]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/perf/arm_pmu.c
rhashtable: remove insecure_elasticity
[mirror_ubuntu-artful-kernel.git] / drivers / perf / arm_pmu.c
CommitLineData
1b8873a0
JI
1#undef DEBUG
2
3/*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
43eab878 7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
796d1295 8 *
1b8873a0 9 * This code is based on the sparc64 perf event code, which is in turn based
d39976f0 10 * on the x86 code.
1b8873a0
JI
11 */
12#define pr_fmt(fmt) "hw perfevents: " fmt
13
74cf0bc7 14#include <linux/bitmap.h>
cc88116d 15#include <linux/cpumask.h>
da4e4f18 16#include <linux/cpu_pm.h>
74cf0bc7 17#include <linux/export.h>
1b8873a0 18#include <linux/kernel.h>
bc1e3c46 19#include <linux/of_device.h>
fa8ad788 20#include <linux/perf/arm_pmu.h>
49c006b9 21#include <linux/platform_device.h>
74cf0bc7 22#include <linux/slab.h>
e6017571 23#include <linux/sched/clock.h>
74cf0bc7 24#include <linux/spinlock.h>
bbd64559
SB
25#include <linux/irq.h>
26#include <linux/irqdesc.h>
1b8873a0 27
74cf0bc7 28#include <asm/cputype.h>
1b8873a0 29#include <asm/irq_regs.h>
1b8873a0 30
1b8873a0 31static int
e1f431b5
MR
32armpmu_map_cache_event(const unsigned (*cache_map)
33 [PERF_COUNT_HW_CACHE_MAX]
34 [PERF_COUNT_HW_CACHE_OP_MAX]
35 [PERF_COUNT_HW_CACHE_RESULT_MAX],
36 u64 config)
1b8873a0
JI
37{
38 unsigned int cache_type, cache_op, cache_result, ret;
39
40 cache_type = (config >> 0) & 0xff;
41 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
42 return -EINVAL;
43
44 cache_op = (config >> 8) & 0xff;
45 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
46 return -EINVAL;
47
48 cache_result = (config >> 16) & 0xff;
49 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
50 return -EINVAL;
51
e1f431b5 52 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
1b8873a0
JI
53
54 if (ret == CACHE_OP_UNSUPPORTED)
55 return -ENOENT;
56
57 return ret;
58}
59
84fee97a 60static int
6dbc0029 61armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
84fee97a 62{
d9f96635
SB
63 int mapping;
64
65 if (config >= PERF_COUNT_HW_MAX)
66 return -EINVAL;
67
68 mapping = (*event_map)[config];
e1f431b5 69 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
84fee97a
WD
70}
71
72static int
e1f431b5 73armpmu_map_raw_event(u32 raw_event_mask, u64 config)
84fee97a 74{
e1f431b5
MR
75 return (int)(config & raw_event_mask);
76}
77
6dbc0029
WD
78int
79armpmu_map_event(struct perf_event *event,
80 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
81 const unsigned (*cache_map)
82 [PERF_COUNT_HW_CACHE_MAX]
83 [PERF_COUNT_HW_CACHE_OP_MAX]
84 [PERF_COUNT_HW_CACHE_RESULT_MAX],
85 u32 raw_event_mask)
e1f431b5
MR
86{
87 u64 config = event->attr.config;
67b4305a 88 int type = event->attr.type;
e1f431b5 89
67b4305a
MR
90 if (type == event->pmu->type)
91 return armpmu_map_raw_event(raw_event_mask, config);
92
93 switch (type) {
e1f431b5 94 case PERF_TYPE_HARDWARE:
6dbc0029 95 return armpmu_map_hw_event(event_map, config);
e1f431b5
MR
96 case PERF_TYPE_HW_CACHE:
97 return armpmu_map_cache_event(cache_map, config);
98 case PERF_TYPE_RAW:
99 return armpmu_map_raw_event(raw_event_mask, config);
100 }
101
102 return -ENOENT;
84fee97a
WD
103}
104
ed6f2a52 105int armpmu_event_set_period(struct perf_event *event)
1b8873a0 106{
8a16b34e 107 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
ed6f2a52 108 struct hw_perf_event *hwc = &event->hw;
e7850595 109 s64 left = local64_read(&hwc->period_left);
1b8873a0
JI
110 s64 period = hwc->sample_period;
111 int ret = 0;
112
113 if (unlikely(left <= -period)) {
114 left = period;
e7850595 115 local64_set(&hwc->period_left, left);
1b8873a0
JI
116 hwc->last_period = period;
117 ret = 1;
118 }
119
120 if (unlikely(left <= 0)) {
121 left += period;
e7850595 122 local64_set(&hwc->period_left, left);
1b8873a0
JI
123 hwc->last_period = period;
124 ret = 1;
125 }
126
2d9ed740
DT
127 /*
128 * Limit the maximum period to prevent the counter value
129 * from overtaking the one we are about to program. In
130 * effect we are reducing max_period to account for
131 * interrupt latency (and we are being very conservative).
132 */
133 if (left > (armpmu->max_period >> 1))
134 left = armpmu->max_period >> 1;
1b8873a0 135
e7850595 136 local64_set(&hwc->prev_count, (u64)-left);
1b8873a0 137
ed6f2a52 138 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
1b8873a0
JI
139
140 perf_event_update_userpage(event);
141
142 return ret;
143}
144
ed6f2a52 145u64 armpmu_event_update(struct perf_event *event)
1b8873a0 146{
8a16b34e 147 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
ed6f2a52 148 struct hw_perf_event *hwc = &event->hw;
a737823d 149 u64 delta, prev_raw_count, new_raw_count;
1b8873a0
JI
150
151again:
e7850595 152 prev_raw_count = local64_read(&hwc->prev_count);
ed6f2a52 153 new_raw_count = armpmu->read_counter(event);
1b8873a0 154
e7850595 155 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
1b8873a0
JI
156 new_raw_count) != prev_raw_count)
157 goto again;
158
57273471 159 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
1b8873a0 160
e7850595
PZ
161 local64_add(delta, &event->count);
162 local64_sub(delta, &hwc->period_left);
1b8873a0
JI
163
164 return new_raw_count;
165}
166
167static void
a4eaf7f1 168armpmu_read(struct perf_event *event)
1b8873a0 169{
ed6f2a52 170 armpmu_event_update(event);
1b8873a0
JI
171}
172
173static void
a4eaf7f1 174armpmu_stop(struct perf_event *event, int flags)
1b8873a0 175{
8a16b34e 176 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1b8873a0
JI
177 struct hw_perf_event *hwc = &event->hw;
178
a4eaf7f1
PZ
179 /*
180 * ARM pmu always has to update the counter, so ignore
181 * PERF_EF_UPDATE, see comments in armpmu_start().
182 */
183 if (!(hwc->state & PERF_HES_STOPPED)) {
ed6f2a52
SH
184 armpmu->disable(event);
185 armpmu_event_update(event);
a4eaf7f1
PZ
186 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
187 }
1b8873a0
JI
188}
189
ed6f2a52 190static void armpmu_start(struct perf_event *event, int flags)
1b8873a0 191{
8a16b34e 192 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1b8873a0
JI
193 struct hw_perf_event *hwc = &event->hw;
194
a4eaf7f1
PZ
195 /*
196 * ARM pmu always has to reprogram the period, so ignore
197 * PERF_EF_RELOAD, see the comment below.
198 */
199 if (flags & PERF_EF_RELOAD)
200 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
201
202 hwc->state = 0;
1b8873a0
JI
203 /*
204 * Set the period again. Some counters can't be stopped, so when we
a4eaf7f1 205 * were stopped we simply disabled the IRQ source and the counter
1b8873a0
JI
206 * may have been left counting. If we don't do this step then we may
207 * get an interrupt too soon or *way* too late if the overflow has
208 * happened since disabling.
209 */
ed6f2a52
SH
210 armpmu_event_set_period(event);
211 armpmu->enable(event);
1b8873a0
JI
212}
213
a4eaf7f1
PZ
214static void
215armpmu_del(struct perf_event *event, int flags)
216{
8a16b34e 217 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
11679250 218 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
a4eaf7f1
PZ
219 struct hw_perf_event *hwc = &event->hw;
220 int idx = hwc->idx;
221
a4eaf7f1 222 armpmu_stop(event, PERF_EF_UPDATE);
8be3f9a2
MR
223 hw_events->events[idx] = NULL;
224 clear_bit(idx, hw_events->used_mask);
eab443ef
SB
225 if (armpmu->clear_event_idx)
226 armpmu->clear_event_idx(hw_events, event);
a4eaf7f1
PZ
227
228 perf_event_update_userpage(event);
229}
230
1b8873a0 231static int
a4eaf7f1 232armpmu_add(struct perf_event *event, int flags)
1b8873a0 233{
8a16b34e 234 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
11679250 235 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
1b8873a0
JI
236 struct hw_perf_event *hwc = &event->hw;
237 int idx;
238 int err = 0;
239
cc88116d
MR
240 /* An event following a process won't be stopped earlier */
241 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
242 return -ENOENT;
243
33696fc0 244 perf_pmu_disable(event->pmu);
24cd7f54 245
1b8873a0 246 /* If we don't have a space for the counter then finish early. */
ed6f2a52 247 idx = armpmu->get_event_idx(hw_events, event);
1b8873a0
JI
248 if (idx < 0) {
249 err = idx;
250 goto out;
251 }
252
253 /*
254 * If there is an event in the counter we are going to use then make
255 * sure it is disabled.
256 */
257 event->hw.idx = idx;
ed6f2a52 258 armpmu->disable(event);
8be3f9a2 259 hw_events->events[idx] = event;
1b8873a0 260
a4eaf7f1
PZ
261 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
262 if (flags & PERF_EF_START)
263 armpmu_start(event, PERF_EF_RELOAD);
1b8873a0
JI
264
265 /* Propagate our changes to the userspace mapping. */
266 perf_event_update_userpage(event);
267
268out:
33696fc0 269 perf_pmu_enable(event->pmu);
1b8873a0
JI
270 return err;
271}
272
1b8873a0 273static int
e429817b
SP
274validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
275 struct perf_event *event)
1b8873a0 276{
e429817b 277 struct arm_pmu *armpmu;
1b8873a0 278
c95eb318
WD
279 if (is_software_event(event))
280 return 1;
281
e429817b
SP
282 /*
283 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
284 * core perf code won't check that the pmu->ctx == leader->ctx
285 * until after pmu->event_init(event).
286 */
287 if (event->pmu != pmu)
288 return 0;
289
2dfcb802 290 if (event->state < PERF_EVENT_STATE_OFF)
cb2d8b34
WD
291 return 1;
292
293 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
65b4711f 294 return 1;
1b8873a0 295
e429817b 296 armpmu = to_arm_pmu(event->pmu);
ed6f2a52 297 return armpmu->get_event_idx(hw_events, event) >= 0;
1b8873a0
JI
298}
299
300static int
301validate_group(struct perf_event *event)
302{
303 struct perf_event *sibling, *leader = event->group_leader;
8be3f9a2 304 struct pmu_hw_events fake_pmu;
1b8873a0 305
bce34d14
WD
306 /*
307 * Initialise the fake PMU. We only need to populate the
308 * used_mask for the purposes of validation.
309 */
a4560846 310 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
1b8873a0 311
e429817b 312 if (!validate_event(event->pmu, &fake_pmu, leader))
aa2bc1ad 313 return -EINVAL;
1b8873a0
JI
314
315 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
e429817b 316 if (!validate_event(event->pmu, &fake_pmu, sibling))
aa2bc1ad 317 return -EINVAL;
1b8873a0
JI
318 }
319
e429817b 320 if (!validate_event(event->pmu, &fake_pmu, event))
aa2bc1ad 321 return -EINVAL;
1b8873a0
JI
322
323 return 0;
324}
325
051f1b13 326static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
0e25a5c9 327{
bbd64559
SB
328 struct arm_pmu *armpmu;
329 struct platform_device *plat_device;
330 struct arm_pmu_platdata *plat;
5f5092e7
WD
331 int ret;
332 u64 start_clock, finish_clock;
bbd64559 333
5ebd9200
MR
334 /*
335 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
336 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
337 * do any necessary shifting, we just need to perform the first
338 * dereference.
339 */
340 armpmu = *(void **)dev;
bbd64559
SB
341 plat_device = armpmu->plat_device;
342 plat = dev_get_platdata(&plat_device->dev);
0e25a5c9 343
5f5092e7 344 start_clock = sched_clock();
051f1b13 345 if (plat && plat->handle_irq)
5ebd9200 346 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
051f1b13 347 else
5ebd9200 348 ret = armpmu->handle_irq(irq, armpmu);
5f5092e7
WD
349 finish_clock = sched_clock();
350
351 perf_sample_event_took(finish_clock - start_clock);
352 return ret;
0e25a5c9
RV
353}
354
0b390e21 355static void
8a16b34e 356armpmu_release_hardware(struct arm_pmu *armpmu)
0b390e21 357{
ed6f2a52 358 armpmu->free_irq(armpmu);
0b390e21
WD
359}
360
1b8873a0 361static int
8a16b34e 362armpmu_reserve_hardware(struct arm_pmu *armpmu)
1b8873a0 363{
ed61f985 364 int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
051f1b13
SH
365 if (err) {
366 armpmu_release_hardware(armpmu);
367 return err;
49c006b9 368 }
1b8873a0 369
0b390e21 370 return 0;
1b8873a0
JI
371}
372
1b8873a0
JI
373static void
374hw_perf_event_destroy(struct perf_event *event)
375{
8a16b34e 376 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
03b7898d
MR
377 atomic_t *active_events = &armpmu->active_events;
378 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
379
380 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
8a16b34e 381 armpmu_release_hardware(armpmu);
03b7898d 382 mutex_unlock(pmu_reserve_mutex);
1b8873a0
JI
383 }
384}
385
05d22fde
WD
386static int
387event_requires_mode_exclusion(struct perf_event_attr *attr)
388{
389 return attr->exclude_idle || attr->exclude_user ||
390 attr->exclude_kernel || attr->exclude_hv;
391}
392
1b8873a0
JI
393static int
394__hw_perf_event_init(struct perf_event *event)
395{
8a16b34e 396 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1b8873a0 397 struct hw_perf_event *hwc = &event->hw;
9dcbf466 398 int mapping;
1b8873a0 399
e1f431b5 400 mapping = armpmu->map_event(event);
1b8873a0
JI
401
402 if (mapping < 0) {
403 pr_debug("event %x:%llx not supported\n", event->attr.type,
404 event->attr.config);
405 return mapping;
406 }
407
05d22fde
WD
408 /*
409 * We don't assign an index until we actually place the event onto
410 * hardware. Use -1 to signify that we haven't decided where to put it
411 * yet. For SMP systems, each core has it's own PMU so we can't do any
412 * clever allocation or constraints checking at this point.
413 */
414 hwc->idx = -1;
415 hwc->config_base = 0;
416 hwc->config = 0;
417 hwc->event_base = 0;
418
1b8873a0
JI
419 /*
420 * Check whether we need to exclude the counter from certain modes.
1b8873a0 421 */
05d22fde
WD
422 if ((!armpmu->set_event_filter ||
423 armpmu->set_event_filter(hwc, &event->attr)) &&
424 event_requires_mode_exclusion(&event->attr)) {
1b8873a0
JI
425 pr_debug("ARM performance counters do not support "
426 "mode exclusion\n");
fdeb8e35 427 return -EOPNOTSUPP;
1b8873a0
JI
428 }
429
430 /*
05d22fde 431 * Store the event encoding into the config_base field.
1b8873a0 432 */
05d22fde 433 hwc->config_base |= (unsigned long)mapping;
1b8873a0 434
edcb4d3c 435 if (!is_sampling_event(event)) {
57273471
WD
436 /*
437 * For non-sampling runs, limit the sample_period to half
438 * of the counter width. That way, the new counter value
439 * is far less likely to overtake the previous one unless
440 * you have some serious IRQ latency issues.
441 */
442 hwc->sample_period = armpmu->max_period >> 1;
1b8873a0 443 hwc->last_period = hwc->sample_period;
e7850595 444 local64_set(&hwc->period_left, hwc->sample_period);
1b8873a0
JI
445 }
446
1b8873a0 447 if (event->group_leader != event) {
e595ede6 448 if (validate_group(event) != 0)
1b8873a0
JI
449 return -EINVAL;
450 }
451
9dcbf466 452 return 0;
1b8873a0
JI
453}
454
b0a873eb 455static int armpmu_event_init(struct perf_event *event)
1b8873a0 456{
8a16b34e 457 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1b8873a0 458 int err = 0;
03b7898d 459 atomic_t *active_events = &armpmu->active_events;
1b8873a0 460
cc88116d
MR
461 /*
462 * Reject CPU-affine events for CPUs that are of a different class to
463 * that which this PMU handles. Process-following events (where
464 * event->cpu == -1) can be migrated between CPUs, and thus we have to
465 * reject them later (in armpmu_add) if they're scheduled on a
466 * different class of CPU.
467 */
468 if (event->cpu != -1 &&
469 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
470 return -ENOENT;
471
2481c5fa
SE
472 /* does not support taken branch sampling */
473 if (has_branch_stack(event))
474 return -EOPNOTSUPP;
475
e1f431b5 476 if (armpmu->map_event(event) == -ENOENT)
b0a873eb 477 return -ENOENT;
b0a873eb 478
1b8873a0
JI
479 event->destroy = hw_perf_event_destroy;
480
03b7898d
MR
481 if (!atomic_inc_not_zero(active_events)) {
482 mutex_lock(&armpmu->reserve_mutex);
483 if (atomic_read(active_events) == 0)
8a16b34e 484 err = armpmu_reserve_hardware(armpmu);
1b8873a0
JI
485
486 if (!err)
03b7898d
MR
487 atomic_inc(active_events);
488 mutex_unlock(&armpmu->reserve_mutex);
1b8873a0
JI
489 }
490
491 if (err)
b0a873eb 492 return err;
1b8873a0
JI
493
494 err = __hw_perf_event_init(event);
495 if (err)
496 hw_perf_event_destroy(event);
497
b0a873eb 498 return err;
1b8873a0
JI
499}
500
a4eaf7f1 501static void armpmu_enable(struct pmu *pmu)
1b8873a0 502{
8be3f9a2 503 struct arm_pmu *armpmu = to_arm_pmu(pmu);
11679250 504 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
7325eaec 505 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
1b8873a0 506
cc88116d
MR
507 /* For task-bound events we may be called on other CPUs */
508 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
509 return;
510
f4f38430 511 if (enabled)
ed6f2a52 512 armpmu->start(armpmu);
1b8873a0
JI
513}
514
a4eaf7f1 515static void armpmu_disable(struct pmu *pmu)
1b8873a0 516{
8a16b34e 517 struct arm_pmu *armpmu = to_arm_pmu(pmu);
cc88116d
MR
518
519 /* For task-bound events we may be called on other CPUs */
520 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
521 return;
522
ed6f2a52 523 armpmu->stop(armpmu);
1b8873a0
JI
524}
525
c904e32a
MR
526/*
527 * In heterogeneous systems, events are specific to a particular
528 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
529 * the same microarchitecture.
530 */
531static int armpmu_filter_match(struct perf_event *event)
532{
533 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
534 unsigned int cpu = smp_processor_id();
535 return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
536}
537
48538b58
MR
538static ssize_t armpmu_cpumask_show(struct device *dev,
539 struct device_attribute *attr, char *buf)
540{
541 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
542 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
543}
544
545static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
546
547static struct attribute *armpmu_common_attrs[] = {
548 &dev_attr_cpus.attr,
549 NULL,
550};
551
552static struct attribute_group armpmu_common_attr_group = {
553 .attrs = armpmu_common_attrs,
554};
555
44d6b1fc 556static void armpmu_init(struct arm_pmu *armpmu)
03b7898d
MR
557{
558 atomic_set(&armpmu->active_events, 0);
559 mutex_init(&armpmu->reserve_mutex);
8a16b34e
MR
560
561 armpmu->pmu = (struct pmu) {
562 .pmu_enable = armpmu_enable,
563 .pmu_disable = armpmu_disable,
564 .event_init = armpmu_event_init,
565 .add = armpmu_add,
566 .del = armpmu_del,
567 .start = armpmu_start,
568 .stop = armpmu_stop,
569 .read = armpmu_read,
c904e32a 570 .filter_match = armpmu_filter_match,
1589680d 571 .attr_groups = armpmu->attr_groups,
8a16b34e 572 };
48538b58
MR
573 armpmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
574 &armpmu_common_attr_group;
8a16b34e
MR
575}
576
74cf0bc7
MR
577/* Set at runtime when we know what CPU type we are. */
578static struct arm_pmu *__oprofile_cpu_pmu;
579
580/*
581 * Despite the names, these two functions are CPU-specific and are used
582 * by the OProfile/perf code.
583 */
584const char *perf_pmu_name(void)
585{
586 if (!__oprofile_cpu_pmu)
587 return NULL;
588
589 return __oprofile_cpu_pmu->name;
590}
591EXPORT_SYMBOL_GPL(perf_pmu_name);
592
593int perf_num_counters(void)
594{
595 int max_events = 0;
596
597 if (__oprofile_cpu_pmu != NULL)
598 max_events = __oprofile_cpu_pmu->num_events;
599
600 return max_events;
601}
602EXPORT_SYMBOL_GPL(perf_num_counters);
603
604static void cpu_pmu_enable_percpu_irq(void *data)
605{
606 int irq = *(int *)data;
607
608 enable_percpu_irq(irq, IRQ_TYPE_NONE);
609}
610
611static void cpu_pmu_disable_percpu_irq(void *data)
612{
613 int irq = *(int *)data;
614
615 disable_percpu_irq(irq);
616}
617
618static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
619{
620 int i, irq, irqs;
621 struct platform_device *pmu_device = cpu_pmu->plat_device;
622 struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
623
624 irqs = min(pmu_device->num_resources, num_possible_cpus());
625
626 irq = platform_get_irq(pmu_device, 0);
282b8796 627 if (irq > 0 && irq_is_percpu(irq)) {
19a469a5
MZ
628 on_each_cpu_mask(&cpu_pmu->supported_cpus,
629 cpu_pmu_disable_percpu_irq, &irq, 1);
74cf0bc7
MR
630 free_percpu_irq(irq, &hw_events->percpu_pmu);
631 } else {
632 for (i = 0; i < irqs; ++i) {
633 int cpu = i;
634
635 if (cpu_pmu->irq_affinity)
636 cpu = cpu_pmu->irq_affinity[i];
637
638 if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
639 continue;
640 irq = platform_get_irq(pmu_device, i);
282b8796 641 if (irq > 0)
74cf0bc7
MR
642 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
643 }
644 }
645}
646
647static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
648{
649 int i, err, irq, irqs;
650 struct platform_device *pmu_device = cpu_pmu->plat_device;
651 struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
652
653 if (!pmu_device)
654 return -ENODEV;
655
656 irqs = min(pmu_device->num_resources, num_possible_cpus());
657 if (irqs < 1) {
658 pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
659 return 0;
660 }
661
662 irq = platform_get_irq(pmu_device, 0);
282b8796 663 if (irq > 0 && irq_is_percpu(irq)) {
74cf0bc7
MR
664 err = request_percpu_irq(irq, handler, "arm-pmu",
665 &hw_events->percpu_pmu);
666 if (err) {
667 pr_err("unable to request IRQ%d for ARM PMU counters\n",
668 irq);
669 return err;
670 }
19a469a5
MZ
671
672 on_each_cpu_mask(&cpu_pmu->supported_cpus,
673 cpu_pmu_enable_percpu_irq, &irq, 1);
74cf0bc7
MR
674 } else {
675 for (i = 0; i < irqs; ++i) {
676 int cpu = i;
677
678 err = 0;
679 irq = platform_get_irq(pmu_device, i);
680 if (irq < 0)
681 continue;
682
683 if (cpu_pmu->irq_affinity)
684 cpu = cpu_pmu->irq_affinity[i];
685
686 /*
687 * If we have a single PMU interrupt that we can't shift,
688 * assume that we're running on a uniprocessor machine and
689 * continue. Otherwise, continue without this interrupt.
690 */
691 if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
692 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
693 irq, cpu);
694 continue;
695 }
696
697 err = request_irq(irq, handler,
698 IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
699 per_cpu_ptr(&hw_events->percpu_pmu, cpu));
700 if (err) {
701 pr_err("unable to request IRQ%d for ARM PMU counters\n",
702 irq);
703 return err;
704 }
705
706 cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
707 }
708 }
709
710 return 0;
711}
712
713/*
714 * PMU hardware loses all context when a CPU goes offline.
715 * When a CPU is hotplugged back in, since some hardware registers are
716 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
717 * junk values out of them.
718 */
6e103c0c 719static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
74cf0bc7 720{
6e103c0c 721 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
74cf0bc7 722
6e103c0c
SAS
723 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
724 return 0;
725 if (pmu->reset)
726 pmu->reset(pmu);
7d88eb69 727 return 0;
74cf0bc7
MR
728}
729
da4e4f18
LP
730#ifdef CONFIG_CPU_PM
731static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
732{
733 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
734 struct perf_event *event;
735 int idx;
736
737 for (idx = 0; idx < armpmu->num_events; idx++) {
738 /*
739 * If the counter is not used skip it, there is no
740 * need of stopping/restarting it.
741 */
742 if (!test_bit(idx, hw_events->used_mask))
743 continue;
744
745 event = hw_events->events[idx];
746
747 switch (cmd) {
748 case CPU_PM_ENTER:
749 /*
750 * Stop and update the counter
751 */
752 armpmu_stop(event, PERF_EF_UPDATE);
753 break;
754 case CPU_PM_EXIT:
755 case CPU_PM_ENTER_FAILED:
cbcc72e0
LP
756 /*
757 * Restore and enable the counter.
758 * armpmu_start() indirectly calls
759 *
760 * perf_event_update_userpage()
761 *
762 * that requires RCU read locking to be functional,
763 * wrap the call within RCU_NONIDLE to make the
764 * RCU subsystem aware this cpu is not idle from
765 * an RCU perspective for the armpmu_start() call
766 * duration.
767 */
768 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
da4e4f18
LP
769 break;
770 default:
771 break;
772 }
773 }
774}
775
776static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
777 void *v)
778{
779 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
780 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
781 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
782
783 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
784 return NOTIFY_DONE;
785
786 /*
787 * Always reset the PMU registers on power-up even if
788 * there are no events running.
789 */
790 if (cmd == CPU_PM_EXIT && armpmu->reset)
791 armpmu->reset(armpmu);
792
793 if (!enabled)
794 return NOTIFY_OK;
795
796 switch (cmd) {
797 case CPU_PM_ENTER:
798 armpmu->stop(armpmu);
799 cpu_pm_pmu_setup(armpmu, cmd);
800 break;
801 case CPU_PM_EXIT:
802 cpu_pm_pmu_setup(armpmu, cmd);
803 case CPU_PM_ENTER_FAILED:
804 armpmu->start(armpmu);
805 break;
806 default:
807 return NOTIFY_DONE;
808 }
809
810 return NOTIFY_OK;
811}
812
813static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
814{
815 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
816 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
817}
818
819static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
820{
821 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
822}
823#else
824static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
825static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
826#endif
827
74cf0bc7
MR
828static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
829{
830 int err;
831 int cpu;
832 struct pmu_hw_events __percpu *cpu_hw_events;
833
834 cpu_hw_events = alloc_percpu(struct pmu_hw_events);
835 if (!cpu_hw_events)
836 return -ENOMEM;
837
6e103c0c
SAS
838 err = cpuhp_state_add_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
839 &cpu_pmu->node);
840 if (err)
841 goto out_free;
74cf0bc7 842
da4e4f18
LP
843 err = cpu_pm_pmu_register(cpu_pmu);
844 if (err)
845 goto out_unregister;
846
74cf0bc7
MR
847 for_each_possible_cpu(cpu) {
848 struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
849 raw_spin_lock_init(&events->pmu_lock);
850 events->percpu_pmu = cpu_pmu;
851 }
852
853 cpu_pmu->hw_events = cpu_hw_events;
854 cpu_pmu->request_irq = cpu_pmu_request_irq;
855 cpu_pmu->free_irq = cpu_pmu_free_irq;
856
857 /* Ensure the PMU has sane values out of reset. */
858 if (cpu_pmu->reset)
859 on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
860 cpu_pmu, 1);
861
862 /* If no interrupts available, set the corresponding capability flag */
863 if (!platform_get_irq(cpu_pmu->plat_device, 0))
864 cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
865
5101ef20
MR
866 /*
867 * This is a CPU PMU potentially in a heterogeneous configuration (e.g.
868 * big.LITTLE). This is not an uncore PMU, and we have taken ctx
869 * sharing into account (e.g. with our pmu::filter_match callback and
870 * pmu::event_init group validation).
871 */
872 cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
873
74cf0bc7
MR
874 return 0;
875
da4e4f18 876out_unregister:
6e103c0c
SAS
877 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
878 &cpu_pmu->node);
879out_free:
74cf0bc7
MR
880 free_percpu(cpu_hw_events);
881 return err;
882}
883
884static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
885{
da4e4f18 886 cpu_pm_pmu_unregister(cpu_pmu);
6e103c0c
SAS
887 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
888 &cpu_pmu->node);
74cf0bc7
MR
889 free_percpu(cpu_pmu->hw_events);
890}
891
892/*
893 * CPU PMU identification and probing.
894 */
895static int probe_current_pmu(struct arm_pmu *pmu,
896 const struct pmu_probe_info *info)
897{
898 int cpu = get_cpu();
899 unsigned int cpuid = read_cpuid_id();
900 int ret = -ENODEV;
901
902 pr_info("probing PMU on CPU %d\n", cpu);
903
904 for (; info->init != NULL; info++) {
905 if ((cpuid & info->mask) != info->cpuid)
906 continue;
907 ret = info->init(pmu);
908 break;
909 }
910
911 put_cpu();
912 return ret;
913}
914
915static int of_pmu_irq_cfg(struct arm_pmu *pmu)
916{
b6c084d7
WD
917 int *irqs, i = 0;
918 bool using_spi = false;
74cf0bc7
MR
919 struct platform_device *pdev = pmu->plat_device;
920
74cf0bc7
MR
921 irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
922 if (!irqs)
923 return -ENOMEM;
924
b6c084d7 925 do {
74cf0bc7 926 struct device_node *dn;
b6c084d7 927 int cpu, irq;
74cf0bc7 928
b6c084d7
WD
929 /* See if we have an affinity entry */
930 dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
931 if (!dn)
74cf0bc7 932 break;
b6c084d7
WD
933
934 /* Check the IRQ type and prohibit a mix of PPIs and SPIs */
935 irq = platform_get_irq(pdev, i);
282b8796 936 if (irq > 0) {
b6c084d7
WD
937 bool spi = !irq_is_percpu(irq);
938
939 if (i > 0 && spi != using_spi) {
940 pr_err("PPI/SPI IRQ type mismatch for %s!\n",
941 dn->name);
75324684 942 of_node_put(dn);
b6c084d7
WD
943 kfree(irqs);
944 return -EINVAL;
945 }
946
947 using_spi = spi;
74cf0bc7
MR
948 }
949
b6c084d7 950 /* Now look up the logical CPU number */
fb659882
WD
951 for_each_possible_cpu(cpu) {
952 struct device_node *cpu_dn;
953
954 cpu_dn = of_cpu_device_node_get(cpu);
955 of_node_put(cpu_dn);
956
957 if (dn == cpu_dn)
74cf0bc7 958 break;
fb659882 959 }
74cf0bc7 960
74cf0bc7
MR
961 if (cpu >= nr_cpu_ids) {
962 pr_warn("Failed to find logical CPU for %s\n",
963 dn->name);
8e0c34b0 964 of_node_put(dn);
b6c084d7 965 cpumask_setall(&pmu->supported_cpus);
74cf0bc7
MR
966 break;
967 }
8e0c34b0 968 of_node_put(dn);
74cf0bc7 969
b6c084d7
WD
970 /* For SPIs, we need to track the affinity per IRQ */
971 if (using_spi) {
121323ae 972 if (i >= pdev->num_resources)
b6c084d7 973 break;
b6c084d7
WD
974
975 irqs[i] = cpu;
976 }
977
978 /* Keep track of the CPUs containing this PMU type */
74cf0bc7 979 cpumask_set_cpu(cpu, &pmu->supported_cpus);
b6c084d7
WD
980 i++;
981 } while (1);
74cf0bc7 982
19a469a5
MZ
983 /* If we didn't manage to parse anything, try the interrupt affinity */
984 if (cpumask_weight(&pmu->supported_cpus) == 0) {
7f1d642f
MZ
985 int irq = platform_get_irq(pdev, 0);
986
282b8796 987 if (irq > 0 && irq_is_percpu(irq)) {
19a469a5 988 /* If using PPIs, check the affinity of the partition */
7f1d642f 989 int ret;
19a469a5 990
19a469a5
MZ
991 ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus);
992 if (ret) {
993 kfree(irqs);
994 return ret;
995 }
996 } else {
997 /* Otherwise default to all CPUs */
998 cpumask_setall(&pmu->supported_cpus);
999 }
1000 }
b6c084d7
WD
1001
1002 /* If we matched up the IRQ affinities, use them to route the SPIs */
1003 if (using_spi && i == pdev->num_resources)
74cf0bc7 1004 pmu->irq_affinity = irqs;
b6c084d7 1005 else
74cf0bc7 1006 kfree(irqs);
74cf0bc7
MR
1007
1008 return 0;
1009}
1010
1011int arm_pmu_device_probe(struct platform_device *pdev,
1012 const struct of_device_id *of_table,
1013 const struct pmu_probe_info *probe_table)
1014{
1015 const struct of_device_id *of_id;
1016 const int (*init_fn)(struct arm_pmu *);
1017 struct device_node *node = pdev->dev.of_node;
1018 struct arm_pmu *pmu;
1019 int ret = -ENODEV;
1020
1021 pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
1022 if (!pmu) {
1023 pr_info("failed to allocate PMU device!\n");
1024 return -ENOMEM;
1025 }
1026
b916b785
MR
1027 armpmu_init(pmu);
1028
74cf0bc7
MR
1029 pmu->plat_device = pdev;
1030
1031 if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
1032 init_fn = of_id->data;
1033
8d1a0ae7
MF
1034 pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
1035 "secure-reg-access");
1036
1037 /* arm64 systems boot only as non-secure */
1038 if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
1039 pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
1040 pmu->secure_access = false;
1041 }
1042
74cf0bc7
MR
1043 ret = of_pmu_irq_cfg(pmu);
1044 if (!ret)
1045 ret = init_fn(pmu);
dbee3a74 1046 } else if (probe_table) {
74cf0bc7 1047 cpumask_setall(&pmu->supported_cpus);
f7a6c149 1048 ret = probe_current_pmu(pmu, probe_table);
74cf0bc7
MR
1049 }
1050
1051 if (ret) {
357b565d 1052 pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
74cf0bc7
MR
1053 goto out_free;
1054 }
1055
86cdd72a 1056
74cf0bc7
MR
1057 ret = cpu_pmu_init(pmu);
1058 if (ret)
1059 goto out_free;
1060
b916b785 1061 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
74cf0bc7
MR
1062 if (ret)
1063 goto out_destroy;
1064
0f254c76
JG
1065 if (!__oprofile_cpu_pmu)
1066 __oprofile_cpu_pmu = pmu;
1067
b916b785
MR
1068 pr_info("enabled with %s PMU driver, %d counters available\n",
1069 pmu->name, pmu->num_events);
1070
74cf0bc7
MR
1071 return 0;
1072
1073out_destroy:
1074 cpu_pmu_destroy(pmu);
1075out_free:
357b565d
WD
1076 pr_info("%s: failed to register PMU devices!\n",
1077 of_node_full_name(node));
5988a363 1078 kfree(pmu->irq_affinity);
74cf0bc7
MR
1079 kfree(pmu);
1080 return ret;
1081}
37b502f1
SAS
1082
1083static int arm_pmu_hp_init(void)
1084{
1085 int ret;
1086
6e103c0c 1087 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
73c1b41e 1088 "perf/arm/pmu:starting",
6e103c0c 1089 arm_perf_starting_cpu, NULL);
37b502f1
SAS
1090 if (ret)
1091 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1092 ret);
1093 return ret;
1094}
1095subsys_initcall(arm_pmu_hp_init);