]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/phy/phy-xgene.c
drm/msm: Fix range size vs end confusion
[mirror_ubuntu-jammy-kernel.git] / drivers / phy / phy-xgene.c
CommitLineData
1ccea77e 1// SPDX-License-Identifier: GPL-2.0-or-later
88e670fe
LH
2/*
3 * AppliedMicro X-Gene Multi-purpose PHY driver
4 *
5 * Copyright (c) 2014, Applied Micro Circuits Corporation
6 * Author: Loc Ho <lho@apm.com>
7 * Tuan Phan <tphan@apm.com>
8 * Suman Tripathi <stripathi@apm.com>
9 *
88e670fe
LH
10 * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
11 * The first PLL clock macro is used for internal reference clock. The second
12 * PLL clock macro is used to generate the clock for the PHY. This driver
13 * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
14 * operate according to the mode of operation. The first PLL CMU is only
15 * required if internal clock is enabled.
16 *
17 * Logical Layer Out Of HW module units:
18 *
19 * -----------------
20 * | Internal | |------|
21 * | Ref PLL CMU |----| | ------------- ---------
22 * ------------ ---- | MUX |-----|PHY PLL CMU|----| Serdes|
23 * | | | | ---------
24 * External Clock ------| | -------------
25 * |------|
26 *
27 * The Ref PLL CMU CSR (Configuration System Registers) is accessed
28 * indirectly from the SDS offset at 0x2000. It is only required for
29 * internal reference clock.
30 * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
31 * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
32 *
33 * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
34 * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
35 * it is located outside the PHY IP. This is the case for the PHY located
36 * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
37 * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
38 *
39 * Currently, this driver only supports Gen3 SATA mode with external clock.
40 */
41#include <linux/module.h>
42#include <linux/platform_device.h>
43#include <linux/io.h>
44#include <linux/delay.h>
45#include <linux/phy/phy.h>
46#include <linux/clk.h>
47
48/* Max 2 lanes per a PHY unit */
49#define MAX_LANE 2
50
51/* Register offset inside the PHY */
52#define SERDES_PLL_INDIRECT_OFFSET 0x0000
53#define SERDES_PLL_REF_INDIRECT_OFFSET 0x2000
54#define SERDES_INDIRECT_OFFSET 0x0400
55#define SERDES_LANE_STRIDE 0x0200
56
57/* Some default Serdes parameters */
58#define DEFAULT_SATA_TXBOOST_GAIN { 0x1e, 0x1e, 0x1e }
59#define DEFAULT_SATA_TXEYEDIRECTION { 0x0, 0x0, 0x0 }
60#define DEFAULT_SATA_TXEYETUNING { 0xa, 0xa, 0xa }
61#define DEFAULT_SATA_SPD_SEL { 0x1, 0x3, 0x7 }
62#define DEFAULT_SATA_TXAMP { 0x8, 0x8, 0x8 }
63#define DEFAULT_SATA_TXCN1 { 0x2, 0x2, 0x2 }
64#define DEFAULT_SATA_TXCN2 { 0x0, 0x0, 0x0 }
65#define DEFAULT_SATA_TXCP1 { 0xa, 0xa, 0xa }
66
67#define SATA_SPD_SEL_GEN3 0x7
68#define SATA_SPD_SEL_GEN2 0x3
69#define SATA_SPD_SEL_GEN1 0x1
70
71#define SSC_DISABLE 0
72#define SSC_ENABLE 1
73
74#define FBDIV_VAL_50M 0x77
75#define REFDIV_VAL_50M 0x1
76#define FBDIV_VAL_100M 0x3B
77#define REFDIV_VAL_100M 0x0
78
79/* SATA Clock/Reset CSR */
80#define SATACLKENREG 0x00000000
81#define SATA0_CORE_CLKEN 0x00000002
82#define SATA1_CORE_CLKEN 0x00000004
83#define SATASRESETREG 0x00000004
84#define SATA_MEM_RESET_MASK 0x00000020
85#define SATA_MEM_RESET_RD(src) (((src) & 0x00000020) >> 5)
86#define SATA_SDS_RESET_MASK 0x00000004
87#define SATA_CSR_RESET_MASK 0x00000001
88#define SATA_CORE_RESET_MASK 0x00000002
89#define SATA_PMCLK_RESET_MASK 0x00000010
90#define SATA_PCLK_RESET_MASK 0x00000008
91
92/* SDS CSR used for PHY Indirect access */
93#define SATA_ENET_SDS_PCS_CTL0 0x00000000
94#define REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
95 (((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
96#define REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
97 (((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
98#define SATA_ENET_SDS_CTL0 0x0000000c
99#define REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
100 (((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
101#define SATA_ENET_SDS_CTL1 0x00000010
102#define CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
103 (((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
104#define SATA_ENET_SDS_RST_CTL 0x00000024
105#define SATA_ENET_SDS_IND_CMD_REG 0x0000003c
106#define CFG_IND_WR_CMD_MASK 0x00000001
107#define CFG_IND_RD_CMD_MASK 0x00000002
108#define CFG_IND_CMD_DONE_MASK 0x00000004
109#define CFG_IND_ADDR_SET(dst, src) \
110 (((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
111#define SATA_ENET_SDS_IND_RDATA_REG 0x00000040
112#define SATA_ENET_SDS_IND_WDATA_REG 0x00000044
113#define SATA_ENET_CLK_MACRO_REG 0x0000004c
114#define I_RESET_B_SET(dst, src) \
115 (((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
116#define I_PLL_FBDIV_SET(dst, src) \
117 (((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
118#define I_CUSTOMEROV_SET(dst, src) \
119 (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
120#define O_PLL_LOCK_RD(src) (((src) & 0x40000000) >> 30)
121#define O_PLL_READY_RD(src) (((src) & 0x80000000) >> 31)
122
123/* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
124#define CMU_REG0 0x00000
125#define CMU_REG0_PLL_REF_SEL_MASK 0x00002000
126#define CMU_REG0_PLL_REF_SEL_SET(dst, src) \
127 (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
128#define CMU_REG0_PDOWN_MASK 0x00004000
129#define CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
130 (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
131#define CMU_REG1 0x00002
132#define CMU_REG1_PLL_CP_SET(dst, src) \
133 (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
134#define CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
135 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
136#define CMU_REG1_PLL_CP_SEL_SET(dst, src) \
137 (((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
138#define CMU_REG1_REFCLK_CMOS_SEL_MASK 0x00000001
139#define CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src) \
140 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
141#define CMU_REG2 0x00004
142#define CMU_REG2_PLL_REFDIV_SET(dst, src) \
143 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
144#define CMU_REG2_PLL_LFRES_SET(dst, src) \
145 (((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
146#define CMU_REG2_PLL_FBDIV_SET(dst, src) \
147 (((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
148#define CMU_REG3 0x00006
149#define CMU_REG3_VCOVARSEL_SET(dst, src) \
150 (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
151#define CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
152 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
153#define CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
154 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
155#define CMU_REG4 0x00008
156#define CMU_REG5 0x0000a
157#define CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
158 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
159#define CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
160 (((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
161#define CMU_REG5_PLL_LFCAP_SET(dst, src) \
162 (((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
163#define CMU_REG5_PLL_RESETB_MASK 0x00000001
164#define CMU_REG6 0x0000c
165#define CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
166 (((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
167#define CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
168 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
169#define CMU_REG7 0x0000e
170#define CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
171#define CMU_REG7_VCO_CAL_FAIL_RD(src) ((0x00000c00 & (u32) (src)) >> 10)
172#define CMU_REG8 0x00010
173#define CMU_REG9 0x00012
174#define CMU_REG9_WORD_LEN_8BIT 0x000
175#define CMU_REG9_WORD_LEN_10BIT 0x001
176#define CMU_REG9_WORD_LEN_16BIT 0x002
177#define CMU_REG9_WORD_LEN_20BIT 0x003
178#define CMU_REG9_WORD_LEN_32BIT 0x004
179#define CMU_REG9_WORD_LEN_40BIT 0x005
180#define CMU_REG9_WORD_LEN_64BIT 0x006
181#define CMU_REG9_WORD_LEN_66BIT 0x007
182#define CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
183 (((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
184#define CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
185 (((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
186#define CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
187 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
188#define CMU_REG9_VBG_BYPASSB_SET(dst, src) \
189 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
190#define CMU_REG9_IGEN_BYPASS_SET(dst, src) \
191 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
192#define CMU_REG10 0x00014
193#define CMU_REG10_VREG_REFSEL_SET(dst, src) \
194 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
195#define CMU_REG11 0x00016
196#define CMU_REG12 0x00018
197#define CMU_REG12_STATE_DELAY9_SET(dst, src) \
198 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
199#define CMU_REG13 0x0001a
200#define CMU_REG14 0x0001c
201#define CMU_REG15 0x0001e
202#define CMU_REG16 0x00020
203#define CMU_REG16_PVT_DN_MAN_ENA_MASK 0x00000001
204#define CMU_REG16_PVT_UP_MAN_ENA_MASK 0x00000002
205#define CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
206 (((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
207#define CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
208 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
209#define CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
210 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
211#define CMU_REG17 0x00022
212#define CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
213 (((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
214#define CMU_REG17_RESERVED_7_SET(dst, src) \
215 (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
216#define CMU_REG17_PVT_TERM_MAN_ENA_MASK 0x00008000
217#define CMU_REG18 0x00024
218#define CMU_REG19 0x00026
219#define CMU_REG20 0x00028
220#define CMU_REG21 0x0002a
221#define CMU_REG22 0x0002c
222#define CMU_REG23 0x0002e
223#define CMU_REG24 0x00030
224#define CMU_REG25 0x00032
225#define CMU_REG26 0x00034
226#define CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
227 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
228#define CMU_REG27 0x00036
229#define CMU_REG28 0x00038
230#define CMU_REG29 0x0003a
231#define CMU_REG30 0x0003c
232#define CMU_REG30_LOCK_COUNT_SET(dst, src) \
233 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
234#define CMU_REG30_PCIE_MODE_SET(dst, src) \
235 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
236#define CMU_REG31 0x0003e
237#define CMU_REG32 0x00040
238#define CMU_REG32_FORCE_VCOCAL_START_MASK 0x00004000
239#define CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
240 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
241#define CMU_REG32_IREF_ADJ_SET(dst, src) \
242 (((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
243#define CMU_REG33 0x00042
244#define CMU_REG34 0x00044
245#define CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
246 (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
247#define CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
248 (((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
249#define CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
250 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
251#define CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
252 (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
253#define CMU_REG35 0x00046
254#define CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
255 (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
256#define CMU_REG36 0x00048
257#define CMU_REG36_PLL_SSC_EN_SET(dst, src) \
258 (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
259#define CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
260 (((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
261#define CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
262 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
263#define CMU_REG37 0x0004a
264#define CMU_REG38 0x0004c
265#define CMU_REG39 0x0004e
266
267/* PHY lane CSR accessing from SDS indirectly */
268#define RXTX_REG0 0x000
269#define RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
270 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
271#define RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
272 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
273#define RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
274 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
275#define RXTX_REG1 0x002
276#define RXTX_REG1_RXACVCM_SET(dst, src) \
277 (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
278#define RXTX_REG1_CTLE_EQ_SET(dst, src) \
279 (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
280#define RXTX_REG1_RXVREG1_SET(dst, src) \
281 (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
282#define RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
283 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
284#define RXTX_REG2 0x004
285#define RXTX_REG2_VTT_ENA_SET(dst, src) \
286 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
287#define RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
288 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
289#define RXTX_REG2_VTT_SEL_SET(dst, src) \
290 (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
291#define RXTX_REG4 0x008
292#define RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK 0x00000040
293#define RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
294 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
295#define RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
296 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
297#define RXTX_REG5 0x00a
298#define RXTX_REG5_TX_CN1_SET(dst, src) \
299 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
300#define RXTX_REG5_TX_CP1_SET(dst, src) \
301 (((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
302#define RXTX_REG5_TX_CN2_SET(dst, src) \
303 (((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
304#define RXTX_REG6 0x00c
305#define RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
306 (((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
307#define RXTX_REG6_TXAMP_ENA_SET(dst, src) \
308 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
309#define RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
310 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
311#define RXTX_REG6_TX_IDLE_SET(dst, src) \
312 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
313#define RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
314 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
315#define RXTX_REG7 0x00e
316#define RXTX_REG7_RESETB_RXD_MASK 0x00000100
317#define RXTX_REG7_RESETB_RXA_MASK 0x00000080
318#define RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
319 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
320#define RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
321 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
322#define RXTX_REG8 0x010
323#define RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
324 (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
325#define RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
326 (((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
327#define RXTX_REG8_SSC_ENABLE_SET(dst, src) \
328 (((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
329#define RXTX_REG8_SD_VREF_SET(dst, src) \
330 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
331#define RXTX_REG8_SD_DISABLE_SET(dst, src) \
332 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
333#define RXTX_REG7 0x00e
334#define RXTX_REG7_RESETB_RXD_SET(dst, src) \
335 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
336#define RXTX_REG7_RESETB_RXA_SET(dst, src) \
337 (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
338#define RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK 0x00004000
339#define RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
340 (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
341#define RXTX_REG11 0x016
342#define RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
343 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
344#define RXTX_REG12 0x018
345#define RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
346 (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
347#define RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
348 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
349#define RXTX_REG12_RX_DET_TERM_ENABLE_MASK 0x00000002
350#define RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
351 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
352#define RXTX_REG13 0x01a
353#define RXTX_REG14 0x01c
354#define RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
355 (((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
356#define RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
357 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
358#define RXTX_REG26 0x034
359#define RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
360 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
361#define RXTX_REG26_BLWC_ENA_SET(dst, src) \
362 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
363#define RXTX_REG21 0x02a
364#define RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
365#define RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
366#define RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src) ((0x0000000f & (u32)(src)))
367#define RXTX_REG22 0x02c
368#define RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
369#define RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
370#define RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) ((0x0000000f & (u32)(src)))
371#define RXTX_REG23 0x02e
372#define RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
373#define RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
374#define RXTX_REG24 0x030
375#define RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
376#define RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
377#define RXTX_REG27 0x036
378#define RXTX_REG28 0x038
379#define RXTX_REG31 0x03e
380#define RXTX_REG38 0x04c
381#define RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
382 (((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
383#define RXTX_REG39 0x04e
384#define RXTX_REG40 0x050
385#define RXTX_REG41 0x052
386#define RXTX_REG42 0x054
387#define RXTX_REG43 0x056
388#define RXTX_REG44 0x058
389#define RXTX_REG45 0x05a
390#define RXTX_REG46 0x05c
391#define RXTX_REG47 0x05e
392#define RXTX_REG48 0x060
393#define RXTX_REG49 0x062
394#define RXTX_REG50 0x064
395#define RXTX_REG51 0x066
396#define RXTX_REG52 0x068
397#define RXTX_REG53 0x06a
398#define RXTX_REG54 0x06c
399#define RXTX_REG55 0x06e
400#define RXTX_REG61 0x07a
401#define RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
402 (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
403#define RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
404 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
405#define RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
406 (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
407#define RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
408 (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
409#define RXTX_REG62 0x07c
410#define RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
411 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
412#define RXTX_REG81 0x0a2
413#define RXTX_REG89_MU_TH7_SET(dst, src) \
414 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
415#define RXTX_REG89_MU_TH8_SET(dst, src) \
416 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
417#define RXTX_REG89_MU_TH9_SET(dst, src) \
418 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
419#define RXTX_REG96 0x0c0
420#define RXTX_REG96_MU_FREQ1_SET(dst, src) \
421 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
422#define RXTX_REG96_MU_FREQ2_SET(dst, src) \
423 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
424#define RXTX_REG96_MU_FREQ3_SET(dst, src) \
425 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
426#define RXTX_REG99 0x0c6
427#define RXTX_REG99_MU_PHASE1_SET(dst, src) \
428 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
429#define RXTX_REG99_MU_PHASE2_SET(dst, src) \
430 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
431#define RXTX_REG99_MU_PHASE3_SET(dst, src) \
432 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
433#define RXTX_REG102 0x0cc
434#define RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
435 (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
436#define RXTX_REG114 0x0e4
437#define RXTX_REG121 0x0f2
438#define RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
439#define RXTX_REG125 0x0fa
440#define RXTX_REG125_PQ_REG_SET(dst, src) \
441 (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
442#define RXTX_REG125_SIGN_PQ_SET(dst, src) \
443 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
444#define RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
445 (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
446#define RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
447 (((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
448#define RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
449 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
450#define RXTX_REG127 0x0fe
451#define RXTX_REG127_FORCE_SUM_CAL_START_MASK 0x00000002
452#define RXTX_REG127_FORCE_LAT_CAL_START_MASK 0x00000004
453#define RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
454 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
455#define RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
456 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
457#define RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
458 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
459#define RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
460 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
461#define RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
462 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
463#define RXTX_REG128 0x100
464#define RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
465 (((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
466#define RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
467 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
468#define RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
469 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
470#define RXTX_REG129 0x102
471#define RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
472 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
473#define RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
474 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
475#define RXTX_REG130 0x104
476#define RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
477 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
478#define RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
479 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
480#define RXTX_REG145 0x122
481#define RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
482 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
483#define RXTX_REG145_RXES_ENA_SET(dst, src) \
484 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
485#define RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
486 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
487#define RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
488 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
489#define RXTX_REG147 0x126
490#define RXTX_REG148 0x128
491
492/* Clock macro type */
493enum cmu_type_t {
494 REF_CMU = 0, /* Clock macro is the internal reference clock */
495 PHY_CMU = 1, /* Clock macro is the PLL for the Serdes */
496};
497
498enum mux_type_t {
499 MUX_SELECT_ATA = 0, /* Switch the MUX to ATA */
500 MUX_SELECT_SGMMII = 0, /* Switch the MUX to SGMII */
501};
502
503enum clk_type_t {
504 CLK_EXT_DIFF = 0, /* External differential */
505 CLK_INT_DIFF = 1, /* Internal differential */
506 CLK_INT_SING = 2, /* Internal single ended */
507};
508
65048f4d 509enum xgene_phy_mode {
88e670fe
LH
510 MODE_SATA = 0, /* List them for simple reference */
511 MODE_SGMII = 1,
512 MODE_PCIE = 2,
513 MODE_USB = 3,
514 MODE_XFI = 4,
515 MODE_MAX
516};
517
518struct xgene_sata_override_param {
519 u32 speed[MAX_LANE]; /* Index for override parameter per lane */
520 u32 txspeed[3]; /* Tx speed */
521 u32 txboostgain[MAX_LANE*3]; /* Tx freq boost and gain control */
522 u32 txeyetuning[MAX_LANE*3]; /* Tx eye tuning */
523 u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
524 u32 txamplitude[MAX_LANE*3]; /* Tx amplitude control */
525 u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
526 u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
527 u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
528};
529
530struct xgene_phy_ctx {
531 struct device *dev;
532 struct phy *phy;
65048f4d 533 enum xgene_phy_mode mode; /* Mode of operation */
88e670fe
LH
534 enum clk_type_t clk_type; /* Input clock selection */
535 void __iomem *sds_base; /* PHY CSR base addr */
536 struct clk *clk; /* Optional clock */
537
538 /* Override Serdes parameters */
539 struct xgene_sata_override_param sata_param;
540};
541
542/*
543 * For chip earlier than A3 version, enable this flag.
544 * To enable, pass boot argument phy_xgene.preA3Chip=1
545 */
546static int preA3Chip;
547MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
548module_param_named(preA3Chip, preA3Chip, int, 0444);
549
550static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
551 u32 indirect_data_reg, u32 addr, u32 data)
552{
553 unsigned long deadline = jiffies + HZ;
554 u32 val;
555 u32 cmd;
556
557 cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
558 cmd = CFG_IND_ADDR_SET(cmd, addr);
559 writel(data, csr_base + indirect_data_reg);
560 readl(csr_base + indirect_data_reg); /* Force a barrier */
561 writel(cmd, csr_base + indirect_cmd_reg);
562 readl(csr_base + indirect_cmd_reg); /* Force a barrier */
563 do {
564 val = readl(csr_base + indirect_cmd_reg);
565 } while (!(val & CFG_IND_CMD_DONE_MASK) &&
566 time_before(jiffies, deadline));
567 if (!(val & CFG_IND_CMD_DONE_MASK))
568 pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
569 csr_base + indirect_cmd_reg, addr, data);
570}
571
572static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
573 u32 indirect_data_reg, u32 addr, u32 *data)
574{
575 unsigned long deadline = jiffies + HZ;
576 u32 val;
577 u32 cmd;
578
579 cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
580 cmd = CFG_IND_ADDR_SET(cmd, addr);
581 writel(cmd, csr_base + indirect_cmd_reg);
582 readl(csr_base + indirect_cmd_reg); /* Force a barrier */
583 do {
584 val = readl(csr_base + indirect_cmd_reg);
585 } while (!(val & CFG_IND_CMD_DONE_MASK) &&
586 time_before(jiffies, deadline));
587 *data = readl(csr_base + indirect_data_reg);
588 if (!(val & CFG_IND_CMD_DONE_MASK))
589 pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
590 csr_base + indirect_cmd_reg, addr, *data);
591}
592
593static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
594 u32 reg, u32 data)
595{
596 void __iomem *sds_base = ctx->sds_base;
597 u32 val;
598
599 if (cmu_type == REF_CMU)
600 reg += SERDES_PLL_REF_INDIRECT_OFFSET;
601 else
602 reg += SERDES_PLL_INDIRECT_OFFSET;
603 sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
604 SATA_ENET_SDS_IND_WDATA_REG, reg, data);
605 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
606 SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
607 pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
608}
609
610static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
611 u32 reg, u32 *data)
612{
613 void __iomem *sds_base = ctx->sds_base;
614
615 if (cmu_type == REF_CMU)
616 reg += SERDES_PLL_REF_INDIRECT_OFFSET;
617 else
618 reg += SERDES_PLL_INDIRECT_OFFSET;
619 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
620 SATA_ENET_SDS_IND_RDATA_REG, reg, data);
621 pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
622}
623
624static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
625 u32 reg, u32 bits)
626{
627 u32 val;
628
629 cmu_rd(ctx, cmu_type, reg, &val);
630 val |= bits;
631 cmu_wr(ctx, cmu_type, reg, val);
632 cmu_rd(ctx, cmu_type, reg, &val);
633 val &= ~bits;
634 cmu_wr(ctx, cmu_type, reg, val);
635}
636
637static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
638 u32 reg, u32 bits)
639{
640 u32 val;
641
642 cmu_rd(ctx, cmu_type, reg, &val);
643 val &= ~bits;
644 cmu_wr(ctx, cmu_type, reg, val);
645}
646
647static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
648 u32 reg, u32 bits)
649{
650 u32 val;
651
652 cmu_rd(ctx, cmu_type, reg, &val);
653 val |= bits;
654 cmu_wr(ctx, cmu_type, reg, val);
655}
656
657static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
658{
659 void __iomem *sds_base = ctx->sds_base;
660 u32 val;
661
662 reg += SERDES_INDIRECT_OFFSET;
663 reg += lane * SERDES_LANE_STRIDE;
664 sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
665 SATA_ENET_SDS_IND_WDATA_REG, reg, data);
666 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
667 SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
668 pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
669 val);
670}
671
672static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
673{
674 void __iomem *sds_base = ctx->sds_base;
675
676 reg += SERDES_INDIRECT_OFFSET;
677 reg += lane * SERDES_LANE_STRIDE;
678 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
679 SATA_ENET_SDS_IND_RDATA_REG, reg, data);
680 pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
681}
682
683static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
684 u32 bits)
685{
686 u32 val;
687
688 serdes_rd(ctx, lane, reg, &val);
689 val &= ~bits;
690 serdes_wr(ctx, lane, reg, val);
691}
692
693static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
694 u32 bits)
695{
696 u32 val;
697
698 serdes_rd(ctx, lane, reg, &val);
699 val |= bits;
700 serdes_wr(ctx, lane, reg, val);
701}
702
703static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
704 enum cmu_type_t cmu_type,
705 enum clk_type_t clk_type)
706{
707 u32 val;
708
709 /* Set the reset sequence delay for TX ready assertion */
710 cmu_rd(ctx, cmu_type, CMU_REG12, &val);
711 val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
712 cmu_wr(ctx, cmu_type, CMU_REG12, val);
713 /* Set the programmable stage delays between various enable stages */
714 cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
715 cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
716
717 /* Configure clock type */
718 if (clk_type == CLK_EXT_DIFF) {
719 /* Select external clock mux */
720 cmu_rd(ctx, cmu_type, CMU_REG0, &val);
721 val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
722 cmu_wr(ctx, cmu_type, CMU_REG0, val);
723 /* Select CMOS as reference clock */
724 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
725 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
726 cmu_wr(ctx, cmu_type, CMU_REG1, val);
727 dev_dbg(ctx->dev, "Set external reference clock\n");
728 } else if (clk_type == CLK_INT_DIFF) {
729 /* Select internal clock mux */
730 cmu_rd(ctx, cmu_type, CMU_REG0, &val);
731 val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
732 cmu_wr(ctx, cmu_type, CMU_REG0, val);
733 /* Select CMOS as reference clock */
734 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
735 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
736 cmu_wr(ctx, cmu_type, CMU_REG1, val);
737 dev_dbg(ctx->dev, "Set internal reference clock\n");
738 } else if (clk_type == CLK_INT_SING) {
739 /*
740 * NOTE: This clock type is NOT support for controller
741 * whose internal clock shared in the PCIe controller
742 *
743 * Select internal clock mux
744 */
745 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
746 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
747 cmu_wr(ctx, cmu_type, CMU_REG1, val);
748 /* Select CML as reference clock */
749 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
750 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
751 cmu_wr(ctx, cmu_type, CMU_REG1, val);
752 dev_dbg(ctx->dev,
753 "Set internal single ended reference clock\n");
754 }
755}
756
757static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
758 enum cmu_type_t cmu_type,
759 enum clk_type_t clk_type)
760{
761 u32 val;
762 int ref_100MHz;
763
764 if (cmu_type == REF_CMU) {
765 /* Set VCO calibration voltage threshold */
766 cmu_rd(ctx, cmu_type, CMU_REG34, &val);
767 val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
768 val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
769 val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
770 val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
771 cmu_wr(ctx, cmu_type, CMU_REG34, val);
772 }
773
774 /* Set the VCO calibration counter */
775 cmu_rd(ctx, cmu_type, CMU_REG0, &val);
776 if (cmu_type == REF_CMU || preA3Chip)
777 val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
778 else
779 val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
780 cmu_wr(ctx, cmu_type, CMU_REG0, val);
781
782 /* Configure PLL for calibration */
783 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
784 val = CMU_REG1_PLL_CP_SET(val, 0x1);
785 if (cmu_type == REF_CMU || preA3Chip)
786 val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
787 else
788 val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
789 if (cmu_type == REF_CMU)
790 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
791 else
792 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
793 cmu_wr(ctx, cmu_type, CMU_REG1, val);
794
795 if (cmu_type != REF_CMU)
796 cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
797
798 /* Configure the PLL for either 100MHz or 50MHz */
799 cmu_rd(ctx, cmu_type, CMU_REG2, &val);
800 if (cmu_type == REF_CMU) {
801 val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
802 ref_100MHz = 1;
803 } else {
804 val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
805 if (clk_type == CLK_EXT_DIFF)
806 ref_100MHz = 0;
807 else
808 ref_100MHz = 1;
809 }
810 if (ref_100MHz) {
811 val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
812 val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
813 } else {
814 val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
815 val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
816 }
817 cmu_wr(ctx, cmu_type, CMU_REG2, val);
818
819 /* Configure the VCO */
820 cmu_rd(ctx, cmu_type, CMU_REG3, &val);
821 if (cmu_type == REF_CMU) {
822 val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
823 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
824 } else {
825 val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
826 if (preA3Chip)
827 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
828 else
829 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
830 val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
831 }
832 cmu_wr(ctx, cmu_type, CMU_REG3, val);
833
834 /* Disable force PLL lock */
835 cmu_rd(ctx, cmu_type, CMU_REG26, &val);
836 val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
837 cmu_wr(ctx, cmu_type, CMU_REG26, val);
838
839 /* Setup PLL loop filter */
840 cmu_rd(ctx, cmu_type, CMU_REG5, &val);
841 val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
842 val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
843 if (cmu_type == REF_CMU || !preA3Chip)
844 val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
845 else
846 val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
847 cmu_wr(ctx, cmu_type, CMU_REG5, val);
848
849 /* Enable or disable manual calibration */
850 cmu_rd(ctx, cmu_type, CMU_REG6, &val);
851 val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
852 val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
853 cmu_wr(ctx, cmu_type, CMU_REG6, val);
854
855 /* Configure lane for 20-bits */
856 if (cmu_type == PHY_CMU) {
857 cmu_rd(ctx, cmu_type, CMU_REG9, &val);
858 val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
859 CMU_REG9_WORD_LEN_20BIT);
860 val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
861 CMU_REG9_WORD_LEN_20BIT);
862 val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
863 if (!preA3Chip) {
864 val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
865 val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
866 }
867 cmu_wr(ctx, cmu_type, CMU_REG9, val);
868
869 if (!preA3Chip) {
870 cmu_rd(ctx, cmu_type, CMU_REG10, &val);
871 val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
872 cmu_wr(ctx, cmu_type, CMU_REG10, val);
873 }
874 }
875
876 cmu_rd(ctx, cmu_type, CMU_REG16, &val);
877 val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
878 val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
879 if (cmu_type == REF_CMU || preA3Chip)
880 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
881 else
882 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
883 cmu_wr(ctx, cmu_type, CMU_REG16, val);
884
885 /* Configure for SATA */
886 cmu_rd(ctx, cmu_type, CMU_REG30, &val);
887 val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
888 val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
889 cmu_wr(ctx, cmu_type, CMU_REG30, val);
890
891 /* Disable state machine bypass */
892 cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
893
894 cmu_rd(ctx, cmu_type, CMU_REG32, &val);
895 val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
896 if (cmu_type == REF_CMU || preA3Chip)
897 val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
898 else
899 val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
900 cmu_wr(ctx, cmu_type, CMU_REG32, val);
901
902 /* Set VCO calibration threshold */
903 if (cmu_type != REF_CMU && preA3Chip)
904 cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
905 else
906 cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
907
908 /* Set CTLE Override and override waiting from state machine */
909 cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
910}
911
912static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
913 enum cmu_type_t cmu_type)
914{
915 u32 val;
916
917 /* Set SSC modulation value */
918 cmu_rd(ctx, cmu_type, CMU_REG35, &val);
919 val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
920 cmu_wr(ctx, cmu_type, CMU_REG35, val);
921
922 /* Enable SSC, set vertical step and DSM value */
923 cmu_rd(ctx, cmu_type, CMU_REG36, &val);
924 val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
925 val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
926 val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
927 cmu_wr(ctx, cmu_type, CMU_REG36, val);
928
929 /* Reset the PLL */
930 cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
931 cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
932
933 /* Force VCO calibration to restart */
934 cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
935 CMU_REG32_FORCE_VCOCAL_START_MASK);
936}
937
938static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
939{
940 u32 val;
941 u32 reg;
942 int i;
943 int lane;
944
945 for (lane = 0; lane < MAX_LANE; lane++) {
946 serdes_wr(ctx, lane, RXTX_REG147, 0x6);
947
948 /* Set boost control for quarter, half, and full rate */
949 serdes_rd(ctx, lane, RXTX_REG0, &val);
950 val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
951 val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
952 val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
953 serdes_wr(ctx, lane, RXTX_REG0, val);
954
955 /* Set boost control value */
956 serdes_rd(ctx, lane, RXTX_REG1, &val);
957 val = RXTX_REG1_RXACVCM_SET(val, 0x7);
958 val = RXTX_REG1_CTLE_EQ_SET(val,
959 ctx->sata_param.txboostgain[lane * 3 +
960 ctx->sata_param.speed[lane]]);
961 serdes_wr(ctx, lane, RXTX_REG1, val);
962
963 /* Latch VTT value based on the termination to ground and
3136b3b1
SK
964 * enable TX FIFO
965 */
88e670fe
LH
966 serdes_rd(ctx, lane, RXTX_REG2, &val);
967 val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
968 val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
969 val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
970 serdes_wr(ctx, lane, RXTX_REG2, val);
971
972 /* Configure Tx for 20-bits */
973 serdes_rd(ctx, lane, RXTX_REG4, &val);
974 val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
975 serdes_wr(ctx, lane, RXTX_REG4, val);
976
977 if (!preA3Chip) {
978 serdes_rd(ctx, lane, RXTX_REG1, &val);
979 val = RXTX_REG1_RXVREG1_SET(val, 0x2);
980 val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
981 serdes_wr(ctx, lane, RXTX_REG1, val);
982 }
983
984 /* Set pre-emphasis first 1 and 2, and post-emphasis values */
985 serdes_rd(ctx, lane, RXTX_REG5, &val);
986 val = RXTX_REG5_TX_CN1_SET(val,
987 ctx->sata_param.txprecursor_cn1[lane * 3 +
988 ctx->sata_param.speed[lane]]);
989 val = RXTX_REG5_TX_CP1_SET(val,
990 ctx->sata_param.txpostcursor_cp1[lane * 3 +
991 ctx->sata_param.speed[lane]]);
992 val = RXTX_REG5_TX_CN2_SET(val,
993 ctx->sata_param.txprecursor_cn2[lane * 3 +
994 ctx->sata_param.speed[lane]]);
995 serdes_wr(ctx, lane, RXTX_REG5, val);
996
997 /* Set TX amplitude value */
998 serdes_rd(ctx, lane, RXTX_REG6, &val);
999 val = RXTX_REG6_TXAMP_CNTL_SET(val,
1000 ctx->sata_param.txamplitude[lane * 3 +
1001 ctx->sata_param.speed[lane]]);
1002 val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
1003 val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
1004 val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
1005 val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
1006 serdes_wr(ctx, lane, RXTX_REG6, val);
1007
1008 /* Configure Rx for 20-bits */
1009 serdes_rd(ctx, lane, RXTX_REG7, &val);
1010 val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
1011 val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
1012 serdes_wr(ctx, lane, RXTX_REG7, val);
1013
1014 /* Set CDR and LOS values and enable Rx SSC */
1015 serdes_rd(ctx, lane, RXTX_REG8, &val);
1016 val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
1017 val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
1018 val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
1019 val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
1020 val = RXTX_REG8_SD_VREF_SET(val, 0x4);
1021 serdes_wr(ctx, lane, RXTX_REG8, val);
1022
1023 /* Set phase adjust upper/lower limits */
1024 serdes_rd(ctx, lane, RXTX_REG11, &val);
1025 val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
1026 serdes_wr(ctx, lane, RXTX_REG11, val);
1027
1028 /* Enable Latch Off; disable SUMOS and Tx termination */
1029 serdes_rd(ctx, lane, RXTX_REG12, &val);
1030 val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
1031 val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
1032 val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
1033 serdes_wr(ctx, lane, RXTX_REG12, val);
1034
1035 /* Set period error latch to 512T and enable BWL */
1036 serdes_rd(ctx, lane, RXTX_REG26, &val);
1037 val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
1038 val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
1039 serdes_wr(ctx, lane, RXTX_REG26, val);
1040
1041 serdes_wr(ctx, lane, RXTX_REG28, 0x0);
1042
1043 /* Set DFE loop preset value */
1044 serdes_wr(ctx, lane, RXTX_REG31, 0x0);
1045
1046 /* Set Eye Monitor counter width to 12-bit */
1047 serdes_rd(ctx, lane, RXTX_REG61, &val);
1048 val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
1049 val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
1050 val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
1051 serdes_wr(ctx, lane, RXTX_REG61, val);
1052
1053 serdes_rd(ctx, lane, RXTX_REG62, &val);
1054 val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
1055 serdes_wr(ctx, lane, RXTX_REG62, val);
1056
1057 /* Set BW select tap X for DFE loop */
1058 for (i = 0; i < 9; i++) {
1059 reg = RXTX_REG81 + i * 2;
1060 serdes_rd(ctx, lane, reg, &val);
1061 val = RXTX_REG89_MU_TH7_SET(val, 0xe);
1062 val = RXTX_REG89_MU_TH8_SET(val, 0xe);
1063 val = RXTX_REG89_MU_TH9_SET(val, 0xe);
1064 serdes_wr(ctx, lane, reg, val);
1065 }
1066
1067 /* Set BW select tap X for frequency adjust loop */
1068 for (i = 0; i < 3; i++) {
1069 reg = RXTX_REG96 + i * 2;
1070 serdes_rd(ctx, lane, reg, &val);
1071 val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
1072 val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
1073 val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
1074 serdes_wr(ctx, lane, reg, val);
1075 }
1076
1077 /* Set BW select tap X for phase adjust loop */
1078 for (i = 0; i < 3; i++) {
1079 reg = RXTX_REG99 + i * 2;
1080 serdes_rd(ctx, lane, reg, &val);
1081 val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
1082 val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
1083 val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
1084 serdes_wr(ctx, lane, reg, val);
1085 }
1086
1087 serdes_rd(ctx, lane, RXTX_REG102, &val);
1088 val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
1089 serdes_wr(ctx, lane, RXTX_REG102, val);
1090
1091 serdes_wr(ctx, lane, RXTX_REG114, 0xffe0);
1092
1093 serdes_rd(ctx, lane, RXTX_REG125, &val);
1094 val = RXTX_REG125_SIGN_PQ_SET(val,
1095 ctx->sata_param.txeyedirection[lane * 3 +
1096 ctx->sata_param.speed[lane]]);
1097 val = RXTX_REG125_PQ_REG_SET(val,
1098 ctx->sata_param.txeyetuning[lane * 3 +
1099 ctx->sata_param.speed[lane]]);
1100 val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
1101 serdes_wr(ctx, lane, RXTX_REG125, val);
1102
1103 serdes_rd(ctx, lane, RXTX_REG127, &val);
1104 val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
1105 serdes_wr(ctx, lane, RXTX_REG127, val);
1106
1107 serdes_rd(ctx, lane, RXTX_REG128, &val);
1108 val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
1109 serdes_wr(ctx, lane, RXTX_REG128, val);
1110
1111 serdes_rd(ctx, lane, RXTX_REG145, &val);
1112 val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
1113 val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
1114 if (preA3Chip) {
1115 val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
1116 val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
1117 } else {
1118 val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
1119 val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
1120 }
1121 serdes_wr(ctx, lane, RXTX_REG145, val);
1122
1123 /*
1124 * Set Rx LOS filter clock rate, sample rate, and threshold
1125 * windows
1126 */
1127 for (i = 0; i < 4; i++) {
1128 reg = RXTX_REG148 + i * 2;
1129 serdes_wr(ctx, lane, reg, 0xFFFF);
1130 }
1131 }
1132}
1133
1134static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
1135 enum cmu_type_t cmu_type,
1136 enum clk_type_t clk_type)
1137{
1138 void __iomem *csr_serdes = ctx->sds_base;
1139 int loop;
1140 u32 val;
1141
1142 /* Release PHY main reset */
1143 writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL);
1144 readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1145
1146 if (cmu_type != REF_CMU) {
1147 cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
1148 /*
1149 * As per PHY design spec, the PLL reset requires a minimum
1150 * of 800us.
1151 */
1152 usleep_range(800, 1000);
1153
1154 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
1155 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
1156 cmu_wr(ctx, cmu_type, CMU_REG1, val);
1157 /*
1158 * As per PHY design spec, the PLL auto calibration requires
1159 * a minimum of 800us.
1160 */
1161 usleep_range(800, 1000);
1162
1163 cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1164 CMU_REG32_FORCE_VCOCAL_START_MASK);
1165 /*
1166 * As per PHY design spec, the PLL requires a minimum of
1167 * 800us to settle.
1168 */
1169 usleep_range(800, 1000);
1170 }
1171
1172 if (!preA3Chip)
1173 goto skip_manual_cal;
1174
1175 /*
1176 * Configure the termination resister calibration
1177 * The serial receive pins, RXP/RXN, have TERMination resistor
1178 * that is required to be calibrated.
1179 */
1180 cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1181 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
1182 val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1183 cmu_wr(ctx, cmu_type, CMU_REG17, val);
1184 cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
1185 CMU_REG17_PVT_TERM_MAN_ENA_MASK);
1186 /*
1187 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
1188 * resistors that are required to the calibrated.
1189 * Configure the pull DOWN calibration
1190 */
1191 cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1192 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
1193 val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1194 cmu_wr(ctx, cmu_type, CMU_REG17, val);
1195 cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1196 CMU_REG16_PVT_DN_MAN_ENA_MASK);
1197 /* Configure the pull UP calibration */
1198 cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1199 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
1200 val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1201 cmu_wr(ctx, cmu_type, CMU_REG17, val);
1202 cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1203 CMU_REG16_PVT_UP_MAN_ENA_MASK);
1204
1205skip_manual_cal:
1206 /* Poll the PLL calibration completion status for at least 1 ms */
1207 loop = 100;
1208 do {
1209 cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1210 if (CMU_REG7_PLL_CALIB_DONE_RD(val))
1211 break;
1212 /*
1213 * As per PHY design spec, PLL calibration status requires
1214 * a minimum of 10us to be updated.
1215 */
1216 usleep_range(10, 100);
1217 } while (--loop > 0);
1218
1219 cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1220 dev_dbg(ctx->dev, "PLL calibration %s\n",
1221 CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
1222 if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
1223 dev_err(ctx->dev,
1224 "PLL calibration failed due to VCO failure\n");
1225 return -1;
1226 }
1227 dev_dbg(ctx->dev, "PLL calibration successful\n");
1228
1229 cmu_rd(ctx, cmu_type, CMU_REG15, &val);
1230 dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
1231 return 0;
1232}
1233
1234static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
1235 enum cmu_type_t cmu_type,
1236 enum clk_type_t clk_type)
1237{
1238 u32 val;
1239
1240 dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
1241 if (cmu_type == PHY_CMU) {
1242 cmu_rd(ctx, cmu_type, CMU_REG16, &val);
1243 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
1244 cmu_wr(ctx, cmu_type, CMU_REG16, val);
1245 }
1246
1247 cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
1248 cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1249 CMU_REG32_FORCE_VCOCAL_START_MASK);
1250}
1251
1252static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
1253 enum clk_type_t clk_type, int ssc_enable)
1254{
1255 void __iomem *sds_base = ctx->sds_base;
1256 u32 val;
1257 int i;
1258
1259 /* Configure the PHY for operation */
1260 dev_dbg(ctx->dev, "Reset PHY\n");
1261 /* Place PHY into reset */
1262 writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL);
1263 val = readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1264 /* Release PHY lane from reset (active high) */
1265 writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL);
1266 readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1267 /* Release all PHY module out of reset except PHY main reset */
1268 writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL);
1269 readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1270
1271 /* Set the operation speed */
1272 val = readl(sds_base + SATA_ENET_SDS_CTL1);
1273 val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
1274 ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
1275 writel(val, sds_base + SATA_ENET_SDS_CTL1);
1276
1277 dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
1278 val = readl(sds_base + SATA_ENET_SDS_CTL0);
1279 val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
1280 writel(val, sds_base + SATA_ENET_SDS_CTL0);
1281
1282 /* Configure the clock macro unit (CMU) clock type */
1283 xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
1284
1285 /* Configure the clock macro */
1286 xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
1287
1288 /* Enable SSC if enabled */
1289 if (ssc_enable)
1290 xgene_phy_ssc_enable(ctx, PHY_CMU);
1291
1292 /* Configure PHY lanes */
1293 xgene_phy_sata_cfg_lanes(ctx);
1294
1295 /* Set Rx/Tx 20-bit */
1296 val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0);
1297 val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
1298 val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
1299 writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0);
1300
1301 /* Start PLL calibration and try for three times */
1302 i = 10;
1303 do {
1304 if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
1305 break;
1306 /* If failed, toggle the VCO power signal and start again */
1307 xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
1308 } while (--i > 0);
1309 /* Even on failure, allow to continue any way */
1310 if (i <= 0)
1311 dev_err(ctx->dev, "PLL calibration failed\n");
1312
1313 return 0;
1314}
1315
1316static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
1317 enum clk_type_t clk_type,
1318 int ssc_enable)
1319{
1320 int rc;
1321
1322 dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
1323
1324 if (ctx->mode == MODE_SATA) {
1325 rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
1326 if (rc)
1327 return rc;
1328 } else {
1329 dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
1330 ctx->mode);
1331 return -ENODEV;
1332 }
1333
1334 return 0;
1335}
1336
1337/*
1338 * Receiver Offset Calibration:
1339 *
1340 * Calibrate the receiver signal path offset in two steps - summar and
1341 * latch calibrations
1342 */
1343static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
1344{
1345 int i;
fbf6a7a4 1346 static const struct {
88e670fe
LH
1347 u32 reg;
1348 u32 val;
1349 } serdes_reg[] = {
1350 {RXTX_REG38, 0x0},
1351 {RXTX_REG39, 0xff00},
1352 {RXTX_REG40, 0xffff},
1353 {RXTX_REG41, 0xffff},
1354 {RXTX_REG42, 0xffff},
1355 {RXTX_REG43, 0xffff},
1356 {RXTX_REG44, 0xffff},
1357 {RXTX_REG45, 0xffff},
1358 {RXTX_REG46, 0xffff},
1359 {RXTX_REG47, 0xfffc},
1360 {RXTX_REG48, 0x0},
1361 {RXTX_REG49, 0x0},
1362 {RXTX_REG50, 0x0},
1363 {RXTX_REG51, 0x0},
1364 {RXTX_REG52, 0x0},
1365 {RXTX_REG53, 0x0},
1366 {RXTX_REG54, 0x0},
1367 {RXTX_REG55, 0x0},
1368 };
1369
1370 /* Start SUMMER calibration */
1371 serdes_setbits(ctx, lane, RXTX_REG127,
1372 RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1373 /*
1374 * As per PHY design spec, the Summer calibration requires a minimum
1375 * of 100us to complete.
1376 */
1377 usleep_range(100, 500);
1378 serdes_clrbits(ctx, lane, RXTX_REG127,
1379 RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1380 /*
1381 * As per PHY design spec, the auto calibration requires a minimum
1382 * of 100us to complete.
1383 */
1384 usleep_range(100, 500);
1385
1386 /* Start latch calibration */
1387 serdes_setbits(ctx, lane, RXTX_REG127,
1388 RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1389 /*
1390 * As per PHY design spec, the latch calibration requires a minimum
1391 * of 100us to complete.
1392 */
1393 usleep_range(100, 500);
1394 serdes_clrbits(ctx, lane, RXTX_REG127,
1395 RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1396
1397 /* Configure the PHY lane for calibration */
1398 serdes_wr(ctx, lane, RXTX_REG28, 0x7);
1399 serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1400 serdes_clrbits(ctx, lane, RXTX_REG4,
1401 RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
1402 serdes_clrbits(ctx, lane, RXTX_REG7,
1403 RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
1404 for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
1405 serdes_wr(ctx, lane, serdes_reg[i].reg,
1406 serdes_reg[i].val);
1407}
1408
1409static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
1410{
1411 /* Reset digital Rx */
1412 serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1413 /* As per PHY design spec, the reset requires a minimum of 100us. */
1414 usleep_range(100, 150);
1415 serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1416}
1417
1418static int xgene_phy_get_avg(int accum, int samples)
1419{
1420 return (accum + (samples / 2)) / samples;
1421}
1422
1423static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
1424{
1425 int max_loop = 10;
1426 int avg_loop = 0;
1427 int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
1428 int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
1429 int sum_cal = 0;
1430 int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
1431 int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
1432 int sum_cal_itr;
1433 int fail_even;
1434 int fail_odd;
1435 u32 val;
1436
1437 dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
1438 lane);
1439
1440 /* Enable RX Hi-Z termination */
1441 serdes_setbits(ctx, lane, RXTX_REG12,
1442 RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
1443 /* Turn off DFE */
1444 serdes_wr(ctx, lane, RXTX_REG28, 0x0000);
1445 /* DFE Presets to zero */
1446 serdes_wr(ctx, lane, RXTX_REG31, 0x0000);
1447
1448 /*
1449 * Receiver Offset Calibration:
1450 * Calibrate the receiver signal path offset in two steps - summar
1451 * and latch calibration.
1452 * Runs the "Receiver Offset Calibration multiple times to determine
1453 * the average value to use.
1454 */
1455 while (avg_loop < max_loop) {
1456 /* Start the calibration */
1457 xgene_phy_force_lat_summer_cal(ctx, lane);
1458
1459 serdes_rd(ctx, lane, RXTX_REG21, &val);
1460 lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
1461 lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
1462 fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
1463
1464 serdes_rd(ctx, lane, RXTX_REG22, &val);
1465 lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
1466 lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
1467 fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
1468
1469 serdes_rd(ctx, lane, RXTX_REG23, &val);
1470 lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
1471 lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
1472
1473 serdes_rd(ctx, lane, RXTX_REG24, &val);
1474 lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
1475 lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
1476
1477 serdes_rd(ctx, lane, RXTX_REG121, &val);
1478 sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
1479
1480 /* Check for failure. If passed, sum them for averaging */
1481 if ((fail_even == 0 || fail_even == 1) &&
1482 (fail_odd == 0 || fail_odd == 1)) {
1483 lat_do += lat_do_itr;
1484 lat_xo += lat_xo_itr;
1485 lat_eo += lat_eo_itr;
1486 lat_so += lat_so_itr;
1487 lat_de += lat_de_itr;
1488 lat_xe += lat_xe_itr;
1489 lat_ee += lat_ee_itr;
1490 lat_se += lat_se_itr;
1491 sum_cal += sum_cal_itr;
1492
1493 dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
1494 dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1495 lat_do_itr, lat_xo_itr, lat_eo_itr,
1496 lat_so_itr);
1497 dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1498 lat_de_itr, lat_xe_itr, lat_ee_itr,
1499 lat_se_itr);
1500 dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
1501 ++avg_loop;
1502 } else {
1503 dev_err(ctx->dev,
1504 "Receiver calibration failed at %d loop\n",
1505 avg_loop);
1506 }
1507 xgene_phy_reset_rxd(ctx, lane);
1508 }
1509
1510 /* Update latch manual calibration with average value */
1511 serdes_rd(ctx, lane, RXTX_REG127, &val);
1512 val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
1513 xgene_phy_get_avg(lat_do, max_loop));
1514 val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
1515 xgene_phy_get_avg(lat_xo, max_loop));
1516 serdes_wr(ctx, lane, RXTX_REG127, val);
1517
1518 serdes_rd(ctx, lane, RXTX_REG128, &val);
1519 val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
1520 xgene_phy_get_avg(lat_eo, max_loop));
1521 val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
1522 xgene_phy_get_avg(lat_so, max_loop));
1523 serdes_wr(ctx, lane, RXTX_REG128, val);
1524
1525 serdes_rd(ctx, lane, RXTX_REG129, &val);
1526 val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
1527 xgene_phy_get_avg(lat_de, max_loop));
1528 val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
1529 xgene_phy_get_avg(lat_xe, max_loop));
1530 serdes_wr(ctx, lane, RXTX_REG129, val);
1531
1532 serdes_rd(ctx, lane, RXTX_REG130, &val);
1533 val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
1534 xgene_phy_get_avg(lat_ee, max_loop));
1535 val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
1536 xgene_phy_get_avg(lat_se, max_loop));
1537 serdes_wr(ctx, lane, RXTX_REG130, val);
1538
1539 /* Update SUMMER calibration with average value */
1540 serdes_rd(ctx, lane, RXTX_REG14, &val);
1541 val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
1542 xgene_phy_get_avg(sum_cal, max_loop));
1543 serdes_wr(ctx, lane, RXTX_REG14, val);
1544
1545 dev_dbg(ctx->dev, "Average Value:\n");
1546 dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1547 xgene_phy_get_avg(lat_do, max_loop),
1548 xgene_phy_get_avg(lat_xo, max_loop),
1549 xgene_phy_get_avg(lat_eo, max_loop),
1550 xgene_phy_get_avg(lat_so, max_loop));
1551 dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1552 xgene_phy_get_avg(lat_de, max_loop),
1553 xgene_phy_get_avg(lat_xe, max_loop),
1554 xgene_phy_get_avg(lat_ee, max_loop),
1555 xgene_phy_get_avg(lat_se, max_loop));
1556 dev_dbg(ctx->dev, "SUM 0x%x\n",
1557 xgene_phy_get_avg(sum_cal, max_loop));
1558
1559 serdes_rd(ctx, lane, RXTX_REG14, &val);
1560 val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
1561 serdes_wr(ctx, lane, RXTX_REG14, val);
1562 dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
1563
1564 serdes_rd(ctx, lane, RXTX_REG127, &val);
1565 val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
1566 dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
1567 serdes_wr(ctx, lane, RXTX_REG127, val);
1568
1569 /* Disable RX Hi-Z termination */
1570 serdes_rd(ctx, lane, RXTX_REG12, &val);
1571 val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
1572 serdes_wr(ctx, lane, RXTX_REG12, val);
1573 /* Turn on DFE */
1574 serdes_wr(ctx, lane, RXTX_REG28, 0x0007);
1575 /* Set DFE preset */
1576 serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1577}
1578
1579static int xgene_phy_hw_init(struct phy *phy)
1580{
1581 struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
1582 int rc;
1583 int i;
1584
1585 rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
1586 if (rc) {
1587 dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
1588 return rc;
1589 }
1590
1591 /* Setup clock properly after PHY configuration */
1592 if (!IS_ERR(ctx->clk)) {
1593 /* HW requires an toggle of the clock */
1594 clk_prepare_enable(ctx->clk);
1595 clk_disable_unprepare(ctx->clk);
1596 clk_prepare_enable(ctx->clk);
1597 }
1598
1599 /* Compute average value */
1600 for (i = 0; i < MAX_LANE; i++)
1601 xgene_phy_gen_avg_val(ctx, i);
1602
1603 dev_dbg(ctx->dev, "PHY initialized\n");
1604 return 0;
1605}
1606
1607static const struct phy_ops xgene_phy_ops = {
1608 .init = xgene_phy_hw_init,
1609 .owner = THIS_MODULE,
1610};
1611
1612static struct phy *xgene_phy_xlate(struct device *dev,
1613 struct of_phandle_args *args)
1614{
1615 struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
1616
1617 if (args->args_count <= 0)
1618 return ERR_PTR(-EINVAL);
f0c47c74 1619 if (args->args[0] >= MODE_MAX)
88e670fe
LH
1620 return ERR_PTR(-EINVAL);
1621
1622 ctx->mode = args->args[0];
1623 return ctx->phy;
1624}
1625
1626static void xgene_phy_get_param(struct platform_device *pdev,
1627 const char *name, u32 *buffer,
1628 int count, u32 *default_val,
1629 u32 conv_factor)
1630{
1631 int i;
1632
1633 if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer,
1634 count)) {
1635 for (i = 0; i < count; i++)
1636 buffer[i] /= conv_factor;
1637 return;
1638 }
1639 /* Does not exist, load default */
1640 for (i = 0; i < count; i++)
1641 buffer[i] = default_val[i % 3];
1642}
1643
1644static int xgene_phy_probe(struct platform_device *pdev)
1645{
1646 struct phy_provider *phy_provider;
1647 struct xgene_phy_ctx *ctx;
88e670fe
LH
1648 u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
1649 u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
1650 u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
1651 u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
1652 u32 default_txamp[] = DEFAULT_SATA_TXAMP;
1653 u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
1654 u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
1655 u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
1656 int i;
1657
1658 ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
1659 if (!ctx)
1660 return -ENOMEM;
1661
1662 ctx->dev = &pdev->dev;
1663
5d797059 1664 ctx->sds_base = devm_platform_ioremap_resource(pdev, 0);
8fd0ea39
AL
1665 if (IS_ERR(ctx->sds_base))
1666 return PTR_ERR(ctx->sds_base);
88e670fe
LH
1667
1668 /* Retrieve optional clock */
1669 ctx->clk = clk_get(&pdev->dev, NULL);
1670
1671 /* Load override paramaters */
1672 xgene_phy_get_param(pdev, "apm,tx-eye-tuning",
1673 ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1);
1674 xgene_phy_get_param(pdev, "apm,tx-eye-direction",
1675 ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1);
1676 xgene_phy_get_param(pdev, "apm,tx-boost-gain",
1677 ctx->sata_param.txboostgain, 6, default_txboost_gain, 1);
1678 xgene_phy_get_param(pdev, "apm,tx-amplitude",
1679 ctx->sata_param.txamplitude, 6, default_txamp, 13300);
1680 xgene_phy_get_param(pdev, "apm,tx-pre-cursor1",
1681 ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200);
1682 xgene_phy_get_param(pdev, "apm,tx-pre-cursor2",
1683 ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200);
1684 xgene_phy_get_param(pdev, "apm,tx-post-cursor",
1685 ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200);
1686 xgene_phy_get_param(pdev, "apm,tx-speed",
1687 ctx->sata_param.txspeed, 3, default_spd, 1);
1688 for (i = 0; i < MAX_LANE; i++)
1689 ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
1690
88e670fe
LH
1691 platform_set_drvdata(pdev, ctx);
1692
dbc98635 1693 ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops);
88e670fe
LH
1694 if (IS_ERR(ctx->phy)) {
1695 dev_dbg(&pdev->dev, "Failed to create PHY\n");
8fd0ea39 1696 return PTR_ERR(ctx->phy);
88e670fe
LH
1697 }
1698 phy_set_drvdata(ctx->phy, ctx);
1699
8fd0ea39
AL
1700 phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate);
1701 return PTR_ERR_OR_ZERO(phy_provider);
88e670fe
LH
1702}
1703
1704static const struct of_device_id xgene_phy_of_match[] = {
1705 {.compatible = "apm,xgene-phy",},
1706 {},
1707};
1708MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
1709
1710static struct platform_driver xgene_phy_driver = {
1711 .probe = xgene_phy_probe,
1712 .driver = {
1713 .name = "xgene-phy",
88e670fe
LH
1714 .of_match_table = xgene_phy_of_match,
1715 },
1716};
1717module_platform_driver(xgene_phy_driver);
1718
1719MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
1720MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1721MODULE_LICENSE("GPL v2");
1722MODULE_VERSION("0.1");