323 * we only need to check that single device, not any of its siblings.
2324 *
2325 * If D3 is currently not allowed for the bridge, checking the device
2326 * first may allow us to skip checking its siblings.
9d26d3a8
MW
2327 */
2328 if (!remove)
2329 pci_dev_check_d3cold(dev, &d3cold_ok);
2330
e8559b71
LW
2331 /*
2332 * If D3 is currently not allowed for the bridge, this may be caused
2333 * either by the device being changed/removed or any of its siblings,
2334 * so we need to go through all children to find out if one of them
2335 * continues to block D3.
2336 */
2337 if (d3cold_ok && !bridge->bridge_d3)
9d26d3a8
MW
2338 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2339 &d3cold_ok);
9d26d3a8
MW
2340
2341 if (bridge->bridge_d3 != d3cold_ok) {
2342 bridge->bridge_d3 = d3cold_ok;
2343 /* Propagate change to upstream bridges */
1ed276a7 2344 pci_bridge_d3_update(bridge);
9d26d3a8 2345 }
9d26d3a8
MW
2346}
2347
9d26d3a8
MW
2348/**
2349 * pci_d3cold_enable - Enable D3cold for device
2350 * @dev: PCI device to handle
2351 *
2352 * This function can be used in drivers to enable D3cold from the device
2353 * they handle. It also updates upstream PCI bridge PM capabilities
2354 * accordingly.
2355 */
2356void pci_d3cold_enable(struct pci_dev *dev)
2357{
2358 if (dev->no_d3cold) {
2359 dev->no_d3cold = false;
1ed276a7 2360 pci_bridge_d3_update(dev);
9d26d3a8
MW
2361 }
2362}
2363EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2364
2365/**
2366 * pci_d3cold_disable - Disable D3cold for device
2367 * @dev: PCI device to handle
2368 *
2369 * This function can be used in drivers to disable D3cold from the device
2370 * they handle. It also updates upstream PCI bridge PM capabilities
2371 * accordingly.
2372 */
2373void pci_d3cold_disable(struct pci_dev *dev)
2374{
2375 if (!dev->no_d3cold) {
2376 dev->no_d3cold = true;
1ed276a7 2377 pci_bridge_d3_update(dev);
9d26d3a8
MW
2378 }
2379}
2380EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2381
eb9d0fe4
RW
2382/**
2383 * pci_pm_init - Initialize PM functions of given PCI device
2384 * @dev: PCI device to handle.
2385 */
2386void pci_pm_init(struct pci_dev *dev)
2387{
2388 int pm;
2389 u16 pmc;
1da177e4 2390
bb910a70 2391 pm_runtime_forbid(&dev->dev);
967577b0
HY
2392 pm_runtime_set_active(&dev->dev);
2393 pm_runtime_enable(&dev->dev);
a1e4d72c 2394 device_enable_async_suspend(&dev->dev);
e80bb09d 2395 dev->wakeup_prepared = false;
bb910a70 2396
337001b6 2397 dev->pm_cap = 0;
ffaddbe8 2398 dev->pme_support = 0;
337001b6 2399
eb9d0fe4
RW
2400 /* find PCI PM capability in list */
2401 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2402 if (!pm)
50246dd4 2403 return;
eb9d0fe4
RW
2404 /* Check device's ability to generate PME# */
2405 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
075c1771 2406
eb9d0fe4
RW
2407 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2408 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2409 pmc & PCI_PM_CAP_VER_MASK);
50246dd4 2410 return;
eb9d0fe4
RW
2411 }
2412
337001b6 2413 dev->pm_cap = pm;
1ae861e6 2414 dev->d3_delay = PCI_PM_D3_WAIT;
448bd857 2415 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
9d26d3a8 2416 dev->bridge_d3 = pci_bridge_d3_possible(dev);
4f9c1397 2417 dev->d3cold_allowed = true;
337001b6
RW
2418
2419 dev->d1_support = false;
2420 dev->d2_support = false;
2421 if (!pci_no_d1d2(dev)) {
c9ed77ee 2422 if (pmc & PCI_PM_CAP_D1)
337001b6 2423 dev->d1_support = true;
c9ed77ee 2424 if (pmc & PCI_PM_CAP_D2)
337001b6 2425 dev->d2_support = true;
c9ed77ee
BH
2426
2427 if (dev->d1_support || dev->d2_support)
2428 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
ec84f126
JB
2429 dev->d1_support ? " D1" : "",
2430 dev->d2_support ? " D2" : "");
337001b6
RW
2431 }
2432
2433 pmc &= PCI_PM_CAP_PME_MASK;
2434 if (pmc) {
10c3d71d
BH
2435 dev_printk(KERN_DEBUG, &dev->dev,
2436 "PME# supported from%s%s%s%s%s\n",
c9ed77ee
BH
2437 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2438 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2439 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2440 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2441 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
337001b6 2442 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
379021d5 2443 dev->pme_poll = true;
eb9d0fe4
RW
2444 /*
2445 * Make device's PM flags reflect the wake-up capability, but
2446 * let the user space enable it to wake up the system as needed.
2447 */
2448 device_set_wakeup_capable(&dev->dev, true);
eb9d0fe4 2449 /* Disable the PME# generation functionality */
337001b6 2450 pci_pme_active(dev, false);
eb9d0fe4 2451 }
1da177e4
LT
2452}
2453
938174e5
SS
2454static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2455{
92efb1bd 2456 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
938174e5
SS
2457
2458 switch (prop) {
2459 case PCI_EA_P_MEM:
2460 case PCI_EA_P_VF_MEM:
2461 flags |= IORESOURCE_MEM;
2462 break;
2463 case PCI_EA_P_MEM_PREFETCH:
2464 case PCI_EA_P_VF_MEM_PREFETCH:
2465 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2466 break;
2467 case PCI_EA_P_IO:
2468 flags |= IORESOURCE_IO;
2469 break;
2470 default:
2471 return 0;
2472 }
2473
2474 return flags;
2475}
2476
2477static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2478 u8 prop)
2479{
2480 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2481 return &dev->resource[bei];
11183991
DD
2482#ifdef CONFIG_PCI_IOV
2483 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2484 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2485 return &dev->resource[PCI_IOV_RESOURCES +
2486 bei - PCI_EA_BEI_VF_BAR0];
2487#endif
938174e5
SS
2488 else if (bei == PCI_EA_BEI_ROM)
2489 return &dev->resource[PCI_ROM_RESOURCE];
2490 else
2491 return NULL;
2492}
2493
2494/* Read an Enhanced Allocation (EA) entry */
2495static int pci_ea_read(struct pci_dev *dev, int offset)
2496{
2497 struct resource *res;
2498 int ent_size, ent_offset = offset;
2499 resource_size_t start, end;
2500 unsigned long flags;
26635112 2501 u32 dw0, bei, base, max_offset;
938174e5
SS
2502 u8 prop;
2503 bool support_64 = (sizeof(resource_size_t) >= 8);
2504
2505 pci_read_config_dword(dev, ent_offset, &dw0);
2506 ent_offset += 4;
2507
2508 /* Entry size field indicates DWORDs after 1st */
2509 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2510
2511 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2512 goto out;
2513
26635112
BH
2514 bei = (dw0 & PCI_EA_BEI) >> 4;
2515 prop = (dw0 & PCI_EA_PP) >> 8;
2516
938174e5
SS
2517 /*
2518 * If the Property is in the reserved range, try the Secondary
2519 * Property instead.
2520 */
2521 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
26635112 2522 prop = (dw0 & PCI_EA_SP) >> 16;
938174e5
SS
2523 if (prop > PCI_EA_P_BRIDGE_IO)
2524 goto out;
2525
26635112 2526 res = pci_ea_get_resource(dev, bei, prop);
938174e5 2527 if (!res) {
26635112 2528 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
938174e5
SS
2529 goto out;
2530 }
2531
2532 flags = pci_ea_flags(dev, prop);
2533 if (!flags) {
2534 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2535 goto out;
2536 }
2537
2538 /* Read Base */
2539 pci_read_config_dword(dev, ent_offset, &base);
2540 start = (base & PCI_EA_FIELD_MASK);
2541 ent_offset += 4;
2542
2543 /* Read MaxOffset */
2544 pci_read_config_dword(dev, ent_offset, &max_offset);
2545 ent_offset += 4;
2546
2547 /* Read Base MSBs (if 64-bit entry) */
2548 if (base & PCI_EA_IS_64) {
2549 u32 base_upper;
2550
2551 pci_read_config_dword(dev, ent_offset, &base_upper);
2552 ent_offset += 4;
2553
2554 flags |= IORESOURCE_MEM_64;
2555
2556 /* entry starts above 32-bit boundary, can't use */
2557 if (!support_64 && base_upper)
2558 goto out;
2559
2560 if (support_64)
2561 start |= ((u64)base_upper << 32);
2562 }
2563
2564 end = start + (max_offset | 0x03);
2565
2566 /* Read MaxOffset MSBs (if 64-bit entry) */
2567 if (max_offset & PCI_EA_IS_64) {
2568 u32 max_offset_upper;
2569
2570 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2571 ent_offset += 4;
2572
2573 flags |= IORESOURCE_MEM_64;
2574
2575 /* entry too big, can't use */
2576 if (!support_64 && max_offset_upper)
2577 goto out;
2578
2579 if (support_64)
2580 end += ((u64)max_offset_upper << 32);
2581 }
2582
2583 if (end < start) {
2584 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2585 goto out;
2586 }
2587
2588 if (ent_size != ent_offset - offset) {
2589 dev_err(&dev->dev,
2590 "EA Entry Size (%d) does not match length read (%d)\n",
2591 ent_size, ent_offset - offset);
2592 goto out;
2593 }
2594
2595 res->name = pci_name(dev);
2596 res->start = start;
2597 res->end = end;
2598 res->flags = flags;
597becb4
BH
2599
2600 if (bei <= PCI_EA_BEI_BAR5)
2601 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2602 bei, res, prop);
2603 else if (bei == PCI_EA_BEI_ROM)
2604 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2605 res, prop);
2606 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2607 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2608 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2609 else
2610 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2611 bei, res, prop);
2612
938174e5
SS
2613out:
2614 return offset + ent_size;
2615}
2616
dcbb408a 2617/* Enhanced Allocation Initialization */
938174e5
SS
2618void pci_ea_init(struct pci_dev *dev)
2619{
2620 int ea;
2621 u8 num_ent;
2622 int offset;
2623 int i;
2624
2625 /* find PCI EA capability in list */
2626 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2627 if (!ea)
2628 return;
2629
2630 /* determine the number of entries */
2631 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2632 &num_ent);
2633 num_ent &= PCI_EA_NUM_ENT_MASK;
2634
2635 offset = ea + PCI_EA_FIRST_ENT;
2636
2637 /* Skip DWORD 2 for type 1 functions */
2638 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2639 offset += 4;
2640
2641 /* parse each EA entry */
2642 for (i = 0; i < num_ent; ++i)
2643 offset = pci_ea_read(dev, offset);
2644}
2645
34a4876e
YL
2646static void pci_add_saved_cap(struct pci_dev *pci_dev,
2647 struct pci_cap_saved_state *new_cap)
2648{
2649 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2650}
2651
63f4898a 2652/**
fd0f7f73
AW
2653 * _pci_add_cap_save_buffer - allocate buffer for saving given
2654 * capability registers
63f4898a
RW
2655 * @dev: the PCI device
2656 * @cap: the capability to allocate the buffer for
fd0f7f73 2657 * @extended: Standard or Extended capability ID
63f4898a
RW
2658 * @size: requested size of the buffer
2659 */
fd0f7f73
AW
2660static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2661 bool extended, unsigned int size)
63f4898a
RW
2662{
2663 int pos;
2664 struct pci_cap_saved_state *save_state;
2665
fd0f7f73
AW
2666 if (extended)
2667 pos = pci_find_ext_capability(dev, cap);
2668 else
2669 pos = pci_find_capability(dev, cap);
2670
0a1a9b49 2671 if (!pos)
63f4898a
RW
2672 return 0;
2673
2674 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2675 if (!save_state)
2676 return -ENOMEM;
2677
24a4742f 2678 save_state->cap.cap_nr = cap;
fd0f7f73 2679 save_state->cap.cap_extended = extended;
24a4742f 2680 save_state->cap.size = size;
63f4898a
RW
2681 pci_add_saved_cap(dev, save_state);
2682
2683 return 0;
2684}
2685
fd0f7f73
AW
2686int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2687{
2688 return _pci_add_cap_save_buffer(dev, cap, false, size);
2689}
2690
2691int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2692{
2693 return _pci_add_cap_save_buffer(dev, cap, true, size);
2694}
2695
63f4898a
RW
2696/**
2697 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2698 * @dev: the PCI device
2699 */
2700void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2701{
2702 int error;
2703
89858517
YZ
2704 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2705 PCI_EXP_SAVE_REGS * sizeof(u16));
63f4898a
RW
2706 if (error)
2707 dev_err(&dev->dev,
2708 "unable to preallocate PCI Express save buffer\n");
2709
2710 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2711 if (error)
2712 dev_err(&dev->dev,
2713 "unable to preallocate PCI-X save buffer\n");
425c1b22
AW
2714
2715 pci_allocate_vc_save_buffers(dev);
63f4898a
RW
2716}
2717
f796841e
YL
2718void pci_free_cap_save_buffers(struct pci_dev *dev)
2719{
2720 struct pci_cap_saved_state *tmp;
b67bfe0d 2721 struct hlist_node *n;
f796841e 2722
b67bfe0d 2723 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
f796841e
YL
2724 kfree(tmp);
2725}
2726
58c3a727 2727/**
31ab2476 2728 * pci_configure_ari - enable or disable ARI forwarding
58c3a727 2729 * @dev: the PCI device
b0cc6020
YW
2730 *
2731 * If @dev and its upstream bridge both support ARI, enable ARI in the
2732 * bridge. Otherwise, disable ARI in the bridge.
58c3a727 2733 */
31ab2476 2734void pci_configure_ari(struct pci_dev *dev)
58c3a727 2735{
58c3a727 2736 u32 cap;
8113587c 2737 struct pci_dev *bridge;
58c3a727 2738
6748dcc2 2739 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
58c3a727
YZ
2740 return;
2741
8113587c 2742 bridge = dev->bus->self;
cb97ae34 2743 if (!bridge)
8113587c
ZY
2744 return;
2745
59875ae4 2746 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
58c3a727
YZ
2747 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2748 return;
2749
b0cc6020
YW
2750 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2751 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2752 PCI_EXP_DEVCTL2_ARI);
2753 bridge->ari_enabled = 1;
2754 } else {
2755 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2756 PCI_EXP_DEVCTL2_ARI);
2757 bridge->ari_enabled = 0;
2758 }
58c3a727
YZ
2759}
2760
5d990b62
CW
2761static int pci_acs_enable;
2762
2763/**
2764 * pci_request_acs - ask for ACS to be enabled if supported
2765 */
2766void pci_request_acs(void)
2767{
2768 pci_acs_enable = 1;
2769}
2770
ae21ee65 2771/**
2c744244 2772 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
ae21ee65
AK
2773 * @dev: the PCI device
2774 */
c1d61c9b 2775static void pci_std_enable_acs(struct pci_dev *dev)
ae21ee65
AK
2776{
2777 int pos;
2778 u16 cap;
2779 u16 ctrl;
2780
ae21ee65
AK
2781 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2782 if (!pos)
c1d61c9b 2783 return;
ae21ee65
AK
2784
2785 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2786 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2787
2788 /* Source Validation */
2789 ctrl |= (cap & PCI_ACS_SV);
2790
2791 /* P2P Request Redirect */
2792 ctrl |= (cap & PCI_ACS_RR);
2793
2794 /* P2P Completion Redirect */
2795 ctrl |= (cap & PCI_ACS_CR);
2796
2797 /* Upstream Forwarding */
2798 ctrl |= (cap & PCI_ACS_UF);
2799
2800 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2c744244
AW
2801}
2802
2803/**
2804 * pci_enable_acs - enable ACS if hardware support it
2805 * @dev: the PCI device
2806 */
2807void pci_enable_acs(struct pci_dev *dev)
2808{
2809 if (!pci_acs_enable)
2810 return;
2811
c1d61c9b 2812 if (!pci_dev_specific_enable_acs(dev))
2c744244
AW
2813 return;
2814
c1d61c9b 2815 pci_std_enable_acs(dev);
ae21ee65
AK
2816}
2817
0a67119f
AW
2818static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2819{
2820 int pos;
83db7e0b 2821 u16 cap, ctrl;
0a67119f
AW
2822
2823 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2824 if (!pos)
2825 return false;
2826
83db7e0b
AW
2827 /*
2828 * Except for egress control, capabilities are either required
2829 * or only required if controllable. Features missing from the
2830 * capability field can therefore be assumed as hard-wired enabled.
2831 */
2832 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2833 acs_flags &= (cap | PCI_ACS_EC);
2834
0a67119f
AW
2835 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2836 return (ctrl & acs_flags) == acs_flags;
2837}
2838
ad805758
AW
2839/**
2840 * pci_acs_enabled - test ACS against required flags for a given device
2841 * @pdev: device to test
2842 * @acs_flags: required PCI ACS flags
2843 *
2844 * Return true if the device supports the provided flags. Automatically
2845 * filters out flags that are not implemented on multifunction devices.
0a67119f
AW
2846 *
2847 * Note that this interface checks the effective ACS capabilities of the
2848 * device rather than the actual capabilities. For instance, most single
2849 * function endpoints are not required to support ACS because they have no
2850 * opportunity for peer-to-peer access. We therefore return 'true'
2851 * regardless of whether the device exposes an ACS capability. This makes
2852 * it much easier for callers of this function to ignore the actual type
2853 * or topology of the device when testing ACS support.
ad805758
AW
2854 */
2855bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2856{
0a67119f 2857 int ret;
ad805758
AW
2858
2859 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2860 if (ret >= 0)
2861 return ret > 0;
2862
0a67119f
AW
2863 /*
2864 * Conventional PCI and PCI-X devices never support ACS, either
2865 * effectively or actually. The shared bus topology implies that
2866 * any device on the bus can receive or snoop DMA.
2867 */
ad805758
AW
2868 if (!pci_is_pcie(pdev))
2869 return false;
2870
0a67119f
AW
2871 switch (pci_pcie_type(pdev)) {
2872 /*
2873 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
f7625980 2874 * but since their primary interface is PCI/X, we conservatively
0a67119f
AW
2875 * handle them as we would a non-PCIe device.
2876 */
2877 case PCI_EXP_TYPE_PCIE_BRIDGE:
2878 /*
2879 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2880 * applicable... must never implement an ACS Extended Capability...".
2881 * This seems arbitrary, but we take a conservative interpretation
2882 * of this statement.
2883 */
2884 case PCI_EXP_TYPE_PCI_BRIDGE:
2885 case PCI_EXP_TYPE_RC_EC:
2886 return false;
2887 /*
2888 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2889 * implement ACS in order to indicate their peer-to-peer capabilities,
2890 * regardless of whether they are single- or multi-function devices.
2891 */
2892 case PCI_EXP_TYPE_DOWNSTREAM:
2893 case PCI_EXP_TYPE_ROOT_PORT:
2894 return pci_acs_flags_enabled(pdev, acs_flags);
2895 /*
2896 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2897 * implemented by the remaining PCIe types to indicate peer-to-peer
f7625980 2898 * capabilities, but only when they are part of a multifunction
0a67119f
AW
2899 * device. The footnote for section 6.12 indicates the specific
2900 * PCIe types included here.
2901 */
2902 case PCI_EXP_TYPE_ENDPOINT:
2903 case PCI_EXP_TYPE_UPSTREAM:
2904 case PCI_EXP_TYPE_LEG_END:
2905 case PCI_EXP_TYPE_RC_END:
2906 if (!pdev->multifunction)
2907 break;
2908
0a67119f 2909 return pci_acs_flags_enabled(pdev, acs_flags);
ad805758
AW
2910 }
2911
0a67119f 2912 /*
f7625980 2913 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
0a67119f
AW
2914 * to single function devices with the exception of downstream ports.
2915 */
ad805758
AW
2916 return true;
2917}
2918
2919/**
2920 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2921 * @start: starting downstream device
2922 * @end: ending upstream device or NULL to search to the root bus
2923 * @acs_flags: required flags
2924 *
2925 * Walk up a device tree from start to end testing PCI ACS support. If
2926 * any step along the way does not support the required flags, return false.
2927 */
2928bool pci_acs_path_enabled(struct pci_dev *start,
2929 struct pci_dev *end, u16 acs_flags)
2930{
2931 struct pci_dev *pdev, *parent = start;
2932
2933 do {
2934 pdev = parent;
2935
2936 if (!pci_acs_enabled(pdev, acs_flags))
2937 return false;
2938
2939 if (pci_is_root_bus(pdev->bus))
2940 return (end == NULL);
2941
2942 parent = pdev->bus->self;
2943 } while (pdev != end);
2944
2945 return true;
2946}
2947
57c2cf71
BH
2948/**
2949 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2950 * @dev: the PCI device
bb5c2de2 2951 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
57c2cf71
BH
2952 *
2953 * Perform INTx swizzling for a device behind one level of bridge. This is
2954 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
46b952a3
MW
2955 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2956 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2957 * the PCI Express Base Specification, Revision 2.1)
57c2cf71 2958 */
3df425f3 2959u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
57c2cf71 2960{
46b952a3
MW
2961 int slot;
2962
2963 if (pci_ari_enabled(dev->bus))
2964 slot = 0;
2965 else
2966 slot = PCI_SLOT(dev->devfn);
2967
2968 return (((pin - 1) + slot) % 4) + 1;
57c2cf71
BH
2969}
2970
3c78bc61 2971int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1da177e4
LT
2972{
2973 u8 pin;
2974
514d207d 2975 pin = dev->pin;
1da177e4
LT
2976 if (!pin)
2977 return -1;
878f2e50 2978
8784fd4d 2979 while (!pci_is_root_bus(dev->bus)) {
57c2cf71 2980 pin = pci_swizzle_interrupt_pin(dev, pin);
1da177e4
LT
2981 dev = dev->bus->self;
2982 }
2983 *bridge = dev;
2984 return pin;
2985}
2986
68feac87
BH
2987/**
2988 * pci_common_swizzle - swizzle INTx all the way to root bridge
2989 * @dev: the PCI device
2990 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2991 *
2992 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2993 * bridges all the way up to a PCI root bus.
2994 */
2995u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2996{
2997 u8 pin = *pinp;
2998
1eb39487 2999 while (!pci_is_root_bus(dev->bus)) {
68feac87
BH
3000 pin = pci_swizzle_interrupt_pin(dev, pin);
3001 dev = dev->bus->self;
3002 }
3003 *pinp = pin;
3004 return PCI_SLOT(dev->devfn);
3005}
e6b29dea 3006EXPORT_SYMBOL_GPL(pci_common_swizzle);
68feac87 3007
1da177e4
LT
3008/**
3009 * pci_release_region - Release a PCI bar
3010 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3011 * @bar: BAR to release
3012 *
3013 * Releases the PCI I/O and memory resources previously reserved by a
3014 * successful call to pci_request_region. Call this function only
3015 * after all use of the PCI regions has ceased.
3016 */
3017void pci_release_region(struct pci_dev *pdev, int bar)
3018{
9ac7849e
TH
3019 struct pci_devres *dr;
3020
1da177e4
LT
3021 if (pci_resource_len(pdev, bar) == 0)
3022 return;
3023 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3024 release_region(pci_resource_start(pdev, bar),
3025 pci_resource_len(pdev, bar));
3026 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3027 release_mem_region(pci_resource_start(pdev, bar),
3028 pci_resource_len(pdev, bar));
9ac7849e
TH
3029
3030 dr = find_pci_dr(pdev);
3031 if (dr)
3032 dr->region_mask &= ~(1 << bar);
1da177e4 3033}
b7fe9434 3034EXPORT_SYMBOL(pci_release_region);
1da177e4
LT
3035
3036/**
f5ddcac4 3037 * __pci_request_region - Reserved PCI I/O and memory resource
1da177e4
LT
3038 * @pdev: PCI device whose resources are to be reserved
3039 * @bar: BAR to be reserved
3040 * @res_name: Name to be associated with resource.
f5ddcac4 3041 * @exclusive: whether the region access is exclusive or not
1da177e4
LT
3042 *
3043 * Mark the PCI region associated with PCI device @pdev BR @bar as
3044 * being reserved by owner @res_name. Do not access any
3045 * address inside the PCI regions unless this call returns
3046 * successfully.
3047 *
f5ddcac4
RD
3048 * If @exclusive is set, then the region is marked so that userspace
3049 * is explicitly not allowed to map the resource via /dev/mem or
f7625980 3050 * sysfs MMIO access.
f5ddcac4 3051 *
1da177e4
LT
3052 * Returns 0 on success, or %EBUSY on error. A warning
3053 * message is also printed on failure.
3054 */
3c78bc61
RD
3055static int __pci_request_region(struct pci_dev *pdev, int bar,
3056 const char *res_name, int exclusive)
1da177e4 3057{
9ac7849e
TH
3058 struct pci_devres *dr;
3059
1da177e4
LT
3060 if (pci_resource_len(pdev, bar) == 0)
3061 return 0;
f7625980 3062
1da177e4
LT
3063 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3064 if (!request_region(pci_resource_start(pdev, bar),
3065 pci_resource_len(pdev, bar), res_name))
3066 goto err_out;
3c78bc61 3067 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
e8de1481
AV
3068 if (!__request_mem_region(pci_resource_start(pdev, bar),
3069 pci_resource_len(pdev, bar), res_name,
3070 exclusive))
1da177e4
LT
3071 goto err_out;
3072 }
9ac7849e
TH
3073
3074 dr = find_pci_dr(pdev);
3075 if (dr)
3076 dr->region_mask |= 1 << bar;
3077
1da177e4
LT
3078 return 0;
3079
3080err_out:
c7dabef8 3081 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
096e6f67 3082 &pdev->resource[bar]);
1da177e4
LT
3083 return -EBUSY;
3084}
3085
e8de1481 3086/**
f5ddcac4 3087 * pci_request_region - Reserve PCI I/O and memory resource
e8de1481
AV
3088 * @pdev: PCI device whose resources are to be reserved
3089 * @bar: BAR to be reserved
f5ddcac4 3090 * @res_name: Name to be associated with resource
e8de1481 3091 *
f5ddcac4 3092 * Mark the PCI region associated with PCI device @pdev BAR @bar as
e8de1481
AV
3093 * being reserved by owner @res_name. Do not access any
3094 * address inside the PCI regions unless this call returns
3095 * successfully.
3096 *
3097 * Returns 0 on success, or %EBUSY on error. A warning
3098 * message is also printed on failure.
3099 */
3100int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3101{
3102 return __pci_request_region(pdev, bar, res_name, 0);
3103}
b7fe9434 3104EXPORT_SYMBOL(pci_request_region);
e8de1481
AV
3105
3106/**
3107 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3108 * @pdev: PCI device whose resources are to be reserved
3109 * @bar: BAR to be reserved
3110 * @res_name: Name to be associated with resource.
3111 *
3112 * Mark the PCI region associated with PCI device @pdev BR @bar as
3113 * being reserved by owner @res_name. Do not access any
3114 * address inside the PCI regions unless this call returns
3115 * successfully.
3116 *
3117 * Returns 0 on success, or %EBUSY on error. A warning
3118 * message is also printed on failure.
3119 *
3120 * The key difference that _exclusive makes it that userspace is
3121 * explicitly not allowed to map the resource via /dev/mem or
f7625980 3122 * sysfs.
e8de1481 3123 */
3c78bc61
RD
3124int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3125 const char *res_name)
e8de1481
AV
3126{
3127 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3128}
b7fe9434
RD
3129EXPORT_SYMBOL(pci_request_region_exclusive);
3130
c87deff7
HS
3131/**
3132 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3133 * @pdev: PCI device whose resources were previously reserved
3134 * @bars: Bitmask of BARs to be released
3135 *
3136 * Release selected PCI I/O and memory resources previously reserved.
3137 * Call this function only after all use of the PCI regions has ceased.
3138 */
3139void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3140{
3141 int i;
3142
3143 for (i = 0; i < 6; i++)
3144 if (bars & (1 << i))
3145 pci_release_region(pdev, i);
3146}
b7fe9434 3147EXPORT_SYMBOL(pci_release_selected_regions);
c87deff7 3148
9738abed 3149static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3c78bc61 3150 const char *res_name, int excl)
c87deff7
HS
3151{
3152 int i;
3153
3154 for (i = 0; i < 6; i++)
3155 if (bars & (1 << i))
e8de1481 3156 if (__pci_request_region(pdev, i, res_name, excl))
c87deff7
HS
3157 goto err_out;
3158 return 0;
3159
3160err_out:
3c78bc61 3161 while (--i >= 0)
c87deff7
HS
3162 if (bars & (1 << i))
3163 pci_release_region(pdev, i);
3164
3165 return -EBUSY;
3166}
1da177e4 3167
e8de1481
AV
3168
3169/**
3170 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3171 * @pdev: PCI device whose resources are to be reserved
3172 * @bars: Bitmask of BARs to be requested
3173 * @res_name: Name to be associated with resource
3174 */
3175int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3176 const char *res_name)
3177{
3178 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3179}
b7fe9434 3180EXPORT_SYMBOL(pci_request_selected_regions);
e8de1481 3181
3c78bc61
RD
3182int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3183 const char *res_name)
e8de1481
AV
3184{
3185 return __pci_request_selected_regions(pdev, bars, res_name,
3186 IORESOURCE_EXCLUSIVE);
3187}
b7fe9434 3188EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
e8de1481 3189
1da177e4
LT
3190/**
3191 * pci_release_regions - Release reserved PCI I/O and memory resources
3192 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3193 *
3194 * Releases all PCI I/O and memory resources previously reserved by a
3195 * successful call to pci_request_regions. Call this function only
3196 * after all use of the PCI regions has ceased.
3197 */
3198
3199void pci_release_regions(struct pci_dev *pdev)
3200{
c87deff7 3201 pci_release_selected_regions(pdev, (1 << 6) - 1);
1da177e4 3202}
b7fe9434 3203EXPORT_SYMBOL(pci_release_regions);
1da177e4
LT
3204
3205/**
3206 * pci_request_regions - Reserved PCI I/O and memory resources
3207 * @pdev: PCI device whose resources are to be reserved
3208 * @res_name: Name to be associated with resource.
3209 *
3210 * Mark all PCI regions associated with PCI device @pdev as
3211 * being reserved by owner @res_name. Do not access any
3212 * address inside the PCI regions unless this call returns
3213 * successfully.
3214 *
3215 * Returns 0 on success, or %EBUSY on error. A warning
3216 * message is also printed on failure.
3217 */
3c990e92 3218int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1da177e4 3219{
c87deff7 3220 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1da177e4 3221}
b7fe9434 3222EXPORT_SYMBOL(pci_request_regions);
1da177e4 3223
e8de1481
AV
3224/**
3225 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3226 * @pdev: PCI device whose resources are to be reserved
3227 * @res_name: Name to be associated with resource.
3228 *
3229 * Mark all PCI regions associated with PCI device @pdev as
3230 * being reserved by owner @res_name. Do not access any
3231 * address inside the PCI regions unless this call returns
3232 * successfully.
3233 *
3234 * pci_request_regions_exclusive() will mark the region so that
f7625980 3235 * /dev/mem and the sysfs MMIO access will not be allowed.
e8de1481
AV
3236 *
3237 * Returns 0 on success, or %EBUSY on error. A warning
3238 * message is also printed on failure.
3239 */
3240int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3241{
3242 return pci_request_selected_regions_exclusive(pdev,
3243 ((1 << 6) - 1), res_name);
3244}
b7fe9434 3245EXPORT_SYMBOL(pci_request_regions_exclusive);
e8de1481 3246
c5076cfe
TN
3247#ifdef PCI_IOBASE
3248struct io_range {
3249 struct list_head list;
3250 phys_addr_t start;
3251 resource_size_t size;
3252};
3253
3254static LIST_HEAD(io_range_list);
3255static DEFINE_SPINLOCK(io_range_lock);
3256#endif
3257
3258/*
3259 * Record the PCI IO range (expressed as CPU physical address + size).
3260 * Return a negative value if an error has occured, zero otherwise
3261 */
3262int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3263{
3264 int err = 0;
3265
3266#ifdef PCI_IOBASE
3267 struct io_range *range;
3268 resource_size_t allocated_size = 0;
3269
3270 /* check if the range hasn't been previously recorded */
3271 spin_lock(&io_range_lock);
3272 list_for_each_entry(range, &io_range_list, list) {
3273 if (addr >= range->start && addr + size <= range->start + size) {
3274 /* range already registered, bail out */
3275 goto end_register;
3276 }
3277 allocated_size += range->size;
3278 }
3279
3280 /* range not registed yet, check for available space */
3281 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3282 /* if it's too big check if 64K space can be reserved */
3283 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3284 err = -E2BIG;
3285 goto end_register;
3286 }
3287
3288 size = SZ_64K;
3289 pr_warn("Requested IO range too big, new size set to 64K\n");
3290 }
3291
3292 /* add the range to the list */
3293 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3294 if (!range) {
3295 err = -ENOMEM;
3296 goto end_register;
3297 }
3298
3299 range->start = addr;
3300 range->size = size;
3301
3302 list_add_tail(&range->list, &io_range_list);
3303
3304end_register:
3305 spin_unlock(&io_range_lock);
3306#endif
3307
3308 return err;
3309}
3310
3311phys_addr_t pci_pio_to_address(unsigned long pio)
3312{
3313 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3314
3315#ifdef PCI_IOBASE
3316 struct io_range *range;
3317 resource_size_t allocated_size = 0;
3318
3319 if (pio > IO_SPACE_LIMIT)
3320 return address;
3321
3322 spin_lock(&io_range_lock);
3323 list_for_each_entry(range, &io_range_list, list) {
3324 if (pio >= allocated_size && pio < allocated_size + range->size) {
3325 address = range->start + pio - allocated_size;
3326 break;
3327 }
3328 allocated_size += range->size;
3329 }
3330 spin_unlock(&io_range_lock);
3331#endif
3332
3333 return address;
3334}
3335
3336unsigned long __weak pci_address_to_pio(phys_addr_t address)
3337{
3338#ifdef PCI_IOBASE
3339 struct io_range *res;
3340 resource_size_t offset = 0;
3341 unsigned long addr = -1;
3342
3343 spin_lock(&io_range_lock);
3344 list_for_each_entry(res, &io_range_list, list) {
3345 if (address >= res->start && address < res->start + res->size) {
3346 addr = address - res->start + offset;
3347 break;
3348 }
3349 offset += res->size;
3350 }
3351 spin_unlock(&io_range_lock);
3352
3353 return addr;
3354#else
3355 if (address > IO_SPACE_LIMIT)
3356 return (unsigned long)-1;
3357
3358 return (unsigned long) address;
3359#endif
3360}
3361
8b921acf
LD
3362/**
3363 * pci_remap_iospace - Remap the memory mapped I/O space
3364 * @res: Resource describing the I/O space
3365 * @phys_addr: physical address of range to be mapped
3366 *
3367 * Remap the memory mapped I/O space described by the @res
3368 * and the CPU physical address @phys_addr into virtual address space.
3369 * Only architectures that have memory mapped IO functions defined
3370 * (and the PCI_IOBASE value defined) should call this function.
3371 */
7b309aef 3372int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
8b921acf
LD
3373{
3374#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3375 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3376
3377 if (!(res->flags & IORESOURCE_IO))
3378 return -EINVAL;
3379
3380 if (res->end > IO_SPACE_LIMIT)
3381 return -EINVAL;
3382
3383 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3384 pgprot_device(PAGE_KERNEL));
3385#else
3386 /* this architecture does not have memory mapped I/O space,
3387 so this function should never be called */
3388 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3389 return -ENODEV;
3390#endif
3391}
f90b0875 3392EXPORT_SYMBOL(pci_remap_iospace);
8b921acf 3393
4d3f1384
SK
3394/**
3395 * pci_unmap_iospace - Unmap the memory mapped I/O space
3396 * @res: resource to be unmapped
3397 *
3398 * Unmap the CPU virtual address @res from virtual address space.
3399 * Only architectures that have memory mapped IO functions defined
3400 * (and the PCI_IOBASE value defined) should call this function.
3401 */
3402void pci_unmap_iospace(struct resource *res)
3403{
3404#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3405 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3406
3407 unmap_kernel_range(vaddr, resource_size(res));
3408#endif
3409}
f90b0875 3410EXPORT_SYMBOL(pci_unmap_iospace);
4d3f1384 3411
490cb6dd
LP
3412/**
3413 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3414 * @dev: Generic device to remap IO address for
3415 * @offset: Resource address to map
3416 * @size: Size of map
3417 *
3418 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3419 * detach.
3420 */
3421void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3422 resource_size_t offset,
3423 resource_size_t size)
3424{
3425 void __iomem **ptr, *addr;
3426
3427 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3428 if (!ptr)
3429 return NULL;
3430
3431 addr = pci_remap_cfgspace(offset, size);
3432 if (addr) {
3433 *ptr = addr;
3434 devres_add(dev, ptr);
3435 } else
3436 devres_free(ptr);
3437
3438 return addr;
3439}
3440EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3441
3442/**
3443 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3444 * @dev: generic device to handle the resource for
3445 * @res: configuration space resource to be handled
3446 *
3447 * Checks that a resource is a valid memory region, requests the memory
3448 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3449 * proper PCI configuration space memory attributes are guaranteed.
3450 *
3451 * All operations are managed and will be undone on driver detach.
3452 *
3453 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3454 * on failure. Usage example:
3455 *
3456 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3457 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3458 * if (IS_ERR(base))
3459 * return PTR_ERR(base);
3460 */
3461void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3462 struct resource *res)
3463{
3464 resource_size_t size;
3465 const char *name;
3466 void __iomem *dest_ptr;
3467
3468 BUG_ON(!dev);
3469
3470 if (!res || resource_type(res) != IORESOURCE_MEM) {
3471 dev_err(dev, "invalid resource\n");
3472 return IOMEM_ERR_PTR(-EINVAL);
3473 }
3474
3475 size = resource_size(res);
3476 name = res->name ?: dev_name(dev);
3477
3478 if (!devm_request_mem_region(dev, res->start, size, name)) {
3479 dev_err(dev, "can't request region for resource %pR\n", res);
3480 return IOMEM_ERR_PTR(-EBUSY);
3481 }
3482
3483 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3484 if (!dest_ptr) {
3485 dev_err(dev, "ioremap failed for resource %pR\n", res);
3486 devm_release_mem_region(dev, res->start, size);
3487 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3488 }
3489
3490 return dest_ptr;
3491}
3492EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3493
6a479079
BH
3494static void __pci_set_master(struct pci_dev *dev, bool enable)
3495{
3496 u16 old_cmd, cmd;
3497
3498 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3499 if (enable)
3500 cmd = old_cmd | PCI_COMMAND_MASTER;
3501 else
3502 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3503 if (cmd != old_cmd) {
3504 dev_dbg(&dev->dev, "%s bus mastering\n",
3505 enable ? "enabling" : "disabling");
3506 pci_write_config_word(dev, PCI_COMMAND, cmd);
3507 }
3508 dev->is_busmaster = enable;
3509}
e8de1481 3510
2b6f2c35
MS
3511/**
3512 * pcibios_setup - process "pci=" kernel boot arguments
3513 * @str: string used to pass in "pci=" kernel boot arguments
3514 *
3515 * Process kernel boot arguments. This is the default implementation.
3516 * Architecture specific implementations can override this as necessary.
3517 */
3518char * __weak __init pcibios_setup(char *str)
3519{
3520 return str;
3521}
3522
96c55900
MS
3523/**
3524 * pcibios_set_master - enable PCI bus-mastering for device dev
3525 * @dev: the PCI device to enable
3526 *
3527 * Enables PCI bus-mastering for the device. This is the default
3528 * implementation. Architecture specific implementations can override
3529 * this if necessary.
3530 */
3531void __weak pcibios_set_master(struct pci_dev *dev)
3532{
3533 u8 lat;
3534
f676678f
MS
3535 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3536 if (pci_is_pcie(dev))
3537 return;
3538
96c55900
MS
3539 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3540 if (lat < 16)
3541 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3542 else if (lat > pcibios_max_latency)
3543 lat = pcibios_max_latency;
3544 else
3545 return;
a006482b 3546
96c55900
MS
3547 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3548}
3549
1da177e4
LT
3550/**
3551 * pci_set_master - enables bus-mastering for device dev
3552 * @dev: the PCI device to enable
3553 *
3554 * Enables bus-mastering on the device and calls pcibios_set_master()
3555 * to do the needed arch specific settings.
3556 */
6a479079 3557void pci_set_master(struct pci_dev *dev)
1da177e4 3558{
6a479079 3559 __pci_set_master(dev, true);
1da177e4
LT
3560 pcibios_set_master(dev);
3561}
b7fe9434 3562EXPORT_SYMBOL(pci_set_master);
1da177e4 3563
6a479079
BH
3564/**
3565 * pci_clear_master - disables bus-mastering for device dev
3566 * @dev: the PCI device to disable
3567 */
3568void pci_clear_master(struct pci_dev *dev)
3569{
3570 __pci_set_master(dev, false);
3571}
b7fe9434 3572EXPORT_SYMBOL(pci_clear_master);
6a479079 3573
1da177e4 3574/**
edb2d97e
MW
3575 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3576 * @dev: the PCI device for which MWI is to be enabled
1da177e4 3577 *
edb2d97e
MW
3578 * Helper function for pci_set_mwi.
3579 * Originally copied from drivers/net/acenic.c.
1da177e4
LT
3580 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3581 *
3582 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3583 */
15ea76d4 3584int pci_set_cacheline_size(struct pci_dev *dev)
1da177e4
LT
3585{
3586 u8 cacheline_size;
3587
3588 if (!pci_cache_line_size)
15ea76d4 3589 return -EINVAL;
1da177e4
LT
3590
3591 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3592 equal to or multiple of the right value. */
3593 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3594 if (cacheline_size >= pci_cache_line_size &&
3595 (cacheline_size % pci_cache_line_size) == 0)
3596 return 0;
3597
3598 /* Write the correct value. */
3599 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3600 /* Read it back. */
3601 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3602 if (cacheline_size == pci_cache_line_size)
3603 return 0;
3604
227f0647
RD
3605 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3606 pci_cache_line_size << 2);
1da177e4
LT
3607
3608 return -EINVAL;
3609}
15ea76d4
TH
3610EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3611
1da177e4
LT
3612/**
3613 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3614 * @dev: the PCI device for which MWI is enabled
3615 *
694625c0 3616 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1da177e4
LT
3617 *
3618 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3619 */
3c78bc61 3620int pci_set_mwi(struct pci_dev *dev)
1da177e4 3621{
b7fe9434
RD
3622#ifdef PCI_DISABLE_MWI
3623 return 0;
3624#else
1da177e4
LT
3625 int rc;
3626 u16 cmd;
3627
edb2d97e 3628 rc = pci_set_cacheline_size(dev);
1da177e4
LT
3629 if (rc)
3630 return rc;
3631
3632 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3c78bc61 3633 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
80ccba11 3634 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1da177e4
LT
3635 cmd |= PCI_COMMAND_INVALIDATE;
3636 pci_write_config_word(dev, PCI_COMMAND, cmd);
3637 }
1da177e4 3638 return 0;
b7fe9434 3639#endif
1da177e4 3640}
b7fe9434 3641EXPORT_SYMBOL(pci_set_mwi);
1da177e4 3642
694625c0
RD
3643/**
3644 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3645 * @dev: the PCI device for which MWI is enabled
3646 *
3647 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3648 * Callers are not required to check the return value.
3649 *
3650 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3651 */
3652int pci_try_set_mwi(struct pci_dev *dev)
3653{
b7fe9434
RD
3654#ifdef PCI_DISABLE_MWI
3655 return 0;
3656#else
3657 return pci_set_mwi(dev);
3658#endif
694625c0 3659}
b7fe9434 3660EXPORT_SYMBOL(pci_try_set_mwi);
694625c0 3661
1da177e4
LT
3662/**
3663 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3664 * @dev: the PCI device to disable
3665 *
3666 * Disables PCI Memory-Write-Invalidate transaction on the device
3667 */
3c78bc61 3668void pci_clear_mwi(struct pci_dev *dev)
1da177e4 3669{
b7fe9434 3670#ifndef PCI_DISABLE_MWI
1da177e4
LT
3671 u16 cmd;
3672
3673 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3674 if (cmd & PCI_COMMAND_INVALIDATE) {
3675 cmd &= ~PCI_COMMAND_INVALIDATE;
3676 pci_write_config_word(dev, PCI_COMMAND, cmd);
3677 }
b7fe9434 3678#endif
1da177e4 3679}
b7fe9434 3680EXPORT_SYMBOL(pci_clear_mwi);
1da177e4 3681
a04ce0ff
BR
3682/**
3683 * pci_intx - enables/disables PCI INTx for device dev
8f7020d3
RD
3684 * @pdev: the PCI device to operate on
3685 * @enable: boolean: whether to enable or disable PCI INTx
a04ce0ff
BR
3686 *
3687 * Enables/disables PCI INTx for device dev
3688 */
3c78bc61 3689void pci_intx(struct pci_dev *pdev, int enable)
a04ce0ff
BR
3690{
3691 u16 pci_command, new;
3692
3693 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3694
3c78bc61 3695 if (enable)
a04ce0ff 3696 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3c78bc61 3697 else
a04ce0ff 3698 new = pci_command | PCI_COMMAND_INTX_DISABLE;
a04ce0ff
BR
3699
3700 if (new != pci_command) {
9ac7849e
TH
3701 struct pci_devres *dr;
3702
2fd9d74b 3703 pci_write_config_word(pdev, PCI_COMMAND, new);
9ac7849e
TH
3704
3705 dr = find_pci_dr(pdev);
3706 if (dr && !dr->restore_intx) {
3707 dr->restore_intx = 1;
3708 dr->orig_intx = !enable;
3709 }
a04ce0ff
BR
3710 }
3711}
b7fe9434 3712EXPORT_SYMBOL_GPL(pci_intx);
a04ce0ff 3713
a2e27787
JK
3714/**
3715 * pci_intx_mask_supported - probe for INTx masking support
6e9292c5 3716 * @dev: the PCI device to operate on
a2e27787
JK
3717 *
3718 * Check if the device dev support INTx masking via the config space
3719 * command word.
3720 */
3721bool pci_intx_mask_supported(struct pci_dev *dev)
3722{
3723 bool mask_supported = false;
3724 u16 orig, new;
3725
fbebb9fd
BH
3726 if (dev->broken_intx_masking)
3727 return false;
3728
a2e27787
JK
3729 pci_cfg_access_lock(dev);
3730
3731 pci_read_config_word(dev, PCI_COMMAND, &orig);
3732 pci_write_config_word(dev, PCI_COMMAND,
3733 orig ^ PCI_COMMAND_INTX_DISABLE);
3734 pci_read_config_word(dev, PCI_COMMAND, &new);
3735
3736 /*
3737 * There's no way to protect against hardware bugs or detect them
3738 * reliably, but as long as we know what the value should be, let's
3739 * go ahead and check it.
3740 */
3741 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
227f0647
RD
3742 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3743 orig, new);
a2e27787
JK
3744 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3745 mask_supported = true;
3746 pci_write_config_word(dev, PCI_COMMAND, orig);
3747 }
3748
3749 pci_cfg_access_unlock(dev);
3750 return mask_supported;
3751}
3752EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3753
3754static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3755{
3756 struct pci_bus *bus = dev->bus;
3757 bool mask_updated = true;
3758 u32 cmd_status_dword;
3759 u16 origcmd, newcmd;
3760 unsigned long flags;
3761 bool irq_pending;
3762
3763 /*
3764 * We do a single dword read to retrieve both command and status.
3765 * Document assumptions that make this possible.
3766 */
3767 BUILD_BUG_ON(PCI_COMMAND % 4);
3768 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3769
3770 raw_spin_lock_irqsave(&pci_lock, flags);
3771
3772 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3773
3774 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3775
3776 /*
3777 * Check interrupt status register to see whether our device
3778 * triggered the interrupt (when masking) or the next IRQ is
3779 * already pending (when unmasking).
3780 */
3781 if (mask != irq_pending) {
3782 mask_updated = false;
3783 goto done;
3784 }
3785
3786 origcmd = cmd_status_dword;
3787 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3788 if (mask)
3789 newcmd |= PCI_COMMAND_INTX_DISABLE;
3790 if (newcmd != origcmd)
3791 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3792
3793done:
3794 raw_spin_unlock_irqrestore(&pci_lock, flags);
3795
3796 return mask_updated;
3797}
3798
3799/**
3800 * pci_check_and_mask_intx - mask INTx on pending interrupt
6e9292c5 3801 * @dev: the PCI device to operate on
a2e27787
JK
3802 *
3803 * Check if the device dev has its INTx line asserted, mask it and
3804 * return true in that case. False is returned if not interrupt was
3805 * pending.
3806 */
3807bool pci_check_and_mask_intx(struct pci_dev *dev)
3808{
3809 return pci_check_and_set_intx_mask(dev, true);
3810}
3811EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3812
3813/**
ebd50b93 3814 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
6e9292c5 3815 * @dev: the PCI device to operate on
a2e27787
JK
3816 *
3817 * Check if the device dev has its INTx line asserted, unmask it if not
3818 * and return true. False is returned and the mask remains active if
3819 * there was still an interrupt pending.
3820 */
3821bool pci_check_and_unmask_intx(struct pci_dev *dev)
3822{
3823 return pci_check_and_set_intx_mask(dev, false);
3824}
3825EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3826
3775a209
CL
3827/**
3828 * pci_wait_for_pending_transaction - waits for pending transaction
3829 * @dev: the PCI device to operate on
3830 *
3831 * Return 0 if transaction is pending 1 otherwise.
3832 */
3833int pci_wait_for_pending_transaction(struct pci_dev *dev)
8dd7f803 3834{
157e876f
AW
3835 if (!pci_is_pcie(dev))
3836 return 1;
8c1c699f 3837
d0b4cc4e
GS
3838 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3839 PCI_EXP_DEVSTA_TRPND);
3775a209
CL
3840}
3841EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3842
5adecf81
AW
3843/*
3844 * We should only need to wait 100ms after FLR, but some devices take longer.
3845 * Wait for up to 1000ms for config space to return something other than -1.
3846 * Intel IGD requires this when an LCD panel is attached. We read the 2nd
3847 * dword because VFs don't implement the 1st dword.
3848 */
3849static void pci_flr_wait(struct pci_dev *dev)
3850{
3851 int i = 0;
3852 u32 id;
3853
3854 do {
3855 msleep(100);
3856 pci_read_config_dword(dev, PCI_COMMAND, &id);
3857 } while (i++ < 10 && id == ~0);
3858
3859 if (id == ~0)
3860 dev_warn(&dev->dev, "Failed to return from FLR\n");
3861 else if (i > 1)
3862 dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3863 (i - 1) * 100);
3864}
3865
a60a2b73
CH
3866/**
3867 * pcie_has_flr - check if a device supports function level resets
3868 * @dev: device to check
3869 *
3870 * Returns true if the device advertises support for PCIe function level
3871 * resets.
3872 */
3873static bool pcie_has_flr(struct pci_dev *dev)
3775a209
CL
3874{
3875 u32 cap;
3876
f65fd1aa 3877 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
a60a2b73 3878 return false;
3775a209 3879
a60a2b73
CH
3880 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3881 return cap & PCI_EXP_DEVCAP_FLR;
3882}
3775a209 3883
a60a2b73
CH
3884/**
3885 * pcie_flr - initiate a PCIe function level reset
3886 * @dev: device to reset
3887 *
3888 * Initiate a function level reset on @dev. The caller should ensure the
3889 * device supports FLR before calling this function, e.g. by using the
3890 * pcie_has_flr() helper.
3891 */
3892void pcie_flr(struct pci_dev *dev)
3893{
3775a209 3894 if (!pci_wait_for_pending_transaction(dev))
bb383e28 3895 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
8c1c699f 3896
59875ae4 3897 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
5adecf81 3898 pci_flr_wait(dev);
8dd7f803 3899}
a60a2b73 3900EXPORT_SYMBOL_GPL(pcie_flr);
d91cdc74 3901
8c1c699f 3902static int pci_af_flr(struct pci_dev *dev, int probe)
1ca88797 3903{
8c1c699f 3904 int pos;
1ca88797
SY
3905 u8 cap;
3906
8c1c699f
YZ
3907 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3908 if (!pos)
1ca88797 3909 return -ENOTTY;
8c1c699f 3910
f65fd1aa
SN
3911 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3912 return -ENOTTY;
3913
8c1c699f 3914 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
1ca88797
SY
3915 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3916 return -ENOTTY;
3917
3918 if (probe)
3919 return 0;
3920
d066c946
AW
3921 /*
3922 * Wait for Transaction Pending bit to clear. A word-aligned test
3923 * is used, so we use the conrol offset rather than status and shift
3924 * the test bit to match.
3925 */
bb383e28 3926 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
d066c946 3927 PCI_AF_STATUS_TP << 8))
bb383e28 3928 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
5fe5db05 3929
8c1c699f 3930 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
5adecf81 3931 pci_flr_wait(dev);
1ca88797
SY
3932 return 0;
3933}
3934
83d74e03
RW
3935/**
3936 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3937 * @dev: Device to reset.
3938 * @probe: If set, only check if the device can be reset this way.
3939 *
3940 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3941 * unset, it will be reinitialized internally when going from PCI_D3hot to
3942 * PCI_D0. If that's the case and the device is not in a low-power state
3943 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3944 *
3945 * NOTE: This causes the caller to sleep for twice the device power transition
3946 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
f7625980 3947 * by default (i.e. unless the @dev's d3_delay field has a different value).
83d74e03
RW
3948 * Moreover, only devices in D0 can be reset by this function.
3949 */
f85876ba 3950static int pci_pm_reset(struct pci_dev *dev, int probe)
d91cdc74 3951{
f85876ba
YZ
3952 u16 csr;
3953
51e53738 3954 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
f85876ba 3955 return -ENOTTY;
d91cdc74 3956
f85876ba
YZ
3957 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3958 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3959 return -ENOTTY;
d91cdc74 3960
f85876ba
YZ
3961 if (probe)
3962 return 0;
1ca88797 3963
f85876ba
YZ
3964 if (dev->current_state != PCI_D0)
3965 return -EINVAL;
3966
3967 csr &= ~PCI_PM_CTRL_STATE_MASK;
3968 csr |= PCI_D3hot;
3969 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 3970 pci_dev_d3_sleep(dev);
f85876ba
YZ
3971
3972 csr &= ~PCI_PM_CTRL_STATE_MASK;
3973 csr |= PCI_D0;
3974 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 3975 pci_dev_d3_sleep(dev);
f85876ba
YZ
3976
3977 return 0;
3978}
3979
9e33002f 3980void pci_reset_secondary_bus(struct pci_dev *dev)
c12ff1df
YZ
3981{
3982 u16 ctrl;
64e8674f
AW
3983
3984 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3985 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3986 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
de0c548c
AW
3987 /*
3988 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
f7625980 3989 * this to 2ms to ensure that we meet the minimum requirement.
de0c548c
AW
3990 */
3991 msleep(2);
64e8674f
AW
3992
3993 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3994 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
de0c548c
AW
3995
3996 /*
3997 * Trhfa for conventional PCI is 2^25 clock cycles.
3998 * Assuming a minimum 33MHz clock this results in a 1s
3999 * delay before we can consider subordinate devices to
4000 * be re-initialized. PCIe has some ways to shorten this,
4001 * but we don't make use of them yet.
4002 */
4003 ssleep(1);
64e8674f 4004}
d92a208d 4005
9e33002f
GS
4006void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4007{
4008 pci_reset_secondary_bus(dev);
4009}
4010
d92a208d
GS
4011/**
4012 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4013 * @dev: Bridge device
4014 *
4015 * Use the bridge control register to assert reset on the secondary bus.
4016 * Devices on the secondary bus are left in power-on state.
4017 */
4018void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4019{
4020 pcibios_reset_secondary_bus(dev);
4021}
64e8674f
AW
4022EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4023
4024static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4025{
c12ff1df
YZ
4026 struct pci_dev *pdev;
4027
f331a859
AW
4028 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4029 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
c12ff1df
YZ
4030 return -ENOTTY;
4031
4032 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4033 if (pdev != dev)
4034 return -ENOTTY;
4035
4036 if (probe)
4037 return 0;
4038
64e8674f 4039 pci_reset_bridge_secondary_bus(dev->bus->self);
c12ff1df
YZ
4040
4041 return 0;
4042}
4043
608c3881
AW
4044static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4045{
4046 int rc = -ENOTTY;
4047
4048 if (!hotplug || !try_module_get(hotplug->ops->owner))
4049 return rc;
4050
4051 if (hotplug->ops->reset_slot)
4052 rc = hotplug->ops->reset_slot(hotplug, probe);
4053
4054 module_put(hotplug->ops->owner);
4055
4056 return rc;
4057}
4058
4059static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4060{
4061 struct pci_dev *pdev;
4062
f331a859
AW
4063 if (dev->subordinate || !dev->slot ||
4064 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
608c3881
AW
4065 return -ENOTTY;
4066
4067 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4068 if (pdev != dev && pdev->slot == dev->slot)
4069 return -ENOTTY;
4070
4071 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4072}
4073
977f857c 4074static int __pci_dev_reset(struct pci_dev *dev, int probe)
d91cdc74 4075{
8c1c699f
YZ
4076 int rc;
4077
4078 might_sleep();
4079
b9c3b266
DC
4080 rc = pci_dev_specific_reset(dev, probe);
4081 if (rc != -ENOTTY)
4082 goto done;
4083
a60a2b73
CH
4084 if (pcie_has_flr(dev)) {
4085 if (!probe)
4086 pcie_flr(dev);
4087 rc = 0;
8c1c699f 4088 goto done;
a60a2b73 4089 }
d91cdc74 4090
8c1c699f 4091 rc = pci_af_flr(dev, probe);
f85876ba
YZ
4092 if (rc != -ENOTTY)
4093 goto done;
4094
4095 rc = pci_pm_reset(dev, probe);
c12ff1df
YZ
4096 if (rc != -ENOTTY)
4097 goto done;
4098
608c3881
AW
4099 rc = pci_dev_reset_slot_function(dev, probe);
4100 if (rc != -ENOTTY)
4101 goto done;
4102
c12ff1df 4103 rc = pci_parent_bus_reset(dev, probe);
8c1c699f 4104done:
977f857c
KRW
4105 return rc;
4106}
4107
77cb985a
AW
4108static void pci_dev_lock(struct pci_dev *dev)
4109{
4110 pci_cfg_access_lock(dev);
4111 /* block PM suspend, driver probe, etc. */
4112 device_lock(&dev->dev);
4113}
4114
61cf16d8
AW
4115/* Return 1 on successful lock, 0 on contention */
4116static int pci_dev_trylock(struct pci_dev *dev)
4117{
4118 if (pci_cfg_access_trylock(dev)) {
4119 if (device_trylock(&dev->dev))
4120 return 1;
4121 pci_cfg_access_unlock(dev);
4122 }
4123
4124 return 0;
4125}
4126
77cb985a
AW
4127static void pci_dev_unlock(struct pci_dev *dev)
4128{
4129 device_unlock(&dev->dev);
4130 pci_cfg_access_unlock(dev);
4131}
4132
3ebe7f9f
KB
4133/**
4134 * pci_reset_notify - notify device driver of reset
4135 * @dev: device to be notified of reset
4136 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4137 * completed
4138 *
4139 * Must be called prior to device access being disabled and after device
4140 * access is restored.
4141 */
4142static void pci_reset_notify(struct pci_dev *dev, bool prepare)
4143{
4144 const struct pci_error_handlers *err_handler =
4145 dev->driver ? dev->driver->err_handler : NULL;
4146 if (err_handler && err_handler->reset_notify)
4147 err_handler->reset_notify(dev, prepare);
4148}
4149
77cb985a
AW
4150static void pci_dev_save_and_disable(struct pci_dev *dev)
4151{
3ebe7f9f
KB
4152 pci_reset_notify(dev, true);
4153
a6cbaade
AW
4154 /*
4155 * Wake-up device prior to save. PM registers default to D0 after
4156 * reset and a simple register restore doesn't reliably return
4157 * to a non-D0 state anyway.
4158 */
4159 pci_set_power_state(dev, PCI_D0);
4160
77cb985a
AW
4161 pci_save_state(dev);
4162 /*
4163 * Disable the device by clearing the Command register, except for
4164 * INTx-disable which is set. This not only disables MMIO and I/O port
4165 * BARs, but also prevents the device from being Bus Master, preventing
4166 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4167 * compliant devices, INTx-disable prevents legacy interrupts.
4168 */
4169 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4170}
4171
4172static void pci_dev_restore(struct pci_dev *dev)
4173{
4174 pci_restore_state(dev);
3ebe7f9f 4175 pci_reset_notify(dev, false);
77cb985a
AW
4176}
4177
977f857c
KRW
4178static int pci_dev_reset(struct pci_dev *dev, int probe)
4179{
4180 int rc;
4181
77cb985a
AW
4182 if (!probe)
4183 pci_dev_lock(dev);
977f857c
KRW
4184
4185 rc = __pci_dev_reset(dev, probe);
4186
77cb985a
AW
4187 if (!probe)
4188 pci_dev_unlock(dev);
4189
8c1c699f 4190 return rc;
d91cdc74 4191}
3ebe7f9f 4192
d91cdc74 4193/**
8c1c699f
YZ
4194 * __pci_reset_function - reset a PCI device function
4195 * @dev: PCI device to reset
d91cdc74
SY
4196 *
4197 * Some devices allow an individual function to be reset without affecting
4198 * other functions in the same device. The PCI device must be responsive
4199 * to PCI config space in order to use this function.
4200 *
4201 * The device function is presumed to be unused when this function is called.
4202 * Resetting the device will make the contents of PCI configuration space
4203 * random, so any caller of this must be prepared to reinitialise the
4204 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4205 * etc.
4206 *
8c1c699f 4207 * Returns 0 if the device function was successfully reset or negative if the
d91cdc74
SY
4208 * device doesn't support resetting a single function.
4209 */
8c1c699f 4210int __pci_reset_function(struct pci_dev *dev)
d91cdc74 4211{
8c1c699f 4212 return pci_dev_reset(dev, 0);
d91cdc74 4213}
8c1c699f 4214EXPORT_SYMBOL_GPL(__pci_reset_function);
8dd7f803 4215
6fbf9e7a
KRW
4216/**
4217 * __pci_reset_function_locked - reset a PCI device function while holding
4218 * the @dev mutex lock.
4219 * @dev: PCI device to reset
4220 *
4221 * Some devices allow an individual function to be reset without affecting
4222 * other functions in the same device. The PCI device must be responsive
4223 * to PCI config space in order to use this function.
4224 *
4225 * The device function is presumed to be unused and the caller is holding
4226 * the device mutex lock when this function is called.
4227 * Resetting the device will make the contents of PCI configuration space
4228 * random, so any caller of this must be prepared to reinitialise the
4229 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4230 * etc.
4231 *
4232 * Returns 0 if the device function was successfully reset or negative if the
4233 * device doesn't support resetting a single function.
4234 */
4235int __pci_reset_function_locked(struct pci_dev *dev)
4236{
977f857c 4237 return __pci_dev_reset(dev, 0);
6fbf9e7a
KRW
4238}
4239EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4240
711d5779
MT
4241/**
4242 * pci_probe_reset_function - check whether the device can be safely reset
4243 * @dev: PCI device to reset
4244 *
4245 * Some devices allow an individual function to be reset without affecting
4246 * other functions in the same device. The PCI device must be responsive
4247 * to PCI config space in order to use this function.
4248 *
4249 * Returns 0 if the device function can be reset or negative if the
4250 * device doesn't support resetting a single function.
4251 */
4252int pci_probe_reset_function(struct pci_dev *dev)
4253{
4254 return pci_dev_reset(dev, 1);
4255}
4256
8dd7f803 4257/**
8c1c699f
YZ
4258 * pci_reset_function - quiesce and reset a PCI device function
4259 * @dev: PCI device to reset
8dd7f803
SY
4260 *
4261 * Some devices allow an individual function to be reset without affecting
4262 * other functions in the same device. The PCI device must be responsive
4263 * to PCI config space in order to use this function.
4264 *
4265 * This function does not just reset the PCI portion of a device, but
4266 * clears all the state associated with the device. This function differs
8c1c699f 4267 * from __pci_reset_function in that it saves and restores device state
8dd7f803
SY
4268 * over the reset.
4269 *
8c1c699f 4270 * Returns 0 if the device function was successfully reset or negative if the
8dd7f803
SY
4271 * device doesn't support resetting a single function.
4272 */
4273int pci_reset_function(struct pci_dev *dev)
4274{
8c1c699f 4275 int rc;
8dd7f803 4276
8c1c699f
YZ
4277 rc = pci_dev_reset(dev, 1);
4278 if (rc)
4279 return rc;
8dd7f803 4280
77cb985a 4281 pci_dev_save_and_disable(dev);
8dd7f803 4282
8c1c699f 4283 rc = pci_dev_reset(dev, 0);
8dd7f803 4284
77cb985a 4285 pci_dev_restore(dev);
8dd7f803 4286
8c1c699f 4287 return rc;
8dd7f803
SY
4288}
4289EXPORT_SYMBOL_GPL(pci_reset_function);
4290
61cf16d8
AW
4291/**
4292 * pci_try_reset_function - quiesce and reset a PCI device function
4293 * @dev: PCI device to reset
4294 *
4295 * Same as above, except return -EAGAIN if unable to lock device.
4296 */
4297int pci_try_reset_function(struct pci_dev *dev)
4298{
4299 int rc;
4300
4301 rc = pci_dev_reset(dev, 1);
4302 if (rc)
4303 return rc;
4304
4305 pci_dev_save_and_disable(dev);
4306
4307 if (pci_dev_trylock(dev)) {
4308 rc = __pci_dev_reset(dev, 0);
4309 pci_dev_unlock(dev);
4310 } else
4311 rc = -EAGAIN;
4312
4313 pci_dev_restore(dev);
4314
4315 return rc;
4316}
4317EXPORT_SYMBOL_GPL(pci_try_reset_function);
4318
f331a859
AW
4319/* Do any devices on or below this bus prevent a bus reset? */
4320static bool pci_bus_resetable(struct pci_bus *bus)
4321{
4322 struct pci_dev *dev;
4323
4324 list_for_each_entry(dev, &bus->devices, bus_list) {
4325 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4326 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4327 return false;
4328 }
4329
4330 return true;
4331}
4332
090a3c53
AW
4333/* Lock devices from the top of the tree down */
4334static void pci_bus_lock(struct pci_bus *bus)
4335{
4336 struct pci_dev *dev;
4337
4338 list_for_each_entry(dev, &bus->devices, bus_list) {
4339 pci_dev_lock(dev);
4340 if (dev->subordinate)
4341 pci_bus_lock(dev->subordinate);
4342 }
4343}
4344
4345/* Unlock devices from the bottom of the tree up */
4346static void pci_bus_unlock(struct pci_bus *bus)
4347{
4348 struct pci_dev *dev;
4349
4350 list_for_each_entry(dev, &bus->devices, bus_list) {
4351 if (dev->subordinate)
4352 pci_bus_unlock(dev->subordinate);
4353 pci_dev_unlock(dev);
4354 }
4355}
4356
61cf16d8
AW
4357/* Return 1 on successful lock, 0 on contention */
4358static int pci_bus_trylock(struct pci_bus *bus)
4359{
4360 struct pci_dev *dev;
4361
4362 list_for_each_entry(dev, &bus->devices, bus_list) {
4363 if (!pci_dev_trylock(dev))
4364 goto unlock;
4365 if (dev->subordinate) {
4366 if (!pci_bus_trylock(dev->subordinate)) {
4367 pci_dev_unlock(dev);
4368 goto unlock;
4369 }
4370 }
4371 }
4372 return 1;
4373
4374unlock:
4375 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4376 if (dev->subordinate)
4377 pci_bus_unlock(dev->subordinate);
4378 pci_dev_unlock(dev);
4379 }
4380 return 0;
4381}
4382
f331a859
AW
4383/* Do any devices on or below this slot prevent a bus reset? */
4384static bool pci_slot_resetable(struct pci_slot *slot)
4385{
4386 struct pci_dev *dev;
4387
4388 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4389 if (!dev->slot || dev->slot != slot)
4390 continue;
4391 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4392 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4393 return false;
4394 }
4395
4396 return true;
4397}
4398
090a3c53
AW
4399/* Lock devices from the top of the tree down */
4400static void pci_slot_lock(struct pci_slot *slot)
4401{
4402 struct pci_dev *dev;
4403
4404 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4405 if (!dev->slot || dev->slot != slot)
4406 continue;
4407 pci_dev_lock(dev);
4408 if (dev->subordinate)
4409 pci_bus_lock(dev->subordinate);
4410 }
4411}
4412
4413/* Unlock devices from the bottom of the tree up */
4414static void pci_slot_unlock(struct pci_slot *slot)
4415{
4416 struct pci_dev *dev;
4417
4418 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4419 if (!dev->slot || dev->slot != slot)
4420 continue;
4421 if (dev->subordinate)
4422 pci_bus_unlock(dev->subordinate);
4423 pci_dev_unlock(dev);
4424 }
4425}
4426
61cf16d8
AW
4427/* Return 1 on successful lock, 0 on contention */
4428static int pci_slot_trylock(struct pci_slot *slot)
4429{
4430 struct pci_dev *dev;
4431
4432 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4433 if (!dev->slot || dev->slot != slot)
4434 continue;
4435 if (!pci_dev_trylock(dev))
4436 goto unlock;
4437 if (dev->subordinate) {
4438 if (!pci_bus_trylock(dev->subordinate)) {
4439 pci_dev_unlock(dev);
4440 goto unlock;
4441 }
4442 }
4443 }
4444 return 1;
4445
4446unlock:
4447 list_for_each_entry_continue_reverse(dev,
4448 &slot->bus->devices, bus_list) {
4449 if (!dev->slot || dev->slot != slot)
4450 continue;
4451 if (dev->subordinate)
4452 pci_bus_unlock(dev->subordinate);
4453 pci_dev_unlock(dev);
4454 }
4455 return 0;
4456}
4457
090a3c53
AW
4458/* Save and disable devices from the top of the tree down */
4459static void pci_bus_save_and_disable(struct pci_bus *bus)
4460{
4461 struct pci_dev *dev;
4462
4463 list_for_each_entry(dev, &bus->devices, bus_list) {
4464 pci_dev_save_and_disable(dev);
4465 if (dev->subordinate)
4466 pci_bus_save_and_disable(dev->subordinate);
4467 }
4468}
4469
4470/*
4471 * Restore devices from top of the tree down - parent bridges need to be
4472 * restored before we can get to subordinate devices.
4473 */
4474static void pci_bus_restore(struct pci_bus *bus)
4475{
4476 struct pci_dev *dev;
4477
4478 list_for_each_entry(dev, &bus->devices, bus_list) {
4479 pci_dev_restore(dev);
4480 if (dev->subordinate)
4481 pci_bus_restore(dev->subordinate);
4482 }
4483}
4484
4485/* Save and disable devices from the top of the tree down */
4486static void pci_slot_save_and_disable(struct pci_slot *slot)
4487{
4488 struct pci_dev *dev;
4489
4490 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4491 if (!dev->slot || dev->slot != slot)
4492 continue;
4493 pci_dev_save_and_disable(dev);
4494 if (dev->subordinate)
4495 pci_bus_save_and_disable(dev->subordinate);
4496 }
4497}
4498
4499/*
4500 * Restore devices from top of the tree down - parent bridges need to be
4501 * restored before we can get to subordinate devices.
4502 */
4503static void pci_slot_restore(struct pci_slot *slot)
4504{
4505 struct pci_dev *dev;
4506
4507 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4508 if (!dev->slot || dev->slot != slot)
4509 continue;
4510 pci_dev_restore(dev);
4511 if (dev->subordinate)
4512 pci_bus_restore(dev->subordinate);
4513 }
4514}
4515
4516static int pci_slot_reset(struct pci_slot *slot, int probe)
4517{
4518 int rc;
4519
f331a859 4520 if (!slot || !pci_slot_resetable(slot))
090a3c53
AW
4521 return -ENOTTY;
4522
4523 if (!probe)
4524 pci_slot_lock(slot);
4525
4526 might_sleep();
4527
4528 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4529
4530 if (!probe)
4531 pci_slot_unlock(slot);
4532
4533 return rc;
4534}
4535
9a3d2b9b
AW
4536/**
4537 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4538 * @slot: PCI slot to probe
4539 *
4540 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4541 */
4542int pci_probe_reset_slot(struct pci_slot *slot)
4543{
4544 return pci_slot_reset(slot, 1);
4545}
4546EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4547
090a3c53
AW
4548/**
4549 * pci_reset_slot - reset a PCI slot
4550 * @slot: PCI slot to reset
4551 *
4552 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4553 * independent of other slots. For instance, some slots may support slot power
4554 * control. In the case of a 1:1 bus to slot architecture, this function may
4555 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4556 * Generally a slot reset should be attempted before a bus reset. All of the
4557 * function of the slot and any subordinate buses behind the slot are reset
4558 * through this function. PCI config space of all devices in the slot and
4559 * behind the slot is saved before and restored after reset.
4560 *
4561 * Return 0 on success, non-zero on error.
4562 */
4563int pci_reset_slot(struct pci_slot *slot)
4564{
4565 int rc;
4566
4567 rc = pci_slot_reset(slot, 1);
4568 if (rc)
4569 return rc;
4570
4571 pci_slot_save_and_disable(slot);
4572
4573 rc = pci_slot_reset(slot, 0);
4574
4575 pci_slot_restore(slot);
4576
4577 return rc;
4578}
4579EXPORT_SYMBOL_GPL(pci_reset_slot);
4580
61cf16d8
AW
4581/**
4582 * pci_try_reset_slot - Try to reset a PCI slot
4583 * @slot: PCI slot to reset
4584 *
4585 * Same as above except return -EAGAIN if the slot cannot be locked
4586 */
4587int pci_try_reset_slot(struct pci_slot *slot)
4588{
4589 int rc;
4590
4591 rc = pci_slot_reset(slot, 1);
4592 if (rc)
4593 return rc;
4594
4595 pci_slot_save_and_disable(slot);
4596
4597 if (pci_slot_trylock(slot)) {
4598 might_sleep();
4599 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4600 pci_slot_unlock(slot);
4601 } else
4602 rc = -EAGAIN;
4603
4604 pci_slot_restore(slot);
4605
4606 return rc;
4607}
4608EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4609
090a3c53
AW
4610static int pci_bus_reset(struct pci_bus *bus, int probe)
4611{
f331a859 4612 if (!bus->self || !pci_bus_resetable(bus))
090a3c53
AW
4613 return -ENOTTY;
4614
4615 if (probe)
4616 return 0;
4617
4618 pci_bus_lock(bus);
4619
4620 might_sleep();
4621
4622 pci_reset_bridge_secondary_bus(bus->self);
4623
4624 pci_bus_unlock(bus);
4625
4626 return 0;
4627}
4628
9a3d2b9b
AW
4629/**
4630 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4631 * @bus: PCI bus to probe
4632 *
4633 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4634 */
4635int pci_probe_reset_bus(struct pci_bus *bus)
4636{
4637 return pci_bus_reset(bus, 1);
4638}
4639EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4640
090a3c53
AW
4641/**
4642 * pci_reset_bus - reset a PCI bus
4643 * @bus: top level PCI bus to reset
4644 *
4645 * Do a bus reset on the given bus and any subordinate buses, saving
4646 * and restoring state of all devices.
4647 *
4648 * Return 0 on success, non-zero on error.
4649 */
4650int pci_reset_bus(struct pci_bus *bus)
4651{
4652 int rc;
4653
4654 rc = pci_bus_reset(bus, 1);
4655 if (rc)
4656 return rc;
4657
4658 pci_bus_save_and_disable(bus);
4659
4660 rc = pci_bus_reset(bus, 0);
4661
4662 pci_bus_restore(bus);
4663
4664 return rc;
4665}
4666EXPORT_SYMBOL_GPL(pci_reset_bus);
4667
61cf16d8
AW
4668/**
4669 * pci_try_reset_bus - Try to reset a PCI bus
4670 * @bus: top level PCI bus to reset
4671 *
4672 * Same as above except return -EAGAIN if the bus cannot be locked
4673 */
4674int pci_try_reset_bus(struct pci_bus *bus)
4675{
4676 int rc;
4677
4678 rc = pci_bus_reset(bus, 1);
4679 if (rc)
4680 return rc;
4681
4682 pci_bus_save_and_disable(bus);
4683
4684 if (pci_bus_trylock(bus)) {
4685 might_sleep();
4686 pci_reset_bridge_secondary_bus(bus->self);
4687 pci_bus_unlock(bus);
4688 } else
4689 rc = -EAGAIN;
4690
4691 pci_bus_restore(bus);
4692
4693 return rc;
4694}
4695EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4696
d556ad4b
PO
4697/**
4698 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4699 * @dev: PCI device to query
4700 *
4701 * Returns mmrbc: maximum designed memory read count in bytes
4702 * or appropriate error value.
4703 */
4704int pcix_get_max_mmrbc(struct pci_dev *dev)
4705{
7c9e2b1c 4706 int cap;
d556ad4b
PO
4707 u32 stat;
4708
4709 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4710 if (!cap)
4711 return -EINVAL;
4712
7c9e2b1c 4713 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
d556ad4b
PO
4714 return -EINVAL;
4715
25daeb55 4716 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
d556ad4b
PO
4717}
4718EXPORT_SYMBOL(pcix_get_max_mmrbc);
4719
4720/**
4721 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4722 * @dev: PCI device to query
4723 *
4724 * Returns mmrbc: maximum memory read count in bytes
4725 * or appropriate error value.
4726 */
4727int pcix_get_mmrbc(struct pci_dev *dev)
4728{
7c9e2b1c 4729 int cap;
bdc2bda7 4730 u16 cmd;
d556ad4b
PO
4731
4732 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4733 if (!cap)
4734 return -EINVAL;
4735
7c9e2b1c
DN
4736 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4737 return -EINVAL;
d556ad4b 4738
7c9e2b1c 4739 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
d556ad4b
PO
4740}
4741EXPORT_SYMBOL(pcix_get_mmrbc);
4742
4743/**
4744 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4745 * @dev: PCI device to query
4746 * @mmrbc: maximum memory read count in bytes
4747 * valid values are 512, 1024, 2048, 4096
4748 *
4749 * If possible sets maximum memory read byte count, some bridges have erratas
4750 * that prevent this.
4751 */
4752int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4753{
7c9e2b1c 4754 int cap;
bdc2bda7
DN
4755 u32 stat, v, o;
4756 u16 cmd;
d556ad4b 4757
229f5afd 4758 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
7c9e2b1c 4759 return -EINVAL;
d556ad4b
PO
4760
4761 v = ffs(mmrbc) - 10;
4762
4763 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4764 if (!cap)
7c9e2b1c 4765 return -EINVAL;
d556ad4b 4766
7c9e2b1c
DN
4767 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4768 return -EINVAL;
d556ad4b
PO
4769
4770 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4771 return -E2BIG;
4772
7c9e2b1c
DN
4773 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4774 return -EINVAL;
d556ad4b
PO
4775
4776 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4777 if (o != v) {
809a3bf9 4778 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
d556ad4b
PO
4779 return -EIO;
4780
4781 cmd &= ~PCI_X_CMD_MAX_READ;
4782 cmd |= v << 2;
7c9e2b1c
DN
4783 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4784 return -EIO;
d556ad4b 4785 }
7c9e2b1c 4786 return 0;
d556ad4b
PO
4787}
4788EXPORT_SYMBOL(pcix_set_mmrbc);
4789
4790/**
4791 * pcie_get_readrq - get PCI Express read request size
4792 * @dev: PCI device to query
4793 *
4794 * Returns maximum memory read request in bytes
4795 * or appropriate error value.
4796 */
4797int pcie_get_readrq(struct pci_dev *dev)
4798{
d556ad4b
PO
4799 u16 ctl;
4800
59875ae4 4801 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
d556ad4b 4802
59875ae4 4803 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
d556ad4b
PO
4804}
4805EXPORT_SYMBOL(pcie_get_readrq);
4806
4807/**
4808 * pcie_set_readrq - set PCI Express maximum memory read request
4809 * @dev: PCI device to query
42e61f4a 4810 * @rq: maximum memory read count in bytes
d556ad4b
PO
4811 * valid values are 128, 256, 512, 1024, 2048, 4096
4812 *
c9b378c7 4813 * If possible sets maximum memory read request in bytes
d556ad4b
PO
4814 */
4815int pcie_set_readrq(struct pci_dev *dev, int rq)
4816{
59875ae4 4817 u16 v;
d556ad4b 4818
229f5afd 4819 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
59875ae4 4820 return -EINVAL;
d556ad4b 4821
a1c473aa
BH
4822 /*
4823 * If using the "performance" PCIe config, we clamp the
4824 * read rq size to the max packet size to prevent the
4825 * host bridge generating requests larger than we can
4826 * cope with
4827 */
4828 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4829 int mps = pcie_get_mps(dev);
4830
a1c473aa
BH
4831 if (mps < rq)
4832 rq = mps;
4833 }
4834
4835 v = (ffs(rq) - 8) << 12;
d556ad4b 4836
59875ae4
JL
4837 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4838 PCI_EXP_DEVCTL_READRQ, v);
d556ad4b
PO
4839}
4840EXPORT_SYMBOL(pcie_set_readrq);
4841
b03e7495
JM
4842/**
4843 * pcie_get_mps - get PCI Express maximum payload size
4844 * @dev: PCI device to query
4845 *
4846 * Returns maximum payload size in bytes
b03e7495
JM
4847 */
4848int pcie_get_mps(struct pci_dev *dev)
4849{
b03e7495
JM
4850 u16 ctl;
4851
59875ae4 4852 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
b03e7495 4853
59875ae4 4854 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
b03e7495 4855}
f1c66c46 4856EXPORT_SYMBOL(pcie_get_mps);
b03e7495
JM
4857
4858/**
4859 * pcie_set_mps - set PCI Express maximum payload size
4860 * @dev: PCI device to query
47c08f31 4861 * @mps: maximum payload size in bytes
b03e7495
JM
4862 * valid values are 128, 256, 512, 1024, 2048, 4096
4863 *
4864 * If possible sets maximum payload size
4865 */
4866int pcie_set_mps(struct pci_dev *dev, int mps)
4867{
59875ae4 4868 u16 v;
b03e7495
JM
4869
4870 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
59875ae4 4871 return -EINVAL;
b03e7495
JM
4872
4873 v = ffs(mps) - 8;
f7625980 4874 if (v > dev->pcie_mpss)
59875ae4 4875 return -EINVAL;
b03e7495
JM
4876 v <<= 5;
4877
59875ae4
JL
4878 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4879 PCI_EXP_DEVCTL_PAYLOAD, v);
b03e7495 4880}
f1c66c46 4881EXPORT_SYMBOL(pcie_set_mps);
b03e7495 4882
81377c8d
JK
4883/**
4884 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4885 * @dev: PCI device to query
4886 * @speed: storage for minimum speed
4887 * @width: storage for minimum width
4888 *
4889 * This function will walk up the PCI device chain and determine the minimum
4890 * link width and speed of the device.
4891 */
4892int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4893 enum pcie_link_width *width)
4894{
4895 int ret;
4896
4897 *speed = PCI_SPEED_UNKNOWN;
4898 *width = PCIE_LNK_WIDTH_UNKNOWN;
4899
4900 while (dev) {
4901 u16 lnksta;
4902 enum pci_bus_speed next_speed;
4903 enum pcie_link_width next_width;
4904
4905 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4906 if (ret)
4907 return ret;
4908
4909 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4910 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4911 PCI_EXP_LNKSTA_NLW_SHIFT;
4912
4913 if (next_speed < *speed)
4914 *speed = next_speed;
4915
4916 if (next_width < *width)
4917 *width = next_width;
4918
4919 dev = dev->bus->self;
4920 }
4921
4922 return 0;
4923}
4924EXPORT_SYMBOL(pcie_get_minimum_link);
4925
c87deff7
HS
4926/**
4927 * pci_select_bars - Make BAR mask from the type of resource
f95d882d 4928 * @dev: the PCI device for which BAR mask is made
c87deff7
HS
4929 * @flags: resource type mask to be selected
4930 *
4931 * This helper routine makes bar mask from the type of resource.
4932 */
4933int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4934{
4935 int i, bars = 0;
4936 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4937 if (pci_resource_flags(dev, i) & flags)
4938 bars |= (1 << i);
4939 return bars;
4940}
b7fe9434 4941EXPORT_SYMBOL(pci_select_bars);
c87deff7 4942
95a8b6ef
MT
4943/* Some architectures require additional programming to enable VGA */
4944static arch_set_vga_state_t arch_set_vga_state;
4945
4946void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4947{
4948 arch_set_vga_state = func; /* NULL disables */
4949}
4950
4951static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3c78bc61 4952 unsigned int command_bits, u32 flags)
95a8b6ef
MT
4953{
4954 if (arch_set_vga_state)
4955 return arch_set_vga_state(dev, decode, command_bits,
7ad35cf2 4956 flags);
95a8b6ef
MT
4957 return 0;
4958}
4959
deb2d2ec
BH
4960/**
4961 * pci_set_vga_state - set VGA decode state on device and parents if requested
19eea630
RD
4962 * @dev: the PCI device
4963 * @decode: true = enable decoding, false = disable decoding
4964 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3f37d622 4965 * @flags: traverse ancestors and change bridges
3448a19d 4966 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
deb2d2ec
BH
4967 */
4968int pci_set_vga_state(struct pci_dev *dev, bool decode,
3448a19d 4969 unsigned int command_bits, u32 flags)
deb2d2ec
BH
4970{
4971 struct pci_bus *bus;
4972 struct pci_dev *bridge;
4973 u16 cmd;
95a8b6ef 4974 int rc;
deb2d2ec 4975
67ebd814 4976 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
deb2d2ec 4977
95a8b6ef 4978 /* ARCH specific VGA enables */
3448a19d 4979 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
95a8b6ef
MT
4980 if (rc)
4981 return rc;
4982
3448a19d
DA
4983 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4984 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4985 if (decode == true)
4986 cmd |= command_bits;
4987 else
4988 cmd &= ~command_bits;
4989 pci_write_config_word(dev, PCI_COMMAND, cmd);
4990 }
deb2d2ec 4991
3448a19d 4992 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
deb2d2ec
BH
4993 return 0;
4994
4995 bus = dev->bus;
4996 while (bus) {
4997 bridge = bus->self;
4998 if (bridge) {
4999 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5000 &cmd);
5001 if (decode == true)
5002 cmd |= PCI_BRIDGE_CTL_VGA;
5003 else
5004 cmd &= ~PCI_BRIDGE_CTL_VGA;
5005 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5006 cmd);
5007 }
5008 bus = bus->parent;
5009 }
5010 return 0;
5011}
5012
f0af9593
BH
5013/**
5014 * pci_add_dma_alias - Add a DMA devfn alias for a device
5015 * @dev: the PCI device for which alias is added
5016 * @devfn: alias slot and function
5017 *
5018 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5019 * It should be called early, preferably as PCI fixup header quirk.
5020 */
5021void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5022{
338c3149
JL
5023 if (!dev->dma_alias_mask)
5024 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5025 sizeof(long), GFP_KERNEL);
5026 if (!dev->dma_alias_mask) {
5027 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5028 return;
5029 }
5030
5031 set_bit(devfn, dev->dma_alias_mask);
48c83080
BH
5032 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5033 PCI_SLOT(devfn), PCI_FUNC(devfn));
f0af9593
BH
5034}
5035
338c3149
JL
5036bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5037{
5038 return (dev1->dma_alias_mask &&
5039 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5040 (dev2->dma_alias_mask &&
5041 test_bit(dev1->devfn, dev2->dma_alias_mask));
5042}
5043
8496e85c
RW
5044bool pci_device_is_present(struct pci_dev *pdev)
5045{
5046 u32 v;
5047
fe2bd75b
KB
5048 if (pci_dev_is_disconnected(pdev))
5049 return false;
8496e85c
RW
5050 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5051}
5052EXPORT_SYMBOL_GPL(pci_device_is_present);
5053
08249651
RW
5054void pci_ignore_hotplug(struct pci_dev *dev)
5055{
5056 struct pci_dev *bridge = dev->bus->self;
5057
5058 dev->ignore_hotplug = 1;
5059 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5060 if (bridge)
5061 bridge->ignore_hotplug = 1;
5062}
5063EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5064
0a701aa6
YX
5065resource_size_t __weak pcibios_default_alignment(void)
5066{
5067 return 0;
5068}
5069
32a9a682
YS
5070#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5071static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
e9d1e492 5072static DEFINE_SPINLOCK(resource_alignment_lock);
32a9a682
YS
5073
5074/**
5075 * pci_specified_resource_alignment - get resource alignment specified by user.
5076 * @dev: the PCI device to get
e3adec72 5077 * @resize: whether or not to change resources' size when reassigning alignment
32a9a682
YS
5078 *
5079 * RETURNS: Resource alignment if it is specified.
5080 * Zero if it is not specified.
5081 */
e3adec72
YX
5082static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5083 bool *resize)
32a9a682
YS
5084{
5085 int seg, bus, slot, func, align_order, count;
644a544f 5086 unsigned short vendor, device, subsystem_vendor, subsystem_device;
0a701aa6 5087 resource_size_t align = pcibios_default_alignment();
32a9a682
YS
5088 char *p;
5089
5090 spin_lock(&resource_alignment_lock);
5091 p = resource_alignment_param;
0a701aa6 5092 if (!*p && !align)
f0b99f70
YX
5093 goto out;
5094 if (pci_has_flag(PCI_PROBE_ONLY)) {
0a701aa6 5095 align = 0;
f0b99f70
YX
5096 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5097 goto out;
5098 }
5099
32a9a682
YS
5100 while (*p) {
5101 count = 0;
5102 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5103 p[count] == '@') {
5104 p += count + 1;
5105 } else {
5106 align_order = -1;
5107 }
644a544f
KMEE
5108 if (strncmp(p, "pci:", 4) == 0) {
5109 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5110 p += 4;
5111 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5112 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5113 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5114 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5115 p);
5116 break;
5117 }
5118 subsystem_vendor = subsystem_device = 0;
5119 }
5120 p += count;
5121 if ((!vendor || (vendor == dev->vendor)) &&
5122 (!device || (device == dev->device)) &&
5123 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5124 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
e3adec72 5125 *resize = true;
644a544f
KMEE
5126 if (align_order == -1)
5127 align = PAGE_SIZE;
5128 else
5129 align = 1 << align_order;
5130 /* Found */
32a9a682
YS
5131 break;
5132 }
5133 }
644a544f
KMEE
5134 else {
5135 if (sscanf(p, "%x:%x:%x.%x%n",
5136 &seg, &bus, &slot, &func, &count) != 4) {
5137 seg = 0;
5138 if (sscanf(p, "%x:%x.%x%n",
5139 &bus, &slot, &func, &count) != 3) {
5140 /* Invalid format */
5141 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5142 p);
5143 break;
5144 }
5145 }
5146 p += count;
5147 if (seg == pci_domain_nr(dev->bus) &&
5148 bus == dev->bus->number &&
5149 slot == PCI_SLOT(dev->devfn) &&
5150 func == PCI_FUNC(dev->devfn)) {
e3adec72 5151 *resize = true;
644a544f
KMEE
5152 if (align_order == -1)
5153 align = PAGE_SIZE;
5154 else
5155 align = 1 << align_order;
5156 /* Found */
5157 break;
5158 }
32a9a682
YS
5159 }
5160 if (*p != ';' && *p != ',') {
5161 /* End of param or invalid format */
5162 break;
5163 }
5164 p++;
5165 }
f0b99f70 5166out:
32a9a682
YS
5167 spin_unlock(&resource_alignment_lock);
5168 return align;
5169}
5170
81a5e70e 5171static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
e3adec72 5172 resource_size_t align, bool resize)
81a5e70e
BH
5173{
5174 struct resource *r = &dev->resource[bar];
5175 resource_size_t size;
5176
5177 if (!(r->flags & IORESOURCE_MEM))
5178 return;
5179
5180 if (r->flags & IORESOURCE_PCI_FIXED) {
5181 dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5182 bar, r, (unsigned long long)align);
5183 return;
5184 }
5185
5186 size = resource_size(r);
0dde1c08
BH
5187 if (size >= align)
5188 return;
81a5e70e 5189
0dde1c08 5190 /*
e3adec72
YX
5191 * Increase the alignment of the resource. There are two ways we
5192 * can do this:
0dde1c08 5193 *
e3adec72
YX
5194 * 1) Increase the size of the resource. BARs are aligned on their
5195 * size, so when we reallocate space for this resource, we'll
5196 * allocate it with the larger alignment. This also prevents
5197 * assignment of any other BARs inside the alignment region, so
5198 * if we're requesting page alignment, this means no other BARs
5199 * will share the page.
5200 *
5201 * The disadvantage is that this makes the resource larger than
5202 * the hardware BAR, which may break drivers that compute things
5203 * based on the resource size, e.g., to find registers at a
5204 * fixed offset before the end of the BAR.
5205 *
5206 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5207 * set r->start to the desired alignment. By itself this
5208 * doesn't prevent other BARs being put inside the alignment
5209 * region, but if we realign *every* resource of every device in
5210 * the system, none of them will share an alignment region.
5211 *
5212 * When the user has requested alignment for only some devices via
5213 * the "pci=resource_alignment" argument, "resize" is true and we
5214 * use the first method. Otherwise we assume we're aligning all
5215 * devices and we use the second.
0dde1c08 5216 */
e3adec72 5217
0dde1c08
BH
5218 dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n",
5219 bar, r, (unsigned long long)align);
81a5e70e 5220
e3adec72
YX
5221 if (resize) {
5222 r->start = 0;
5223 r->end = align - 1;
5224 } else {
5225 r->flags &= ~IORESOURCE_SIZEALIGN;
5226 r->flags |= IORESOURCE_STARTALIGN;
5227 r->start = align;
5228 r->end = r->start + size - 1;
5229 }
0dde1c08 5230 r->flags |= IORESOURCE_UNSET;
81a5e70e
BH
5231}
5232
2069ecfb
YL
5233/*
5234 * This function disables memory decoding and releases memory resources
5235 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5236 * It also rounds up size to specified alignment.
5237 * Later on, the kernel will assign page-aligned memory resource back
5238 * to the device.
5239 */
5240void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5241{
5242 int i;
5243 struct resource *r;
81a5e70e 5244 resource_size_t align;
2069ecfb 5245 u16 command;
e3adec72 5246 bool resize = false;
2069ecfb 5247
62d9a78f
YX
5248 /*
5249 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5250 * 3.4.1.11. Their resources are allocated from the space
5251 * described by the VF BARx register in the PF's SR-IOV capability.
5252 * We can't influence their alignment here.
5253 */
5254 if (dev->is_virtfn)
5255 return;
5256
10c463a7 5257 /* check if specified PCI is target device to reassign */
e3adec72 5258 align = pci_specified_resource_alignment(dev, &resize);
10c463a7 5259 if (!align)
2069ecfb
YL
5260 return;
5261
5262 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5263 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5264 dev_warn(&dev->dev,
5265 "Can't reassign resources to host bridge.\n");
5266 return;
5267 }
5268
5269 dev_info(&dev->dev,
5270 "Disabling memory decoding and releasing memory resources.\n");
5271 pci_read_config_word(dev, PCI_COMMAND, &command);
5272 command &= ~PCI_COMMAND_MEMORY;
5273 pci_write_config_word(dev, PCI_COMMAND, command);
5274
81a5e70e 5275 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
e3adec72 5276 pci_request_resource_alignment(dev, i, align, resize);
f0b99f70 5277
81a5e70e
BH
5278 /*
5279 * Need to disable bridge's resource window,
2069ecfb
YL
5280 * to enable the kernel to reassign new resource
5281 * window later on.
5282 */
5283 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5284 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5285 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5286 r = &dev->resource[i];
5287 if (!(r->flags & IORESOURCE_MEM))
5288 continue;
bd064f0a 5289 r->flags |= IORESOURCE_UNSET;
2069ecfb
YL
5290 r->end = resource_size(r) - 1;
5291 r->start = 0;
5292 }
5293 pci_disable_bridge_window(dev);
5294 }
5295}
5296
9738abed 5297static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
32a9a682
YS
5298{
5299 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5300 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5301 spin_lock(&resource_alignment_lock);
5302 strncpy(resource_alignment_param, buf, count);
5303 resource_alignment_param[count] = '\0';
5304 spin_unlock(&resource_alignment_lock);
5305 return count;
5306}
5307
9738abed 5308static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
32a9a682
YS
5309{
5310 size_t count;
5311 spin_lock(&resource_alignment_lock);
5312 count = snprintf(buf, size, "%s", resource_alignment_param);
5313 spin_unlock(&resource_alignment_lock);
5314 return count;
5315}
5316
5317static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5318{
5319 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5320}
5321
5322static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5323 const char *buf, size_t count)
5324{
5325 return pci_set_resource_alignment_param(buf, count);
5326}
5327
21751a9a 5328static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
32a9a682
YS
5329 pci_resource_alignment_store);
5330
5331static int __init pci_resource_alignment_sysfs_init(void)
5332{
5333 return bus_create_file(&pci_bus_type,
5334 &bus_attr_resource_alignment);
5335}
32a9a682
YS
5336late_initcall(pci_resource_alignment_sysfs_init);
5337
15856ad5 5338static void pci_no_domains(void)
32a2eea7
JG
5339{
5340#ifdef CONFIG_PCI_DOMAINS
5341 pci_domains_supported = 0;
5342#endif
5343}
5344
41e5c0f8
LD
5345#ifdef CONFIG_PCI_DOMAINS
5346static atomic_t __domain_nr = ATOMIC_INIT(-1);
5347
5348int pci_get_new_domain_nr(void)
5349{
5350 return atomic_inc_return(&__domain_nr);
5351}
7c674700
LP
5352
5353#ifdef CONFIG_PCI_DOMAINS_GENERIC
1a4f93f7 5354static int of_pci_bus_find_domain_nr(struct device *parent)
7c674700
LP
5355{
5356 static int use_dt_domains = -1;
54c6e2dd 5357 int domain = -1;
7c674700 5358
54c6e2dd
KHC
5359 if (parent)
5360 domain = of_get_pci_domain_nr(parent->of_node);
7c674700
LP
5361 /*
5362 * Check DT domain and use_dt_domains values.
5363 *
5364 * If DT domain property is valid (domain >= 0) and
5365 * use_dt_domains != 0, the DT assignment is valid since this means
5366 * we have not previously allocated a domain number by using
5367 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5368 * 1, to indicate that we have just assigned a domain number from
5369 * DT.
5370 *
5371 * If DT domain property value is not valid (ie domain < 0), and we
5372 * have not previously assigned a domain number from DT
5373 * (use_dt_domains != 1) we should assign a domain number by
5374 * using the:
5375 *
5376 * pci_get_new_domain_nr()
5377 *
5378 * API and update the use_dt_domains value to keep track of method we
5379 * are using to assign domain numbers (use_dt_domains = 0).
5380 *
5381 * All other combinations imply we have a platform that is trying
5382 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5383 * which is a recipe for domain mishandling and it is prevented by
5384 * invalidating the domain value (domain = -1) and printing a
5385 * corresponding error.
5386 */
5387 if (domain >= 0 && use_dt_domains) {
5388 use_dt_domains = 1;
5389 } else if (domain < 0 && use_dt_domains != 1) {
5390 use_dt_domains = 0;
5391 domain = pci_get_new_domain_nr();
5392 } else {
5393 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5394 parent->of_node->full_name);
5395 domain = -1;
5396 }
5397
9c7cb891 5398 return domain;
7c674700 5399}
1a4f93f7
TN
5400
5401int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5402{
2ab51dde
TN
5403 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5404 acpi_pci_bus_find_domain_nr(bus);
7c674700
LP
5405}
5406#endif
41e5c0f8
LD
5407#endif
5408
0ef5f8f6 5409/**
642c92da 5410 * pci_ext_cfg_avail - can we access extended PCI config space?
0ef5f8f6
AP
5411 *
5412 * Returns 1 if we can access PCI extended config space (offsets
5413 * greater than 0xff). This is the default implementation. Architecture
5414 * implementations can override this.
5415 */
642c92da 5416int __weak pci_ext_cfg_avail(void)
0ef5f8f6
AP
5417{
5418 return 1;
5419}
5420
2d1c8618
BH
5421void __weak pci_fixup_cardbus(struct pci_bus *bus)
5422{
5423}
5424EXPORT_SYMBOL(pci_fixup_cardbus);
5425
ad04d31e 5426static int __init pci_setup(char *str)
1da177e4
LT
5427{
5428 while (str) {
5429 char *k = strchr(str, ',');
5430 if (k)
5431 *k++ = 0;
5432 if (*str && (str = pcibios_setup(str)) && *str) {
309e57df
MW
5433 if (!strcmp(str, "nomsi")) {
5434 pci_no_msi();
7f785763
RD
5435 } else if (!strcmp(str, "noaer")) {
5436 pci_no_aer();
b55438fd
YL
5437 } else if (!strncmp(str, "realloc=", 8)) {
5438 pci_realloc_get_opt(str + 8);
f483d392 5439 } else if (!strncmp(str, "realloc", 7)) {
b55438fd 5440 pci_realloc_get_opt("on");
32a2eea7
JG
5441 } else if (!strcmp(str, "nodomains")) {
5442 pci_no_domains();
6748dcc2
RW
5443 } else if (!strncmp(str, "noari", 5)) {
5444 pcie_ari_disabled = true;
4516a618
AN
5445 } else if (!strncmp(str, "cbiosize=", 9)) {
5446 pci_cardbus_io_size = memparse(str + 9, &str);
5447 } else if (!strncmp(str, "cbmemsize=", 10)) {
5448 pci_cardbus_mem_size = memparse(str + 10, &str);
32a9a682
YS
5449 } else if (!strncmp(str, "resource_alignment=", 19)) {
5450 pci_set_resource_alignment_param(str + 19,
5451 strlen(str + 19));
43c16408
AP
5452 } else if (!strncmp(str, "ecrc=", 5)) {
5453 pcie_ecrc_get_policy(str + 5);
28760489
EB
5454 } else if (!strncmp(str, "hpiosize=", 9)) {
5455 pci_hotplug_io_size = memparse(str + 9, &str);
5456 } else if (!strncmp(str, "hpmemsize=", 10)) {
5457 pci_hotplug_mem_size = memparse(str + 10, &str);
e16b4660
KB
5458 } else if (!strncmp(str, "hpbussize=", 10)) {
5459 pci_hotplug_bus_size =
5460 simple_strtoul(str + 10, &str, 0);
5461 if (pci_hotplug_bus_size > 0xff)
5462 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5f39e670
JM
5463 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5464 pcie_bus_config = PCIE_BUS_TUNE_OFF;
b03e7495
JM
5465 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5466 pcie_bus_config = PCIE_BUS_SAFE;
5467 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5468 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5f39e670
JM
5469 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5470 pcie_bus_config = PCIE_BUS_PEER2PEER;
284f5f9d
BH
5471 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5472 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
309e57df
MW
5473 } else {
5474 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5475 str);
5476 }
1da177e4
LT
5477 }
5478 str = k;
5479 }
0637a70a 5480 return 0;
1da177e4 5481}
0637a70a 5482early_param("pci", pci_setup);