]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/pci/pci.c
PCI: Test for std config alias when testing extended config space
[mirror_ubuntu-artful-kernel.git] / drivers / pci / pci.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10#include <linux/kernel.h>
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/pci.h>
075c1771 14#include <linux/pm.h>
5a0e3ad6 15#include <linux/slab.h>
1da177e4
LT
16#include <linux/module.h>
17#include <linux/spinlock.h>
4e57b681 18#include <linux/string.h>
229f5afd 19#include <linux/log2.h>
7d715a6c 20#include <linux/pci-aspm.h>
c300bd2f 21#include <linux/pm_wakeup.h>
8dd7f803 22#include <linux/interrupt.h>
32a9a682 23#include <linux/device.h>
b67ea761 24#include <linux/pm_runtime.h>
608c3881 25#include <linux/pci_hotplug.h>
284f5f9d 26#include <asm-generic/pci-bridge.h>
32a9a682 27#include <asm/setup.h>
bc56b9e0 28#include "pci.h"
1da177e4 29
00240c38
AS
30const char *pci_power_names[] = {
31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32};
33EXPORT_SYMBOL_GPL(pci_power_names);
34
93177a74
RW
35int isa_dma_bridge_buggy;
36EXPORT_SYMBOL(isa_dma_bridge_buggy);
37
38int pci_pci_problems;
39EXPORT_SYMBOL(pci_pci_problems);
40
1ae861e6
RW
41unsigned int pci_pm_d3_delay;
42
df17e62e
MG
43static void pci_pme_list_scan(struct work_struct *work);
44
45static LIST_HEAD(pci_pme_list);
46static DEFINE_MUTEX(pci_pme_list_mutex);
47static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48
49struct pci_pme_device {
50 struct list_head list;
51 struct pci_dev *dev;
52};
53
54#define PME_TIMEOUT 1000 /* How long between PME checks */
55
1ae861e6
RW
56static void pci_dev_d3_sleep(struct pci_dev *dev)
57{
58 unsigned int delay = dev->d3_delay;
59
60 if (delay < pci_pm_d3_delay)
61 delay = pci_pm_d3_delay;
62
63 msleep(delay);
64}
1da177e4 65
32a2eea7
JG
66#ifdef CONFIG_PCI_DOMAINS
67int pci_domains_supported = 1;
68#endif
69
4516a618
AN
70#define DEFAULT_CARDBUS_IO_SIZE (256)
71#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
72/* pci=cbmemsize=nnM,cbiosize=nn can override this */
73unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75
28760489
EB
76#define DEFAULT_HOTPLUG_IO_SIZE (256)
77#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
78/* pci=hpmemsize=nnM,hpiosize=nn can override this */
79unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
80unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81
5f39e670 82enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
b03e7495 83
ac1aa47b
JB
84/*
85 * The default CLS is used if arch didn't set CLS explicitly and not
86 * all pci devices agree on the same value. Arch can override either
87 * the dfl or actual value as it sees fit. Don't forget this is
88 * measured in 32-bit words, not bytes.
89 */
15856ad5 90u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
ac1aa47b
JB
91u8 pci_cache_line_size;
92
96c55900
MS
93/*
94 * If we set up a device for bus mastering, we need to check the latency
95 * timer as certain BIOSes forget to set it properly.
96 */
97unsigned int pcibios_max_latency = 255;
98
6748dcc2
RW
99/* If set, the PCIe ARI capability will not be used. */
100static bool pcie_ari_disabled;
101
1da177e4
LT
102/**
103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104 * @bus: pointer to PCI bus structure to search
105 *
106 * Given a PCI bus, returns the highest PCI bus number present in the set
107 * including the given PCI bus and its list of child PCI buses.
108 */
96bde06a 109unsigned char pci_bus_max_busnr(struct pci_bus* bus)
1da177e4 110{
94e6a9b9 111 struct pci_bus *tmp;
1da177e4
LT
112 unsigned char max, n;
113
b918c62e 114 max = bus->busn_res.end;
94e6a9b9
YW
115 list_for_each_entry(tmp, &bus->children, node) {
116 n = pci_bus_max_busnr(tmp);
1da177e4
LT
117 if(n > max)
118 max = n;
119 }
120 return max;
121}
b82db5ce 122EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
1da177e4 123
1684f5dd
AM
124#ifdef CONFIG_HAS_IOMEM
125void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
126{
127 /*
128 * Make sure the BAR is actually a memory resource, not an IO resource
129 */
130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 WARN_ON(1);
132 return NULL;
133 }
134 return ioremap_nocache(pci_resource_start(pdev, bar),
135 pci_resource_len(pdev, bar));
136}
137EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138#endif
139
687d5fe3
ME
140#define PCI_FIND_CAP_TTL 48
141
142static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 u8 pos, int cap, int *ttl)
24a4e377
RD
144{
145 u8 id;
24a4e377 146
687d5fe3 147 while ((*ttl)--) {
24a4e377
RD
148 pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 if (pos < 0x40)
150 break;
151 pos &= ~3;
152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 &id);
154 if (id == 0xff)
155 break;
156 if (id == cap)
157 return pos;
158 pos += PCI_CAP_LIST_NEXT;
159 }
160 return 0;
161}
162
687d5fe3
ME
163static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 u8 pos, int cap)
165{
166 int ttl = PCI_FIND_CAP_TTL;
167
168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
169}
170
24a4e377
RD
171int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
172{
173 return __pci_find_next_cap(dev->bus, dev->devfn,
174 pos + PCI_CAP_LIST_NEXT, cap);
175}
176EXPORT_SYMBOL_GPL(pci_find_next_capability);
177
d3bac118
ME
178static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 unsigned int devfn, u8 hdr_type)
1da177e4
LT
180{
181 u16 status;
1da177e4
LT
182
183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 if (!(status & PCI_STATUS_CAP_LIST))
185 return 0;
186
187 switch (hdr_type) {
188 case PCI_HEADER_TYPE_NORMAL:
189 case PCI_HEADER_TYPE_BRIDGE:
d3bac118 190 return PCI_CAPABILITY_LIST;
1da177e4 191 case PCI_HEADER_TYPE_CARDBUS:
d3bac118 192 return PCI_CB_CAPABILITY_LIST;
1da177e4
LT
193 default:
194 return 0;
195 }
d3bac118
ME
196
197 return 0;
1da177e4
LT
198}
199
200/**
f7625980 201 * pci_find_capability - query for devices' capabilities
1da177e4
LT
202 * @dev: PCI device to query
203 * @cap: capability code
204 *
205 * Tell if a device supports a given PCI capability.
206 * Returns the address of the requested capability structure within the
207 * device's PCI configuration space or 0 in case the device does not
208 * support it. Possible values for @cap:
209 *
f7625980
BH
210 * %PCI_CAP_ID_PM Power Management
211 * %PCI_CAP_ID_AGP Accelerated Graphics Port
212 * %PCI_CAP_ID_VPD Vital Product Data
213 * %PCI_CAP_ID_SLOTID Slot Identification
1da177e4 214 * %PCI_CAP_ID_MSI Message Signalled Interrupts
f7625980 215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
1da177e4
LT
216 * %PCI_CAP_ID_PCIX PCI-X
217 * %PCI_CAP_ID_EXP PCI Express
218 */
219int pci_find_capability(struct pci_dev *dev, int cap)
220{
d3bac118
ME
221 int pos;
222
223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 if (pos)
225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
226
227 return pos;
1da177e4
LT
228}
229
230/**
f7625980 231 * pci_bus_find_capability - query for devices' capabilities
1da177e4
LT
232 * @bus: the PCI bus to query
233 * @devfn: PCI device to query
234 * @cap: capability code
235 *
236 * Like pci_find_capability() but works for pci devices that do not have a
f7625980 237 * pci_dev structure set up yet.
1da177e4
LT
238 *
239 * Returns the address of the requested capability structure within the
240 * device's PCI configuration space or 0 in case the device does not
241 * support it.
242 */
243int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
244{
d3bac118 245 int pos;
1da177e4
LT
246 u8 hdr_type;
247
248 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
249
d3bac118
ME
250 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
251 if (pos)
252 pos = __pci_find_next_cap(bus, devfn, pos, cap);
253
254 return pos;
1da177e4
LT
255}
256
257/**
44a9a36f 258 * pci_find_next_ext_capability - Find an extended capability
1da177e4 259 * @dev: PCI device to query
44a9a36f 260 * @start: address at which to start looking (0 to start at beginning of list)
1da177e4
LT
261 * @cap: capability code
262 *
44a9a36f 263 * Returns the address of the next matching extended capability structure
1da177e4 264 * within the device's PCI configuration space or 0 if the device does
44a9a36f
BH
265 * not support it. Some capabilities can occur several times, e.g., the
266 * vendor-specific capability, and this provides a way to find them all.
1da177e4 267 */
44a9a36f 268int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
1da177e4
LT
269{
270 u32 header;
557848c3
ZY
271 int ttl;
272 int pos = PCI_CFG_SPACE_SIZE;
1da177e4 273
557848c3
ZY
274 /* minimum 8 bytes per capability */
275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
276
277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
1da177e4
LT
278 return 0;
279
44a9a36f
BH
280 if (start)
281 pos = start;
282
1da177e4
LT
283 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
284 return 0;
285
286 /*
287 * If we have no capabilities, this is indicated by cap ID,
288 * cap version and next pointer all being 0.
289 */
290 if (header == 0)
291 return 0;
292
293 while (ttl-- > 0) {
44a9a36f 294 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
1da177e4
LT
295 return pos;
296
297 pos = PCI_EXT_CAP_NEXT(header);
557848c3 298 if (pos < PCI_CFG_SPACE_SIZE)
1da177e4
LT
299 break;
300
301 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
302 break;
303 }
304
305 return 0;
306}
44a9a36f
BH
307EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
308
309/**
310 * pci_find_ext_capability - Find an extended capability
311 * @dev: PCI device to query
312 * @cap: capability code
313 *
314 * Returns the address of the requested extended capability structure
315 * within the device's PCI configuration space or 0 if the device does
316 * not support it. Possible values for @cap:
317 *
318 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
319 * %PCI_EXT_CAP_ID_VC Virtual Channel
320 * %PCI_EXT_CAP_ID_DSN Device Serial Number
321 * %PCI_EXT_CAP_ID_PWR Power Budgeting
322 */
323int pci_find_ext_capability(struct pci_dev *dev, int cap)
324{
325 return pci_find_next_ext_capability(dev, 0, cap);
326}
3a720d72 327EXPORT_SYMBOL_GPL(pci_find_ext_capability);
1da177e4 328
687d5fe3
ME
329static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
330{
331 int rc, ttl = PCI_FIND_CAP_TTL;
332 u8 cap, mask;
333
334 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
335 mask = HT_3BIT_CAP_MASK;
336 else
337 mask = HT_5BIT_CAP_MASK;
338
339 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
340 PCI_CAP_ID_HT, &ttl);
341 while (pos) {
342 rc = pci_read_config_byte(dev, pos + 3, &cap);
343 if (rc != PCIBIOS_SUCCESSFUL)
344 return 0;
345
346 if ((cap & mask) == ht_cap)
347 return pos;
348
47a4d5be
BG
349 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
350 pos + PCI_CAP_LIST_NEXT,
687d5fe3
ME
351 PCI_CAP_ID_HT, &ttl);
352 }
353
354 return 0;
355}
356/**
357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
358 * @dev: PCI device to query
359 * @pos: Position from which to continue searching
360 * @ht_cap: Hypertransport capability code
361 *
362 * To be used in conjunction with pci_find_ht_capability() to search for
363 * all capabilities matching @ht_cap. @pos should always be a value returned
364 * from pci_find_ht_capability().
365 *
366 * NB. To be 100% safe against broken PCI devices, the caller should take
367 * steps to avoid an infinite loop.
368 */
369int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
370{
371 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
372}
373EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
374
375/**
376 * pci_find_ht_capability - query a device's Hypertransport capabilities
377 * @dev: PCI device to query
378 * @ht_cap: Hypertransport capability code
379 *
380 * Tell if a device supports a given Hypertransport capability.
381 * Returns an address within the device's PCI configuration space
382 * or 0 in case the device does not support the request capability.
383 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
384 * which has a Hypertransport capability matching @ht_cap.
385 */
386int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
387{
388 int pos;
389
390 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
391 if (pos)
392 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
393
394 return pos;
395}
396EXPORT_SYMBOL_GPL(pci_find_ht_capability);
397
1da177e4
LT
398/**
399 * pci_find_parent_resource - return resource region of parent bus of given region
400 * @dev: PCI device structure contains resources to be searched
401 * @res: child resource record for which parent is sought
402 *
403 * For given resource region of given device, return the resource
f44116ae 404 * region of parent bus the given region is contained in.
1da177e4
LT
405 */
406struct resource *
407pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
408{
409 const struct pci_bus *bus = dev->bus;
f44116ae 410 struct resource *r;
1da177e4 411 int i;
1da177e4 412
89a74ecc 413 pci_bus_for_each_resource(bus, r, i) {
1da177e4
LT
414 if (!r)
415 continue;
f44116ae
BH
416 if (res->start && resource_contains(r, res)) {
417
418 /*
419 * If the window is prefetchable but the BAR is
420 * not, the allocator made a mistake.
421 */
422 if (r->flags & IORESOURCE_PREFETCH &&
423 !(res->flags & IORESOURCE_PREFETCH))
424 return NULL;
425
426 /*
427 * If we're below a transparent bridge, there may
428 * be both a positively-decoded aperture and a
429 * subtractively-decoded region that contain the BAR.
430 * We want the positively-decoded one, so this depends
431 * on pci_bus_for_each_resource() giving us those
432 * first.
433 */
434 return r;
435 }
1da177e4 436 }
f44116ae 437 return NULL;
1da177e4
LT
438}
439
157e876f
AW
440/**
441 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
442 * @dev: the PCI device to operate on
443 * @pos: config space offset of status word
444 * @mask: mask of bit(s) to care about in status word
445 *
446 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
447 */
448int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
449{
450 int i;
451
452 /* Wait for Transaction Pending bit clean */
453 for (i = 0; i < 4; i++) {
454 u16 status;
455 if (i)
456 msleep((1 << (i - 1)) * 100);
457
458 pci_read_config_word(dev, pos, &status);
459 if (!(status & mask))
460 return 1;
461 }
462
463 return 0;
464}
465
064b53db
JL
466/**
467 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
468 * @dev: PCI device to have its BARs restored
469 *
470 * Restore the BAR values for a given device, so as to make it
471 * accessible by its driver.
472 */
ad668599 473static void
064b53db
JL
474pci_restore_bars(struct pci_dev *dev)
475{
bc5f5a82 476 int i;
064b53db 477
bc5f5a82 478 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
14add80b 479 pci_update_resource(dev, i);
064b53db
JL
480}
481
961d9120
RW
482static struct pci_platform_pm_ops *pci_platform_pm;
483
484int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
485{
eb9d0fe4 486 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
d2e5f0c1 487 || !ops->sleep_wake)
961d9120
RW
488 return -EINVAL;
489 pci_platform_pm = ops;
490 return 0;
491}
492
493static inline bool platform_pci_power_manageable(struct pci_dev *dev)
494{
495 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
496}
497
498static inline int platform_pci_set_power_state(struct pci_dev *dev,
499 pci_power_t t)
500{
501 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
502}
503
504static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
505{
506 return pci_platform_pm ?
507 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
508}
8f7020d3 509
eb9d0fe4
RW
510static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
511{
512 return pci_platform_pm ?
513 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
514}
515
b67ea761
RW
516static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
517{
518 return pci_platform_pm ?
519 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
520}
521
1da177e4 522/**
44e4e66e
RW
523 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
524 * given PCI device
525 * @dev: PCI device to handle.
44e4e66e 526 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1da177e4 527 *
44e4e66e
RW
528 * RETURN VALUE:
529 * -EINVAL if the requested state is invalid.
530 * -EIO if device does not support PCI PM or its PM capabilities register has a
531 * wrong version, or device doesn't support the requested state.
532 * 0 if device already is in the requested state.
533 * 0 if device's power state has been successfully changed.
1da177e4 534 */
f00a20ef 535static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1da177e4 536{
337001b6 537 u16 pmcsr;
44e4e66e 538 bool need_restore = false;
1da177e4 539
4a865905
RW
540 /* Check if we're already there */
541 if (dev->current_state == state)
542 return 0;
543
337001b6 544 if (!dev->pm_cap)
cca03dec
AL
545 return -EIO;
546
44e4e66e
RW
547 if (state < PCI_D0 || state > PCI_D3hot)
548 return -EINVAL;
549
1da177e4 550 /* Validate current state:
f7625980 551 * Can enter D0 from any state, but if we can only go deeper
1da177e4
LT
552 * to sleep if we're already in a low power state
553 */
4a865905 554 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
44e4e66e 555 && dev->current_state > state) {
80ccba11
BH
556 dev_err(&dev->dev, "invalid power transition "
557 "(from state %d to %d)\n", dev->current_state, state);
1da177e4 558 return -EINVAL;
44e4e66e 559 }
1da177e4 560
1da177e4 561 /* check if this device supports the desired state */
337001b6
RW
562 if ((state == PCI_D1 && !dev->d1_support)
563 || (state == PCI_D2 && !dev->d2_support))
3fe9d19f 564 return -EIO;
1da177e4 565
337001b6 566 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
064b53db 567
32a36585 568 /* If we're (effectively) in D3, force entire word to 0.
1da177e4
LT
569 * This doesn't affect PME_Status, disables PME_En, and
570 * sets PowerState to 0.
571 */
32a36585 572 switch (dev->current_state) {
d3535fbb
JL
573 case PCI_D0:
574 case PCI_D1:
575 case PCI_D2:
576 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
577 pmcsr |= state;
578 break;
f62795f1
RW
579 case PCI_D3hot:
580 case PCI_D3cold:
32a36585
JL
581 case PCI_UNKNOWN: /* Boot-up */
582 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
f00a20ef 583 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
44e4e66e 584 need_restore = true;
32a36585 585 /* Fall-through: force to D0 */
32a36585 586 default:
d3535fbb 587 pmcsr = 0;
32a36585 588 break;
1da177e4
LT
589 }
590
591 /* enter specified state */
337001b6 592 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1da177e4
LT
593
594 /* Mandatory power management transition delays */
595 /* see PCI PM 1.1 5.6.1 table 18 */
596 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1ae861e6 597 pci_dev_d3_sleep(dev);
1da177e4 598 else if (state == PCI_D2 || dev->current_state == PCI_D2)
aa8c6c93 599 udelay(PCI_PM_D2_DELAY);
1da177e4 600
e13cdbd7
RW
601 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
602 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
603 if (dev->current_state != state && printk_ratelimit())
604 dev_info(&dev->dev, "Refused to change power state, "
605 "currently in D%d\n", dev->current_state);
064b53db 606
448bd857
HY
607 /*
608 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
064b53db
JL
609 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
610 * from D3hot to D0 _may_ perform an internal reset, thereby
611 * going to "D0 Uninitialized" rather than "D0 Initialized".
612 * For example, at least some versions of the 3c905B and the
613 * 3c556B exhibit this behaviour.
614 *
615 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
616 * devices in a D3hot state at boot. Consequently, we need to
617 * restore at least the BARs so that the device will be
618 * accessible to its driver.
619 */
620 if (need_restore)
621 pci_restore_bars(dev);
622
f00a20ef 623 if (dev->bus->self)
7d715a6c
SL
624 pcie_aspm_pm_state_change(dev->bus->self);
625
1da177e4
LT
626 return 0;
627}
628
44e4e66e
RW
629/**
630 * pci_update_current_state - Read PCI power state of given device from its
631 * PCI PM registers and cache it
632 * @dev: PCI device to handle.
f06fc0b6 633 * @state: State to cache in case the device doesn't have the PM capability
44e4e66e 634 */
73410429 635void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
44e4e66e 636{
337001b6 637 if (dev->pm_cap) {
44e4e66e
RW
638 u16 pmcsr;
639
448bd857
HY
640 /*
641 * Configuration space is not accessible for device in
642 * D3cold, so just keep or set D3cold for safety
643 */
644 if (dev->current_state == PCI_D3cold)
645 return;
646 if (state == PCI_D3cold) {
647 dev->current_state = PCI_D3cold;
648 return;
649 }
337001b6 650 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
44e4e66e 651 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
f06fc0b6
RW
652 } else {
653 dev->current_state = state;
44e4e66e
RW
654 }
655}
656
db288c9c
RW
657/**
658 * pci_power_up - Put the given device into D0 forcibly
659 * @dev: PCI device to power up
660 */
661void pci_power_up(struct pci_dev *dev)
662{
663 if (platform_pci_power_manageable(dev))
664 platform_pci_set_power_state(dev, PCI_D0);
665
666 pci_raw_set_power_state(dev, PCI_D0);
667 pci_update_current_state(dev, PCI_D0);
668}
669
0e5dd46b
RW
670/**
671 * pci_platform_power_transition - Use platform to change device power state
672 * @dev: PCI device to handle.
673 * @state: State to put the device into.
674 */
675static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
676{
677 int error;
678
679 if (platform_pci_power_manageable(dev)) {
680 error = platform_pci_set_power_state(dev, state);
681 if (!error)
682 pci_update_current_state(dev, state);
769ba721 683 } else
0e5dd46b 684 error = -ENODEV;
769ba721
RW
685
686 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
687 dev->current_state = PCI_D0;
0e5dd46b
RW
688
689 return error;
690}
691
0b950f0f
SH
692/**
693 * pci_wakeup - Wake up a PCI device
694 * @pci_dev: Device to handle.
695 * @ign: ignored parameter
696 */
697static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
698{
699 pci_wakeup_event(pci_dev);
700 pm_request_resume(&pci_dev->dev);
701 return 0;
702}
703
704/**
705 * pci_wakeup_bus - Walk given bus and wake up devices on it
706 * @bus: Top bus of the subtree to walk.
707 */
708static void pci_wakeup_bus(struct pci_bus *bus)
709{
710 if (bus)
711 pci_walk_bus(bus, pci_wakeup, NULL);
712}
713
0e5dd46b
RW
714/**
715 * __pci_start_power_transition - Start power transition of a PCI device
716 * @dev: PCI device to handle.
717 * @state: State to put the device into.
718 */
719static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
720{
448bd857 721 if (state == PCI_D0) {
0e5dd46b 722 pci_platform_power_transition(dev, PCI_D0);
448bd857
HY
723 /*
724 * Mandatory power management transition delays, see
725 * PCI Express Base Specification Revision 2.0 Section
726 * 6.6.1: Conventional Reset. Do not delay for
727 * devices powered on/off by corresponding bridge,
728 * because have already delayed for the bridge.
729 */
730 if (dev->runtime_d3cold) {
731 msleep(dev->d3cold_delay);
732 /*
733 * When powering on a bridge from D3cold, the
734 * whole hierarchy may be powered on into
735 * D0uninitialized state, resume them to give
736 * them a chance to suspend again
737 */
738 pci_wakeup_bus(dev->subordinate);
739 }
740 }
741}
742
743/**
744 * __pci_dev_set_current_state - Set current state of a PCI device
745 * @dev: Device to handle
746 * @data: pointer to state to be set
747 */
748static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
749{
750 pci_power_t state = *(pci_power_t *)data;
751
752 dev->current_state = state;
753 return 0;
754}
755
756/**
757 * __pci_bus_set_current_state - Walk given bus and set current state of devices
758 * @bus: Top bus of the subtree to walk.
759 * @state: state to be set
760 */
761static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
762{
763 if (bus)
764 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
0e5dd46b
RW
765}
766
767/**
768 * __pci_complete_power_transition - Complete power transition of a PCI device
769 * @dev: PCI device to handle.
770 * @state: State to put the device into.
771 *
772 * This function should not be called directly by device drivers.
773 */
774int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
775{
448bd857
HY
776 int ret;
777
db288c9c 778 if (state <= PCI_D0)
448bd857
HY
779 return -EINVAL;
780 ret = pci_platform_power_transition(dev, state);
781 /* Power off the bridge may power off the whole hierarchy */
782 if (!ret && state == PCI_D3cold)
783 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
784 return ret;
0e5dd46b
RW
785}
786EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
787
44e4e66e
RW
788/**
789 * pci_set_power_state - Set the power state of a PCI device
790 * @dev: PCI device to handle.
791 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
792 *
877d0310 793 * Transition a device to a new power state, using the platform firmware and/or
44e4e66e
RW
794 * the device's PCI PM registers.
795 *
796 * RETURN VALUE:
797 * -EINVAL if the requested state is invalid.
798 * -EIO if device does not support PCI PM or its PM capabilities register has a
799 * wrong version, or device doesn't support the requested state.
800 * 0 if device already is in the requested state.
801 * 0 if device's power state has been successfully changed.
802 */
803int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
804{
337001b6 805 int error;
44e4e66e
RW
806
807 /* bound the state we're entering */
448bd857
HY
808 if (state > PCI_D3cold)
809 state = PCI_D3cold;
44e4e66e
RW
810 else if (state < PCI_D0)
811 state = PCI_D0;
812 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
813 /*
814 * If the device or the parent bridge do not support PCI PM,
815 * ignore the request if we're doing anything other than putting
816 * it into D0 (which would only happen on boot).
817 */
818 return 0;
819
db288c9c
RW
820 /* Check if we're already there */
821 if (dev->current_state == state)
822 return 0;
823
0e5dd46b
RW
824 __pci_start_power_transition(dev, state);
825
979b1791
AC
826 /* This device is quirked not to be put into D3, so
827 don't put it in D3 */
448bd857 828 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
979b1791 829 return 0;
44e4e66e 830
448bd857
HY
831 /*
832 * To put device in D3cold, we put device into D3hot in native
833 * way, then put device into D3cold with platform ops
834 */
835 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
836 PCI_D3hot : state);
44e4e66e 837
0e5dd46b
RW
838 if (!__pci_complete_power_transition(dev, state))
839 error = 0;
1a680b7c
NC
840 /*
841 * When aspm_policy is "powersave" this call ensures
842 * that ASPM is configured.
843 */
844 if (!error && dev->bus->self)
845 pcie_aspm_powersave_config_link(dev->bus->self);
44e4e66e
RW
846
847 return error;
848}
849
1da177e4
LT
850/**
851 * pci_choose_state - Choose the power state of a PCI device
852 * @dev: PCI device to be suspended
853 * @state: target sleep state for the whole system. This is the value
854 * that is passed to suspend() function.
855 *
856 * Returns PCI power state suitable for given device and given system
857 * message.
858 */
859
860pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
861{
ab826ca4 862 pci_power_t ret;
0f64474b 863
728cdb75 864 if (!dev->pm_cap)
1da177e4
LT
865 return PCI_D0;
866
961d9120
RW
867 ret = platform_pci_choose_state(dev);
868 if (ret != PCI_POWER_ERROR)
869 return ret;
ca078bae
PM
870
871 switch (state.event) {
872 case PM_EVENT_ON:
873 return PCI_D0;
874 case PM_EVENT_FREEZE:
b887d2e6
DB
875 case PM_EVENT_PRETHAW:
876 /* REVISIT both freeze and pre-thaw "should" use D0 */
ca078bae 877 case PM_EVENT_SUSPEND:
3a2d5b70 878 case PM_EVENT_HIBERNATE:
ca078bae 879 return PCI_D3hot;
1da177e4 880 default:
80ccba11
BH
881 dev_info(&dev->dev, "unrecognized suspend event %d\n",
882 state.event);
1da177e4
LT
883 BUG();
884 }
885 return PCI_D0;
886}
887
888EXPORT_SYMBOL(pci_choose_state);
889
89858517
YZ
890#define PCI_EXP_SAVE_REGS 7
891
1b6b8ce2 892
fd0f7f73
AW
893static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
894 u16 cap, bool extended)
34a4876e
YL
895{
896 struct pci_cap_saved_state *tmp;
34a4876e 897
b67bfe0d 898 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
fd0f7f73 899 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
34a4876e
YL
900 return tmp;
901 }
902 return NULL;
903}
904
fd0f7f73
AW
905struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
906{
907 return _pci_find_saved_cap(dev, cap, false);
908}
909
910struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
911{
912 return _pci_find_saved_cap(dev, cap, true);
913}
914
b56a5a23
MT
915static int pci_save_pcie_state(struct pci_dev *dev)
916{
59875ae4 917 int i = 0;
b56a5a23
MT
918 struct pci_cap_saved_state *save_state;
919 u16 *cap;
920
59875ae4 921 if (!pci_is_pcie(dev))
b56a5a23
MT
922 return 0;
923
9f35575d 924 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
b56a5a23 925 if (!save_state) {
e496b617 926 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
b56a5a23
MT
927 return -ENOMEM;
928 }
63f4898a 929
59875ae4
JL
930 cap = (u16 *)&save_state->cap.data[0];
931 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
932 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
933 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
934 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
935 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
936 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
937 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
9cb604ed 938
b56a5a23
MT
939 return 0;
940}
941
942static void pci_restore_pcie_state(struct pci_dev *dev)
943{
59875ae4 944 int i = 0;
b56a5a23
MT
945 struct pci_cap_saved_state *save_state;
946 u16 *cap;
947
948 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
59875ae4 949 if (!save_state)
9cb604ed
MS
950 return;
951
59875ae4
JL
952 cap = (u16 *)&save_state->cap.data[0];
953 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
954 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
955 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
956 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
957 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
958 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
959 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
b56a5a23
MT
960}
961
cc692a5f
SH
962
963static int pci_save_pcix_state(struct pci_dev *dev)
964{
63f4898a 965 int pos;
cc692a5f 966 struct pci_cap_saved_state *save_state;
cc692a5f
SH
967
968 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
969 if (pos <= 0)
970 return 0;
971
f34303de 972 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
cc692a5f 973 if (!save_state) {
e496b617 974 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
cc692a5f
SH
975 return -ENOMEM;
976 }
cc692a5f 977
24a4742f
AW
978 pci_read_config_word(dev, pos + PCI_X_CMD,
979 (u16 *)save_state->cap.data);
63f4898a 980
cc692a5f
SH
981 return 0;
982}
983
984static void pci_restore_pcix_state(struct pci_dev *dev)
985{
986 int i = 0, pos;
987 struct pci_cap_saved_state *save_state;
988 u16 *cap;
989
990 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
991 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
992 if (!save_state || pos <= 0)
993 return;
24a4742f 994 cap = (u16 *)&save_state->cap.data[0];
cc692a5f
SH
995
996 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
cc692a5f
SH
997}
998
999
1da177e4
LT
1000/**
1001 * pci_save_state - save the PCI configuration space of a device before suspending
1002 * @dev: - PCI device that we're dealing with
1da177e4
LT
1003 */
1004int
1005pci_save_state(struct pci_dev *dev)
1006{
1007 int i;
1008 /* XXX: 100% dword access ok here? */
1009 for (i = 0; i < 16; i++)
9e0b5b2c 1010 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
aa8c6c93 1011 dev->state_saved = true;
b56a5a23
MT
1012 if ((i = pci_save_pcie_state(dev)) != 0)
1013 return i;
cc692a5f
SH
1014 if ((i = pci_save_pcix_state(dev)) != 0)
1015 return i;
425c1b22
AW
1016 if ((i = pci_save_vc_state(dev)) != 0)
1017 return i;
1da177e4
LT
1018 return 0;
1019}
1020
ebfc5b80
RW
1021static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1022 u32 saved_val, int retry)
1023{
1024 u32 val;
1025
1026 pci_read_config_dword(pdev, offset, &val);
1027 if (val == saved_val)
1028 return;
1029
1030 for (;;) {
1031 dev_dbg(&pdev->dev, "restoring config space at offset "
1032 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
1033 pci_write_config_dword(pdev, offset, saved_val);
1034 if (retry-- <= 0)
1035 return;
1036
1037 pci_read_config_dword(pdev, offset, &val);
1038 if (val == saved_val)
1039 return;
1040
1041 mdelay(1);
1042 }
1043}
1044
a6cb9ee7
RW
1045static void pci_restore_config_space_range(struct pci_dev *pdev,
1046 int start, int end, int retry)
ebfc5b80
RW
1047{
1048 int index;
1049
1050 for (index = end; index >= start; index--)
1051 pci_restore_config_dword(pdev, 4 * index,
1052 pdev->saved_config_space[index],
1053 retry);
1054}
1055
a6cb9ee7
RW
1056static void pci_restore_config_space(struct pci_dev *pdev)
1057{
1058 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1059 pci_restore_config_space_range(pdev, 10, 15, 0);
1060 /* Restore BARs before the command register. */
1061 pci_restore_config_space_range(pdev, 4, 9, 10);
1062 pci_restore_config_space_range(pdev, 0, 3, 0);
1063 } else {
1064 pci_restore_config_space_range(pdev, 0, 15, 0);
1065 }
1066}
1067
f7625980 1068/**
1da177e4
LT
1069 * pci_restore_state - Restore the saved state of a PCI device
1070 * @dev: - PCI device that we're dealing with
1da177e4 1071 */
1d3c16a8 1072void pci_restore_state(struct pci_dev *dev)
1da177e4 1073{
c82f63e4 1074 if (!dev->state_saved)
1d3c16a8 1075 return;
4b77b0a2 1076
b56a5a23
MT
1077 /* PCI Express register must be restored first */
1078 pci_restore_pcie_state(dev);
1900ca13 1079 pci_restore_ats_state(dev);
425c1b22 1080 pci_restore_vc_state(dev);
b56a5a23 1081
a6cb9ee7 1082 pci_restore_config_space(dev);
ebfc5b80 1083
cc692a5f 1084 pci_restore_pcix_state(dev);
41017f0c 1085 pci_restore_msi_state(dev);
8c5cdb6a 1086 pci_restore_iov_state(dev);
8fed4b65 1087
4b77b0a2 1088 dev->state_saved = false;
1da177e4
LT
1089}
1090
ffbdd3f7
AW
1091struct pci_saved_state {
1092 u32 config_space[16];
1093 struct pci_cap_saved_data cap[0];
1094};
1095
1096/**
1097 * pci_store_saved_state - Allocate and return an opaque struct containing
1098 * the device saved state.
1099 * @dev: PCI device that we're dealing with
1100 *
f7625980 1101 * Return NULL if no state or error.
ffbdd3f7
AW
1102 */
1103struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1104{
1105 struct pci_saved_state *state;
1106 struct pci_cap_saved_state *tmp;
1107 struct pci_cap_saved_data *cap;
ffbdd3f7
AW
1108 size_t size;
1109
1110 if (!dev->state_saved)
1111 return NULL;
1112
1113 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1114
b67bfe0d 1115 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
ffbdd3f7
AW
1116 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1117
1118 state = kzalloc(size, GFP_KERNEL);
1119 if (!state)
1120 return NULL;
1121
1122 memcpy(state->config_space, dev->saved_config_space,
1123 sizeof(state->config_space));
1124
1125 cap = state->cap;
b67bfe0d 1126 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
ffbdd3f7
AW
1127 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1128 memcpy(cap, &tmp->cap, len);
1129 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1130 }
1131 /* Empty cap_save terminates list */
1132
1133 return state;
1134}
1135EXPORT_SYMBOL_GPL(pci_store_saved_state);
1136
1137/**
1138 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1139 * @dev: PCI device that we're dealing with
1140 * @state: Saved state returned from pci_store_saved_state()
1141 */
0b950f0f
SH
1142static int pci_load_saved_state(struct pci_dev *dev,
1143 struct pci_saved_state *state)
ffbdd3f7
AW
1144{
1145 struct pci_cap_saved_data *cap;
1146
1147 dev->state_saved = false;
1148
1149 if (!state)
1150 return 0;
1151
1152 memcpy(dev->saved_config_space, state->config_space,
1153 sizeof(state->config_space));
1154
1155 cap = state->cap;
1156 while (cap->size) {
1157 struct pci_cap_saved_state *tmp;
1158
fd0f7f73 1159 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
ffbdd3f7
AW
1160 if (!tmp || tmp->cap.size != cap->size)
1161 return -EINVAL;
1162
1163 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1164 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1165 sizeof(struct pci_cap_saved_data) + cap->size);
1166 }
1167
1168 dev->state_saved = true;
1169 return 0;
1170}
ffbdd3f7
AW
1171
1172/**
1173 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1174 * and free the memory allocated for it.
1175 * @dev: PCI device that we're dealing with
1176 * @state: Pointer to saved state returned from pci_store_saved_state()
1177 */
1178int pci_load_and_free_saved_state(struct pci_dev *dev,
1179 struct pci_saved_state **state)
1180{
1181 int ret = pci_load_saved_state(dev, *state);
1182 kfree(*state);
1183 *state = NULL;
1184 return ret;
1185}
1186EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1187
8a9d5609
BH
1188int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1189{
1190 return pci_enable_resources(dev, bars);
1191}
1192
38cc1302
HS
1193static int do_pci_enable_device(struct pci_dev *dev, int bars)
1194{
1195 int err;
1e2571a7
BH
1196 u16 cmd;
1197 u8 pin;
38cc1302
HS
1198
1199 err = pci_set_power_state(dev, PCI_D0);
1200 if (err < 0 && err != -EIO)
1201 return err;
1202 err = pcibios_enable_device(dev, bars);
1203 if (err < 0)
1204 return err;
1205 pci_fixup_device(pci_fixup_enable, dev);
1206
866d5417
BH
1207 if (dev->msi_enabled || dev->msix_enabled)
1208 return 0;
1209
1e2571a7
BH
1210 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1211 if (pin) {
1212 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1213 if (cmd & PCI_COMMAND_INTX_DISABLE)
1214 pci_write_config_word(dev, PCI_COMMAND,
1215 cmd & ~PCI_COMMAND_INTX_DISABLE);
1216 }
1217
38cc1302
HS
1218 return 0;
1219}
1220
1221/**
0b62e13b 1222 * pci_reenable_device - Resume abandoned device
38cc1302
HS
1223 * @dev: PCI device to be resumed
1224 *
1225 * Note this function is a backend of pci_default_resume and is not supposed
1226 * to be called by normal code, write proper resume handler and use it instead.
1227 */
0b62e13b 1228int pci_reenable_device(struct pci_dev *dev)
38cc1302 1229{
296ccb08 1230 if (pci_is_enabled(dev))
38cc1302
HS
1231 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1232 return 0;
1233}
1234
928bea96
YL
1235static void pci_enable_bridge(struct pci_dev *dev)
1236{
79272138 1237 struct pci_dev *bridge;
928bea96
YL
1238 int retval;
1239
79272138
BH
1240 bridge = pci_upstream_bridge(dev);
1241 if (bridge)
1242 pci_enable_bridge(bridge);
928bea96 1243
cf3e1feb 1244 if (pci_is_enabled(dev)) {
fbeeb822 1245 if (!dev->is_busmaster)
cf3e1feb 1246 pci_set_master(dev);
928bea96 1247 return;
cf3e1feb
YL
1248 }
1249
928bea96
YL
1250 retval = pci_enable_device(dev);
1251 if (retval)
1252 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1253 retval);
1254 pci_set_master(dev);
1255}
1256
b4b4fbba 1257static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1da177e4 1258{
79272138 1259 struct pci_dev *bridge;
1da177e4 1260 int err;
b718989d 1261 int i, bars = 0;
1da177e4 1262
97c145f7
JB
1263 /*
1264 * Power state could be unknown at this point, either due to a fresh
1265 * boot or a device removal call. So get the current power state
1266 * so that things like MSI message writing will behave as expected
1267 * (e.g. if the device really is in D0 at enable time).
1268 */
1269 if (dev->pm_cap) {
1270 u16 pmcsr;
1271 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1272 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1273 }
1274
cc7ba39b 1275 if (atomic_inc_return(&dev->enable_cnt) > 1)
9fb625c3
HS
1276 return 0; /* already enabled */
1277
79272138
BH
1278 bridge = pci_upstream_bridge(dev);
1279 if (bridge)
1280 pci_enable_bridge(bridge);
928bea96 1281
497f16f2
YL
1282 /* only skip sriov related */
1283 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1284 if (dev->resource[i].flags & flags)
1285 bars |= (1 << i);
1286 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
b718989d
BH
1287 if (dev->resource[i].flags & flags)
1288 bars |= (1 << i);
1289
38cc1302 1290 err = do_pci_enable_device(dev, bars);
95a62965 1291 if (err < 0)
38cc1302 1292 atomic_dec(&dev->enable_cnt);
9fb625c3 1293 return err;
1da177e4
LT
1294}
1295
b718989d
BH
1296/**
1297 * pci_enable_device_io - Initialize a device for use with IO space
1298 * @dev: PCI device to be initialized
1299 *
1300 * Initialize device before it's used by a driver. Ask low-level code
1301 * to enable I/O resources. Wake up the device if it was suspended.
1302 * Beware, this function can fail.
1303 */
1304int pci_enable_device_io(struct pci_dev *dev)
1305{
b4b4fbba 1306 return pci_enable_device_flags(dev, IORESOURCE_IO);
b718989d
BH
1307}
1308
1309/**
1310 * pci_enable_device_mem - Initialize a device for use with Memory space
1311 * @dev: PCI device to be initialized
1312 *
1313 * Initialize device before it's used by a driver. Ask low-level code
1314 * to enable Memory resources. Wake up the device if it was suspended.
1315 * Beware, this function can fail.
1316 */
1317int pci_enable_device_mem(struct pci_dev *dev)
1318{
b4b4fbba 1319 return pci_enable_device_flags(dev, IORESOURCE_MEM);
b718989d
BH
1320}
1321
bae94d02
IPG
1322/**
1323 * pci_enable_device - Initialize device before it's used by a driver.
1324 * @dev: PCI device to be initialized
1325 *
1326 * Initialize device before it's used by a driver. Ask low-level code
1327 * to enable I/O and memory. Wake up the device if it was suspended.
1328 * Beware, this function can fail.
1329 *
1330 * Note we don't actually enable the device many times if we call
1331 * this function repeatedly (we just increment the count).
1332 */
1333int pci_enable_device(struct pci_dev *dev)
1334{
b4b4fbba 1335 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
bae94d02
IPG
1336}
1337
9ac7849e
TH
1338/*
1339 * Managed PCI resources. This manages device on/off, intx/msi/msix
1340 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1341 * there's no need to track it separately. pci_devres is initialized
1342 * when a device is enabled using managed PCI device enable interface.
1343 */
1344struct pci_devres {
7f375f32
TH
1345 unsigned int enabled:1;
1346 unsigned int pinned:1;
9ac7849e
TH
1347 unsigned int orig_intx:1;
1348 unsigned int restore_intx:1;
1349 u32 region_mask;
1350};
1351
1352static void pcim_release(struct device *gendev, void *res)
1353{
1354 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1355 struct pci_devres *this = res;
1356 int i;
1357
1358 if (dev->msi_enabled)
1359 pci_disable_msi(dev);
1360 if (dev->msix_enabled)
1361 pci_disable_msix(dev);
1362
1363 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1364 if (this->region_mask & (1 << i))
1365 pci_release_region(dev, i);
1366
1367 if (this->restore_intx)
1368 pci_intx(dev, this->orig_intx);
1369
7f375f32 1370 if (this->enabled && !this->pinned)
9ac7849e
TH
1371 pci_disable_device(dev);
1372}
1373
1374static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1375{
1376 struct pci_devres *dr, *new_dr;
1377
1378 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1379 if (dr)
1380 return dr;
1381
1382 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1383 if (!new_dr)
1384 return NULL;
1385 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1386}
1387
1388static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1389{
1390 if (pci_is_managed(pdev))
1391 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1392 return NULL;
1393}
1394
1395/**
1396 * pcim_enable_device - Managed pci_enable_device()
1397 * @pdev: PCI device to be initialized
1398 *
1399 * Managed pci_enable_device().
1400 */
1401int pcim_enable_device(struct pci_dev *pdev)
1402{
1403 struct pci_devres *dr;
1404 int rc;
1405
1406 dr = get_pci_dr(pdev);
1407 if (unlikely(!dr))
1408 return -ENOMEM;
b95d58ea
TH
1409 if (dr->enabled)
1410 return 0;
9ac7849e
TH
1411
1412 rc = pci_enable_device(pdev);
1413 if (!rc) {
1414 pdev->is_managed = 1;
7f375f32 1415 dr->enabled = 1;
9ac7849e
TH
1416 }
1417 return rc;
1418}
1419
1420/**
1421 * pcim_pin_device - Pin managed PCI device
1422 * @pdev: PCI device to pin
1423 *
1424 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1425 * driver detach. @pdev must have been enabled with
1426 * pcim_enable_device().
1427 */
1428void pcim_pin_device(struct pci_dev *pdev)
1429{
1430 struct pci_devres *dr;
1431
1432 dr = find_pci_dr(pdev);
7f375f32 1433 WARN_ON(!dr || !dr->enabled);
9ac7849e 1434 if (dr)
7f375f32 1435 dr->pinned = 1;
9ac7849e
TH
1436}
1437
eca0d467
MG
1438/*
1439 * pcibios_add_device - provide arch specific hooks when adding device dev
1440 * @dev: the PCI device being added
1441 *
1442 * Permits the platform to provide architecture specific functionality when
1443 * devices are added. This is the default implementation. Architecture
1444 * implementations can override this.
1445 */
1446int __weak pcibios_add_device (struct pci_dev *dev)
1447{
1448 return 0;
1449}
1450
6ae32c53
SO
1451/**
1452 * pcibios_release_device - provide arch specific hooks when releasing device dev
1453 * @dev: the PCI device being released
1454 *
1455 * Permits the platform to provide architecture specific functionality when
1456 * devices are released. This is the default implementation. Architecture
1457 * implementations can override this.
1458 */
1459void __weak pcibios_release_device(struct pci_dev *dev) {}
1460
1da177e4
LT
1461/**
1462 * pcibios_disable_device - disable arch specific PCI resources for device dev
1463 * @dev: the PCI device to disable
1464 *
1465 * Disables architecture specific PCI resources for the device. This
1466 * is the default implementation. Architecture implementations can
1467 * override this.
1468 */
d6d88c83 1469void __weak pcibios_disable_device (struct pci_dev *dev) {}
1da177e4 1470
fa58d305
RW
1471static void do_pci_disable_device(struct pci_dev *dev)
1472{
1473 u16 pci_command;
1474
1475 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1476 if (pci_command & PCI_COMMAND_MASTER) {
1477 pci_command &= ~PCI_COMMAND_MASTER;
1478 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1479 }
1480
1481 pcibios_disable_device(dev);
1482}
1483
1484/**
1485 * pci_disable_enabled_device - Disable device without updating enable_cnt
1486 * @dev: PCI device to disable
1487 *
1488 * NOTE: This function is a backend of PCI power management routines and is
1489 * not supposed to be called drivers.
1490 */
1491void pci_disable_enabled_device(struct pci_dev *dev)
1492{
296ccb08 1493 if (pci_is_enabled(dev))
fa58d305
RW
1494 do_pci_disable_device(dev);
1495}
1496
1da177e4
LT
1497/**
1498 * pci_disable_device - Disable PCI device after use
1499 * @dev: PCI device to be disabled
1500 *
1501 * Signal to the system that the PCI device is not in use by the system
1502 * anymore. This only involves disabling PCI bus-mastering, if active.
bae94d02
IPG
1503 *
1504 * Note we don't actually disable the device until all callers of
ee6583f6 1505 * pci_enable_device() have called pci_disable_device().
1da177e4
LT
1506 */
1507void
1508pci_disable_device(struct pci_dev *dev)
1509{
9ac7849e 1510 struct pci_devres *dr;
99dc804d 1511
9ac7849e
TH
1512 dr = find_pci_dr(dev);
1513 if (dr)
7f375f32 1514 dr->enabled = 0;
9ac7849e 1515
fd6dceab
KK
1516 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1517 "disabling already-disabled device");
1518
cc7ba39b 1519 if (atomic_dec_return(&dev->enable_cnt) != 0)
bae94d02
IPG
1520 return;
1521
fa58d305 1522 do_pci_disable_device(dev);
1da177e4 1523
fa58d305 1524 dev->is_busmaster = 0;
1da177e4
LT
1525}
1526
f7bdd12d
BK
1527/**
1528 * pcibios_set_pcie_reset_state - set reset state for device dev
45e829ea 1529 * @dev: the PCIe device reset
f7bdd12d
BK
1530 * @state: Reset state to enter into
1531 *
1532 *
45e829ea 1533 * Sets the PCIe reset state for the device. This is the default
f7bdd12d
BK
1534 * implementation. Architecture implementations can override this.
1535 */
d6d88c83
BH
1536int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1537 enum pcie_reset_state state)
f7bdd12d
BK
1538{
1539 return -EINVAL;
1540}
1541
1542/**
1543 * pci_set_pcie_reset_state - set reset state for device dev
45e829ea 1544 * @dev: the PCIe device reset
f7bdd12d
BK
1545 * @state: Reset state to enter into
1546 *
1547 *
1548 * Sets the PCI reset state for the device.
1549 */
1550int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1551{
1552 return pcibios_set_pcie_reset_state(dev, state);
1553}
1554
58ff4633
RW
1555/**
1556 * pci_check_pme_status - Check if given device has generated PME.
1557 * @dev: Device to check.
1558 *
1559 * Check the PME status of the device and if set, clear it and clear PME enable
1560 * (if set). Return 'true' if PME status and PME enable were both set or
1561 * 'false' otherwise.
1562 */
1563bool pci_check_pme_status(struct pci_dev *dev)
1564{
1565 int pmcsr_pos;
1566 u16 pmcsr;
1567 bool ret = false;
1568
1569 if (!dev->pm_cap)
1570 return false;
1571
1572 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1573 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1574 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1575 return false;
1576
1577 /* Clear PME status. */
1578 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1579 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1580 /* Disable PME to avoid interrupt flood. */
1581 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1582 ret = true;
1583 }
1584
1585 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1586
1587 return ret;
1588}
1589
b67ea761
RW
1590/**
1591 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1592 * @dev: Device to handle.
379021d5 1593 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
b67ea761
RW
1594 *
1595 * Check if @dev has generated PME and queue a resume request for it in that
1596 * case.
1597 */
379021d5 1598static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
b67ea761 1599{
379021d5
RW
1600 if (pme_poll_reset && dev->pme_poll)
1601 dev->pme_poll = false;
1602
c125e96f 1603 if (pci_check_pme_status(dev)) {
c125e96f 1604 pci_wakeup_event(dev);
0f953bf6 1605 pm_request_resume(&dev->dev);
c125e96f 1606 }
b67ea761
RW
1607 return 0;
1608}
1609
1610/**
1611 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1612 * @bus: Top bus of the subtree to walk.
1613 */
1614void pci_pme_wakeup_bus(struct pci_bus *bus)
1615{
1616 if (bus)
379021d5 1617 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
b67ea761
RW
1618}
1619
448bd857 1620
eb9d0fe4
RW
1621/**
1622 * pci_pme_capable - check the capability of PCI device to generate PME#
1623 * @dev: PCI device to handle.
eb9d0fe4
RW
1624 * @state: PCI state from which device will issue PME#.
1625 */
e5899e1b 1626bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
eb9d0fe4 1627{
337001b6 1628 if (!dev->pm_cap)
eb9d0fe4
RW
1629 return false;
1630
337001b6 1631 return !!(dev->pme_support & (1 << state));
eb9d0fe4
RW
1632}
1633
df17e62e
MG
1634static void pci_pme_list_scan(struct work_struct *work)
1635{
379021d5 1636 struct pci_pme_device *pme_dev, *n;
df17e62e
MG
1637
1638 mutex_lock(&pci_pme_list_mutex);
ce300008
BH
1639 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1640 if (pme_dev->dev->pme_poll) {
1641 struct pci_dev *bridge;
1642
1643 bridge = pme_dev->dev->bus->self;
1644 /*
1645 * If bridge is in low power state, the
1646 * configuration space of subordinate devices
1647 * may be not accessible
1648 */
1649 if (bridge && bridge->current_state != PCI_D0)
1650 continue;
1651 pci_pme_wakeup(pme_dev->dev, NULL);
1652 } else {
1653 list_del(&pme_dev->list);
1654 kfree(pme_dev);
379021d5 1655 }
df17e62e 1656 }
ce300008
BH
1657 if (!list_empty(&pci_pme_list))
1658 schedule_delayed_work(&pci_pme_work,
1659 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
1660 mutex_unlock(&pci_pme_list_mutex);
1661}
1662
eb9d0fe4
RW
1663/**
1664 * pci_pme_active - enable or disable PCI device's PME# function
1665 * @dev: PCI device to handle.
eb9d0fe4
RW
1666 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1667 *
1668 * The caller must verify that the device is capable of generating PME# before
1669 * calling this function with @enable equal to 'true'.
1670 */
5a6c9b60 1671void pci_pme_active(struct pci_dev *dev, bool enable)
eb9d0fe4
RW
1672{
1673 u16 pmcsr;
1674
ffaddbe8 1675 if (!dev->pme_support)
eb9d0fe4
RW
1676 return;
1677
337001b6 1678 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
eb9d0fe4
RW
1679 /* Clear PME_Status by writing 1 to it and enable PME# */
1680 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1681 if (!enable)
1682 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1683
337001b6 1684 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
eb9d0fe4 1685
6e965e0d
HY
1686 /*
1687 * PCI (as opposed to PCIe) PME requires that the device have
1688 * its PME# line hooked up correctly. Not all hardware vendors
1689 * do this, so the PME never gets delivered and the device
1690 * remains asleep. The easiest way around this is to
1691 * periodically walk the list of suspended devices and check
1692 * whether any have their PME flag set. The assumption is that
1693 * we'll wake up often enough anyway that this won't be a huge
1694 * hit, and the power savings from the devices will still be a
1695 * win.
1696 *
1697 * Although PCIe uses in-band PME message instead of PME# line
1698 * to report PME, PME does not work for some PCIe devices in
1699 * reality. For example, there are devices that set their PME
1700 * status bits, but don't really bother to send a PME message;
1701 * there are PCI Express Root Ports that don't bother to
1702 * trigger interrupts when they receive PME messages from the
1703 * devices below. So PME poll is used for PCIe devices too.
1704 */
df17e62e 1705
379021d5 1706 if (dev->pme_poll) {
df17e62e
MG
1707 struct pci_pme_device *pme_dev;
1708 if (enable) {
1709 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1710 GFP_KERNEL);
0394cb19
BH
1711 if (!pme_dev) {
1712 dev_warn(&dev->dev, "can't enable PME#\n");
1713 return;
1714 }
df17e62e
MG
1715 pme_dev->dev = dev;
1716 mutex_lock(&pci_pme_list_mutex);
1717 list_add(&pme_dev->list, &pci_pme_list);
1718 if (list_is_singular(&pci_pme_list))
1719 schedule_delayed_work(&pci_pme_work,
1720 msecs_to_jiffies(PME_TIMEOUT));
1721 mutex_unlock(&pci_pme_list_mutex);
1722 } else {
1723 mutex_lock(&pci_pme_list_mutex);
1724 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1725 if (pme_dev->dev == dev) {
1726 list_del(&pme_dev->list);
1727 kfree(pme_dev);
1728 break;
1729 }
1730 }
1731 mutex_unlock(&pci_pme_list_mutex);
1732 }
1733 }
1734
85b8582d 1735 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
eb9d0fe4
RW
1736}
1737
1da177e4 1738/**
6cbf8214 1739 * __pci_enable_wake - enable PCI device as wakeup event source
075c1771
DB
1740 * @dev: PCI device affected
1741 * @state: PCI state from which device will issue wakeup events
6cbf8214 1742 * @runtime: True if the events are to be generated at run time
075c1771
DB
1743 * @enable: True to enable event generation; false to disable
1744 *
1745 * This enables the device as a wakeup event source, or disables it.
1746 * When such events involves platform-specific hooks, those hooks are
1747 * called automatically by this routine.
1748 *
1749 * Devices with legacy power management (no standard PCI PM capabilities)
eb9d0fe4 1750 * always require such platform hooks.
075c1771 1751 *
eb9d0fe4
RW
1752 * RETURN VALUE:
1753 * 0 is returned on success
1754 * -EINVAL is returned if device is not supposed to wake up the system
1755 * Error code depending on the platform is returned if both the platform and
1756 * the native mechanism fail to enable the generation of wake-up events
1da177e4 1757 */
6cbf8214
RW
1758int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1759 bool runtime, bool enable)
1da177e4 1760{
5bcc2fb4 1761 int ret = 0;
075c1771 1762
6cbf8214 1763 if (enable && !runtime && !device_may_wakeup(&dev->dev))
eb9d0fe4 1764 return -EINVAL;
1da177e4 1765
e80bb09d
RW
1766 /* Don't do the same thing twice in a row for one device. */
1767 if (!!enable == !!dev->wakeup_prepared)
1768 return 0;
1769
eb9d0fe4
RW
1770 /*
1771 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1772 * Anderson we should be doing PME# wake enable followed by ACPI wake
1773 * enable. To disable wake-up we call the platform first, for symmetry.
075c1771 1774 */
1da177e4 1775
5bcc2fb4
RW
1776 if (enable) {
1777 int error;
1da177e4 1778
5bcc2fb4
RW
1779 if (pci_pme_capable(dev, state))
1780 pci_pme_active(dev, true);
1781 else
1782 ret = 1;
6cbf8214
RW
1783 error = runtime ? platform_pci_run_wake(dev, true) :
1784 platform_pci_sleep_wake(dev, true);
5bcc2fb4
RW
1785 if (ret)
1786 ret = error;
e80bb09d
RW
1787 if (!ret)
1788 dev->wakeup_prepared = true;
5bcc2fb4 1789 } else {
6cbf8214
RW
1790 if (runtime)
1791 platform_pci_run_wake(dev, false);
1792 else
1793 platform_pci_sleep_wake(dev, false);
5bcc2fb4 1794 pci_pme_active(dev, false);
e80bb09d 1795 dev->wakeup_prepared = false;
5bcc2fb4 1796 }
1da177e4 1797
5bcc2fb4 1798 return ret;
eb9d0fe4 1799}
6cbf8214 1800EXPORT_SYMBOL(__pci_enable_wake);
1da177e4 1801
0235c4fc
RW
1802/**
1803 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1804 * @dev: PCI device to prepare
1805 * @enable: True to enable wake-up event generation; false to disable
1806 *
1807 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1808 * and this function allows them to set that up cleanly - pci_enable_wake()
1809 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1810 * ordering constraints.
1811 *
1812 * This function only returns error code if the device is not capable of
1813 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1814 * enable wake-up power for it.
1815 */
1816int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1817{
1818 return pci_pme_capable(dev, PCI_D3cold) ?
1819 pci_enable_wake(dev, PCI_D3cold, enable) :
1820 pci_enable_wake(dev, PCI_D3hot, enable);
1821}
1822
404cc2d8 1823/**
37139074
JB
1824 * pci_target_state - find an appropriate low power state for a given PCI dev
1825 * @dev: PCI device
1826 *
1827 * Use underlying platform code to find a supported low power state for @dev.
1828 * If the platform can't manage @dev, return the deepest state from which it
1829 * can generate wake events, based on any available PME info.
404cc2d8 1830 */
0b950f0f 1831static pci_power_t pci_target_state(struct pci_dev *dev)
404cc2d8
RW
1832{
1833 pci_power_t target_state = PCI_D3hot;
404cc2d8
RW
1834
1835 if (platform_pci_power_manageable(dev)) {
1836 /*
1837 * Call the platform to choose the target state of the device
1838 * and enable wake-up from this state if supported.
1839 */
1840 pci_power_t state = platform_pci_choose_state(dev);
1841
1842 switch (state) {
1843 case PCI_POWER_ERROR:
1844 case PCI_UNKNOWN:
1845 break;
1846 case PCI_D1:
1847 case PCI_D2:
1848 if (pci_no_d1d2(dev))
1849 break;
1850 default:
1851 target_state = state;
404cc2d8 1852 }
d2abdf62
RW
1853 } else if (!dev->pm_cap) {
1854 target_state = PCI_D0;
404cc2d8
RW
1855 } else if (device_may_wakeup(&dev->dev)) {
1856 /*
1857 * Find the deepest state from which the device can generate
1858 * wake-up events, make it the target state and enable device
1859 * to generate PME#.
1860 */
337001b6
RW
1861 if (dev->pme_support) {
1862 while (target_state
1863 && !(dev->pme_support & (1 << target_state)))
1864 target_state--;
404cc2d8
RW
1865 }
1866 }
1867
e5899e1b
RW
1868 return target_state;
1869}
1870
1871/**
1872 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1873 * @dev: Device to handle.
1874 *
1875 * Choose the power state appropriate for the device depending on whether
1876 * it can wake up the system and/or is power manageable by the platform
1877 * (PCI_D3hot is the default) and put the device into that state.
1878 */
1879int pci_prepare_to_sleep(struct pci_dev *dev)
1880{
1881 pci_power_t target_state = pci_target_state(dev);
1882 int error;
1883
1884 if (target_state == PCI_POWER_ERROR)
1885 return -EIO;
1886
448bd857
HY
1887 /* D3cold during system suspend/hibernate is not supported */
1888 if (target_state > PCI_D3hot)
1889 target_state = PCI_D3hot;
1890
8efb8c76 1891 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
c157dfa3 1892
404cc2d8
RW
1893 error = pci_set_power_state(dev, target_state);
1894
1895 if (error)
1896 pci_enable_wake(dev, target_state, false);
1897
1898 return error;
1899}
1900
1901/**
443bd1c4 1902 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
404cc2d8
RW
1903 * @dev: Device to handle.
1904 *
88393161 1905 * Disable device's system wake-up capability and put it into D0.
404cc2d8
RW
1906 */
1907int pci_back_from_sleep(struct pci_dev *dev)
1908{
1909 pci_enable_wake(dev, PCI_D0, false);
1910 return pci_set_power_state(dev, PCI_D0);
1911}
1912
6cbf8214
RW
1913/**
1914 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1915 * @dev: PCI device being suspended.
1916 *
1917 * Prepare @dev to generate wake-up events at run time and put it into a low
1918 * power state.
1919 */
1920int pci_finish_runtime_suspend(struct pci_dev *dev)
1921{
1922 pci_power_t target_state = pci_target_state(dev);
1923 int error;
1924
1925 if (target_state == PCI_POWER_ERROR)
1926 return -EIO;
1927
448bd857
HY
1928 dev->runtime_d3cold = target_state == PCI_D3cold;
1929
6cbf8214
RW
1930 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1931
1932 error = pci_set_power_state(dev, target_state);
1933
448bd857 1934 if (error) {
6cbf8214 1935 __pci_enable_wake(dev, target_state, true, false);
448bd857
HY
1936 dev->runtime_d3cold = false;
1937 }
6cbf8214
RW
1938
1939 return error;
1940}
1941
b67ea761
RW
1942/**
1943 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1944 * @dev: Device to check.
1945 *
f7625980 1946 * Return true if the device itself is capable of generating wake-up events
b67ea761
RW
1947 * (through the platform or using the native PCIe PME) or if the device supports
1948 * PME and one of its upstream bridges can generate wake-up events.
1949 */
1950bool pci_dev_run_wake(struct pci_dev *dev)
1951{
1952 struct pci_bus *bus = dev->bus;
1953
1954 if (device_run_wake(&dev->dev))
1955 return true;
1956
1957 if (!dev->pme_support)
1958 return false;
1959
1960 while (bus->parent) {
1961 struct pci_dev *bridge = bus->self;
1962
1963 if (device_run_wake(&bridge->dev))
1964 return true;
1965
1966 bus = bus->parent;
1967 }
1968
1969 /* We have reached the root bus. */
1970 if (bus->bridge)
1971 return device_run_wake(bus->bridge);
1972
1973 return false;
1974}
1975EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1976
b3c32c4f
HY
1977void pci_config_pm_runtime_get(struct pci_dev *pdev)
1978{
1979 struct device *dev = &pdev->dev;
1980 struct device *parent = dev->parent;
1981
1982 if (parent)
1983 pm_runtime_get_sync(parent);
1984 pm_runtime_get_noresume(dev);
1985 /*
1986 * pdev->current_state is set to PCI_D3cold during suspending,
1987 * so wait until suspending completes
1988 */
1989 pm_runtime_barrier(dev);
1990 /*
1991 * Only need to resume devices in D3cold, because config
1992 * registers are still accessible for devices suspended but
1993 * not in D3cold.
1994 */
1995 if (pdev->current_state == PCI_D3cold)
1996 pm_runtime_resume(dev);
1997}
1998
1999void pci_config_pm_runtime_put(struct pci_dev *pdev)
2000{
2001 struct device *dev = &pdev->dev;
2002 struct device *parent = dev->parent;
2003
2004 pm_runtime_put(dev);
2005 if (parent)
2006 pm_runtime_put_sync(parent);
2007}
2008
eb9d0fe4
RW
2009/**
2010 * pci_pm_init - Initialize PM functions of given PCI device
2011 * @dev: PCI device to handle.
2012 */
2013void pci_pm_init(struct pci_dev *dev)
2014{
2015 int pm;
2016 u16 pmc;
1da177e4 2017
bb910a70 2018 pm_runtime_forbid(&dev->dev);
967577b0
HY
2019 pm_runtime_set_active(&dev->dev);
2020 pm_runtime_enable(&dev->dev);
a1e4d72c 2021 device_enable_async_suspend(&dev->dev);
e80bb09d 2022 dev->wakeup_prepared = false;
bb910a70 2023
337001b6 2024 dev->pm_cap = 0;
ffaddbe8 2025 dev->pme_support = 0;
337001b6 2026
eb9d0fe4
RW
2027 /* find PCI PM capability in list */
2028 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2029 if (!pm)
50246dd4 2030 return;
eb9d0fe4
RW
2031 /* Check device's ability to generate PME# */
2032 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
075c1771 2033
eb9d0fe4
RW
2034 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2035 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2036 pmc & PCI_PM_CAP_VER_MASK);
50246dd4 2037 return;
eb9d0fe4
RW
2038 }
2039
337001b6 2040 dev->pm_cap = pm;
1ae861e6 2041 dev->d3_delay = PCI_PM_D3_WAIT;
448bd857 2042 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
4f9c1397 2043 dev->d3cold_allowed = true;
337001b6
RW
2044
2045 dev->d1_support = false;
2046 dev->d2_support = false;
2047 if (!pci_no_d1d2(dev)) {
c9ed77ee 2048 if (pmc & PCI_PM_CAP_D1)
337001b6 2049 dev->d1_support = true;
c9ed77ee 2050 if (pmc & PCI_PM_CAP_D2)
337001b6 2051 dev->d2_support = true;
c9ed77ee
BH
2052
2053 if (dev->d1_support || dev->d2_support)
2054 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
ec84f126
JB
2055 dev->d1_support ? " D1" : "",
2056 dev->d2_support ? " D2" : "");
337001b6
RW
2057 }
2058
2059 pmc &= PCI_PM_CAP_PME_MASK;
2060 if (pmc) {
10c3d71d
BH
2061 dev_printk(KERN_DEBUG, &dev->dev,
2062 "PME# supported from%s%s%s%s%s\n",
c9ed77ee
BH
2063 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2064 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2065 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2066 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2067 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
337001b6 2068 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
379021d5 2069 dev->pme_poll = true;
eb9d0fe4
RW
2070 /*
2071 * Make device's PM flags reflect the wake-up capability, but
2072 * let the user space enable it to wake up the system as needed.
2073 */
2074 device_set_wakeup_capable(&dev->dev, true);
eb9d0fe4 2075 /* Disable the PME# generation functionality */
337001b6 2076 pci_pme_active(dev, false);
eb9d0fe4 2077 }
1da177e4
LT
2078}
2079
34a4876e
YL
2080static void pci_add_saved_cap(struct pci_dev *pci_dev,
2081 struct pci_cap_saved_state *new_cap)
2082{
2083 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2084}
2085
63f4898a 2086/**
fd0f7f73
AW
2087 * _pci_add_cap_save_buffer - allocate buffer for saving given
2088 * capability registers
63f4898a
RW
2089 * @dev: the PCI device
2090 * @cap: the capability to allocate the buffer for
fd0f7f73 2091 * @extended: Standard or Extended capability ID
63f4898a
RW
2092 * @size: requested size of the buffer
2093 */
fd0f7f73
AW
2094static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2095 bool extended, unsigned int size)
63f4898a
RW
2096{
2097 int pos;
2098 struct pci_cap_saved_state *save_state;
2099
fd0f7f73
AW
2100 if (extended)
2101 pos = pci_find_ext_capability(dev, cap);
2102 else
2103 pos = pci_find_capability(dev, cap);
2104
63f4898a
RW
2105 if (pos <= 0)
2106 return 0;
2107
2108 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2109 if (!save_state)
2110 return -ENOMEM;
2111
24a4742f 2112 save_state->cap.cap_nr = cap;
fd0f7f73 2113 save_state->cap.cap_extended = extended;
24a4742f 2114 save_state->cap.size = size;
63f4898a
RW
2115 pci_add_saved_cap(dev, save_state);
2116
2117 return 0;
2118}
2119
fd0f7f73
AW
2120int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2121{
2122 return _pci_add_cap_save_buffer(dev, cap, false, size);
2123}
2124
2125int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2126{
2127 return _pci_add_cap_save_buffer(dev, cap, true, size);
2128}
2129
63f4898a
RW
2130/**
2131 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2132 * @dev: the PCI device
2133 */
2134void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2135{
2136 int error;
2137
89858517
YZ
2138 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2139 PCI_EXP_SAVE_REGS * sizeof(u16));
63f4898a
RW
2140 if (error)
2141 dev_err(&dev->dev,
2142 "unable to preallocate PCI Express save buffer\n");
2143
2144 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2145 if (error)
2146 dev_err(&dev->dev,
2147 "unable to preallocate PCI-X save buffer\n");
425c1b22
AW
2148
2149 pci_allocate_vc_save_buffers(dev);
63f4898a
RW
2150}
2151
f796841e
YL
2152void pci_free_cap_save_buffers(struct pci_dev *dev)
2153{
2154 struct pci_cap_saved_state *tmp;
b67bfe0d 2155 struct hlist_node *n;
f796841e 2156
b67bfe0d 2157 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
f796841e
YL
2158 kfree(tmp);
2159}
2160
58c3a727 2161/**
31ab2476 2162 * pci_configure_ari - enable or disable ARI forwarding
58c3a727 2163 * @dev: the PCI device
b0cc6020
YW
2164 *
2165 * If @dev and its upstream bridge both support ARI, enable ARI in the
2166 * bridge. Otherwise, disable ARI in the bridge.
58c3a727 2167 */
31ab2476 2168void pci_configure_ari(struct pci_dev *dev)
58c3a727 2169{
58c3a727 2170 u32 cap;
8113587c 2171 struct pci_dev *bridge;
58c3a727 2172
6748dcc2 2173 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
58c3a727
YZ
2174 return;
2175
8113587c 2176 bridge = dev->bus->self;
cb97ae34 2177 if (!bridge)
8113587c
ZY
2178 return;
2179
59875ae4 2180 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
58c3a727
YZ
2181 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2182 return;
2183
b0cc6020
YW
2184 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2185 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2186 PCI_EXP_DEVCTL2_ARI);
2187 bridge->ari_enabled = 1;
2188 } else {
2189 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2190 PCI_EXP_DEVCTL2_ARI);
2191 bridge->ari_enabled = 0;
2192 }
58c3a727
YZ
2193}
2194
5d990b62
CW
2195static int pci_acs_enable;
2196
2197/**
2198 * pci_request_acs - ask for ACS to be enabled if supported
2199 */
2200void pci_request_acs(void)
2201{
2202 pci_acs_enable = 1;
2203}
2204
ae21ee65 2205/**
2c744244 2206 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
ae21ee65
AK
2207 * @dev: the PCI device
2208 */
2c744244 2209static int pci_std_enable_acs(struct pci_dev *dev)
ae21ee65
AK
2210{
2211 int pos;
2212 u16 cap;
2213 u16 ctrl;
2214
ae21ee65
AK
2215 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2216 if (!pos)
2c744244 2217 return -ENODEV;
ae21ee65
AK
2218
2219 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2220 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2221
2222 /* Source Validation */
2223 ctrl |= (cap & PCI_ACS_SV);
2224
2225 /* P2P Request Redirect */
2226 ctrl |= (cap & PCI_ACS_RR);
2227
2228 /* P2P Completion Redirect */
2229 ctrl |= (cap & PCI_ACS_CR);
2230
2231 /* Upstream Forwarding */
2232 ctrl |= (cap & PCI_ACS_UF);
2233
2234 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2c744244
AW
2235
2236 return 0;
2237}
2238
2239/**
2240 * pci_enable_acs - enable ACS if hardware support it
2241 * @dev: the PCI device
2242 */
2243void pci_enable_acs(struct pci_dev *dev)
2244{
2245 if (!pci_acs_enable)
2246 return;
2247
2248 if (!pci_std_enable_acs(dev))
2249 return;
2250
2251 pci_dev_specific_enable_acs(dev);
ae21ee65
AK
2252}
2253
0a67119f
AW
2254static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2255{
2256 int pos;
83db7e0b 2257 u16 cap, ctrl;
0a67119f
AW
2258
2259 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2260 if (!pos)
2261 return false;
2262
83db7e0b
AW
2263 /*
2264 * Except for egress control, capabilities are either required
2265 * or only required if controllable. Features missing from the
2266 * capability field can therefore be assumed as hard-wired enabled.
2267 */
2268 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2269 acs_flags &= (cap | PCI_ACS_EC);
2270
0a67119f
AW
2271 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2272 return (ctrl & acs_flags) == acs_flags;
2273}
2274
ad805758
AW
2275/**
2276 * pci_acs_enabled - test ACS against required flags for a given device
2277 * @pdev: device to test
2278 * @acs_flags: required PCI ACS flags
2279 *
2280 * Return true if the device supports the provided flags. Automatically
2281 * filters out flags that are not implemented on multifunction devices.
0a67119f
AW
2282 *
2283 * Note that this interface checks the effective ACS capabilities of the
2284 * device rather than the actual capabilities. For instance, most single
2285 * function endpoints are not required to support ACS because they have no
2286 * opportunity for peer-to-peer access. We therefore return 'true'
2287 * regardless of whether the device exposes an ACS capability. This makes
2288 * it much easier for callers of this function to ignore the actual type
2289 * or topology of the device when testing ACS support.
ad805758
AW
2290 */
2291bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2292{
0a67119f 2293 int ret;
ad805758
AW
2294
2295 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2296 if (ret >= 0)
2297 return ret > 0;
2298
0a67119f
AW
2299 /*
2300 * Conventional PCI and PCI-X devices never support ACS, either
2301 * effectively or actually. The shared bus topology implies that
2302 * any device on the bus can receive or snoop DMA.
2303 */
ad805758
AW
2304 if (!pci_is_pcie(pdev))
2305 return false;
2306
0a67119f
AW
2307 switch (pci_pcie_type(pdev)) {
2308 /*
2309 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
f7625980 2310 * but since their primary interface is PCI/X, we conservatively
0a67119f
AW
2311 * handle them as we would a non-PCIe device.
2312 */
2313 case PCI_EXP_TYPE_PCIE_BRIDGE:
2314 /*
2315 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2316 * applicable... must never implement an ACS Extended Capability...".
2317 * This seems arbitrary, but we take a conservative interpretation
2318 * of this statement.
2319 */
2320 case PCI_EXP_TYPE_PCI_BRIDGE:
2321 case PCI_EXP_TYPE_RC_EC:
2322 return false;
2323 /*
2324 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2325 * implement ACS in order to indicate their peer-to-peer capabilities,
2326 * regardless of whether they are single- or multi-function devices.
2327 */
2328 case PCI_EXP_TYPE_DOWNSTREAM:
2329 case PCI_EXP_TYPE_ROOT_PORT:
2330 return pci_acs_flags_enabled(pdev, acs_flags);
2331 /*
2332 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2333 * implemented by the remaining PCIe types to indicate peer-to-peer
f7625980 2334 * capabilities, but only when they are part of a multifunction
0a67119f
AW
2335 * device. The footnote for section 6.12 indicates the specific
2336 * PCIe types included here.
2337 */
2338 case PCI_EXP_TYPE_ENDPOINT:
2339 case PCI_EXP_TYPE_UPSTREAM:
2340 case PCI_EXP_TYPE_LEG_END:
2341 case PCI_EXP_TYPE_RC_END:
2342 if (!pdev->multifunction)
2343 break;
2344
0a67119f 2345 return pci_acs_flags_enabled(pdev, acs_flags);
ad805758
AW
2346 }
2347
0a67119f 2348 /*
f7625980 2349 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
0a67119f
AW
2350 * to single function devices with the exception of downstream ports.
2351 */
ad805758
AW
2352 return true;
2353}
2354
2355/**
2356 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2357 * @start: starting downstream device
2358 * @end: ending upstream device or NULL to search to the root bus
2359 * @acs_flags: required flags
2360 *
2361 * Walk up a device tree from start to end testing PCI ACS support. If
2362 * any step along the way does not support the required flags, return false.
2363 */
2364bool pci_acs_path_enabled(struct pci_dev *start,
2365 struct pci_dev *end, u16 acs_flags)
2366{
2367 struct pci_dev *pdev, *parent = start;
2368
2369 do {
2370 pdev = parent;
2371
2372 if (!pci_acs_enabled(pdev, acs_flags))
2373 return false;
2374
2375 if (pci_is_root_bus(pdev->bus))
2376 return (end == NULL);
2377
2378 parent = pdev->bus->self;
2379 } while (pdev != end);
2380
2381 return true;
2382}
2383
57c2cf71
BH
2384/**
2385 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2386 * @dev: the PCI device
bb5c2de2 2387 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
57c2cf71
BH
2388 *
2389 * Perform INTx swizzling for a device behind one level of bridge. This is
2390 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
46b952a3
MW
2391 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2392 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2393 * the PCI Express Base Specification, Revision 2.1)
57c2cf71 2394 */
3df425f3 2395u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
57c2cf71 2396{
46b952a3
MW
2397 int slot;
2398
2399 if (pci_ari_enabled(dev->bus))
2400 slot = 0;
2401 else
2402 slot = PCI_SLOT(dev->devfn);
2403
2404 return (((pin - 1) + slot) % 4) + 1;
57c2cf71
BH
2405}
2406
1da177e4
LT
2407int
2408pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2409{
2410 u8 pin;
2411
514d207d 2412 pin = dev->pin;
1da177e4
LT
2413 if (!pin)
2414 return -1;
878f2e50 2415
8784fd4d 2416 while (!pci_is_root_bus(dev->bus)) {
57c2cf71 2417 pin = pci_swizzle_interrupt_pin(dev, pin);
1da177e4
LT
2418 dev = dev->bus->self;
2419 }
2420 *bridge = dev;
2421 return pin;
2422}
2423
68feac87
BH
2424/**
2425 * pci_common_swizzle - swizzle INTx all the way to root bridge
2426 * @dev: the PCI device
2427 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2428 *
2429 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2430 * bridges all the way up to a PCI root bus.
2431 */
2432u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2433{
2434 u8 pin = *pinp;
2435
1eb39487 2436 while (!pci_is_root_bus(dev->bus)) {
68feac87
BH
2437 pin = pci_swizzle_interrupt_pin(dev, pin);
2438 dev = dev->bus->self;
2439 }
2440 *pinp = pin;
2441 return PCI_SLOT(dev->devfn);
2442}
2443
1da177e4
LT
2444/**
2445 * pci_release_region - Release a PCI bar
2446 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2447 * @bar: BAR to release
2448 *
2449 * Releases the PCI I/O and memory resources previously reserved by a
2450 * successful call to pci_request_region. Call this function only
2451 * after all use of the PCI regions has ceased.
2452 */
2453void pci_release_region(struct pci_dev *pdev, int bar)
2454{
9ac7849e
TH
2455 struct pci_devres *dr;
2456
1da177e4
LT
2457 if (pci_resource_len(pdev, bar) == 0)
2458 return;
2459 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2460 release_region(pci_resource_start(pdev, bar),
2461 pci_resource_len(pdev, bar));
2462 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2463 release_mem_region(pci_resource_start(pdev, bar),
2464 pci_resource_len(pdev, bar));
9ac7849e
TH
2465
2466 dr = find_pci_dr(pdev);
2467 if (dr)
2468 dr->region_mask &= ~(1 << bar);
1da177e4
LT
2469}
2470
2471/**
f5ddcac4 2472 * __pci_request_region - Reserved PCI I/O and memory resource
1da177e4
LT
2473 * @pdev: PCI device whose resources are to be reserved
2474 * @bar: BAR to be reserved
2475 * @res_name: Name to be associated with resource.
f5ddcac4 2476 * @exclusive: whether the region access is exclusive or not
1da177e4
LT
2477 *
2478 * Mark the PCI region associated with PCI device @pdev BR @bar as
2479 * being reserved by owner @res_name. Do not access any
2480 * address inside the PCI regions unless this call returns
2481 * successfully.
2482 *
f5ddcac4
RD
2483 * If @exclusive is set, then the region is marked so that userspace
2484 * is explicitly not allowed to map the resource via /dev/mem or
f7625980 2485 * sysfs MMIO access.
f5ddcac4 2486 *
1da177e4
LT
2487 * Returns 0 on success, or %EBUSY on error. A warning
2488 * message is also printed on failure.
2489 */
e8de1481
AV
2490static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2491 int exclusive)
1da177e4 2492{
9ac7849e
TH
2493 struct pci_devres *dr;
2494
1da177e4
LT
2495 if (pci_resource_len(pdev, bar) == 0)
2496 return 0;
f7625980 2497
1da177e4
LT
2498 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2499 if (!request_region(pci_resource_start(pdev, bar),
2500 pci_resource_len(pdev, bar), res_name))
2501 goto err_out;
2502 }
2503 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
e8de1481
AV
2504 if (!__request_mem_region(pci_resource_start(pdev, bar),
2505 pci_resource_len(pdev, bar), res_name,
2506 exclusive))
1da177e4
LT
2507 goto err_out;
2508 }
9ac7849e
TH
2509
2510 dr = find_pci_dr(pdev);
2511 if (dr)
2512 dr->region_mask |= 1 << bar;
2513
1da177e4
LT
2514 return 0;
2515
2516err_out:
c7dabef8 2517 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
096e6f67 2518 &pdev->resource[bar]);
1da177e4
LT
2519 return -EBUSY;
2520}
2521
e8de1481 2522/**
f5ddcac4 2523 * pci_request_region - Reserve PCI I/O and memory resource
e8de1481
AV
2524 * @pdev: PCI device whose resources are to be reserved
2525 * @bar: BAR to be reserved
f5ddcac4 2526 * @res_name: Name to be associated with resource
e8de1481 2527 *
f5ddcac4 2528 * Mark the PCI region associated with PCI device @pdev BAR @bar as
e8de1481
AV
2529 * being reserved by owner @res_name. Do not access any
2530 * address inside the PCI regions unless this call returns
2531 * successfully.
2532 *
2533 * Returns 0 on success, or %EBUSY on error. A warning
2534 * message is also printed on failure.
2535 */
2536int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2537{
2538 return __pci_request_region(pdev, bar, res_name, 0);
2539}
2540
2541/**
2542 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2543 * @pdev: PCI device whose resources are to be reserved
2544 * @bar: BAR to be reserved
2545 * @res_name: Name to be associated with resource.
2546 *
2547 * Mark the PCI region associated with PCI device @pdev BR @bar as
2548 * being reserved by owner @res_name. Do not access any
2549 * address inside the PCI regions unless this call returns
2550 * successfully.
2551 *
2552 * Returns 0 on success, or %EBUSY on error. A warning
2553 * message is also printed on failure.
2554 *
2555 * The key difference that _exclusive makes it that userspace is
2556 * explicitly not allowed to map the resource via /dev/mem or
f7625980 2557 * sysfs.
e8de1481
AV
2558 */
2559int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2560{
2561 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2562}
c87deff7
HS
2563/**
2564 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2565 * @pdev: PCI device whose resources were previously reserved
2566 * @bars: Bitmask of BARs to be released
2567 *
2568 * Release selected PCI I/O and memory resources previously reserved.
2569 * Call this function only after all use of the PCI regions has ceased.
2570 */
2571void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2572{
2573 int i;
2574
2575 for (i = 0; i < 6; i++)
2576 if (bars & (1 << i))
2577 pci_release_region(pdev, i);
2578}
2579
9738abed 2580static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
e8de1481 2581 const char *res_name, int excl)
c87deff7
HS
2582{
2583 int i;
2584
2585 for (i = 0; i < 6; i++)
2586 if (bars & (1 << i))
e8de1481 2587 if (__pci_request_region(pdev, i, res_name, excl))
c87deff7
HS
2588 goto err_out;
2589 return 0;
2590
2591err_out:
2592 while(--i >= 0)
2593 if (bars & (1 << i))
2594 pci_release_region(pdev, i);
2595
2596 return -EBUSY;
2597}
1da177e4 2598
e8de1481
AV
2599
2600/**
2601 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2602 * @pdev: PCI device whose resources are to be reserved
2603 * @bars: Bitmask of BARs to be requested
2604 * @res_name: Name to be associated with resource
2605 */
2606int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2607 const char *res_name)
2608{
2609 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2610}
2611
2612int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2613 int bars, const char *res_name)
2614{
2615 return __pci_request_selected_regions(pdev, bars, res_name,
2616 IORESOURCE_EXCLUSIVE);
2617}
2618
1da177e4
LT
2619/**
2620 * pci_release_regions - Release reserved PCI I/O and memory resources
2621 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2622 *
2623 * Releases all PCI I/O and memory resources previously reserved by a
2624 * successful call to pci_request_regions. Call this function only
2625 * after all use of the PCI regions has ceased.
2626 */
2627
2628void pci_release_regions(struct pci_dev *pdev)
2629{
c87deff7 2630 pci_release_selected_regions(pdev, (1 << 6) - 1);
1da177e4
LT
2631}
2632
2633/**
2634 * pci_request_regions - Reserved PCI I/O and memory resources
2635 * @pdev: PCI device whose resources are to be reserved
2636 * @res_name: Name to be associated with resource.
2637 *
2638 * Mark all PCI regions associated with PCI device @pdev as
2639 * being reserved by owner @res_name. Do not access any
2640 * address inside the PCI regions unless this call returns
2641 * successfully.
2642 *
2643 * Returns 0 on success, or %EBUSY on error. A warning
2644 * message is also printed on failure.
2645 */
3c990e92 2646int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1da177e4 2647{
c87deff7 2648 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1da177e4
LT
2649}
2650
e8de1481
AV
2651/**
2652 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2653 * @pdev: PCI device whose resources are to be reserved
2654 * @res_name: Name to be associated with resource.
2655 *
2656 * Mark all PCI regions associated with PCI device @pdev as
2657 * being reserved by owner @res_name. Do not access any
2658 * address inside the PCI regions unless this call returns
2659 * successfully.
2660 *
2661 * pci_request_regions_exclusive() will mark the region so that
f7625980 2662 * /dev/mem and the sysfs MMIO access will not be allowed.
e8de1481
AV
2663 *
2664 * Returns 0 on success, or %EBUSY on error. A warning
2665 * message is also printed on failure.
2666 */
2667int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2668{
2669 return pci_request_selected_regions_exclusive(pdev,
2670 ((1 << 6) - 1), res_name);
2671}
2672
6a479079
BH
2673static void __pci_set_master(struct pci_dev *dev, bool enable)
2674{
2675 u16 old_cmd, cmd;
2676
2677 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2678 if (enable)
2679 cmd = old_cmd | PCI_COMMAND_MASTER;
2680 else
2681 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2682 if (cmd != old_cmd) {
2683 dev_dbg(&dev->dev, "%s bus mastering\n",
2684 enable ? "enabling" : "disabling");
2685 pci_write_config_word(dev, PCI_COMMAND, cmd);
2686 }
2687 dev->is_busmaster = enable;
2688}
e8de1481 2689
2b6f2c35
MS
2690/**
2691 * pcibios_setup - process "pci=" kernel boot arguments
2692 * @str: string used to pass in "pci=" kernel boot arguments
2693 *
2694 * Process kernel boot arguments. This is the default implementation.
2695 * Architecture specific implementations can override this as necessary.
2696 */
2697char * __weak __init pcibios_setup(char *str)
2698{
2699 return str;
2700}
2701
96c55900
MS
2702/**
2703 * pcibios_set_master - enable PCI bus-mastering for device dev
2704 * @dev: the PCI device to enable
2705 *
2706 * Enables PCI bus-mastering for the device. This is the default
2707 * implementation. Architecture specific implementations can override
2708 * this if necessary.
2709 */
2710void __weak pcibios_set_master(struct pci_dev *dev)
2711{
2712 u8 lat;
2713
f676678f
MS
2714 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2715 if (pci_is_pcie(dev))
2716 return;
2717
96c55900
MS
2718 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2719 if (lat < 16)
2720 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2721 else if (lat > pcibios_max_latency)
2722 lat = pcibios_max_latency;
2723 else
2724 return;
a006482b 2725
96c55900
MS
2726 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2727}
2728
1da177e4
LT
2729/**
2730 * pci_set_master - enables bus-mastering for device dev
2731 * @dev: the PCI device to enable
2732 *
2733 * Enables bus-mastering on the device and calls pcibios_set_master()
2734 * to do the needed arch specific settings.
2735 */
6a479079 2736void pci_set_master(struct pci_dev *dev)
1da177e4 2737{
6a479079 2738 __pci_set_master(dev, true);
1da177e4
LT
2739 pcibios_set_master(dev);
2740}
2741
6a479079
BH
2742/**
2743 * pci_clear_master - disables bus-mastering for device dev
2744 * @dev: the PCI device to disable
2745 */
2746void pci_clear_master(struct pci_dev *dev)
2747{
2748 __pci_set_master(dev, false);
2749}
2750
1da177e4 2751/**
edb2d97e
MW
2752 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2753 * @dev: the PCI device for which MWI is to be enabled
1da177e4 2754 *
edb2d97e
MW
2755 * Helper function for pci_set_mwi.
2756 * Originally copied from drivers/net/acenic.c.
1da177e4
LT
2757 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2758 *
2759 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2760 */
15ea76d4 2761int pci_set_cacheline_size(struct pci_dev *dev)
1da177e4
LT
2762{
2763 u8 cacheline_size;
2764
2765 if (!pci_cache_line_size)
15ea76d4 2766 return -EINVAL;
1da177e4
LT
2767
2768 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2769 equal to or multiple of the right value. */
2770 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2771 if (cacheline_size >= pci_cache_line_size &&
2772 (cacheline_size % pci_cache_line_size) == 0)
2773 return 0;
2774
2775 /* Write the correct value. */
2776 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2777 /* Read it back. */
2778 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2779 if (cacheline_size == pci_cache_line_size)
2780 return 0;
2781
80ccba11
BH
2782 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2783 "supported\n", pci_cache_line_size << 2);
1da177e4
LT
2784
2785 return -EINVAL;
2786}
15ea76d4
TH
2787EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2788
2789#ifdef PCI_DISABLE_MWI
2790int pci_set_mwi(struct pci_dev *dev)
2791{
2792 return 0;
2793}
2794
2795int pci_try_set_mwi(struct pci_dev *dev)
2796{
2797 return 0;
2798}
2799
2800void pci_clear_mwi(struct pci_dev *dev)
2801{
2802}
2803
2804#else
1da177e4
LT
2805
2806/**
2807 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2808 * @dev: the PCI device for which MWI is enabled
2809 *
694625c0 2810 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1da177e4
LT
2811 *
2812 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2813 */
2814int
2815pci_set_mwi(struct pci_dev *dev)
2816{
2817 int rc;
2818 u16 cmd;
2819
edb2d97e 2820 rc = pci_set_cacheline_size(dev);
1da177e4
LT
2821 if (rc)
2822 return rc;
2823
2824 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2825 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
80ccba11 2826 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1da177e4
LT
2827 cmd |= PCI_COMMAND_INVALIDATE;
2828 pci_write_config_word(dev, PCI_COMMAND, cmd);
2829 }
f7625980 2830
1da177e4
LT
2831 return 0;
2832}
2833
694625c0
RD
2834/**
2835 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2836 * @dev: the PCI device for which MWI is enabled
2837 *
2838 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2839 * Callers are not required to check the return value.
2840 *
2841 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2842 */
2843int pci_try_set_mwi(struct pci_dev *dev)
2844{
2845 int rc = pci_set_mwi(dev);
2846 return rc;
2847}
2848
1da177e4
LT
2849/**
2850 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2851 * @dev: the PCI device to disable
2852 *
2853 * Disables PCI Memory-Write-Invalidate transaction on the device
2854 */
2855void
2856pci_clear_mwi(struct pci_dev *dev)
2857{
2858 u16 cmd;
2859
2860 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2861 if (cmd & PCI_COMMAND_INVALIDATE) {
2862 cmd &= ~PCI_COMMAND_INVALIDATE;
2863 pci_write_config_word(dev, PCI_COMMAND, cmd);
2864 }
2865}
edb2d97e 2866#endif /* ! PCI_DISABLE_MWI */
1da177e4 2867
a04ce0ff
BR
2868/**
2869 * pci_intx - enables/disables PCI INTx for device dev
8f7020d3
RD
2870 * @pdev: the PCI device to operate on
2871 * @enable: boolean: whether to enable or disable PCI INTx
a04ce0ff
BR
2872 *
2873 * Enables/disables PCI INTx for device dev
2874 */
2875void
2876pci_intx(struct pci_dev *pdev, int enable)
2877{
2878 u16 pci_command, new;
2879
2880 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2881
2882 if (enable) {
2883 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2884 } else {
2885 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2886 }
2887
2888 if (new != pci_command) {
9ac7849e
TH
2889 struct pci_devres *dr;
2890
2fd9d74b 2891 pci_write_config_word(pdev, PCI_COMMAND, new);
9ac7849e
TH
2892
2893 dr = find_pci_dr(pdev);
2894 if (dr && !dr->restore_intx) {
2895 dr->restore_intx = 1;
2896 dr->orig_intx = !enable;
2897 }
a04ce0ff
BR
2898 }
2899}
2900
a2e27787
JK
2901/**
2902 * pci_intx_mask_supported - probe for INTx masking support
6e9292c5 2903 * @dev: the PCI device to operate on
a2e27787
JK
2904 *
2905 * Check if the device dev support INTx masking via the config space
2906 * command word.
2907 */
2908bool pci_intx_mask_supported(struct pci_dev *dev)
2909{
2910 bool mask_supported = false;
2911 u16 orig, new;
2912
fbebb9fd
BH
2913 if (dev->broken_intx_masking)
2914 return false;
2915
a2e27787
JK
2916 pci_cfg_access_lock(dev);
2917
2918 pci_read_config_word(dev, PCI_COMMAND, &orig);
2919 pci_write_config_word(dev, PCI_COMMAND,
2920 orig ^ PCI_COMMAND_INTX_DISABLE);
2921 pci_read_config_word(dev, PCI_COMMAND, &new);
2922
2923 /*
2924 * There's no way to protect against hardware bugs or detect them
2925 * reliably, but as long as we know what the value should be, let's
2926 * go ahead and check it.
2927 */
2928 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2929 dev_err(&dev->dev, "Command register changed from "
2930 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2931 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2932 mask_supported = true;
2933 pci_write_config_word(dev, PCI_COMMAND, orig);
2934 }
2935
2936 pci_cfg_access_unlock(dev);
2937 return mask_supported;
2938}
2939EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2940
2941static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2942{
2943 struct pci_bus *bus = dev->bus;
2944 bool mask_updated = true;
2945 u32 cmd_status_dword;
2946 u16 origcmd, newcmd;
2947 unsigned long flags;
2948 bool irq_pending;
2949
2950 /*
2951 * We do a single dword read to retrieve both command and status.
2952 * Document assumptions that make this possible.
2953 */
2954 BUILD_BUG_ON(PCI_COMMAND % 4);
2955 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2956
2957 raw_spin_lock_irqsave(&pci_lock, flags);
2958
2959 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2960
2961 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2962
2963 /*
2964 * Check interrupt status register to see whether our device
2965 * triggered the interrupt (when masking) or the next IRQ is
2966 * already pending (when unmasking).
2967 */
2968 if (mask != irq_pending) {
2969 mask_updated = false;
2970 goto done;
2971 }
2972
2973 origcmd = cmd_status_dword;
2974 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2975 if (mask)
2976 newcmd |= PCI_COMMAND_INTX_DISABLE;
2977 if (newcmd != origcmd)
2978 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2979
2980done:
2981 raw_spin_unlock_irqrestore(&pci_lock, flags);
2982
2983 return mask_updated;
2984}
2985
2986/**
2987 * pci_check_and_mask_intx - mask INTx on pending interrupt
6e9292c5 2988 * @dev: the PCI device to operate on
a2e27787
JK
2989 *
2990 * Check if the device dev has its INTx line asserted, mask it and
2991 * return true in that case. False is returned if not interrupt was
2992 * pending.
2993 */
2994bool pci_check_and_mask_intx(struct pci_dev *dev)
2995{
2996 return pci_check_and_set_intx_mask(dev, true);
2997}
2998EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2999
3000/**
ebd50b93 3001 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
6e9292c5 3002 * @dev: the PCI device to operate on
a2e27787
JK
3003 *
3004 * Check if the device dev has its INTx line asserted, unmask it if not
3005 * and return true. False is returned and the mask remains active if
3006 * there was still an interrupt pending.
3007 */
3008bool pci_check_and_unmask_intx(struct pci_dev *dev)
3009{
3010 return pci_check_and_set_intx_mask(dev, false);
3011}
3012EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3013
f5f2b131 3014/**
da27f4b3 3015 * pci_msi_off - disables any MSI or MSI-X capabilities
8d7d86e9 3016 * @dev: the PCI device to operate on
f5f2b131 3017 *
da27f4b3
BH
3018 * If you want to use MSI, see pci_enable_msi() and friends.
3019 * This is a lower-level primitive that allows us to disable
3020 * MSI operation at the device level.
f5f2b131
EB
3021 */
3022void pci_msi_off(struct pci_dev *dev)
3023{
3024 int pos;
3025 u16 control;
3026
da27f4b3
BH
3027 /*
3028 * This looks like it could go in msi.c, but we need it even when
3029 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3030 * dev->msi_cap or dev->msix_cap here.
3031 */
f5f2b131
EB
3032 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3033 if (pos) {
3034 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3035 control &= ~PCI_MSI_FLAGS_ENABLE;
3036 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3037 }
3038 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3039 if (pos) {
3040 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3041 control &= ~PCI_MSIX_FLAGS_ENABLE;
3042 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3043 }
3044}
b03214d5 3045EXPORT_SYMBOL_GPL(pci_msi_off);
f5f2b131 3046
4d57cdfa
FT
3047int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3048{
3049 return dma_set_max_seg_size(&dev->dev, size);
3050}
3051EXPORT_SYMBOL(pci_set_dma_max_seg_size);
4d57cdfa 3052
59fc67de
FT
3053int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3054{
3055 return dma_set_seg_boundary(&dev->dev, mask);
3056}
3057EXPORT_SYMBOL(pci_set_dma_seg_boundary);
59fc67de 3058
3775a209
CL
3059/**
3060 * pci_wait_for_pending_transaction - waits for pending transaction
3061 * @dev: the PCI device to operate on
3062 *
3063 * Return 0 if transaction is pending 1 otherwise.
3064 */
3065int pci_wait_for_pending_transaction(struct pci_dev *dev)
8dd7f803 3066{
157e876f
AW
3067 if (!pci_is_pcie(dev))
3068 return 1;
8c1c699f 3069
157e876f 3070 return pci_wait_for_pending(dev, PCI_EXP_DEVSTA, PCI_EXP_DEVSTA_TRPND);
3775a209
CL
3071}
3072EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3073
3074static int pcie_flr(struct pci_dev *dev, int probe)
3075{
3076 u32 cap;
3077
3078 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3079 if (!(cap & PCI_EXP_DEVCAP_FLR))
3080 return -ENOTTY;
3081
3082 if (probe)
3083 return 0;
3084
3085 if (!pci_wait_for_pending_transaction(dev))
3086 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
8c1c699f 3087
59875ae4 3088 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
04b55c47 3089
8c1c699f 3090 msleep(100);
8dd7f803 3091
8dd7f803
SY
3092 return 0;
3093}
d91cdc74 3094
8c1c699f 3095static int pci_af_flr(struct pci_dev *dev, int probe)
1ca88797 3096{
8c1c699f 3097 int pos;
1ca88797
SY
3098 u8 cap;
3099
8c1c699f
YZ
3100 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3101 if (!pos)
1ca88797 3102 return -ENOTTY;
8c1c699f
YZ
3103
3104 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
1ca88797
SY
3105 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3106 return -ENOTTY;
3107
3108 if (probe)
3109 return 0;
3110
1ca88797 3111 /* Wait for Transaction Pending bit clean */
157e876f
AW
3112 if (pci_wait_for_pending(dev, PCI_AF_STATUS, PCI_AF_STATUS_TP))
3113 goto clear;
5fe5db05 3114
8c1c699f
YZ
3115 dev_err(&dev->dev, "transaction is not cleared; "
3116 "proceeding with reset anyway\n");
5fe5db05 3117
8c1c699f
YZ
3118clear:
3119 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
1ca88797 3120 msleep(100);
8c1c699f 3121
1ca88797
SY
3122 return 0;
3123}
3124
83d74e03
RW
3125/**
3126 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3127 * @dev: Device to reset.
3128 * @probe: If set, only check if the device can be reset this way.
3129 *
3130 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3131 * unset, it will be reinitialized internally when going from PCI_D3hot to
3132 * PCI_D0. If that's the case and the device is not in a low-power state
3133 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3134 *
3135 * NOTE: This causes the caller to sleep for twice the device power transition
3136 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
f7625980 3137 * by default (i.e. unless the @dev's d3_delay field has a different value).
83d74e03
RW
3138 * Moreover, only devices in D0 can be reset by this function.
3139 */
f85876ba 3140static int pci_pm_reset(struct pci_dev *dev, int probe)
d91cdc74 3141{
f85876ba
YZ
3142 u16 csr;
3143
3144 if (!dev->pm_cap)
3145 return -ENOTTY;
d91cdc74 3146
f85876ba
YZ
3147 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3148 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3149 return -ENOTTY;
d91cdc74 3150
f85876ba
YZ
3151 if (probe)
3152 return 0;
1ca88797 3153
f85876ba
YZ
3154 if (dev->current_state != PCI_D0)
3155 return -EINVAL;
3156
3157 csr &= ~PCI_PM_CTRL_STATE_MASK;
3158 csr |= PCI_D3hot;
3159 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 3160 pci_dev_d3_sleep(dev);
f85876ba
YZ
3161
3162 csr &= ~PCI_PM_CTRL_STATE_MASK;
3163 csr |= PCI_D0;
3164 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 3165 pci_dev_d3_sleep(dev);
f85876ba
YZ
3166
3167 return 0;
3168}
3169
64e8674f
AW
3170/**
3171 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3172 * @dev: Bridge device
3173 *
3174 * Use the bridge control register to assert reset on the secondary bus.
3175 * Devices on the secondary bus are left in power-on state.
3176 */
3177void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
c12ff1df
YZ
3178{
3179 u16 ctrl;
64e8674f
AW
3180
3181 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3182 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3183 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
de0c548c
AW
3184 /*
3185 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
f7625980 3186 * this to 2ms to ensure that we meet the minimum requirement.
de0c548c
AW
3187 */
3188 msleep(2);
64e8674f
AW
3189
3190 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3191 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
de0c548c
AW
3192
3193 /*
3194 * Trhfa for conventional PCI is 2^25 clock cycles.
3195 * Assuming a minimum 33MHz clock this results in a 1s
3196 * delay before we can consider subordinate devices to
3197 * be re-initialized. PCIe has some ways to shorten this,
3198 * but we don't make use of them yet.
3199 */
3200 ssleep(1);
64e8674f
AW
3201}
3202EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3203
3204static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3205{
c12ff1df
YZ
3206 struct pci_dev *pdev;
3207
654b75e0 3208 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
c12ff1df
YZ
3209 return -ENOTTY;
3210
3211 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3212 if (pdev != dev)
3213 return -ENOTTY;
3214
3215 if (probe)
3216 return 0;
3217
64e8674f 3218 pci_reset_bridge_secondary_bus(dev->bus->self);
c12ff1df
YZ
3219
3220 return 0;
3221}
3222
608c3881
AW
3223static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3224{
3225 int rc = -ENOTTY;
3226
3227 if (!hotplug || !try_module_get(hotplug->ops->owner))
3228 return rc;
3229
3230 if (hotplug->ops->reset_slot)
3231 rc = hotplug->ops->reset_slot(hotplug, probe);
3232
3233 module_put(hotplug->ops->owner);
3234
3235 return rc;
3236}
3237
3238static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3239{
3240 struct pci_dev *pdev;
3241
3242 if (dev->subordinate || !dev->slot)
3243 return -ENOTTY;
3244
3245 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3246 if (pdev != dev && pdev->slot == dev->slot)
3247 return -ENOTTY;
3248
3249 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3250}
3251
977f857c 3252static int __pci_dev_reset(struct pci_dev *dev, int probe)
d91cdc74 3253{
8c1c699f
YZ
3254 int rc;
3255
3256 might_sleep();
3257
b9c3b266
DC
3258 rc = pci_dev_specific_reset(dev, probe);
3259 if (rc != -ENOTTY)
3260 goto done;
3261
8c1c699f
YZ
3262 rc = pcie_flr(dev, probe);
3263 if (rc != -ENOTTY)
3264 goto done;
d91cdc74 3265
8c1c699f 3266 rc = pci_af_flr(dev, probe);
f85876ba
YZ
3267 if (rc != -ENOTTY)
3268 goto done;
3269
3270 rc = pci_pm_reset(dev, probe);
c12ff1df
YZ
3271 if (rc != -ENOTTY)
3272 goto done;
3273
608c3881
AW
3274 rc = pci_dev_reset_slot_function(dev, probe);
3275 if (rc != -ENOTTY)
3276 goto done;
3277
c12ff1df 3278 rc = pci_parent_bus_reset(dev, probe);
8c1c699f 3279done:
977f857c
KRW
3280 return rc;
3281}
3282
77cb985a
AW
3283static void pci_dev_lock(struct pci_dev *dev)
3284{
3285 pci_cfg_access_lock(dev);
3286 /* block PM suspend, driver probe, etc. */
3287 device_lock(&dev->dev);
3288}
3289
61cf16d8
AW
3290/* Return 1 on successful lock, 0 on contention */
3291static int pci_dev_trylock(struct pci_dev *dev)
3292{
3293 if (pci_cfg_access_trylock(dev)) {
3294 if (device_trylock(&dev->dev))
3295 return 1;
3296 pci_cfg_access_unlock(dev);
3297 }
3298
3299 return 0;
3300}
3301
77cb985a
AW
3302static void pci_dev_unlock(struct pci_dev *dev)
3303{
3304 device_unlock(&dev->dev);
3305 pci_cfg_access_unlock(dev);
3306}
3307
3308static void pci_dev_save_and_disable(struct pci_dev *dev)
3309{
a6cbaade
AW
3310 /*
3311 * Wake-up device prior to save. PM registers default to D0 after
3312 * reset and a simple register restore doesn't reliably return
3313 * to a non-D0 state anyway.
3314 */
3315 pci_set_power_state(dev, PCI_D0);
3316
77cb985a
AW
3317 pci_save_state(dev);
3318 /*
3319 * Disable the device by clearing the Command register, except for
3320 * INTx-disable which is set. This not only disables MMIO and I/O port
3321 * BARs, but also prevents the device from being Bus Master, preventing
3322 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3323 * compliant devices, INTx-disable prevents legacy interrupts.
3324 */
3325 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3326}
3327
3328static void pci_dev_restore(struct pci_dev *dev)
3329{
3330 pci_restore_state(dev);
3331}
3332
977f857c
KRW
3333static int pci_dev_reset(struct pci_dev *dev, int probe)
3334{
3335 int rc;
3336
77cb985a
AW
3337 if (!probe)
3338 pci_dev_lock(dev);
977f857c
KRW
3339
3340 rc = __pci_dev_reset(dev, probe);
3341
77cb985a
AW
3342 if (!probe)
3343 pci_dev_unlock(dev);
3344
8c1c699f 3345 return rc;
d91cdc74 3346}
d91cdc74 3347/**
8c1c699f
YZ
3348 * __pci_reset_function - reset a PCI device function
3349 * @dev: PCI device to reset
d91cdc74
SY
3350 *
3351 * Some devices allow an individual function to be reset without affecting
3352 * other functions in the same device. The PCI device must be responsive
3353 * to PCI config space in order to use this function.
3354 *
3355 * The device function is presumed to be unused when this function is called.
3356 * Resetting the device will make the contents of PCI configuration space
3357 * random, so any caller of this must be prepared to reinitialise the
3358 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3359 * etc.
3360 *
8c1c699f 3361 * Returns 0 if the device function was successfully reset or negative if the
d91cdc74
SY
3362 * device doesn't support resetting a single function.
3363 */
8c1c699f 3364int __pci_reset_function(struct pci_dev *dev)
d91cdc74 3365{
8c1c699f 3366 return pci_dev_reset(dev, 0);
d91cdc74 3367}
8c1c699f 3368EXPORT_SYMBOL_GPL(__pci_reset_function);
8dd7f803 3369
6fbf9e7a
KRW
3370/**
3371 * __pci_reset_function_locked - reset a PCI device function while holding
3372 * the @dev mutex lock.
3373 * @dev: PCI device to reset
3374 *
3375 * Some devices allow an individual function to be reset without affecting
3376 * other functions in the same device. The PCI device must be responsive
3377 * to PCI config space in order to use this function.
3378 *
3379 * The device function is presumed to be unused and the caller is holding
3380 * the device mutex lock when this function is called.
3381 * Resetting the device will make the contents of PCI configuration space
3382 * random, so any caller of this must be prepared to reinitialise the
3383 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3384 * etc.
3385 *
3386 * Returns 0 if the device function was successfully reset or negative if the
3387 * device doesn't support resetting a single function.
3388 */
3389int __pci_reset_function_locked(struct pci_dev *dev)
3390{
977f857c 3391 return __pci_dev_reset(dev, 0);
6fbf9e7a
KRW
3392}
3393EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3394
711d5779
MT
3395/**
3396 * pci_probe_reset_function - check whether the device can be safely reset
3397 * @dev: PCI device to reset
3398 *
3399 * Some devices allow an individual function to be reset without affecting
3400 * other functions in the same device. The PCI device must be responsive
3401 * to PCI config space in order to use this function.
3402 *
3403 * Returns 0 if the device function can be reset or negative if the
3404 * device doesn't support resetting a single function.
3405 */
3406int pci_probe_reset_function(struct pci_dev *dev)
3407{
3408 return pci_dev_reset(dev, 1);
3409}
3410
8dd7f803 3411/**
8c1c699f
YZ
3412 * pci_reset_function - quiesce and reset a PCI device function
3413 * @dev: PCI device to reset
8dd7f803
SY
3414 *
3415 * Some devices allow an individual function to be reset without affecting
3416 * other functions in the same device. The PCI device must be responsive
3417 * to PCI config space in order to use this function.
3418 *
3419 * This function does not just reset the PCI portion of a device, but
3420 * clears all the state associated with the device. This function differs
8c1c699f 3421 * from __pci_reset_function in that it saves and restores device state
8dd7f803
SY
3422 * over the reset.
3423 *
8c1c699f 3424 * Returns 0 if the device function was successfully reset or negative if the
8dd7f803
SY
3425 * device doesn't support resetting a single function.
3426 */
3427int pci_reset_function(struct pci_dev *dev)
3428{
8c1c699f 3429 int rc;
8dd7f803 3430
8c1c699f
YZ
3431 rc = pci_dev_reset(dev, 1);
3432 if (rc)
3433 return rc;
8dd7f803 3434
77cb985a 3435 pci_dev_save_and_disable(dev);
8dd7f803 3436
8c1c699f 3437 rc = pci_dev_reset(dev, 0);
8dd7f803 3438
77cb985a 3439 pci_dev_restore(dev);
8dd7f803 3440
8c1c699f 3441 return rc;
8dd7f803
SY
3442}
3443EXPORT_SYMBOL_GPL(pci_reset_function);
3444
61cf16d8
AW
3445/**
3446 * pci_try_reset_function - quiesce and reset a PCI device function
3447 * @dev: PCI device to reset
3448 *
3449 * Same as above, except return -EAGAIN if unable to lock device.
3450 */
3451int pci_try_reset_function(struct pci_dev *dev)
3452{
3453 int rc;
3454
3455 rc = pci_dev_reset(dev, 1);
3456 if (rc)
3457 return rc;
3458
3459 pci_dev_save_and_disable(dev);
3460
3461 if (pci_dev_trylock(dev)) {
3462 rc = __pci_dev_reset(dev, 0);
3463 pci_dev_unlock(dev);
3464 } else
3465 rc = -EAGAIN;
3466
3467 pci_dev_restore(dev);
3468
3469 return rc;
3470}
3471EXPORT_SYMBOL_GPL(pci_try_reset_function);
3472
090a3c53
AW
3473/* Lock devices from the top of the tree down */
3474static void pci_bus_lock(struct pci_bus *bus)
3475{
3476 struct pci_dev *dev;
3477
3478 list_for_each_entry(dev, &bus->devices, bus_list) {
3479 pci_dev_lock(dev);
3480 if (dev->subordinate)
3481 pci_bus_lock(dev->subordinate);
3482 }
3483}
3484
3485/* Unlock devices from the bottom of the tree up */
3486static void pci_bus_unlock(struct pci_bus *bus)
3487{
3488 struct pci_dev *dev;
3489
3490 list_for_each_entry(dev, &bus->devices, bus_list) {
3491 if (dev->subordinate)
3492 pci_bus_unlock(dev->subordinate);
3493 pci_dev_unlock(dev);
3494 }
3495}
3496
61cf16d8
AW
3497/* Return 1 on successful lock, 0 on contention */
3498static int pci_bus_trylock(struct pci_bus *bus)
3499{
3500 struct pci_dev *dev;
3501
3502 list_for_each_entry(dev, &bus->devices, bus_list) {
3503 if (!pci_dev_trylock(dev))
3504 goto unlock;
3505 if (dev->subordinate) {
3506 if (!pci_bus_trylock(dev->subordinate)) {
3507 pci_dev_unlock(dev);
3508 goto unlock;
3509 }
3510 }
3511 }
3512 return 1;
3513
3514unlock:
3515 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3516 if (dev->subordinate)
3517 pci_bus_unlock(dev->subordinate);
3518 pci_dev_unlock(dev);
3519 }
3520 return 0;
3521}
3522
090a3c53
AW
3523/* Lock devices from the top of the tree down */
3524static void pci_slot_lock(struct pci_slot *slot)
3525{
3526 struct pci_dev *dev;
3527
3528 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3529 if (!dev->slot || dev->slot != slot)
3530 continue;
3531 pci_dev_lock(dev);
3532 if (dev->subordinate)
3533 pci_bus_lock(dev->subordinate);
3534 }
3535}
3536
3537/* Unlock devices from the bottom of the tree up */
3538static void pci_slot_unlock(struct pci_slot *slot)
3539{
3540 struct pci_dev *dev;
3541
3542 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3543 if (!dev->slot || dev->slot != slot)
3544 continue;
3545 if (dev->subordinate)
3546 pci_bus_unlock(dev->subordinate);
3547 pci_dev_unlock(dev);
3548 }
3549}
3550
61cf16d8
AW
3551/* Return 1 on successful lock, 0 on contention */
3552static int pci_slot_trylock(struct pci_slot *slot)
3553{
3554 struct pci_dev *dev;
3555
3556 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3557 if (!dev->slot || dev->slot != slot)
3558 continue;
3559 if (!pci_dev_trylock(dev))
3560 goto unlock;
3561 if (dev->subordinate) {
3562 if (!pci_bus_trylock(dev->subordinate)) {
3563 pci_dev_unlock(dev);
3564 goto unlock;
3565 }
3566 }
3567 }
3568 return 1;
3569
3570unlock:
3571 list_for_each_entry_continue_reverse(dev,
3572 &slot->bus->devices, bus_list) {
3573 if (!dev->slot || dev->slot != slot)
3574 continue;
3575 if (dev->subordinate)
3576 pci_bus_unlock(dev->subordinate);
3577 pci_dev_unlock(dev);
3578 }
3579 return 0;
3580}
3581
090a3c53
AW
3582/* Save and disable devices from the top of the tree down */
3583static void pci_bus_save_and_disable(struct pci_bus *bus)
3584{
3585 struct pci_dev *dev;
3586
3587 list_for_each_entry(dev, &bus->devices, bus_list) {
3588 pci_dev_save_and_disable(dev);
3589 if (dev->subordinate)
3590 pci_bus_save_and_disable(dev->subordinate);
3591 }
3592}
3593
3594/*
3595 * Restore devices from top of the tree down - parent bridges need to be
3596 * restored before we can get to subordinate devices.
3597 */
3598static void pci_bus_restore(struct pci_bus *bus)
3599{
3600 struct pci_dev *dev;
3601
3602 list_for_each_entry(dev, &bus->devices, bus_list) {
3603 pci_dev_restore(dev);
3604 if (dev->subordinate)
3605 pci_bus_restore(dev->subordinate);
3606 }
3607}
3608
3609/* Save and disable devices from the top of the tree down */
3610static void pci_slot_save_and_disable(struct pci_slot *slot)
3611{
3612 struct pci_dev *dev;
3613
3614 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3615 if (!dev->slot || dev->slot != slot)
3616 continue;
3617 pci_dev_save_and_disable(dev);
3618 if (dev->subordinate)
3619 pci_bus_save_and_disable(dev->subordinate);
3620 }
3621}
3622
3623/*
3624 * Restore devices from top of the tree down - parent bridges need to be
3625 * restored before we can get to subordinate devices.
3626 */
3627static void pci_slot_restore(struct pci_slot *slot)
3628{
3629 struct pci_dev *dev;
3630
3631 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3632 if (!dev->slot || dev->slot != slot)
3633 continue;
3634 pci_dev_restore(dev);
3635 if (dev->subordinate)
3636 pci_bus_restore(dev->subordinate);
3637 }
3638}
3639
3640static int pci_slot_reset(struct pci_slot *slot, int probe)
3641{
3642 int rc;
3643
3644 if (!slot)
3645 return -ENOTTY;
3646
3647 if (!probe)
3648 pci_slot_lock(slot);
3649
3650 might_sleep();
3651
3652 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3653
3654 if (!probe)
3655 pci_slot_unlock(slot);
3656
3657 return rc;
3658}
3659
9a3d2b9b
AW
3660/**
3661 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3662 * @slot: PCI slot to probe
3663 *
3664 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3665 */
3666int pci_probe_reset_slot(struct pci_slot *slot)
3667{
3668 return pci_slot_reset(slot, 1);
3669}
3670EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3671
090a3c53
AW
3672/**
3673 * pci_reset_slot - reset a PCI slot
3674 * @slot: PCI slot to reset
3675 *
3676 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3677 * independent of other slots. For instance, some slots may support slot power
3678 * control. In the case of a 1:1 bus to slot architecture, this function may
3679 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3680 * Generally a slot reset should be attempted before a bus reset. All of the
3681 * function of the slot and any subordinate buses behind the slot are reset
3682 * through this function. PCI config space of all devices in the slot and
3683 * behind the slot is saved before and restored after reset.
3684 *
3685 * Return 0 on success, non-zero on error.
3686 */
3687int pci_reset_slot(struct pci_slot *slot)
3688{
3689 int rc;
3690
3691 rc = pci_slot_reset(slot, 1);
3692 if (rc)
3693 return rc;
3694
3695 pci_slot_save_and_disable(slot);
3696
3697 rc = pci_slot_reset(slot, 0);
3698
3699 pci_slot_restore(slot);
3700
3701 return rc;
3702}
3703EXPORT_SYMBOL_GPL(pci_reset_slot);
3704
61cf16d8
AW
3705/**
3706 * pci_try_reset_slot - Try to reset a PCI slot
3707 * @slot: PCI slot to reset
3708 *
3709 * Same as above except return -EAGAIN if the slot cannot be locked
3710 */
3711int pci_try_reset_slot(struct pci_slot *slot)
3712{
3713 int rc;
3714
3715 rc = pci_slot_reset(slot, 1);
3716 if (rc)
3717 return rc;
3718
3719 pci_slot_save_and_disable(slot);
3720
3721 if (pci_slot_trylock(slot)) {
3722 might_sleep();
3723 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3724 pci_slot_unlock(slot);
3725 } else
3726 rc = -EAGAIN;
3727
3728 pci_slot_restore(slot);
3729
3730 return rc;
3731}
3732EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3733
090a3c53
AW
3734static int pci_bus_reset(struct pci_bus *bus, int probe)
3735{
3736 if (!bus->self)
3737 return -ENOTTY;
3738
3739 if (probe)
3740 return 0;
3741
3742 pci_bus_lock(bus);
3743
3744 might_sleep();
3745
3746 pci_reset_bridge_secondary_bus(bus->self);
3747
3748 pci_bus_unlock(bus);
3749
3750 return 0;
3751}
3752
9a3d2b9b
AW
3753/**
3754 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3755 * @bus: PCI bus to probe
3756 *
3757 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3758 */
3759int pci_probe_reset_bus(struct pci_bus *bus)
3760{
3761 return pci_bus_reset(bus, 1);
3762}
3763EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3764
090a3c53
AW
3765/**
3766 * pci_reset_bus - reset a PCI bus
3767 * @bus: top level PCI bus to reset
3768 *
3769 * Do a bus reset on the given bus and any subordinate buses, saving
3770 * and restoring state of all devices.
3771 *
3772 * Return 0 on success, non-zero on error.
3773 */
3774int pci_reset_bus(struct pci_bus *bus)
3775{
3776 int rc;
3777
3778 rc = pci_bus_reset(bus, 1);
3779 if (rc)
3780 return rc;
3781
3782 pci_bus_save_and_disable(bus);
3783
3784 rc = pci_bus_reset(bus, 0);
3785
3786 pci_bus_restore(bus);
3787
3788 return rc;
3789}
3790EXPORT_SYMBOL_GPL(pci_reset_bus);
3791
61cf16d8
AW
3792/**
3793 * pci_try_reset_bus - Try to reset a PCI bus
3794 * @bus: top level PCI bus to reset
3795 *
3796 * Same as above except return -EAGAIN if the bus cannot be locked
3797 */
3798int pci_try_reset_bus(struct pci_bus *bus)
3799{
3800 int rc;
3801
3802 rc = pci_bus_reset(bus, 1);
3803 if (rc)
3804 return rc;
3805
3806 pci_bus_save_and_disable(bus);
3807
3808 if (pci_bus_trylock(bus)) {
3809 might_sleep();
3810 pci_reset_bridge_secondary_bus(bus->self);
3811 pci_bus_unlock(bus);
3812 } else
3813 rc = -EAGAIN;
3814
3815 pci_bus_restore(bus);
3816
3817 return rc;
3818}
3819EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3820
d556ad4b
PO
3821/**
3822 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3823 * @dev: PCI device to query
3824 *
3825 * Returns mmrbc: maximum designed memory read count in bytes
3826 * or appropriate error value.
3827 */
3828int pcix_get_max_mmrbc(struct pci_dev *dev)
3829{
7c9e2b1c 3830 int cap;
d556ad4b
PO
3831 u32 stat;
3832
3833 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3834 if (!cap)
3835 return -EINVAL;
3836
7c9e2b1c 3837 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
d556ad4b
PO
3838 return -EINVAL;
3839
25daeb55 3840 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
d556ad4b
PO
3841}
3842EXPORT_SYMBOL(pcix_get_max_mmrbc);
3843
3844/**
3845 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3846 * @dev: PCI device to query
3847 *
3848 * Returns mmrbc: maximum memory read count in bytes
3849 * or appropriate error value.
3850 */
3851int pcix_get_mmrbc(struct pci_dev *dev)
3852{
7c9e2b1c 3853 int cap;
bdc2bda7 3854 u16 cmd;
d556ad4b
PO
3855
3856 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3857 if (!cap)
3858 return -EINVAL;
3859
7c9e2b1c
DN
3860 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3861 return -EINVAL;
d556ad4b 3862
7c9e2b1c 3863 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
d556ad4b
PO
3864}
3865EXPORT_SYMBOL(pcix_get_mmrbc);
3866
3867/**
3868 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3869 * @dev: PCI device to query
3870 * @mmrbc: maximum memory read count in bytes
3871 * valid values are 512, 1024, 2048, 4096
3872 *
3873 * If possible sets maximum memory read byte count, some bridges have erratas
3874 * that prevent this.
3875 */
3876int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3877{
7c9e2b1c 3878 int cap;
bdc2bda7
DN
3879 u32 stat, v, o;
3880 u16 cmd;
d556ad4b 3881
229f5afd 3882 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
7c9e2b1c 3883 return -EINVAL;
d556ad4b
PO
3884
3885 v = ffs(mmrbc) - 10;
3886
3887 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3888 if (!cap)
7c9e2b1c 3889 return -EINVAL;
d556ad4b 3890
7c9e2b1c
DN
3891 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3892 return -EINVAL;
d556ad4b
PO
3893
3894 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3895 return -E2BIG;
3896
7c9e2b1c
DN
3897 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3898 return -EINVAL;
d556ad4b
PO
3899
3900 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3901 if (o != v) {
809a3bf9 3902 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
d556ad4b
PO
3903 return -EIO;
3904
3905 cmd &= ~PCI_X_CMD_MAX_READ;
3906 cmd |= v << 2;
7c9e2b1c
DN
3907 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3908 return -EIO;
d556ad4b 3909 }
7c9e2b1c 3910 return 0;
d556ad4b
PO
3911}
3912EXPORT_SYMBOL(pcix_set_mmrbc);
3913
3914/**
3915 * pcie_get_readrq - get PCI Express read request size
3916 * @dev: PCI device to query
3917 *
3918 * Returns maximum memory read request in bytes
3919 * or appropriate error value.
3920 */
3921int pcie_get_readrq(struct pci_dev *dev)
3922{
d556ad4b
PO
3923 u16 ctl;
3924
59875ae4 3925 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
d556ad4b 3926
59875ae4 3927 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
d556ad4b
PO
3928}
3929EXPORT_SYMBOL(pcie_get_readrq);
3930
3931/**
3932 * pcie_set_readrq - set PCI Express maximum memory read request
3933 * @dev: PCI device to query
42e61f4a 3934 * @rq: maximum memory read count in bytes
d556ad4b
PO
3935 * valid values are 128, 256, 512, 1024, 2048, 4096
3936 *
c9b378c7 3937 * If possible sets maximum memory read request in bytes
d556ad4b
PO
3938 */
3939int pcie_set_readrq(struct pci_dev *dev, int rq)
3940{
59875ae4 3941 u16 v;
d556ad4b 3942
229f5afd 3943 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
59875ae4 3944 return -EINVAL;
d556ad4b 3945
a1c473aa
BH
3946 /*
3947 * If using the "performance" PCIe config, we clamp the
3948 * read rq size to the max packet size to prevent the
3949 * host bridge generating requests larger than we can
3950 * cope with
3951 */
3952 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3953 int mps = pcie_get_mps(dev);
3954
a1c473aa
BH
3955 if (mps < rq)
3956 rq = mps;
3957 }
3958
3959 v = (ffs(rq) - 8) << 12;
d556ad4b 3960
59875ae4
JL
3961 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3962 PCI_EXP_DEVCTL_READRQ, v);
d556ad4b
PO
3963}
3964EXPORT_SYMBOL(pcie_set_readrq);
3965
b03e7495
JM
3966/**
3967 * pcie_get_mps - get PCI Express maximum payload size
3968 * @dev: PCI device to query
3969 *
3970 * Returns maximum payload size in bytes
b03e7495
JM
3971 */
3972int pcie_get_mps(struct pci_dev *dev)
3973{
b03e7495
JM
3974 u16 ctl;
3975
59875ae4 3976 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
b03e7495 3977
59875ae4 3978 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
b03e7495 3979}
f1c66c46 3980EXPORT_SYMBOL(pcie_get_mps);
b03e7495
JM
3981
3982/**
3983 * pcie_set_mps - set PCI Express maximum payload size
3984 * @dev: PCI device to query
47c08f31 3985 * @mps: maximum payload size in bytes
b03e7495
JM
3986 * valid values are 128, 256, 512, 1024, 2048, 4096
3987 *
3988 * If possible sets maximum payload size
3989 */
3990int pcie_set_mps(struct pci_dev *dev, int mps)
3991{
59875ae4 3992 u16 v;
b03e7495
JM
3993
3994 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
59875ae4 3995 return -EINVAL;
b03e7495
JM
3996
3997 v = ffs(mps) - 8;
f7625980 3998 if (v > dev->pcie_mpss)
59875ae4 3999 return -EINVAL;
b03e7495
JM
4000 v <<= 5;
4001
59875ae4
JL
4002 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4003 PCI_EXP_DEVCTL_PAYLOAD, v);
b03e7495 4004}
f1c66c46 4005EXPORT_SYMBOL(pcie_set_mps);
b03e7495 4006
81377c8d
JK
4007/**
4008 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4009 * @dev: PCI device to query
4010 * @speed: storage for minimum speed
4011 * @width: storage for minimum width
4012 *
4013 * This function will walk up the PCI device chain and determine the minimum
4014 * link width and speed of the device.
4015 */
4016int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4017 enum pcie_link_width *width)
4018{
4019 int ret;
4020
4021 *speed = PCI_SPEED_UNKNOWN;
4022 *width = PCIE_LNK_WIDTH_UNKNOWN;
4023
4024 while (dev) {
4025 u16 lnksta;
4026 enum pci_bus_speed next_speed;
4027 enum pcie_link_width next_width;
4028
4029 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4030 if (ret)
4031 return ret;
4032
4033 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4034 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4035 PCI_EXP_LNKSTA_NLW_SHIFT;
4036
4037 if (next_speed < *speed)
4038 *speed = next_speed;
4039
4040 if (next_width < *width)
4041 *width = next_width;
4042
4043 dev = dev->bus->self;
4044 }
4045
4046 return 0;
4047}
4048EXPORT_SYMBOL(pcie_get_minimum_link);
4049
c87deff7
HS
4050/**
4051 * pci_select_bars - Make BAR mask from the type of resource
f95d882d 4052 * @dev: the PCI device for which BAR mask is made
c87deff7
HS
4053 * @flags: resource type mask to be selected
4054 *
4055 * This helper routine makes bar mask from the type of resource.
4056 */
4057int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4058{
4059 int i, bars = 0;
4060 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4061 if (pci_resource_flags(dev, i) & flags)
4062 bars |= (1 << i);
4063 return bars;
4064}
4065
613e7ed6
YZ
4066/**
4067 * pci_resource_bar - get position of the BAR associated with a resource
4068 * @dev: the PCI device
4069 * @resno: the resource number
4070 * @type: the BAR type to be filled in
4071 *
4072 * Returns BAR position in config space, or 0 if the BAR is invalid.
4073 */
4074int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4075{
d1b054da
YZ
4076 int reg;
4077
613e7ed6
YZ
4078 if (resno < PCI_ROM_RESOURCE) {
4079 *type = pci_bar_unknown;
4080 return PCI_BASE_ADDRESS_0 + 4 * resno;
4081 } else if (resno == PCI_ROM_RESOURCE) {
4082 *type = pci_bar_mem32;
4083 return dev->rom_base_reg;
d1b054da
YZ
4084 } else if (resno < PCI_BRIDGE_RESOURCES) {
4085 /* device specific resource */
4086 reg = pci_iov_resource_bar(dev, resno, type);
4087 if (reg)
4088 return reg;
613e7ed6
YZ
4089 }
4090
865df576 4091 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
613e7ed6
YZ
4092 return 0;
4093}
4094
95a8b6ef
MT
4095/* Some architectures require additional programming to enable VGA */
4096static arch_set_vga_state_t arch_set_vga_state;
4097
4098void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4099{
4100 arch_set_vga_state = func; /* NULL disables */
4101}
4102
4103static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
7ad35cf2 4104 unsigned int command_bits, u32 flags)
95a8b6ef
MT
4105{
4106 if (arch_set_vga_state)
4107 return arch_set_vga_state(dev, decode, command_bits,
7ad35cf2 4108 flags);
95a8b6ef
MT
4109 return 0;
4110}
4111
deb2d2ec
BH
4112/**
4113 * pci_set_vga_state - set VGA decode state on device and parents if requested
19eea630
RD
4114 * @dev: the PCI device
4115 * @decode: true = enable decoding, false = disable decoding
4116 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3f37d622 4117 * @flags: traverse ancestors and change bridges
3448a19d 4118 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
deb2d2ec
BH
4119 */
4120int pci_set_vga_state(struct pci_dev *dev, bool decode,
3448a19d 4121 unsigned int command_bits, u32 flags)
deb2d2ec
BH
4122{
4123 struct pci_bus *bus;
4124 struct pci_dev *bridge;
4125 u16 cmd;
95a8b6ef 4126 int rc;
deb2d2ec 4127
67ebd814 4128 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
deb2d2ec 4129
95a8b6ef 4130 /* ARCH specific VGA enables */
3448a19d 4131 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
95a8b6ef
MT
4132 if (rc)
4133 return rc;
4134
3448a19d
DA
4135 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4136 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4137 if (decode == true)
4138 cmd |= command_bits;
4139 else
4140 cmd &= ~command_bits;
4141 pci_write_config_word(dev, PCI_COMMAND, cmd);
4142 }
deb2d2ec 4143
3448a19d 4144 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
deb2d2ec
BH
4145 return 0;
4146
4147 bus = dev->bus;
4148 while (bus) {
4149 bridge = bus->self;
4150 if (bridge) {
4151 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4152 &cmd);
4153 if (decode == true)
4154 cmd |= PCI_BRIDGE_CTL_VGA;
4155 else
4156 cmd &= ~PCI_BRIDGE_CTL_VGA;
4157 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4158 cmd);
4159 }
4160 bus = bus->parent;
4161 }
4162 return 0;
4163}
4164
8496e85c
RW
4165bool pci_device_is_present(struct pci_dev *pdev)
4166{
4167 u32 v;
4168
4169 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4170}
4171EXPORT_SYMBOL_GPL(pci_device_is_present);
4172
32a9a682
YS
4173#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4174static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
e9d1e492 4175static DEFINE_SPINLOCK(resource_alignment_lock);
32a9a682
YS
4176
4177/**
4178 * pci_specified_resource_alignment - get resource alignment specified by user.
4179 * @dev: the PCI device to get
4180 *
4181 * RETURNS: Resource alignment if it is specified.
4182 * Zero if it is not specified.
4183 */
9738abed 4184static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
32a9a682
YS
4185{
4186 int seg, bus, slot, func, align_order, count;
4187 resource_size_t align = 0;
4188 char *p;
4189
4190 spin_lock(&resource_alignment_lock);
4191 p = resource_alignment_param;
4192 while (*p) {
4193 count = 0;
4194 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4195 p[count] == '@') {
4196 p += count + 1;
4197 } else {
4198 align_order = -1;
4199 }
4200 if (sscanf(p, "%x:%x:%x.%x%n",
4201 &seg, &bus, &slot, &func, &count) != 4) {
4202 seg = 0;
4203 if (sscanf(p, "%x:%x.%x%n",
4204 &bus, &slot, &func, &count) != 3) {
4205 /* Invalid format */
4206 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4207 p);
4208 break;
4209 }
4210 }
4211 p += count;
4212 if (seg == pci_domain_nr(dev->bus) &&
4213 bus == dev->bus->number &&
4214 slot == PCI_SLOT(dev->devfn) &&
4215 func == PCI_FUNC(dev->devfn)) {
4216 if (align_order == -1) {
4217 align = PAGE_SIZE;
4218 } else {
4219 align = 1 << align_order;
4220 }
4221 /* Found */
4222 break;
4223 }
4224 if (*p != ';' && *p != ',') {
4225 /* End of param or invalid format */
4226 break;
4227 }
4228 p++;
4229 }
4230 spin_unlock(&resource_alignment_lock);
4231 return align;
4232}
4233
2069ecfb
YL
4234/*
4235 * This function disables memory decoding and releases memory resources
4236 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4237 * It also rounds up size to specified alignment.
4238 * Later on, the kernel will assign page-aligned memory resource back
4239 * to the device.
4240 */
4241void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4242{
4243 int i;
4244 struct resource *r;
4245 resource_size_t align, size;
4246 u16 command;
4247
10c463a7
YL
4248 /* check if specified PCI is target device to reassign */
4249 align = pci_specified_resource_alignment(dev);
4250 if (!align)
2069ecfb
YL
4251 return;
4252
4253 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4254 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4255 dev_warn(&dev->dev,
4256 "Can't reassign resources to host bridge.\n");
4257 return;
4258 }
4259
4260 dev_info(&dev->dev,
4261 "Disabling memory decoding and releasing memory resources.\n");
4262 pci_read_config_word(dev, PCI_COMMAND, &command);
4263 command &= ~PCI_COMMAND_MEMORY;
4264 pci_write_config_word(dev, PCI_COMMAND, command);
4265
2069ecfb
YL
4266 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4267 r = &dev->resource[i];
4268 if (!(r->flags & IORESOURCE_MEM))
4269 continue;
4270 size = resource_size(r);
4271 if (size < align) {
4272 size = align;
4273 dev_info(&dev->dev,
4274 "Rounding up size of resource #%d to %#llx.\n",
4275 i, (unsigned long long)size);
4276 }
bd064f0a 4277 r->flags |= IORESOURCE_UNSET;
2069ecfb
YL
4278 r->end = size - 1;
4279 r->start = 0;
4280 }
4281 /* Need to disable bridge's resource window,
4282 * to enable the kernel to reassign new resource
4283 * window later on.
4284 */
4285 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4286 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4287 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4288 r = &dev->resource[i];
4289 if (!(r->flags & IORESOURCE_MEM))
4290 continue;
bd064f0a 4291 r->flags |= IORESOURCE_UNSET;
2069ecfb
YL
4292 r->end = resource_size(r) - 1;
4293 r->start = 0;
4294 }
4295 pci_disable_bridge_window(dev);
4296 }
4297}
4298
9738abed 4299static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
32a9a682
YS
4300{
4301 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4302 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4303 spin_lock(&resource_alignment_lock);
4304 strncpy(resource_alignment_param, buf, count);
4305 resource_alignment_param[count] = '\0';
4306 spin_unlock(&resource_alignment_lock);
4307 return count;
4308}
4309
9738abed 4310static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
32a9a682
YS
4311{
4312 size_t count;
4313 spin_lock(&resource_alignment_lock);
4314 count = snprintf(buf, size, "%s", resource_alignment_param);
4315 spin_unlock(&resource_alignment_lock);
4316 return count;
4317}
4318
4319static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4320{
4321 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4322}
4323
4324static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4325 const char *buf, size_t count)
4326{
4327 return pci_set_resource_alignment_param(buf, count);
4328}
4329
4330BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4331 pci_resource_alignment_store);
4332
4333static int __init pci_resource_alignment_sysfs_init(void)
4334{
4335 return bus_create_file(&pci_bus_type,
4336 &bus_attr_resource_alignment);
4337}
4338
4339late_initcall(pci_resource_alignment_sysfs_init);
4340
15856ad5 4341static void pci_no_domains(void)
32a2eea7
JG
4342{
4343#ifdef CONFIG_PCI_DOMAINS
4344 pci_domains_supported = 0;
4345#endif
4346}
4347
0ef5f8f6 4348/**
642c92da 4349 * pci_ext_cfg_avail - can we access extended PCI config space?
0ef5f8f6
AP
4350 *
4351 * Returns 1 if we can access PCI extended config space (offsets
4352 * greater than 0xff). This is the default implementation. Architecture
4353 * implementations can override this.
4354 */
642c92da 4355int __weak pci_ext_cfg_avail(void)
0ef5f8f6
AP
4356{
4357 return 1;
4358}
4359
2d1c8618
BH
4360void __weak pci_fixup_cardbus(struct pci_bus *bus)
4361{
4362}
4363EXPORT_SYMBOL(pci_fixup_cardbus);
4364
ad04d31e 4365static int __init pci_setup(char *str)
1da177e4
LT
4366{
4367 while (str) {
4368 char *k = strchr(str, ',');
4369 if (k)
4370 *k++ = 0;
4371 if (*str && (str = pcibios_setup(str)) && *str) {
309e57df
MW
4372 if (!strcmp(str, "nomsi")) {
4373 pci_no_msi();
7f785763
RD
4374 } else if (!strcmp(str, "noaer")) {
4375 pci_no_aer();
b55438fd
YL
4376 } else if (!strncmp(str, "realloc=", 8)) {
4377 pci_realloc_get_opt(str + 8);
f483d392 4378 } else if (!strncmp(str, "realloc", 7)) {
b55438fd 4379 pci_realloc_get_opt("on");
32a2eea7
JG
4380 } else if (!strcmp(str, "nodomains")) {
4381 pci_no_domains();
6748dcc2
RW
4382 } else if (!strncmp(str, "noari", 5)) {
4383 pcie_ari_disabled = true;
4516a618
AN
4384 } else if (!strncmp(str, "cbiosize=", 9)) {
4385 pci_cardbus_io_size = memparse(str + 9, &str);
4386 } else if (!strncmp(str, "cbmemsize=", 10)) {
4387 pci_cardbus_mem_size = memparse(str + 10, &str);
32a9a682
YS
4388 } else if (!strncmp(str, "resource_alignment=", 19)) {
4389 pci_set_resource_alignment_param(str + 19,
4390 strlen(str + 19));
43c16408
AP
4391 } else if (!strncmp(str, "ecrc=", 5)) {
4392 pcie_ecrc_get_policy(str + 5);
28760489
EB
4393 } else if (!strncmp(str, "hpiosize=", 9)) {
4394 pci_hotplug_io_size = memparse(str + 9, &str);
4395 } else if (!strncmp(str, "hpmemsize=", 10)) {
4396 pci_hotplug_mem_size = memparse(str + 10, &str);
5f39e670
JM
4397 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4398 pcie_bus_config = PCIE_BUS_TUNE_OFF;
b03e7495
JM
4399 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4400 pcie_bus_config = PCIE_BUS_SAFE;
4401 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4402 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5f39e670
JM
4403 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4404 pcie_bus_config = PCIE_BUS_PEER2PEER;
284f5f9d
BH
4405 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4406 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
309e57df
MW
4407 } else {
4408 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4409 str);
4410 }
1da177e4
LT
4411 }
4412 str = k;
4413 }
0637a70a 4414 return 0;
1da177e4 4415}
0637a70a 4416early_param("pci", pci_setup);
1da177e4 4417
0b62e13b 4418EXPORT_SYMBOL(pci_reenable_device);
b718989d
BH
4419EXPORT_SYMBOL(pci_enable_device_io);
4420EXPORT_SYMBOL(pci_enable_device_mem);
1da177e4 4421EXPORT_SYMBOL(pci_enable_device);
9ac7849e
TH
4422EXPORT_SYMBOL(pcim_enable_device);
4423EXPORT_SYMBOL(pcim_pin_device);
1da177e4 4424EXPORT_SYMBOL(pci_disable_device);
1da177e4
LT
4425EXPORT_SYMBOL(pci_find_capability);
4426EXPORT_SYMBOL(pci_bus_find_capability);
4427EXPORT_SYMBOL(pci_release_regions);
4428EXPORT_SYMBOL(pci_request_regions);
e8de1481 4429EXPORT_SYMBOL(pci_request_regions_exclusive);
1da177e4
LT
4430EXPORT_SYMBOL(pci_release_region);
4431EXPORT_SYMBOL(pci_request_region);
e8de1481 4432EXPORT_SYMBOL(pci_request_region_exclusive);
c87deff7
HS
4433EXPORT_SYMBOL(pci_release_selected_regions);
4434EXPORT_SYMBOL(pci_request_selected_regions);
e8de1481 4435EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
1da177e4 4436EXPORT_SYMBOL(pci_set_master);
6a479079 4437EXPORT_SYMBOL(pci_clear_master);
1da177e4 4438EXPORT_SYMBOL(pci_set_mwi);
694625c0 4439EXPORT_SYMBOL(pci_try_set_mwi);
1da177e4 4440EXPORT_SYMBOL(pci_clear_mwi);
a04ce0ff 4441EXPORT_SYMBOL_GPL(pci_intx);
1da177e4
LT
4442EXPORT_SYMBOL(pci_assign_resource);
4443EXPORT_SYMBOL(pci_find_parent_resource);
c87deff7 4444EXPORT_SYMBOL(pci_select_bars);
1da177e4
LT
4445
4446EXPORT_SYMBOL(pci_set_power_state);
4447EXPORT_SYMBOL(pci_save_state);
4448EXPORT_SYMBOL(pci_restore_state);
e5899e1b 4449EXPORT_SYMBOL(pci_pme_capable);
5a6c9b60 4450EXPORT_SYMBOL(pci_pme_active);
0235c4fc 4451EXPORT_SYMBOL(pci_wake_from_d3);
404cc2d8
RW
4452EXPORT_SYMBOL(pci_prepare_to_sleep);
4453EXPORT_SYMBOL(pci_back_from_sleep);
f7bdd12d 4454EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);