]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/rtc/rtc-cmos.c
Merge drm-misc-next-fixes-2019-07-18 into drm-misc-fixes
[mirror_ubuntu-eoan-kernel.git] / drivers / rtc / rtc-cmos.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
7be2c7c9
DB
2/*
3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 *
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
7be2c7c9
DB
7 */
8
9/*
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86. There
15 * are also clones that connect using the LPC bus.
16 *
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
22 *
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
26 */
a737e835
JP
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
7be2c7c9
DB
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/spinlock.h>
35#include <linux/platform_device.h>
5d2a5037 36#include <linux/log2.h>
2fb08e6c 37#include <linux/pm.h>
3bcbaf6e
SAS
38#include <linux/of.h>
39#include <linux/of_platform.h>
a1e23a42
HG
40#ifdef CONFIG_X86
41#include <asm/i8259.h>
36d91a4d
ZR
42#include <asm/processor.h>
43#include <linux/dmi.h>
a1e23a42 44#endif
7be2c7c9
DB
45
46/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
5ab788d7 47#include <linux/mc146818rtc.h>
7be2c7c9 48
bc51098c 49#ifdef CONFIG_ACPI
311ee9c1
ZR
50/*
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52 *
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
54 *
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56 */
57
58static bool use_acpi_alarm;
59module_param(use_acpi_alarm, bool, 0444);
60
bc51098c
MR
61static inline int cmos_use_acpi_alarm(void)
62{
63 return use_acpi_alarm;
64}
65#else /* !CONFIG_ACPI */
66
67static inline int cmos_use_acpi_alarm(void)
68{
69 return 0;
70}
71#endif
72
7be2c7c9
DB
73struct cmos_rtc {
74 struct rtc_device *rtc;
75 struct device *dev;
76 int irq;
77 struct resource *iomem;
88b8d33b 78 time64_t alarm_expires;
7be2c7c9 79
87ac84f4
DB
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
82
83 u8 enabled_wake;
7be2c7c9
DB
84 u8 suspend_ctrl;
85
86 /* newer hardware extends the original register set */
87 u8 day_alrm;
88 u8 mon_alrm;
89 u8 century;
68669d55
GM
90
91 struct rtc_wkalrm saved_wkalrm;
7be2c7c9
DB
92};
93
94/* both platform and pnp busses use negative numbers for invalid irqs */
2fac6674 95#define is_valid_irq(n) ((n) > 0)
7be2c7c9
DB
96
97static const char driver_name[] = "rtc_cmos";
98
bcd9b89c
DB
99/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102 */
103#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
104
105static inline int is_intr(u8 rtc_intr)
106{
107 if (!(rtc_intr & RTC_IRQF))
108 return 0;
109 return rtc_intr & RTC_IRQMASK;
110}
111
7be2c7c9
DB
112/*----------------------------------------------------------------*/
113
35d3fdd5
DB
114/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode. The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
119 *
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
122 * want to use HPET for anything except those IRQs though...
123 */
124#ifdef CONFIG_HPET_EMULATE_RTC
125#include <asm/hpet.h>
126#else
127
128static inline int is_hpet_enabled(void)
129{
130 return 0;
131}
132
133static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134{
135 return 0;
136}
137
138static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139{
140 return 0;
141}
142
143static inline int
144hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145{
146 return 0;
147}
148
149static inline int hpet_set_periodic_freq(unsigned long freq)
150{
151 return 0;
152}
153
154static inline int hpet_rtc_dropped_irq(void)
155{
156 return 0;
157}
158
159static inline int hpet_rtc_timer_init(void)
160{
161 return 0;
162}
163
164extern irq_handler_t hpet_rtc_interrupt;
165
166static inline int hpet_register_irq_handler(irq_handler_t handler)
167{
168 return 0;
169}
170
171static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172{
173 return 0;
174}
175
176#endif
177
311ee9c1 178/* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
d197a253 179static inline int use_hpet_alarm(void)
311ee9c1 180{
bc51098c 181 return is_hpet_enabled() && !cmos_use_acpi_alarm();
311ee9c1
ZR
182}
183
35d3fdd5
DB
184/*----------------------------------------------------------------*/
185
c8fc40cd
DB
186#ifdef RTC_PORT
187
188/* Most newer x86 systems have two register banks, the first used
189 * for RTC and NVRAM and the second only for NVRAM. Caller must
190 * own rtc_lock ... and we won't worry about access during NMI.
191 */
192#define can_bank2 true
193
194static inline unsigned char cmos_read_bank2(unsigned char addr)
195{
196 outb(addr, RTC_PORT(2));
197 return inb(RTC_PORT(3));
198}
199
200static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201{
202 outb(addr, RTC_PORT(2));
b43c1ea4 203 outb(val, RTC_PORT(3));
c8fc40cd
DB
204}
205
206#else
207
208#define can_bank2 false
209
210static inline unsigned char cmos_read_bank2(unsigned char addr)
211{
212 return 0;
213}
214
215static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216{
217}
218
219#endif
220
221/*----------------------------------------------------------------*/
222
7be2c7c9
DB
223static int cmos_read_time(struct device *dev, struct rtc_time *t)
224{
ba58d102
CY
225 /*
226 * If pm_trace abused the RTC for storage, set the timespec to 0,
227 * which tells the caller that this RTC value is unusable.
228 */
229 if (!pm_trace_rtc_valid())
230 return -EIO;
231
7be2c7c9 232 /* REVISIT: if the clock has a "century" register, use
5ab788d7 233 * that instead of the heuristic in mc146818_get_time().
7be2c7c9
DB
234 * That'll make Y3K compatility (year > 2070) easy!
235 */
5ab788d7 236 mc146818_get_time(t);
7be2c7c9
DB
237 return 0;
238}
239
240static int cmos_set_time(struct device *dev, struct rtc_time *t)
241{
242 /* REVISIT: set the "century" register if available
243 *
244 * NOTE: this ignores the issue whereby updating the seconds
245 * takes effect exactly 500ms after we write the register.
246 * (Also queueing and other delays before we get this far.)
247 */
5ab788d7 248 return mc146818_set_time(t);
7be2c7c9
DB
249}
250
251static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
252{
253 struct cmos_rtc *cmos = dev_get_drvdata(dev);
254 unsigned char rtc_control;
255
fbb974ba 256 /* This not only a rtc_op, but also called directly */
7be2c7c9
DB
257 if (!is_valid_irq(cmos->irq))
258 return -EIO;
259
260 /* Basic alarms only support hour, minute, and seconds fields.
261 * Some also support day and month, for alarms up to a year in
262 * the future.
263 */
7be2c7c9
DB
264
265 spin_lock_irq(&rtc_lock);
266 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
267 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
268 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
269
270 if (cmos->day_alrm) {
615bb29c
ML
271 /* ignore upper bits on readback per ACPI spec */
272 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
7be2c7c9
DB
273 if (!t->time.tm_mday)
274 t->time.tm_mday = -1;
275
276 if (cmos->mon_alrm) {
277 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
278 if (!t->time.tm_mon)
279 t->time.tm_mon = -1;
280 }
281 }
282
283 rtc_control = CMOS_READ(RTC_CONTROL);
284 spin_unlock_irq(&rtc_lock);
285
3804a89b
AP
286 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
287 if (((unsigned)t->time.tm_sec) < 0x60)
288 t->time.tm_sec = bcd2bin(t->time.tm_sec);
7be2c7c9 289 else
3804a89b
AP
290 t->time.tm_sec = -1;
291 if (((unsigned)t->time.tm_min) < 0x60)
292 t->time.tm_min = bcd2bin(t->time.tm_min);
293 else
294 t->time.tm_min = -1;
295 if (((unsigned)t->time.tm_hour) < 0x24)
296 t->time.tm_hour = bcd2bin(t->time.tm_hour);
297 else
298 t->time.tm_hour = -1;
299
300 if (cmos->day_alrm) {
301 if (((unsigned)t->time.tm_mday) <= 0x31)
302 t->time.tm_mday = bcd2bin(t->time.tm_mday);
7be2c7c9 303 else
3804a89b
AP
304 t->time.tm_mday = -1;
305
306 if (cmos->mon_alrm) {
307 if (((unsigned)t->time.tm_mon) <= 0x12)
308 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
309 else
310 t->time.tm_mon = -1;
311 }
7be2c7c9
DB
312 }
313 }
7be2c7c9
DB
314
315 t->enabled = !!(rtc_control & RTC_AIE);
316 t->pending = 0;
317
318 return 0;
319}
320
7e2a31da
DB
321static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
322{
323 unsigned char rtc_intr;
324
325 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
326 * allegedly some older rtcs need that to handle irqs properly
327 */
328 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
329
311ee9c1 330 if (use_hpet_alarm())
7e2a31da
DB
331 return;
332
333 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
334 if (is_intr(rtc_intr))
335 rtc_update_irq(cmos->rtc, 1, rtc_intr);
336}
337
338static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
339{
340 unsigned char rtc_control;
341
342 /* flush any pending IRQ status, notably for update irqs,
343 * before we enable new IRQs
344 */
345 rtc_control = CMOS_READ(RTC_CONTROL);
346 cmos_checkintr(cmos, rtc_control);
347
348 rtc_control |= mask;
349 CMOS_WRITE(rtc_control, RTC_CONTROL);
311ee9c1
ZR
350 if (use_hpet_alarm())
351 hpet_set_rtc_irq_bit(mask);
352
bc51098c 353 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
311ee9c1
ZR
354 if (cmos->wake_on)
355 cmos->wake_on(cmos->dev);
356 }
7e2a31da
DB
357
358 cmos_checkintr(cmos, rtc_control);
359}
360
361static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
362{
363 unsigned char rtc_control;
364
365 rtc_control = CMOS_READ(RTC_CONTROL);
366 rtc_control &= ~mask;
367 CMOS_WRITE(rtc_control, RTC_CONTROL);
311ee9c1
ZR
368 if (use_hpet_alarm())
369 hpet_mask_rtc_irq_bit(mask);
370
bc51098c 371 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
311ee9c1
ZR
372 if (cmos->wake_off)
373 cmos->wake_off(cmos->dev);
374 }
7e2a31da
DB
375
376 cmos_checkintr(cmos, rtc_control);
377}
378
6a6af3d0
GM
379static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
380{
381 struct cmos_rtc *cmos = dev_get_drvdata(dev);
382 struct rtc_time now;
383
384 cmos_read_time(dev, &now);
385
386 if (!cmos->day_alrm) {
387 time64_t t_max_date;
388 time64_t t_alrm;
389
390 t_max_date = rtc_tm_to_time64(&now);
391 t_max_date += 24 * 60 * 60 - 1;
392 t_alrm = rtc_tm_to_time64(&t->time);
393 if (t_alrm > t_max_date) {
394 dev_err(dev,
395 "Alarms can be up to one day in the future\n");
396 return -EINVAL;
397 }
398 } else if (!cmos->mon_alrm) {
399 struct rtc_time max_date = now;
400 time64_t t_max_date;
401 time64_t t_alrm;
402 int max_mday;
403
404 if (max_date.tm_mon == 11) {
405 max_date.tm_mon = 0;
406 max_date.tm_year += 1;
407 } else {
408 max_date.tm_mon += 1;
409 }
410 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
411 if (max_date.tm_mday > max_mday)
412 max_date.tm_mday = max_mday;
413
414 t_max_date = rtc_tm_to_time64(&max_date);
415 t_max_date -= 1;
416 t_alrm = rtc_tm_to_time64(&t->time);
417 if (t_alrm > t_max_date) {
418 dev_err(dev,
419 "Alarms can be up to one month in the future\n");
420 return -EINVAL;
421 }
422 } else {
423 struct rtc_time max_date = now;
424 time64_t t_max_date;
425 time64_t t_alrm;
426 int max_mday;
427
428 max_date.tm_year += 1;
429 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
430 if (max_date.tm_mday > max_mday)
431 max_date.tm_mday = max_mday;
432
433 t_max_date = rtc_tm_to_time64(&max_date);
434 t_max_date -= 1;
435 t_alrm = rtc_tm_to_time64(&t->time);
436 if (t_alrm > t_max_date) {
437 dev_err(dev,
438 "Alarms can be up to one year in the future\n");
439 return -EINVAL;
440 }
441 }
442
443 return 0;
444}
445
7be2c7c9
DB
446static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
447{
448 struct cmos_rtc *cmos = dev_get_drvdata(dev);
5e8599d2 449 unsigned char mon, mday, hrs, min, sec, rtc_control;
6a6af3d0 450 int ret;
7be2c7c9 451
fbb974ba 452 /* This not only a rtc_op, but also called directly */
7be2c7c9
DB
453 if (!is_valid_irq(cmos->irq))
454 return -EIO;
455
6a6af3d0
GM
456 ret = cmos_validate_alarm(dev, t);
457 if (ret < 0)
458 return ret;
459
2b653e06 460 mon = t->time.tm_mon + 1;
7be2c7c9 461 mday = t->time.tm_mday;
7be2c7c9 462 hrs = t->time.tm_hour;
7be2c7c9 463 min = t->time.tm_min;
7be2c7c9 464 sec = t->time.tm_sec;
3804a89b
AP
465
466 rtc_control = CMOS_READ(RTC_CONTROL);
467 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
468 /* Writing 0xff means "don't care" or "match all". */
469 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
470 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
471 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
472 min = (min < 60) ? bin2bcd(min) : 0xff;
473 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
474 }
7be2c7c9
DB
475
476 spin_lock_irq(&rtc_lock);
477
478 /* next rtc irq must not be from previous alarm setting */
7e2a31da 479 cmos_irq_disable(cmos, RTC_AIE);
7be2c7c9
DB
480
481 /* update alarm */
482 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
483 CMOS_WRITE(min, RTC_MINUTES_ALARM);
484 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
485
486 /* the system may support an "enhanced" alarm */
487 if (cmos->day_alrm) {
488 CMOS_WRITE(mday, cmos->day_alrm);
489 if (cmos->mon_alrm)
490 CMOS_WRITE(mon, cmos->mon_alrm);
491 }
492
311ee9c1
ZR
493 if (use_hpet_alarm()) {
494 /*
495 * FIXME the HPET alarm glue currently ignores day_alrm
496 * and mon_alrm ...
497 */
498 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
499 t->time.tm_sec);
500 }
35d3fdd5 501
7e2a31da
DB
502 if (t->enabled)
503 cmos_irq_enable(cmos, RTC_AIE);
7be2c7c9
DB
504
505 spin_unlock_irq(&rtc_lock);
506
88b8d33b
AH
507 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
508
7be2c7c9
DB
509 return 0;
510}
511
a8462ef6 512static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
7be2c7c9
DB
513{
514 struct cmos_rtc *cmos = dev_get_drvdata(dev);
7be2c7c9
DB
515 unsigned long flags;
516
7be2c7c9 517 spin_lock_irqsave(&rtc_lock, flags);
a8462ef6
HRK
518
519 if (enabled)
7e2a31da 520 cmos_irq_enable(cmos, RTC_AIE);
a8462ef6
HRK
521 else
522 cmos_irq_disable(cmos, RTC_AIE);
523
7be2c7c9
DB
524 spin_unlock_irqrestore(&rtc_lock, flags);
525 return 0;
526}
527
6fca3fc5 528#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
7be2c7c9
DB
529
530static int cmos_procfs(struct device *dev, struct seq_file *seq)
531{
532 struct cmos_rtc *cmos = dev_get_drvdata(dev);
533 unsigned char rtc_control, valid;
534
535 spin_lock_irq(&rtc_lock);
536 rtc_control = CMOS_READ(RTC_CONTROL);
537 valid = CMOS_READ(RTC_VALID);
538 spin_unlock_irq(&rtc_lock);
539
540 /* NOTE: at least ICH6 reports battery status using a different
541 * (non-RTC) bit; and SQWE is ignored on many current systems.
542 */
4395eb1f
JP
543 seq_printf(seq,
544 "periodic_IRQ\t: %s\n"
545 "update_IRQ\t: %s\n"
546 "HPET_emulated\t: %s\n"
547 // "square_wave\t: %s\n"
548 "BCD\t\t: %s\n"
549 "DST_enable\t: %s\n"
550 "periodic_freq\t: %d\n"
551 "batt_status\t: %s\n",
552 (rtc_control & RTC_PIE) ? "yes" : "no",
553 (rtc_control & RTC_UIE) ? "yes" : "no",
311ee9c1 554 use_hpet_alarm() ? "yes" : "no",
4395eb1f
JP
555 // (rtc_control & RTC_SQWE) ? "yes" : "no",
556 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
557 (rtc_control & RTC_DST_EN) ? "yes" : "no",
558 cmos->rtc->irq_freq,
559 (valid & RTC_VRT) ? "okay" : "dead");
560
561 return 0;
7be2c7c9
DB
562}
563
564#else
565#define cmos_procfs NULL
566#endif
567
568static const struct rtc_class_ops cmos_rtc_ops = {
a8462ef6
HRK
569 .read_time = cmos_read_time,
570 .set_time = cmos_set_time,
571 .read_alarm = cmos_read_alarm,
572 .set_alarm = cmos_set_alarm,
573 .proc = cmos_procfs,
a8462ef6 574 .alarm_irq_enable = cmos_alarm_irq_enable,
7be2c7c9
DB
575};
576
fbb974ba
HG
577static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
578 .read_time = cmos_read_time,
579 .set_time = cmos_set_time,
580 .proc = cmos_procfs,
581};
582
7be2c7c9
DB
583/*----------------------------------------------------------------*/
584
e07e232c
DB
585/*
586 * All these chips have at least 64 bytes of address space, shared by
587 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
588 * by boot firmware. Modern chips have 128 or 256 bytes.
589 */
590
591#define NVRAM_OFFSET (RTC_REG_D + 1)
592
8b5b7958
AB
593static int cmos_nvram_read(void *priv, unsigned int off, void *val,
594 size_t count)
e07e232c 595{
8b5b7958 596 unsigned char *buf = val;
e07e232c
DB
597 int retval;
598
c8fc40cd 599 off += NVRAM_OFFSET;
e07e232c 600 spin_lock_irq(&rtc_lock);
c8fc40cd
DB
601 for (retval = 0; count; count--, off++, retval++) {
602 if (off < 128)
603 *buf++ = CMOS_READ(off);
604 else if (can_bank2)
605 *buf++ = cmos_read_bank2(off);
606 else
607 break;
608 }
e07e232c
DB
609 spin_unlock_irq(&rtc_lock);
610
611 return retval;
612}
613
8b5b7958
AB
614static int cmos_nvram_write(void *priv, unsigned int off, void *val,
615 size_t count)
e07e232c 616{
8b5b7958
AB
617 struct cmos_rtc *cmos = priv;
618 unsigned char *buf = val;
e07e232c
DB
619 int retval;
620
e07e232c
DB
621 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
622 * checksum on part of the NVRAM data. That's currently ignored
623 * here. If userspace is smart enough to know what fields of
624 * NVRAM to update, updating checksums is also part of its job.
625 */
c8fc40cd 626 off += NVRAM_OFFSET;
e07e232c 627 spin_lock_irq(&rtc_lock);
c8fc40cd 628 for (retval = 0; count; count--, off++, retval++) {
e07e232c
DB
629 /* don't trash RTC registers */
630 if (off == cmos->day_alrm
631 || off == cmos->mon_alrm
632 || off == cmos->century)
633 buf++;
c8fc40cd 634 else if (off < 128)
e07e232c 635 CMOS_WRITE(*buf++, off);
c8fc40cd
DB
636 else if (can_bank2)
637 cmos_write_bank2(*buf++, off);
638 else
639 break;
e07e232c
DB
640 }
641 spin_unlock_irq(&rtc_lock);
642
643 return retval;
644}
645
e07e232c
DB
646/*----------------------------------------------------------------*/
647
7be2c7c9
DB
648static struct cmos_rtc cmos_rtc;
649
650static irqreturn_t cmos_interrupt(int irq, void *p)
651{
652 u8 irqstat;
8a0bdfd7 653 u8 rtc_control;
7be2c7c9
DB
654
655 spin_lock(&rtc_lock);
35d3fdd5
DB
656
657 /* When the HPET interrupt handler calls us, the interrupt
658 * status is passed as arg1 instead of the irq number. But
659 * always clear irq status, even when HPET is in the way.
660 *
661 * Note that HPET and RTC are almost certainly out of phase,
662 * giving different IRQ status ...
9d8af78b 663 */
35d3fdd5
DB
664 irqstat = CMOS_READ(RTC_INTR_FLAGS);
665 rtc_control = CMOS_READ(RTC_CONTROL);
311ee9c1 666 if (use_hpet_alarm())
9d8af78b 667 irqstat = (unsigned long)irq & 0xF0;
998a0605
DB
668
669 /* If we were suspended, RTC_CONTROL may not be accurate since the
670 * bios may have cleared it.
671 */
672 if (!cmos_rtc.suspend_ctrl)
673 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
674 else
675 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
8a0bdfd7
DB
676
677 /* All Linux RTC alarms should be treated as if they were oneshot.
678 * Similar code may be needed in system wakeup paths, in case the
679 * alarm woke the system.
680 */
681 if (irqstat & RTC_AIE) {
998a0605 682 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
8a0bdfd7
DB
683 rtc_control &= ~RTC_AIE;
684 CMOS_WRITE(rtc_control, RTC_CONTROL);
311ee9c1
ZR
685 if (use_hpet_alarm())
686 hpet_mask_rtc_irq_bit(RTC_AIE);
8a0bdfd7
DB
687 CMOS_READ(RTC_INTR_FLAGS);
688 }
7be2c7c9
DB
689 spin_unlock(&rtc_lock);
690
bcd9b89c 691 if (is_intr(irqstat)) {
7be2c7c9
DB
692 rtc_update_irq(p, 1, irqstat);
693 return IRQ_HANDLED;
694 } else
695 return IRQ_NONE;
696}
697
41ac8df9 698#ifdef CONFIG_PNP
7be2c7c9
DB
699#define INITSECTION
700
701#else
7be2c7c9
DB
702#define INITSECTION __init
703#endif
704
705static int INITSECTION
706cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
707{
97a92e77 708 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
7be2c7c9
DB
709 int retval = 0;
710 unsigned char rtc_control;
e07e232c 711 unsigned address_space;
31632dbd 712 u32 flags = 0;
8b5b7958
AB
713 struct nvmem_config nvmem_cfg = {
714 .name = "cmos_nvram",
715 .word_size = 1,
716 .stride = 1,
717 .reg_read = cmos_nvram_read,
718 .reg_write = cmos_nvram_write,
719 .priv = &cmos_rtc,
720 };
7be2c7c9
DB
721
722 /* there can be only one ... */
723 if (cmos_rtc.dev)
724 return -EBUSY;
725
726 if (!ports)
727 return -ENODEV;
728
05440dfc
DB
729 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
730 *
731 * REVISIT non-x86 systems may instead use memory space resources
732 * (needing ioremap etc), not i/o space resources like this ...
733 */
31632dbd
MR
734 if (RTC_IOMAPPED)
735 ports = request_region(ports->start, resource_size(ports),
736 driver_name);
737 else
738 ports = request_mem_region(ports->start, resource_size(ports),
739 driver_name);
05440dfc
DB
740 if (!ports) {
741 dev_dbg(dev, "i/o registers already in use\n");
742 return -EBUSY;
743 }
744
7be2c7c9
DB
745 cmos_rtc.irq = rtc_irq;
746 cmos_rtc.iomem = ports;
747
e07e232c
DB
748 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
749 * driver did, but don't reject unknown configs. Old hardware
c8fc40cd
DB
750 * won't address 128 bytes. Newer chips have multiple banks,
751 * though they may not be listed in one I/O resource.
e07e232c
DB
752 */
753#if defined(CONFIG_ATARI)
754 address_space = 64;
95abd0df 755#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
8cb7c71b 756 || defined(__sparc__) || defined(__mips__) \
739d875d 757 || defined(__powerpc__)
e07e232c
DB
758 address_space = 128;
759#else
760#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
761 address_space = 128;
762#endif
c8fc40cd
DB
763 if (can_bank2 && ports->end > (ports->start + 1))
764 address_space = 256;
e07e232c 765
87ac84f4
DB
766 /* For ACPI systems extension info comes from the FADT. On others,
767 * board specific setup provides it as appropriate. Systems where
768 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
769 * some almost-clones) can provide hooks to make that behave.
e07e232c
DB
770 *
771 * Note that ACPI doesn't preclude putting these registers into
772 * "extended" areas of the chip, including some that we won't yet
773 * expect CMOS_READ and friends to handle.
7be2c7c9
DB
774 */
775 if (info) {
31632dbd
MR
776 if (info->flags)
777 flags = info->flags;
778 if (info->address_space)
779 address_space = info->address_space;
780
e07e232c
DB
781 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
782 cmos_rtc.day_alrm = info->rtc_day_alarm;
783 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
784 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
785 if (info->rtc_century && info->rtc_century < 128)
786 cmos_rtc.century = info->rtc_century;
87ac84f4
DB
787
788 if (info->wake_on && info->wake_off) {
789 cmos_rtc.wake_on = info->wake_on;
790 cmos_rtc.wake_off = info->wake_off;
791 }
7be2c7c9
DB
792 }
793
6ba8bcd4
DC
794 cmos_rtc.dev = dev;
795 dev_set_drvdata(dev, &cmos_rtc);
796
53d29e0a 797 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
05440dfc
DB
798 if (IS_ERR(cmos_rtc.rtc)) {
799 retval = PTR_ERR(cmos_rtc.rtc);
800 goto cleanup0;
801 }
7be2c7c9 802
d4afc76c 803 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
7be2c7c9
DB
804
805 spin_lock_irq(&rtc_lock);
806
31632dbd
MR
807 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
808 /* force periodic irq to CMOS reset default of 1024Hz;
809 *
810 * REVISIT it's been reported that at least one x86_64 ALI
811 * mobo doesn't use 32KHz here ... for portability we might
812 * need to do something about other clock frequencies.
813 */
814 cmos_rtc.rtc->irq_freq = 1024;
311ee9c1
ZR
815 if (use_hpet_alarm())
816 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
31632dbd
MR
817 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
818 }
7be2c7c9 819
7e2a31da 820 /* disable irqs */
31632dbd
MR
821 if (is_valid_irq(rtc_irq))
822 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
35d3fdd5 823
7e2a31da 824 rtc_control = CMOS_READ(RTC_CONTROL);
7be2c7c9
DB
825
826 spin_unlock_irq(&rtc_lock);
827
5e8599d2 828 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
3804a89b 829 dev_warn(dev, "only 24-hr supported\n");
7be2c7c9
DB
830 retval = -ENXIO;
831 goto cleanup1;
832 }
833
311ee9c1
ZR
834 if (use_hpet_alarm())
835 hpet_rtc_timer_init();
970fc7f4 836
9d8af78b
BW
837 if (is_valid_irq(rtc_irq)) {
838 irq_handler_t rtc_cmos_int_handler;
839
311ee9c1 840 if (use_hpet_alarm()) {
9d8af78b 841 rtc_cmos_int_handler = hpet_rtc_interrupt;
24b34472
AM
842 retval = hpet_register_irq_handler(cmos_interrupt);
843 if (retval) {
970fc7f4 844 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
ee443357 845 dev_warn(dev, "hpet_register_irq_handler "
9d8af78b
BW
846 " failed in rtc_init().");
847 goto cleanup1;
848 }
849 } else
850 rtc_cmos_int_handler = cmos_interrupt;
851
852 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
079062b2 853 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
ab6a2d70 854 cmos_rtc.rtc);
9d8af78b
BW
855 if (retval < 0) {
856 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
857 goto cleanup1;
858 }
fbb974ba
HG
859
860 cmos_rtc.rtc->ops = &cmos_rtc_ops;
861 } else {
862 cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
7be2c7c9
DB
863 }
864
8b5b7958 865 cmos_rtc.rtc->nvram_old_abi = true;
53d29e0a
AB
866 retval = rtc_register_device(cmos_rtc.rtc);
867 if (retval)
e07e232c 868 goto cleanup2;
7be2c7c9 869
8b5b7958
AB
870 /* export at least the first block of NVRAM */
871 nvmem_cfg.size = address_space - NVRAM_OFFSET;
872 if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
873 dev_err(dev, "nvmem registration failed\n");
874
875 dev_info(dev, "%s%s, %d bytes nvram%s\n",
876 !is_valid_irq(rtc_irq) ? "no alarms" :
877 cmos_rtc.mon_alrm ? "alarms up to one year" :
878 cmos_rtc.day_alrm ? "alarms up to one month" :
879 "alarms up to one day",
880 cmos_rtc.century ? ", y3k" : "",
881 nvmem_cfg.size,
311ee9c1 882 use_hpet_alarm() ? ", hpet irqs" : "");
7be2c7c9
DB
883
884 return 0;
885
e07e232c
DB
886cleanup2:
887 if (is_valid_irq(rtc_irq))
888 free_irq(rtc_irq, cmos_rtc.rtc);
7be2c7c9 889cleanup1:
05440dfc 890 cmos_rtc.dev = NULL;
05440dfc 891cleanup0:
31632dbd
MR
892 if (RTC_IOMAPPED)
893 release_region(ports->start, resource_size(ports));
894 else
895 release_mem_region(ports->start, resource_size(ports));
7be2c7c9
DB
896 return retval;
897}
898
31632dbd 899static void cmos_do_shutdown(int rtc_irq)
7be2c7c9 900{
7be2c7c9 901 spin_lock_irq(&rtc_lock);
31632dbd
MR
902 if (is_valid_irq(rtc_irq))
903 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
7be2c7c9
DB
904 spin_unlock_irq(&rtc_lock);
905}
906
a3a0673b 907static void cmos_do_remove(struct device *dev)
7be2c7c9
DB
908{
909 struct cmos_rtc *cmos = dev_get_drvdata(dev);
05440dfc 910 struct resource *ports;
7be2c7c9 911
31632dbd 912 cmos_do_shutdown(cmos->irq);
7be2c7c9 913
9d8af78b 914 if (is_valid_irq(cmos->irq)) {
05440dfc 915 free_irq(cmos->irq, cmos->rtc);
311ee9c1
ZR
916 if (use_hpet_alarm())
917 hpet_unregister_irq_handler(cmos_interrupt);
9d8af78b 918 }
7be2c7c9 919
05440dfc 920 cmos->rtc = NULL;
7be2c7c9 921
05440dfc 922 ports = cmos->iomem;
31632dbd
MR
923 if (RTC_IOMAPPED)
924 release_region(ports->start, resource_size(ports));
925 else
926 release_mem_region(ports->start, resource_size(ports));
05440dfc
DB
927 cmos->iomem = NULL;
928
929 cmos->dev = NULL;
7be2c7c9
DB
930}
931
88b8d33b
AH
932static int cmos_aie_poweroff(struct device *dev)
933{
934 struct cmos_rtc *cmos = dev_get_drvdata(dev);
935 struct rtc_time now;
936 time64_t t_now;
937 int retval = 0;
938 unsigned char rtc_control;
939
940 if (!cmos->alarm_expires)
941 return -EINVAL;
942
943 spin_lock_irq(&rtc_lock);
944 rtc_control = CMOS_READ(RTC_CONTROL);
945 spin_unlock_irq(&rtc_lock);
946
947 /* We only care about the situation where AIE is disabled. */
948 if (rtc_control & RTC_AIE)
949 return -EBUSY;
950
951 cmos_read_time(dev, &now);
952 t_now = rtc_tm_to_time64(&now);
953
954 /*
955 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
956 * automatically right after shutdown on some buggy boxes.
957 * This automatic rebooting issue won't happen when the alarm
958 * time is larger than now+1 seconds.
959 *
960 * If the alarm time is equal to now+1 seconds, the issue can be
961 * prevented by cancelling the alarm.
962 */
963 if (cmos->alarm_expires == t_now + 1) {
964 struct rtc_wkalrm alarm;
965
966 /* Cancel the AIE timer by configuring the past time. */
967 rtc_time64_to_tm(t_now - 1, &alarm.time);
968 alarm.enabled = 0;
969 retval = cmos_set_alarm(dev, &alarm);
970 } else if (cmos->alarm_expires > t_now + 1) {
971 retval = -EBUSY;
972 }
973
974 return retval;
975}
976
2fb08e6c 977static int cmos_suspend(struct device *dev)
7be2c7c9
DB
978{
979 struct cmos_rtc *cmos = dev_get_drvdata(dev);
bcd9b89c 980 unsigned char tmp;
7be2c7c9
DB
981
982 /* only the alarm might be a wakeup event source */
983 spin_lock_irq(&rtc_lock);
984 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
985 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
35d3fdd5 986 unsigned char mask;
bcd9b89c 987
74c4633d 988 if (device_may_wakeup(dev))
35d3fdd5 989 mask = RTC_IRQMASK & ~RTC_AIE;
7be2c7c9 990 else
35d3fdd5
DB
991 mask = RTC_IRQMASK;
992 tmp &= ~mask;
7be2c7c9 993 CMOS_WRITE(tmp, RTC_CONTROL);
311ee9c1
ZR
994 if (use_hpet_alarm())
995 hpet_mask_rtc_irq_bit(mask);
7e2a31da 996 cmos_checkintr(cmos, tmp);
bcd9b89c 997 }
7be2c7c9
DB
998 spin_unlock_irq(&rtc_lock);
999
bc51098c 1000 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
87ac84f4
DB
1001 cmos->enabled_wake = 1;
1002 if (cmos->wake_on)
1003 cmos->wake_on(dev);
1004 else
1005 enable_irq_wake(cmos->irq);
1006 }
7be2c7c9 1007
68669d55
GM
1008 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1009
ee443357 1010 dev_dbg(dev, "suspend%s, ctrl %02x\n",
7be2c7c9
DB
1011 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1012 tmp);
1013
1014 return 0;
1015}
1016
74c4633d
RW
1017/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1018 * after a detour through G3 "mechanical off", although the ACPI spec
1019 * says wakeup should only work from G1/S4 "hibernate". To most users,
1020 * distinctions between S4 and S5 are pointless. So when the hardware
1021 * allows, don't draw that distinction.
1022 */
1023static inline int cmos_poweroff(struct device *dev)
1024{
00f7f90c
AB
1025 if (!IS_ENABLED(CONFIG_PM))
1026 return -ENOSYS;
1027
2fb08e6c 1028 return cmos_suspend(dev);
74c4633d
RW
1029}
1030
68669d55
GM
1031static void cmos_check_wkalrm(struct device *dev)
1032{
1033 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1034 struct rtc_wkalrm current_alarm;
c6d3a278 1035 time64_t t_now;
68669d55
GM
1036 time64_t t_current_expires;
1037 time64_t t_saved_expires;
c6d3a278
ZR
1038 struct rtc_time now;
1039
1040 /* Check if we have RTC Alarm armed */
1041 if (!(cmos->suspend_ctrl & RTC_AIE))
1042 return;
1043
1044 cmos_read_time(dev, &now);
1045 t_now = rtc_tm_to_time64(&now);
1046
1047 /*
1048 * ACPI RTC wake event is cleared after resume from STR,
1049 * ACK the rtc irq here
1050 */
bc51098c 1051 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
c6d3a278
ZR
1052 cmos_interrupt(0, (void *)cmos->rtc);
1053 return;
1054 }
68669d55
GM
1055
1056 cmos_read_alarm(dev, &current_alarm);
1057 t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1058 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1059 if (t_current_expires != t_saved_expires ||
1060 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1061 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1062 }
1063}
1064
983bf125
GM
1065static void cmos_check_acpi_rtc_status(struct device *dev,
1066 unsigned char *rtc_control);
1067
00f7f90c 1068static int __maybe_unused cmos_resume(struct device *dev)
7be2c7c9
DB
1069{
1070 struct cmos_rtc *cmos = dev_get_drvdata(dev);
998a0605
DB
1071 unsigned char tmp;
1072
bc51098c 1073 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
998a0605
DB
1074 if (cmos->wake_off)
1075 cmos->wake_off(dev);
1076 else
1077 disable_irq_wake(cmos->irq);
1078 cmos->enabled_wake = 0;
1079 }
7be2c7c9 1080
68669d55
GM
1081 /* The BIOS might have changed the alarm, restore it */
1082 cmos_check_wkalrm(dev);
1083
998a0605
DB
1084 spin_lock_irq(&rtc_lock);
1085 tmp = cmos->suspend_ctrl;
1086 cmos->suspend_ctrl = 0;
7be2c7c9 1087 /* re-enable any irqs previously active */
35d3fdd5
DB
1088 if (tmp & RTC_IRQMASK) {
1089 unsigned char mask;
7be2c7c9 1090
311ee9c1 1091 if (device_may_wakeup(dev) && use_hpet_alarm())
ebf8d6c8
DB
1092 hpet_rtc_timer_init();
1093
35d3fdd5
DB
1094 do {
1095 CMOS_WRITE(tmp, RTC_CONTROL);
311ee9c1
ZR
1096 if (use_hpet_alarm())
1097 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
35d3fdd5
DB
1098
1099 mask = CMOS_READ(RTC_INTR_FLAGS);
1100 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
311ee9c1 1101 if (!use_hpet_alarm() || !is_intr(mask))
35d3fdd5
DB
1102 break;
1103
1104 /* force one-shot behavior if HPET blocked
1105 * the wake alarm's irq
1106 */
1107 rtc_update_irq(cmos->rtc, 1, mask);
1108 tmp &= ~RTC_AIE;
1109 hpet_mask_rtc_irq_bit(RTC_AIE);
1110 } while (mask & RTC_AIE);
983bf125
GM
1111
1112 if (tmp & RTC_AIE)
1113 cmos_check_acpi_rtc_status(dev, &tmp);
7be2c7c9 1114 }
998a0605 1115 spin_unlock_irq(&rtc_lock);
7be2c7c9 1116
ee443357 1117 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
7be2c7c9
DB
1118
1119 return 0;
1120}
1121
b5ada460
MW
1122static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1123
7be2c7c9
DB
1124/*----------------------------------------------------------------*/
1125
e07e232c
DB
1126/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1127 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1128 * probably list them in similar PNPBIOS tables; so PNP is more common.
1129 *
1130 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1131 * predate even PNPBIOS should set up platform_bus devices.
7be2c7c9
DB
1132 */
1133
a474aaed
BH
1134#ifdef CONFIG_ACPI
1135
1136#include <linux/acpi.h>
1137
a474aaed
BH
1138static u32 rtc_handler(void *context)
1139{
b2201e54 1140 struct device *dev = context;
983bf125
GM
1141 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1142 unsigned char rtc_control = 0;
1143 unsigned char rtc_intr;
368e21ae 1144 unsigned long flags;
983bf125 1145
311ee9c1
ZR
1146
1147 /*
1148 * Always update rtc irq when ACPI is used as RTC Alarm.
1149 * Or else, ACPI SCI is enabled during suspend/resume only,
1150 * update rtc irq in that case.
1151 */
bc51098c 1152 if (cmos_use_acpi_alarm())
311ee9c1
ZR
1153 cmos_interrupt(0, (void *)cmos->rtc);
1154 else {
1155 /* Fix me: can we use cmos_interrupt() here as well? */
1156 spin_lock_irqsave(&rtc_lock, flags);
1157 if (cmos_rtc.suspend_ctrl)
1158 rtc_control = CMOS_READ(RTC_CONTROL);
1159 if (rtc_control & RTC_AIE) {
1160 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1161 CMOS_WRITE(rtc_control, RTC_CONTROL);
1162 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1163 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1164 }
1165 spin_unlock_irqrestore(&rtc_lock, flags);
983bf125 1166 }
b2201e54 1167
967b08c2 1168 pm_wakeup_hard_event(dev);
a474aaed
BH
1169 acpi_clear_event(ACPI_EVENT_RTC);
1170 acpi_disable_event(ACPI_EVENT_RTC, 0);
1171 return ACPI_INTERRUPT_HANDLED;
1172}
1173
b2201e54 1174static inline void rtc_wake_setup(struct device *dev)
a474aaed 1175{
b2201e54 1176 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
a474aaed
BH
1177 /*
1178 * After the RTC handler is installed, the Fixed_RTC event should
1179 * be disabled. Only when the RTC alarm is set will it be enabled.
1180 */
1181 acpi_clear_event(ACPI_EVENT_RTC);
1182 acpi_disable_event(ACPI_EVENT_RTC, 0);
1183}
1184
1185static void rtc_wake_on(struct device *dev)
1186{
1187 acpi_clear_event(ACPI_EVENT_RTC);
1188 acpi_enable_event(ACPI_EVENT_RTC, 0);
1189}
1190
1191static void rtc_wake_off(struct device *dev)
1192{
1193 acpi_disable_event(ACPI_EVENT_RTC, 0);
1194}
a474aaed 1195
36d91a4d
ZR
1196#ifdef CONFIG_X86
1197/* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1198static void use_acpi_alarm_quirks(void)
1199{
1200 int year;
1201
1202 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1203 return;
1204
1205 if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1206 return;
1207
1208 if (!is_hpet_enabled())
1209 return;
1210
1211 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015)
1212 use_acpi_alarm = true;
1213}
1214#else
1215static inline void use_acpi_alarm_quirks(void) { }
1216#endif
1217
a474aaed
BH
1218/* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1219 * its device node and pass extra config data. This helps its driver use
1220 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1221 * that this board's RTC is wakeup-capable (per ACPI spec).
1222 */
1223static struct cmos_rtc_board_info acpi_rtc_info;
1224
5a167f45 1225static void cmos_wake_setup(struct device *dev)
a474aaed
BH
1226{
1227 if (acpi_disabled)
1228 return;
1229
36d91a4d
ZR
1230 use_acpi_alarm_quirks();
1231
b2201e54 1232 rtc_wake_setup(dev);
a474aaed
BH
1233 acpi_rtc_info.wake_on = rtc_wake_on;
1234 acpi_rtc_info.wake_off = rtc_wake_off;
1235
1236 /* workaround bug in some ACPI tables */
1237 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1238 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1239 acpi_gbl_FADT.month_alarm);
1240 acpi_gbl_FADT.month_alarm = 0;
1241 }
1242
1243 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1244 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1245 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1246
1247 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1248 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1249 dev_info(dev, "RTC can wake from S4\n");
1250
1251 dev->platform_data = &acpi_rtc_info;
1252
1253 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1254 device_init_wakeup(dev, 1);
1255}
1256
983bf125
GM
1257static void cmos_check_acpi_rtc_status(struct device *dev,
1258 unsigned char *rtc_control)
1259{
1260 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1261 acpi_event_status rtc_status;
1262 acpi_status status;
1263
1264 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1265 return;
1266
1267 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1268 if (ACPI_FAILURE(status)) {
1269 dev_err(dev, "Could not get RTC status\n");
1270 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1271 unsigned char mask;
1272 *rtc_control &= ~RTC_AIE;
1273 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1274 mask = CMOS_READ(RTC_INTR_FLAGS);
1275 rtc_update_irq(cmos->rtc, 1, mask);
1276 }
1277}
1278
a474aaed
BH
1279#else
1280
5a167f45 1281static void cmos_wake_setup(struct device *dev)
a474aaed
BH
1282{
1283}
1284
983bf125
GM
1285static void cmos_check_acpi_rtc_status(struct device *dev,
1286 unsigned char *rtc_control)
1287{
1288}
1289
a474aaed
BH
1290#endif
1291
41ac8df9 1292#ifdef CONFIG_PNP
7be2c7c9
DB
1293
1294#include <linux/pnp.h>
1295
5a167f45 1296static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
7be2c7c9 1297{
a474aaed
BH
1298 cmos_wake_setup(&pnp->dev);
1299
a1e23a42
HG
1300 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1301 unsigned int irq = 0;
1302#ifdef CONFIG_X86
6cd8fa87
MG
1303 /* Some machines contain a PNP entry for the RTC, but
1304 * don't define the IRQ. It should always be safe to
a1e23a42 1305 * hardcode it on systems with a legacy PIC.
6cd8fa87 1306 */
a1e23a42
HG
1307 if (nr_legacy_irqs())
1308 irq = 8;
1309#endif
8766ad0c 1310 return cmos_do_probe(&pnp->dev,
a1e23a42
HG
1311 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1312 } else {
6cd8fa87 1313 return cmos_do_probe(&pnp->dev,
8766ad0c
BH
1314 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1315 pnp_irq(pnp, 0));
a1e23a42 1316 }
7be2c7c9
DB
1317}
1318
a3a0673b 1319static void cmos_pnp_remove(struct pnp_dev *pnp)
7be2c7c9
DB
1320{
1321 cmos_do_remove(&pnp->dev);
1322}
1323
004731b2 1324static void cmos_pnp_shutdown(struct pnp_dev *pnp)
74c4633d 1325{
31632dbd
MR
1326 struct device *dev = &pnp->dev;
1327 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1328
88b8d33b
AH
1329 if (system_state == SYSTEM_POWER_OFF) {
1330 int retval = cmos_poweroff(dev);
1331
1332 if (cmos_aie_poweroff(dev) < 0 && !retval)
1333 return;
1334 }
74c4633d 1335
31632dbd 1336 cmos_do_shutdown(cmos->irq);
74c4633d 1337}
7be2c7c9
DB
1338
1339static const struct pnp_device_id rtc_ids[] = {
1340 { .id = "PNP0b00", },
1341 { .id = "PNP0b01", },
1342 { .id = "PNP0b02", },
1343 { },
1344};
1345MODULE_DEVICE_TABLE(pnp, rtc_ids);
1346
1347static struct pnp_driver cmos_pnp_driver = {
1348 .name = (char *) driver_name,
1349 .id_table = rtc_ids,
1350 .probe = cmos_pnp_probe,
a3a0673b 1351 .remove = cmos_pnp_remove,
004731b2 1352 .shutdown = cmos_pnp_shutdown,
7be2c7c9
DB
1353
1354 /* flag ensures resume() gets called, and stops syslog spam */
1355 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
a8a3808b
SK
1356 .driver = {
1357 .pm = &cmos_pm_ops,
1358 },
7be2c7c9
DB
1359};
1360
1da2e3d6 1361#endif /* CONFIG_PNP */
7be2c7c9 1362
3bcbaf6e
SAS
1363#ifdef CONFIG_OF
1364static const struct of_device_id of_cmos_match[] = {
1365 {
1366 .compatible = "motorola,mc146818",
1367 },
1368 { },
1369};
1370MODULE_DEVICE_TABLE(of, of_cmos_match);
1371
1372static __init void cmos_of_init(struct platform_device *pdev)
1373{
1374 struct device_node *node = pdev->dev.of_node;
3bcbaf6e
SAS
1375 const __be32 *val;
1376
1377 if (!node)
1378 return;
1379
1380 val = of_get_property(node, "ctrl-reg", NULL);
1381 if (val)
1382 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1383
1384 val = of_get_property(node, "freq-reg", NULL);
1385 if (val)
1386 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
3bcbaf6e
SAS
1387}
1388#else
1389static inline void cmos_of_init(struct platform_device *pdev) {}
3bcbaf6e 1390#endif
7be2c7c9
DB
1391/*----------------------------------------------------------------*/
1392
41ac8df9 1393/* Platform setup should have set up an RTC device, when PNP is
bcd9b89c 1394 * unavailable ... this could happen even on (older) PCs.
7be2c7c9
DB
1395 */
1396
1397static int __init cmos_platform_probe(struct platform_device *pdev)
1398{
31632dbd
MR
1399 struct resource *resource;
1400 int irq;
1401
3bcbaf6e 1402 cmos_of_init(pdev);
a474aaed 1403 cmos_wake_setup(&pdev->dev);
31632dbd
MR
1404
1405 if (RTC_IOMAPPED)
1406 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1407 else
1408 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1409 irq = platform_get_irq(pdev, 0);
1410 if (irq < 0)
1411 irq = -1;
1412
1413 return cmos_do_probe(&pdev->dev, resource, irq);
7be2c7c9
DB
1414}
1415
a3a0673b 1416static int cmos_platform_remove(struct platform_device *pdev)
7be2c7c9
DB
1417{
1418 cmos_do_remove(&pdev->dev);
1419 return 0;
1420}
1421
1422static void cmos_platform_shutdown(struct platform_device *pdev)
1423{
31632dbd
MR
1424 struct device *dev = &pdev->dev;
1425 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1426
88b8d33b
AH
1427 if (system_state == SYSTEM_POWER_OFF) {
1428 int retval = cmos_poweroff(dev);
1429
1430 if (cmos_aie_poweroff(dev) < 0 && !retval)
1431 return;
1432 }
74c4633d 1433
31632dbd 1434 cmos_do_shutdown(cmos->irq);
7be2c7c9
DB
1435}
1436
ad28a07b
KS
1437/* work with hotplug and coldplug */
1438MODULE_ALIAS("platform:rtc_cmos");
1439
7be2c7c9 1440static struct platform_driver cmos_platform_driver = {
a3a0673b 1441 .remove = cmos_platform_remove,
7be2c7c9
DB
1442 .shutdown = cmos_platform_shutdown,
1443 .driver = {
c823a202 1444 .name = driver_name,
2fb08e6c 1445 .pm = &cmos_pm_ops,
c8a6046e 1446 .of_match_table = of_match_ptr(of_cmos_match),
7be2c7c9
DB
1447 }
1448};
1449
65909814
TLSC
1450#ifdef CONFIG_PNP
1451static bool pnp_driver_registered;
1452#endif
1453static bool platform_driver_registered;
1454
7be2c7c9
DB
1455static int __init cmos_init(void)
1456{
72f22b1e
BH
1457 int retval = 0;
1458
1da2e3d6 1459#ifdef CONFIG_PNP
65909814
TLSC
1460 retval = pnp_register_driver(&cmos_pnp_driver);
1461 if (retval == 0)
1462 pnp_driver_registered = true;
72f22b1e
BH
1463#endif
1464
65909814 1465 if (!cmos_rtc.dev) {
72f22b1e
BH
1466 retval = platform_driver_probe(&cmos_platform_driver,
1467 cmos_platform_probe);
65909814
TLSC
1468 if (retval == 0)
1469 platform_driver_registered = true;
1470 }
72f22b1e
BH
1471
1472 if (retval == 0)
1473 return 0;
1474
1475#ifdef CONFIG_PNP
65909814
TLSC
1476 if (pnp_driver_registered)
1477 pnp_unregister_driver(&cmos_pnp_driver);
72f22b1e
BH
1478#endif
1479 return retval;
7be2c7c9
DB
1480}
1481module_init(cmos_init);
1482
1483static void __exit cmos_exit(void)
1484{
1da2e3d6 1485#ifdef CONFIG_PNP
65909814
TLSC
1486 if (pnp_driver_registered)
1487 pnp_unregister_driver(&cmos_pnp_driver);
72f22b1e 1488#endif
65909814
TLSC
1489 if (platform_driver_registered)
1490 platform_driver_unregister(&cmos_platform_driver);
7be2c7c9
DB
1491}
1492module_exit(cmos_exit);
1493
1494
7be2c7c9
DB
1495MODULE_AUTHOR("David Brownell");
1496MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1497MODULE_LICENSE("GPL");