]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/perf/arm_spe_pmu.c
Merge tag 'mips-fixes_5.12_3' of git://git.kernel.org/pub/scm/linux/kernel/git/mips...
[mirror_ubuntu-jammy-kernel.git] / drivers / perf / arm_spe_pmu.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
d5d9696b
WD
2/*
3 * Perf support for the Statistical Profiling Extension, introduced as
4 * part of ARMv8.2.
5 *
d5d9696b
WD
6 * Copyright (C) 2016 ARM Limited
7 *
8 * Author: Will Deacon <will.deacon@arm.com>
9 */
10
11#define PMUNAME "arm_spe"
12#define DRVNAME PMUNAME "_pmu"
13#define pr_fmt(fmt) DRVNAME ": " fmt
14
fcd9f831
AB
15#include <linux/bitops.h>
16#include <linux/bug.h>
17#include <linux/capability.h>
d5d9696b 18#include <linux/cpuhotplug.h>
fcd9f831
AB
19#include <linux/cpumask.h>
20#include <linux/device.h>
21#include <linux/errno.h>
d5d9696b
WD
22#include <linux/interrupt.h>
23#include <linux/irq.h>
fcd9f831
AB
24#include <linux/kernel.h>
25#include <linux/list.h>
d5d9696b
WD
26#include <linux/module.h>
27#include <linux/of_address.h>
28#include <linux/of_device.h>
29#include <linux/perf_event.h>
d482e575 30#include <linux/perf/arm_pmu.h>
d5d9696b 31#include <linux/platform_device.h>
fcd9f831 32#include <linux/printk.h>
d5d9696b 33#include <linux/slab.h>
fcd9f831
AB
34#include <linux/smp.h>
35#include <linux/vmalloc.h>
d5d9696b 36
fcd9f831
AB
37#include <asm/barrier.h>
38#include <asm/cpufeature.h>
39#include <asm/mmu.h>
d5d9696b
WD
40#include <asm/sysreg.h>
41
42#define ARM_SPE_BUF_PAD_BYTE 0
43
44struct arm_spe_pmu_buf {
45 int nr_pages;
46 bool snapshot;
47 void *base;
48};
49
50struct arm_spe_pmu {
51 struct pmu pmu;
52 struct platform_device *pdev;
53 cpumask_t supported_cpus;
54 struct hlist_node hotplug_node;
55
56 int irq; /* PPI */
4a669e24 57 u16 pmsver;
d5d9696b
WD
58 u16 min_period;
59 u16 counter_sz;
60
61#define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
62#define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
63#define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
64#define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
65#define SPE_PMU_FEAT_LDS (1UL << 4)
66#define SPE_PMU_FEAT_ERND (1UL << 5)
67#define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
68 u64 features;
69
70 u16 max_record_sz;
71 u16 align;
72 struct perf_output_handle __percpu *handle;
73};
74
75#define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
76
77/* Convert a free-running index from perf into an SPE buffer offset */
78#define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
79
80/* Keep track of our dynamic hotplug state */
81static enum cpuhp_state arm_spe_pmu_online;
82
83enum arm_spe_pmu_buf_fault_action {
84 SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
85 SPE_PMU_BUF_FAULT_ACT_FATAL,
86 SPE_PMU_BUF_FAULT_ACT_OK,
87};
88
89/* This sysfs gunk was really good fun to write. */
90enum arm_spe_pmu_capabilities {
91 SPE_PMU_CAP_ARCH_INST = 0,
92 SPE_PMU_CAP_ERND,
93 SPE_PMU_CAP_FEAT_MAX,
94 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
95 SPE_PMU_CAP_MIN_IVAL,
96};
97
98static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
99 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
100 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND,
101};
102
103static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
104{
105 if (cap < SPE_PMU_CAP_FEAT_MAX)
106 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
107
108 switch (cap) {
109 case SPE_PMU_CAP_CNT_SZ:
110 return spe_pmu->counter_sz;
111 case SPE_PMU_CAP_MIN_IVAL:
112 return spe_pmu->min_period;
113 default:
114 WARN(1, "unknown cap %d\n", cap);
115 }
116
117 return 0;
118}
119
120static ssize_t arm_spe_pmu_cap_show(struct device *dev,
121 struct device_attribute *attr,
122 char *buf)
123{
d0f2e423 124 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
d5d9696b
WD
125 struct dev_ext_attribute *ea =
126 container_of(attr, struct dev_ext_attribute, attr);
127 int cap = (long)ea->var;
128
129 return snprintf(buf, PAGE_SIZE, "%u\n",
130 arm_spe_pmu_cap_get(spe_pmu, cap));
131}
132
133#define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
134 &((struct dev_ext_attribute[]) { \
135 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
136 })[0].attr.attr
137
138#define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
139 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
140
141static struct attribute *arm_spe_pmu_cap_attr[] = {
142 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
143 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
144 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
145 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
146 NULL,
147};
148
f0c14048 149static const struct attribute_group arm_spe_pmu_cap_group = {
d5d9696b
WD
150 .name = "caps",
151 .attrs = arm_spe_pmu_cap_attr,
152};
153
154/* User ABI */
155#define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
156#define ATTR_CFG_FLD_ts_enable_LO 0
157#define ATTR_CFG_FLD_ts_enable_HI 0
158#define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
159#define ATTR_CFG_FLD_pa_enable_LO 1
160#define ATTR_CFG_FLD_pa_enable_HI 1
161#define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
162#define ATTR_CFG_FLD_pct_enable_LO 2
163#define ATTR_CFG_FLD_pct_enable_HI 2
164#define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
165#define ATTR_CFG_FLD_jitter_LO 16
166#define ATTR_CFG_FLD_jitter_HI 16
167#define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
168#define ATTR_CFG_FLD_branch_filter_LO 32
169#define ATTR_CFG_FLD_branch_filter_HI 32
170#define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
171#define ATTR_CFG_FLD_load_filter_LO 33
172#define ATTR_CFG_FLD_load_filter_HI 33
173#define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
174#define ATTR_CFG_FLD_store_filter_LO 34
175#define ATTR_CFG_FLD_store_filter_HI 34
176
177#define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
178#define ATTR_CFG_FLD_event_filter_LO 0
179#define ATTR_CFG_FLD_event_filter_HI 63
180
181#define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
182#define ATTR_CFG_FLD_min_latency_LO 0
183#define ATTR_CFG_FLD_min_latency_HI 11
184
185/* Why does everything I do descend into this? */
186#define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
187 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
188
189#define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
190 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
191
192#define GEN_PMU_FORMAT_ATTR(name) \
193 PMU_FORMAT_ATTR(name, \
194 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \
195 ATTR_CFG_FLD_##name##_LO, \
196 ATTR_CFG_FLD_##name##_HI))
197
198#define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \
199 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
200
201#define ATTR_CFG_GET_FLD(attr, name) \
202 _ATTR_CFG_GET_FLD(attr, \
203 ATTR_CFG_FLD_##name##_CFG, \
204 ATTR_CFG_FLD_##name##_LO, \
205 ATTR_CFG_FLD_##name##_HI)
206
207GEN_PMU_FORMAT_ATTR(ts_enable);
208GEN_PMU_FORMAT_ATTR(pa_enable);
209GEN_PMU_FORMAT_ATTR(pct_enable);
210GEN_PMU_FORMAT_ATTR(jitter);
211GEN_PMU_FORMAT_ATTR(branch_filter);
212GEN_PMU_FORMAT_ATTR(load_filter);
213GEN_PMU_FORMAT_ATTR(store_filter);
214GEN_PMU_FORMAT_ATTR(event_filter);
215GEN_PMU_FORMAT_ATTR(min_latency);
216
217static struct attribute *arm_spe_pmu_formats_attr[] = {
218 &format_attr_ts_enable.attr,
219 &format_attr_pa_enable.attr,
220 &format_attr_pct_enable.attr,
221 &format_attr_jitter.attr,
222 &format_attr_branch_filter.attr,
223 &format_attr_load_filter.attr,
224 &format_attr_store_filter.attr,
225 &format_attr_event_filter.attr,
226 &format_attr_min_latency.attr,
227 NULL,
228};
229
f0c14048 230static const struct attribute_group arm_spe_pmu_format_group = {
d5d9696b
WD
231 .name = "format",
232 .attrs = arm_spe_pmu_formats_attr,
233};
234
235static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
236 struct device_attribute *attr,
237 char *buf)
238{
d0f2e423 239 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
d5d9696b
WD
240
241 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
242}
243static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
244
245static struct attribute *arm_spe_pmu_attrs[] = {
246 &dev_attr_cpumask.attr,
247 NULL,
248};
249
f0c14048 250static const struct attribute_group arm_spe_pmu_group = {
d5d9696b
WD
251 .attrs = arm_spe_pmu_attrs,
252};
253
254static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
255 &arm_spe_pmu_group,
256 &arm_spe_pmu_cap_group,
257 &arm_spe_pmu_format_group,
258 NULL,
259};
260
261/* Convert between user ABI and register values */
262static u64 arm_spe_event_to_pmscr(struct perf_event *event)
263{
264 struct perf_event_attr *attr = &event->attr;
265 u64 reg = 0;
266
267 reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
268 reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
269 reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
270
271 if (!attr->exclude_user)
272 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
273
274 if (!attr->exclude_kernel)
275 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
276
cea7d0d4 277 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
d5d9696b
WD
278 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
279
280 return reg;
281}
282
283static void arm_spe_event_sanitise_period(struct perf_event *event)
284{
285 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
286 u64 period = event->hw.sample_period;
287 u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
288 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
289
290 if (period < spe_pmu->min_period)
291 period = spe_pmu->min_period;
292 else if (period > max_period)
293 period = max_period;
294 else
295 period &= max_period;
296
297 event->hw.sample_period = period;
298}
299
300static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
301{
302 struct perf_event_attr *attr = &event->attr;
303 u64 reg = 0;
304
305 arm_spe_event_sanitise_period(event);
306
307 reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
308 reg |= event->hw.sample_period;
309
310 return reg;
311}
312
313static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
314{
315 struct perf_event_attr *attr = &event->attr;
316 u64 reg = 0;
317
318 reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
319 reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
320 reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
321
322 if (reg)
323 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
324
325 if (ATTR_CFG_GET_FLD(attr, event_filter))
326 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
327
328 if (ATTR_CFG_GET_FLD(attr, min_latency))
329 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
330
331 return reg;
332}
333
334static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
335{
336 struct perf_event_attr *attr = &event->attr;
337 return ATTR_CFG_GET_FLD(attr, event_filter);
338}
339
340static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
341{
342 struct perf_event_attr *attr = &event->attr;
343 return ATTR_CFG_GET_FLD(attr, min_latency)
344 << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
345}
346
347static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
348{
349 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
350 u64 head = PERF_IDX2OFF(handle->head, buf);
351
352 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
353 if (!buf->snapshot)
354 perf_aux_output_skip(handle, len);
355}
356
357static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
358{
359 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
360 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
361 u64 head = PERF_IDX2OFF(handle->head, buf);
362 u64 limit = buf->nr_pages * PAGE_SIZE;
363
364 /*
365 * The trace format isn't parseable in reverse, so clamp
366 * the limit to half of the buffer size in snapshot mode
367 * so that the worst case is half a buffer of records, as
368 * opposed to a single record.
369 */
370 if (head < limit >> 1)
371 limit >>= 1;
372
373 /*
374 * If we're within max_record_sz of the limit, we must
375 * pad, move the head index and recompute the limit.
376 */
377 if (limit - head < spe_pmu->max_record_sz) {
378 arm_spe_pmu_pad_buf(handle, limit - head);
379 handle->head = PERF_IDX2OFF(limit, buf);
380 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
381 }
382
383 return limit;
384}
385
386static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
387{
388 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
389 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
390 const u64 bufsize = buf->nr_pages * PAGE_SIZE;
391 u64 limit = bufsize;
392 u64 head, tail, wakeup;
393
394 /*
395 * The head can be misaligned for two reasons:
396 *
397 * 1. The hardware left PMBPTR pointing to the first byte after
398 * a record when generating a buffer management event.
399 *
400 * 2. We used perf_aux_output_skip to consume handle->size bytes
401 * and CIRC_SPACE was used to compute the size, which always
402 * leaves one entry free.
403 *
404 * Deal with this by padding to the next alignment boundary and
405 * moving the head index. If we run out of buffer space, we'll
406 * reduce handle->size to zero and end up reporting truncation.
407 */
408 head = PERF_IDX2OFF(handle->head, buf);
409 if (!IS_ALIGNED(head, spe_pmu->align)) {
410 unsigned long delta = roundup(head, spe_pmu->align) - head;
411
412 delta = min(delta, handle->size);
413 arm_spe_pmu_pad_buf(handle, delta);
414 head = PERF_IDX2OFF(handle->head, buf);
415 }
416
417 /* If we've run out of free space, then nothing more to do */
418 if (!handle->size)
419 goto no_space;
420
421 /* Compute the tail and wakeup indices now that we've aligned head */
422 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
423 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
424
425 /*
426 * Avoid clobbering unconsumed data. We know we have space, so
427 * if we see head == tail we know that the buffer is empty. If
428 * head > tail, then there's nothing to clobber prior to
429 * wrapping.
430 */
431 if (head < tail)
432 limit = round_down(tail, PAGE_SIZE);
433
434 /*
435 * Wakeup may be arbitrarily far into the future. If it's not in
436 * the current generation, either we'll wrap before hitting it,
437 * or it's in the past and has been handled already.
438 *
439 * If there's a wakeup before we wrap, arrange to be woken up by
440 * the page boundary following it. Keep the tail boundary if
441 * that's lower.
442 */
443 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
444 limit = min(limit, round_up(wakeup, PAGE_SIZE));
445
446 if (limit > head)
447 return limit;
448
449 arm_spe_pmu_pad_buf(handle, handle->size);
450no_space:
451 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
452 perf_aux_output_end(handle, 0);
453 return 0;
454}
455
456static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
457{
458 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
459 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
460 u64 limit = __arm_spe_pmu_next_off(handle);
461 u64 head = PERF_IDX2OFF(handle->head, buf);
462
463 /*
464 * If the head has come too close to the end of the buffer,
465 * then pad to the end and recompute the limit.
466 */
467 if (limit && (limit - head < spe_pmu->max_record_sz)) {
468 arm_spe_pmu_pad_buf(handle, limit - head);
469 limit = __arm_spe_pmu_next_off(handle);
470 }
471
472 return limit;
473}
474
475static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
476 struct perf_event *event)
477{
478 u64 base, limit;
479 struct arm_spe_pmu_buf *buf;
480
481 /* Start a new aux session */
482 buf = perf_aux_output_begin(handle, event);
483 if (!buf) {
484 event->hw.state |= PERF_HES_STOPPED;
485 /*
486 * We still need to clear the limit pointer, since the
487 * profiler might only be disabled by virtue of a fault.
488 */
489 limit = 0;
490 goto out_write_limit;
491 }
492
493 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
494 : arm_spe_pmu_next_off(handle);
495 if (limit)
496 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
497
498 limit += (u64)buf->base;
499 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
500 write_sysreg_s(base, SYS_PMBPTR_EL1);
501
502out_write_limit:
503 write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
504}
505
506static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
507{
508 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
509 u64 offset, size;
510
511 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
512 size = offset - PERF_IDX2OFF(handle->head, buf);
513
514 if (buf->snapshot)
515 handle->head = offset;
516
517 perf_aux_output_end(handle, size);
518}
519
520static void arm_spe_pmu_disable_and_drain_local(void)
521{
522 /* Disable profiling at EL0 and EL1 */
523 write_sysreg_s(0, SYS_PMSCR_EL1);
524 isb();
525
526 /* Drain any buffered data */
527 psb_csync();
528 dsb(nsh);
529
530 /* Disable the profiling buffer */
531 write_sysreg_s(0, SYS_PMBLIMITR_EL1);
532 isb();
533}
534
535/* IRQ handling */
536static enum arm_spe_pmu_buf_fault_action
537arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
538{
539 const char *err_str;
540 u64 pmbsr;
541 enum arm_spe_pmu_buf_fault_action ret;
542
543 /*
544 * Ensure new profiling data is visible to the CPU and any external
545 * aborts have been resolved.
546 */
547 psb_csync();
548 dsb(nsh);
549
550 /* Ensure hardware updates to PMBPTR_EL1 are visible */
551 isb();
552
553 /* Service required? */
554 pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
555 if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
556 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
557
558 /*
559 * If we've lost data, disable profiling and also set the PARTIAL
560 * flag to indicate that the last record is corrupted.
561 */
562 if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
563 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
564 PERF_AUX_FLAG_PARTIAL);
565
566 /* Report collisions to userspace so that it can up the period */
567 if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
568 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
569
570 /* We only expect buffer management events */
571 switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
572 case SYS_PMBSR_EL1_EC_BUF:
573 /* Handled below */
574 break;
575 case SYS_PMBSR_EL1_EC_FAULT_S1:
576 case SYS_PMBSR_EL1_EC_FAULT_S2:
577 err_str = "Unexpected buffer fault";
578 goto out_err;
579 default:
580 err_str = "Unknown error code";
581 goto out_err;
582 }
583
584 /* Buffer management event */
585 switch (pmbsr &
586 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
587 case SYS_PMBSR_EL1_BUF_BSC_FULL:
588 ret = SPE_PMU_BUF_FAULT_ACT_OK;
589 goto out_stop;
590 default:
591 err_str = "Unknown buffer status code";
592 }
593
594out_err:
595 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
596 err_str, smp_processor_id(), pmbsr,
597 read_sysreg_s(SYS_PMBPTR_EL1),
598 read_sysreg_s(SYS_PMBLIMITR_EL1));
599 ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
600
601out_stop:
602 arm_spe_perf_aux_output_end(handle);
603 return ret;
604}
605
606static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
607{
608 struct perf_output_handle *handle = dev;
609 struct perf_event *event = handle->event;
610 enum arm_spe_pmu_buf_fault_action act;
611
612 if (!perf_get_aux(handle))
613 return IRQ_NONE;
614
615 act = arm_spe_pmu_buf_get_fault_act(handle);
616 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
617 return IRQ_NONE;
618
619 /*
620 * Ensure perf callbacks have completed, which may disable the
621 * profiling buffer in response to a TRUNCATION flag.
622 */
623 irq_work_run();
624
625 switch (act) {
626 case SPE_PMU_BUF_FAULT_ACT_FATAL:
627 /*
628 * If a fatal exception occurred then leaving the profiling
629 * buffer enabled is a recipe waiting to happen. Since
630 * fatal faults don't always imply truncation, make sure
631 * that the profiling buffer is disabled explicitly before
632 * clearing the syndrome register.
633 */
634 arm_spe_pmu_disable_and_drain_local();
635 break;
636 case SPE_PMU_BUF_FAULT_ACT_OK:
637 /*
638 * We handled the fault (the buffer was full), so resume
639 * profiling as long as we didn't detect truncation.
640 * PMBPTR might be misaligned, but we'll burn that bridge
641 * when we get to it.
642 */
643 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
644 arm_spe_perf_aux_output_begin(handle, event);
645 isb();
646 }
647 break;
648 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
649 /* We've seen you before, but GCC has the memory of a sieve. */
650 break;
651 }
652
653 /* The buffer pointers are now sane, so resume profiling. */
654 write_sysreg_s(0, SYS_PMBSR_EL1);
655 return IRQ_HANDLED;
656}
657
4a669e24
WL
658static u64 arm_spe_pmsevfr_res0(u16 pmsver)
659{
660 switch (pmsver) {
661 case ID_AA64DFR0_PMSVER_8_2:
662 return SYS_PMSEVFR_EL1_RES0_8_2;
663 case ID_AA64DFR0_PMSVER_8_3:
664 /* Return the highest version we support in default */
665 default:
666 return SYS_PMSEVFR_EL1_RES0_8_3;
667 }
668}
669
d5d9696b
WD
670/* Perf callbacks */
671static int arm_spe_pmu_event_init(struct perf_event *event)
672{
673 u64 reg;
674 struct perf_event_attr *attr = &event->attr;
675 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
676
677 /* This is, of course, deeply driver-specific */
678 if (attr->type != event->pmu->type)
679 return -ENOENT;
680
681 if (event->cpu >= 0 &&
682 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
683 return -ENOENT;
684
4a669e24 685 if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
d5d9696b
WD
686 return -EOPNOTSUPP;
687
688 if (attr->exclude_idle)
689 return -EOPNOTSUPP;
690
691 /*
692 * Feedback-directed frequency throttling doesn't work when we
693 * have a buffer of samples. We'd need to manually count the
694 * samples in the buffer when it fills up and adjust the event
695 * count to reflect that. Instead, just force the user to specify
696 * a sample period.
697 */
698 if (attr->freq)
699 return -EINVAL;
700
701 reg = arm_spe_event_to_pmsfcr(event);
702 if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
703 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
704 return -EOPNOTSUPP;
705
706 if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
707 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
708 return -EOPNOTSUPP;
709
710 if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
711 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
712 return -EOPNOTSUPP;
713
714 reg = arm_spe_event_to_pmscr(event);
cea7d0d4 715 if (!perfmon_capable() &&
d5d9696b
WD
716 (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
717 BIT(SYS_PMSCR_EL1_CX_SHIFT) |
718 BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
719 return -EACCES;
720
721 return 0;
722}
723
724static void arm_spe_pmu_start(struct perf_event *event, int flags)
725{
726 u64 reg;
727 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
728 struct hw_perf_event *hwc = &event->hw;
729 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
730
731 hwc->state = 0;
732 arm_spe_perf_aux_output_begin(handle, event);
733 if (hwc->state)
734 return;
735
736 reg = arm_spe_event_to_pmsfcr(event);
737 write_sysreg_s(reg, SYS_PMSFCR_EL1);
738
739 reg = arm_spe_event_to_pmsevfr(event);
740 write_sysreg_s(reg, SYS_PMSEVFR_EL1);
741
742 reg = arm_spe_event_to_pmslatfr(event);
743 write_sysreg_s(reg, SYS_PMSLATFR_EL1);
744
745 if (flags & PERF_EF_RELOAD) {
746 reg = arm_spe_event_to_pmsirr(event);
747 write_sysreg_s(reg, SYS_PMSIRR_EL1);
748 isb();
749 reg = local64_read(&hwc->period_left);
750 write_sysreg_s(reg, SYS_PMSICR_EL1);
751 }
752
753 reg = arm_spe_event_to_pmscr(event);
754 isb();
755 write_sysreg_s(reg, SYS_PMSCR_EL1);
756}
757
758static void arm_spe_pmu_stop(struct perf_event *event, int flags)
759{
760 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
761 struct hw_perf_event *hwc = &event->hw;
762 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
763
764 /* If we're already stopped, then nothing to do */
765 if (hwc->state & PERF_HES_STOPPED)
766 return;
767
768 /* Stop all trace generation */
769 arm_spe_pmu_disable_and_drain_local();
770
771 if (flags & PERF_EF_UPDATE) {
772 /*
773 * If there's a fault pending then ensure we contain it
774 * to this buffer, since we might be on the context-switch
775 * path.
776 */
777 if (perf_get_aux(handle)) {
778 enum arm_spe_pmu_buf_fault_action act;
779
780 act = arm_spe_pmu_buf_get_fault_act(handle);
781 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
782 arm_spe_perf_aux_output_end(handle);
783 else
784 write_sysreg_s(0, SYS_PMBSR_EL1);
785 }
786
787 /*
788 * This may also contain ECOUNT, but nobody else should
789 * be looking at period_left, since we forbid frequency
790 * based sampling.
791 */
792 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
793 hwc->state |= PERF_HES_UPTODATE;
794 }
795
796 hwc->state |= PERF_HES_STOPPED;
797}
798
799static int arm_spe_pmu_add(struct perf_event *event, int flags)
800{
801 int ret = 0;
802 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
803 struct hw_perf_event *hwc = &event->hw;
804 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
805
806 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
807 return -ENOENT;
808
809 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
810
811 if (flags & PERF_EF_START) {
812 arm_spe_pmu_start(event, PERF_EF_RELOAD);
813 if (hwc->state & PERF_HES_STOPPED)
814 ret = -EINVAL;
815 }
816
817 return ret;
818}
819
820static void arm_spe_pmu_del(struct perf_event *event, int flags)
821{
822 arm_spe_pmu_stop(event, PERF_EF_UPDATE);
823}
824
825static void arm_spe_pmu_read(struct perf_event *event)
826{
827}
828
84001866
MP
829static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
830 int nr_pages, bool snapshot)
d5d9696b 831{
84001866 832 int i, cpu = event->cpu;
d5d9696b
WD
833 struct page **pglist;
834 struct arm_spe_pmu_buf *buf;
835
836 /* We need at least two pages for this to work. */
837 if (nr_pages < 2)
838 return NULL;
839
840 /*
841 * We require an even number of pages for snapshot mode, so that
842 * we can effectively treat the buffer as consisting of two equal
843 * parts and give userspace a fighting chance of getting some
844 * useful data out of it.
845 */
aaa19727 846 if (snapshot && (nr_pages & 1))
d5d9696b
WD
847 return NULL;
848
849 if (cpu == -1)
850 cpu = raw_smp_processor_id();
851
852 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
853 if (!buf)
854 return NULL;
855
856 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
857 if (!pglist)
858 goto out_free_buf;
859
14ae42a6 860 for (i = 0; i < nr_pages; ++i)
d5d9696b 861 pglist[i] = virt_to_page(pages[i]);
d5d9696b
WD
862
863 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
864 if (!buf->base)
865 goto out_free_pglist;
866
867 buf->nr_pages = nr_pages;
868 buf->snapshot = snapshot;
869
870 kfree(pglist);
871 return buf;
872
873out_free_pglist:
874 kfree(pglist);
875out_free_buf:
876 kfree(buf);
877 return NULL;
878}
879
880static void arm_spe_pmu_free_aux(void *aux)
881{
882 struct arm_spe_pmu_buf *buf = aux;
883
884 vunmap(buf->base);
885 kfree(buf);
886}
887
888/* Initialisation and teardown functions */
889static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
890{
891 static atomic_t pmu_idx = ATOMIC_INIT(-1);
892
893 int idx;
894 char *name;
895 struct device *dev = &spe_pmu->pdev->dev;
896
897 spe_pmu->pmu = (struct pmu) {
19b4aff2 898 .module = THIS_MODULE,
d5d9696b
WD
899 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
900 .attr_groups = arm_spe_pmu_attr_groups,
901 /*
902 * We hitch a ride on the software context here, so that
903 * we can support per-task profiling (which is not possible
904 * with the invalid context as it doesn't get sched callbacks).
905 * This requires that userspace either uses a dummy event for
906 * perf_event_open, since the aux buffer is not setup until
907 * a subsequent mmap, or creates the profiling event in a
908 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
909 * once the buffer has been created.
910 */
911 .task_ctx_nr = perf_sw_context,
912 .event_init = arm_spe_pmu_event_init,
913 .add = arm_spe_pmu_add,
914 .del = arm_spe_pmu_del,
915 .start = arm_spe_pmu_start,
916 .stop = arm_spe_pmu_stop,
917 .read = arm_spe_pmu_read,
918 .setup_aux = arm_spe_pmu_setup_aux,
919 .free_aux = arm_spe_pmu_free_aux,
920 };
921
922 idx = atomic_inc_return(&pmu_idx);
923 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
754a58db
NMG
924 if (!name) {
925 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
926 return -ENOMEM;
927 }
928
d5d9696b
WD
929 return perf_pmu_register(&spe_pmu->pmu, name, -1);
930}
931
932static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
933{
934 perf_pmu_unregister(&spe_pmu->pmu);
935}
936
937static void __arm_spe_pmu_dev_probe(void *info)
938{
939 int fld;
940 u64 reg;
941 struct arm_spe_pmu *spe_pmu = info;
942 struct device *dev = &spe_pmu->pdev->dev;
943
944 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
945 ID_AA64DFR0_PMSVER_SHIFT);
946 if (!fld) {
947 dev_err(dev,
948 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
949 fld, smp_processor_id());
950 return;
951 }
4a669e24 952 spe_pmu->pmsver = (u16)fld;
d5d9696b
WD
953
954 /* Read PMBIDR first to determine whether or not we have access */
955 reg = read_sysreg_s(SYS_PMBIDR_EL1);
956 if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
957 dev_err(dev,
958 "profiling buffer owned by higher exception level\n");
959 return;
960 }
961
962 /* Minimum alignment. If it's out-of-range, then fail the probe */
963 fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
964 spe_pmu->align = 1 << fld;
965 if (spe_pmu->align > SZ_2K) {
966 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
967 fld, smp_processor_id());
968 return;
969 }
970
971 /* It's now safe to read PMSIDR and figure out what we've got */
972 reg = read_sysreg_s(SYS_PMSIDR_EL1);
973 if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
974 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
975
976 if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
977 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
978
979 if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
980 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
981
982 if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
983 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
984
985 if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
986 spe_pmu->features |= SPE_PMU_FEAT_LDS;
987
988 if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
989 spe_pmu->features |= SPE_PMU_FEAT_ERND;
990
991 /* This field has a spaced out encoding, so just use a look-up */
992 fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
993 switch (fld) {
994 case 0:
995 spe_pmu->min_period = 256;
996 break;
997 case 2:
998 spe_pmu->min_period = 512;
999 break;
1000 case 3:
1001 spe_pmu->min_period = 768;
1002 break;
1003 case 4:
1004 spe_pmu->min_period = 1024;
1005 break;
1006 case 5:
1007 spe_pmu->min_period = 1536;
1008 break;
1009 case 6:
1010 spe_pmu->min_period = 2048;
1011 break;
1012 case 7:
1013 spe_pmu->min_period = 3072;
1014 break;
1015 default:
1016 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1017 fld);
df561f66 1018 fallthrough;
d5d9696b
WD
1019 case 8:
1020 spe_pmu->min_period = 4096;
1021 }
1022
1023 /* Maximum record size. If it's out-of-range, then fail the probe */
1024 fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1025 spe_pmu->max_record_sz = 1 << fld;
1026 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1027 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1028 fld, smp_processor_id());
1029 return;
1030 }
1031
1032 fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1033 switch (fld) {
1034 default:
1035 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1036 fld);
df561f66 1037 fallthrough;
d5d9696b
WD
1038 case 2:
1039 spe_pmu->counter_sz = 12;
1040 }
1041
1042 dev_info(dev,
1043 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1044 cpumask_pr_args(&spe_pmu->supported_cpus),
1045 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1046
1047 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1048 return;
1049}
1050
1051static void __arm_spe_pmu_reset_local(void)
1052{
1053 /*
1054 * This is probably overkill, as we have no idea where we're
1055 * draining any buffered data to...
1056 */
1057 arm_spe_pmu_disable_and_drain_local();
1058
1059 /* Reset the buffer base pointer */
1060 write_sysreg_s(0, SYS_PMBPTR_EL1);
1061 isb();
1062
1063 /* Clear any pending management interrupts */
1064 write_sysreg_s(0, SYS_PMBSR_EL1);
1065 isb();
1066}
1067
1068static void __arm_spe_pmu_setup_one(void *info)
1069{
1070 struct arm_spe_pmu *spe_pmu = info;
1071
1072 __arm_spe_pmu_reset_local();
1073 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1074}
1075
1076static void __arm_spe_pmu_stop_one(void *info)
1077{
1078 struct arm_spe_pmu *spe_pmu = info;
1079
1080 disable_percpu_irq(spe_pmu->irq);
1081 __arm_spe_pmu_reset_local();
1082}
1083
1084static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1085{
1086 struct arm_spe_pmu *spe_pmu;
1087
1088 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1089 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1090 return 0;
1091
1092 __arm_spe_pmu_setup_one(spe_pmu);
1093 return 0;
1094}
1095
1096static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1097{
1098 struct arm_spe_pmu *spe_pmu;
1099
1100 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1101 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1102 return 0;
1103
1104 __arm_spe_pmu_stop_one(spe_pmu);
1105 return 0;
1106}
1107
1108static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1109{
1110 int ret;
1111 cpumask_t *mask = &spe_pmu->supported_cpus;
1112
1113 /* Make sure we probe the hardware on a relevant CPU */
1114 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1);
1115 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1116 return -ENXIO;
1117
1118 /* Request our PPIs (note that the IRQ is still disabled) */
1119 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1120 spe_pmu->handle);
1121 if (ret)
1122 return ret;
1123
1124 /*
1125 * Register our hotplug notifier now so we don't miss any events.
1126 * This will enable the IRQ for any supported CPUs that are already
1127 * up.
1128 */
1129 ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1130 &spe_pmu->hotplug_node);
1131 if (ret)
1132 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1133
1134 return ret;
1135}
1136
1137static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1138{
1139 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1140 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1141}
1142
1143/* Driver and device probing */
1144static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1145{
1146 struct platform_device *pdev = spe_pmu->pdev;
1147 int irq = platform_get_irq(pdev, 0);
1148
1f0d97bb 1149 if (irq < 0)
d5d9696b 1150 return -ENXIO;
d5d9696b
WD
1151
1152 if (!irq_is_percpu(irq)) {
1153 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1154 return -EINVAL;
1155 }
1156
1157 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1158 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1159 return -EINVAL;
1160 }
1161
1162 spe_pmu->irq = irq;
1163 return 0;
1164}
1165
1166static const struct of_device_id arm_spe_pmu_of_match[] = {
1167 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1168 { /* Sentinel */ },
1169};
472dc9fa 1170MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
d5d9696b 1171
d482e575
JL
1172static const struct platform_device_id arm_spe_match[] = {
1173 { ARMV8_SPE_PDEV_NAME, 0},
1174 { }
1175};
1176MODULE_DEVICE_TABLE(platform, arm_spe_match);
1177
1178static int arm_spe_pmu_device_probe(struct platform_device *pdev)
d5d9696b
WD
1179{
1180 int ret;
1181 struct arm_spe_pmu *spe_pmu;
1182 struct device *dev = &pdev->dev;
1183
7a4a0c15
WD
1184 /*
1185 * If kernelspace is unmapped when running at EL0, then the SPE
1186 * buffer will fault and prematurely terminate the AUX session.
1187 */
1188 if (arm64_kernel_unmapped_at_el0()) {
1189 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1190 return -EPERM;
1191 }
1192
d5d9696b
WD
1193 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1194 if (!spe_pmu) {
1195 dev_err(dev, "failed to allocate spe_pmu\n");
1196 return -ENOMEM;
1197 }
1198
1199 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1200 if (!spe_pmu->handle)
1201 return -ENOMEM;
1202
1203 spe_pmu->pdev = pdev;
1204 platform_set_drvdata(pdev, spe_pmu);
1205
1206 ret = arm_spe_pmu_irq_probe(spe_pmu);
1207 if (ret)
1208 goto out_free_handle;
1209
1210 ret = arm_spe_pmu_dev_init(spe_pmu);
1211 if (ret)
1212 goto out_free_handle;
1213
1214 ret = arm_spe_pmu_perf_init(spe_pmu);
1215 if (ret)
1216 goto out_teardown_dev;
1217
1218 return 0;
1219
1220out_teardown_dev:
1221 arm_spe_pmu_dev_teardown(spe_pmu);
1222out_free_handle:
1223 free_percpu(spe_pmu->handle);
1224 return ret;
1225}
1226
1227static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1228{
1229 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1230
1231 arm_spe_pmu_perf_destroy(spe_pmu);
1232 arm_spe_pmu_dev_teardown(spe_pmu);
1233 free_percpu(spe_pmu->handle);
1234 return 0;
1235}
1236
1237static struct platform_driver arm_spe_pmu_driver = {
d482e575 1238 .id_table = arm_spe_match,
d5d9696b
WD
1239 .driver = {
1240 .name = DRVNAME,
1241 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
f32ed8eb 1242 .suppress_bind_attrs = true,
d5d9696b 1243 },
d482e575 1244 .probe = arm_spe_pmu_device_probe,
d5d9696b
WD
1245 .remove = arm_spe_pmu_device_remove,
1246};
1247
1248static int __init arm_spe_pmu_init(void)
1249{
1250 int ret;
1251
1252 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1253 arm_spe_pmu_cpu_startup,
1254 arm_spe_pmu_cpu_teardown);
1255 if (ret < 0)
1256 return ret;
1257 arm_spe_pmu_online = ret;
1258
1259 ret = platform_driver_register(&arm_spe_pmu_driver);
1260 if (ret)
1261 cpuhp_remove_multi_state(arm_spe_pmu_online);
1262
1263 return ret;
1264}
1265
1266static void __exit arm_spe_pmu_exit(void)
1267{
1268 platform_driver_unregister(&arm_spe_pmu_driver);
1269 cpuhp_remove_multi_state(arm_spe_pmu_online);
1270}
1271
1272module_init(arm_spe_pmu_init);
1273module_exit(arm_spe_pmu_exit);
1274
1275MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1276MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1277MODULE_LICENSE("GPL v2");