]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/rtc/rtc-cmos.c
Merge branch 'next/pm' of git://git.linaro.org/people/arnd/arm-soc
[mirror_ubuntu-artful-kernel.git] / drivers / rtc / rtc-cmos.c
CommitLineData
7be2c7c9
DB
1/*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
3 *
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13/*
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
20 *
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
26 *
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
30 */
31#include <linux/kernel.h>
32#include <linux/module.h>
33#include <linux/init.h>
34#include <linux/interrupt.h>
35#include <linux/spinlock.h>
36#include <linux/platform_device.h>
37#include <linux/mod_devicetable.h>
5d2a5037 38#include <linux/log2.h>
2fb08e6c 39#include <linux/pm.h>
3bcbaf6e
SAS
40#include <linux/of.h>
41#include <linux/of_platform.h>
7be2c7c9
DB
42
43/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44#include <asm-generic/rtc.h>
45
7be2c7c9
DB
46struct cmos_rtc {
47 struct rtc_device *rtc;
48 struct device *dev;
49 int irq;
50 struct resource *iomem;
51
87ac84f4
DB
52 void (*wake_on)(struct device *);
53 void (*wake_off)(struct device *);
54
55 u8 enabled_wake;
7be2c7c9
DB
56 u8 suspend_ctrl;
57
58 /* newer hardware extends the original register set */
59 u8 day_alrm;
60 u8 mon_alrm;
61 u8 century;
62};
63
64/* both platform and pnp busses use negative numbers for invalid irqs */
2fac6674 65#define is_valid_irq(n) ((n) > 0)
7be2c7c9
DB
66
67static const char driver_name[] = "rtc_cmos";
68
bcd9b89c
DB
69/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
70 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
71 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
72 */
73#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
74
75static inline int is_intr(u8 rtc_intr)
76{
77 if (!(rtc_intr & RTC_IRQF))
78 return 0;
79 return rtc_intr & RTC_IRQMASK;
80}
81
7be2c7c9
DB
82/*----------------------------------------------------------------*/
83
35d3fdd5
DB
84/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
85 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
86 * used in a broken "legacy replacement" mode. The breakage includes
87 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
88 * other (better) use.
89 *
90 * When that broken mode is in use, platform glue provides a partial
91 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
92 * want to use HPET for anything except those IRQs though...
93 */
94#ifdef CONFIG_HPET_EMULATE_RTC
95#include <asm/hpet.h>
96#else
97
98static inline int is_hpet_enabled(void)
99{
100 return 0;
101}
102
103static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
104{
105 return 0;
106}
107
108static inline int hpet_set_rtc_irq_bit(unsigned long mask)
109{
110 return 0;
111}
112
113static inline int
114hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
115{
116 return 0;
117}
118
119static inline int hpet_set_periodic_freq(unsigned long freq)
120{
121 return 0;
122}
123
124static inline int hpet_rtc_dropped_irq(void)
125{
126 return 0;
127}
128
129static inline int hpet_rtc_timer_init(void)
130{
131 return 0;
132}
133
134extern irq_handler_t hpet_rtc_interrupt;
135
136static inline int hpet_register_irq_handler(irq_handler_t handler)
137{
138 return 0;
139}
140
141static inline int hpet_unregister_irq_handler(irq_handler_t handler)
142{
143 return 0;
144}
145
146#endif
147
148/*----------------------------------------------------------------*/
149
c8fc40cd
DB
150#ifdef RTC_PORT
151
152/* Most newer x86 systems have two register banks, the first used
153 * for RTC and NVRAM and the second only for NVRAM. Caller must
154 * own rtc_lock ... and we won't worry about access during NMI.
155 */
156#define can_bank2 true
157
158static inline unsigned char cmos_read_bank2(unsigned char addr)
159{
160 outb(addr, RTC_PORT(2));
161 return inb(RTC_PORT(3));
162}
163
164static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
165{
166 outb(addr, RTC_PORT(2));
167 outb(val, RTC_PORT(2));
168}
169
170#else
171
172#define can_bank2 false
173
174static inline unsigned char cmos_read_bank2(unsigned char addr)
175{
176 return 0;
177}
178
179static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
180{
181}
182
183#endif
184
185/*----------------------------------------------------------------*/
186
7be2c7c9
DB
187static int cmos_read_time(struct device *dev, struct rtc_time *t)
188{
189 /* REVISIT: if the clock has a "century" register, use
190 * that instead of the heuristic in get_rtc_time().
191 * That'll make Y3K compatility (year > 2070) easy!
192 */
193 get_rtc_time(t);
194 return 0;
195}
196
197static int cmos_set_time(struct device *dev, struct rtc_time *t)
198{
199 /* REVISIT: set the "century" register if available
200 *
201 * NOTE: this ignores the issue whereby updating the seconds
202 * takes effect exactly 500ms after we write the register.
203 * (Also queueing and other delays before we get this far.)
204 */
205 return set_rtc_time(t);
206}
207
208static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
209{
210 struct cmos_rtc *cmos = dev_get_drvdata(dev);
211 unsigned char rtc_control;
212
213 if (!is_valid_irq(cmos->irq))
214 return -EIO;
215
216 /* Basic alarms only support hour, minute, and seconds fields.
217 * Some also support day and month, for alarms up to a year in
218 * the future.
219 */
220 t->time.tm_mday = -1;
221 t->time.tm_mon = -1;
222
223 spin_lock_irq(&rtc_lock);
224 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
225 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
226 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
227
228 if (cmos->day_alrm) {
615bb29c
ML
229 /* ignore upper bits on readback per ACPI spec */
230 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
7be2c7c9
DB
231 if (!t->time.tm_mday)
232 t->time.tm_mday = -1;
233
234 if (cmos->mon_alrm) {
235 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
236 if (!t->time.tm_mon)
237 t->time.tm_mon = -1;
238 }
239 }
240
241 rtc_control = CMOS_READ(RTC_CONTROL);
242 spin_unlock_irq(&rtc_lock);
243
3804a89b
AP
244 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
245 if (((unsigned)t->time.tm_sec) < 0x60)
246 t->time.tm_sec = bcd2bin(t->time.tm_sec);
7be2c7c9 247 else
3804a89b
AP
248 t->time.tm_sec = -1;
249 if (((unsigned)t->time.tm_min) < 0x60)
250 t->time.tm_min = bcd2bin(t->time.tm_min);
251 else
252 t->time.tm_min = -1;
253 if (((unsigned)t->time.tm_hour) < 0x24)
254 t->time.tm_hour = bcd2bin(t->time.tm_hour);
255 else
256 t->time.tm_hour = -1;
257
258 if (cmos->day_alrm) {
259 if (((unsigned)t->time.tm_mday) <= 0x31)
260 t->time.tm_mday = bcd2bin(t->time.tm_mday);
7be2c7c9 261 else
3804a89b
AP
262 t->time.tm_mday = -1;
263
264 if (cmos->mon_alrm) {
265 if (((unsigned)t->time.tm_mon) <= 0x12)
266 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
267 else
268 t->time.tm_mon = -1;
269 }
7be2c7c9
DB
270 }
271 }
272 t->time.tm_year = -1;
273
274 t->enabled = !!(rtc_control & RTC_AIE);
275 t->pending = 0;
276
277 return 0;
278}
279
7e2a31da
DB
280static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
281{
282 unsigned char rtc_intr;
283
284 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285 * allegedly some older rtcs need that to handle irqs properly
286 */
287 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
288
289 if (is_hpet_enabled())
290 return;
291
292 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293 if (is_intr(rtc_intr))
294 rtc_update_irq(cmos->rtc, 1, rtc_intr);
295}
296
297static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
298{
299 unsigned char rtc_control;
300
301 /* flush any pending IRQ status, notably for update irqs,
302 * before we enable new IRQs
303 */
304 rtc_control = CMOS_READ(RTC_CONTROL);
305 cmos_checkintr(cmos, rtc_control);
306
307 rtc_control |= mask;
308 CMOS_WRITE(rtc_control, RTC_CONTROL);
309 hpet_set_rtc_irq_bit(mask);
310
311 cmos_checkintr(cmos, rtc_control);
312}
313
314static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
315{
316 unsigned char rtc_control;
317
318 rtc_control = CMOS_READ(RTC_CONTROL);
319 rtc_control &= ~mask;
320 CMOS_WRITE(rtc_control, RTC_CONTROL);
321 hpet_mask_rtc_irq_bit(mask);
322
323 cmos_checkintr(cmos, rtc_control);
324}
325
7be2c7c9
DB
326static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
327{
328 struct cmos_rtc *cmos = dev_get_drvdata(dev);
3804a89b 329 unsigned char mon, mday, hrs, min, sec, rtc_control;
7be2c7c9
DB
330
331 if (!is_valid_irq(cmos->irq))
332 return -EIO;
333
2b653e06 334 mon = t->time.tm_mon + 1;
7be2c7c9 335 mday = t->time.tm_mday;
7be2c7c9 336 hrs = t->time.tm_hour;
7be2c7c9 337 min = t->time.tm_min;
7be2c7c9 338 sec = t->time.tm_sec;
3804a89b
AP
339
340 rtc_control = CMOS_READ(RTC_CONTROL);
341 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342 /* Writing 0xff means "don't care" or "match all". */
343 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346 min = (min < 60) ? bin2bcd(min) : 0xff;
347 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348 }
7be2c7c9
DB
349
350 spin_lock_irq(&rtc_lock);
351
352 /* next rtc irq must not be from previous alarm setting */
7e2a31da 353 cmos_irq_disable(cmos, RTC_AIE);
7be2c7c9
DB
354
355 /* update alarm */
356 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357 CMOS_WRITE(min, RTC_MINUTES_ALARM);
358 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
359
360 /* the system may support an "enhanced" alarm */
361 if (cmos->day_alrm) {
362 CMOS_WRITE(mday, cmos->day_alrm);
363 if (cmos->mon_alrm)
364 CMOS_WRITE(mon, cmos->mon_alrm);
365 }
366
35d3fdd5
DB
367 /* FIXME the HPET alarm glue currently ignores day_alrm
368 * and mon_alrm ...
369 */
370 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
371
7e2a31da
DB
372 if (t->enabled)
373 cmos_irq_enable(cmos, RTC_AIE);
7be2c7c9
DB
374
375 spin_unlock_irq(&rtc_lock);
376
377 return 0;
378}
379
a8462ef6 380static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
7be2c7c9
DB
381{
382 struct cmos_rtc *cmos = dev_get_drvdata(dev);
7be2c7c9
DB
383 unsigned long flags;
384
a8462ef6
HRK
385 if (!is_valid_irq(cmos->irq))
386 return -EINVAL;
7be2c7c9
DB
387
388 spin_lock_irqsave(&rtc_lock, flags);
a8462ef6
HRK
389
390 if (enabled)
7e2a31da 391 cmos_irq_enable(cmos, RTC_AIE);
a8462ef6
HRK
392 else
393 cmos_irq_disable(cmos, RTC_AIE);
394
7be2c7c9
DB
395 spin_unlock_irqrestore(&rtc_lock, flags);
396 return 0;
397}
398
7be2c7c9
DB
399#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
400
401static int cmos_procfs(struct device *dev, struct seq_file *seq)
402{
403 struct cmos_rtc *cmos = dev_get_drvdata(dev);
404 unsigned char rtc_control, valid;
405
406 spin_lock_irq(&rtc_lock);
407 rtc_control = CMOS_READ(RTC_CONTROL);
408 valid = CMOS_READ(RTC_VALID);
409 spin_unlock_irq(&rtc_lock);
410
411 /* NOTE: at least ICH6 reports battery status using a different
412 * (non-RTC) bit; and SQWE is ignored on many current systems.
413 */
414 return seq_printf(seq,
415 "periodic_IRQ\t: %s\n"
416 "update_IRQ\t: %s\n"
c8626a1d 417 "HPET_emulated\t: %s\n"
7be2c7c9 418 // "square_wave\t: %s\n"
3804a89b 419 "BCD\t\t: %s\n"
7be2c7c9
DB
420 "DST_enable\t: %s\n"
421 "periodic_freq\t: %d\n"
422 "batt_status\t: %s\n",
423 (rtc_control & RTC_PIE) ? "yes" : "no",
424 (rtc_control & RTC_UIE) ? "yes" : "no",
c8626a1d 425 is_hpet_enabled() ? "yes" : "no",
7be2c7c9 426 // (rtc_control & RTC_SQWE) ? "yes" : "no",
3804a89b 427 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
7be2c7c9
DB
428 (rtc_control & RTC_DST_EN) ? "yes" : "no",
429 cmos->rtc->irq_freq,
430 (valid & RTC_VRT) ? "okay" : "dead");
431}
432
433#else
434#define cmos_procfs NULL
435#endif
436
437static const struct rtc_class_ops cmos_rtc_ops = {
a8462ef6
HRK
438 .read_time = cmos_read_time,
439 .set_time = cmos_set_time,
440 .read_alarm = cmos_read_alarm,
441 .set_alarm = cmos_set_alarm,
442 .proc = cmos_procfs,
a8462ef6 443 .alarm_irq_enable = cmos_alarm_irq_enable,
7be2c7c9
DB
444};
445
446/*----------------------------------------------------------------*/
447
e07e232c
DB
448/*
449 * All these chips have at least 64 bytes of address space, shared by
450 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
451 * by boot firmware. Modern chips have 128 or 256 bytes.
452 */
453
454#define NVRAM_OFFSET (RTC_REG_D + 1)
455
456static ssize_t
2c3c8bea
CW
457cmos_nvram_read(struct file *filp, struct kobject *kobj,
458 struct bin_attribute *attr,
e07e232c
DB
459 char *buf, loff_t off, size_t count)
460{
461 int retval;
462
463 if (unlikely(off >= attr->size))
464 return 0;
c8fc40cd
DB
465 if (unlikely(off < 0))
466 return -EINVAL;
e07e232c
DB
467 if ((off + count) > attr->size)
468 count = attr->size - off;
469
c8fc40cd 470 off += NVRAM_OFFSET;
e07e232c 471 spin_lock_irq(&rtc_lock);
c8fc40cd
DB
472 for (retval = 0; count; count--, off++, retval++) {
473 if (off < 128)
474 *buf++ = CMOS_READ(off);
475 else if (can_bank2)
476 *buf++ = cmos_read_bank2(off);
477 else
478 break;
479 }
e07e232c
DB
480 spin_unlock_irq(&rtc_lock);
481
482 return retval;
483}
484
485static ssize_t
2c3c8bea
CW
486cmos_nvram_write(struct file *filp, struct kobject *kobj,
487 struct bin_attribute *attr,
e07e232c
DB
488 char *buf, loff_t off, size_t count)
489{
490 struct cmos_rtc *cmos;
491 int retval;
492
493 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
494 if (unlikely(off >= attr->size))
495 return -EFBIG;
c8fc40cd
DB
496 if (unlikely(off < 0))
497 return -EINVAL;
e07e232c
DB
498 if ((off + count) > attr->size)
499 count = attr->size - off;
500
501 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
502 * checksum on part of the NVRAM data. That's currently ignored
503 * here. If userspace is smart enough to know what fields of
504 * NVRAM to update, updating checksums is also part of its job.
505 */
c8fc40cd 506 off += NVRAM_OFFSET;
e07e232c 507 spin_lock_irq(&rtc_lock);
c8fc40cd 508 for (retval = 0; count; count--, off++, retval++) {
e07e232c
DB
509 /* don't trash RTC registers */
510 if (off == cmos->day_alrm
511 || off == cmos->mon_alrm
512 || off == cmos->century)
513 buf++;
c8fc40cd 514 else if (off < 128)
e07e232c 515 CMOS_WRITE(*buf++, off);
c8fc40cd
DB
516 else if (can_bank2)
517 cmos_write_bank2(*buf++, off);
518 else
519 break;
e07e232c
DB
520 }
521 spin_unlock_irq(&rtc_lock);
522
523 return retval;
524}
525
526static struct bin_attribute nvram = {
527 .attr = {
528 .name = "nvram",
529 .mode = S_IRUGO | S_IWUSR,
e07e232c
DB
530 },
531
532 .read = cmos_nvram_read,
533 .write = cmos_nvram_write,
534 /* size gets set up later */
535};
536
537/*----------------------------------------------------------------*/
538
7be2c7c9
DB
539static struct cmos_rtc cmos_rtc;
540
541static irqreturn_t cmos_interrupt(int irq, void *p)
542{
543 u8 irqstat;
8a0bdfd7 544 u8 rtc_control;
7be2c7c9
DB
545
546 spin_lock(&rtc_lock);
35d3fdd5
DB
547
548 /* When the HPET interrupt handler calls us, the interrupt
549 * status is passed as arg1 instead of the irq number. But
550 * always clear irq status, even when HPET is in the way.
551 *
552 * Note that HPET and RTC are almost certainly out of phase,
553 * giving different IRQ status ...
9d8af78b 554 */
35d3fdd5
DB
555 irqstat = CMOS_READ(RTC_INTR_FLAGS);
556 rtc_control = CMOS_READ(RTC_CONTROL);
9d8af78b
BW
557 if (is_hpet_enabled())
558 irqstat = (unsigned long)irq & 0xF0;
35d3fdd5 559 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
8a0bdfd7
DB
560
561 /* All Linux RTC alarms should be treated as if they were oneshot.
562 * Similar code may be needed in system wakeup paths, in case the
563 * alarm woke the system.
564 */
565 if (irqstat & RTC_AIE) {
566 rtc_control &= ~RTC_AIE;
567 CMOS_WRITE(rtc_control, RTC_CONTROL);
35d3fdd5
DB
568 hpet_mask_rtc_irq_bit(RTC_AIE);
569
8a0bdfd7
DB
570 CMOS_READ(RTC_INTR_FLAGS);
571 }
7be2c7c9
DB
572 spin_unlock(&rtc_lock);
573
bcd9b89c 574 if (is_intr(irqstat)) {
7be2c7c9
DB
575 rtc_update_irq(p, 1, irqstat);
576 return IRQ_HANDLED;
577 } else
578 return IRQ_NONE;
579}
580
41ac8df9 581#ifdef CONFIG_PNP
7be2c7c9
DB
582#define INITSECTION
583
584#else
7be2c7c9
DB
585#define INITSECTION __init
586#endif
587
588static int INITSECTION
589cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
590{
591 struct cmos_rtc_board_info *info = dev->platform_data;
592 int retval = 0;
593 unsigned char rtc_control;
e07e232c 594 unsigned address_space;
7be2c7c9
DB
595
596 /* there can be only one ... */
597 if (cmos_rtc.dev)
598 return -EBUSY;
599
600 if (!ports)
601 return -ENODEV;
602
05440dfc
DB
603 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
604 *
605 * REVISIT non-x86 systems may instead use memory space resources
606 * (needing ioremap etc), not i/o space resources like this ...
607 */
608 ports = request_region(ports->start,
28f65c11 609 resource_size(ports),
05440dfc
DB
610 driver_name);
611 if (!ports) {
612 dev_dbg(dev, "i/o registers already in use\n");
613 return -EBUSY;
614 }
615
7be2c7c9
DB
616 cmos_rtc.irq = rtc_irq;
617 cmos_rtc.iomem = ports;
618
e07e232c
DB
619 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
620 * driver did, but don't reject unknown configs. Old hardware
c8fc40cd
DB
621 * won't address 128 bytes. Newer chips have multiple banks,
622 * though they may not be listed in one I/O resource.
e07e232c
DB
623 */
624#if defined(CONFIG_ATARI)
625 address_space = 64;
95abd0df 626#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
8cb7c71b
SK
627 || defined(__sparc__) || defined(__mips__) \
628 || defined(__powerpc__)
e07e232c
DB
629 address_space = 128;
630#else
631#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
632 address_space = 128;
633#endif
c8fc40cd
DB
634 if (can_bank2 && ports->end > (ports->start + 1))
635 address_space = 256;
e07e232c 636
87ac84f4
DB
637 /* For ACPI systems extension info comes from the FADT. On others,
638 * board specific setup provides it as appropriate. Systems where
639 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
640 * some almost-clones) can provide hooks to make that behave.
e07e232c
DB
641 *
642 * Note that ACPI doesn't preclude putting these registers into
643 * "extended" areas of the chip, including some that we won't yet
644 * expect CMOS_READ and friends to handle.
7be2c7c9
DB
645 */
646 if (info) {
e07e232c
DB
647 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
648 cmos_rtc.day_alrm = info->rtc_day_alarm;
649 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
650 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
651 if (info->rtc_century && info->rtc_century < 128)
652 cmos_rtc.century = info->rtc_century;
87ac84f4
DB
653
654 if (info->wake_on && info->wake_off) {
655 cmos_rtc.wake_on = info->wake_on;
656 cmos_rtc.wake_off = info->wake_off;
657 }
7be2c7c9
DB
658 }
659
6ba8bcd4
DC
660 cmos_rtc.dev = dev;
661 dev_set_drvdata(dev, &cmos_rtc);
662
7be2c7c9
DB
663 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
664 &cmos_rtc_ops, THIS_MODULE);
05440dfc
DB
665 if (IS_ERR(cmos_rtc.rtc)) {
666 retval = PTR_ERR(cmos_rtc.rtc);
667 goto cleanup0;
668 }
7be2c7c9 669
d4afc76c 670 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
7be2c7c9
DB
671
672 spin_lock_irq(&rtc_lock);
673
674 /* force periodic irq to CMOS reset default of 1024Hz;
675 *
676 * REVISIT it's been reported that at least one x86_64 ALI mobo
677 * doesn't use 32KHz here ... for portability we might need to
678 * do something about other clock frequencies.
679 */
7be2c7c9 680 cmos_rtc.rtc->irq_freq = 1024;
35d3fdd5
DB
681 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
682 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
7be2c7c9 683
7e2a31da
DB
684 /* disable irqs */
685 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
35d3fdd5 686
7e2a31da 687 rtc_control = CMOS_READ(RTC_CONTROL);
7be2c7c9
DB
688
689 spin_unlock_irq(&rtc_lock);
690
3804a89b 691 /* FIXME:
7be2c7c9
DB
692 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
693 */
3804a89b
AP
694 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
695 dev_warn(dev, "only 24-hr supported\n");
7be2c7c9
DB
696 retval = -ENXIO;
697 goto cleanup1;
698 }
699
9d8af78b
BW
700 if (is_valid_irq(rtc_irq)) {
701 irq_handler_t rtc_cmos_int_handler;
702
703 if (is_hpet_enabled()) {
704 int err;
705
706 rtc_cmos_int_handler = hpet_rtc_interrupt;
707 err = hpet_register_irq_handler(cmos_interrupt);
708 if (err != 0) {
709 printk(KERN_WARNING "hpet_register_irq_handler "
710 " failed in rtc_init().");
711 goto cleanup1;
712 }
713 } else
714 rtc_cmos_int_handler = cmos_interrupt;
715
716 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
d4afc76c 717 IRQF_DISABLED, dev_name(&cmos_rtc.rtc->dev),
ab6a2d70 718 cmos_rtc.rtc);
9d8af78b
BW
719 if (retval < 0) {
720 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
721 goto cleanup1;
722 }
7be2c7c9 723 }
9d8af78b 724 hpet_rtc_timer_init();
7be2c7c9 725
e07e232c
DB
726 /* export at least the first block of NVRAM */
727 nvram.size = address_space - NVRAM_OFFSET;
728 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
729 if (retval < 0) {
730 dev_dbg(dev, "can't create nvram file? %d\n", retval);
731 goto cleanup2;
732 }
7be2c7c9 733
6d029b64
KH
734 pr_info("%s: %s%s, %zd bytes nvram%s\n",
735 dev_name(&cmos_rtc.rtc->dev),
736 !is_valid_irq(rtc_irq) ? "no alarms" :
737 cmos_rtc.mon_alrm ? "alarms up to one year" :
738 cmos_rtc.day_alrm ? "alarms up to one month" :
739 "alarms up to one day",
740 cmos_rtc.century ? ", y3k" : "",
741 nvram.size,
742 is_hpet_enabled() ? ", hpet irqs" : "");
7be2c7c9
DB
743
744 return 0;
745
e07e232c
DB
746cleanup2:
747 if (is_valid_irq(rtc_irq))
748 free_irq(rtc_irq, cmos_rtc.rtc);
7be2c7c9 749cleanup1:
05440dfc 750 cmos_rtc.dev = NULL;
7be2c7c9 751 rtc_device_unregister(cmos_rtc.rtc);
05440dfc 752cleanup0:
28f65c11 753 release_region(ports->start, resource_size(ports));
7be2c7c9
DB
754 return retval;
755}
756
757static void cmos_do_shutdown(void)
758{
7be2c7c9 759 spin_lock_irq(&rtc_lock);
7e2a31da 760 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
7be2c7c9
DB
761 spin_unlock_irq(&rtc_lock);
762}
763
764static void __exit cmos_do_remove(struct device *dev)
765{
766 struct cmos_rtc *cmos = dev_get_drvdata(dev);
05440dfc 767 struct resource *ports;
7be2c7c9
DB
768
769 cmos_do_shutdown();
770
e07e232c
DB
771 sysfs_remove_bin_file(&dev->kobj, &nvram);
772
9d8af78b 773 if (is_valid_irq(cmos->irq)) {
05440dfc 774 free_irq(cmos->irq, cmos->rtc);
9d8af78b
BW
775 hpet_unregister_irq_handler(cmos_interrupt);
776 }
7be2c7c9 777
05440dfc
DB
778 rtc_device_unregister(cmos->rtc);
779 cmos->rtc = NULL;
7be2c7c9 780
05440dfc 781 ports = cmos->iomem;
28f65c11 782 release_region(ports->start, resource_size(ports));
05440dfc
DB
783 cmos->iomem = NULL;
784
785 cmos->dev = NULL;
7be2c7c9
DB
786 dev_set_drvdata(dev, NULL);
787}
788
789#ifdef CONFIG_PM
790
2fb08e6c 791static int cmos_suspend(struct device *dev)
7be2c7c9
DB
792{
793 struct cmos_rtc *cmos = dev_get_drvdata(dev);
bcd9b89c 794 unsigned char tmp;
7be2c7c9
DB
795
796 /* only the alarm might be a wakeup event source */
797 spin_lock_irq(&rtc_lock);
798 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
799 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
35d3fdd5 800 unsigned char mask;
bcd9b89c 801
74c4633d 802 if (device_may_wakeup(dev))
35d3fdd5 803 mask = RTC_IRQMASK & ~RTC_AIE;
7be2c7c9 804 else
35d3fdd5
DB
805 mask = RTC_IRQMASK;
806 tmp &= ~mask;
7be2c7c9 807 CMOS_WRITE(tmp, RTC_CONTROL);
35d3fdd5 808
d1b2efa8
ML
809 /* shut down hpet emulation - we don't need it for alarm */
810 hpet_mask_rtc_irq_bit(RTC_PIE|RTC_AIE|RTC_UIE);
7e2a31da 811 cmos_checkintr(cmos, tmp);
bcd9b89c 812 }
7be2c7c9
DB
813 spin_unlock_irq(&rtc_lock);
814
87ac84f4
DB
815 if (tmp & RTC_AIE) {
816 cmos->enabled_wake = 1;
817 if (cmos->wake_on)
818 cmos->wake_on(dev);
819 else
820 enable_irq_wake(cmos->irq);
821 }
7be2c7c9
DB
822
823 pr_debug("%s: suspend%s, ctrl %02x\n",
d4afc76c 824 dev_name(&cmos_rtc.rtc->dev),
7be2c7c9
DB
825 (tmp & RTC_AIE) ? ", alarm may wake" : "",
826 tmp);
827
828 return 0;
829}
830
74c4633d
RW
831/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
832 * after a detour through G3 "mechanical off", although the ACPI spec
833 * says wakeup should only work from G1/S4 "hibernate". To most users,
834 * distinctions between S4 and S5 are pointless. So when the hardware
835 * allows, don't draw that distinction.
836 */
837static inline int cmos_poweroff(struct device *dev)
838{
2fb08e6c 839 return cmos_suspend(dev);
74c4633d
RW
840}
841
7be2c7c9
DB
842static int cmos_resume(struct device *dev)
843{
844 struct cmos_rtc *cmos = dev_get_drvdata(dev);
845 unsigned char tmp = cmos->suspend_ctrl;
846
7be2c7c9 847 /* re-enable any irqs previously active */
35d3fdd5
DB
848 if (tmp & RTC_IRQMASK) {
849 unsigned char mask;
7be2c7c9 850
87ac84f4
DB
851 if (cmos->enabled_wake) {
852 if (cmos->wake_off)
853 cmos->wake_off(dev);
854 else
855 disable_irq_wake(cmos->irq);
856 cmos->enabled_wake = 0;
857 }
7be2c7c9
DB
858
859 spin_lock_irq(&rtc_lock);
35d3fdd5
DB
860 do {
861 CMOS_WRITE(tmp, RTC_CONTROL);
862 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
863
864 mask = CMOS_READ(RTC_INTR_FLAGS);
865 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
7e2a31da 866 if (!is_hpet_enabled() || !is_intr(mask))
35d3fdd5
DB
867 break;
868
869 /* force one-shot behavior if HPET blocked
870 * the wake alarm's irq
871 */
872 rtc_update_irq(cmos->rtc, 1, mask);
873 tmp &= ~RTC_AIE;
874 hpet_mask_rtc_irq_bit(RTC_AIE);
875 } while (mask & RTC_AIE);
bcd9b89c 876 spin_unlock_irq(&rtc_lock);
7be2c7c9
DB
877 }
878
879 pr_debug("%s: resume, ctrl %02x\n",
d4afc76c 880 dev_name(&cmos_rtc.rtc->dev),
35d3fdd5 881 tmp);
7be2c7c9
DB
882
883 return 0;
884}
885
2fb08e6c
PF
886static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
887
7be2c7c9 888#else
74c4633d
RW
889
890static inline int cmos_poweroff(struct device *dev)
891{
892 return -ENOSYS;
893}
894
7be2c7c9
DB
895#endif
896
897/*----------------------------------------------------------------*/
898
e07e232c
DB
899/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
900 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
901 * probably list them in similar PNPBIOS tables; so PNP is more common.
902 *
903 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
904 * predate even PNPBIOS should set up platform_bus devices.
7be2c7c9
DB
905 */
906
a474aaed
BH
907#ifdef CONFIG_ACPI
908
909#include <linux/acpi.h>
910
a474aaed
BH
911static u32 rtc_handler(void *context)
912{
913 acpi_clear_event(ACPI_EVENT_RTC);
914 acpi_disable_event(ACPI_EVENT_RTC, 0);
915 return ACPI_INTERRUPT_HANDLED;
916}
917
918static inline void rtc_wake_setup(void)
919{
920 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
921 /*
922 * After the RTC handler is installed, the Fixed_RTC event should
923 * be disabled. Only when the RTC alarm is set will it be enabled.
924 */
925 acpi_clear_event(ACPI_EVENT_RTC);
926 acpi_disable_event(ACPI_EVENT_RTC, 0);
927}
928
929static void rtc_wake_on(struct device *dev)
930{
931 acpi_clear_event(ACPI_EVENT_RTC);
932 acpi_enable_event(ACPI_EVENT_RTC, 0);
933}
934
935static void rtc_wake_off(struct device *dev)
936{
937 acpi_disable_event(ACPI_EVENT_RTC, 0);
938}
a474aaed
BH
939
940/* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
941 * its device node and pass extra config data. This helps its driver use
942 * capabilities that the now-obsolete mc146818 didn't have, and informs it
943 * that this board's RTC is wakeup-capable (per ACPI spec).
944 */
945static struct cmos_rtc_board_info acpi_rtc_info;
946
947static void __devinit
948cmos_wake_setup(struct device *dev)
949{
950 if (acpi_disabled)
951 return;
952
953 rtc_wake_setup();
954 acpi_rtc_info.wake_on = rtc_wake_on;
955 acpi_rtc_info.wake_off = rtc_wake_off;
956
957 /* workaround bug in some ACPI tables */
958 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
959 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
960 acpi_gbl_FADT.month_alarm);
961 acpi_gbl_FADT.month_alarm = 0;
962 }
963
964 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
965 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
966 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
967
968 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
969 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
970 dev_info(dev, "RTC can wake from S4\n");
971
972 dev->platform_data = &acpi_rtc_info;
973
974 /* RTC always wakes from S1/S2/S3, and often S4/STD */
975 device_init_wakeup(dev, 1);
976}
977
978#else
979
980static void __devinit
981cmos_wake_setup(struct device *dev)
982{
983}
984
985#endif
986
41ac8df9 987#ifdef CONFIG_PNP
7be2c7c9
DB
988
989#include <linux/pnp.h>
990
991static int __devinit
992cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
993{
a474aaed
BH
994 cmos_wake_setup(&pnp->dev);
995
6cd8fa87
MG
996 if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
997 /* Some machines contain a PNP entry for the RTC, but
998 * don't define the IRQ. It should always be safe to
999 * hardcode it in these cases
1000 */
8766ad0c
BH
1001 return cmos_do_probe(&pnp->dev,
1002 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
6cd8fa87
MG
1003 else
1004 return cmos_do_probe(&pnp->dev,
8766ad0c
BH
1005 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1006 pnp_irq(pnp, 0));
7be2c7c9
DB
1007}
1008
1009static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1010{
1011 cmos_do_remove(&pnp->dev);
1012}
1013
1014#ifdef CONFIG_PM
1015
1016static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
1017{
2fb08e6c 1018 return cmos_suspend(&pnp->dev);
7be2c7c9
DB
1019}
1020
1021static int cmos_pnp_resume(struct pnp_dev *pnp)
1022{
1023 return cmos_resume(&pnp->dev);
1024}
1025
1026#else
1027#define cmos_pnp_suspend NULL
1028#define cmos_pnp_resume NULL
1029#endif
1030
004731b2 1031static void cmos_pnp_shutdown(struct pnp_dev *pnp)
74c4633d 1032{
004731b2 1033 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
74c4633d
RW
1034 return;
1035
1036 cmos_do_shutdown();
1037}
7be2c7c9
DB
1038
1039static const struct pnp_device_id rtc_ids[] = {
1040 { .id = "PNP0b00", },
1041 { .id = "PNP0b01", },
1042 { .id = "PNP0b02", },
1043 { },
1044};
1045MODULE_DEVICE_TABLE(pnp, rtc_ids);
1046
1047static struct pnp_driver cmos_pnp_driver = {
1048 .name = (char *) driver_name,
1049 .id_table = rtc_ids,
1050 .probe = cmos_pnp_probe,
1051 .remove = __exit_p(cmos_pnp_remove),
004731b2 1052 .shutdown = cmos_pnp_shutdown,
7be2c7c9
DB
1053
1054 /* flag ensures resume() gets called, and stops syslog spam */
1055 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1056 .suspend = cmos_pnp_suspend,
1057 .resume = cmos_pnp_resume,
1058};
1059
1da2e3d6 1060#endif /* CONFIG_PNP */
7be2c7c9 1061
3bcbaf6e
SAS
1062#ifdef CONFIG_OF
1063static const struct of_device_id of_cmos_match[] = {
1064 {
1065 .compatible = "motorola,mc146818",
1066 },
1067 { },
1068};
1069MODULE_DEVICE_TABLE(of, of_cmos_match);
1070
1071static __init void cmos_of_init(struct platform_device *pdev)
1072{
1073 struct device_node *node = pdev->dev.of_node;
1074 struct rtc_time time;
1075 int ret;
1076 const __be32 *val;
1077
1078 if (!node)
1079 return;
1080
1081 val = of_get_property(node, "ctrl-reg", NULL);
1082 if (val)
1083 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1084
1085 val = of_get_property(node, "freq-reg", NULL);
1086 if (val)
1087 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1088
1089 get_rtc_time(&time);
1090 ret = rtc_valid_tm(&time);
1091 if (ret) {
1092 struct rtc_time def_time = {
1093 .tm_year = 1,
1094 .tm_mday = 1,
1095 };
1096 set_rtc_time(&def_time);
1097 }
1098}
1099#else
1100static inline void cmos_of_init(struct platform_device *pdev) {}
1101#define of_cmos_match NULL
1102#endif
7be2c7c9
DB
1103/*----------------------------------------------------------------*/
1104
41ac8df9 1105/* Platform setup should have set up an RTC device, when PNP is
bcd9b89c 1106 * unavailable ... this could happen even on (older) PCs.
7be2c7c9
DB
1107 */
1108
1109static int __init cmos_platform_probe(struct platform_device *pdev)
1110{
3bcbaf6e 1111 cmos_of_init(pdev);
a474aaed 1112 cmos_wake_setup(&pdev->dev);
7be2c7c9
DB
1113 return cmos_do_probe(&pdev->dev,
1114 platform_get_resource(pdev, IORESOURCE_IO, 0),
1115 platform_get_irq(pdev, 0));
1116}
1117
1118static int __exit cmos_platform_remove(struct platform_device *pdev)
1119{
1120 cmos_do_remove(&pdev->dev);
1121 return 0;
1122}
1123
1124static void cmos_platform_shutdown(struct platform_device *pdev)
1125{
74c4633d
RW
1126 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1127 return;
1128
7be2c7c9
DB
1129 cmos_do_shutdown();
1130}
1131
ad28a07b
KS
1132/* work with hotplug and coldplug */
1133MODULE_ALIAS("platform:rtc_cmos");
1134
7be2c7c9
DB
1135static struct platform_driver cmos_platform_driver = {
1136 .remove = __exit_p(cmos_platform_remove),
1137 .shutdown = cmos_platform_shutdown,
1138 .driver = {
1139 .name = (char *) driver_name,
2fb08e6c
PF
1140#ifdef CONFIG_PM
1141 .pm = &cmos_pm_ops,
1142#endif
3bcbaf6e 1143 .of_match_table = of_cmos_match,
7be2c7c9
DB
1144 }
1145};
1146
65909814
TLSC
1147#ifdef CONFIG_PNP
1148static bool pnp_driver_registered;
1149#endif
1150static bool platform_driver_registered;
1151
7be2c7c9
DB
1152static int __init cmos_init(void)
1153{
72f22b1e
BH
1154 int retval = 0;
1155
1da2e3d6 1156#ifdef CONFIG_PNP
65909814
TLSC
1157 retval = pnp_register_driver(&cmos_pnp_driver);
1158 if (retval == 0)
1159 pnp_driver_registered = true;
72f22b1e
BH
1160#endif
1161
65909814 1162 if (!cmos_rtc.dev) {
72f22b1e
BH
1163 retval = platform_driver_probe(&cmos_platform_driver,
1164 cmos_platform_probe);
65909814
TLSC
1165 if (retval == 0)
1166 platform_driver_registered = true;
1167 }
72f22b1e
BH
1168
1169 if (retval == 0)
1170 return 0;
1171
1172#ifdef CONFIG_PNP
65909814
TLSC
1173 if (pnp_driver_registered)
1174 pnp_unregister_driver(&cmos_pnp_driver);
72f22b1e
BH
1175#endif
1176 return retval;
7be2c7c9
DB
1177}
1178module_init(cmos_init);
1179
1180static void __exit cmos_exit(void)
1181{
1da2e3d6 1182#ifdef CONFIG_PNP
65909814
TLSC
1183 if (pnp_driver_registered)
1184 pnp_unregister_driver(&cmos_pnp_driver);
72f22b1e 1185#endif
65909814
TLSC
1186 if (platform_driver_registered)
1187 platform_driver_unregister(&cmos_platform_driver);
7be2c7c9
DB
1188}
1189module_exit(cmos_exit);
1190
1191
7be2c7c9
DB
1192MODULE_AUTHOR("David Brownell");
1193MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1194MODULE_LICENSE("GPL");