]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/remoteproc/remoteproc_core.c
Linux 3.9-rc2
[mirror_ubuntu-jammy-kernel.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
400e64df
OBC
1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt) "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
36#include <linux/remoteproc.h>
37#include <linux/iommu.h>
b5ab5e24 38#include <linux/idr.h>
400e64df
OBC
39#include <linux/elf.h>
40#include <linux/virtio_ids.h>
41#include <linux/virtio_ring.h>
cf59d3e9 42#include <asm/byteorder.h>
400e64df
OBC
43
44#include "remoteproc_internal.h"
45
400e64df 46typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
fd2c15ec
OBC
47 struct resource_table *table, int len);
48typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
400e64df 49
b5ab5e24
OBC
50/* Unique indices for remoteproc devices */
51static DEFINE_IDA(rproc_dev_index);
52
8afd519c
FGL
53static const char * const rproc_crash_names[] = {
54 [RPROC_MMUFAULT] = "mmufault",
55};
56
57/* translate rproc_crash_type to string */
58static const char *rproc_crash_to_string(enum rproc_crash_type type)
59{
60 if (type < ARRAY_SIZE(rproc_crash_names))
61 return rproc_crash_names[type];
62 return "unkown";
63}
64
400e64df
OBC
65/*
66 * This is the IOMMU fault handler we register with the IOMMU API
67 * (when relevant; not all remote processors access memory through
68 * an IOMMU).
69 *
70 * IOMMU core will invoke this handler whenever the remote processor
71 * will try to access an unmapped device address.
400e64df
OBC
72 */
73static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
77ca2332 74 unsigned long iova, int flags, void *token)
400e64df 75{
8afd519c
FGL
76 struct rproc *rproc = token;
77
400e64df
OBC
78 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
79
8afd519c
FGL
80 rproc_report_crash(rproc, RPROC_MMUFAULT);
81
400e64df
OBC
82 /*
83 * Let the iommu core know we're not really handling this fault;
8afd519c 84 * we just used it as a recovery trigger.
400e64df
OBC
85 */
86 return -ENOSYS;
87}
88
89static int rproc_enable_iommu(struct rproc *rproc)
90{
91 struct iommu_domain *domain;
b5ab5e24 92 struct device *dev = rproc->dev.parent;
400e64df
OBC
93 int ret;
94
95 /*
96 * We currently use iommu_present() to decide if an IOMMU
97 * setup is needed.
98 *
99 * This works for simple cases, but will easily fail with
100 * platforms that do have an IOMMU, but not for this specific
101 * rproc.
102 *
103 * This will be easily solved by introducing hw capabilities
104 * that will be set by the remoteproc driver.
105 */
106 if (!iommu_present(dev->bus)) {
0798e1da
MG
107 dev_dbg(dev, "iommu not found\n");
108 return 0;
400e64df
OBC
109 }
110
111 domain = iommu_domain_alloc(dev->bus);
112 if (!domain) {
113 dev_err(dev, "can't alloc iommu domain\n");
114 return -ENOMEM;
115 }
116
77ca2332 117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
400e64df
OBC
118
119 ret = iommu_attach_device(domain, dev);
120 if (ret) {
121 dev_err(dev, "can't attach iommu device: %d\n", ret);
122 goto free_domain;
123 }
124
125 rproc->domain = domain;
126
127 return 0;
128
129free_domain:
130 iommu_domain_free(domain);
131 return ret;
132}
133
134static void rproc_disable_iommu(struct rproc *rproc)
135{
136 struct iommu_domain *domain = rproc->domain;
b5ab5e24 137 struct device *dev = rproc->dev.parent;
400e64df
OBC
138
139 if (!domain)
140 return;
141
142 iommu_detach_device(domain, dev);
143 iommu_domain_free(domain);
144
145 return;
146}
147
148/*
149 * Some remote processors will ask us to allocate them physically contiguous
150 * memory regions (which we call "carveouts"), and map them to specific
151 * device addresses (which are hardcoded in the firmware).
152 *
153 * They may then ask us to copy objects into specific device addresses (e.g.
154 * code/data sections) or expose us certain symbols in other device address
155 * (e.g. their trace buffer).
156 *
157 * This function is an internal helper with which we can go over the allocated
158 * carveouts and translate specific device address to kernel virtual addresses
159 * so we can access the referenced memory.
160 *
161 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
162 * but only on kernel direct mapped RAM memory. Instead, we're just using
163 * here the output of the DMA API, which should be more correct.
164 */
72854fb0 165void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
400e64df
OBC
166{
167 struct rproc_mem_entry *carveout;
168 void *ptr = NULL;
169
170 list_for_each_entry(carveout, &rproc->carveouts, node) {
171 int offset = da - carveout->da;
172
173 /* try next carveout if da is too small */
174 if (offset < 0)
175 continue;
176
177 /* try next carveout if da is too large */
178 if (offset + len > carveout->len)
179 continue;
180
181 ptr = carveout->va + offset;
182
183 break;
184 }
185
186 return ptr;
187}
4afc89d6 188EXPORT_SYMBOL(rproc_da_to_va);
400e64df 189
6db20ea8 190int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
400e64df 191{
7a186941 192 struct rproc *rproc = rvdev->rproc;
b5ab5e24 193 struct device *dev = &rproc->dev;
6db20ea8 194 struct rproc_vring *rvring = &rvdev->vring[i];
7a186941
OBC
195 dma_addr_t dma;
196 void *va;
197 int ret, size, notifyid;
400e64df 198
7a186941 199 /* actual size of vring (in bytes) */
6db20ea8 200 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
7a186941 201
7a186941
OBC
202 /*
203 * Allocate non-cacheable memory for the vring. In the future
204 * this call will also configure the IOMMU for us
6db20ea8 205 * TODO: let the rproc know the da of this vring
7a186941 206 */
b5ab5e24 207 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
7a186941 208 if (!va) {
b5ab5e24 209 dev_err(dev->parent, "dma_alloc_coherent failed\n");
400e64df
OBC
210 return -EINVAL;
211 }
212
6db20ea8
OBC
213 /*
214 * Assign an rproc-wide unique index for this vring
215 * TODO: assign a notifyid for rvdev updates as well
216 * TODO: let the rproc know the notifyid of this vring
217 * TODO: support predefined notifyids (via resource table)
218 */
15fc6110 219 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
7a186941 220 if (ret) {
15fc6110 221 dev_err(dev, "idr_alloc failed: %d\n", ret);
b5ab5e24 222 dma_free_coherent(dev->parent, size, va, dma);
7a186941
OBC
223 return ret;
224 }
15fc6110 225 notifyid = ret;
400e64df 226
099a3f33
SB
227 /* Store largest notifyid */
228 rproc->max_notifyid = max(rproc->max_notifyid, notifyid);
229
d09f53a7
EG
230 dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
231 (unsigned long long)dma, size, notifyid);
7a186941 232
6db20ea8
OBC
233 rvring->va = va;
234 rvring->dma = dma;
235 rvring->notifyid = notifyid;
400e64df
OBC
236
237 return 0;
238}
239
6db20ea8
OBC
240static int
241rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
7a186941
OBC
242{
243 struct rproc *rproc = rvdev->rproc;
b5ab5e24 244 struct device *dev = &rproc->dev;
6db20ea8
OBC
245 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
246 struct rproc_vring *rvring = &rvdev->vring[i];
7a186941 247
6db20ea8
OBC
248 dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
249 i, vring->da, vring->num, vring->align);
7a186941 250
6db20ea8
OBC
251 /* make sure reserved bytes are zeroes */
252 if (vring->reserved) {
253 dev_err(dev, "vring rsc has non zero reserved bytes\n");
254 return -EINVAL;
255 }
7a186941 256
6db20ea8
OBC
257 /* verify queue size and vring alignment are sane */
258 if (!vring->num || !vring->align) {
259 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
260 vring->num, vring->align);
261 return -EINVAL;
7a186941 262 }
6db20ea8
OBC
263
264 rvring->len = vring->num;
265 rvring->align = vring->align;
266 rvring->rvdev = rvdev;
267
268 return 0;
269}
270
099a3f33
SB
271static int rproc_max_notifyid(int id, void *p, void *data)
272{
273 int *maxid = data;
274 *maxid = max(*maxid, id);
275 return 0;
276}
277
6db20ea8
OBC
278void rproc_free_vring(struct rproc_vring *rvring)
279{
280 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
281 struct rproc *rproc = rvring->rvdev->rproc;
099a3f33 282 int maxid = 0;
6db20ea8 283
b5ab5e24 284 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
6db20ea8 285 idr_remove(&rproc->notifyids, rvring->notifyid);
099a3f33
SB
286
287 /* Find the largest remaining notifyid */
288 idr_for_each(&rproc->notifyids, rproc_max_notifyid, &maxid);
289 rproc->max_notifyid = maxid;
7a186941
OBC
290}
291
400e64df 292/**
fd2c15ec 293 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
294 * @rproc: the remote processor
295 * @rsc: the vring resource descriptor
fd2c15ec 296 * @avail: size of available data (for sanity checking the image)
400e64df 297 *
7a186941
OBC
298 * This resource entry requests the host to statically register a virtio
299 * device (vdev), and setup everything needed to support it. It contains
300 * everything needed to make it possible: the virtio device id, virtio
301 * device features, vrings information, virtio config space, etc...
302 *
303 * Before registering the vdev, the vrings are allocated from non-cacheable
304 * physically contiguous memory. Currently we only support two vrings per
305 * remote processor (temporary limitation). We might also want to consider
306 * doing the vring allocation only later when ->find_vqs() is invoked, and
307 * then release them upon ->del_vqs().
308 *
309 * Note: @da is currently not really handled correctly: we dynamically
310 * allocate it using the DMA API, ignoring requested hard coded addresses,
311 * and we don't take care of any required IOMMU programming. This is all
312 * going to be taken care of when the generic iommu-based DMA API will be
313 * merged. Meanwhile, statically-addressed iommu-based firmware images should
314 * use RSC_DEVMEM resource entries to map their required @da to the physical
315 * address of their base CMA region (ouch, hacky!).
400e64df
OBC
316 *
317 * Returns 0 on success, or an appropriate error code otherwise
318 */
fd2c15ec
OBC
319static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
320 int avail)
400e64df 321{
b5ab5e24 322 struct device *dev = &rproc->dev;
7a186941
OBC
323 struct rproc_vdev *rvdev;
324 int i, ret;
400e64df 325
fd2c15ec
OBC
326 /* make sure resource isn't truncated */
327 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
328 + rsc->config_len > avail) {
b5ab5e24 329 dev_err(dev, "vdev rsc is truncated\n");
400e64df
OBC
330 return -EINVAL;
331 }
332
fd2c15ec
OBC
333 /* make sure reserved bytes are zeroes */
334 if (rsc->reserved[0] || rsc->reserved[1]) {
335 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
336 return -EINVAL;
337 }
338
fd2c15ec
OBC
339 dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
340 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
341
7a186941
OBC
342 /* we currently support only two vrings per rvdev */
343 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
fd2c15ec 344 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
345 return -EINVAL;
346 }
347
7a186941
OBC
348 rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
349 if (!rvdev)
350 return -ENOMEM;
400e64df 351
7a186941 352 rvdev->rproc = rproc;
400e64df 353
6db20ea8 354 /* parse the vrings */
7a186941 355 for (i = 0; i < rsc->num_of_vrings; i++) {
6db20ea8 356 ret = rproc_parse_vring(rvdev, rsc, i);
7a186941 357 if (ret)
6db20ea8 358 goto free_rvdev;
7a186941 359 }
400e64df 360
7a186941
OBC
361 /* remember the device features */
362 rvdev->dfeatures = rsc->dfeatures;
fd2c15ec 363
7a186941 364 list_add_tail(&rvdev->node, &rproc->rvdevs);
fd2c15ec 365
7a186941
OBC
366 /* it is now safe to add the virtio device */
367 ret = rproc_add_virtio_dev(rvdev, rsc->id);
368 if (ret)
6db20ea8 369 goto free_rvdev;
400e64df
OBC
370
371 return 0;
7a186941 372
6db20ea8 373free_rvdev:
7a186941
OBC
374 kfree(rvdev);
375 return ret;
400e64df
OBC
376}
377
378/**
379 * rproc_handle_trace() - handle a shared trace buffer resource
380 * @rproc: the remote processor
381 * @rsc: the trace resource descriptor
fd2c15ec 382 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
383 *
384 * In case the remote processor dumps trace logs into memory,
385 * export it via debugfs.
386 *
387 * Currently, the 'da' member of @rsc should contain the device address
388 * where the remote processor is dumping the traces. Later we could also
389 * support dynamically allocating this address using the generic
390 * DMA API (but currently there isn't a use case for that).
391 *
392 * Returns 0 on success, or an appropriate error code otherwise
393 */
fd2c15ec
OBC
394static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
395 int avail)
400e64df
OBC
396{
397 struct rproc_mem_entry *trace;
b5ab5e24 398 struct device *dev = &rproc->dev;
400e64df
OBC
399 void *ptr;
400 char name[15];
401
fd2c15ec 402 if (sizeof(*rsc) > avail) {
b5ab5e24 403 dev_err(dev, "trace rsc is truncated\n");
fd2c15ec
OBC
404 return -EINVAL;
405 }
406
407 /* make sure reserved bytes are zeroes */
408 if (rsc->reserved) {
409 dev_err(dev, "trace rsc has non zero reserved bytes\n");
410 return -EINVAL;
411 }
412
400e64df
OBC
413 /* what's the kernel address of this resource ? */
414 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
415 if (!ptr) {
416 dev_err(dev, "erroneous trace resource entry\n");
417 return -EINVAL;
418 }
419
420 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
421 if (!trace) {
422 dev_err(dev, "kzalloc trace failed\n");
423 return -ENOMEM;
424 }
425
426 /* set the trace buffer dma properties */
427 trace->len = rsc->len;
428 trace->va = ptr;
429
430 /* make sure snprintf always null terminates, even if truncating */
431 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
432
433 /* create the debugfs entry */
434 trace->priv = rproc_create_trace_file(name, rproc, trace);
435 if (!trace->priv) {
436 trace->va = NULL;
437 kfree(trace);
438 return -EINVAL;
439 }
440
441 list_add_tail(&trace->node, &rproc->traces);
442
443 rproc->num_traces++;
444
fd2c15ec 445 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
400e64df
OBC
446 rsc->da, rsc->len);
447
448 return 0;
449}
450
451/**
452 * rproc_handle_devmem() - handle devmem resource entry
453 * @rproc: remote processor handle
454 * @rsc: the devmem resource entry
fd2c15ec 455 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
456 *
457 * Remote processors commonly need to access certain on-chip peripherals.
458 *
459 * Some of these remote processors access memory via an iommu device,
460 * and might require us to configure their iommu before they can access
461 * the on-chip peripherals they need.
462 *
463 * This resource entry is a request to map such a peripheral device.
464 *
465 * These devmem entries will contain the physical address of the device in
466 * the 'pa' member. If a specific device address is expected, then 'da' will
467 * contain it (currently this is the only use case supported). 'len' will
468 * contain the size of the physical region we need to map.
469 *
470 * Currently we just "trust" those devmem entries to contain valid physical
471 * addresses, but this is going to change: we want the implementations to
472 * tell us ranges of physical addresses the firmware is allowed to request,
473 * and not allow firmwares to request access to physical addresses that
474 * are outside those ranges.
475 */
fd2c15ec
OBC
476static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
477 int avail)
400e64df
OBC
478{
479 struct rproc_mem_entry *mapping;
b5ab5e24 480 struct device *dev = &rproc->dev;
400e64df
OBC
481 int ret;
482
483 /* no point in handling this resource without a valid iommu domain */
484 if (!rproc->domain)
485 return -EINVAL;
486
fd2c15ec 487 if (sizeof(*rsc) > avail) {
b5ab5e24 488 dev_err(dev, "devmem rsc is truncated\n");
fd2c15ec
OBC
489 return -EINVAL;
490 }
491
492 /* make sure reserved bytes are zeroes */
493 if (rsc->reserved) {
b5ab5e24 494 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
fd2c15ec
OBC
495 return -EINVAL;
496 }
497
400e64df
OBC
498 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
499 if (!mapping) {
b5ab5e24 500 dev_err(dev, "kzalloc mapping failed\n");
400e64df
OBC
501 return -ENOMEM;
502 }
503
504 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
505 if (ret) {
b5ab5e24 506 dev_err(dev, "failed to map devmem: %d\n", ret);
400e64df
OBC
507 goto out;
508 }
509
510 /*
511 * We'll need this info later when we'll want to unmap everything
512 * (e.g. on shutdown).
513 *
514 * We can't trust the remote processor not to change the resource
515 * table, so we must maintain this info independently.
516 */
517 mapping->da = rsc->da;
518 mapping->len = rsc->len;
519 list_add_tail(&mapping->node, &rproc->mappings);
520
b5ab5e24 521 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
400e64df
OBC
522 rsc->pa, rsc->da, rsc->len);
523
524 return 0;
525
526out:
527 kfree(mapping);
528 return ret;
529}
530
531/**
532 * rproc_handle_carveout() - handle phys contig memory allocation requests
533 * @rproc: rproc handle
534 * @rsc: the resource entry
fd2c15ec 535 * @avail: size of available data (for image validation)
400e64df
OBC
536 *
537 * This function will handle firmware requests for allocation of physically
538 * contiguous memory regions.
539 *
540 * These request entries should come first in the firmware's resource table,
541 * as other firmware entries might request placing other data objects inside
542 * these memory regions (e.g. data/code segments, trace resource entries, ...).
543 *
544 * Allocating memory this way helps utilizing the reserved physical memory
545 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
546 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
547 * pressure is important; it may have a substantial impact on performance.
548 */
fd2c15ec
OBC
549static int rproc_handle_carveout(struct rproc *rproc,
550 struct fw_rsc_carveout *rsc, int avail)
400e64df
OBC
551{
552 struct rproc_mem_entry *carveout, *mapping;
b5ab5e24 553 struct device *dev = &rproc->dev;
400e64df
OBC
554 dma_addr_t dma;
555 void *va;
556 int ret;
557
fd2c15ec 558 if (sizeof(*rsc) > avail) {
b5ab5e24 559 dev_err(dev, "carveout rsc is truncated\n");
fd2c15ec
OBC
560 return -EINVAL;
561 }
562
563 /* make sure reserved bytes are zeroes */
564 if (rsc->reserved) {
565 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
566 return -EINVAL;
567 }
568
569 dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
570 rsc->da, rsc->pa, rsc->len, rsc->flags);
571
400e64df
OBC
572 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
573 if (!carveout) {
574 dev_err(dev, "kzalloc carveout failed\n");
7168d914 575 return -ENOMEM;
400e64df
OBC
576 }
577
b5ab5e24 578 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
400e64df 579 if (!va) {
b5ab5e24 580 dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
400e64df
OBC
581 ret = -ENOMEM;
582 goto free_carv;
583 }
584
d09f53a7
EG
585 dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
586 (unsigned long long)dma, rsc->len);
400e64df
OBC
587
588 /*
589 * Ok, this is non-standard.
590 *
591 * Sometimes we can't rely on the generic iommu-based DMA API
592 * to dynamically allocate the device address and then set the IOMMU
593 * tables accordingly, because some remote processors might
594 * _require_ us to use hard coded device addresses that their
595 * firmware was compiled with.
596 *
597 * In this case, we must use the IOMMU API directly and map
598 * the memory to the device address as expected by the remote
599 * processor.
600 *
601 * Obviously such remote processor devices should not be configured
602 * to use the iommu-based DMA API: we expect 'dma' to contain the
603 * physical address in this case.
604 */
605 if (rproc->domain) {
7168d914
DC
606 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
607 if (!mapping) {
608 dev_err(dev, "kzalloc mapping failed\n");
609 ret = -ENOMEM;
610 goto dma_free;
611 }
612
400e64df
OBC
613 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
614 rsc->flags);
615 if (ret) {
616 dev_err(dev, "iommu_map failed: %d\n", ret);
7168d914 617 goto free_mapping;
400e64df
OBC
618 }
619
620 /*
621 * We'll need this info later when we'll want to unmap
622 * everything (e.g. on shutdown).
623 *
624 * We can't trust the remote processor not to change the
625 * resource table, so we must maintain this info independently.
626 */
627 mapping->da = rsc->da;
628 mapping->len = rsc->len;
629 list_add_tail(&mapping->node, &rproc->mappings);
630
d09f53a7
EG
631 dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
632 rsc->da, (unsigned long long)dma);
400e64df
OBC
633 }
634
0e49b72c
OBC
635 /*
636 * Some remote processors might need to know the pa
637 * even though they are behind an IOMMU. E.g., OMAP4's
638 * remote M3 processor needs this so it can control
639 * on-chip hardware accelerators that are not behind
640 * the IOMMU, and therefor must know the pa.
641 *
642 * Generally we don't want to expose physical addresses
643 * if we don't have to (remote processors are generally
644 * _not_ trusted), so we might want to do this only for
645 * remote processor that _must_ have this (e.g. OMAP4's
646 * dual M3 subsystem).
647 *
648 * Non-IOMMU processors might also want to have this info.
649 * In this case, the device address and the physical address
650 * are the same.
651 */
652 rsc->pa = dma;
653
400e64df
OBC
654 carveout->va = va;
655 carveout->len = rsc->len;
656 carveout->dma = dma;
657 carveout->da = rsc->da;
658
659 list_add_tail(&carveout->node, &rproc->carveouts);
660
661 return 0;
662
7168d914
DC
663free_mapping:
664 kfree(mapping);
400e64df 665dma_free:
b5ab5e24 666 dma_free_coherent(dev->parent, rsc->len, va, dma);
400e64df
OBC
667free_carv:
668 kfree(carveout);
400e64df
OBC
669 return ret;
670}
671
e12bc14b
OBC
672/*
673 * A lookup table for resource handlers. The indices are defined in
674 * enum fw_resource_type.
675 */
676static rproc_handle_resource_t rproc_handle_rsc[] = {
fd2c15ec
OBC
677 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
678 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
679 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
7a186941 680 [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
e12bc14b
OBC
681};
682
400e64df
OBC
683/* handle firmware resource entries before booting the remote processor */
684static int
fd2c15ec 685rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
400e64df 686{
b5ab5e24 687 struct device *dev = &rproc->dev;
e12bc14b 688 rproc_handle_resource_t handler;
fd2c15ec
OBC
689 int ret = 0, i;
690
691 for (i = 0; i < table->num; i++) {
692 int offset = table->offset[i];
693 struct fw_rsc_hdr *hdr = (void *)table + offset;
694 int avail = len - offset - sizeof(*hdr);
695 void *rsc = (void *)hdr + sizeof(*hdr);
696
697 /* make sure table isn't truncated */
698 if (avail < 0) {
699 dev_err(dev, "rsc table is truncated\n");
700 return -EINVAL;
701 }
400e64df 702
fd2c15ec 703 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 704
fd2c15ec
OBC
705 if (hdr->type >= RSC_LAST) {
706 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 707 continue;
400e64df
OBC
708 }
709
fd2c15ec 710 handler = rproc_handle_rsc[hdr->type];
e12bc14b
OBC
711 if (!handler)
712 continue;
713
fd2c15ec 714 ret = handler(rproc, rsc, avail);
400e64df
OBC
715 if (ret)
716 break;
400e64df
OBC
717 }
718
719 return ret;
720}
721
722/* handle firmware resource entries while registering the remote processor */
723static int
fd2c15ec 724rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
400e64df 725{
b5ab5e24 726 struct device *dev = &rproc->dev;
fd2c15ec
OBC
727 int ret = 0, i;
728
729 for (i = 0; i < table->num; i++) {
730 int offset = table->offset[i];
731 struct fw_rsc_hdr *hdr = (void *)table + offset;
732 int avail = len - offset - sizeof(*hdr);
7a186941 733 struct fw_rsc_vdev *vrsc;
400e64df 734
fd2c15ec
OBC
735 /* make sure table isn't truncated */
736 if (avail < 0) {
737 dev_err(dev, "rsc table is truncated\n");
738 return -EINVAL;
739 }
740
741 dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);
742
7a186941
OBC
743 if (hdr->type != RSC_VDEV)
744 continue;
745
746 vrsc = (struct fw_rsc_vdev *)hdr->data;
747
748 ret = rproc_handle_vdev(rproc, vrsc, avail);
749 if (ret)
400e64df 750 break;
fd2c15ec 751 }
400e64df
OBC
752
753 return ret;
754}
755
400e64df
OBC
756/**
757 * rproc_resource_cleanup() - clean up and free all acquired resources
758 * @rproc: rproc handle
759 *
760 * This function will free all resources acquired for @rproc, and it
7a186941 761 * is called whenever @rproc either shuts down or fails to boot.
400e64df
OBC
762 */
763static void rproc_resource_cleanup(struct rproc *rproc)
764{
765 struct rproc_mem_entry *entry, *tmp;
b5ab5e24 766 struct device *dev = &rproc->dev;
400e64df
OBC
767
768 /* clean up debugfs trace entries */
769 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
770 rproc_remove_trace_file(entry->priv);
771 rproc->num_traces--;
772 list_del(&entry->node);
773 kfree(entry);
774 }
775
400e64df
OBC
776 /* clean up carveout allocations */
777 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
b5ab5e24 778 dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
400e64df
OBC
779 list_del(&entry->node);
780 kfree(entry);
781 }
782
783 /* clean up iommu mapping entries */
784 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
785 size_t unmapped;
786
787 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
788 if (unmapped != entry->len) {
789 /* nothing much to do besides complaining */
e981f6d4 790 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
400e64df
OBC
791 unmapped);
792 }
793
794 list_del(&entry->node);
795 kfree(entry);
796 }
797}
798
400e64df
OBC
799/*
800 * take a firmware and boot a remote processor with it.
801 */
802static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
803{
b5ab5e24 804 struct device *dev = &rproc->dev;
400e64df 805 const char *name = rproc->firmware;
1e3e2c7c
OBC
806 struct resource_table *table;
807 int ret, tablesz;
400e64df
OBC
808
809 ret = rproc_fw_sanity_check(rproc, fw);
810 if (ret)
811 return ret;
812
e981f6d4 813 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
400e64df
OBC
814
815 /*
816 * if enabling an IOMMU isn't relevant for this rproc, this is
817 * just a nop
818 */
819 ret = rproc_enable_iommu(rproc);
820 if (ret) {
821 dev_err(dev, "can't enable iommu: %d\n", ret);
822 return ret;
823 }
824
3e5f9eb5 825 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
400e64df 826
1e3e2c7c 827 /* look for the resource table */
bd484984 828 table = rproc_find_rsc_table(rproc, fw, &tablesz);
30338cf0
SB
829 if (!table) {
830 ret = -EINVAL;
1e3e2c7c 831 goto clean_up;
30338cf0 832 }
1e3e2c7c 833
400e64df 834 /* handle fw resources which are required to boot rproc */
1e3e2c7c 835 ret = rproc_handle_boot_rsc(rproc, table, tablesz);
400e64df
OBC
836 if (ret) {
837 dev_err(dev, "Failed to process resources: %d\n", ret);
838 goto clean_up;
839 }
840
841 /* load the ELF segments to memory */
bd484984 842 ret = rproc_load_segments(rproc, fw);
400e64df
OBC
843 if (ret) {
844 dev_err(dev, "Failed to load program segments: %d\n", ret);
845 goto clean_up;
846 }
847
848 /* power up the remote processor */
849 ret = rproc->ops->start(rproc);
850 if (ret) {
851 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
852 goto clean_up;
853 }
854
855 rproc->state = RPROC_RUNNING;
856
857 dev_info(dev, "remote processor %s is now up\n", rproc->name);
858
859 return 0;
860
861clean_up:
862 rproc_resource_cleanup(rproc);
863 rproc_disable_iommu(rproc);
864 return ret;
865}
866
867/*
868 * take a firmware and look for virtio devices to register.
869 *
870 * Note: this function is called asynchronously upon registration of the
871 * remote processor (so we must wait until it completes before we try
872 * to unregister the device. one other option is just to use kref here,
873 * that might be cleaner).
874 */
875static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
876{
877 struct rproc *rproc = context;
1e3e2c7c
OBC
878 struct resource_table *table;
879 int ret, tablesz;
400e64df
OBC
880
881 if (rproc_fw_sanity_check(rproc, fw) < 0)
882 goto out;
883
1e3e2c7c 884 /* look for the resource table */
bd484984 885 table = rproc_find_rsc_table(rproc, fw, &tablesz);
1e3e2c7c
OBC
886 if (!table)
887 goto out;
888
889 /* look for virtio devices and register them */
890 ret = rproc_handle_virtio_rsc(rproc, table, tablesz);
891 if (ret)
400e64df 892 goto out;
400e64df 893
400e64df 894out:
3cc6e787 895 release_firmware(fw);
160e7c84 896 /* allow rproc_del() contexts, if any, to proceed */
400e64df
OBC
897 complete_all(&rproc->firmware_loading_complete);
898}
899
70b85ef8
FGL
900static int rproc_add_virtio_devices(struct rproc *rproc)
901{
902 int ret;
903
904 /* rproc_del() calls must wait until async loader completes */
905 init_completion(&rproc->firmware_loading_complete);
906
907 /*
908 * We must retrieve early virtio configuration info from
909 * the firmware (e.g. whether to register a virtio device,
910 * what virtio features does it support, ...).
911 *
912 * We're initiating an asynchronous firmware loading, so we can
913 * be built-in kernel code, without hanging the boot process.
914 */
915 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
916 rproc->firmware, &rproc->dev, GFP_KERNEL,
917 rproc, rproc_fw_config_virtio);
918 if (ret < 0) {
919 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
920 complete_all(&rproc->firmware_loading_complete);
921 }
922
923 return ret;
924}
925
926/**
927 * rproc_trigger_recovery() - recover a remoteproc
928 * @rproc: the remote processor
929 *
930 * The recovery is done by reseting all the virtio devices, that way all the
931 * rpmsg drivers will be reseted along with the remote processor making the
932 * remoteproc functional again.
933 *
934 * This function can sleep, so it cannot be called from atomic context.
935 */
936int rproc_trigger_recovery(struct rproc *rproc)
937{
938 struct rproc_vdev *rvdev, *rvtmp;
939
940 dev_err(&rproc->dev, "recovering %s\n", rproc->name);
941
942 init_completion(&rproc->crash_comp);
943
944 /* clean up remote vdev entries */
945 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
946 rproc_remove_virtio_dev(rvdev);
947
948 /* wait until there is no more rproc users */
949 wait_for_completion(&rproc->crash_comp);
950
951 return rproc_add_virtio_devices(rproc);
952}
953
8afd519c
FGL
954/**
955 * rproc_crash_handler_work() - handle a crash
956 *
957 * This function needs to handle everything related to a crash, like cpu
958 * registers and stack dump, information to help to debug the fatal error, etc.
959 */
960static void rproc_crash_handler_work(struct work_struct *work)
961{
962 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
963 struct device *dev = &rproc->dev;
964
965 dev_dbg(dev, "enter %s\n", __func__);
966
967 mutex_lock(&rproc->lock);
968
969 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
970 /* handle only the first crash detected */
971 mutex_unlock(&rproc->lock);
972 return;
973 }
974
975 rproc->state = RPROC_CRASHED;
976 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
977 rproc->name);
978
979 mutex_unlock(&rproc->lock);
980
2e37abb8
FGL
981 if (!rproc->recovery_disabled)
982 rproc_trigger_recovery(rproc);
8afd519c
FGL
983}
984
400e64df
OBC
985/**
986 * rproc_boot() - boot a remote processor
987 * @rproc: handle of a remote processor
988 *
989 * Boot a remote processor (i.e. load its firmware, power it on, ...).
990 *
991 * If the remote processor is already powered on, this function immediately
992 * returns (successfully).
993 *
994 * Returns 0 on success, and an appropriate error value otherwise.
995 */
996int rproc_boot(struct rproc *rproc)
997{
998 const struct firmware *firmware_p;
999 struct device *dev;
1000 int ret;
1001
1002 if (!rproc) {
1003 pr_err("invalid rproc handle\n");
1004 return -EINVAL;
1005 }
1006
b5ab5e24 1007 dev = &rproc->dev;
400e64df
OBC
1008
1009 ret = mutex_lock_interruptible(&rproc->lock);
1010 if (ret) {
1011 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1012 return ret;
1013 }
1014
1015 /* loading a firmware is required */
1016 if (!rproc->firmware) {
1017 dev_err(dev, "%s: no firmware to load\n", __func__);
1018 ret = -EINVAL;
1019 goto unlock_mutex;
1020 }
1021
1022 /* prevent underlying implementation from being removed */
b5ab5e24 1023 if (!try_module_get(dev->parent->driver->owner)) {
400e64df
OBC
1024 dev_err(dev, "%s: can't get owner\n", __func__);
1025 ret = -EINVAL;
1026 goto unlock_mutex;
1027 }
1028
1029 /* skip the boot process if rproc is already powered up */
1030 if (atomic_inc_return(&rproc->power) > 1) {
1031 ret = 0;
1032 goto unlock_mutex;
1033 }
1034
1035 dev_info(dev, "powering up %s\n", rproc->name);
1036
1037 /* load firmware */
1038 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1039 if (ret < 0) {
1040 dev_err(dev, "request_firmware failed: %d\n", ret);
1041 goto downref_rproc;
1042 }
1043
1044 ret = rproc_fw_boot(rproc, firmware_p);
1045
1046 release_firmware(firmware_p);
1047
1048downref_rproc:
1049 if (ret) {
b5ab5e24 1050 module_put(dev->parent->driver->owner);
400e64df
OBC
1051 atomic_dec(&rproc->power);
1052 }
1053unlock_mutex:
1054 mutex_unlock(&rproc->lock);
1055 return ret;
1056}
1057EXPORT_SYMBOL(rproc_boot);
1058
1059/**
1060 * rproc_shutdown() - power off the remote processor
1061 * @rproc: the remote processor
1062 *
1063 * Power off a remote processor (previously booted with rproc_boot()).
1064 *
1065 * In case @rproc is still being used by an additional user(s), then
1066 * this function will just decrement the power refcount and exit,
1067 * without really powering off the device.
1068 *
1069 * Every call to rproc_boot() must (eventually) be accompanied by a call
1070 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1071 *
1072 * Notes:
1073 * - we're not decrementing the rproc's refcount, only the power refcount.
1074 * which means that the @rproc handle stays valid even after rproc_shutdown()
1075 * returns, and users can still use it with a subsequent rproc_boot(), if
1076 * needed.
400e64df
OBC
1077 */
1078void rproc_shutdown(struct rproc *rproc)
1079{
b5ab5e24 1080 struct device *dev = &rproc->dev;
400e64df
OBC
1081 int ret;
1082
1083 ret = mutex_lock_interruptible(&rproc->lock);
1084 if (ret) {
1085 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1086 return;
1087 }
1088
1089 /* if the remote proc is still needed, bail out */
1090 if (!atomic_dec_and_test(&rproc->power))
1091 goto out;
1092
1093 /* power off the remote processor */
1094 ret = rproc->ops->stop(rproc);
1095 if (ret) {
1096 atomic_inc(&rproc->power);
1097 dev_err(dev, "can't stop rproc: %d\n", ret);
1098 goto out;
1099 }
1100
1101 /* clean up all acquired resources */
1102 rproc_resource_cleanup(rproc);
1103
1104 rproc_disable_iommu(rproc);
1105
70b85ef8
FGL
1106 /* if in crash state, unlock crash handler */
1107 if (rproc->state == RPROC_CRASHED)
1108 complete_all(&rproc->crash_comp);
1109
400e64df
OBC
1110 rproc->state = RPROC_OFFLINE;
1111
1112 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1113
1114out:
1115 mutex_unlock(&rproc->lock);
1116 if (!ret)
b5ab5e24 1117 module_put(dev->parent->driver->owner);
400e64df
OBC
1118}
1119EXPORT_SYMBOL(rproc_shutdown);
1120
1121/**
160e7c84 1122 * rproc_add() - register a remote processor
400e64df
OBC
1123 * @rproc: the remote processor handle to register
1124 *
1125 * Registers @rproc with the remoteproc framework, after it has been
1126 * allocated with rproc_alloc().
1127 *
1128 * This is called by the platform-specific rproc implementation, whenever
1129 * a new remote processor device is probed.
1130 *
1131 * Returns 0 on success and an appropriate error code otherwise.
1132 *
1133 * Note: this function initiates an asynchronous firmware loading
1134 * context, which will look for virtio devices supported by the rproc's
1135 * firmware.
1136 *
1137 * If found, those virtio devices will be created and added, so as a result
7a186941 1138 * of registering this remote processor, additional virtio drivers might be
400e64df 1139 * probed.
400e64df 1140 */
160e7c84 1141int rproc_add(struct rproc *rproc)
400e64df 1142{
b5ab5e24 1143 struct device *dev = &rproc->dev;
70b85ef8 1144 int ret;
400e64df 1145
b5ab5e24
OBC
1146 ret = device_add(dev);
1147 if (ret < 0)
1148 return ret;
400e64df 1149
b5ab5e24 1150 dev_info(dev, "%s is available\n", rproc->name);
400e64df 1151
489d129a
OBC
1152 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1153 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1154
400e64df
OBC
1155 /* create debugfs entries */
1156 rproc_create_debug_dir(rproc);
1157
70b85ef8 1158 return rproc_add_virtio_devices(rproc);
400e64df 1159}
160e7c84 1160EXPORT_SYMBOL(rproc_add);
400e64df 1161
b5ab5e24
OBC
1162/**
1163 * rproc_type_release() - release a remote processor instance
1164 * @dev: the rproc's device
1165 *
1166 * This function should _never_ be called directly.
1167 *
1168 * It will be called by the driver core when no one holds a valid pointer
1169 * to @dev anymore.
1170 */
1171static void rproc_type_release(struct device *dev)
1172{
1173 struct rproc *rproc = container_of(dev, struct rproc, dev);
1174
7183a2a7
OBC
1175 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1176
1177 rproc_delete_debug_dir(rproc);
1178
b5ab5e24
OBC
1179 idr_destroy(&rproc->notifyids);
1180
1181 if (rproc->index >= 0)
1182 ida_simple_remove(&rproc_dev_index, rproc->index);
1183
1184 kfree(rproc);
1185}
1186
1187static struct device_type rproc_type = {
1188 .name = "remoteproc",
1189 .release = rproc_type_release,
1190};
400e64df
OBC
1191
1192/**
1193 * rproc_alloc() - allocate a remote processor handle
1194 * @dev: the underlying device
1195 * @name: name of this remote processor
1196 * @ops: platform-specific handlers (mainly start/stop)
1197 * @firmware: name of firmware file to load
1198 * @len: length of private data needed by the rproc driver (in bytes)
1199 *
1200 * Allocates a new remote processor handle, but does not register
1201 * it yet.
1202 *
1203 * This function should be used by rproc implementations during initialization
1204 * of the remote processor.
1205 *
1206 * After creating an rproc handle using this function, and when ready,
160e7c84 1207 * implementations should then call rproc_add() to complete
400e64df
OBC
1208 * the registration of the remote processor.
1209 *
1210 * On success the new rproc is returned, and on failure, NULL.
1211 *
1212 * Note: _never_ directly deallocate @rproc, even if it was not registered
160e7c84 1213 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
400e64df
OBC
1214 */
1215struct rproc *rproc_alloc(struct device *dev, const char *name,
1216 const struct rproc_ops *ops,
1217 const char *firmware, int len)
1218{
1219 struct rproc *rproc;
1220
1221 if (!dev || !name || !ops)
1222 return NULL;
1223
1224 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1225 if (!rproc) {
1226 dev_err(dev, "%s: kzalloc failed\n", __func__);
1227 return NULL;
1228 }
1229
400e64df
OBC
1230 rproc->name = name;
1231 rproc->ops = ops;
1232 rproc->firmware = firmware;
1233 rproc->priv = &rproc[1];
1234
b5ab5e24
OBC
1235 device_initialize(&rproc->dev);
1236 rproc->dev.parent = dev;
1237 rproc->dev.type = &rproc_type;
1238
1239 /* Assign a unique device index and name */
1240 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1241 if (rproc->index < 0) {
1242 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1243 put_device(&rproc->dev);
1244 return NULL;
1245 }
1246
1247 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1248
400e64df
OBC
1249 atomic_set(&rproc->power, 0);
1250
4afc89d6
SB
1251 /* Set ELF as the default fw_ops handler */
1252 rproc->fw_ops = &rproc_elf_fw_ops;
400e64df
OBC
1253
1254 mutex_init(&rproc->lock);
1255
7a186941
OBC
1256 idr_init(&rproc->notifyids);
1257
400e64df
OBC
1258 INIT_LIST_HEAD(&rproc->carveouts);
1259 INIT_LIST_HEAD(&rproc->mappings);
1260 INIT_LIST_HEAD(&rproc->traces);
7a186941 1261 INIT_LIST_HEAD(&rproc->rvdevs);
400e64df 1262
8afd519c 1263 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
70b85ef8 1264 init_completion(&rproc->crash_comp);
8afd519c 1265
400e64df
OBC
1266 rproc->state = RPROC_OFFLINE;
1267
1268 return rproc;
1269}
1270EXPORT_SYMBOL(rproc_alloc);
1271
1272/**
160e7c84 1273 * rproc_put() - unroll rproc_alloc()
400e64df
OBC
1274 * @rproc: the remote processor handle
1275 *
c6b5a276 1276 * This function decrements the rproc dev refcount.
400e64df 1277 *
c6b5a276
OBC
1278 * If no one holds any reference to rproc anymore, then its refcount would
1279 * now drop to zero, and it would be freed.
400e64df 1280 */
160e7c84 1281void rproc_put(struct rproc *rproc)
400e64df 1282{
b5ab5e24 1283 put_device(&rproc->dev);
400e64df 1284}
160e7c84 1285EXPORT_SYMBOL(rproc_put);
400e64df
OBC
1286
1287/**
160e7c84 1288 * rproc_del() - unregister a remote processor
400e64df
OBC
1289 * @rproc: rproc handle to unregister
1290 *
400e64df
OBC
1291 * This function should be called when the platform specific rproc
1292 * implementation decides to remove the rproc device. it should
160e7c84 1293 * _only_ be called if a previous invocation of rproc_add()
400e64df
OBC
1294 * has completed successfully.
1295 *
160e7c84 1296 * After rproc_del() returns, @rproc isn't freed yet, because
c6b5a276 1297 * of the outstanding reference created by rproc_alloc. To decrement that
160e7c84 1298 * one last refcount, one still needs to call rproc_put().
400e64df
OBC
1299 *
1300 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1301 */
160e7c84 1302int rproc_del(struct rproc *rproc)
400e64df 1303{
6db20ea8 1304 struct rproc_vdev *rvdev, *tmp;
7a186941 1305
400e64df
OBC
1306 if (!rproc)
1307 return -EINVAL;
1308
1309 /* if rproc is just being registered, wait */
1310 wait_for_completion(&rproc->firmware_loading_complete);
1311
7a186941 1312 /* clean up remote vdev entries */
6db20ea8 1313 list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
7a186941 1314 rproc_remove_virtio_dev(rvdev);
400e64df 1315
b5ab5e24 1316 device_del(&rproc->dev);
400e64df
OBC
1317
1318 return 0;
1319}
160e7c84 1320EXPORT_SYMBOL(rproc_del);
400e64df 1321
8afd519c
FGL
1322/**
1323 * rproc_report_crash() - rproc crash reporter function
1324 * @rproc: remote processor
1325 * @type: crash type
1326 *
1327 * This function must be called every time a crash is detected by the low-level
1328 * drivers implementing a specific remoteproc. This should not be called from a
1329 * non-remoteproc driver.
1330 *
1331 * This function can be called from atomic/interrupt context.
1332 */
1333void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1334{
1335 if (!rproc) {
1336 pr_err("NULL rproc pointer\n");
1337 return;
1338 }
1339
1340 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1341 rproc->name, rproc_crash_to_string(type));
1342
1343 /* create a new task to handle the error */
1344 schedule_work(&rproc->crash_handler);
1345}
1346EXPORT_SYMBOL(rproc_report_crash);
1347
400e64df
OBC
1348static int __init remoteproc_init(void)
1349{
1350 rproc_init_debugfs();
b5ab5e24 1351
400e64df
OBC
1352 return 0;
1353}
1354module_init(remoteproc_init);
1355
1356static void __exit remoteproc_exit(void)
1357{
1358 rproc_exit_debugfs();
1359}
1360module_exit(remoteproc_exit);
1361
1362MODULE_LICENSE("GPL v2");
1363MODULE_DESCRIPTION("Generic Remote Processor Framework");