]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/remoteproc/remoteproc_core.c
Linux 3.10-rc7
[mirror_ubuntu-bionic-kernel.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
400e64df
OBC
1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt) "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
36#include <linux/remoteproc.h>
37#include <linux/iommu.h>
b5ab5e24 38#include <linux/idr.h>
400e64df 39#include <linux/elf.h>
a2b950ac 40#include <linux/crc32.h>
400e64df
OBC
41#include <linux/virtio_ids.h>
42#include <linux/virtio_ring.h>
cf59d3e9 43#include <asm/byteorder.h>
400e64df
OBC
44
45#include "remoteproc_internal.h"
46
400e64df 47typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
fd2c15ec 48 struct resource_table *table, int len);
a2b950ac
OBC
49typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
50 void *, int offset, int avail);
400e64df 51
b5ab5e24
OBC
52/* Unique indices for remoteproc devices */
53static DEFINE_IDA(rproc_dev_index);
54
8afd519c
FGL
55static const char * const rproc_crash_names[] = {
56 [RPROC_MMUFAULT] = "mmufault",
57};
58
59/* translate rproc_crash_type to string */
60static const char *rproc_crash_to_string(enum rproc_crash_type type)
61{
62 if (type < ARRAY_SIZE(rproc_crash_names))
63 return rproc_crash_names[type];
b23f7a09 64 return "unknown";
8afd519c
FGL
65}
66
400e64df
OBC
67/*
68 * This is the IOMMU fault handler we register with the IOMMU API
69 * (when relevant; not all remote processors access memory through
70 * an IOMMU).
71 *
72 * IOMMU core will invoke this handler whenever the remote processor
73 * will try to access an unmapped device address.
400e64df
OBC
74 */
75static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
77ca2332 76 unsigned long iova, int flags, void *token)
400e64df 77{
8afd519c
FGL
78 struct rproc *rproc = token;
79
400e64df
OBC
80 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
81
8afd519c
FGL
82 rproc_report_crash(rproc, RPROC_MMUFAULT);
83
400e64df
OBC
84 /*
85 * Let the iommu core know we're not really handling this fault;
8afd519c 86 * we just used it as a recovery trigger.
400e64df
OBC
87 */
88 return -ENOSYS;
89}
90
91static int rproc_enable_iommu(struct rproc *rproc)
92{
93 struct iommu_domain *domain;
b5ab5e24 94 struct device *dev = rproc->dev.parent;
400e64df
OBC
95 int ret;
96
97 /*
98 * We currently use iommu_present() to decide if an IOMMU
99 * setup is needed.
100 *
101 * This works for simple cases, but will easily fail with
102 * platforms that do have an IOMMU, but not for this specific
103 * rproc.
104 *
105 * This will be easily solved by introducing hw capabilities
106 * that will be set by the remoteproc driver.
107 */
108 if (!iommu_present(dev->bus)) {
0798e1da
MG
109 dev_dbg(dev, "iommu not found\n");
110 return 0;
400e64df
OBC
111 }
112
113 domain = iommu_domain_alloc(dev->bus);
114 if (!domain) {
115 dev_err(dev, "can't alloc iommu domain\n");
116 return -ENOMEM;
117 }
118
77ca2332 119 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
400e64df
OBC
120
121 ret = iommu_attach_device(domain, dev);
122 if (ret) {
123 dev_err(dev, "can't attach iommu device: %d\n", ret);
124 goto free_domain;
125 }
126
127 rproc->domain = domain;
128
129 return 0;
130
131free_domain:
132 iommu_domain_free(domain);
133 return ret;
134}
135
136static void rproc_disable_iommu(struct rproc *rproc)
137{
138 struct iommu_domain *domain = rproc->domain;
b5ab5e24 139 struct device *dev = rproc->dev.parent;
400e64df
OBC
140
141 if (!domain)
142 return;
143
144 iommu_detach_device(domain, dev);
145 iommu_domain_free(domain);
146
147 return;
148}
149
150/*
151 * Some remote processors will ask us to allocate them physically contiguous
152 * memory regions (which we call "carveouts"), and map them to specific
153 * device addresses (which are hardcoded in the firmware).
154 *
155 * They may then ask us to copy objects into specific device addresses (e.g.
156 * code/data sections) or expose us certain symbols in other device address
157 * (e.g. their trace buffer).
158 *
159 * This function is an internal helper with which we can go over the allocated
160 * carveouts and translate specific device address to kernel virtual addresses
161 * so we can access the referenced memory.
162 *
163 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
164 * but only on kernel direct mapped RAM memory. Instead, we're just using
165 * here the output of the DMA API, which should be more correct.
166 */
72854fb0 167void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
400e64df
OBC
168{
169 struct rproc_mem_entry *carveout;
170 void *ptr = NULL;
171
172 list_for_each_entry(carveout, &rproc->carveouts, node) {
173 int offset = da - carveout->da;
174
175 /* try next carveout if da is too small */
176 if (offset < 0)
177 continue;
178
179 /* try next carveout if da is too large */
180 if (offset + len > carveout->len)
181 continue;
182
183 ptr = carveout->va + offset;
184
185 break;
186 }
187
188 return ptr;
189}
4afc89d6 190EXPORT_SYMBOL(rproc_da_to_va);
400e64df 191
6db20ea8 192int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
400e64df 193{
7a186941 194 struct rproc *rproc = rvdev->rproc;
b5ab5e24 195 struct device *dev = &rproc->dev;
6db20ea8 196 struct rproc_vring *rvring = &rvdev->vring[i];
c0d63157 197 struct fw_rsc_vdev *rsc;
7a186941
OBC
198 dma_addr_t dma;
199 void *va;
200 int ret, size, notifyid;
400e64df 201
7a186941 202 /* actual size of vring (in bytes) */
6db20ea8 203 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
7a186941 204
7a186941
OBC
205 /*
206 * Allocate non-cacheable memory for the vring. In the future
207 * this call will also configure the IOMMU for us
208 */
b5ab5e24 209 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
7a186941 210 if (!va) {
b5ab5e24 211 dev_err(dev->parent, "dma_alloc_coherent failed\n");
400e64df
OBC
212 return -EINVAL;
213 }
214
6db20ea8
OBC
215 /*
216 * Assign an rproc-wide unique index for this vring
217 * TODO: assign a notifyid for rvdev updates as well
6db20ea8
OBC
218 * TODO: support predefined notifyids (via resource table)
219 */
15fc6110 220 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
b39599b7 221 if (ret < 0) {
15fc6110 222 dev_err(dev, "idr_alloc failed: %d\n", ret);
b5ab5e24 223 dma_free_coherent(dev->parent, size, va, dma);
7a186941
OBC
224 return ret;
225 }
15fc6110 226 notifyid = ret;
400e64df 227
d09f53a7
EG
228 dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
229 (unsigned long long)dma, size, notifyid);
7a186941 230
6db20ea8
OBC
231 rvring->va = va;
232 rvring->dma = dma;
233 rvring->notifyid = notifyid;
400e64df 234
c0d63157
SB
235 /*
236 * Let the rproc know the notifyid and da of this vring.
237 * Not all platforms use dma_alloc_coherent to automatically
238 * set up the iommu. In this case the device address (da) will
239 * hold the physical address and not the device address.
240 */
241 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
242 rsc->vring[i].da = dma;
243 rsc->vring[i].notifyid = notifyid;
400e64df
OBC
244 return 0;
245}
246
6db20ea8
OBC
247static int
248rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
7a186941
OBC
249{
250 struct rproc *rproc = rvdev->rproc;
b5ab5e24 251 struct device *dev = &rproc->dev;
6db20ea8
OBC
252 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
253 struct rproc_vring *rvring = &rvdev->vring[i];
7a186941 254
6db20ea8
OBC
255 dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
256 i, vring->da, vring->num, vring->align);
7a186941 257
6db20ea8
OBC
258 /* make sure reserved bytes are zeroes */
259 if (vring->reserved) {
260 dev_err(dev, "vring rsc has non zero reserved bytes\n");
261 return -EINVAL;
262 }
7a186941 263
6db20ea8
OBC
264 /* verify queue size and vring alignment are sane */
265 if (!vring->num || !vring->align) {
266 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
267 vring->num, vring->align);
268 return -EINVAL;
7a186941 269 }
6db20ea8
OBC
270
271 rvring->len = vring->num;
272 rvring->align = vring->align;
273 rvring->rvdev = rvdev;
274
275 return 0;
276}
277
278void rproc_free_vring(struct rproc_vring *rvring)
279{
280 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
281 struct rproc *rproc = rvring->rvdev->rproc;
c0d63157
SB
282 int idx = rvring->rvdev->vring - rvring;
283 struct fw_rsc_vdev *rsc;
6db20ea8 284
b5ab5e24 285 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
6db20ea8 286 idr_remove(&rproc->notifyids, rvring->notifyid);
099a3f33 287
c0d63157
SB
288 /* reset resource entry info */
289 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
290 rsc->vring[idx].da = 0;
291 rsc->vring[idx].notifyid = -1;
7a186941
OBC
292}
293
400e64df 294/**
fd2c15ec 295 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
296 * @rproc: the remote processor
297 * @rsc: the vring resource descriptor
fd2c15ec 298 * @avail: size of available data (for sanity checking the image)
400e64df 299 *
7a186941
OBC
300 * This resource entry requests the host to statically register a virtio
301 * device (vdev), and setup everything needed to support it. It contains
302 * everything needed to make it possible: the virtio device id, virtio
303 * device features, vrings information, virtio config space, etc...
304 *
305 * Before registering the vdev, the vrings are allocated from non-cacheable
306 * physically contiguous memory. Currently we only support two vrings per
307 * remote processor (temporary limitation). We might also want to consider
308 * doing the vring allocation only later when ->find_vqs() is invoked, and
309 * then release them upon ->del_vqs().
310 *
311 * Note: @da is currently not really handled correctly: we dynamically
312 * allocate it using the DMA API, ignoring requested hard coded addresses,
313 * and we don't take care of any required IOMMU programming. This is all
314 * going to be taken care of when the generic iommu-based DMA API will be
315 * merged. Meanwhile, statically-addressed iommu-based firmware images should
316 * use RSC_DEVMEM resource entries to map their required @da to the physical
317 * address of their base CMA region (ouch, hacky!).
400e64df
OBC
318 *
319 * Returns 0 on success, or an appropriate error code otherwise
320 */
fd2c15ec 321static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
a2b950ac 322 int offset, int avail)
400e64df 323{
b5ab5e24 324 struct device *dev = &rproc->dev;
7a186941
OBC
325 struct rproc_vdev *rvdev;
326 int i, ret;
400e64df 327
fd2c15ec
OBC
328 /* make sure resource isn't truncated */
329 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
330 + rsc->config_len > avail) {
b5ab5e24 331 dev_err(dev, "vdev rsc is truncated\n");
400e64df
OBC
332 return -EINVAL;
333 }
334
fd2c15ec
OBC
335 /* make sure reserved bytes are zeroes */
336 if (rsc->reserved[0] || rsc->reserved[1]) {
337 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
338 return -EINVAL;
339 }
340
fd2c15ec
OBC
341 dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
342 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
343
7a186941
OBC
344 /* we currently support only two vrings per rvdev */
345 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
fd2c15ec 346 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
347 return -EINVAL;
348 }
349
7a186941
OBC
350 rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
351 if (!rvdev)
352 return -ENOMEM;
400e64df 353
7a186941 354 rvdev->rproc = rproc;
400e64df 355
6db20ea8 356 /* parse the vrings */
7a186941 357 for (i = 0; i < rsc->num_of_vrings; i++) {
6db20ea8 358 ret = rproc_parse_vring(rvdev, rsc, i);
7a186941 359 if (ret)
6db20ea8 360 goto free_rvdev;
7a186941 361 }
400e64df 362
a2b950ac
OBC
363 /* remember the resource offset*/
364 rvdev->rsc_offset = offset;
fd2c15ec 365
7a186941 366 list_add_tail(&rvdev->node, &rproc->rvdevs);
fd2c15ec 367
7a186941
OBC
368 /* it is now safe to add the virtio device */
369 ret = rproc_add_virtio_dev(rvdev, rsc->id);
370 if (ret)
cde42e07 371 goto remove_rvdev;
400e64df
OBC
372
373 return 0;
7a186941 374
cde42e07
SB
375remove_rvdev:
376 list_del(&rvdev->node);
6db20ea8 377free_rvdev:
7a186941
OBC
378 kfree(rvdev);
379 return ret;
400e64df
OBC
380}
381
382/**
383 * rproc_handle_trace() - handle a shared trace buffer resource
384 * @rproc: the remote processor
385 * @rsc: the trace resource descriptor
fd2c15ec 386 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
387 *
388 * In case the remote processor dumps trace logs into memory,
389 * export it via debugfs.
390 *
391 * Currently, the 'da' member of @rsc should contain the device address
392 * where the remote processor is dumping the traces. Later we could also
393 * support dynamically allocating this address using the generic
394 * DMA API (but currently there isn't a use case for that).
395 *
396 * Returns 0 on success, or an appropriate error code otherwise
397 */
fd2c15ec 398static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
a2b950ac 399 int offset, int avail)
400e64df
OBC
400{
401 struct rproc_mem_entry *trace;
b5ab5e24 402 struct device *dev = &rproc->dev;
400e64df
OBC
403 void *ptr;
404 char name[15];
405
fd2c15ec 406 if (sizeof(*rsc) > avail) {
b5ab5e24 407 dev_err(dev, "trace rsc is truncated\n");
fd2c15ec
OBC
408 return -EINVAL;
409 }
410
411 /* make sure reserved bytes are zeroes */
412 if (rsc->reserved) {
413 dev_err(dev, "trace rsc has non zero reserved bytes\n");
414 return -EINVAL;
415 }
416
400e64df
OBC
417 /* what's the kernel address of this resource ? */
418 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
419 if (!ptr) {
420 dev_err(dev, "erroneous trace resource entry\n");
421 return -EINVAL;
422 }
423
424 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
425 if (!trace) {
426 dev_err(dev, "kzalloc trace failed\n");
427 return -ENOMEM;
428 }
429
430 /* set the trace buffer dma properties */
431 trace->len = rsc->len;
432 trace->va = ptr;
433
434 /* make sure snprintf always null terminates, even if truncating */
435 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
436
437 /* create the debugfs entry */
438 trace->priv = rproc_create_trace_file(name, rproc, trace);
439 if (!trace->priv) {
440 trace->va = NULL;
441 kfree(trace);
442 return -EINVAL;
443 }
444
445 list_add_tail(&trace->node, &rproc->traces);
446
447 rproc->num_traces++;
448
fd2c15ec 449 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
400e64df
OBC
450 rsc->da, rsc->len);
451
452 return 0;
453}
454
455/**
456 * rproc_handle_devmem() - handle devmem resource entry
457 * @rproc: remote processor handle
458 * @rsc: the devmem resource entry
fd2c15ec 459 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
460 *
461 * Remote processors commonly need to access certain on-chip peripherals.
462 *
463 * Some of these remote processors access memory via an iommu device,
464 * and might require us to configure their iommu before they can access
465 * the on-chip peripherals they need.
466 *
467 * This resource entry is a request to map such a peripheral device.
468 *
469 * These devmem entries will contain the physical address of the device in
470 * the 'pa' member. If a specific device address is expected, then 'da' will
471 * contain it (currently this is the only use case supported). 'len' will
472 * contain the size of the physical region we need to map.
473 *
474 * Currently we just "trust" those devmem entries to contain valid physical
475 * addresses, but this is going to change: we want the implementations to
476 * tell us ranges of physical addresses the firmware is allowed to request,
477 * and not allow firmwares to request access to physical addresses that
478 * are outside those ranges.
479 */
fd2c15ec 480static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
a2b950ac 481 int offset, int avail)
400e64df
OBC
482{
483 struct rproc_mem_entry *mapping;
b5ab5e24 484 struct device *dev = &rproc->dev;
400e64df
OBC
485 int ret;
486
487 /* no point in handling this resource without a valid iommu domain */
488 if (!rproc->domain)
489 return -EINVAL;
490
fd2c15ec 491 if (sizeof(*rsc) > avail) {
b5ab5e24 492 dev_err(dev, "devmem rsc is truncated\n");
fd2c15ec
OBC
493 return -EINVAL;
494 }
495
496 /* make sure reserved bytes are zeroes */
497 if (rsc->reserved) {
b5ab5e24 498 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
fd2c15ec
OBC
499 return -EINVAL;
500 }
501
400e64df
OBC
502 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
503 if (!mapping) {
b5ab5e24 504 dev_err(dev, "kzalloc mapping failed\n");
400e64df
OBC
505 return -ENOMEM;
506 }
507
508 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
509 if (ret) {
b5ab5e24 510 dev_err(dev, "failed to map devmem: %d\n", ret);
400e64df
OBC
511 goto out;
512 }
513
514 /*
515 * We'll need this info later when we'll want to unmap everything
516 * (e.g. on shutdown).
517 *
518 * We can't trust the remote processor not to change the resource
519 * table, so we must maintain this info independently.
520 */
521 mapping->da = rsc->da;
522 mapping->len = rsc->len;
523 list_add_tail(&mapping->node, &rproc->mappings);
524
b5ab5e24 525 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
400e64df
OBC
526 rsc->pa, rsc->da, rsc->len);
527
528 return 0;
529
530out:
531 kfree(mapping);
532 return ret;
533}
534
535/**
536 * rproc_handle_carveout() - handle phys contig memory allocation requests
537 * @rproc: rproc handle
538 * @rsc: the resource entry
fd2c15ec 539 * @avail: size of available data (for image validation)
400e64df
OBC
540 *
541 * This function will handle firmware requests for allocation of physically
542 * contiguous memory regions.
543 *
544 * These request entries should come first in the firmware's resource table,
545 * as other firmware entries might request placing other data objects inside
546 * these memory regions (e.g. data/code segments, trace resource entries, ...).
547 *
548 * Allocating memory this way helps utilizing the reserved physical memory
549 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
550 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
551 * pressure is important; it may have a substantial impact on performance.
552 */
fd2c15ec 553static int rproc_handle_carveout(struct rproc *rproc,
a2b950ac
OBC
554 struct fw_rsc_carveout *rsc,
555 int offset, int avail)
556
400e64df
OBC
557{
558 struct rproc_mem_entry *carveout, *mapping;
b5ab5e24 559 struct device *dev = &rproc->dev;
400e64df
OBC
560 dma_addr_t dma;
561 void *va;
562 int ret;
563
fd2c15ec 564 if (sizeof(*rsc) > avail) {
b5ab5e24 565 dev_err(dev, "carveout rsc is truncated\n");
fd2c15ec
OBC
566 return -EINVAL;
567 }
568
569 /* make sure reserved bytes are zeroes */
570 if (rsc->reserved) {
571 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
572 return -EINVAL;
573 }
574
575 dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
576 rsc->da, rsc->pa, rsc->len, rsc->flags);
577
400e64df
OBC
578 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
579 if (!carveout) {
580 dev_err(dev, "kzalloc carveout failed\n");
7168d914 581 return -ENOMEM;
400e64df
OBC
582 }
583
b5ab5e24 584 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
400e64df 585 if (!va) {
b5ab5e24 586 dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
400e64df
OBC
587 ret = -ENOMEM;
588 goto free_carv;
589 }
590
d09f53a7
EG
591 dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
592 (unsigned long long)dma, rsc->len);
400e64df
OBC
593
594 /*
595 * Ok, this is non-standard.
596 *
597 * Sometimes we can't rely on the generic iommu-based DMA API
598 * to dynamically allocate the device address and then set the IOMMU
599 * tables accordingly, because some remote processors might
600 * _require_ us to use hard coded device addresses that their
601 * firmware was compiled with.
602 *
603 * In this case, we must use the IOMMU API directly and map
604 * the memory to the device address as expected by the remote
605 * processor.
606 *
607 * Obviously such remote processor devices should not be configured
608 * to use the iommu-based DMA API: we expect 'dma' to contain the
609 * physical address in this case.
610 */
611 if (rproc->domain) {
7168d914
DC
612 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
613 if (!mapping) {
614 dev_err(dev, "kzalloc mapping failed\n");
615 ret = -ENOMEM;
616 goto dma_free;
617 }
618
400e64df
OBC
619 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
620 rsc->flags);
621 if (ret) {
622 dev_err(dev, "iommu_map failed: %d\n", ret);
7168d914 623 goto free_mapping;
400e64df
OBC
624 }
625
626 /*
627 * We'll need this info later when we'll want to unmap
628 * everything (e.g. on shutdown).
629 *
630 * We can't trust the remote processor not to change the
631 * resource table, so we must maintain this info independently.
632 */
633 mapping->da = rsc->da;
634 mapping->len = rsc->len;
635 list_add_tail(&mapping->node, &rproc->mappings);
636
d09f53a7
EG
637 dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
638 rsc->da, (unsigned long long)dma);
400e64df
OBC
639 }
640
0e49b72c
OBC
641 /*
642 * Some remote processors might need to know the pa
643 * even though they are behind an IOMMU. E.g., OMAP4's
644 * remote M3 processor needs this so it can control
645 * on-chip hardware accelerators that are not behind
646 * the IOMMU, and therefor must know the pa.
647 *
648 * Generally we don't want to expose physical addresses
649 * if we don't have to (remote processors are generally
650 * _not_ trusted), so we might want to do this only for
651 * remote processor that _must_ have this (e.g. OMAP4's
652 * dual M3 subsystem).
653 *
654 * Non-IOMMU processors might also want to have this info.
655 * In this case, the device address and the physical address
656 * are the same.
657 */
658 rsc->pa = dma;
659
400e64df
OBC
660 carveout->va = va;
661 carveout->len = rsc->len;
662 carveout->dma = dma;
663 carveout->da = rsc->da;
664
665 list_add_tail(&carveout->node, &rproc->carveouts);
666
667 return 0;
668
7168d914
DC
669free_mapping:
670 kfree(mapping);
400e64df 671dma_free:
b5ab5e24 672 dma_free_coherent(dev->parent, rsc->len, va, dma);
400e64df
OBC
673free_carv:
674 kfree(carveout);
400e64df
OBC
675 return ret;
676}
677
ba7290e0 678static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
a2b950ac 679 int offset, int avail)
ba7290e0
SB
680{
681 /* Summarize the number of notification IDs */
682 rproc->max_notifyid += rsc->num_of_vrings;
683
684 return 0;
685}
686
e12bc14b
OBC
687/*
688 * A lookup table for resource handlers. The indices are defined in
689 * enum fw_resource_type.
690 */
232fcdbb 691static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
fd2c15ec
OBC
692 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
693 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
694 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
7a186941 695 [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
e12bc14b
OBC
696};
697
232fcdbb
SB
698static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
699 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
700};
701
ba7290e0
SB
702static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
703 [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
704};
705
400e64df 706/* handle firmware resource entries before booting the remote processor */
a2b950ac 707static int rproc_handle_resources(struct rproc *rproc, int len,
232fcdbb 708 rproc_handle_resource_t handlers[RSC_LAST])
400e64df 709{
b5ab5e24 710 struct device *dev = &rproc->dev;
e12bc14b 711 rproc_handle_resource_t handler;
fd2c15ec
OBC
712 int ret = 0, i;
713
a2b950ac
OBC
714 for (i = 0; i < rproc->table_ptr->num; i++) {
715 int offset = rproc->table_ptr->offset[i];
716 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
fd2c15ec
OBC
717 int avail = len - offset - sizeof(*hdr);
718 void *rsc = (void *)hdr + sizeof(*hdr);
719
720 /* make sure table isn't truncated */
721 if (avail < 0) {
722 dev_err(dev, "rsc table is truncated\n");
723 return -EINVAL;
724 }
400e64df 725
fd2c15ec 726 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 727
fd2c15ec
OBC
728 if (hdr->type >= RSC_LAST) {
729 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 730 continue;
400e64df
OBC
731 }
732
232fcdbb 733 handler = handlers[hdr->type];
e12bc14b
OBC
734 if (!handler)
735 continue;
736
a2b950ac 737 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
7a186941 738 if (ret)
400e64df 739 break;
fd2c15ec 740 }
400e64df
OBC
741
742 return ret;
743}
744
400e64df
OBC
745/**
746 * rproc_resource_cleanup() - clean up and free all acquired resources
747 * @rproc: rproc handle
748 *
749 * This function will free all resources acquired for @rproc, and it
7a186941 750 * is called whenever @rproc either shuts down or fails to boot.
400e64df
OBC
751 */
752static void rproc_resource_cleanup(struct rproc *rproc)
753{
754 struct rproc_mem_entry *entry, *tmp;
b5ab5e24 755 struct device *dev = &rproc->dev;
400e64df
OBC
756
757 /* clean up debugfs trace entries */
758 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
759 rproc_remove_trace_file(entry->priv);
760 rproc->num_traces--;
761 list_del(&entry->node);
762 kfree(entry);
763 }
764
400e64df
OBC
765 /* clean up carveout allocations */
766 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
b5ab5e24 767 dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
400e64df
OBC
768 list_del(&entry->node);
769 kfree(entry);
770 }
771
772 /* clean up iommu mapping entries */
773 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
774 size_t unmapped;
775
776 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
777 if (unmapped != entry->len) {
778 /* nothing much to do besides complaining */
e981f6d4 779 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
400e64df
OBC
780 unmapped);
781 }
782
783 list_del(&entry->node);
784 kfree(entry);
785 }
786}
787
400e64df
OBC
788/*
789 * take a firmware and boot a remote processor with it.
790 */
791static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
792{
b5ab5e24 793 struct device *dev = &rproc->dev;
400e64df 794 const char *name = rproc->firmware;
a2b950ac 795 struct resource_table *table, *loaded_table;
1e3e2c7c 796 int ret, tablesz;
400e64df 797
a2b950ac
OBC
798 if (!rproc->table_ptr)
799 return -ENOMEM;
800
400e64df
OBC
801 ret = rproc_fw_sanity_check(rproc, fw);
802 if (ret)
803 return ret;
804
e981f6d4 805 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
400e64df
OBC
806
807 /*
808 * if enabling an IOMMU isn't relevant for this rproc, this is
809 * just a nop
810 */
811 ret = rproc_enable_iommu(rproc);
812 if (ret) {
813 dev_err(dev, "can't enable iommu: %d\n", ret);
814 return ret;
815 }
816
3e5f9eb5 817 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
400e64df 818
1e3e2c7c 819 /* look for the resource table */
bd484984 820 table = rproc_find_rsc_table(rproc, fw, &tablesz);
30338cf0
SB
821 if (!table) {
822 ret = -EINVAL;
1e3e2c7c 823 goto clean_up;
30338cf0 824 }
1e3e2c7c 825
a2b950ac
OBC
826 /* Verify that resource table in loaded fw is unchanged */
827 if (rproc->table_csum != crc32(0, table, tablesz)) {
828 dev_err(dev, "resource checksum failed, fw changed?\n");
829 ret = -EINVAL;
830 goto clean_up;
831 }
832
400e64df 833 /* handle fw resources which are required to boot rproc */
a2b950ac 834 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
400e64df
OBC
835 if (ret) {
836 dev_err(dev, "Failed to process resources: %d\n", ret);
837 goto clean_up;
838 }
839
840 /* load the ELF segments to memory */
bd484984 841 ret = rproc_load_segments(rproc, fw);
400e64df
OBC
842 if (ret) {
843 dev_err(dev, "Failed to load program segments: %d\n", ret);
844 goto clean_up;
845 }
846
a2b950ac
OBC
847 /*
848 * The starting device has been given the rproc->cached_table as the
849 * resource table. The address of the vring along with the other
850 * allocated resources (carveouts etc) is stored in cached_table.
851 * In order to pass this information to the remote device we must
852 * copy this information to device memory.
853 */
854 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
855 if (!loaded_table)
856 goto clean_up;
857
858 memcpy(loaded_table, rproc->cached_table, tablesz);
859
400e64df
OBC
860 /* power up the remote processor */
861 ret = rproc->ops->start(rproc);
862 if (ret) {
863 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
864 goto clean_up;
865 }
866
a2b950ac
OBC
867 /*
868 * Update table_ptr so that all subsequent vring allocations and
869 * virtio fields manipulation update the actual loaded resource table
870 * in device memory.
871 */
872 rproc->table_ptr = loaded_table;
873
400e64df
OBC
874 rproc->state = RPROC_RUNNING;
875
876 dev_info(dev, "remote processor %s is now up\n", rproc->name);
877
878 return 0;
879
880clean_up:
881 rproc_resource_cleanup(rproc);
882 rproc_disable_iommu(rproc);
883 return ret;
884}
885
886/*
887 * take a firmware and look for virtio devices to register.
888 *
889 * Note: this function is called asynchronously upon registration of the
890 * remote processor (so we must wait until it completes before we try
891 * to unregister the device. one other option is just to use kref here,
892 * that might be cleaner).
893 */
894static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
895{
896 struct rproc *rproc = context;
1e3e2c7c
OBC
897 struct resource_table *table;
898 int ret, tablesz;
400e64df
OBC
899
900 if (rproc_fw_sanity_check(rproc, fw) < 0)
901 goto out;
902
1e3e2c7c 903 /* look for the resource table */
bd484984 904 table = rproc_find_rsc_table(rproc, fw, &tablesz);
1e3e2c7c
OBC
905 if (!table)
906 goto out;
907
a2b950ac
OBC
908 rproc->table_csum = crc32(0, table, tablesz);
909
910 /*
911 * Create a copy of the resource table. When a virtio device starts
912 * and calls vring_new_virtqueue() the address of the allocated vring
913 * will be stored in the cached_table. Before the device is started,
914 * cached_table will be copied into devic memory.
915 */
916 rproc->cached_table = kmalloc(tablesz, GFP_KERNEL);
917 if (!rproc->cached_table)
918 goto out;
919
920 memcpy(rproc->cached_table, table, tablesz);
921 rproc->table_ptr = rproc->cached_table;
922
ba7290e0
SB
923 /* count the number of notify-ids */
924 rproc->max_notifyid = -1;
a2b950ac 925 ret = rproc_handle_resources(rproc, tablesz, rproc_count_vrings_handler);
1e3e2c7c 926 if (ret)
400e64df 927 goto out;
400e64df 928
a2b950ac
OBC
929 /* look for virtio devices and register them */
930 ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
931
400e64df 932out:
3cc6e787 933 release_firmware(fw);
160e7c84 934 /* allow rproc_del() contexts, if any, to proceed */
400e64df
OBC
935 complete_all(&rproc->firmware_loading_complete);
936}
937
70b85ef8
FGL
938static int rproc_add_virtio_devices(struct rproc *rproc)
939{
940 int ret;
941
942 /* rproc_del() calls must wait until async loader completes */
943 init_completion(&rproc->firmware_loading_complete);
944
945 /*
946 * We must retrieve early virtio configuration info from
947 * the firmware (e.g. whether to register a virtio device,
948 * what virtio features does it support, ...).
949 *
950 * We're initiating an asynchronous firmware loading, so we can
951 * be built-in kernel code, without hanging the boot process.
952 */
953 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
954 rproc->firmware, &rproc->dev, GFP_KERNEL,
955 rproc, rproc_fw_config_virtio);
956 if (ret < 0) {
957 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
958 complete_all(&rproc->firmware_loading_complete);
959 }
960
961 return ret;
962}
963
964/**
965 * rproc_trigger_recovery() - recover a remoteproc
966 * @rproc: the remote processor
967 *
968 * The recovery is done by reseting all the virtio devices, that way all the
969 * rpmsg drivers will be reseted along with the remote processor making the
970 * remoteproc functional again.
971 *
972 * This function can sleep, so it cannot be called from atomic context.
973 */
974int rproc_trigger_recovery(struct rproc *rproc)
975{
976 struct rproc_vdev *rvdev, *rvtmp;
977
978 dev_err(&rproc->dev, "recovering %s\n", rproc->name);
979
980 init_completion(&rproc->crash_comp);
981
982 /* clean up remote vdev entries */
983 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
984 rproc_remove_virtio_dev(rvdev);
985
986 /* wait until there is no more rproc users */
987 wait_for_completion(&rproc->crash_comp);
988
a2b950ac
OBC
989 /* Free the copy of the resource table */
990 kfree(rproc->cached_table);
991
70b85ef8
FGL
992 return rproc_add_virtio_devices(rproc);
993}
994
8afd519c
FGL
995/**
996 * rproc_crash_handler_work() - handle a crash
997 *
998 * This function needs to handle everything related to a crash, like cpu
999 * registers and stack dump, information to help to debug the fatal error, etc.
1000 */
1001static void rproc_crash_handler_work(struct work_struct *work)
1002{
1003 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1004 struct device *dev = &rproc->dev;
1005
1006 dev_dbg(dev, "enter %s\n", __func__);
1007
1008 mutex_lock(&rproc->lock);
1009
1010 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1011 /* handle only the first crash detected */
1012 mutex_unlock(&rproc->lock);
1013 return;
1014 }
1015
1016 rproc->state = RPROC_CRASHED;
1017 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1018 rproc->name);
1019
1020 mutex_unlock(&rproc->lock);
1021
2e37abb8
FGL
1022 if (!rproc->recovery_disabled)
1023 rproc_trigger_recovery(rproc);
8afd519c
FGL
1024}
1025
400e64df
OBC
1026/**
1027 * rproc_boot() - boot a remote processor
1028 * @rproc: handle of a remote processor
1029 *
1030 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1031 *
1032 * If the remote processor is already powered on, this function immediately
1033 * returns (successfully).
1034 *
1035 * Returns 0 on success, and an appropriate error value otherwise.
1036 */
1037int rproc_boot(struct rproc *rproc)
1038{
1039 const struct firmware *firmware_p;
1040 struct device *dev;
1041 int ret;
1042
1043 if (!rproc) {
1044 pr_err("invalid rproc handle\n");
1045 return -EINVAL;
1046 }
1047
b5ab5e24 1048 dev = &rproc->dev;
400e64df
OBC
1049
1050 ret = mutex_lock_interruptible(&rproc->lock);
1051 if (ret) {
1052 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1053 return ret;
1054 }
1055
1056 /* loading a firmware is required */
1057 if (!rproc->firmware) {
1058 dev_err(dev, "%s: no firmware to load\n", __func__);
1059 ret = -EINVAL;
1060 goto unlock_mutex;
1061 }
1062
1063 /* prevent underlying implementation from being removed */
b5ab5e24 1064 if (!try_module_get(dev->parent->driver->owner)) {
400e64df
OBC
1065 dev_err(dev, "%s: can't get owner\n", __func__);
1066 ret = -EINVAL;
1067 goto unlock_mutex;
1068 }
1069
1070 /* skip the boot process if rproc is already powered up */
1071 if (atomic_inc_return(&rproc->power) > 1) {
1072 ret = 0;
1073 goto unlock_mutex;
1074 }
1075
1076 dev_info(dev, "powering up %s\n", rproc->name);
1077
1078 /* load firmware */
1079 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1080 if (ret < 0) {
1081 dev_err(dev, "request_firmware failed: %d\n", ret);
1082 goto downref_rproc;
1083 }
1084
1085 ret = rproc_fw_boot(rproc, firmware_p);
1086
1087 release_firmware(firmware_p);
1088
1089downref_rproc:
1090 if (ret) {
b5ab5e24 1091 module_put(dev->parent->driver->owner);
400e64df
OBC
1092 atomic_dec(&rproc->power);
1093 }
1094unlock_mutex:
1095 mutex_unlock(&rproc->lock);
1096 return ret;
1097}
1098EXPORT_SYMBOL(rproc_boot);
1099
1100/**
1101 * rproc_shutdown() - power off the remote processor
1102 * @rproc: the remote processor
1103 *
1104 * Power off a remote processor (previously booted with rproc_boot()).
1105 *
1106 * In case @rproc is still being used by an additional user(s), then
1107 * this function will just decrement the power refcount and exit,
1108 * without really powering off the device.
1109 *
1110 * Every call to rproc_boot() must (eventually) be accompanied by a call
1111 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1112 *
1113 * Notes:
1114 * - we're not decrementing the rproc's refcount, only the power refcount.
1115 * which means that the @rproc handle stays valid even after rproc_shutdown()
1116 * returns, and users can still use it with a subsequent rproc_boot(), if
1117 * needed.
400e64df
OBC
1118 */
1119void rproc_shutdown(struct rproc *rproc)
1120{
b5ab5e24 1121 struct device *dev = &rproc->dev;
400e64df
OBC
1122 int ret;
1123
1124 ret = mutex_lock_interruptible(&rproc->lock);
1125 if (ret) {
1126 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1127 return;
1128 }
1129
1130 /* if the remote proc is still needed, bail out */
1131 if (!atomic_dec_and_test(&rproc->power))
1132 goto out;
1133
1134 /* power off the remote processor */
1135 ret = rproc->ops->stop(rproc);
1136 if (ret) {
1137 atomic_inc(&rproc->power);
1138 dev_err(dev, "can't stop rproc: %d\n", ret);
1139 goto out;
1140 }
1141
1142 /* clean up all acquired resources */
1143 rproc_resource_cleanup(rproc);
1144
1145 rproc_disable_iommu(rproc);
1146
a2b950ac
OBC
1147 /* Give the next start a clean resource table */
1148 rproc->table_ptr = rproc->cached_table;
1149
70b85ef8
FGL
1150 /* if in crash state, unlock crash handler */
1151 if (rproc->state == RPROC_CRASHED)
1152 complete_all(&rproc->crash_comp);
1153
400e64df
OBC
1154 rproc->state = RPROC_OFFLINE;
1155
1156 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1157
1158out:
1159 mutex_unlock(&rproc->lock);
1160 if (!ret)
b5ab5e24 1161 module_put(dev->parent->driver->owner);
400e64df
OBC
1162}
1163EXPORT_SYMBOL(rproc_shutdown);
1164
1165/**
160e7c84 1166 * rproc_add() - register a remote processor
400e64df
OBC
1167 * @rproc: the remote processor handle to register
1168 *
1169 * Registers @rproc with the remoteproc framework, after it has been
1170 * allocated with rproc_alloc().
1171 *
1172 * This is called by the platform-specific rproc implementation, whenever
1173 * a new remote processor device is probed.
1174 *
1175 * Returns 0 on success and an appropriate error code otherwise.
1176 *
1177 * Note: this function initiates an asynchronous firmware loading
1178 * context, which will look for virtio devices supported by the rproc's
1179 * firmware.
1180 *
1181 * If found, those virtio devices will be created and added, so as a result
7a186941 1182 * of registering this remote processor, additional virtio drivers might be
400e64df 1183 * probed.
400e64df 1184 */
160e7c84 1185int rproc_add(struct rproc *rproc)
400e64df 1186{
b5ab5e24 1187 struct device *dev = &rproc->dev;
70b85ef8 1188 int ret;
400e64df 1189
b5ab5e24
OBC
1190 ret = device_add(dev);
1191 if (ret < 0)
1192 return ret;
400e64df 1193
b5ab5e24 1194 dev_info(dev, "%s is available\n", rproc->name);
400e64df 1195
489d129a
OBC
1196 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1197 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1198
400e64df
OBC
1199 /* create debugfs entries */
1200 rproc_create_debug_dir(rproc);
1201
70b85ef8 1202 return rproc_add_virtio_devices(rproc);
400e64df 1203}
160e7c84 1204EXPORT_SYMBOL(rproc_add);
400e64df 1205
b5ab5e24
OBC
1206/**
1207 * rproc_type_release() - release a remote processor instance
1208 * @dev: the rproc's device
1209 *
1210 * This function should _never_ be called directly.
1211 *
1212 * It will be called by the driver core when no one holds a valid pointer
1213 * to @dev anymore.
1214 */
1215static void rproc_type_release(struct device *dev)
1216{
1217 struct rproc *rproc = container_of(dev, struct rproc, dev);
1218
7183a2a7
OBC
1219 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1220
1221 rproc_delete_debug_dir(rproc);
1222
b5ab5e24
OBC
1223 idr_destroy(&rproc->notifyids);
1224
1225 if (rproc->index >= 0)
1226 ida_simple_remove(&rproc_dev_index, rproc->index);
1227
1228 kfree(rproc);
1229}
1230
1231static struct device_type rproc_type = {
1232 .name = "remoteproc",
1233 .release = rproc_type_release,
1234};
400e64df
OBC
1235
1236/**
1237 * rproc_alloc() - allocate a remote processor handle
1238 * @dev: the underlying device
1239 * @name: name of this remote processor
1240 * @ops: platform-specific handlers (mainly start/stop)
8b4aec9a 1241 * @firmware: name of firmware file to load, can be NULL
400e64df
OBC
1242 * @len: length of private data needed by the rproc driver (in bytes)
1243 *
1244 * Allocates a new remote processor handle, but does not register
8b4aec9a 1245 * it yet. if @firmware is NULL, a default name is used.
400e64df
OBC
1246 *
1247 * This function should be used by rproc implementations during initialization
1248 * of the remote processor.
1249 *
1250 * After creating an rproc handle using this function, and when ready,
160e7c84 1251 * implementations should then call rproc_add() to complete
400e64df
OBC
1252 * the registration of the remote processor.
1253 *
1254 * On success the new rproc is returned, and on failure, NULL.
1255 *
1256 * Note: _never_ directly deallocate @rproc, even if it was not registered
160e7c84 1257 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
400e64df
OBC
1258 */
1259struct rproc *rproc_alloc(struct device *dev, const char *name,
1260 const struct rproc_ops *ops,
1261 const char *firmware, int len)
1262{
1263 struct rproc *rproc;
8b4aec9a
RT
1264 char *p, *template = "rproc-%s-fw";
1265 int name_len = 0;
400e64df
OBC
1266
1267 if (!dev || !name || !ops)
1268 return NULL;
1269
8b4aec9a
RT
1270 if (!firmware)
1271 /*
1272 * Make room for default firmware name (minus %s plus '\0').
1273 * If the caller didn't pass in a firmware name then
1274 * construct a default name. We're already glomming 'len'
1275 * bytes onto the end of the struct rproc allocation, so do
1276 * a few more for the default firmware name (but only if
1277 * the caller doesn't pass one).
1278 */
1279 name_len = strlen(name) + strlen(template) - 2 + 1;
1280
1281 rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL);
400e64df
OBC
1282 if (!rproc) {
1283 dev_err(dev, "%s: kzalloc failed\n", __func__);
1284 return NULL;
1285 }
1286
8b4aec9a
RT
1287 if (!firmware) {
1288 p = (char *)rproc + sizeof(struct rproc) + len;
1289 snprintf(p, name_len, template, name);
1290 } else {
1291 p = (char *)firmware;
1292 }
1293
1294 rproc->firmware = p;
400e64df
OBC
1295 rproc->name = name;
1296 rproc->ops = ops;
400e64df
OBC
1297 rproc->priv = &rproc[1];
1298
b5ab5e24
OBC
1299 device_initialize(&rproc->dev);
1300 rproc->dev.parent = dev;
1301 rproc->dev.type = &rproc_type;
1302
1303 /* Assign a unique device index and name */
1304 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1305 if (rproc->index < 0) {
1306 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1307 put_device(&rproc->dev);
1308 return NULL;
1309 }
1310
1311 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1312
400e64df
OBC
1313 atomic_set(&rproc->power, 0);
1314
4afc89d6
SB
1315 /* Set ELF as the default fw_ops handler */
1316 rproc->fw_ops = &rproc_elf_fw_ops;
400e64df
OBC
1317
1318 mutex_init(&rproc->lock);
1319
7a186941
OBC
1320 idr_init(&rproc->notifyids);
1321
400e64df
OBC
1322 INIT_LIST_HEAD(&rproc->carveouts);
1323 INIT_LIST_HEAD(&rproc->mappings);
1324 INIT_LIST_HEAD(&rproc->traces);
7a186941 1325 INIT_LIST_HEAD(&rproc->rvdevs);
400e64df 1326
8afd519c 1327 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
70b85ef8 1328 init_completion(&rproc->crash_comp);
8afd519c 1329
400e64df
OBC
1330 rproc->state = RPROC_OFFLINE;
1331
1332 return rproc;
1333}
1334EXPORT_SYMBOL(rproc_alloc);
1335
1336/**
160e7c84 1337 * rproc_put() - unroll rproc_alloc()
400e64df
OBC
1338 * @rproc: the remote processor handle
1339 *
c6b5a276 1340 * This function decrements the rproc dev refcount.
400e64df 1341 *
c6b5a276
OBC
1342 * If no one holds any reference to rproc anymore, then its refcount would
1343 * now drop to zero, and it would be freed.
400e64df 1344 */
160e7c84 1345void rproc_put(struct rproc *rproc)
400e64df 1346{
b5ab5e24 1347 put_device(&rproc->dev);
400e64df 1348}
160e7c84 1349EXPORT_SYMBOL(rproc_put);
400e64df
OBC
1350
1351/**
160e7c84 1352 * rproc_del() - unregister a remote processor
400e64df
OBC
1353 * @rproc: rproc handle to unregister
1354 *
400e64df
OBC
1355 * This function should be called when the platform specific rproc
1356 * implementation decides to remove the rproc device. it should
160e7c84 1357 * _only_ be called if a previous invocation of rproc_add()
400e64df
OBC
1358 * has completed successfully.
1359 *
160e7c84 1360 * After rproc_del() returns, @rproc isn't freed yet, because
c6b5a276 1361 * of the outstanding reference created by rproc_alloc. To decrement that
160e7c84 1362 * one last refcount, one still needs to call rproc_put().
400e64df
OBC
1363 *
1364 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1365 */
160e7c84 1366int rproc_del(struct rproc *rproc)
400e64df 1367{
6db20ea8 1368 struct rproc_vdev *rvdev, *tmp;
7a186941 1369
400e64df
OBC
1370 if (!rproc)
1371 return -EINVAL;
1372
1373 /* if rproc is just being registered, wait */
1374 wait_for_completion(&rproc->firmware_loading_complete);
1375
7a186941 1376 /* clean up remote vdev entries */
6db20ea8 1377 list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
7a186941 1378 rproc_remove_virtio_dev(rvdev);
400e64df 1379
a2b950ac
OBC
1380 /* Free the copy of the resource table */
1381 kfree(rproc->cached_table);
1382
b5ab5e24 1383 device_del(&rproc->dev);
400e64df
OBC
1384
1385 return 0;
1386}
160e7c84 1387EXPORT_SYMBOL(rproc_del);
400e64df 1388
8afd519c
FGL
1389/**
1390 * rproc_report_crash() - rproc crash reporter function
1391 * @rproc: remote processor
1392 * @type: crash type
1393 *
1394 * This function must be called every time a crash is detected by the low-level
1395 * drivers implementing a specific remoteproc. This should not be called from a
1396 * non-remoteproc driver.
1397 *
1398 * This function can be called from atomic/interrupt context.
1399 */
1400void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1401{
1402 if (!rproc) {
1403 pr_err("NULL rproc pointer\n");
1404 return;
1405 }
1406
1407 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1408 rproc->name, rproc_crash_to_string(type));
1409
1410 /* create a new task to handle the error */
1411 schedule_work(&rproc->crash_handler);
1412}
1413EXPORT_SYMBOL(rproc_report_crash);
1414
400e64df
OBC
1415static int __init remoteproc_init(void)
1416{
1417 rproc_init_debugfs();
b5ab5e24 1418
400e64df
OBC
1419 return 0;
1420}
1421module_init(remoteproc_init);
1422
1423static void __exit remoteproc_exit(void)
1424{
1425 rproc_exit_debugfs();
1426}
1427module_exit(remoteproc_exit);
1428
1429MODULE_LICENSE("GPL v2");
1430MODULE_DESCRIPTION("Generic Remote Processor Framework");