]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/pci/pci.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / drivers / pci / pci.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
2ab51dde 10#include <linux/acpi.h>
1da177e4
LT
11#include <linux/kernel.h>
12#include <linux/delay.h>
9d26d3a8 13#include <linux/dmi.h>
1da177e4 14#include <linux/init.h>
7c674700
LP
15#include <linux/of.h>
16#include <linux/of_pci.h>
1da177e4 17#include <linux/pci.h>
075c1771 18#include <linux/pm.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/module.h>
21#include <linux/spinlock.h>
4e57b681 22#include <linux/string.h>
229f5afd 23#include <linux/log2.h>
7d715a6c 24#include <linux/pci-aspm.h>
c300bd2f 25#include <linux/pm_wakeup.h>
8dd7f803 26#include <linux/interrupt.h>
32a9a682 27#include <linux/device.h>
b67ea761 28#include <linux/pm_runtime.h>
608c3881 29#include <linux/pci_hotplug.h>
4d3f1384 30#include <linux/vmalloc.h>
32a9a682 31#include <asm/setup.h>
2a2aca31 32#include <asm/dma.h>
b07461a8 33#include <linux/aer.h>
bc56b9e0 34#include "pci.h"
1da177e4 35
00240c38
AS
36const char *pci_power_names[] = {
37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
38};
39EXPORT_SYMBOL_GPL(pci_power_names);
40
93177a74
RW
41int isa_dma_bridge_buggy;
42EXPORT_SYMBOL(isa_dma_bridge_buggy);
43
44int pci_pci_problems;
45EXPORT_SYMBOL(pci_pci_problems);
46
1ae861e6
RW
47unsigned int pci_pm_d3_delay;
48
df17e62e
MG
49static void pci_pme_list_scan(struct work_struct *work);
50
51static LIST_HEAD(pci_pme_list);
52static DEFINE_MUTEX(pci_pme_list_mutex);
53static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
54
55struct pci_pme_device {
56 struct list_head list;
57 struct pci_dev *dev;
58};
59
60#define PME_TIMEOUT 1000 /* How long between PME checks */
61
1ae861e6
RW
62static void pci_dev_d3_sleep(struct pci_dev *dev)
63{
64 unsigned int delay = dev->d3_delay;
65
66 if (delay < pci_pm_d3_delay)
67 delay = pci_pm_d3_delay;
68
50b2b540
AH
69 if (delay)
70 msleep(delay);
1ae861e6 71}
1da177e4 72
32a2eea7
JG
73#ifdef CONFIG_PCI_DOMAINS
74int pci_domains_supported = 1;
75#endif
76
4516a618
AN
77#define DEFAULT_CARDBUS_IO_SIZE (256)
78#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
79/* pci=cbmemsize=nnM,cbiosize=nn can override this */
80unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
81unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
82
28760489
EB
83#define DEFAULT_HOTPLUG_IO_SIZE (256)
84#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
85/* pci=hpmemsize=nnM,hpiosize=nn can override this */
86unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
87unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
88
e16b4660
KB
89#define DEFAULT_HOTPLUG_BUS_SIZE 1
90unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
91
27d868b5 92enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
b03e7495 93
ac1aa47b
JB
94/*
95 * The default CLS is used if arch didn't set CLS explicitly and not
96 * all pci devices agree on the same value. Arch can override either
97 * the dfl or actual value as it sees fit. Don't forget this is
98 * measured in 32-bit words, not bytes.
99 */
15856ad5 100u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
ac1aa47b
JB
101u8 pci_cache_line_size;
102
96c55900
MS
103/*
104 * If we set up a device for bus mastering, we need to check the latency
105 * timer as certain BIOSes forget to set it properly.
106 */
107unsigned int pcibios_max_latency = 255;
108
6748dcc2
RW
109/* If set, the PCIe ARI capability will not be used. */
110static bool pcie_ari_disabled;
111
9d26d3a8
MW
112/* Disable bridge_d3 for all PCIe ports */
113static bool pci_bridge_d3_disable;
114/* Force bridge_d3 for all PCIe ports */
115static bool pci_bridge_d3_force;
116
117static int __init pcie_port_pm_setup(char *str)
118{
119 if (!strcmp(str, "off"))
120 pci_bridge_d3_disable = true;
121 else if (!strcmp(str, "force"))
122 pci_bridge_d3_force = true;
123 return 1;
124}
125__setup("pcie_port_pm=", pcie_port_pm_setup);
126
1da177e4
LT
127/**
128 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
129 * @bus: pointer to PCI bus structure to search
130 *
131 * Given a PCI bus, returns the highest PCI bus number present in the set
132 * including the given PCI bus and its list of child PCI buses.
133 */
07656d83 134unsigned char pci_bus_max_busnr(struct pci_bus *bus)
1da177e4 135{
94e6a9b9 136 struct pci_bus *tmp;
1da177e4
LT
137 unsigned char max, n;
138
b918c62e 139 max = bus->busn_res.end;
94e6a9b9
YW
140 list_for_each_entry(tmp, &bus->children, node) {
141 n = pci_bus_max_busnr(tmp);
3c78bc61 142 if (n > max)
1da177e4
LT
143 max = n;
144 }
145 return max;
146}
b82db5ce 147EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
1da177e4 148
1684f5dd
AM
149#ifdef CONFIG_HAS_IOMEM
150void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
151{
1f7bf3bf
BH
152 struct resource *res = &pdev->resource[bar];
153
1684f5dd
AM
154 /*
155 * Make sure the BAR is actually a memory resource, not an IO resource
156 */
646c0282 157 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
1f7bf3bf 158 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
1684f5dd
AM
159 return NULL;
160 }
1f7bf3bf 161 return ioremap_nocache(res->start, resource_size(res));
1684f5dd
AM
162}
163EXPORT_SYMBOL_GPL(pci_ioremap_bar);
c43996f4
LR
164
165void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
166{
167 /*
168 * Make sure the BAR is actually a memory resource, not an IO resource
169 */
170 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
171 WARN_ON(1);
172 return NULL;
173 }
174 return ioremap_wc(pci_resource_start(pdev, bar),
175 pci_resource_len(pdev, bar));
176}
177EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
1684f5dd
AM
178#endif
179
687d5fe3
ME
180
181static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
182 u8 pos, int cap, int *ttl)
24a4e377
RD
183{
184 u8 id;
55db3208
SS
185 u16 ent;
186
187 pci_bus_read_config_byte(bus, devfn, pos, &pos);
24a4e377 188
687d5fe3 189 while ((*ttl)--) {
24a4e377
RD
190 if (pos < 0x40)
191 break;
192 pos &= ~3;
55db3208
SS
193 pci_bus_read_config_word(bus, devfn, pos, &ent);
194
195 id = ent & 0xff;
24a4e377
RD
196 if (id == 0xff)
197 break;
198 if (id == cap)
199 return pos;
55db3208 200 pos = (ent >> 8);
24a4e377
RD
201 }
202 return 0;
203}
204
687d5fe3
ME
205static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
206 u8 pos, int cap)
207{
208 int ttl = PCI_FIND_CAP_TTL;
209
210 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
211}
212
24a4e377
RD
213int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
214{
215 return __pci_find_next_cap(dev->bus, dev->devfn,
216 pos + PCI_CAP_LIST_NEXT, cap);
217}
218EXPORT_SYMBOL_GPL(pci_find_next_capability);
219
d3bac118
ME
220static int __pci_bus_find_cap_start(struct pci_bus *bus,
221 unsigned int devfn, u8 hdr_type)
1da177e4
LT
222{
223 u16 status;
1da177e4
LT
224
225 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
226 if (!(status & PCI_STATUS_CAP_LIST))
227 return 0;
228
229 switch (hdr_type) {
230 case PCI_HEADER_TYPE_NORMAL:
231 case PCI_HEADER_TYPE_BRIDGE:
d3bac118 232 return PCI_CAPABILITY_LIST;
1da177e4 233 case PCI_HEADER_TYPE_CARDBUS:
d3bac118 234 return PCI_CB_CAPABILITY_LIST;
1da177e4 235 }
d3bac118
ME
236
237 return 0;
1da177e4
LT
238}
239
240/**
f7625980 241 * pci_find_capability - query for devices' capabilities
1da177e4
LT
242 * @dev: PCI device to query
243 * @cap: capability code
244 *
245 * Tell if a device supports a given PCI capability.
246 * Returns the address of the requested capability structure within the
247 * device's PCI configuration space or 0 in case the device does not
248 * support it. Possible values for @cap:
249 *
f7625980
BH
250 * %PCI_CAP_ID_PM Power Management
251 * %PCI_CAP_ID_AGP Accelerated Graphics Port
252 * %PCI_CAP_ID_VPD Vital Product Data
253 * %PCI_CAP_ID_SLOTID Slot Identification
1da177e4 254 * %PCI_CAP_ID_MSI Message Signalled Interrupts
f7625980 255 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
1da177e4
LT
256 * %PCI_CAP_ID_PCIX PCI-X
257 * %PCI_CAP_ID_EXP PCI Express
258 */
259int pci_find_capability(struct pci_dev *dev, int cap)
260{
d3bac118
ME
261 int pos;
262
263 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
264 if (pos)
265 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
266
267 return pos;
1da177e4 268}
b7fe9434 269EXPORT_SYMBOL(pci_find_capability);
1da177e4
LT
270
271/**
f7625980 272 * pci_bus_find_capability - query for devices' capabilities
1da177e4
LT
273 * @bus: the PCI bus to query
274 * @devfn: PCI device to query
275 * @cap: capability code
276 *
277 * Like pci_find_capability() but works for pci devices that do not have a
f7625980 278 * pci_dev structure set up yet.
1da177e4
LT
279 *
280 * Returns the address of the requested capability structure within the
281 * device's PCI configuration space or 0 in case the device does not
282 * support it.
283 */
284int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
285{
d3bac118 286 int pos;
1da177e4
LT
287 u8 hdr_type;
288
289 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
290
d3bac118
ME
291 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
292 if (pos)
293 pos = __pci_find_next_cap(bus, devfn, pos, cap);
294
295 return pos;
1da177e4 296}
b7fe9434 297EXPORT_SYMBOL(pci_bus_find_capability);
1da177e4
LT
298
299/**
44a9a36f 300 * pci_find_next_ext_capability - Find an extended capability
1da177e4 301 * @dev: PCI device to query
44a9a36f 302 * @start: address at which to start looking (0 to start at beginning of list)
1da177e4
LT
303 * @cap: capability code
304 *
44a9a36f 305 * Returns the address of the next matching extended capability structure
1da177e4 306 * within the device's PCI configuration space or 0 if the device does
44a9a36f
BH
307 * not support it. Some capabilities can occur several times, e.g., the
308 * vendor-specific capability, and this provides a way to find them all.
1da177e4 309 */
44a9a36f 310int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
1da177e4
LT
311{
312 u32 header;
557848c3
ZY
313 int ttl;
314 int pos = PCI_CFG_SPACE_SIZE;
1da177e4 315
557848c3
ZY
316 /* minimum 8 bytes per capability */
317 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
318
319 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
1da177e4
LT
320 return 0;
321
44a9a36f
BH
322 if (start)
323 pos = start;
324
1da177e4
LT
325 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
326 return 0;
327
328 /*
329 * If we have no capabilities, this is indicated by cap ID,
330 * cap version and next pointer all being 0.
331 */
332 if (header == 0)
333 return 0;
334
335 while (ttl-- > 0) {
44a9a36f 336 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
1da177e4
LT
337 return pos;
338
339 pos = PCI_EXT_CAP_NEXT(header);
557848c3 340 if (pos < PCI_CFG_SPACE_SIZE)
1da177e4
LT
341 break;
342
343 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
344 break;
345 }
346
347 return 0;
348}
44a9a36f
BH
349EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
350
351/**
352 * pci_find_ext_capability - Find an extended capability
353 * @dev: PCI device to query
354 * @cap: capability code
355 *
356 * Returns the address of the requested extended capability structure
357 * within the device's PCI configuration space or 0 if the device does
358 * not support it. Possible values for @cap:
359 *
360 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
361 * %PCI_EXT_CAP_ID_VC Virtual Channel
362 * %PCI_EXT_CAP_ID_DSN Device Serial Number
363 * %PCI_EXT_CAP_ID_PWR Power Budgeting
364 */
365int pci_find_ext_capability(struct pci_dev *dev, int cap)
366{
367 return pci_find_next_ext_capability(dev, 0, cap);
368}
3a720d72 369EXPORT_SYMBOL_GPL(pci_find_ext_capability);
1da177e4 370
687d5fe3
ME
371static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
372{
373 int rc, ttl = PCI_FIND_CAP_TTL;
374 u8 cap, mask;
375
376 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
377 mask = HT_3BIT_CAP_MASK;
378 else
379 mask = HT_5BIT_CAP_MASK;
380
381 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
382 PCI_CAP_ID_HT, &ttl);
383 while (pos) {
384 rc = pci_read_config_byte(dev, pos + 3, &cap);
385 if (rc != PCIBIOS_SUCCESSFUL)
386 return 0;
387
388 if ((cap & mask) == ht_cap)
389 return pos;
390
47a4d5be
BG
391 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
392 pos + PCI_CAP_LIST_NEXT,
687d5fe3
ME
393 PCI_CAP_ID_HT, &ttl);
394 }
395
396 return 0;
397}
398/**
399 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
400 * @dev: PCI device to query
401 * @pos: Position from which to continue searching
402 * @ht_cap: Hypertransport capability code
403 *
404 * To be used in conjunction with pci_find_ht_capability() to search for
405 * all capabilities matching @ht_cap. @pos should always be a value returned
406 * from pci_find_ht_capability().
407 *
408 * NB. To be 100% safe against broken PCI devices, the caller should take
409 * steps to avoid an infinite loop.
410 */
411int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
412{
413 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
414}
415EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
416
417/**
418 * pci_find_ht_capability - query a device's Hypertransport capabilities
419 * @dev: PCI device to query
420 * @ht_cap: Hypertransport capability code
421 *
422 * Tell if a device supports a given Hypertransport capability.
423 * Returns an address within the device's PCI configuration space
424 * or 0 in case the device does not support the request capability.
425 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
426 * which has a Hypertransport capability matching @ht_cap.
427 */
428int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
429{
430 int pos;
431
432 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
433 if (pos)
434 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
435
436 return pos;
437}
438EXPORT_SYMBOL_GPL(pci_find_ht_capability);
439
1da177e4
LT
440/**
441 * pci_find_parent_resource - return resource region of parent bus of given region
442 * @dev: PCI device structure contains resources to be searched
443 * @res: child resource record for which parent is sought
444 *
445 * For given resource region of given device, return the resource
f44116ae 446 * region of parent bus the given region is contained in.
1da177e4 447 */
3c78bc61
RD
448struct resource *pci_find_parent_resource(const struct pci_dev *dev,
449 struct resource *res)
1da177e4
LT
450{
451 const struct pci_bus *bus = dev->bus;
f44116ae 452 struct resource *r;
1da177e4 453 int i;
1da177e4 454
89a74ecc 455 pci_bus_for_each_resource(bus, r, i) {
1da177e4
LT
456 if (!r)
457 continue;
f44116ae
BH
458 if (res->start && resource_contains(r, res)) {
459
460 /*
461 * If the window is prefetchable but the BAR is
462 * not, the allocator made a mistake.
463 */
464 if (r->flags & IORESOURCE_PREFETCH &&
465 !(res->flags & IORESOURCE_PREFETCH))
466 return NULL;
467
468 /*
469 * If we're below a transparent bridge, there may
470 * be both a positively-decoded aperture and a
471 * subtractively-decoded region that contain the BAR.
472 * We want the positively-decoded one, so this depends
473 * on pci_bus_for_each_resource() giving us those
474 * first.
475 */
476 return r;
477 }
1da177e4 478 }
f44116ae 479 return NULL;
1da177e4 480}
b7fe9434 481EXPORT_SYMBOL(pci_find_parent_resource);
1da177e4 482
afd29f90
MW
483/**
484 * pci_find_resource - Return matching PCI device resource
485 * @dev: PCI device to query
486 * @res: Resource to look for
487 *
488 * Goes over standard PCI resources (BARs) and checks if the given resource
489 * is partially or fully contained in any of them. In that case the
490 * matching resource is returned, %NULL otherwise.
491 */
492struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
493{
494 int i;
495
496 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
497 struct resource *r = &dev->resource[i];
498
499 if (r->start && resource_contains(r, res))
500 return r;
501 }
502
503 return NULL;
504}
505EXPORT_SYMBOL(pci_find_resource);
506
c56d4450
HS
507/**
508 * pci_find_pcie_root_port - return PCIe Root Port
509 * @dev: PCI device to query
510 *
511 * Traverse up the parent chain and return the PCIe Root Port PCI Device
512 * for a given PCI Device.
513 */
514struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
515{
516 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
517
518 bridge = pci_upstream_bridge(dev);
519 while (bridge && pci_is_pcie(bridge)) {
520 highest_pcie_bridge = bridge;
521 bridge = pci_upstream_bridge(bridge);
522 }
523
524 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
525 return NULL;
526
527 return highest_pcie_bridge;
528}
529EXPORT_SYMBOL(pci_find_pcie_root_port);
530
157e876f
AW
531/**
532 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
533 * @dev: the PCI device to operate on
534 * @pos: config space offset of status word
535 * @mask: mask of bit(s) to care about in status word
536 *
537 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
538 */
539int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
540{
541 int i;
542
543 /* Wait for Transaction Pending bit clean */
544 for (i = 0; i < 4; i++) {
545 u16 status;
546 if (i)
547 msleep((1 << (i - 1)) * 100);
548
549 pci_read_config_word(dev, pos, &status);
550 if (!(status & mask))
551 return 1;
552 }
553
554 return 0;
555}
556
064b53db 557/**
70675e0b 558 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
064b53db
JL
559 * @dev: PCI device to have its BARs restored
560 *
561 * Restore the BAR values for a given device, so as to make it
562 * accessible by its driver.
563 */
3c78bc61 564static void pci_restore_bars(struct pci_dev *dev)
064b53db 565{
bc5f5a82 566 int i;
064b53db 567
bc5f5a82 568 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
14add80b 569 pci_update_resource(dev, i);
064b53db
JL
570}
571
299f2ffe 572static const struct pci_platform_pm_ops *pci_platform_pm;
961d9120 573
299f2ffe 574int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
961d9120 575{
cc7cc02b
LW
576 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
577 !ops->choose_state || !ops->sleep_wake || !ops->run_wake ||
578 !ops->need_resume)
961d9120
RW
579 return -EINVAL;
580 pci_platform_pm = ops;
581 return 0;
582}
583
584static inline bool platform_pci_power_manageable(struct pci_dev *dev)
585{
586 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
587}
588
589static inline int platform_pci_set_power_state(struct pci_dev *dev,
3c78bc61 590 pci_power_t t)
961d9120
RW
591{
592 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
593}
594
cc7cc02b
LW
595static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
596{
597 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
598}
599
961d9120
RW
600static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
601{
602 return pci_platform_pm ?
603 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
604}
8f7020d3 605
eb9d0fe4
RW
606static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
607{
608 return pci_platform_pm ?
609 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
610}
611
b67ea761
RW
612static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
613{
614 return pci_platform_pm ?
615 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
616}
617
bac2a909
RW
618static inline bool platform_pci_need_resume(struct pci_dev *dev)
619{
620 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
621}
622
1da177e4 623/**
44e4e66e
RW
624 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
625 * given PCI device
626 * @dev: PCI device to handle.
44e4e66e 627 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1da177e4 628 *
44e4e66e
RW
629 * RETURN VALUE:
630 * -EINVAL if the requested state is invalid.
631 * -EIO if device does not support PCI PM or its PM capabilities register has a
632 * wrong version, or device doesn't support the requested state.
633 * 0 if device already is in the requested state.
634 * 0 if device's power state has been successfully changed.
1da177e4 635 */
f00a20ef 636static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1da177e4 637{
337001b6 638 u16 pmcsr;
44e4e66e 639 bool need_restore = false;
1da177e4 640
4a865905
RW
641 /* Check if we're already there */
642 if (dev->current_state == state)
643 return 0;
644
337001b6 645 if (!dev->pm_cap)
cca03dec
AL
646 return -EIO;
647
44e4e66e
RW
648 if (state < PCI_D0 || state > PCI_D3hot)
649 return -EINVAL;
650
1da177e4 651 /* Validate current state:
f7625980 652 * Can enter D0 from any state, but if we can only go deeper
1da177e4
LT
653 * to sleep if we're already in a low power state
654 */
4a865905 655 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
44e4e66e 656 && dev->current_state > state) {
227f0647
RD
657 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
658 dev->current_state, state);
1da177e4 659 return -EINVAL;
44e4e66e 660 }
1da177e4 661
1da177e4 662 /* check if this device supports the desired state */
337001b6
RW
663 if ((state == PCI_D1 && !dev->d1_support)
664 || (state == PCI_D2 && !dev->d2_support))
3fe9d19f 665 return -EIO;
1da177e4 666
337001b6 667 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
064b53db 668
32a36585 669 /* If we're (effectively) in D3, force entire word to 0.
1da177e4
LT
670 * This doesn't affect PME_Status, disables PME_En, and
671 * sets PowerState to 0.
672 */
32a36585 673 switch (dev->current_state) {
d3535fbb
JL
674 case PCI_D0:
675 case PCI_D1:
676 case PCI_D2:
677 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
678 pmcsr |= state;
679 break;
f62795f1
RW
680 case PCI_D3hot:
681 case PCI_D3cold:
32a36585
JL
682 case PCI_UNKNOWN: /* Boot-up */
683 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
f00a20ef 684 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
44e4e66e 685 need_restore = true;
32a36585 686 /* Fall-through: force to D0 */
32a36585 687 default:
d3535fbb 688 pmcsr = 0;
32a36585 689 break;
1da177e4
LT
690 }
691
692 /* enter specified state */
337001b6 693 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1da177e4
LT
694
695 /* Mandatory power management transition delays */
696 /* see PCI PM 1.1 5.6.1 table 18 */
697 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1ae861e6 698 pci_dev_d3_sleep(dev);
1da177e4 699 else if (state == PCI_D2 || dev->current_state == PCI_D2)
aa8c6c93 700 udelay(PCI_PM_D2_DELAY);
1da177e4 701
e13cdbd7
RW
702 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
703 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
704 if (dev->current_state != state && printk_ratelimit())
227f0647
RD
705 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
706 dev->current_state);
064b53db 707
448bd857
HY
708 /*
709 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
064b53db
JL
710 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
711 * from D3hot to D0 _may_ perform an internal reset, thereby
712 * going to "D0 Uninitialized" rather than "D0 Initialized".
713 * For example, at least some versions of the 3c905B and the
714 * 3c556B exhibit this behaviour.
715 *
716 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
717 * devices in a D3hot state at boot. Consequently, we need to
718 * restore at least the BARs so that the device will be
719 * accessible to its driver.
720 */
721 if (need_restore)
722 pci_restore_bars(dev);
723
f00a20ef 724 if (dev->bus->self)
7d715a6c
SL
725 pcie_aspm_pm_state_change(dev->bus->self);
726
1da177e4
LT
727 return 0;
728}
729
44e4e66e 730/**
a6a64026 731 * pci_update_current_state - Read power state of given device and cache it
44e4e66e 732 * @dev: PCI device to handle.
f06fc0b6 733 * @state: State to cache in case the device doesn't have the PM capability
a6a64026
LW
734 *
735 * The power state is read from the PMCSR register, which however is
736 * inaccessible in D3cold. The platform firmware is therefore queried first
737 * to detect accessibility of the register. In case the platform firmware
738 * reports an incorrect state or the device isn't power manageable by the
739 * platform at all, we try to detect D3cold by testing accessibility of the
740 * vendor ID in config space.
44e4e66e 741 */
73410429 742void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
44e4e66e 743{
a6a64026
LW
744 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
745 !pci_device_is_present(dev)) {
746 dev->current_state = PCI_D3cold;
747 } else if (dev->pm_cap) {
44e4e66e
RW
748 u16 pmcsr;
749
337001b6 750 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
44e4e66e 751 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
f06fc0b6
RW
752 } else {
753 dev->current_state = state;
44e4e66e
RW
754 }
755}
756
db288c9c
RW
757/**
758 * pci_power_up - Put the given device into D0 forcibly
759 * @dev: PCI device to power up
760 */
761void pci_power_up(struct pci_dev *dev)
762{
763 if (platform_pci_power_manageable(dev))
764 platform_pci_set_power_state(dev, PCI_D0);
765
766 pci_raw_set_power_state(dev, PCI_D0);
767 pci_update_current_state(dev, PCI_D0);
768}
769
0e5dd46b
RW
770/**
771 * pci_platform_power_transition - Use platform to change device power state
772 * @dev: PCI device to handle.
773 * @state: State to put the device into.
774 */
775static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
776{
777 int error;
778
779 if (platform_pci_power_manageable(dev)) {
780 error = platform_pci_set_power_state(dev, state);
781 if (!error)
782 pci_update_current_state(dev, state);
769ba721 783 } else
0e5dd46b 784 error = -ENODEV;
769ba721
RW
785
786 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
787 dev->current_state = PCI_D0;
0e5dd46b
RW
788
789 return error;
790}
791
0b950f0f
SH
792/**
793 * pci_wakeup - Wake up a PCI device
794 * @pci_dev: Device to handle.
795 * @ign: ignored parameter
796 */
797static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
798{
799 pci_wakeup_event(pci_dev);
800 pm_request_resume(&pci_dev->dev);
801 return 0;
802}
803
804/**
805 * pci_wakeup_bus - Walk given bus and wake up devices on it
806 * @bus: Top bus of the subtree to walk.
807 */
808static void pci_wakeup_bus(struct pci_bus *bus)
809{
810 if (bus)
811 pci_walk_bus(bus, pci_wakeup, NULL);
812}
813
0e5dd46b
RW
814/**
815 * __pci_start_power_transition - Start power transition of a PCI device
816 * @dev: PCI device to handle.
817 * @state: State to put the device into.
818 */
819static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
820{
448bd857 821 if (state == PCI_D0) {
0e5dd46b 822 pci_platform_power_transition(dev, PCI_D0);
448bd857
HY
823 /*
824 * Mandatory power management transition delays, see
825 * PCI Express Base Specification Revision 2.0 Section
826 * 6.6.1: Conventional Reset. Do not delay for
827 * devices powered on/off by corresponding bridge,
828 * because have already delayed for the bridge.
829 */
830 if (dev->runtime_d3cold) {
50b2b540
AH
831 if (dev->d3cold_delay)
832 msleep(dev->d3cold_delay);
448bd857
HY
833 /*
834 * When powering on a bridge from D3cold, the
835 * whole hierarchy may be powered on into
836 * D0uninitialized state, resume them to give
837 * them a chance to suspend again
838 */
839 pci_wakeup_bus(dev->subordinate);
840 }
841 }
842}
843
844/**
845 * __pci_dev_set_current_state - Set current state of a PCI device
846 * @dev: Device to handle
847 * @data: pointer to state to be set
848 */
849static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
850{
851 pci_power_t state = *(pci_power_t *)data;
852
853 dev->current_state = state;
854 return 0;
855}
856
857/**
858 * __pci_bus_set_current_state - Walk given bus and set current state of devices
859 * @bus: Top bus of the subtree to walk.
860 * @state: state to be set
861 */
862static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
863{
864 if (bus)
865 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
0e5dd46b
RW
866}
867
868/**
869 * __pci_complete_power_transition - Complete power transition of a PCI device
870 * @dev: PCI device to handle.
871 * @state: State to put the device into.
872 *
873 * This function should not be called directly by device drivers.
874 */
875int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
876{
448bd857
HY
877 int ret;
878
db288c9c 879 if (state <= PCI_D0)
448bd857
HY
880 return -EINVAL;
881 ret = pci_platform_power_transition(dev, state);
882 /* Power off the bridge may power off the whole hierarchy */
883 if (!ret && state == PCI_D3cold)
884 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
885 return ret;
0e5dd46b
RW
886}
887EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
888
44e4e66e
RW
889/**
890 * pci_set_power_state - Set the power state of a PCI device
891 * @dev: PCI device to handle.
892 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
893 *
877d0310 894 * Transition a device to a new power state, using the platform firmware and/or
44e4e66e
RW
895 * the device's PCI PM registers.
896 *
897 * RETURN VALUE:
898 * -EINVAL if the requested state is invalid.
899 * -EIO if device does not support PCI PM or its PM capabilities register has a
900 * wrong version, or device doesn't support the requested state.
901 * 0 if device already is in the requested state.
902 * 0 if device's power state has been successfully changed.
903 */
904int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
905{
337001b6 906 int error;
44e4e66e
RW
907
908 /* bound the state we're entering */
448bd857
HY
909 if (state > PCI_D3cold)
910 state = PCI_D3cold;
44e4e66e
RW
911 else if (state < PCI_D0)
912 state = PCI_D0;
913 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
914 /*
915 * If the device or the parent bridge do not support PCI PM,
916 * ignore the request if we're doing anything other than putting
917 * it into D0 (which would only happen on boot).
918 */
919 return 0;
920
db288c9c
RW
921 /* Check if we're already there */
922 if (dev->current_state == state)
923 return 0;
924
0e5dd46b
RW
925 __pci_start_power_transition(dev, state);
926
979b1791
AC
927 /* This device is quirked not to be put into D3, so
928 don't put it in D3 */
448bd857 929 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
979b1791 930 return 0;
44e4e66e 931
448bd857
HY
932 /*
933 * To put device in D3cold, we put device into D3hot in native
934 * way, then put device into D3cold with platform ops
935 */
936 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
937 PCI_D3hot : state);
44e4e66e 938
0e5dd46b
RW
939 if (!__pci_complete_power_transition(dev, state))
940 error = 0;
44e4e66e
RW
941
942 return error;
943}
b7fe9434 944EXPORT_SYMBOL(pci_set_power_state);
44e4e66e 945
1da177e4
LT
946/**
947 * pci_choose_state - Choose the power state of a PCI device
948 * @dev: PCI device to be suspended
949 * @state: target sleep state for the whole system. This is the value
950 * that is passed to suspend() function.
951 *
952 * Returns PCI power state suitable for given device and given system
953 * message.
954 */
955
956pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
957{
ab826ca4 958 pci_power_t ret;
0f64474b 959
728cdb75 960 if (!dev->pm_cap)
1da177e4
LT
961 return PCI_D0;
962
961d9120
RW
963 ret = platform_pci_choose_state(dev);
964 if (ret != PCI_POWER_ERROR)
965 return ret;
ca078bae
PM
966
967 switch (state.event) {
968 case PM_EVENT_ON:
969 return PCI_D0;
970 case PM_EVENT_FREEZE:
b887d2e6
DB
971 case PM_EVENT_PRETHAW:
972 /* REVISIT both freeze and pre-thaw "should" use D0 */
ca078bae 973 case PM_EVENT_SUSPEND:
3a2d5b70 974 case PM_EVENT_HIBERNATE:
ca078bae 975 return PCI_D3hot;
1da177e4 976 default:
80ccba11
BH
977 dev_info(&dev->dev, "unrecognized suspend event %d\n",
978 state.event);
1da177e4
LT
979 BUG();
980 }
981 return PCI_D0;
982}
1da177e4
LT
983EXPORT_SYMBOL(pci_choose_state);
984
89858517
YZ
985#define PCI_EXP_SAVE_REGS 7
986
fd0f7f73
AW
987static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
988 u16 cap, bool extended)
34a4876e
YL
989{
990 struct pci_cap_saved_state *tmp;
34a4876e 991
b67bfe0d 992 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
fd0f7f73 993 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
34a4876e
YL
994 return tmp;
995 }
996 return NULL;
997}
998
fd0f7f73
AW
999struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1000{
1001 return _pci_find_saved_cap(dev, cap, false);
1002}
1003
1004struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1005{
1006 return _pci_find_saved_cap(dev, cap, true);
1007}
1008
b56a5a23
MT
1009static int pci_save_pcie_state(struct pci_dev *dev)
1010{
59875ae4 1011 int i = 0;
b56a5a23
MT
1012 struct pci_cap_saved_state *save_state;
1013 u16 *cap;
1014
59875ae4 1015 if (!pci_is_pcie(dev))
b56a5a23
MT
1016 return 0;
1017
9f35575d 1018 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
b56a5a23 1019 if (!save_state) {
e496b617 1020 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
b56a5a23
MT
1021 return -ENOMEM;
1022 }
63f4898a 1023
59875ae4
JL
1024 cap = (u16 *)&save_state->cap.data[0];
1025 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1029 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1030 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1031 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
9cb604ed 1032
b56a5a23
MT
1033 return 0;
1034}
1035
1036static void pci_restore_pcie_state(struct pci_dev *dev)
1037{
59875ae4 1038 int i = 0;
b56a5a23
MT
1039 struct pci_cap_saved_state *save_state;
1040 u16 *cap;
1041
1042 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
59875ae4 1043 if (!save_state)
9cb604ed
MS
1044 return;
1045
59875ae4
JL
1046 cap = (u16 *)&save_state->cap.data[0];
1047 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1051 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1052 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1053 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
b56a5a23
MT
1054}
1055
cc692a5f
SH
1056
1057static int pci_save_pcix_state(struct pci_dev *dev)
1058{
63f4898a 1059 int pos;
cc692a5f 1060 struct pci_cap_saved_state *save_state;
cc692a5f
SH
1061
1062 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
0a1a9b49 1063 if (!pos)
cc692a5f
SH
1064 return 0;
1065
f34303de 1066 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
cc692a5f 1067 if (!save_state) {
e496b617 1068 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
cc692a5f
SH
1069 return -ENOMEM;
1070 }
cc692a5f 1071
24a4742f
AW
1072 pci_read_config_word(dev, pos + PCI_X_CMD,
1073 (u16 *)save_state->cap.data);
63f4898a 1074
cc692a5f
SH
1075 return 0;
1076}
1077
1078static void pci_restore_pcix_state(struct pci_dev *dev)
1079{
1080 int i = 0, pos;
1081 struct pci_cap_saved_state *save_state;
1082 u16 *cap;
1083
1084 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1085 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
0a1a9b49 1086 if (!save_state || !pos)
cc692a5f 1087 return;
24a4742f 1088 cap = (u16 *)&save_state->cap.data[0];
cc692a5f
SH
1089
1090 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
cc692a5f
SH
1091}
1092
1093
1da177e4
LT
1094/**
1095 * pci_save_state - save the PCI configuration space of a device before suspending
1096 * @dev: - PCI device that we're dealing with
1da177e4 1097 */
3c78bc61 1098int pci_save_state(struct pci_dev *dev)
1da177e4
LT
1099{
1100 int i;
1101 /* XXX: 100% dword access ok here? */
1102 for (i = 0; i < 16; i++)
9e0b5b2c 1103 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
aa8c6c93 1104 dev->state_saved = true;
79e50e72
QL
1105
1106 i = pci_save_pcie_state(dev);
1107 if (i != 0)
b56a5a23 1108 return i;
79e50e72
QL
1109
1110 i = pci_save_pcix_state(dev);
1111 if (i != 0)
cc692a5f 1112 return i;
79e50e72 1113
754834b9 1114 return pci_save_vc_state(dev);
1da177e4 1115}
b7fe9434 1116EXPORT_SYMBOL(pci_save_state);
1da177e4 1117
ebfc5b80
RW
1118static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1119 u32 saved_val, int retry)
1120{
1121 u32 val;
1122
1123 pci_read_config_dword(pdev, offset, &val);
1124 if (val == saved_val)
1125 return;
1126
1127 for (;;) {
227f0647
RD
1128 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1129 offset, val, saved_val);
ebfc5b80
RW
1130 pci_write_config_dword(pdev, offset, saved_val);
1131 if (retry-- <= 0)
1132 return;
1133
1134 pci_read_config_dword(pdev, offset, &val);
1135 if (val == saved_val)
1136 return;
1137
1138 mdelay(1);
1139 }
1140}
1141
a6cb9ee7
RW
1142static void pci_restore_config_space_range(struct pci_dev *pdev,
1143 int start, int end, int retry)
ebfc5b80
RW
1144{
1145 int index;
1146
1147 for (index = end; index >= start; index--)
1148 pci_restore_config_dword(pdev, 4 * index,
1149 pdev->saved_config_space[index],
1150 retry);
1151}
1152
a6cb9ee7
RW
1153static void pci_restore_config_space(struct pci_dev *pdev)
1154{
1155 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1156 pci_restore_config_space_range(pdev, 10, 15, 0);
1157 /* Restore BARs before the command register. */
1158 pci_restore_config_space_range(pdev, 4, 9, 10);
1159 pci_restore_config_space_range(pdev, 0, 3, 0);
1160 } else {
1161 pci_restore_config_space_range(pdev, 0, 15, 0);
1162 }
1163}
1164
f7625980 1165/**
1da177e4
LT
1166 * pci_restore_state - Restore the saved state of a PCI device
1167 * @dev: - PCI device that we're dealing with
1da177e4 1168 */
1d3c16a8 1169void pci_restore_state(struct pci_dev *dev)
1da177e4 1170{
c82f63e4 1171 if (!dev->state_saved)
1d3c16a8 1172 return;
4b77b0a2 1173
b56a5a23
MT
1174 /* PCI Express register must be restored first */
1175 pci_restore_pcie_state(dev);
1900ca13 1176 pci_restore_ats_state(dev);
425c1b22 1177 pci_restore_vc_state(dev);
b56a5a23 1178
b07461a8
TI
1179 pci_cleanup_aer_error_status_regs(dev);
1180
a6cb9ee7 1181 pci_restore_config_space(dev);
ebfc5b80 1182
cc692a5f 1183 pci_restore_pcix_state(dev);
41017f0c 1184 pci_restore_msi_state(dev);
ccbc175a
AD
1185
1186 /* Restore ACS and IOV configuration state */
1187 pci_enable_acs(dev);
8c5cdb6a 1188 pci_restore_iov_state(dev);
8fed4b65 1189
4b77b0a2 1190 dev->state_saved = false;
1da177e4 1191}
b7fe9434 1192EXPORT_SYMBOL(pci_restore_state);
1da177e4 1193
ffbdd3f7
AW
1194struct pci_saved_state {
1195 u32 config_space[16];
1196 struct pci_cap_saved_data cap[0];
1197};
1198
1199/**
1200 * pci_store_saved_state - Allocate and return an opaque struct containing
1201 * the device saved state.
1202 * @dev: PCI device that we're dealing with
1203 *
f7625980 1204 * Return NULL if no state or error.
ffbdd3f7
AW
1205 */
1206struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1207{
1208 struct pci_saved_state *state;
1209 struct pci_cap_saved_state *tmp;
1210 struct pci_cap_saved_data *cap;
ffbdd3f7
AW
1211 size_t size;
1212
1213 if (!dev->state_saved)
1214 return NULL;
1215
1216 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1217
b67bfe0d 1218 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
ffbdd3f7
AW
1219 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1220
1221 state = kzalloc(size, GFP_KERNEL);
1222 if (!state)
1223 return NULL;
1224
1225 memcpy(state->config_space, dev->saved_config_space,
1226 sizeof(state->config_space));
1227
1228 cap = state->cap;
b67bfe0d 1229 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
ffbdd3f7
AW
1230 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1231 memcpy(cap, &tmp->cap, len);
1232 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1233 }
1234 /* Empty cap_save terminates list */
1235
1236 return state;
1237}
1238EXPORT_SYMBOL_GPL(pci_store_saved_state);
1239
1240/**
1241 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1242 * @dev: PCI device that we're dealing with
1243 * @state: Saved state returned from pci_store_saved_state()
1244 */
98d9b271
KRW
1245int pci_load_saved_state(struct pci_dev *dev,
1246 struct pci_saved_state *state)
ffbdd3f7
AW
1247{
1248 struct pci_cap_saved_data *cap;
1249
1250 dev->state_saved = false;
1251
1252 if (!state)
1253 return 0;
1254
1255 memcpy(dev->saved_config_space, state->config_space,
1256 sizeof(state->config_space));
1257
1258 cap = state->cap;
1259 while (cap->size) {
1260 struct pci_cap_saved_state *tmp;
1261
fd0f7f73 1262 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
ffbdd3f7
AW
1263 if (!tmp || tmp->cap.size != cap->size)
1264 return -EINVAL;
1265
1266 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1267 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1268 sizeof(struct pci_cap_saved_data) + cap->size);
1269 }
1270
1271 dev->state_saved = true;
1272 return 0;
1273}
98d9b271 1274EXPORT_SYMBOL_GPL(pci_load_saved_state);
ffbdd3f7
AW
1275
1276/**
1277 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1278 * and free the memory allocated for it.
1279 * @dev: PCI device that we're dealing with
1280 * @state: Pointer to saved state returned from pci_store_saved_state()
1281 */
1282int pci_load_and_free_saved_state(struct pci_dev *dev,
1283 struct pci_saved_state **state)
1284{
1285 int ret = pci_load_saved_state(dev, *state);
1286 kfree(*state);
1287 *state = NULL;
1288 return ret;
1289}
1290EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1291
8a9d5609
BH
1292int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1293{
1294 return pci_enable_resources(dev, bars);
1295}
1296
38cc1302
HS
1297static int do_pci_enable_device(struct pci_dev *dev, int bars)
1298{
1299 int err;
1f6ae47e 1300 struct pci_dev *bridge;
1e2571a7
BH
1301 u16 cmd;
1302 u8 pin;
38cc1302
HS
1303
1304 err = pci_set_power_state(dev, PCI_D0);
1305 if (err < 0 && err != -EIO)
1306 return err;
1f6ae47e
VS
1307
1308 bridge = pci_upstream_bridge(dev);
1309 if (bridge)
1310 pcie_aspm_powersave_config_link(bridge);
1311
38cc1302
HS
1312 err = pcibios_enable_device(dev, bars);
1313 if (err < 0)
1314 return err;
1315 pci_fixup_device(pci_fixup_enable, dev);
1316
866d5417
BH
1317 if (dev->msi_enabled || dev->msix_enabled)
1318 return 0;
1319
1e2571a7
BH
1320 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1321 if (pin) {
1322 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1323 if (cmd & PCI_COMMAND_INTX_DISABLE)
1324 pci_write_config_word(dev, PCI_COMMAND,
1325 cmd & ~PCI_COMMAND_INTX_DISABLE);
1326 }
1327
38cc1302
HS
1328 return 0;
1329}
1330
1331/**
0b62e13b 1332 * pci_reenable_device - Resume abandoned device
38cc1302
HS
1333 * @dev: PCI device to be resumed
1334 *
1335 * Note this function is a backend of pci_default_resume and is not supposed
1336 * to be called by normal code, write proper resume handler and use it instead.
1337 */
0b62e13b 1338int pci_reenable_device(struct pci_dev *dev)
38cc1302 1339{
296ccb08 1340 if (pci_is_enabled(dev))
38cc1302
HS
1341 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1342 return 0;
1343}
b7fe9434 1344EXPORT_SYMBOL(pci_reenable_device);
38cc1302 1345
928bea96
YL
1346static void pci_enable_bridge(struct pci_dev *dev)
1347{
79272138 1348 struct pci_dev *bridge;
928bea96
YL
1349 int retval;
1350
79272138
BH
1351 bridge = pci_upstream_bridge(dev);
1352 if (bridge)
1353 pci_enable_bridge(bridge);
928bea96 1354
cf3e1feb 1355 if (pci_is_enabled(dev)) {
fbeeb822 1356 if (!dev->is_busmaster)
cf3e1feb 1357 pci_set_master(dev);
928bea96 1358 return;
cf3e1feb
YL
1359 }
1360
928bea96
YL
1361 retval = pci_enable_device(dev);
1362 if (retval)
1363 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1364 retval);
1365 pci_set_master(dev);
1366}
1367
b4b4fbba 1368static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1da177e4 1369{
79272138 1370 struct pci_dev *bridge;
1da177e4 1371 int err;
b718989d 1372 int i, bars = 0;
1da177e4 1373
97c145f7
JB
1374 /*
1375 * Power state could be unknown at this point, either due to a fresh
1376 * boot or a device removal call. So get the current power state
1377 * so that things like MSI message writing will behave as expected
1378 * (e.g. if the device really is in D0 at enable time).
1379 */
1380 if (dev->pm_cap) {
1381 u16 pmcsr;
1382 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1383 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1384 }
1385
cc7ba39b 1386 if (atomic_inc_return(&dev->enable_cnt) > 1)
9fb625c3
HS
1387 return 0; /* already enabled */
1388
79272138
BH
1389 bridge = pci_upstream_bridge(dev);
1390 if (bridge)
1391 pci_enable_bridge(bridge);
928bea96 1392
497f16f2
YL
1393 /* only skip sriov related */
1394 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1395 if (dev->resource[i].flags & flags)
1396 bars |= (1 << i);
1397 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
b718989d
BH
1398 if (dev->resource[i].flags & flags)
1399 bars |= (1 << i);
1400
38cc1302 1401 err = do_pci_enable_device(dev, bars);
95a62965 1402 if (err < 0)
38cc1302 1403 atomic_dec(&dev->enable_cnt);
9fb625c3 1404 return err;
1da177e4
LT
1405}
1406
b718989d
BH
1407/**
1408 * pci_enable_device_io - Initialize a device for use with IO space
1409 * @dev: PCI device to be initialized
1410 *
1411 * Initialize device before it's used by a driver. Ask low-level code
1412 * to enable I/O resources. Wake up the device if it was suspended.
1413 * Beware, this function can fail.
1414 */
1415int pci_enable_device_io(struct pci_dev *dev)
1416{
b4b4fbba 1417 return pci_enable_device_flags(dev, IORESOURCE_IO);
b718989d 1418}
b7fe9434 1419EXPORT_SYMBOL(pci_enable_device_io);
b718989d
BH
1420
1421/**
1422 * pci_enable_device_mem - Initialize a device for use with Memory space
1423 * @dev: PCI device to be initialized
1424 *
1425 * Initialize device before it's used by a driver. Ask low-level code
1426 * to enable Memory resources. Wake up the device if it was suspended.
1427 * Beware, this function can fail.
1428 */
1429int pci_enable_device_mem(struct pci_dev *dev)
1430{
b4b4fbba 1431 return pci_enable_device_flags(dev, IORESOURCE_MEM);
b718989d 1432}
b7fe9434 1433EXPORT_SYMBOL(pci_enable_device_mem);
b718989d 1434
bae94d02
IPG
1435/**
1436 * pci_enable_device - Initialize device before it's used by a driver.
1437 * @dev: PCI device to be initialized
1438 *
1439 * Initialize device before it's used by a driver. Ask low-level code
1440 * to enable I/O and memory. Wake up the device if it was suspended.
1441 * Beware, this function can fail.
1442 *
1443 * Note we don't actually enable the device many times if we call
1444 * this function repeatedly (we just increment the count).
1445 */
1446int pci_enable_device(struct pci_dev *dev)
1447{
b4b4fbba 1448 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
bae94d02 1449}
b7fe9434 1450EXPORT_SYMBOL(pci_enable_device);
bae94d02 1451
9ac7849e
TH
1452/*
1453 * Managed PCI resources. This manages device on/off, intx/msi/msix
1454 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1455 * there's no need to track it separately. pci_devres is initialized
1456 * when a device is enabled using managed PCI device enable interface.
1457 */
1458struct pci_devres {
7f375f32
TH
1459 unsigned int enabled:1;
1460 unsigned int pinned:1;
9ac7849e
TH
1461 unsigned int orig_intx:1;
1462 unsigned int restore_intx:1;
1463 u32 region_mask;
1464};
1465
1466static void pcim_release(struct device *gendev, void *res)
1467{
f3d2f165 1468 struct pci_dev *dev = to_pci_dev(gendev);
9ac7849e
TH
1469 struct pci_devres *this = res;
1470 int i;
1471
1472 if (dev->msi_enabled)
1473 pci_disable_msi(dev);
1474 if (dev->msix_enabled)
1475 pci_disable_msix(dev);
1476
1477 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1478 if (this->region_mask & (1 << i))
1479 pci_release_region(dev, i);
1480
1481 if (this->restore_intx)
1482 pci_intx(dev, this->orig_intx);
1483
7f375f32 1484 if (this->enabled && !this->pinned)
9ac7849e
TH
1485 pci_disable_device(dev);
1486}
1487
07656d83 1488static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
9ac7849e
TH
1489{
1490 struct pci_devres *dr, *new_dr;
1491
1492 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1493 if (dr)
1494 return dr;
1495
1496 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1497 if (!new_dr)
1498 return NULL;
1499 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1500}
1501
07656d83 1502static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
9ac7849e
TH
1503{
1504 if (pci_is_managed(pdev))
1505 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1506 return NULL;
1507}
1508
1509/**
1510 * pcim_enable_device - Managed pci_enable_device()
1511 * @pdev: PCI device to be initialized
1512 *
1513 * Managed pci_enable_device().
1514 */
1515int pcim_enable_device(struct pci_dev *pdev)
1516{
1517 struct pci_devres *dr;
1518 int rc;
1519
1520 dr = get_pci_dr(pdev);
1521 if (unlikely(!dr))
1522 return -ENOMEM;
b95d58ea
TH
1523 if (dr->enabled)
1524 return 0;
9ac7849e
TH
1525
1526 rc = pci_enable_device(pdev);
1527 if (!rc) {
1528 pdev->is_managed = 1;
7f375f32 1529 dr->enabled = 1;
9ac7849e
TH
1530 }
1531 return rc;
1532}
b7fe9434 1533EXPORT_SYMBOL(pcim_enable_device);
9ac7849e
TH
1534
1535/**
1536 * pcim_pin_device - Pin managed PCI device
1537 * @pdev: PCI device to pin
1538 *
1539 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1540 * driver detach. @pdev must have been enabled with
1541 * pcim_enable_device().
1542 */
1543void pcim_pin_device(struct pci_dev *pdev)
1544{
1545 struct pci_devres *dr;
1546
1547 dr = find_pci_dr(pdev);
7f375f32 1548 WARN_ON(!dr || !dr->enabled);
9ac7849e 1549 if (dr)
7f375f32 1550 dr->pinned = 1;
9ac7849e 1551}
b7fe9434 1552EXPORT_SYMBOL(pcim_pin_device);
9ac7849e 1553
eca0d467
MG
1554/*
1555 * pcibios_add_device - provide arch specific hooks when adding device dev
1556 * @dev: the PCI device being added
1557 *
1558 * Permits the platform to provide architecture specific functionality when
1559 * devices are added. This is the default implementation. Architecture
1560 * implementations can override this.
1561 */
3c78bc61 1562int __weak pcibios_add_device(struct pci_dev *dev)
eca0d467
MG
1563{
1564 return 0;
1565}
1566
6ae32c53
SO
1567/**
1568 * pcibios_release_device - provide arch specific hooks when releasing device dev
1569 * @dev: the PCI device being released
1570 *
1571 * Permits the platform to provide architecture specific functionality when
1572 * devices are released. This is the default implementation. Architecture
1573 * implementations can override this.
1574 */
1575void __weak pcibios_release_device(struct pci_dev *dev) {}
1576
1da177e4
LT
1577/**
1578 * pcibios_disable_device - disable arch specific PCI resources for device dev
1579 * @dev: the PCI device to disable
1580 *
1581 * Disables architecture specific PCI resources for the device. This
1582 * is the default implementation. Architecture implementations can
1583 * override this.
1584 */
ff3ce480 1585void __weak pcibios_disable_device(struct pci_dev *dev) {}
1da177e4 1586
a43ae58c
HG
1587/**
1588 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1589 * @irq: ISA IRQ to penalize
1590 * @active: IRQ active or not
1591 *
1592 * Permits the platform to provide architecture-specific functionality when
1593 * penalizing ISA IRQs. This is the default implementation. Architecture
1594 * implementations can override this.
1595 */
1596void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1597
fa58d305
RW
1598static void do_pci_disable_device(struct pci_dev *dev)
1599{
1600 u16 pci_command;
1601
1602 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1603 if (pci_command & PCI_COMMAND_MASTER) {
1604 pci_command &= ~PCI_COMMAND_MASTER;
1605 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1606 }
1607
1608 pcibios_disable_device(dev);
1609}
1610
1611/**
1612 * pci_disable_enabled_device - Disable device without updating enable_cnt
1613 * @dev: PCI device to disable
1614 *
1615 * NOTE: This function is a backend of PCI power management routines and is
1616 * not supposed to be called drivers.
1617 */
1618void pci_disable_enabled_device(struct pci_dev *dev)
1619{
296ccb08 1620 if (pci_is_enabled(dev))
fa58d305
RW
1621 do_pci_disable_device(dev);
1622}
1623
1da177e4
LT
1624/**
1625 * pci_disable_device - Disable PCI device after use
1626 * @dev: PCI device to be disabled
1627 *
1628 * Signal to the system that the PCI device is not in use by the system
1629 * anymore. This only involves disabling PCI bus-mastering, if active.
bae94d02
IPG
1630 *
1631 * Note we don't actually disable the device until all callers of
ee6583f6 1632 * pci_enable_device() have called pci_disable_device().
1da177e4 1633 */
3c78bc61 1634void pci_disable_device(struct pci_dev *dev)
1da177e4 1635{
9ac7849e 1636 struct pci_devres *dr;
99dc804d 1637
9ac7849e
TH
1638 dr = find_pci_dr(dev);
1639 if (dr)
7f375f32 1640 dr->enabled = 0;
9ac7849e 1641
fd6dceab
KK
1642 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1643 "disabling already-disabled device");
1644
cc7ba39b 1645 if (atomic_dec_return(&dev->enable_cnt) != 0)
bae94d02
IPG
1646 return;
1647
fa58d305 1648 do_pci_disable_device(dev);
1da177e4 1649
fa58d305 1650 dev->is_busmaster = 0;
1da177e4 1651}
b7fe9434 1652EXPORT_SYMBOL(pci_disable_device);
1da177e4 1653
f7bdd12d
BK
1654/**
1655 * pcibios_set_pcie_reset_state - set reset state for device dev
45e829ea 1656 * @dev: the PCIe device reset
f7bdd12d
BK
1657 * @state: Reset state to enter into
1658 *
1659 *
45e829ea 1660 * Sets the PCIe reset state for the device. This is the default
f7bdd12d
BK
1661 * implementation. Architecture implementations can override this.
1662 */
d6d88c83
BH
1663int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1664 enum pcie_reset_state state)
f7bdd12d
BK
1665{
1666 return -EINVAL;
1667}
1668
1669/**
1670 * pci_set_pcie_reset_state - set reset state for device dev
45e829ea 1671 * @dev: the PCIe device reset
f7bdd12d
BK
1672 * @state: Reset state to enter into
1673 *
1674 *
1675 * Sets the PCI reset state for the device.
1676 */
1677int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1678{
1679 return pcibios_set_pcie_reset_state(dev, state);
1680}
b7fe9434 1681EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
f7bdd12d 1682
58ff4633
RW
1683/**
1684 * pci_check_pme_status - Check if given device has generated PME.
1685 * @dev: Device to check.
1686 *
1687 * Check the PME status of the device and if set, clear it and clear PME enable
1688 * (if set). Return 'true' if PME status and PME enable were both set or
1689 * 'false' otherwise.
1690 */
1691bool pci_check_pme_status(struct pci_dev *dev)
1692{
1693 int pmcsr_pos;
1694 u16 pmcsr;
1695 bool ret = false;
1696
1697 if (!dev->pm_cap)
1698 return false;
1699
1700 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1701 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1702 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1703 return false;
1704
1705 /* Clear PME status. */
1706 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1707 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1708 /* Disable PME to avoid interrupt flood. */
1709 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1710 ret = true;
1711 }
1712
1713 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1714
1715 return ret;
1716}
1717
b67ea761
RW
1718/**
1719 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1720 * @dev: Device to handle.
379021d5 1721 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
b67ea761
RW
1722 *
1723 * Check if @dev has generated PME and queue a resume request for it in that
1724 * case.
1725 */
379021d5 1726static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
b67ea761 1727{
379021d5
RW
1728 if (pme_poll_reset && dev->pme_poll)
1729 dev->pme_poll = false;
1730
c125e96f 1731 if (pci_check_pme_status(dev)) {
c125e96f 1732 pci_wakeup_event(dev);
0f953bf6 1733 pm_request_resume(&dev->dev);
c125e96f 1734 }
b67ea761
RW
1735 return 0;
1736}
1737
1738/**
1739 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1740 * @bus: Top bus of the subtree to walk.
1741 */
1742void pci_pme_wakeup_bus(struct pci_bus *bus)
1743{
1744 if (bus)
379021d5 1745 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
b67ea761
RW
1746}
1747
448bd857 1748
eb9d0fe4
RW
1749/**
1750 * pci_pme_capable - check the capability of PCI device to generate PME#
1751 * @dev: PCI device to handle.
eb9d0fe4
RW
1752 * @state: PCI state from which device will issue PME#.
1753 */
e5899e1b 1754bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
eb9d0fe4 1755{
337001b6 1756 if (!dev->pm_cap)
eb9d0fe4
RW
1757 return false;
1758
337001b6 1759 return !!(dev->pme_support & (1 << state));
eb9d0fe4 1760}
b7fe9434 1761EXPORT_SYMBOL(pci_pme_capable);
eb9d0fe4 1762
df17e62e
MG
1763static void pci_pme_list_scan(struct work_struct *work)
1764{
379021d5 1765 struct pci_pme_device *pme_dev, *n;
df17e62e
MG
1766
1767 mutex_lock(&pci_pme_list_mutex);
ce300008
BH
1768 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1769 if (pme_dev->dev->pme_poll) {
1770 struct pci_dev *bridge;
1771
1772 bridge = pme_dev->dev->bus->self;
1773 /*
1774 * If bridge is in low power state, the
1775 * configuration space of subordinate devices
1776 * may be not accessible
1777 */
1778 if (bridge && bridge->current_state != PCI_D0)
1779 continue;
1780 pci_pme_wakeup(pme_dev->dev, NULL);
1781 } else {
1782 list_del(&pme_dev->list);
1783 kfree(pme_dev);
379021d5 1784 }
df17e62e 1785 }
ce300008 1786 if (!list_empty(&pci_pme_list))
ea00353f
LW
1787 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1788 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
1789 mutex_unlock(&pci_pme_list_mutex);
1790}
1791
2cef548a 1792static void __pci_pme_active(struct pci_dev *dev, bool enable)
eb9d0fe4
RW
1793{
1794 u16 pmcsr;
1795
ffaddbe8 1796 if (!dev->pme_support)
eb9d0fe4
RW
1797 return;
1798
337001b6 1799 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
eb9d0fe4
RW
1800 /* Clear PME_Status by writing 1 to it and enable PME# */
1801 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1802 if (!enable)
1803 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1804
337001b6 1805 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2cef548a
RW
1806}
1807
1808/**
1809 * pci_pme_active - enable or disable PCI device's PME# function
1810 * @dev: PCI device to handle.
1811 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1812 *
1813 * The caller must verify that the device is capable of generating PME# before
1814 * calling this function with @enable equal to 'true'.
1815 */
1816void pci_pme_active(struct pci_dev *dev, bool enable)
1817{
1818 __pci_pme_active(dev, enable);
eb9d0fe4 1819
6e965e0d
HY
1820 /*
1821 * PCI (as opposed to PCIe) PME requires that the device have
1822 * its PME# line hooked up correctly. Not all hardware vendors
1823 * do this, so the PME never gets delivered and the device
1824 * remains asleep. The easiest way around this is to
1825 * periodically walk the list of suspended devices and check
1826 * whether any have their PME flag set. The assumption is that
1827 * we'll wake up often enough anyway that this won't be a huge
1828 * hit, and the power savings from the devices will still be a
1829 * win.
1830 *
1831 * Although PCIe uses in-band PME message instead of PME# line
1832 * to report PME, PME does not work for some PCIe devices in
1833 * reality. For example, there are devices that set their PME
1834 * status bits, but don't really bother to send a PME message;
1835 * there are PCI Express Root Ports that don't bother to
1836 * trigger interrupts when they receive PME messages from the
1837 * devices below. So PME poll is used for PCIe devices too.
1838 */
df17e62e 1839
379021d5 1840 if (dev->pme_poll) {
df17e62e
MG
1841 struct pci_pme_device *pme_dev;
1842 if (enable) {
1843 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1844 GFP_KERNEL);
0394cb19
BH
1845 if (!pme_dev) {
1846 dev_warn(&dev->dev, "can't enable PME#\n");
1847 return;
1848 }
df17e62e
MG
1849 pme_dev->dev = dev;
1850 mutex_lock(&pci_pme_list_mutex);
1851 list_add(&pme_dev->list, &pci_pme_list);
1852 if (list_is_singular(&pci_pme_list))
ea00353f
LW
1853 queue_delayed_work(system_freezable_wq,
1854 &pci_pme_work,
1855 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
1856 mutex_unlock(&pci_pme_list_mutex);
1857 } else {
1858 mutex_lock(&pci_pme_list_mutex);
1859 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1860 if (pme_dev->dev == dev) {
1861 list_del(&pme_dev->list);
1862 kfree(pme_dev);
1863 break;
1864 }
1865 }
1866 mutex_unlock(&pci_pme_list_mutex);
1867 }
1868 }
1869
85b8582d 1870 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
eb9d0fe4 1871}
b7fe9434 1872EXPORT_SYMBOL(pci_pme_active);
eb9d0fe4 1873
1da177e4 1874/**
6cbf8214 1875 * __pci_enable_wake - enable PCI device as wakeup event source
075c1771
DB
1876 * @dev: PCI device affected
1877 * @state: PCI state from which device will issue wakeup events
6cbf8214 1878 * @runtime: True if the events are to be generated at run time
075c1771
DB
1879 * @enable: True to enable event generation; false to disable
1880 *
1881 * This enables the device as a wakeup event source, or disables it.
1882 * When such events involves platform-specific hooks, those hooks are
1883 * called automatically by this routine.
1884 *
1885 * Devices with legacy power management (no standard PCI PM capabilities)
eb9d0fe4 1886 * always require such platform hooks.
075c1771 1887 *
eb9d0fe4
RW
1888 * RETURN VALUE:
1889 * 0 is returned on success
1890 * -EINVAL is returned if device is not supposed to wake up the system
1891 * Error code depending on the platform is returned if both the platform and
1892 * the native mechanism fail to enable the generation of wake-up events
1da177e4 1893 */
6cbf8214
RW
1894int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1895 bool runtime, bool enable)
1da177e4 1896{
5bcc2fb4 1897 int ret = 0;
075c1771 1898
6cbf8214 1899 if (enable && !runtime && !device_may_wakeup(&dev->dev))
eb9d0fe4 1900 return -EINVAL;
1da177e4 1901
e80bb09d
RW
1902 /* Don't do the same thing twice in a row for one device. */
1903 if (!!enable == !!dev->wakeup_prepared)
1904 return 0;
1905
eb9d0fe4
RW
1906 /*
1907 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1908 * Anderson we should be doing PME# wake enable followed by ACPI wake
1909 * enable. To disable wake-up we call the platform first, for symmetry.
075c1771 1910 */
1da177e4 1911
5bcc2fb4
RW
1912 if (enable) {
1913 int error;
1da177e4 1914
5bcc2fb4
RW
1915 if (pci_pme_capable(dev, state))
1916 pci_pme_active(dev, true);
1917 else
1918 ret = 1;
6cbf8214
RW
1919 error = runtime ? platform_pci_run_wake(dev, true) :
1920 platform_pci_sleep_wake(dev, true);
5bcc2fb4
RW
1921 if (ret)
1922 ret = error;
e80bb09d
RW
1923 if (!ret)
1924 dev->wakeup_prepared = true;
5bcc2fb4 1925 } else {
6cbf8214
RW
1926 if (runtime)
1927 platform_pci_run_wake(dev, false);
1928 else
1929 platform_pci_sleep_wake(dev, false);
5bcc2fb4 1930 pci_pme_active(dev, false);
e80bb09d 1931 dev->wakeup_prepared = false;
5bcc2fb4 1932 }
1da177e4 1933
5bcc2fb4 1934 return ret;
eb9d0fe4 1935}
6cbf8214 1936EXPORT_SYMBOL(__pci_enable_wake);
1da177e4 1937
0235c4fc
RW
1938/**
1939 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1940 * @dev: PCI device to prepare
1941 * @enable: True to enable wake-up event generation; false to disable
1942 *
1943 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1944 * and this function allows them to set that up cleanly - pci_enable_wake()
1945 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1946 * ordering constraints.
1947 *
1948 * This function only returns error code if the device is not capable of
1949 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1950 * enable wake-up power for it.
1951 */
1952int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1953{
1954 return pci_pme_capable(dev, PCI_D3cold) ?
1955 pci_enable_wake(dev, PCI_D3cold, enable) :
1956 pci_enable_wake(dev, PCI_D3hot, enable);
1957}
b7fe9434 1958EXPORT_SYMBOL(pci_wake_from_d3);
0235c4fc 1959
404cc2d8 1960/**
37139074
JB
1961 * pci_target_state - find an appropriate low power state for a given PCI dev
1962 * @dev: PCI device
1963 *
1964 * Use underlying platform code to find a supported low power state for @dev.
1965 * If the platform can't manage @dev, return the deepest state from which it
1966 * can generate wake events, based on any available PME info.
404cc2d8 1967 */
0b950f0f 1968static pci_power_t pci_target_state(struct pci_dev *dev)
404cc2d8
RW
1969{
1970 pci_power_t target_state = PCI_D3hot;
404cc2d8
RW
1971
1972 if (platform_pci_power_manageable(dev)) {
1973 /*
1974 * Call the platform to choose the target state of the device
1975 * and enable wake-up from this state if supported.
1976 */
1977 pci_power_t state = platform_pci_choose_state(dev);
1978
1979 switch (state) {
1980 case PCI_POWER_ERROR:
1981 case PCI_UNKNOWN:
1982 break;
1983 case PCI_D1:
1984 case PCI_D2:
1985 if (pci_no_d1d2(dev))
1986 break;
1987 default:
1988 target_state = state;
404cc2d8 1989 }
4132a577
LW
1990
1991 return target_state;
1992 }
1993
1994 if (!dev->pm_cap)
d2abdf62 1995 target_state = PCI_D0;
4132a577
LW
1996
1997 /*
1998 * If the device is in D3cold even though it's not power-manageable by
1999 * the platform, it may have been powered down by non-standard means.
2000 * Best to let it slumber.
2001 */
2002 if (dev->current_state == PCI_D3cold)
2003 target_state = PCI_D3cold;
2004
2005 if (device_may_wakeup(&dev->dev)) {
404cc2d8
RW
2006 /*
2007 * Find the deepest state from which the device can generate
2008 * wake-up events, make it the target state and enable device
2009 * to generate PME#.
2010 */
337001b6
RW
2011 if (dev->pme_support) {
2012 while (target_state
2013 && !(dev->pme_support & (1 << target_state)))
2014 target_state--;
404cc2d8
RW
2015 }
2016 }
2017
e5899e1b
RW
2018 return target_state;
2019}
2020
2021/**
2022 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2023 * @dev: Device to handle.
2024 *
2025 * Choose the power state appropriate for the device depending on whether
2026 * it can wake up the system and/or is power manageable by the platform
2027 * (PCI_D3hot is the default) and put the device into that state.
2028 */
2029int pci_prepare_to_sleep(struct pci_dev *dev)
2030{
2031 pci_power_t target_state = pci_target_state(dev);
2032 int error;
2033
2034 if (target_state == PCI_POWER_ERROR)
2035 return -EIO;
2036
8efb8c76 2037 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
c157dfa3 2038
404cc2d8
RW
2039 error = pci_set_power_state(dev, target_state);
2040
2041 if (error)
2042 pci_enable_wake(dev, target_state, false);
2043
2044 return error;
2045}
b7fe9434 2046EXPORT_SYMBOL(pci_prepare_to_sleep);
404cc2d8
RW
2047
2048/**
443bd1c4 2049 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
404cc2d8
RW
2050 * @dev: Device to handle.
2051 *
88393161 2052 * Disable device's system wake-up capability and put it into D0.
404cc2d8
RW
2053 */
2054int pci_back_from_sleep(struct pci_dev *dev)
2055{
2056 pci_enable_wake(dev, PCI_D0, false);
2057 return pci_set_power_state(dev, PCI_D0);
2058}
b7fe9434 2059EXPORT_SYMBOL(pci_back_from_sleep);
404cc2d8 2060
6cbf8214
RW
2061/**
2062 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2063 * @dev: PCI device being suspended.
2064 *
2065 * Prepare @dev to generate wake-up events at run time and put it into a low
2066 * power state.
2067 */
2068int pci_finish_runtime_suspend(struct pci_dev *dev)
2069{
2070 pci_power_t target_state = pci_target_state(dev);
2071 int error;
2072
2073 if (target_state == PCI_POWER_ERROR)
2074 return -EIO;
2075
448bd857
HY
2076 dev->runtime_d3cold = target_state == PCI_D3cold;
2077
6cbf8214
RW
2078 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2079
2080 error = pci_set_power_state(dev, target_state);
2081
448bd857 2082 if (error) {
6cbf8214 2083 __pci_enable_wake(dev, target_state, true, false);
448bd857
HY
2084 dev->runtime_d3cold = false;
2085 }
6cbf8214
RW
2086
2087 return error;
2088}
2089
b67ea761
RW
2090/**
2091 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2092 * @dev: Device to check.
2093 *
f7625980 2094 * Return true if the device itself is capable of generating wake-up events
b67ea761
RW
2095 * (through the platform or using the native PCIe PME) or if the device supports
2096 * PME and one of its upstream bridges can generate wake-up events.
2097 */
2098bool pci_dev_run_wake(struct pci_dev *dev)
2099{
2100 struct pci_bus *bus = dev->bus;
2101
2102 if (device_run_wake(&dev->dev))
2103 return true;
2104
2105 if (!dev->pme_support)
2106 return false;
2107
6496ebd7
AS
2108 /* PME-capable in principle, but not from the intended sleep state */
2109 if (!pci_pme_capable(dev, pci_target_state(dev)))
2110 return false;
2111
b67ea761
RW
2112 while (bus->parent) {
2113 struct pci_dev *bridge = bus->self;
2114
2115 if (device_run_wake(&bridge->dev))
2116 return true;
2117
2118 bus = bus->parent;
2119 }
2120
2121 /* We have reached the root bus. */
2122 if (bus->bridge)
2123 return device_run_wake(bus->bridge);
2124
2125 return false;
2126}
2127EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2128
bac2a909
RW
2129/**
2130 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2131 * @pci_dev: Device to check.
2132 *
2133 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2134 * reconfigured due to wakeup settings difference between system and runtime
2135 * suspend and the current power state of it is suitable for the upcoming
2136 * (system) transition.
2cef548a
RW
2137 *
2138 * If the device is not configured for system wakeup, disable PME for it before
2139 * returning 'true' to prevent it from waking up the system unnecessarily.
bac2a909
RW
2140 */
2141bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2142{
2143 struct device *dev = &pci_dev->dev;
2144
2145 if (!pm_runtime_suspended(dev)
2cef548a 2146 || pci_target_state(pci_dev) != pci_dev->current_state
4d071c32
ID
2147 || platform_pci_need_resume(pci_dev)
2148 || (pci_dev->dev_flags & PCI_DEV_FLAGS_NEEDS_RESUME))
bac2a909
RW
2149 return false;
2150
2cef548a
RW
2151 /*
2152 * At this point the device is good to go unless it's been configured
2153 * to generate PME at the runtime suspend time, but it is not supposed
2154 * to wake up the system. In that case, simply disable PME for it
2155 * (it will have to be re-enabled on exit from system resume).
2156 *
2157 * If the device's power state is D3cold and the platform check above
2158 * hasn't triggered, the device's configuration is suitable and we don't
2159 * need to manipulate it at all.
2160 */
2161 spin_lock_irq(&dev->power.lock);
2162
2163 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2164 !device_may_wakeup(dev))
2165 __pci_pme_active(pci_dev, false);
2166
2167 spin_unlock_irq(&dev->power.lock);
2168 return true;
2169}
2170
2171/**
2172 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2173 * @pci_dev: Device to handle.
2174 *
2175 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2176 * it might have been disabled during the prepare phase of system suspend if
2177 * the device was not configured for system wakeup.
2178 */
2179void pci_dev_complete_resume(struct pci_dev *pci_dev)
2180{
2181 struct device *dev = &pci_dev->dev;
2182
2183 if (!pci_dev_run_wake(pci_dev))
2184 return;
2185
2186 spin_lock_irq(&dev->power.lock);
2187
2188 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2189 __pci_pme_active(pci_dev, true);
2190
2191 spin_unlock_irq(&dev->power.lock);
bac2a909
RW
2192}
2193
b3c32c4f
HY
2194void pci_config_pm_runtime_get(struct pci_dev *pdev)
2195{
2196 struct device *dev = &pdev->dev;
2197 struct device *parent = dev->parent;
2198
2199 if (parent)
2200 pm_runtime_get_sync(parent);
2201 pm_runtime_get_noresume(dev);
2202 /*
2203 * pdev->current_state is set to PCI_D3cold during suspending,
2204 * so wait until suspending completes
2205 */
2206 pm_runtime_barrier(dev);
2207 /*
2208 * Only need to resume devices in D3cold, because config
2209 * registers are still accessible for devices suspended but
2210 * not in D3cold.
2211 */
2212 if (pdev->current_state == PCI_D3cold)
2213 pm_runtime_resume(dev);
2214}
2215
2216void pci_config_pm_runtime_put(struct pci_dev *pdev)
2217{
2218 struct device *dev = &pdev->dev;
2219 struct device *parent = dev->parent;
2220
2221 pm_runtime_put(dev);
2222 if (parent)
2223 pm_runtime_put_sync(parent);
2224}
2225
9d26d3a8
MW
2226/**
2227 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2228 * @bridge: Bridge to check
2229 *
2230 * This function checks if it is possible to move the bridge to D3.
2231 * Currently we only allow D3 for recent enough PCIe ports.
2232 */
c6a63307 2233bool pci_bridge_d3_possible(struct pci_dev *bridge)
9d26d3a8
MW
2234{
2235 unsigned int year;
2236
2237 if (!pci_is_pcie(bridge))
2238 return false;
2239
2240 switch (pci_pcie_type(bridge)) {
2241 case PCI_EXP_TYPE_ROOT_PORT:
2242 case PCI_EXP_TYPE_UPSTREAM:
2243 case PCI_EXP_TYPE_DOWNSTREAM:
2244 if (pci_bridge_d3_disable)
2245 return false;
97a90aee
LW
2246
2247 /*
d98e0929
BH
2248 * Hotplug interrupts cannot be delivered if the link is down,
2249 * so parents of a hotplug port must stay awake. In addition,
2250 * hotplug ports handled by firmware in System Management Mode
97a90aee 2251 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
d98e0929 2252 * For simplicity, disallow in general for now.
97a90aee 2253 */
d98e0929 2254 if (bridge->is_hotplug_bridge)
97a90aee
LW
2255 return false;
2256
9d26d3a8
MW
2257 if (pci_bridge_d3_force)
2258 return true;
2259
2260 /*
2261 * It should be safe to put PCIe ports from 2015 or newer
2262 * to D3.
2263 */
2264 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2265 year >= 2015) {
2266 return true;
2267 }
2268 break;
2269 }
2270
2271 return false;
2272}
2273
2274static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2275{
2276 bool *d3cold_ok = data;
9d26d3a8 2277
718a0609
LW
2278 if (/* The device needs to be allowed to go D3cold ... */
2279 dev->no_d3cold || !dev->d3cold_allowed ||
2280
2281 /* ... and if it is wakeup capable to do so from D3cold. */
2282 (device_may_wakeup(&dev->dev) &&
2283 !pci_pme_capable(dev, PCI_D3cold)) ||
2284
2285 /* If it is a bridge it must be allowed to go to D3. */
d98e0929 2286 !pci_power_manageable(dev))
9d26d3a8 2287
718a0609 2288 *d3cold_ok = false;
9d26d3a8 2289
718a0609 2290 return !*d3cold_ok;
9d26d3a8
MW
2291}
2292
2293/*
2294 * pci_bridge_d3_update - Update bridge D3 capabilities
2295 * @dev: PCI device which is changed
9d26d3a8
MW
2296 *
2297 * Update upstream bridge PM capabilities accordingly depending on if the
2298 * device PM configuration was changed or the device is being removed. The
2299 * change is also propagated upstream.
2300 */
1ed276a7 2301void pci_bridge_d3_update(struct pci_dev *dev)
9d26d3a8 2302{
1ed276a7 2303 bool remove = !device_is_registered(&dev->dev);
9d26d3a8
MW
2304 struct pci_dev *bridge;
2305 bool d3cold_ok = true;
2306
2307 bridge = pci_upstream_bridge(dev);
2308 if (!bridge || !pci_bridge_d3_possible(bridge))
2309 return;
2310
9d26d3a8 2311 /*
e8559b71
LW
2312 * If D3 is currently allowed for the bridge, removing one of its
2313 * children won't change that.
2314 */
2315 if (remove && bridge->bridge_d3)
2316 return;
2317
2318 /*
2319 * If D3 is currently allowed for the bridge and a child is added or
2320 * changed, disallowance of D3 can only be caused by that child, so
2321 * we only need to check that single device, not any of its siblings.
2322 *
2323 * If D3 is currently not allowed for the bridge, checking the device
2324 * first may allow us to skip checking its siblings.
9d26d3a8
MW
2325 */
2326 if (!remove)
2327 pci_dev_check_d3cold(dev, &d3cold_ok);
2328
e8559b71
LW
2329 /*
2330 * If D3 is currently not allowed for the bridge, this may be caused
2331 * either by the device being changed/removed or any of its siblings,
2332 * so we need to go through all children to find out if one of them
2333 * continues to block D3.
2334 */
2335 if (d3cold_ok && !bridge->bridge_d3)
9d26d3a8
MW
2336 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2337 &d3cold_ok);
9d26d3a8
MW
2338
2339 if (bridge->bridge_d3 != d3cold_ok) {
2340 bridge->bridge_d3 = d3cold_ok;
2341 /* Propagate change to upstream bridges */
1ed276a7 2342 pci_bridge_d3_update(bridge);
9d26d3a8 2343 }
9d26d3a8
MW
2344}
2345
9d26d3a8
MW
2346/**
2347 * pci_d3cold_enable - Enable D3cold for device
2348 * @dev: PCI device to handle
2349 *
2350 * This function can be used in drivers to enable D3cold from the device
2351 * they handle. It also updates upstream PCI bridge PM capabilities
2352 * accordingly.
2353 */
2354void pci_d3cold_enable(struct pci_dev *dev)
2355{
2356 if (dev->no_d3cold) {
2357 dev->no_d3cold = false;
1ed276a7 2358 pci_bridge_d3_update(dev);
9d26d3a8
MW
2359 }
2360}
2361EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2362
2363/**
2364 * pci_d3cold_disable - Disable D3cold for device
2365 * @dev: PCI device to handle
2366 *
2367 * This function can be used in drivers to disable D3cold from the device
2368 * they handle. It also updates upstream PCI bridge PM capabilities
2369 * accordingly.
2370 */
2371void pci_d3cold_disable(struct pci_dev *dev)
2372{
2373 if (!dev->no_d3cold) {
2374 dev->no_d3cold = true;
1ed276a7 2375 pci_bridge_d3_update(dev);
9d26d3a8
MW
2376 }
2377}
2378EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2379
eb9d0fe4
RW
2380/**
2381 * pci_pm_init - Initialize PM functions of given PCI device
2382 * @dev: PCI device to handle.
2383 */
2384void pci_pm_init(struct pci_dev *dev)
2385{
2386 int pm;
2387 u16 pmc;
1da177e4 2388
bb910a70 2389 pm_runtime_forbid(&dev->dev);
967577b0
HY
2390 pm_runtime_set_active(&dev->dev);
2391 pm_runtime_enable(&dev->dev);
a1e4d72c 2392 device_enable_async_suspend(&dev->dev);
e80bb09d 2393 dev->wakeup_prepared = false;
bb910a70 2394
337001b6 2395 dev->pm_cap = 0;
ffaddbe8 2396 dev->pme_support = 0;
337001b6 2397
eb9d0fe4
RW
2398 /* find PCI PM capability in list */
2399 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2400 if (!pm)
50246dd4 2401 return;
eb9d0fe4
RW
2402 /* Check device's ability to generate PME# */
2403 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
075c1771 2404
eb9d0fe4
RW
2405 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2406 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2407 pmc & PCI_PM_CAP_VER_MASK);
50246dd4 2408 return;
eb9d0fe4
RW
2409 }
2410
337001b6 2411 dev->pm_cap = pm;
1ae861e6 2412 dev->d3_delay = PCI_PM_D3_WAIT;
448bd857 2413 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
9d26d3a8 2414 dev->bridge_d3 = pci_bridge_d3_possible(dev);
4f9c1397 2415 dev->d3cold_allowed = true;
337001b6
RW
2416
2417 dev->d1_support = false;
2418 dev->d2_support = false;
2419 if (!pci_no_d1d2(dev)) {
c9ed77ee 2420 if (pmc & PCI_PM_CAP_D1)
337001b6 2421 dev->d1_support = true;
c9ed77ee 2422 if (pmc & PCI_PM_CAP_D2)
337001b6 2423 dev->d2_support = true;
c9ed77ee
BH
2424
2425 if (dev->d1_support || dev->d2_support)
2426 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
ec84f126
JB
2427 dev->d1_support ? " D1" : "",
2428 dev->d2_support ? " D2" : "");
337001b6
RW
2429 }
2430
2431 pmc &= PCI_PM_CAP_PME_MASK;
2432 if (pmc) {
10c3d71d
BH
2433 dev_printk(KERN_DEBUG, &dev->dev,
2434 "PME# supported from%s%s%s%s%s\n",
c9ed77ee
BH
2435 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2436 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2437 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2438 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2439 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
337001b6 2440 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
379021d5 2441 dev->pme_poll = true;
eb9d0fe4
RW
2442 /*
2443 * Make device's PM flags reflect the wake-up capability, but
2444 * let the user space enable it to wake up the system as needed.
2445 */
2446 device_set_wakeup_capable(&dev->dev, true);
eb9d0fe4 2447 /* Disable the PME# generation functionality */
337001b6 2448 pci_pme_active(dev, false);
eb9d0fe4 2449 }
1da177e4
LT
2450}
2451
938174e5
SS
2452static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2453{
92efb1bd 2454 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
938174e5
SS
2455
2456 switch (prop) {
2457 case PCI_EA_P_MEM:
2458 case PCI_EA_P_VF_MEM:
2459 flags |= IORESOURCE_MEM;
2460 break;
2461 case PCI_EA_P_MEM_PREFETCH:
2462 case PCI_EA_P_VF_MEM_PREFETCH:
2463 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2464 break;
2465 case PCI_EA_P_IO:
2466 flags |= IORESOURCE_IO;
2467 break;
2468 default:
2469 return 0;
2470 }
2471
2472 return flags;
2473}
2474
2475static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2476 u8 prop)
2477{
2478 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2479 return &dev->resource[bei];
11183991
DD
2480#ifdef CONFIG_PCI_IOV
2481 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2482 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2483 return &dev->resource[PCI_IOV_RESOURCES +
2484 bei - PCI_EA_BEI_VF_BAR0];
2485#endif
938174e5
SS
2486 else if (bei == PCI_EA_BEI_ROM)
2487 return &dev->resource[PCI_ROM_RESOURCE];
2488 else
2489 return NULL;
2490}
2491
2492/* Read an Enhanced Allocation (EA) entry */
2493static int pci_ea_read(struct pci_dev *dev, int offset)
2494{
2495 struct resource *res;
2496 int ent_size, ent_offset = offset;
2497 resource_size_t start, end;
2498 unsigned long flags;
26635112 2499 u32 dw0, bei, base, max_offset;
938174e5
SS
2500 u8 prop;
2501 bool support_64 = (sizeof(resource_size_t) >= 8);
2502
2503 pci_read_config_dword(dev, ent_offset, &dw0);
2504 ent_offset += 4;
2505
2506 /* Entry size field indicates DWORDs after 1st */
2507 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2508
2509 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2510 goto out;
2511
26635112
BH
2512 bei = (dw0 & PCI_EA_BEI) >> 4;
2513 prop = (dw0 & PCI_EA_PP) >> 8;
2514
938174e5
SS
2515 /*
2516 * If the Property is in the reserved range, try the Secondary
2517 * Property instead.
2518 */
2519 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
26635112 2520 prop = (dw0 & PCI_EA_SP) >> 16;
938174e5
SS
2521 if (prop > PCI_EA_P_BRIDGE_IO)
2522 goto out;
2523
26635112 2524 res = pci_ea_get_resource(dev, bei, prop);
938174e5 2525 if (!res) {
26635112 2526 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
938174e5
SS
2527 goto out;
2528 }
2529
2530 flags = pci_ea_flags(dev, prop);
2531 if (!flags) {
2532 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2533 goto out;
2534 }
2535
2536 /* Read Base */
2537 pci_read_config_dword(dev, ent_offset, &base);
2538 start = (base & PCI_EA_FIELD_MASK);
2539 ent_offset += 4;
2540
2541 /* Read MaxOffset */
2542 pci_read_config_dword(dev, ent_offset, &max_offset);
2543 ent_offset += 4;
2544
2545 /* Read Base MSBs (if 64-bit entry) */
2546 if (base & PCI_EA_IS_64) {
2547 u32 base_upper;
2548
2549 pci_read_config_dword(dev, ent_offset, &base_upper);
2550 ent_offset += 4;
2551
2552 flags |= IORESOURCE_MEM_64;
2553
2554 /* entry starts above 32-bit boundary, can't use */
2555 if (!support_64 && base_upper)
2556 goto out;
2557
2558 if (support_64)
2559 start |= ((u64)base_upper << 32);
2560 }
2561
2562 end = start + (max_offset | 0x03);
2563
2564 /* Read MaxOffset MSBs (if 64-bit entry) */
2565 if (max_offset & PCI_EA_IS_64) {
2566 u32 max_offset_upper;
2567
2568 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2569 ent_offset += 4;
2570
2571 flags |= IORESOURCE_MEM_64;
2572
2573 /* entry too big, can't use */
2574 if (!support_64 && max_offset_upper)
2575 goto out;
2576
2577 if (support_64)
2578 end += ((u64)max_offset_upper << 32);
2579 }
2580
2581 if (end < start) {
2582 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2583 goto out;
2584 }
2585
2586 if (ent_size != ent_offset - offset) {
2587 dev_err(&dev->dev,
2588 "EA Entry Size (%d) does not match length read (%d)\n",
2589 ent_size, ent_offset - offset);
2590 goto out;
2591 }
2592
2593 res->name = pci_name(dev);
2594 res->start = start;
2595 res->end = end;
2596 res->flags = flags;
597becb4
BH
2597
2598 if (bei <= PCI_EA_BEI_BAR5)
2599 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2600 bei, res, prop);
2601 else if (bei == PCI_EA_BEI_ROM)
2602 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2603 res, prop);
2604 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2605 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2606 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2607 else
2608 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2609 bei, res, prop);
2610
938174e5
SS
2611out:
2612 return offset + ent_size;
2613}
2614
dcbb408a 2615/* Enhanced Allocation Initialization */
938174e5
SS
2616void pci_ea_init(struct pci_dev *dev)
2617{
2618 int ea;
2619 u8 num_ent;
2620 int offset;
2621 int i;
2622
2623 /* find PCI EA capability in list */
2624 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2625 if (!ea)
2626 return;
2627
2628 /* determine the number of entries */
2629 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2630 &num_ent);
2631 num_ent &= PCI_EA_NUM_ENT_MASK;
2632
2633 offset = ea + PCI_EA_FIRST_ENT;
2634
2635 /* Skip DWORD 2 for type 1 functions */
2636 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2637 offset += 4;
2638
2639 /* parse each EA entry */
2640 for (i = 0; i < num_ent; ++i)
2641 offset = pci_ea_read(dev, offset);
2642}
2643
34a4876e
YL
2644static void pci_add_saved_cap(struct pci_dev *pci_dev,
2645 struct pci_cap_saved_state *new_cap)
2646{
2647 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2648}
2649
63f4898a 2650/**
fd0f7f73
AW
2651 * _pci_add_cap_save_buffer - allocate buffer for saving given
2652 * capability registers
63f4898a
RW
2653 * @dev: the PCI device
2654 * @cap: the capability to allocate the buffer for
fd0f7f73 2655 * @extended: Standard or Extended capability ID
63f4898a
RW
2656 * @size: requested size of the buffer
2657 */
fd0f7f73
AW
2658static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2659 bool extended, unsigned int size)
63f4898a
RW
2660{
2661 int pos;
2662 struct pci_cap_saved_state *save_state;
2663
fd0f7f73
AW
2664 if (extended)
2665 pos = pci_find_ext_capability(dev, cap);
2666 else
2667 pos = pci_find_capability(dev, cap);
2668
0a1a9b49 2669 if (!pos)
63f4898a
RW
2670 return 0;
2671
2672 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2673 if (!save_state)
2674 return -ENOMEM;
2675
24a4742f 2676 save_state->cap.cap_nr = cap;
fd0f7f73 2677 save_state->cap.cap_extended = extended;
24a4742f 2678 save_state->cap.size = size;
63f4898a
RW
2679 pci_add_saved_cap(dev, save_state);
2680
2681 return 0;
2682}
2683
fd0f7f73
AW
2684int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2685{
2686 return _pci_add_cap_save_buffer(dev, cap, false, size);
2687}
2688
2689int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2690{
2691 return _pci_add_cap_save_buffer(dev, cap, true, size);
2692}
2693
63f4898a
RW
2694/**
2695 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2696 * @dev: the PCI device
2697 */
2698void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2699{
2700 int error;
2701
89858517
YZ
2702 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2703 PCI_EXP_SAVE_REGS * sizeof(u16));
63f4898a
RW
2704 if (error)
2705 dev_err(&dev->dev,
2706 "unable to preallocate PCI Express save buffer\n");
2707
2708 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2709 if (error)
2710 dev_err(&dev->dev,
2711 "unable to preallocate PCI-X save buffer\n");
425c1b22
AW
2712
2713 pci_allocate_vc_save_buffers(dev);
63f4898a
RW
2714}
2715
f796841e
YL
2716void pci_free_cap_save_buffers(struct pci_dev *dev)
2717{
2718 struct pci_cap_saved_state *tmp;
b67bfe0d 2719 struct hlist_node *n;
f796841e 2720
b67bfe0d 2721 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
f796841e
YL
2722 kfree(tmp);
2723}
2724
58c3a727 2725/**
31ab2476 2726 * pci_configure_ari - enable or disable ARI forwarding
58c3a727 2727 * @dev: the PCI device
b0cc6020
YW
2728 *
2729 * If @dev and its upstream bridge both support ARI, enable ARI in the
2730 * bridge. Otherwise, disable ARI in the bridge.
58c3a727 2731 */
31ab2476 2732void pci_configure_ari(struct pci_dev *dev)
58c3a727 2733{
58c3a727 2734 u32 cap;
8113587c 2735 struct pci_dev *bridge;
58c3a727 2736
6748dcc2 2737 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
58c3a727
YZ
2738 return;
2739
8113587c 2740 bridge = dev->bus->self;
cb97ae34 2741 if (!bridge)
8113587c
ZY
2742 return;
2743
59875ae4 2744 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
58c3a727
YZ
2745 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2746 return;
2747
b0cc6020
YW
2748 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2749 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2750 PCI_EXP_DEVCTL2_ARI);
2751 bridge->ari_enabled = 1;
2752 } else {
2753 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2754 PCI_EXP_DEVCTL2_ARI);
2755 bridge->ari_enabled = 0;
2756 }
58c3a727
YZ
2757}
2758
5d990b62
CW
2759static int pci_acs_enable;
2760
2761/**
2762 * pci_request_acs - ask for ACS to be enabled if supported
2763 */
2764void pci_request_acs(void)
2765{
2766 pci_acs_enable = 1;
2767}
2768
ae21ee65 2769/**
2c744244 2770 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
ae21ee65
AK
2771 * @dev: the PCI device
2772 */
c1d61c9b 2773static void pci_std_enable_acs(struct pci_dev *dev)
ae21ee65
AK
2774{
2775 int pos;
2776 u16 cap;
2777 u16 ctrl;
2778
ae21ee65
AK
2779 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2780 if (!pos)
c1d61c9b 2781 return;
ae21ee65
AK
2782
2783 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2784 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2785
2786 /* Source Validation */
2787 ctrl |= (cap & PCI_ACS_SV);
2788
2789 /* P2P Request Redirect */
2790 ctrl |= (cap & PCI_ACS_RR);
2791
2792 /* P2P Completion Redirect */
2793 ctrl |= (cap & PCI_ACS_CR);
2794
2795 /* Upstream Forwarding */
2796 ctrl |= (cap & PCI_ACS_UF);
2797
2798 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2c744244
AW
2799}
2800
2801/**
2802 * pci_enable_acs - enable ACS if hardware support it
2803 * @dev: the PCI device
2804 */
2805void pci_enable_acs(struct pci_dev *dev)
2806{
2807 if (!pci_acs_enable)
2808 return;
2809
c1d61c9b 2810 if (!pci_dev_specific_enable_acs(dev))
2c744244
AW
2811 return;
2812
c1d61c9b 2813 pci_std_enable_acs(dev);
ae21ee65
AK
2814}
2815
0a67119f
AW
2816static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2817{
2818 int pos;
83db7e0b 2819 u16 cap, ctrl;
0a67119f
AW
2820
2821 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2822 if (!pos)
2823 return false;
2824
83db7e0b
AW
2825 /*
2826 * Except for egress control, capabilities are either required
2827 * or only required if controllable. Features missing from the
2828 * capability field can therefore be assumed as hard-wired enabled.
2829 */
2830 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2831 acs_flags &= (cap | PCI_ACS_EC);
2832
0a67119f
AW
2833 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2834 return (ctrl & acs_flags) == acs_flags;
2835}
2836
ad805758
AW
2837/**
2838 * pci_acs_enabled - test ACS against required flags for a given device
2839 * @pdev: device to test
2840 * @acs_flags: required PCI ACS flags
2841 *
2842 * Return true if the device supports the provided flags. Automatically
2843 * filters out flags that are not implemented on multifunction devices.
0a67119f
AW
2844 *
2845 * Note that this interface checks the effective ACS capabilities of the
2846 * device rather than the actual capabilities. For instance, most single
2847 * function endpoints are not required to support ACS because they have no
2848 * opportunity for peer-to-peer access. We therefore return 'true'
2849 * regardless of whether the device exposes an ACS capability. This makes
2850 * it much easier for callers of this function to ignore the actual type
2851 * or topology of the device when testing ACS support.
ad805758
AW
2852 */
2853bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2854{
0a67119f 2855 int ret;
ad805758
AW
2856
2857 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2858 if (ret >= 0)
2859 return ret > 0;
2860
0a67119f
AW
2861 /*
2862 * Conventional PCI and PCI-X devices never support ACS, either
2863 * effectively or actually. The shared bus topology implies that
2864 * any device on the bus can receive or snoop DMA.
2865 */
ad805758
AW
2866 if (!pci_is_pcie(pdev))
2867 return false;
2868
0a67119f
AW
2869 switch (pci_pcie_type(pdev)) {
2870 /*
2871 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
f7625980 2872 * but since their primary interface is PCI/X, we conservatively
0a67119f
AW
2873 * handle them as we would a non-PCIe device.
2874 */
2875 case PCI_EXP_TYPE_PCIE_BRIDGE:
2876 /*
2877 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2878 * applicable... must never implement an ACS Extended Capability...".
2879 * This seems arbitrary, but we take a conservative interpretation
2880 * of this statement.
2881 */
2882 case PCI_EXP_TYPE_PCI_BRIDGE:
2883 case PCI_EXP_TYPE_RC_EC:
2884 return false;
2885 /*
2886 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2887 * implement ACS in order to indicate their peer-to-peer capabilities,
2888 * regardless of whether they are single- or multi-function devices.
2889 */
2890 case PCI_EXP_TYPE_DOWNSTREAM:
2891 case PCI_EXP_TYPE_ROOT_PORT:
2892 return pci_acs_flags_enabled(pdev, acs_flags);
2893 /*
2894 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2895 * implemented by the remaining PCIe types to indicate peer-to-peer
f7625980 2896 * capabilities, but only when they are part of a multifunction
0a67119f
AW
2897 * device. The footnote for section 6.12 indicates the specific
2898 * PCIe types included here.
2899 */
2900 case PCI_EXP_TYPE_ENDPOINT:
2901 case PCI_EXP_TYPE_UPSTREAM:
2902 case PCI_EXP_TYPE_LEG_END:
2903 case PCI_EXP_TYPE_RC_END:
2904 if (!pdev->multifunction)
2905 break;
2906
0a67119f 2907 return pci_acs_flags_enabled(pdev, acs_flags);
ad805758
AW
2908 }
2909
0a67119f 2910 /*
f7625980 2911 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
0a67119f
AW
2912 * to single function devices with the exception of downstream ports.
2913 */
ad805758
AW
2914 return true;
2915}
2916
2917/**
2918 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2919 * @start: starting downstream device
2920 * @end: ending upstream device or NULL to search to the root bus
2921 * @acs_flags: required flags
2922 *
2923 * Walk up a device tree from start to end testing PCI ACS support. If
2924 * any step along the way does not support the required flags, return false.
2925 */
2926bool pci_acs_path_enabled(struct pci_dev *start,
2927 struct pci_dev *end, u16 acs_flags)
2928{
2929 struct pci_dev *pdev, *parent = start;
2930
2931 do {
2932 pdev = parent;
2933
2934 if (!pci_acs_enabled(pdev, acs_flags))
2935 return false;
2936
2937 if (pci_is_root_bus(pdev->bus))
2938 return (end == NULL);
2939
2940 parent = pdev->bus->self;
2941 } while (pdev != end);
2942
2943 return true;
2944}
2945
57c2cf71
BH
2946/**
2947 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2948 * @dev: the PCI device
bb5c2de2 2949 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
57c2cf71
BH
2950 *
2951 * Perform INTx swizzling for a device behind one level of bridge. This is
2952 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
46b952a3
MW
2953 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2954 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2955 * the PCI Express Base Specification, Revision 2.1)
57c2cf71 2956 */
3df425f3 2957u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
57c2cf71 2958{
46b952a3
MW
2959 int slot;
2960
2961 if (pci_ari_enabled(dev->bus))
2962 slot = 0;
2963 else
2964 slot = PCI_SLOT(dev->devfn);
2965
2966 return (((pin - 1) + slot) % 4) + 1;
57c2cf71
BH
2967}
2968
3c78bc61 2969int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1da177e4
LT
2970{
2971 u8 pin;
2972
514d207d 2973 pin = dev->pin;
1da177e4
LT
2974 if (!pin)
2975 return -1;
878f2e50 2976
8784fd4d 2977 while (!pci_is_root_bus(dev->bus)) {
57c2cf71 2978 pin = pci_swizzle_interrupt_pin(dev, pin);
1da177e4
LT
2979 dev = dev->bus->self;
2980 }
2981 *bridge = dev;
2982 return pin;
2983}
2984
68feac87
BH
2985/**
2986 * pci_common_swizzle - swizzle INTx all the way to root bridge
2987 * @dev: the PCI device
2988 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2989 *
2990 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2991 * bridges all the way up to a PCI root bus.
2992 */
2993u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2994{
2995 u8 pin = *pinp;
2996
1eb39487 2997 while (!pci_is_root_bus(dev->bus)) {
68feac87
BH
2998 pin = pci_swizzle_interrupt_pin(dev, pin);
2999 dev = dev->bus->self;
3000 }
3001 *pinp = pin;
3002 return PCI_SLOT(dev->devfn);
3003}
e6b29dea 3004EXPORT_SYMBOL_GPL(pci_common_swizzle);
68feac87 3005
1da177e4
LT
3006/**
3007 * pci_release_region - Release a PCI bar
3008 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3009 * @bar: BAR to release
3010 *
3011 * Releases the PCI I/O and memory resources previously reserved by a
3012 * successful call to pci_request_region. Call this function only
3013 * after all use of the PCI regions has ceased.
3014 */
3015void pci_release_region(struct pci_dev *pdev, int bar)
3016{
9ac7849e
TH
3017 struct pci_devres *dr;
3018
1da177e4
LT
3019 if (pci_resource_len(pdev, bar) == 0)
3020 return;
3021 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3022 release_region(pci_resource_start(pdev, bar),
3023 pci_resource_len(pdev, bar));
3024 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3025 release_mem_region(pci_resource_start(pdev, bar),
3026 pci_resource_len(pdev, bar));
9ac7849e
TH
3027
3028 dr = find_pci_dr(pdev);
3029 if (dr)
3030 dr->region_mask &= ~(1 << bar);
1da177e4 3031}
b7fe9434 3032EXPORT_SYMBOL(pci_release_region);
1da177e4
LT
3033
3034/**
f5ddcac4 3035 * __pci_request_region - Reserved PCI I/O and memory resource
1da177e4
LT
3036 * @pdev: PCI device whose resources are to be reserved
3037 * @bar: BAR to be reserved
3038 * @res_name: Name to be associated with resource.
f5ddcac4 3039 * @exclusive: whether the region access is exclusive or not
1da177e4
LT
3040 *
3041 * Mark the PCI region associated with PCI device @pdev BR @bar as
3042 * being reserved by owner @res_name. Do not access any
3043 * address inside the PCI regions unless this call returns
3044 * successfully.
3045 *
f5ddcac4
RD
3046 * If @exclusive is set, then the region is marked so that userspace
3047 * is explicitly not allowed to map the resource via /dev/mem or
f7625980 3048 * sysfs MMIO access.
f5ddcac4 3049 *
1da177e4
LT
3050 * Returns 0 on success, or %EBUSY on error. A warning
3051 * message is also printed on failure.
3052 */
3c78bc61
RD
3053static int __pci_request_region(struct pci_dev *pdev, int bar,
3054 const char *res_name, int exclusive)
1da177e4 3055{
9ac7849e
TH
3056 struct pci_devres *dr;
3057
1da177e4
LT
3058 if (pci_resource_len(pdev, bar) == 0)
3059 return 0;
f7625980 3060
1da177e4
LT
3061 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3062 if (!request_region(pci_resource_start(pdev, bar),
3063 pci_resource_len(pdev, bar), res_name))
3064 goto err_out;
3c78bc61 3065 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
e8de1481
AV
3066 if (!__request_mem_region(pci_resource_start(pdev, bar),
3067 pci_resource_len(pdev, bar), res_name,
3068 exclusive))
1da177e4
LT
3069 goto err_out;
3070 }
9ac7849e
TH
3071
3072 dr = find_pci_dr(pdev);
3073 if (dr)
3074 dr->region_mask |= 1 << bar;
3075
1da177e4
LT
3076 return 0;
3077
3078err_out:
c7dabef8 3079 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
096e6f67 3080 &pdev->resource[bar]);
1da177e4
LT
3081 return -EBUSY;
3082}
3083
e8de1481 3084/**
f5ddcac4 3085 * pci_request_region - Reserve PCI I/O and memory resource
e8de1481
AV
3086 * @pdev: PCI device whose resources are to be reserved
3087 * @bar: BAR to be reserved
f5ddcac4 3088 * @res_name: Name to be associated with resource
e8de1481 3089 *
f5ddcac4 3090 * Mark the PCI region associated with PCI device @pdev BAR @bar as
e8de1481
AV
3091 * being reserved by owner @res_name. Do not access any
3092 * address inside the PCI regions unless this call returns
3093 * successfully.
3094 *
3095 * Returns 0 on success, or %EBUSY on error. A warning
3096 * message is also printed on failure.
3097 */
3098int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3099{
3100 return __pci_request_region(pdev, bar, res_name, 0);
3101}
b7fe9434 3102EXPORT_SYMBOL(pci_request_region);
e8de1481
AV
3103
3104/**
3105 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3106 * @pdev: PCI device whose resources are to be reserved
3107 * @bar: BAR to be reserved
3108 * @res_name: Name to be associated with resource.
3109 *
3110 * Mark the PCI region associated with PCI device @pdev BR @bar as
3111 * being reserved by owner @res_name. Do not access any
3112 * address inside the PCI regions unless this call returns
3113 * successfully.
3114 *
3115 * Returns 0 on success, or %EBUSY on error. A warning
3116 * message is also printed on failure.
3117 *
3118 * The key difference that _exclusive makes it that userspace is
3119 * explicitly not allowed to map the resource via /dev/mem or
f7625980 3120 * sysfs.
e8de1481 3121 */
3c78bc61
RD
3122int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3123 const char *res_name)
e8de1481
AV
3124{
3125 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3126}
b7fe9434
RD
3127EXPORT_SYMBOL(pci_request_region_exclusive);
3128
c87deff7
HS
3129/**
3130 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3131 * @pdev: PCI device whose resources were previously reserved
3132 * @bars: Bitmask of BARs to be released
3133 *
3134 * Release selected PCI I/O and memory resources previously reserved.
3135 * Call this function only after all use of the PCI regions has ceased.
3136 */
3137void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3138{
3139 int i;
3140
3141 for (i = 0; i < 6; i++)
3142 if (bars & (1 << i))
3143 pci_release_region(pdev, i);
3144}
b7fe9434 3145EXPORT_SYMBOL(pci_release_selected_regions);
c87deff7 3146
9738abed 3147static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3c78bc61 3148 const char *res_name, int excl)
c87deff7
HS
3149{
3150 int i;
3151
3152 for (i = 0; i < 6; i++)
3153 if (bars & (1 << i))
e8de1481 3154 if (__pci_request_region(pdev, i, res_name, excl))
c87deff7
HS
3155 goto err_out;
3156 return 0;
3157
3158err_out:
3c78bc61 3159 while (--i >= 0)
c87deff7
HS
3160 if (bars & (1 << i))
3161 pci_release_region(pdev, i);
3162
3163 return -EBUSY;
3164}
1da177e4 3165
e8de1481
AV
3166
3167/**
3168 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3169 * @pdev: PCI device whose resources are to be reserved
3170 * @bars: Bitmask of BARs to be requested
3171 * @res_name: Name to be associated with resource
3172 */
3173int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3174 const char *res_name)
3175{
3176 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3177}
b7fe9434 3178EXPORT_SYMBOL(pci_request_selected_regions);
e8de1481 3179
3c78bc61
RD
3180int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3181 const char *res_name)
e8de1481
AV
3182{
3183 return __pci_request_selected_regions(pdev, bars, res_name,
3184 IORESOURCE_EXCLUSIVE);
3185}
b7fe9434 3186EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
e8de1481 3187
1da177e4
LT
3188/**
3189 * pci_release_regions - Release reserved PCI I/O and memory resources
3190 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3191 *
3192 * Releases all PCI I/O and memory resources previously reserved by a
3193 * successful call to pci_request_regions. Call this function only
3194 * after all use of the PCI regions has ceased.
3195 */
3196
3197void pci_release_regions(struct pci_dev *pdev)
3198{
c87deff7 3199 pci_release_selected_regions(pdev, (1 << 6) - 1);
1da177e4 3200}
b7fe9434 3201EXPORT_SYMBOL(pci_release_regions);
1da177e4
LT
3202
3203/**
3204 * pci_request_regions - Reserved PCI I/O and memory resources
3205 * @pdev: PCI device whose resources are to be reserved
3206 * @res_name: Name to be associated with resource.
3207 *
3208 * Mark all PCI regions associated with PCI device @pdev as
3209 * being reserved by owner @res_name. Do not access any
3210 * address inside the PCI regions unless this call returns
3211 * successfully.
3212 *
3213 * Returns 0 on success, or %EBUSY on error. A warning
3214 * message is also printed on failure.
3215 */
3c990e92 3216int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1da177e4 3217{
c87deff7 3218 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1da177e4 3219}
b7fe9434 3220EXPORT_SYMBOL(pci_request_regions);
1da177e4 3221
e8de1481
AV
3222/**
3223 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3224 * @pdev: PCI device whose resources are to be reserved
3225 * @res_name: Name to be associated with resource.
3226 *
3227 * Mark all PCI regions associated with PCI device @pdev as
3228 * being reserved by owner @res_name. Do not access any
3229 * address inside the PCI regions unless this call returns
3230 * successfully.
3231 *
3232 * pci_request_regions_exclusive() will mark the region so that
f7625980 3233 * /dev/mem and the sysfs MMIO access will not be allowed.
e8de1481
AV
3234 *
3235 * Returns 0 on success, or %EBUSY on error. A warning
3236 * message is also printed on failure.
3237 */
3238int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3239{
3240 return pci_request_selected_regions_exclusive(pdev,
3241 ((1 << 6) - 1), res_name);
3242}
b7fe9434 3243EXPORT_SYMBOL(pci_request_regions_exclusive);
e8de1481 3244
c5076cfe
TN
3245#ifdef PCI_IOBASE
3246struct io_range {
3247 struct list_head list;
3248 phys_addr_t start;
3249 resource_size_t size;
3250};
3251
3252static LIST_HEAD(io_range_list);
3253static DEFINE_SPINLOCK(io_range_lock);
3254#endif
3255
3256/*
3257 * Record the PCI IO range (expressed as CPU physical address + size).
3258 * Return a negative value if an error has occured, zero otherwise
3259 */
3260int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3261{
3262 int err = 0;
3263
3264#ifdef PCI_IOBASE
3265 struct io_range *range;
3266 resource_size_t allocated_size = 0;
3267
3268 /* check if the range hasn't been previously recorded */
3269 spin_lock(&io_range_lock);
3270 list_for_each_entry(range, &io_range_list, list) {
3271 if (addr >= range->start && addr + size <= range->start + size) {
3272 /* range already registered, bail out */
3273 goto end_register;
3274 }
3275 allocated_size += range->size;
3276 }
3277
3278 /* range not registed yet, check for available space */
3279 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3280 /* if it's too big check if 64K space can be reserved */
3281 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3282 err = -E2BIG;
3283 goto end_register;
3284 }
3285
3286 size = SZ_64K;
3287 pr_warn("Requested IO range too big, new size set to 64K\n");
3288 }
3289
3290 /* add the range to the list */
3291 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3292 if (!range) {
3293 err = -ENOMEM;
3294 goto end_register;
3295 }
3296
3297 range->start = addr;
3298 range->size = size;
3299
3300 list_add_tail(&range->list, &io_range_list);
3301
3302end_register:
3303 spin_unlock(&io_range_lock);
3304#endif
3305
3306 return err;
3307}
3308
3309phys_addr_t pci_pio_to_address(unsigned long pio)
3310{
3311 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3312
3313#ifdef PCI_IOBASE
3314 struct io_range *range;
3315 resource_size_t allocated_size = 0;
3316
3317 if (pio > IO_SPACE_LIMIT)
3318 return address;
3319
3320 spin_lock(&io_range_lock);
3321 list_for_each_entry(range, &io_range_list, list) {
3322 if (pio >= allocated_size && pio < allocated_size + range->size) {
3323 address = range->start + pio - allocated_size;
3324 break;
3325 }
3326 allocated_size += range->size;
3327 }
3328 spin_unlock(&io_range_lock);
3329#endif
3330
3331 return address;
3332}
3333
3334unsigned long __weak pci_address_to_pio(phys_addr_t address)
3335{
3336#ifdef PCI_IOBASE
3337 struct io_range *res;
3338 resource_size_t offset = 0;
3339 unsigned long addr = -1;
3340
3341 spin_lock(&io_range_lock);
3342 list_for_each_entry(res, &io_range_list, list) {
3343 if (address >= res->start && address < res->start + res->size) {
3344 addr = address - res->start + offset;
3345 break;
3346 }
3347 offset += res->size;
3348 }
3349 spin_unlock(&io_range_lock);
3350
3351 return addr;
3352#else
3353 if (address > IO_SPACE_LIMIT)
3354 return (unsigned long)-1;
3355
3356 return (unsigned long) address;
3357#endif
3358}
3359
8b921acf
LD
3360/**
3361 * pci_remap_iospace - Remap the memory mapped I/O space
3362 * @res: Resource describing the I/O space
3363 * @phys_addr: physical address of range to be mapped
3364 *
3365 * Remap the memory mapped I/O space described by the @res
3366 * and the CPU physical address @phys_addr into virtual address space.
3367 * Only architectures that have memory mapped IO functions defined
3368 * (and the PCI_IOBASE value defined) should call this function.
3369 */
7b309aef 3370int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
8b921acf
LD
3371{
3372#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3373 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3374
3375 if (!(res->flags & IORESOURCE_IO))
3376 return -EINVAL;
3377
3378 if (res->end > IO_SPACE_LIMIT)
3379 return -EINVAL;
3380
3381 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3382 pgprot_device(PAGE_KERNEL));
3383#else
3384 /* this architecture does not have memory mapped I/O space,
3385 so this function should never be called */
3386 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3387 return -ENODEV;
3388#endif
3389}
f90b0875 3390EXPORT_SYMBOL(pci_remap_iospace);
8b921acf 3391
4d3f1384
SK
3392/**
3393 * pci_unmap_iospace - Unmap the memory mapped I/O space
3394 * @res: resource to be unmapped
3395 *
3396 * Unmap the CPU virtual address @res from virtual address space.
3397 * Only architectures that have memory mapped IO functions defined
3398 * (and the PCI_IOBASE value defined) should call this function.
3399 */
3400void pci_unmap_iospace(struct resource *res)
3401{
3402#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3403 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3404
3405 unmap_kernel_range(vaddr, resource_size(res));
3406#endif
3407}
f90b0875 3408EXPORT_SYMBOL(pci_unmap_iospace);
4d3f1384 3409
490cb6dd
LP
3410/**
3411 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3412 * @dev: Generic device to remap IO address for
3413 * @offset: Resource address to map
3414 * @size: Size of map
3415 *
3416 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3417 * detach.
3418 */
3419void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3420 resource_size_t offset,
3421 resource_size_t size)
3422{
3423 void __iomem **ptr, *addr;
3424
3425 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3426 if (!ptr)
3427 return NULL;
3428
3429 addr = pci_remap_cfgspace(offset, size);
3430 if (addr) {
3431 *ptr = addr;
3432 devres_add(dev, ptr);
3433 } else
3434 devres_free(ptr);
3435
3436 return addr;
3437}
3438EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3439
3440/**
3441 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3442 * @dev: generic device to handle the resource for
3443 * @res: configuration space resource to be handled
3444 *
3445 * Checks that a resource is a valid memory region, requests the memory
3446 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3447 * proper PCI configuration space memory attributes are guaranteed.
3448 *
3449 * All operations are managed and will be undone on driver detach.
3450 *
3451 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3452 * on failure. Usage example:
3453 *
3454 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3455 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3456 * if (IS_ERR(base))
3457 * return PTR_ERR(base);
3458 */
3459void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3460 struct resource *res)
3461{
3462 resource_size_t size;
3463 const char *name;
3464 void __iomem *dest_ptr;
3465
3466 BUG_ON(!dev);
3467
3468 if (!res || resource_type(res) != IORESOURCE_MEM) {
3469 dev_err(dev, "invalid resource\n");
3470 return IOMEM_ERR_PTR(-EINVAL);
3471 }
3472
3473 size = resource_size(res);
3474 name = res->name ?: dev_name(dev);
3475
3476 if (!devm_request_mem_region(dev, res->start, size, name)) {
3477 dev_err(dev, "can't request region for resource %pR\n", res);
3478 return IOMEM_ERR_PTR(-EBUSY);
3479 }
3480
3481 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3482 if (!dest_ptr) {
3483 dev_err(dev, "ioremap failed for resource %pR\n", res);
3484 devm_release_mem_region(dev, res->start, size);
3485 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3486 }
3487
3488 return dest_ptr;
3489}
3490EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3491
6a479079
BH
3492static void __pci_set_master(struct pci_dev *dev, bool enable)
3493{
3494 u16 old_cmd, cmd;
3495
3496 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3497 if (enable)
3498 cmd = old_cmd | PCI_COMMAND_MASTER;
3499 else
3500 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3501 if (cmd != old_cmd) {
3502 dev_dbg(&dev->dev, "%s bus mastering\n",
3503 enable ? "enabling" : "disabling");
3504 pci_write_config_word(dev, PCI_COMMAND, cmd);
3505 }
3506 dev->is_busmaster = enable;
3507}
e8de1481 3508
2b6f2c35
MS
3509/**
3510 * pcibios_setup - process "pci=" kernel boot arguments
3511 * @str: string used to pass in "pci=" kernel boot arguments
3512 *
3513 * Process kernel boot arguments. This is the default implementation.
3514 * Architecture specific implementations can override this as necessary.
3515 */
3516char * __weak __init pcibios_setup(char *str)
3517{
3518 return str;
3519}
3520
96c55900
MS
3521/**
3522 * pcibios_set_master - enable PCI bus-mastering for device dev
3523 * @dev: the PCI device to enable
3524 *
3525 * Enables PCI bus-mastering for the device. This is the default
3526 * implementation. Architecture specific implementations can override
3527 * this if necessary.
3528 */
3529void __weak pcibios_set_master(struct pci_dev *dev)
3530{
3531 u8 lat;
3532
f676678f
MS
3533 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3534 if (pci_is_pcie(dev))
3535 return;
3536
96c55900
MS
3537 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3538 if (lat < 16)
3539 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3540 else if (lat > pcibios_max_latency)
3541 lat = pcibios_max_latency;
3542 else
3543 return;
a006482b 3544
96c55900
MS
3545 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3546}
3547
1da177e4
LT
3548/**
3549 * pci_set_master - enables bus-mastering for device dev
3550 * @dev: the PCI device to enable
3551 *
3552 * Enables bus-mastering on the device and calls pcibios_set_master()
3553 * to do the needed arch specific settings.
3554 */
6a479079 3555void pci_set_master(struct pci_dev *dev)
1da177e4 3556{
6a479079 3557 __pci_set_master(dev, true);
1da177e4
LT
3558 pcibios_set_master(dev);
3559}
b7fe9434 3560EXPORT_SYMBOL(pci_set_master);
1da177e4 3561
6a479079
BH
3562/**
3563 * pci_clear_master - disables bus-mastering for device dev
3564 * @dev: the PCI device to disable
3565 */
3566void pci_clear_master(struct pci_dev *dev)
3567{
3568 __pci_set_master(dev, false);
3569}
b7fe9434 3570EXPORT_SYMBOL(pci_clear_master);
6a479079 3571
1da177e4 3572/**
edb2d97e
MW
3573 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3574 * @dev: the PCI device for which MWI is to be enabled
1da177e4 3575 *
edb2d97e
MW
3576 * Helper function for pci_set_mwi.
3577 * Originally copied from drivers/net/acenic.c.
1da177e4
LT
3578 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3579 *
3580 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3581 */
15ea76d4 3582int pci_set_cacheline_size(struct pci_dev *dev)
1da177e4
LT
3583{
3584 u8 cacheline_size;
3585
3586 if (!pci_cache_line_size)
15ea76d4 3587 return -EINVAL;
1da177e4
LT
3588
3589 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3590 equal to or multiple of the right value. */
3591 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3592 if (cacheline_size >= pci_cache_line_size &&
3593 (cacheline_size % pci_cache_line_size) == 0)
3594 return 0;
3595
3596 /* Write the correct value. */
3597 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3598 /* Read it back. */
3599 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3600 if (cacheline_size == pci_cache_line_size)
3601 return 0;
3602
227f0647
RD
3603 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3604 pci_cache_line_size << 2);
1da177e4
LT
3605
3606 return -EINVAL;
3607}
15ea76d4
TH
3608EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3609
1da177e4
LT
3610/**
3611 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3612 * @dev: the PCI device for which MWI is enabled
3613 *
694625c0 3614 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1da177e4
LT
3615 *
3616 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3617 */
3c78bc61 3618int pci_set_mwi(struct pci_dev *dev)
1da177e4 3619{
b7fe9434
RD
3620#ifdef PCI_DISABLE_MWI
3621 return 0;
3622#else
1da177e4
LT
3623 int rc;
3624 u16 cmd;
3625
edb2d97e 3626 rc = pci_set_cacheline_size(dev);
1da177e4
LT
3627 if (rc)
3628 return rc;
3629
3630 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3c78bc61 3631 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
80ccba11 3632 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1da177e4
LT
3633 cmd |= PCI_COMMAND_INVALIDATE;
3634 pci_write_config_word(dev, PCI_COMMAND, cmd);
3635 }
1da177e4 3636 return 0;
b7fe9434 3637#endif
1da177e4 3638}
b7fe9434 3639EXPORT_SYMBOL(pci_set_mwi);
1da177e4 3640
694625c0
RD
3641/**
3642 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3643 * @dev: the PCI device for which MWI is enabled
3644 *
3645 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3646 * Callers are not required to check the return value.
3647 *
3648 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3649 */
3650int pci_try_set_mwi(struct pci_dev *dev)
3651{
b7fe9434
RD
3652#ifdef PCI_DISABLE_MWI
3653 return 0;
3654#else
3655 return pci_set_mwi(dev);
3656#endif
694625c0 3657}
b7fe9434 3658EXPORT_SYMBOL(pci_try_set_mwi);
694625c0 3659
1da177e4
LT
3660/**
3661 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3662 * @dev: the PCI device to disable
3663 *
3664 * Disables PCI Memory-Write-Invalidate transaction on the device
3665 */
3c78bc61 3666void pci_clear_mwi(struct pci_dev *dev)
1da177e4 3667{
b7fe9434 3668#ifndef PCI_DISABLE_MWI
1da177e4
LT
3669 u16 cmd;
3670
3671 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3672 if (cmd & PCI_COMMAND_INVALIDATE) {
3673 cmd &= ~PCI_COMMAND_INVALIDATE;
3674 pci_write_config_word(dev, PCI_COMMAND, cmd);
3675 }
b7fe9434 3676#endif
1da177e4 3677}
b7fe9434 3678EXPORT_SYMBOL(pci_clear_mwi);
1da177e4 3679
a04ce0ff
BR
3680/**
3681 * pci_intx - enables/disables PCI INTx for device dev
8f7020d3
RD
3682 * @pdev: the PCI device to operate on
3683 * @enable: boolean: whether to enable or disable PCI INTx
a04ce0ff
BR
3684 *
3685 * Enables/disables PCI INTx for device dev
3686 */
3c78bc61 3687void pci_intx(struct pci_dev *pdev, int enable)
a04ce0ff
BR
3688{
3689 u16 pci_command, new;
3690
3691 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3692
3c78bc61 3693 if (enable)
a04ce0ff 3694 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3c78bc61 3695 else
a04ce0ff 3696 new = pci_command | PCI_COMMAND_INTX_DISABLE;
a04ce0ff
BR
3697
3698 if (new != pci_command) {
9ac7849e
TH
3699 struct pci_devres *dr;
3700
2fd9d74b 3701 pci_write_config_word(pdev, PCI_COMMAND, new);
9ac7849e
TH
3702
3703 dr = find_pci_dr(pdev);
3704 if (dr && !dr->restore_intx) {
3705 dr->restore_intx = 1;
3706 dr->orig_intx = !enable;
3707 }
a04ce0ff
BR
3708 }
3709}
b7fe9434 3710EXPORT_SYMBOL_GPL(pci_intx);
a04ce0ff 3711
a2e27787
JK
3712/**
3713 * pci_intx_mask_supported - probe for INTx masking support
6e9292c5 3714 * @dev: the PCI device to operate on
a2e27787
JK
3715 *
3716 * Check if the device dev support INTx masking via the config space
3717 * command word.
3718 */
3719bool pci_intx_mask_supported(struct pci_dev *dev)
3720{
3721 bool mask_supported = false;
3722 u16 orig, new;
3723
fbebb9fd
BH
3724 if (dev->broken_intx_masking)
3725 return false;
3726
a2e27787
JK
3727 pci_cfg_access_lock(dev);
3728
3729 pci_read_config_word(dev, PCI_COMMAND, &orig);
3730 pci_write_config_word(dev, PCI_COMMAND,
3731 orig ^ PCI_COMMAND_INTX_DISABLE);
3732 pci_read_config_word(dev, PCI_COMMAND, &new);
3733
3734 /*
3735 * There's no way to protect against hardware bugs or detect them
3736 * reliably, but as long as we know what the value should be, let's
3737 * go ahead and check it.
3738 */
3739 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
227f0647
RD
3740 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3741 orig, new);
a2e27787
JK
3742 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3743 mask_supported = true;
3744 pci_write_config_word(dev, PCI_COMMAND, orig);
3745 }
3746
3747 pci_cfg_access_unlock(dev);
3748 return mask_supported;
3749}
3750EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3751
3752static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3753{
3754 struct pci_bus *bus = dev->bus;
3755 bool mask_updated = true;
3756 u32 cmd_status_dword;
3757 u16 origcmd, newcmd;
3758 unsigned long flags;
3759 bool irq_pending;
3760
3761 /*
3762 * We do a single dword read to retrieve both command and status.
3763 * Document assumptions that make this possible.
3764 */
3765 BUILD_BUG_ON(PCI_COMMAND % 4);
3766 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3767
3768 raw_spin_lock_irqsave(&pci_lock, flags);
3769
3770 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3771
3772 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3773
3774 /*
3775 * Check interrupt status register to see whether our device
3776 * triggered the interrupt (when masking) or the next IRQ is
3777 * already pending (when unmasking).
3778 */
3779 if (mask != irq_pending) {
3780 mask_updated = false;
3781 goto done;
3782 }
3783
3784 origcmd = cmd_status_dword;
3785 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3786 if (mask)
3787 newcmd |= PCI_COMMAND_INTX_DISABLE;
3788 if (newcmd != origcmd)
3789 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3790
3791done:
3792 raw_spin_unlock_irqrestore(&pci_lock, flags);
3793
3794 return mask_updated;
3795}
3796
3797/**
3798 * pci_check_and_mask_intx - mask INTx on pending interrupt
6e9292c5 3799 * @dev: the PCI device to operate on
a2e27787
JK
3800 *
3801 * Check if the device dev has its INTx line asserted, mask it and
3802 * return true in that case. False is returned if not interrupt was
3803 * pending.
3804 */
3805bool pci_check_and_mask_intx(struct pci_dev *dev)
3806{
3807 return pci_check_and_set_intx_mask(dev, true);
3808}
3809EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3810
3811/**
ebd50b93 3812 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
6e9292c5 3813 * @dev: the PCI device to operate on
a2e27787
JK
3814 *
3815 * Check if the device dev has its INTx line asserted, unmask it if not
3816 * and return true. False is returned and the mask remains active if
3817 * there was still an interrupt pending.
3818 */
3819bool pci_check_and_unmask_intx(struct pci_dev *dev)
3820{
3821 return pci_check_and_set_intx_mask(dev, false);
3822}
3823EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3824
3775a209
CL
3825/**
3826 * pci_wait_for_pending_transaction - waits for pending transaction
3827 * @dev: the PCI device to operate on
3828 *
3829 * Return 0 if transaction is pending 1 otherwise.
3830 */
3831int pci_wait_for_pending_transaction(struct pci_dev *dev)
8dd7f803 3832{
157e876f
AW
3833 if (!pci_is_pcie(dev))
3834 return 1;
8c1c699f 3835
d0b4cc4e
GS
3836 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3837 PCI_EXP_DEVSTA_TRPND);
3775a209
CL
3838}
3839EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3840
5adecf81
AW
3841/*
3842 * We should only need to wait 100ms after FLR, but some devices take longer.
3843 * Wait for up to 1000ms for config space to return something other than -1.
3844 * Intel IGD requires this when an LCD panel is attached. We read the 2nd
3845 * dword because VFs don't implement the 1st dword.
3846 */
3847static void pci_flr_wait(struct pci_dev *dev)
3848{
3849 int i = 0;
3850 u32 id;
3851
3852 do {
3853 msleep(100);
3854 pci_read_config_dword(dev, PCI_COMMAND, &id);
3855 } while (i++ < 10 && id == ~0);
3856
3857 if (id == ~0)
3858 dev_warn(&dev->dev, "Failed to return from FLR\n");
3859 else if (i > 1)
3860 dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3861 (i - 1) * 100);
3862}
3863
a60a2b73
CH
3864/**
3865 * pcie_has_flr - check if a device supports function level resets
3866 * @dev: device to check
3867 *
3868 * Returns true if the device advertises support for PCIe function level
3869 * resets.
3870 */
3871static bool pcie_has_flr(struct pci_dev *dev)
3775a209
CL
3872{
3873 u32 cap;
3874
f65fd1aa 3875 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
a60a2b73 3876 return false;
3775a209 3877
a60a2b73
CH
3878 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3879 return cap & PCI_EXP_DEVCAP_FLR;
3880}
3775a209 3881
a60a2b73
CH
3882/**
3883 * pcie_flr - initiate a PCIe function level reset
3884 * @dev: device to reset
3885 *
3886 * Initiate a function level reset on @dev. The caller should ensure the
3887 * device supports FLR before calling this function, e.g. by using the
3888 * pcie_has_flr() helper.
3889 */
3890void pcie_flr(struct pci_dev *dev)
3891{
3775a209 3892 if (!pci_wait_for_pending_transaction(dev))
bb383e28 3893 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
8c1c699f 3894
59875ae4 3895 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
5adecf81 3896 pci_flr_wait(dev);
8dd7f803 3897}
a60a2b73 3898EXPORT_SYMBOL_GPL(pcie_flr);
d91cdc74 3899
8c1c699f 3900static int pci_af_flr(struct pci_dev *dev, int probe)
1ca88797 3901{
8c1c699f 3902 int pos;
1ca88797
SY
3903 u8 cap;
3904
8c1c699f
YZ
3905 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3906 if (!pos)
1ca88797 3907 return -ENOTTY;
8c1c699f 3908
f65fd1aa
SN
3909 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3910 return -ENOTTY;
3911
8c1c699f 3912 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
1ca88797
SY
3913 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3914 return -ENOTTY;
3915
3916 if (probe)
3917 return 0;
3918
d066c946
AW
3919 /*
3920 * Wait for Transaction Pending bit to clear. A word-aligned test
3921 * is used, so we use the conrol offset rather than status and shift
3922 * the test bit to match.
3923 */
bb383e28 3924 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
d066c946 3925 PCI_AF_STATUS_TP << 8))
bb383e28 3926 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
5fe5db05 3927
8c1c699f 3928 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
5adecf81 3929 pci_flr_wait(dev);
1ca88797
SY
3930 return 0;
3931}
3932
83d74e03
RW
3933/**
3934 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3935 * @dev: Device to reset.
3936 * @probe: If set, only check if the device can be reset this way.
3937 *
3938 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3939 * unset, it will be reinitialized internally when going from PCI_D3hot to
3940 * PCI_D0. If that's the case and the device is not in a low-power state
3941 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3942 *
3943 * NOTE: This causes the caller to sleep for twice the device power transition
3944 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
f7625980 3945 * by default (i.e. unless the @dev's d3_delay field has a different value).
83d74e03
RW
3946 * Moreover, only devices in D0 can be reset by this function.
3947 */
f85876ba 3948static int pci_pm_reset(struct pci_dev *dev, int probe)
d91cdc74 3949{
f85876ba
YZ
3950 u16 csr;
3951
51e53738 3952 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
f85876ba 3953 return -ENOTTY;
d91cdc74 3954
f85876ba
YZ
3955 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3956 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3957 return -ENOTTY;
d91cdc74 3958
f85876ba
YZ
3959 if (probe)
3960 return 0;
1ca88797 3961
f85876ba
YZ
3962 if (dev->current_state != PCI_D0)
3963 return -EINVAL;
3964
3965 csr &= ~PCI_PM_CTRL_STATE_MASK;
3966 csr |= PCI_D3hot;
3967 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 3968 pci_dev_d3_sleep(dev);
f85876ba
YZ
3969
3970 csr &= ~PCI_PM_CTRL_STATE_MASK;
3971 csr |= PCI_D0;
3972 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 3973 pci_dev_d3_sleep(dev);
f85876ba
YZ
3974
3975 return 0;
3976}
3977
9e33002f 3978void pci_reset_secondary_bus(struct pci_dev *dev)
c12ff1df
YZ
3979{
3980 u16 ctrl;
64e8674f
AW
3981
3982 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3983 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3984 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
de0c548c
AW
3985 /*
3986 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
f7625980 3987 * this to 2ms to ensure that we meet the minimum requirement.
de0c548c
AW
3988 */
3989 msleep(2);
64e8674f
AW
3990
3991 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3992 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
de0c548c
AW
3993
3994 /*
3995 * Trhfa for conventional PCI is 2^25 clock cycles.
3996 * Assuming a minimum 33MHz clock this results in a 1s
3997 * delay before we can consider subordinate devices to
3998 * be re-initialized. PCIe has some ways to shorten this,
3999 * but we don't make use of them yet.
4000 */
4001 ssleep(1);
64e8674f 4002}
d92a208d 4003
9e33002f
GS
4004void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4005{
4006 pci_reset_secondary_bus(dev);
4007}
4008
d92a208d
GS
4009/**
4010 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4011 * @dev: Bridge device
4012 *
4013 * Use the bridge control register to assert reset on the secondary bus.
4014 * Devices on the secondary bus are left in power-on state.
4015 */
4016void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4017{
4018 pcibios_reset_secondary_bus(dev);
4019}
64e8674f
AW
4020EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4021
4022static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4023{
c12ff1df
YZ
4024 struct pci_dev *pdev;
4025
f331a859
AW
4026 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4027 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
c12ff1df
YZ
4028 return -ENOTTY;
4029
4030 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4031 if (pdev != dev)
4032 return -ENOTTY;
4033
4034 if (probe)
4035 return 0;
4036
64e8674f 4037 pci_reset_bridge_secondary_bus(dev->bus->self);
c12ff1df
YZ
4038
4039 return 0;
4040}
4041
608c3881
AW
4042static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4043{
4044 int rc = -ENOTTY;
4045
4046 if (!hotplug || !try_module_get(hotplug->ops->owner))
4047 return rc;
4048
4049 if (hotplug->ops->reset_slot)
4050 rc = hotplug->ops->reset_slot(hotplug, probe);
4051
4052 module_put(hotplug->ops->owner);
4053
4054 return rc;
4055}
4056
4057static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4058{
4059 struct pci_dev *pdev;
4060
f331a859
AW
4061 if (dev->subordinate || !dev->slot ||
4062 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
608c3881
AW
4063 return -ENOTTY;
4064
4065 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4066 if (pdev != dev && pdev->slot == dev->slot)
4067 return -ENOTTY;
4068
4069 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4070}
4071
977f857c 4072static int __pci_dev_reset(struct pci_dev *dev, int probe)
d91cdc74 4073{
8c1c699f
YZ
4074 int rc;
4075
4076 might_sleep();
4077
b9c3b266
DC
4078 rc = pci_dev_specific_reset(dev, probe);
4079 if (rc != -ENOTTY)
4080 goto done;
4081
a60a2b73
CH
4082 if (pcie_has_flr(dev)) {
4083 if (!probe)
4084 pcie_flr(dev);
4085 rc = 0;
8c1c699f 4086 goto done;
a60a2b73 4087 }
d91cdc74 4088
8c1c699f 4089 rc = pci_af_flr(dev, probe);
f85876ba
YZ
4090 if (rc != -ENOTTY)
4091 goto done;
4092
4093 rc = pci_pm_reset(dev, probe);
c12ff1df
YZ
4094 if (rc != -ENOTTY)
4095 goto done;
4096
608c3881
AW
4097 rc = pci_dev_reset_slot_function(dev, probe);
4098 if (rc != -ENOTTY)
4099 goto done;
4100
c12ff1df 4101 rc = pci_parent_bus_reset(dev, probe);
8c1c699f 4102done:
977f857c
KRW
4103 return rc;
4104}
4105
77cb985a
AW
4106static void pci_dev_lock(struct pci_dev *dev)
4107{
4108 pci_cfg_access_lock(dev);
4109 /* block PM suspend, driver probe, etc. */
4110 device_lock(&dev->dev);
4111}
4112
61cf16d8
AW
4113/* Return 1 on successful lock, 0 on contention */
4114static int pci_dev_trylock(struct pci_dev *dev)
4115{
4116 if (pci_cfg_access_trylock(dev)) {
4117 if (device_trylock(&dev->dev))
4118 return 1;
4119 pci_cfg_access_unlock(dev);
4120 }
4121
4122 return 0;
4123}
4124
77cb985a
AW
4125static void pci_dev_unlock(struct pci_dev *dev)
4126{
4127 device_unlock(&dev->dev);
4128 pci_cfg_access_unlock(dev);
4129}
4130
3ebe7f9f
KB
4131/**
4132 * pci_reset_notify - notify device driver of reset
4133 * @dev: device to be notified of reset
4134 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4135 * completed
4136 *
4137 * Must be called prior to device access being disabled and after device
4138 * access is restored.
4139 */
4140static void pci_reset_notify(struct pci_dev *dev, bool prepare)
4141{
4142 const struct pci_error_handlers *err_handler =
4143 dev->driver ? dev->driver->err_handler : NULL;
4144 if (err_handler && err_handler->reset_notify)
4145 err_handler->reset_notify(dev, prepare);
4146}
4147
77cb985a
AW
4148static void pci_dev_save_and_disable(struct pci_dev *dev)
4149{
3ebe7f9f
KB
4150 pci_reset_notify(dev, true);
4151
a6cbaade
AW
4152 /*
4153 * Wake-up device prior to save. PM registers default to D0 after
4154 * reset and a simple register restore doesn't reliably return
4155 * to a non-D0 state anyway.
4156 */
4157 pci_set_power_state(dev, PCI_D0);
4158
77cb985a
AW
4159 pci_save_state(dev);
4160 /*
4161 * Disable the device by clearing the Command register, except for
4162 * INTx-disable which is set. This not only disables MMIO and I/O port
4163 * BARs, but also prevents the device from being Bus Master, preventing
4164 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4165 * compliant devices, INTx-disable prevents legacy interrupts.
4166 */
4167 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4168}
4169
4170static void pci_dev_restore(struct pci_dev *dev)
4171{
4172 pci_restore_state(dev);
3ebe7f9f 4173 pci_reset_notify(dev, false);
77cb985a
AW
4174}
4175
977f857c
KRW
4176static int pci_dev_reset(struct pci_dev *dev, int probe)
4177{
4178 int rc;
4179
77cb985a
AW
4180 if (!probe)
4181 pci_dev_lock(dev);
977f857c
KRW
4182
4183 rc = __pci_dev_reset(dev, probe);
4184
77cb985a
AW
4185 if (!probe)
4186 pci_dev_unlock(dev);
4187
8c1c699f 4188 return rc;
d91cdc74 4189}
3ebe7f9f 4190
d91cdc74 4191/**
8c1c699f
YZ
4192 * __pci_reset_function - reset a PCI device function
4193 * @dev: PCI device to reset
d91cdc74
SY
4194 *
4195 * Some devices allow an individual function to be reset without affecting
4196 * other functions in the same device. The PCI device must be responsive
4197 * to PCI config space in order to use this function.
4198 *
4199 * The device function is presumed to be unused when this function is called.
4200 * Resetting the device will make the contents of PCI configuration space
4201 * random, so any caller of this must be prepared to reinitialise the
4202 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4203 * etc.
4204 *
8c1c699f 4205 * Returns 0 if the device function was successfully reset or negative if the
d91cdc74
SY
4206 * device doesn't support resetting a single function.
4207 */
8c1c699f 4208int __pci_reset_function(struct pci_dev *dev)
d91cdc74 4209{
8c1c699f 4210 return pci_dev_reset(dev, 0);
d91cdc74 4211}
8c1c699f 4212EXPORT_SYMBOL_GPL(__pci_reset_function);
8dd7f803 4213
6fbf9e7a
KRW
4214/**
4215 * __pci_reset_function_locked - reset a PCI device function while holding
4216 * the @dev mutex lock.
4217 * @dev: PCI device to reset
4218 *
4219 * Some devices allow an individual function to be reset without affecting
4220 * other functions in the same device. The PCI device must be responsive
4221 * to PCI config space in order to use this function.
4222 *
4223 * The device function is presumed to be unused and the caller is holding
4224 * the device mutex lock when this function is called.
4225 * Resetting the device will make the contents of PCI configuration space
4226 * random, so any caller of this must be prepared to reinitialise the
4227 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4228 * etc.
4229 *
4230 * Returns 0 if the device function was successfully reset or negative if the
4231 * device doesn't support resetting a single function.
4232 */
4233int __pci_reset_function_locked(struct pci_dev *dev)
4234{
977f857c 4235 return __pci_dev_reset(dev, 0);
6fbf9e7a
KRW
4236}
4237EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4238
711d5779
MT
4239/**
4240 * pci_probe_reset_function - check whether the device can be safely reset
4241 * @dev: PCI device to reset
4242 *
4243 * Some devices allow an individual function to be reset without affecting
4244 * other functions in the same device. The PCI device must be responsive
4245 * to PCI config space in order to use this function.
4246 *
4247 * Returns 0 if the device function can be reset or negative if the
4248 * device doesn't support resetting a single function.
4249 */
4250int pci_probe_reset_function(struct pci_dev *dev)
4251{
4252 return pci_dev_reset(dev, 1);
4253}
4254
8dd7f803 4255/**
8c1c699f
YZ
4256 * pci_reset_function - quiesce and reset a PCI device function
4257 * @dev: PCI device to reset
8dd7f803
SY
4258 *
4259 * Some devices allow an individual function to be reset without affecting
4260 * other functions in the same device. The PCI device must be responsive
4261 * to PCI config space in order to use this function.
4262 *
4263 * This function does not just reset the PCI portion of a device, but
4264 * clears all the state associated with the device. This function differs
8c1c699f 4265 * from __pci_reset_function in that it saves and restores device state
8dd7f803
SY
4266 * over the reset.
4267 *
8c1c699f 4268 * Returns 0 if the device function was successfully reset or negative if the
8dd7f803
SY
4269 * device doesn't support resetting a single function.
4270 */
4271int pci_reset_function(struct pci_dev *dev)
4272{
8c1c699f 4273 int rc;
8dd7f803 4274
8c1c699f
YZ
4275 rc = pci_dev_reset(dev, 1);
4276 if (rc)
4277 return rc;
8dd7f803 4278
77cb985a 4279 pci_dev_save_and_disable(dev);
8dd7f803 4280
8c1c699f 4281 rc = pci_dev_reset(dev, 0);
8dd7f803 4282
77cb985a 4283 pci_dev_restore(dev);
8dd7f803 4284
8c1c699f 4285 return rc;
8dd7f803
SY
4286}
4287EXPORT_SYMBOL_GPL(pci_reset_function);
4288
61cf16d8
AW
4289/**
4290 * pci_try_reset_function - quiesce and reset a PCI device function
4291 * @dev: PCI device to reset
4292 *
4293 * Same as above, except return -EAGAIN if unable to lock device.
4294 */
4295int pci_try_reset_function(struct pci_dev *dev)
4296{
4297 int rc;
4298
4299 rc = pci_dev_reset(dev, 1);
4300 if (rc)
4301 return rc;
4302
4303 pci_dev_save_and_disable(dev);
4304
4305 if (pci_dev_trylock(dev)) {
4306 rc = __pci_dev_reset(dev, 0);
4307 pci_dev_unlock(dev);
4308 } else
4309 rc = -EAGAIN;
4310
4311 pci_dev_restore(dev);
4312
4313 return rc;
4314}
4315EXPORT_SYMBOL_GPL(pci_try_reset_function);
4316
f331a859
AW
4317/* Do any devices on or below this bus prevent a bus reset? */
4318static bool pci_bus_resetable(struct pci_bus *bus)
4319{
4320 struct pci_dev *dev;
4321
4322 list_for_each_entry(dev, &bus->devices, bus_list) {
4323 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4324 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4325 return false;
4326 }
4327
4328 return true;
4329}
4330
090a3c53
AW
4331/* Lock devices from the top of the tree down */
4332static void pci_bus_lock(struct pci_bus *bus)
4333{
4334 struct pci_dev *dev;
4335
4336 list_for_each_entry(dev, &bus->devices, bus_list) {
4337 pci_dev_lock(dev);
4338 if (dev->subordinate)
4339 pci_bus_lock(dev->subordinate);
4340 }
4341}
4342
4343/* Unlock devices from the bottom of the tree up */
4344static void pci_bus_unlock(struct pci_bus *bus)
4345{
4346 struct pci_dev *dev;
4347
4348 list_for_each_entry(dev, &bus->devices, bus_list) {
4349 if (dev->subordinate)
4350 pci_bus_unlock(dev->subordinate);
4351 pci_dev_unlock(dev);
4352 }
4353}
4354
61cf16d8
AW
4355/* Return 1 on successful lock, 0 on contention */
4356static int pci_bus_trylock(struct pci_bus *bus)
4357{
4358 struct pci_dev *dev;
4359
4360 list_for_each_entry(dev, &bus->devices, bus_list) {
4361 if (!pci_dev_trylock(dev))
4362 goto unlock;
4363 if (dev->subordinate) {
4364 if (!pci_bus_trylock(dev->subordinate)) {
4365 pci_dev_unlock(dev);
4366 goto unlock;
4367 }
4368 }
4369 }
4370 return 1;
4371
4372unlock:
4373 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4374 if (dev->subordinate)
4375 pci_bus_unlock(dev->subordinate);
4376 pci_dev_unlock(dev);
4377 }
4378 return 0;
4379}
4380
f331a859
AW
4381/* Do any devices on or below this slot prevent a bus reset? */
4382static bool pci_slot_resetable(struct pci_slot *slot)
4383{
4384 struct pci_dev *dev;
4385
4386 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4387 if (!dev->slot || dev->slot != slot)
4388 continue;
4389 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4390 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4391 return false;
4392 }
4393
4394 return true;
4395}
4396
090a3c53
AW
4397/* Lock devices from the top of the tree down */
4398static void pci_slot_lock(struct pci_slot *slot)
4399{
4400 struct pci_dev *dev;
4401
4402 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4403 if (!dev->slot || dev->slot != slot)
4404 continue;
4405 pci_dev_lock(dev);
4406 if (dev->subordinate)
4407 pci_bus_lock(dev->subordinate);
4408 }
4409}
4410
4411/* Unlock devices from the bottom of the tree up */
4412static void pci_slot_unlock(struct pci_slot *slot)
4413{
4414 struct pci_dev *dev;
4415
4416 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4417 if (!dev->slot || dev->slot != slot)
4418 continue;
4419 if (dev->subordinate)
4420 pci_bus_unlock(dev->subordinate);
4421 pci_dev_unlock(dev);
4422 }
4423}
4424
61cf16d8
AW
4425/* Return 1 on successful lock, 0 on contention */
4426static int pci_slot_trylock(struct pci_slot *slot)
4427{
4428 struct pci_dev *dev;
4429
4430 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4431 if (!dev->slot || dev->slot != slot)
4432 continue;
4433 if (!pci_dev_trylock(dev))
4434 goto unlock;
4435 if (dev->subordinate) {
4436 if (!pci_bus_trylock(dev->subordinate)) {
4437 pci_dev_unlock(dev);
4438 goto unlock;
4439 }
4440 }
4441 }
4442 return 1;
4443
4444unlock:
4445 list_for_each_entry_continue_reverse(dev,
4446 &slot->bus->devices, bus_list) {
4447 if (!dev->slot || dev->slot != slot)
4448 continue;
4449 if (dev->subordinate)
4450 pci_bus_unlock(dev->subordinate);
4451 pci_dev_unlock(dev);
4452 }
4453 return 0;
4454}
4455
090a3c53
AW
4456/* Save and disable devices from the top of the tree down */
4457static void pci_bus_save_and_disable(struct pci_bus *bus)
4458{
4459 struct pci_dev *dev;
4460
4461 list_for_each_entry(dev, &bus->devices, bus_list) {
4462 pci_dev_save_and_disable(dev);
4463 if (dev->subordinate)
4464 pci_bus_save_and_disable(dev->subordinate);
4465 }
4466}
4467
4468/*
4469 * Restore devices from top of the tree down - parent bridges need to be
4470 * restored before we can get to subordinate devices.
4471 */
4472static void pci_bus_restore(struct pci_bus *bus)
4473{
4474 struct pci_dev *dev;
4475
4476 list_for_each_entry(dev, &bus->devices, bus_list) {
4477 pci_dev_restore(dev);
4478 if (dev->subordinate)
4479 pci_bus_restore(dev->subordinate);
4480 }
4481}
4482
4483/* Save and disable devices from the top of the tree down */
4484static void pci_slot_save_and_disable(struct pci_slot *slot)
4485{
4486 struct pci_dev *dev;
4487
4488 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4489 if (!dev->slot || dev->slot != slot)
4490 continue;
4491 pci_dev_save_and_disable(dev);
4492 if (dev->subordinate)
4493 pci_bus_save_and_disable(dev->subordinate);
4494 }
4495}
4496
4497/*
4498 * Restore devices from top of the tree down - parent bridges need to be
4499 * restored before we can get to subordinate devices.
4500 */
4501static void pci_slot_restore(struct pci_slot *slot)
4502{
4503 struct pci_dev *dev;
4504
4505 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4506 if (!dev->slot || dev->slot != slot)
4507 continue;
4508 pci_dev_restore(dev);
4509 if (dev->subordinate)
4510 pci_bus_restore(dev->subordinate);
4511 }
4512}
4513
4514static int pci_slot_reset(struct pci_slot *slot, int probe)
4515{
4516 int rc;
4517
f331a859 4518 if (!slot || !pci_slot_resetable(slot))
090a3c53
AW
4519 return -ENOTTY;
4520
4521 if (!probe)
4522 pci_slot_lock(slot);
4523
4524 might_sleep();
4525
4526 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4527
4528 if (!probe)
4529 pci_slot_unlock(slot);
4530
4531 return rc;
4532}
4533
9a3d2b9b
AW
4534/**
4535 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4536 * @slot: PCI slot to probe
4537 *
4538 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4539 */
4540int pci_probe_reset_slot(struct pci_slot *slot)
4541{
4542 return pci_slot_reset(slot, 1);
4543}
4544EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4545
090a3c53
AW
4546/**
4547 * pci_reset_slot - reset a PCI slot
4548 * @slot: PCI slot to reset
4549 *
4550 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4551 * independent of other slots. For instance, some slots may support slot power
4552 * control. In the case of a 1:1 bus to slot architecture, this function may
4553 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4554 * Generally a slot reset should be attempted before a bus reset. All of the
4555 * function of the slot and any subordinate buses behind the slot are reset
4556 * through this function. PCI config space of all devices in the slot and
4557 * behind the slot is saved before and restored after reset.
4558 *
4559 * Return 0 on success, non-zero on error.
4560 */
4561int pci_reset_slot(struct pci_slot *slot)
4562{
4563 int rc;
4564
4565 rc = pci_slot_reset(slot, 1);
4566 if (rc)
4567 return rc;
4568
4569 pci_slot_save_and_disable(slot);
4570
4571 rc = pci_slot_reset(slot, 0);
4572
4573 pci_slot_restore(slot);
4574
4575 return rc;
4576}
4577EXPORT_SYMBOL_GPL(pci_reset_slot);
4578
61cf16d8
AW
4579/**
4580 * pci_try_reset_slot - Try to reset a PCI slot
4581 * @slot: PCI slot to reset
4582 *
4583 * Same as above except return -EAGAIN if the slot cannot be locked
4584 */
4585int pci_try_reset_slot(struct pci_slot *slot)
4586{
4587 int rc;
4588
4589 rc = pci_slot_reset(slot, 1);
4590 if (rc)
4591 return rc;
4592
4593 pci_slot_save_and_disable(slot);
4594
4595 if (pci_slot_trylock(slot)) {
4596 might_sleep();
4597 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4598 pci_slot_unlock(slot);
4599 } else
4600 rc = -EAGAIN;
4601
4602 pci_slot_restore(slot);
4603
4604 return rc;
4605}
4606EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4607
090a3c53
AW
4608static int pci_bus_reset(struct pci_bus *bus, int probe)
4609{
f331a859 4610 if (!bus->self || !pci_bus_resetable(bus))
090a3c53
AW
4611 return -ENOTTY;
4612
4613 if (probe)
4614 return 0;
4615
4616 pci_bus_lock(bus);
4617
4618 might_sleep();
4619
4620 pci_reset_bridge_secondary_bus(bus->self);
4621
4622 pci_bus_unlock(bus);
4623
4624 return 0;
4625}
4626
9a3d2b9b
AW
4627/**
4628 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4629 * @bus: PCI bus to probe
4630 *
4631 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4632 */
4633int pci_probe_reset_bus(struct pci_bus *bus)
4634{
4635 return pci_bus_reset(bus, 1);
4636}
4637EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4638
090a3c53
AW
4639/**
4640 * pci_reset_bus - reset a PCI bus
4641 * @bus: top level PCI bus to reset
4642 *
4643 * Do a bus reset on the given bus and any subordinate buses, saving
4644 * and restoring state of all devices.
4645 *
4646 * Return 0 on success, non-zero on error.
4647 */
4648int pci_reset_bus(struct pci_bus *bus)
4649{
4650 int rc;
4651
4652 rc = pci_bus_reset(bus, 1);
4653 if (rc)
4654 return rc;
4655
4656 pci_bus_save_and_disable(bus);
4657
4658 rc = pci_bus_reset(bus, 0);
4659
4660 pci_bus_restore(bus);
4661
4662 return rc;
4663}
4664EXPORT_SYMBOL_GPL(pci_reset_bus);
4665
61cf16d8
AW
4666/**
4667 * pci_try_reset_bus - Try to reset a PCI bus
4668 * @bus: top level PCI bus to reset
4669 *
4670 * Same as above except return -EAGAIN if the bus cannot be locked
4671 */
4672int pci_try_reset_bus(struct pci_bus *bus)
4673{
4674 int rc;
4675
4676 rc = pci_bus_reset(bus, 1);
4677 if (rc)
4678 return rc;
4679
4680 pci_bus_save_and_disable(bus);
4681
4682 if (pci_bus_trylock(bus)) {
4683 might_sleep();
4684 pci_reset_bridge_secondary_bus(bus->self);
4685 pci_bus_unlock(bus);
4686 } else
4687 rc = -EAGAIN;
4688
4689 pci_bus_restore(bus);
4690
4691 return rc;
4692}
4693EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4694
d556ad4b
PO
4695/**
4696 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4697 * @dev: PCI device to query
4698 *
4699 * Returns mmrbc: maximum designed memory read count in bytes
4700 * or appropriate error value.
4701 */
4702int pcix_get_max_mmrbc(struct pci_dev *dev)
4703{
7c9e2b1c 4704 int cap;
d556ad4b
PO
4705 u32 stat;
4706
4707 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4708 if (!cap)
4709 return -EINVAL;
4710
7c9e2b1c 4711 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
d556ad4b
PO
4712 return -EINVAL;
4713
25daeb55 4714 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
d556ad4b
PO
4715}
4716EXPORT_SYMBOL(pcix_get_max_mmrbc);
4717
4718/**
4719 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4720 * @dev: PCI device to query
4721 *
4722 * Returns mmrbc: maximum memory read count in bytes
4723 * or appropriate error value.
4724 */
4725int pcix_get_mmrbc(struct pci_dev *dev)
4726{
7c9e2b1c 4727 int cap;
bdc2bda7 4728 u16 cmd;
d556ad4b
PO
4729
4730 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4731 if (!cap)
4732 return -EINVAL;
4733
7c9e2b1c
DN
4734 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4735 return -EINVAL;
d556ad4b 4736
7c9e2b1c 4737 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
d556ad4b
PO
4738}
4739EXPORT_SYMBOL(pcix_get_mmrbc);
4740
4741/**
4742 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4743 * @dev: PCI device to query
4744 * @mmrbc: maximum memory read count in bytes
4745 * valid values are 512, 1024, 2048, 4096
4746 *
4747 * If possible sets maximum memory read byte count, some bridges have erratas
4748 * that prevent this.
4749 */
4750int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4751{
7c9e2b1c 4752 int cap;
bdc2bda7
DN
4753 u32 stat, v, o;
4754 u16 cmd;
d556ad4b 4755
229f5afd 4756 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
7c9e2b1c 4757 return -EINVAL;
d556ad4b
PO
4758
4759 v = ffs(mmrbc) - 10;
4760
4761 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4762 if (!cap)
7c9e2b1c 4763 return -EINVAL;
d556ad4b 4764
7c9e2b1c
DN
4765 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4766 return -EINVAL;
d556ad4b
PO
4767
4768 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4769 return -E2BIG;
4770
7c9e2b1c
DN
4771 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4772 return -EINVAL;
d556ad4b
PO
4773
4774 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4775 if (o != v) {
809a3bf9 4776 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
d556ad4b
PO
4777 return -EIO;
4778
4779 cmd &= ~PCI_X_CMD_MAX_READ;
4780 cmd |= v << 2;
7c9e2b1c
DN
4781 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4782 return -EIO;
d556ad4b 4783 }
7c9e2b1c 4784 return 0;
d556ad4b
PO
4785}
4786EXPORT_SYMBOL(pcix_set_mmrbc);
4787
4788/**
4789 * pcie_get_readrq - get PCI Express read request size
4790 * @dev: PCI device to query
4791 *
4792 * Returns maximum memory read request in bytes
4793 * or appropriate error value.
4794 */
4795int pcie_get_readrq(struct pci_dev *dev)
4796{
d556ad4b
PO
4797 u16 ctl;
4798
59875ae4 4799 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
d556ad4b 4800
59875ae4 4801 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
d556ad4b
PO
4802}
4803EXPORT_SYMBOL(pcie_get_readrq);
4804
4805/**
4806 * pcie_set_readrq - set PCI Express maximum memory read request
4807 * @dev: PCI device to query
42e61f4a 4808 * @rq: maximum memory read count in bytes
d556ad4b
PO
4809 * valid values are 128, 256, 512, 1024, 2048, 4096
4810 *
c9b378c7 4811 * If possible sets maximum memory read request in bytes
d556ad4b
PO
4812 */
4813int pcie_set_readrq(struct pci_dev *dev, int rq)
4814{
59875ae4 4815 u16 v;
d556ad4b 4816
229f5afd 4817 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
59875ae4 4818 return -EINVAL;
d556ad4b 4819
a1c473aa
BH
4820 /*
4821 * If using the "performance" PCIe config, we clamp the
4822 * read rq size to the max packet size to prevent the
4823 * host bridge generating requests larger than we can
4824 * cope with
4825 */
4826 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4827 int mps = pcie_get_mps(dev);
4828
a1c473aa
BH
4829 if (mps < rq)
4830 rq = mps;
4831 }
4832
4833 v = (ffs(rq) - 8) << 12;
d556ad4b 4834
59875ae4
JL
4835 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4836 PCI_EXP_DEVCTL_READRQ, v);
d556ad4b
PO
4837}
4838EXPORT_SYMBOL(pcie_set_readrq);
4839
b03e7495
JM
4840/**
4841 * pcie_get_mps - get PCI Express maximum payload size
4842 * @dev: PCI device to query
4843 *
4844 * Returns maximum payload size in bytes
b03e7495
JM
4845 */
4846int pcie_get_mps(struct pci_dev *dev)
4847{
b03e7495
JM
4848 u16 ctl;
4849
59875ae4 4850 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
b03e7495 4851
59875ae4 4852 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
b03e7495 4853}
f1c66c46 4854EXPORT_SYMBOL(pcie_get_mps);
b03e7495
JM
4855
4856/**
4857 * pcie_set_mps - set PCI Express maximum payload size
4858 * @dev: PCI device to query
47c08f31 4859 * @mps: maximum payload size in bytes
b03e7495
JM
4860 * valid values are 128, 256, 512, 1024, 2048, 4096
4861 *
4862 * If possible sets maximum payload size
4863 */
4864int pcie_set_mps(struct pci_dev *dev, int mps)
4865{
59875ae4 4866 u16 v;
b03e7495
JM
4867
4868 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
59875ae4 4869 return -EINVAL;
b03e7495
JM
4870
4871 v = ffs(mps) - 8;
f7625980 4872 if (v > dev->pcie_mpss)
59875ae4 4873 return -EINVAL;
b03e7495
JM
4874 v <<= 5;
4875
59875ae4
JL
4876 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4877 PCI_EXP_DEVCTL_PAYLOAD, v);
b03e7495 4878}
f1c66c46 4879EXPORT_SYMBOL(pcie_set_mps);
b03e7495 4880
81377c8d
JK
4881/**
4882 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4883 * @dev: PCI device to query
4884 * @speed: storage for minimum speed
4885 * @width: storage for minimum width
4886 *
4887 * This function will walk up the PCI device chain and determine the minimum
4888 * link width and speed of the device.
4889 */
4890int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4891 enum pcie_link_width *width)
4892{
4893 int ret;
4894
4895 *speed = PCI_SPEED_UNKNOWN;
4896 *width = PCIE_LNK_WIDTH_UNKNOWN;
4897
4898 while (dev) {
4899 u16 lnksta;
4900 enum pci_bus_speed next_speed;
4901 enum pcie_link_width next_width;
4902
4903 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4904 if (ret)
4905 return ret;
4906
4907 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4908 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4909 PCI_EXP_LNKSTA_NLW_SHIFT;
4910
4911 if (next_speed < *speed)
4912 *speed = next_speed;
4913
4914 if (next_width < *width)
4915 *width = next_width;
4916
4917 dev = dev->bus->self;
4918 }
4919
4920 return 0;
4921}
4922EXPORT_SYMBOL(pcie_get_minimum_link);
4923
c87deff7
HS
4924/**
4925 * pci_select_bars - Make BAR mask from the type of resource
f95d882d 4926 * @dev: the PCI device for which BAR mask is made
c87deff7
HS
4927 * @flags: resource type mask to be selected
4928 *
4929 * This helper routine makes bar mask from the type of resource.
4930 */
4931int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4932{
4933 int i, bars = 0;
4934 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4935 if (pci_resource_flags(dev, i) & flags)
4936 bars |= (1 << i);
4937 return bars;
4938}
b7fe9434 4939EXPORT_SYMBOL(pci_select_bars);
c87deff7 4940
95a8b6ef
MT
4941/* Some architectures require additional programming to enable VGA */
4942static arch_set_vga_state_t arch_set_vga_state;
4943
4944void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4945{
4946 arch_set_vga_state = func; /* NULL disables */
4947}
4948
4949static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3c78bc61 4950 unsigned int command_bits, u32 flags)
95a8b6ef
MT
4951{
4952 if (arch_set_vga_state)
4953 return arch_set_vga_state(dev, decode, command_bits,
7ad35cf2 4954 flags);
95a8b6ef
MT
4955 return 0;
4956}
4957
deb2d2ec
BH
4958/**
4959 * pci_set_vga_state - set VGA decode state on device and parents if requested
19eea630
RD
4960 * @dev: the PCI device
4961 * @decode: true = enable decoding, false = disable decoding
4962 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3f37d622 4963 * @flags: traverse ancestors and change bridges
3448a19d 4964 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
deb2d2ec
BH
4965 */
4966int pci_set_vga_state(struct pci_dev *dev, bool decode,
3448a19d 4967 unsigned int command_bits, u32 flags)
deb2d2ec
BH
4968{
4969 struct pci_bus *bus;
4970 struct pci_dev *bridge;
4971 u16 cmd;
95a8b6ef 4972 int rc;
deb2d2ec 4973
67ebd814 4974 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
deb2d2ec 4975
95a8b6ef 4976 /* ARCH specific VGA enables */
3448a19d 4977 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
95a8b6ef
MT
4978 if (rc)
4979 return rc;
4980
3448a19d
DA
4981 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4982 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4983 if (decode == true)
4984 cmd |= command_bits;
4985 else
4986 cmd &= ~command_bits;
4987 pci_write_config_word(dev, PCI_COMMAND, cmd);
4988 }
deb2d2ec 4989
3448a19d 4990 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
deb2d2ec
BH
4991 return 0;
4992
4993 bus = dev->bus;
4994 while (bus) {
4995 bridge = bus->self;
4996 if (bridge) {
4997 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4998 &cmd);
4999 if (decode == true)
5000 cmd |= PCI_BRIDGE_CTL_VGA;
5001 else
5002 cmd &= ~PCI_BRIDGE_CTL_VGA;
5003 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5004 cmd);
5005 }
5006 bus = bus->parent;
5007 }
5008 return 0;
5009}
5010
f0af9593
BH
5011/**
5012 * pci_add_dma_alias - Add a DMA devfn alias for a device
5013 * @dev: the PCI device for which alias is added
5014 * @devfn: alias slot and function
5015 *
5016 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5017 * It should be called early, preferably as PCI fixup header quirk.
5018 */
5019void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5020{
338c3149
JL
5021 if (!dev->dma_alias_mask)
5022 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5023 sizeof(long), GFP_KERNEL);
5024 if (!dev->dma_alias_mask) {
5025 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5026 return;
5027 }
5028
5029 set_bit(devfn, dev->dma_alias_mask);
48c83080
BH
5030 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5031 PCI_SLOT(devfn), PCI_FUNC(devfn));
f0af9593
BH
5032}
5033
338c3149
JL
5034bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5035{
5036 return (dev1->dma_alias_mask &&
5037 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5038 (dev2->dma_alias_mask &&
5039 test_bit(dev1->devfn, dev2->dma_alias_mask));
5040}
5041
8496e85c
RW
5042bool pci_device_is_present(struct pci_dev *pdev)
5043{
5044 u32 v;
5045
fe2bd75b
KB
5046 if (pci_dev_is_disconnected(pdev))
5047 return false;
8496e85c
RW
5048 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5049}
5050EXPORT_SYMBOL_GPL(pci_device_is_present);
5051
08249651
RW
5052void pci_ignore_hotplug(struct pci_dev *dev)
5053{
5054 struct pci_dev *bridge = dev->bus->self;
5055
5056 dev->ignore_hotplug = 1;
5057 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5058 if (bridge)
5059 bridge->ignore_hotplug = 1;
5060}
5061EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5062
0a701aa6
YX
5063resource_size_t __weak pcibios_default_alignment(void)
5064{
5065 return 0;
5066}
5067
32a9a682
YS
5068#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5069static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
e9d1e492 5070static DEFINE_SPINLOCK(resource_alignment_lock);
32a9a682
YS
5071
5072/**
5073 * pci_specified_resource_alignment - get resource alignment specified by user.
5074 * @dev: the PCI device to get
e3adec72 5075 * @resize: whether or not to change resources' size when reassigning alignment
32a9a682
YS
5076 *
5077 * RETURNS: Resource alignment if it is specified.
5078 * Zero if it is not specified.
5079 */
e3adec72
YX
5080static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5081 bool *resize)
32a9a682
YS
5082{
5083 int seg, bus, slot, func, align_order, count;
644a544f 5084 unsigned short vendor, device, subsystem_vendor, subsystem_device;
0a701aa6 5085 resource_size_t align = pcibios_default_alignment();
32a9a682
YS
5086 char *p;
5087
5088 spin_lock(&resource_alignment_lock);
5089 p = resource_alignment_param;
0a701aa6 5090 if (!*p && !align)
f0b99f70
YX
5091 goto out;
5092 if (pci_has_flag(PCI_PROBE_ONLY)) {
0a701aa6 5093 align = 0;
f0b99f70
YX
5094 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5095 goto out;
5096 }
5097
32a9a682
YS
5098 while (*p) {
5099 count = 0;
5100 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5101 p[count] == '@') {
5102 p += count + 1;
5103 } else {
5104 align_order = -1;
5105 }
644a544f
KMEE
5106 if (strncmp(p, "pci:", 4) == 0) {
5107 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5108 p += 4;
5109 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5110 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5111 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5112 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5113 p);
5114 break;
5115 }
5116 subsystem_vendor = subsystem_device = 0;
5117 }
5118 p += count;
5119 if ((!vendor || (vendor == dev->vendor)) &&
5120 (!device || (device == dev->device)) &&
5121 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5122 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
e3adec72 5123 *resize = true;
644a544f
KMEE
5124 if (align_order == -1)
5125 align = PAGE_SIZE;
5126 else
5127 align = 1 << align_order;
5128 /* Found */
32a9a682
YS
5129 break;
5130 }
5131 }
644a544f
KMEE
5132 else {
5133 if (sscanf(p, "%x:%x:%x.%x%n",
5134 &seg, &bus, &slot, &func, &count) != 4) {
5135 seg = 0;
5136 if (sscanf(p, "%x:%x.%x%n",
5137 &bus, &slot, &func, &count) != 3) {
5138 /* Invalid format */
5139 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5140 p);
5141 break;
5142 }
5143 }
5144 p += count;
5145 if (seg == pci_domain_nr(dev->bus) &&
5146 bus == dev->bus->number &&
5147 slot == PCI_SLOT(dev->devfn) &&
5148 func == PCI_FUNC(dev->devfn)) {
e3adec72 5149 *resize = true;
644a544f
KMEE
5150 if (align_order == -1)
5151 align = PAGE_SIZE;
5152 else
5153 align = 1 << align_order;
5154 /* Found */
5155 break;
5156 }
32a9a682
YS
5157 }
5158 if (*p != ';' && *p != ',') {
5159 /* End of param or invalid format */
5160 break;
5161 }
5162 p++;
5163 }
f0b99f70 5164out:
32a9a682
YS
5165 spin_unlock(&resource_alignment_lock);
5166 return align;
5167}
5168
81a5e70e 5169static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
e3adec72 5170 resource_size_t align, bool resize)
81a5e70e
BH
5171{
5172 struct resource *r = &dev->resource[bar];
5173 resource_size_t size;
5174
5175 if (!(r->flags & IORESOURCE_MEM))
5176 return;
5177
5178 if (r->flags & IORESOURCE_PCI_FIXED) {
5179 dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5180 bar, r, (unsigned long long)align);
5181 return;
5182 }
5183
5184 size = resource_size(r);
0dde1c08
BH
5185 if (size >= align)
5186 return;
81a5e70e 5187
0dde1c08 5188 /*
e3adec72
YX
5189 * Increase the alignment of the resource. There are two ways we
5190 * can do this:
0dde1c08 5191 *
e3adec72
YX
5192 * 1) Increase the size of the resource. BARs are aligned on their
5193 * size, so when we reallocate space for this resource, we'll
5194 * allocate it with the larger alignment. This also prevents
5195 * assignment of any other BARs inside the alignment region, so
5196 * if we're requesting page alignment, this means no other BARs
5197 * will share the page.
5198 *
5199 * The disadvantage is that this makes the resource larger than
5200 * the hardware BAR, which may break drivers that compute things
5201 * based on the resource size, e.g., to find registers at a
5202 * fixed offset before the end of the BAR.
5203 *
5204 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5205 * set r->start to the desired alignment. By itself this
5206 * doesn't prevent other BARs being put inside the alignment
5207 * region, but if we realign *every* resource of every device in
5208 * the system, none of them will share an alignment region.
5209 *
5210 * When the user has requested alignment for only some devices via
5211 * the "pci=resource_alignment" argument, "resize" is true and we
5212 * use the first method. Otherwise we assume we're aligning all
5213 * devices and we use the second.
0dde1c08 5214 */
e3adec72 5215
0dde1c08
BH
5216 dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n",
5217 bar, r, (unsigned long long)align);
81a5e70e 5218
e3adec72
YX
5219 if (resize) {
5220 r->start = 0;
5221 r->end = align - 1;
5222 } else {
5223 r->flags &= ~IORESOURCE_SIZEALIGN;
5224 r->flags |= IORESOURCE_STARTALIGN;
5225 r->start = align;
5226 r->end = r->start + size - 1;
5227 }
0dde1c08 5228 r->flags |= IORESOURCE_UNSET;
81a5e70e
BH
5229}
5230
2069ecfb
YL
5231/*
5232 * This function disables memory decoding and releases memory resources
5233 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5234 * It also rounds up size to specified alignment.
5235 * Later on, the kernel will assign page-aligned memory resource back
5236 * to the device.
5237 */
5238void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5239{
5240 int i;
5241 struct resource *r;
81a5e70e 5242 resource_size_t align;
2069ecfb 5243 u16 command;
e3adec72 5244 bool resize = false;
2069ecfb 5245
62d9a78f
YX
5246 /*
5247 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5248 * 3.4.1.11. Their resources are allocated from the space
5249 * described by the VF BARx register in the PF's SR-IOV capability.
5250 * We can't influence their alignment here.
5251 */
5252 if (dev->is_virtfn)
5253 return;
5254
10c463a7 5255 /* check if specified PCI is target device to reassign */
e3adec72 5256 align = pci_specified_resource_alignment(dev, &resize);
10c463a7 5257 if (!align)
2069ecfb
YL
5258 return;
5259
5260 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5261 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5262 dev_warn(&dev->dev,
5263 "Can't reassign resources to host bridge.\n");
5264 return;
5265 }
5266
5267 dev_info(&dev->dev,
5268 "Disabling memory decoding and releasing memory resources.\n");
5269 pci_read_config_word(dev, PCI_COMMAND, &command);
5270 command &= ~PCI_COMMAND_MEMORY;
5271 pci_write_config_word(dev, PCI_COMMAND, command);
5272
81a5e70e 5273 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
e3adec72 5274 pci_request_resource_alignment(dev, i, align, resize);
f0b99f70 5275
81a5e70e
BH
5276 /*
5277 * Need to disable bridge's resource window,
2069ecfb
YL
5278 * to enable the kernel to reassign new resource
5279 * window later on.
5280 */
5281 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5282 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5283 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5284 r = &dev->resource[i];
5285 if (!(r->flags & IORESOURCE_MEM))
5286 continue;
bd064f0a 5287 r->flags |= IORESOURCE_UNSET;
2069ecfb
YL
5288 r->end = resource_size(r) - 1;
5289 r->start = 0;
5290 }
5291 pci_disable_bridge_window(dev);
5292 }
5293}
5294
9738abed 5295static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
32a9a682
YS
5296{
5297 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5298 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5299 spin_lock(&resource_alignment_lock);
5300 strncpy(resource_alignment_param, buf, count);
5301 resource_alignment_param[count] = '\0';
5302 spin_unlock(&resource_alignment_lock);
5303 return count;
5304}
5305
9738abed 5306static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
32a9a682
YS
5307{
5308 size_t count;
5309 spin_lock(&resource_alignment_lock);
5310 count = snprintf(buf, size, "%s", resource_alignment_param);
5311 spin_unlock(&resource_alignment_lock);
5312 return count;
5313}
5314
5315static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5316{
5317 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5318}
5319
5320static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5321 const char *buf, size_t count)
5322{
5323 return pci_set_resource_alignment_param(buf, count);
5324}
5325
21751a9a 5326static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
32a9a682
YS
5327 pci_resource_alignment_store);
5328
5329static int __init pci_resource_alignment_sysfs_init(void)
5330{
5331 return bus_create_file(&pci_bus_type,
5332 &bus_attr_resource_alignment);
5333}
32a9a682
YS
5334late_initcall(pci_resource_alignment_sysfs_init);
5335
15856ad5 5336static void pci_no_domains(void)
32a2eea7
JG
5337{
5338#ifdef CONFIG_PCI_DOMAINS
5339 pci_domains_supported = 0;
5340#endif
5341}
5342
41e5c0f8
LD
5343#ifdef CONFIG_PCI_DOMAINS
5344static atomic_t __domain_nr = ATOMIC_INIT(-1);
5345
5346int pci_get_new_domain_nr(void)
5347{
5348 return atomic_inc_return(&__domain_nr);
5349}
7c674700
LP
5350
5351#ifdef CONFIG_PCI_DOMAINS_GENERIC
1a4f93f7 5352static int of_pci_bus_find_domain_nr(struct device *parent)
7c674700
LP
5353{
5354 static int use_dt_domains = -1;
54c6e2dd 5355 int domain = -1;
7c674700 5356
54c6e2dd
KHC
5357 if (parent)
5358 domain = of_get_pci_domain_nr(parent->of_node);
7c674700
LP
5359 /*
5360 * Check DT domain and use_dt_domains values.
5361 *
5362 * If DT domain property is valid (domain >= 0) and
5363 * use_dt_domains != 0, the DT assignment is valid since this means
5364 * we have not previously allocated a domain number by using
5365 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5366 * 1, to indicate that we have just assigned a domain number from
5367 * DT.
5368 *
5369 * If DT domain property value is not valid (ie domain < 0), and we
5370 * have not previously assigned a domain number from DT
5371 * (use_dt_domains != 1) we should assign a domain number by
5372 * using the:
5373 *
5374 * pci_get_new_domain_nr()
5375 *
5376 * API and update the use_dt_domains value to keep track of method we
5377 * are using to assign domain numbers (use_dt_domains = 0).
5378 *
5379 * All other combinations imply we have a platform that is trying
5380 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5381 * which is a recipe for domain mishandling and it is prevented by
5382 * invalidating the domain value (domain = -1) and printing a
5383 * corresponding error.
5384 */
5385 if (domain >= 0 && use_dt_domains) {
5386 use_dt_domains = 1;
5387 } else if (domain < 0 && use_dt_domains != 1) {
5388 use_dt_domains = 0;
5389 domain = pci_get_new_domain_nr();
5390 } else {
5391 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5392 parent->of_node->full_name);
5393 domain = -1;
5394 }
5395
9c7cb891 5396 return domain;
7c674700 5397}
1a4f93f7
TN
5398
5399int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5400{
2ab51dde
TN
5401 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5402 acpi_pci_bus_find_domain_nr(bus);
7c674700
LP
5403}
5404#endif
41e5c0f8
LD
5405#endif
5406
0ef5f8f6 5407/**
642c92da 5408 * pci_ext_cfg_avail - can we access extended PCI config space?
0ef5f8f6
AP
5409 *
5410 * Returns 1 if we can access PCI extended config space (offsets
5411 * greater than 0xff). This is the default implementation. Architecture
5412 * implementations can override this.
5413 */
642c92da 5414int __weak pci_ext_cfg_avail(void)
0ef5f8f6
AP
5415{
5416 return 1;
5417}
5418
2d1c8618
BH
5419void __weak pci_fixup_cardbus(struct pci_bus *bus)
5420{
5421}
5422EXPORT_SYMBOL(pci_fixup_cardbus);
5423
ad04d31e 5424static int __init pci_setup(char *str)
1da177e4
LT
5425{
5426 while (str) {
5427 char *k = strchr(str, ',');
5428 if (k)
5429 *k++ = 0;
5430 if (*str && (str = pcibios_setup(str)) && *str) {
309e57df
MW
5431 if (!strcmp(str, "nomsi")) {
5432 pci_no_msi();
7f785763
RD
5433 } else if (!strcmp(str, "noaer")) {
5434 pci_no_aer();
b55438fd
YL
5435 } else if (!strncmp(str, "realloc=", 8)) {
5436 pci_realloc_get_opt(str + 8);
f483d392 5437 } else if (!strncmp(str, "realloc", 7)) {
b55438fd 5438 pci_realloc_get_opt("on");
32a2eea7
JG
5439 } else if (!strcmp(str, "nodomains")) {
5440 pci_no_domains();
6748dcc2
RW
5441 } else if (!strncmp(str, "noari", 5)) {
5442 pcie_ari_disabled = true;
4516a618
AN
5443 } else if (!strncmp(str, "cbiosize=", 9)) {
5444 pci_cardbus_io_size = memparse(str + 9, &str);
5445 } else if (!strncmp(str, "cbmemsize=", 10)) {
5446 pci_cardbus_mem_size = memparse(str + 10, &str);
32a9a682
YS
5447 } else if (!strncmp(str, "resource_alignment=", 19)) {
5448 pci_set_resource_alignment_param(str + 19,
5449 strlen(str + 19));
43c16408
AP
5450 } else if (!strncmp(str, "ecrc=", 5)) {
5451 pcie_ecrc_get_policy(str + 5);
28760489
EB
5452 } else if (!strncmp(str, "hpiosize=", 9)) {
5453 pci_hotplug_io_size = memparse(str + 9, &str);
5454 } else if (!strncmp(str, "hpmemsize=", 10)) {
5455 pci_hotplug_mem_size = memparse(str + 10, &str);
e16b4660
KB
5456 } else if (!strncmp(str, "hpbussize=", 10)) {
5457 pci_hotplug_bus_size =
5458 simple_strtoul(str + 10, &str, 0);
5459 if (pci_hotplug_bus_size > 0xff)
5460 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5f39e670
JM
5461 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5462 pcie_bus_config = PCIE_BUS_TUNE_OFF;
b03e7495
JM
5463 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5464 pcie_bus_config = PCIE_BUS_SAFE;
5465 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5466 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5f39e670
JM
5467 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5468 pcie_bus_config = PCIE_BUS_PEER2PEER;
284f5f9d
BH
5469 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5470 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
309e57df
MW
5471 } else {
5472 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5473 str);
5474 }
1da177e4
LT
5475 }
5476 str = k;
5477 }
0637a70a 5478 return 0;
1da177e4 5479}
0637a70a 5480early_param("pci", pci_setup);