]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/scsi/aacraid/commsup.c
[SCSI] aacraid: fib size math fix
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / aacraid / commsup.c
CommitLineData
1da177e4
LT
1/*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 * Module Name:
25 * commsup.c
26 *
27 * Abstract: Contain all routines that are required for FSA host/adapter
7c00ffa3 28 * communication.
1da177e4
LT
29 *
30 */
31
32#include <linux/kernel.h>
33#include <linux/init.h>
34#include <linux/types.h>
35#include <linux/sched.h>
36#include <linux/pci.h>
37#include <linux/spinlock.h>
38#include <linux/slab.h>
39#include <linux/completion.h>
40#include <linux/blkdev.h>
7c00ffa3 41#include <scsi/scsi_host.h>
131256cf 42#include <scsi/scsi_device.h>
1da177e4 43#include <asm/semaphore.h>
9203344c 44#include <asm/delay.h>
1da177e4
LT
45
46#include "aacraid.h"
47
48/**
49 * fib_map_alloc - allocate the fib objects
50 * @dev: Adapter to allocate for
51 *
52 * Allocate and map the shared PCI space for the FIB blocks used to
53 * talk to the Adaptec firmware.
54 */
55
56static int fib_map_alloc(struct aac_dev *dev)
57{
7c00ffa3
MH
58 dprintk((KERN_INFO
59 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
60 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
61 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
62 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
63 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
64 &dev->hw_fib_pa))==NULL)
1da177e4
LT
65 return -ENOMEM;
66 return 0;
67}
68
69/**
70 * fib_map_free - free the fib objects
71 * @dev: Adapter to free
72 *
73 * Free the PCI mappings and the memory allocated for FIB blocks
74 * on this adapter.
75 */
76
77void fib_map_free(struct aac_dev *dev)
78{
7c00ffa3 79 pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
1da177e4
LT
80}
81
82/**
83 * fib_setup - setup the fibs
84 * @dev: Adapter to set up
85 *
86 * Allocate the PCI space for the fibs, map it and then intialise the
87 * fib area, the unmapped fib data and also the free list
88 */
89
90int fib_setup(struct aac_dev * dev)
91{
92 struct fib *fibptr;
93 struct hw_fib *hw_fib_va;
94 dma_addr_t hw_fib_pa;
95 int i;
7c00ffa3
MH
96
97 while (((i = fib_map_alloc(dev)) == -ENOMEM)
98 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
99 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
100 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
101 }
102 if (i<0)
1da177e4
LT
103 return -ENOMEM;
104
105 hw_fib_va = dev->hw_fib_va;
106 hw_fib_pa = dev->hw_fib_pa;
7c00ffa3 107 memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
1da177e4
LT
108 /*
109 * Initialise the fibs
110 */
7c00ffa3 111 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
1da177e4
LT
112 {
113 fibptr->dev = dev;
114 fibptr->hw_fib = hw_fib_va;
115 fibptr->data = (void *) fibptr->hw_fib->data;
116 fibptr->next = fibptr+1; /* Forward chain the fibs */
117 init_MUTEX_LOCKED(&fibptr->event_wait);
118 spin_lock_init(&fibptr->event_lock);
56b58712 119 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
7c00ffa3 120 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
1da177e4 121 fibptr->hw_fib_pa = hw_fib_pa;
7c00ffa3
MH
122 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
123 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
1da177e4
LT
124 }
125 /*
126 * Add the fib chain to the free list
127 */
7c00ffa3 128 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
1da177e4
LT
129 /*
130 * Enable this to debug out of queue space
131 */
132 dev->free_fib = &dev->fibs[0];
133 return 0;
134}
135
136/**
137 * fib_alloc - allocate a fib
138 * @dev: Adapter to allocate the fib for
139 *
140 * Allocate a fib from the adapter fib pool. If the pool is empty we
7c00ffa3 141 * return NULL.
1da177e4
LT
142 */
143
144struct fib * fib_alloc(struct aac_dev *dev)
145{
146 struct fib * fibptr;
147 unsigned long flags;
148 spin_lock_irqsave(&dev->fib_lock, flags);
149 fibptr = dev->free_fib;
7c00ffa3
MH
150 if(!fibptr){
151 spin_unlock_irqrestore(&dev->fib_lock, flags);
152 return fibptr;
153 }
1da177e4
LT
154 dev->free_fib = fibptr->next;
155 spin_unlock_irqrestore(&dev->fib_lock, flags);
156 /*
157 * Set the proper node type code and node byte size
158 */
159 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
160 fibptr->size = sizeof(struct fib);
161 /*
162 * Null out fields that depend on being zero at the start of
163 * each I/O
164 */
165 fibptr->hw_fib->header.XferState = 0;
166 fibptr->callback = NULL;
167 fibptr->callback_data = NULL;
168
169 return fibptr;
170}
171
172/**
173 * fib_free - free a fib
174 * @fibptr: fib to free up
175 *
176 * Frees up a fib and places it on the appropriate queue
177 * (either free or timed out)
178 */
179
180void fib_free(struct fib * fibptr)
181{
182 unsigned long flags;
183
184 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
185 if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
186 aac_config.fib_timeouts++;
187 fibptr->next = fibptr->dev->timeout_fib;
188 fibptr->dev->timeout_fib = fibptr;
189 } else {
190 if (fibptr->hw_fib->header.XferState != 0) {
191 printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
192 (void*)fibptr,
193 le32_to_cpu(fibptr->hw_fib->header.XferState));
194 }
195 fibptr->next = fibptr->dev->free_fib;
196 fibptr->dev->free_fib = fibptr;
197 }
198 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
199}
200
201/**
202 * fib_init - initialise a fib
203 * @fibptr: The fib to initialize
204 *
205 * Set up the generic fib fields ready for use
206 */
207
208void fib_init(struct fib *fibptr)
209{
210 struct hw_fib *hw_fib = fibptr->hw_fib;
211
212 hw_fib->header.StructType = FIB_MAGIC;
7c00ffa3
MH
213 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
214 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
1da177e4
LT
215 hw_fib->header.SenderFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
216 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
7c00ffa3 217 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
1da177e4
LT
218}
219
220/**
221 * fib_deallocate - deallocate a fib
222 * @fibptr: fib to deallocate
223 *
224 * Will deallocate and return to the free pool the FIB pointed to by the
225 * caller.
226 */
227
4833869e 228static void fib_dealloc(struct fib * fibptr)
1da177e4
LT
229{
230 struct hw_fib *hw_fib = fibptr->hw_fib;
231 if(hw_fib->header.StructType != FIB_MAGIC)
232 BUG();
233 hw_fib->header.XferState = 0;
234}
235
236/*
237 * Commuication primitives define and support the queuing method we use to
238 * support host to adapter commuication. All queue accesses happen through
239 * these routines and are the only routines which have a knowledge of the
240 * how these queues are implemented.
241 */
242
243/**
244 * aac_get_entry - get a queue entry
245 * @dev: Adapter
246 * @qid: Queue Number
247 * @entry: Entry return
248 * @index: Index return
249 * @nonotify: notification control
250 *
251 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
252 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
253 * returned.
254 */
255
256static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
257{
258 struct aac_queue * q;
bed30de4 259 unsigned long idx;
1da177e4
LT
260
261 /*
262 * All of the queues wrap when they reach the end, so we check
263 * to see if they have reached the end and if they have we just
264 * set the index back to zero. This is a wrap. You could or off
265 * the high bits in all updates but this is a bit faster I think.
266 */
267
268 q = &dev->queues->queue[qid];
bed30de4
MH
269
270 idx = *index = le32_to_cpu(*(q->headers.producer));
271 /* Interrupt Moderation, only interrupt for first two entries */
272 if (idx != le32_to_cpu(*(q->headers.consumer))) {
273 if (--idx == 0) {
274 if (qid == AdapHighCmdQueue)
275 idx = ADAP_HIGH_CMD_ENTRIES;
276 else if (qid == AdapNormCmdQueue)
277 idx = ADAP_NORM_CMD_ENTRIES;
278 else if (qid == AdapHighRespQueue)
279 idx = ADAP_HIGH_RESP_ENTRIES;
280 else if (qid == AdapNormRespQueue)
281 idx = ADAP_NORM_RESP_ENTRIES;
282 }
283 if (idx != le32_to_cpu(*(q->headers.consumer)))
1da177e4 284 *nonotify = 1;
bed30de4 285 }
1da177e4
LT
286
287 if (qid == AdapHighCmdQueue) {
288 if (*index >= ADAP_HIGH_CMD_ENTRIES)
289 *index = 0;
290 } else if (qid == AdapNormCmdQueue) {
291 if (*index >= ADAP_NORM_CMD_ENTRIES)
292 *index = 0; /* Wrap to front of the Producer Queue. */
293 }
294 else if (qid == AdapHighRespQueue)
295 {
296 if (*index >= ADAP_HIGH_RESP_ENTRIES)
297 *index = 0;
298 }
299 else if (qid == AdapNormRespQueue)
300 {
301 if (*index >= ADAP_NORM_RESP_ENTRIES)
302 *index = 0; /* Wrap to front of the Producer Queue. */
303 }
304 else {
305 printk("aacraid: invalid qid\n");
306 BUG();
307 }
308
309 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
7c00ffa3 310 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
1da177e4
LT
311 qid, q->numpending);
312 return 0;
313 } else {
314 *entry = q->base + *index;
315 return 1;
316 }
317}
318
319/**
320 * aac_queue_get - get the next free QE
321 * @dev: Adapter
322 * @index: Returned index
323 * @priority: Priority of fib
324 * @fib: Fib to associate with the queue entry
325 * @wait: Wait if queue full
326 * @fibptr: Driver fib object to go with fib
327 * @nonotify: Don't notify the adapter
328 *
329 * Gets the next free QE off the requested priorty adapter command
330 * queue and associates the Fib with the QE. The QE represented by
331 * index is ready to insert on the queue when this routine returns
332 * success.
333 */
334
335static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
336{
337 struct aac_entry * entry = NULL;
338 int map = 0;
339 struct aac_queue * q = &dev->queues->queue[qid];
340
341 spin_lock_irqsave(q->lock, q->SavedIrql);
342
343 if (qid == AdapHighCmdQueue || qid == AdapNormCmdQueue)
344 {
345 /* if no entries wait for some if caller wants to */
346 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
347 {
348 printk(KERN_ERR "GetEntries failed\n");
349 }
350 /*
351 * Setup queue entry with a command, status and fib mapped
352 */
353 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
354 map = 1;
355 }
356 else if (qid == AdapHighRespQueue || qid == AdapNormRespQueue)
357 {
358 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
359 {
360 /* if no entries wait for some if caller wants to */
361 }
362 /*
363 * Setup queue entry with command, status and fib mapped
364 */
365 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
366 entry->addr = hw_fib->header.SenderFibAddress;
367 /* Restore adapters pointer to the FIB */
368 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
369 map = 0;
370 }
371 /*
372 * If MapFib is true than we need to map the Fib and put pointers
373 * in the queue entry.
374 */
375 if (map)
376 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
377 return 0;
378}
379
380
381/**
382 * aac_insert_entry - insert a queue entry
383 * @dev: Adapter
384 * @index: Index of entry to insert
385 * @qid: Queue number
386 * @nonotify: Suppress adapter notification
387 *
388 * Gets the next free QE off the requested priorty adapter command
389 * queue and associates the Fib with the QE. The QE represented by
390 * index is ready to insert on the queue when this routine returns
391 * success.
392 */
393
394static int aac_insert_entry(struct aac_dev * dev, u32 index, u32 qid, unsigned long nonotify)
395{
396 struct aac_queue * q = &dev->queues->queue[qid];
397
398 if(q == NULL)
399 BUG();
400 *(q->headers.producer) = cpu_to_le32(index + 1);
401 spin_unlock_irqrestore(q->lock, q->SavedIrql);
402
403 if (qid == AdapHighCmdQueue ||
404 qid == AdapNormCmdQueue ||
405 qid == AdapHighRespQueue ||
406 qid == AdapNormRespQueue)
407 {
408 if (!nonotify)
409 aac_adapter_notify(dev, qid);
410 }
411 else
412 printk("Suprise insert!\n");
413 return 0;
414}
415
416/*
417 * Define the highest level of host to adapter communication routines.
418 * These routines will support host to adapter FS commuication. These
419 * routines have no knowledge of the commuication method used. This level
420 * sends and receives FIBs. This level has no knowledge of how these FIBs
421 * get passed back and forth.
422 */
423
424/**
425 * fib_send - send a fib to the adapter
426 * @command: Command to send
427 * @fibptr: The fib
428 * @size: Size of fib data area
429 * @priority: Priority of Fib
430 * @wait: Async/sync select
431 * @reply: True if a reply is wanted
432 * @callback: Called with reply
433 * @callback_data: Passed to callback
434 *
435 * Sends the requested FIB to the adapter and optionally will wait for a
436 * response FIB. If the caller does not wish to wait for a response than
437 * an event to wait on must be supplied. This event will be set when a
438 * response FIB is received from the adapter.
439 */
440
441int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority, int wait, int reply, fib_callback callback, void * callback_data)
442{
443 u32 index;
444 u32 qid;
445 struct aac_dev * dev = fibptr->dev;
446 unsigned long nointr = 0;
447 struct hw_fib * hw_fib = fibptr->hw_fib;
448 struct aac_queue * q;
449 unsigned long flags = 0;
450 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
451 return -EBUSY;
452 /*
453 * There are 5 cases with the wait and reponse requested flags.
454 * The only invalid cases are if the caller requests to wait and
455 * does not request a response and if the caller does not want a
456 * response and the Fib is not allocated from pool. If a response
457 * is not requesed the Fib will just be deallocaed by the DPC
458 * routine when the response comes back from the adapter. No
459 * further processing will be done besides deleting the Fib. We
460 * will have a debug mode where the adapter can notify the host
461 * it had a problem and the host can log that fact.
462 */
463 if (wait && !reply) {
464 return -EINVAL;
465 } else if (!wait && reply) {
466 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
467 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
468 } else if (!wait && !reply) {
469 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
470 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
471 } else if (wait && reply) {
472 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
473 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
474 }
475 /*
476 * Map the fib into 32bits by using the fib number
477 */
478
479 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr-dev->fibs)) << 1);
480 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
481 /*
482 * Set FIB state to indicate where it came from and if we want a
483 * response from the adapter. Also load the command from the
484 * caller.
485 *
486 * Map the hw fib pointer as a 32bit value
487 */
488 hw_fib->header.Command = cpu_to_le16(command);
489 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
490 fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/
491 /*
492 * Set the size of the Fib we want to send to the adapter
493 */
494 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
495 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
496 return -EMSGSIZE;
497 }
498 /*
499 * Get a queue entry connect the FIB to it and send an notify
500 * the adapter a command is ready.
501 */
502 if (priority == FsaHigh) {
503 hw_fib->header.XferState |= cpu_to_le32(HighPriority);
504 qid = AdapHighCmdQueue;
505 } else {
506 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
507 qid = AdapNormCmdQueue;
508 }
509 q = &dev->queues->queue[qid];
510
511 if(wait)
512 spin_lock_irqsave(&fibptr->event_lock, flags);
513 if(aac_queue_get( dev, &index, qid, hw_fib, 1, fibptr, &nointr)<0)
514 return -EWOULDBLOCK;
515 dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
516 dprintk((KERN_DEBUG "Fib contents:.\n"));
517 dprintk((KERN_DEBUG " Command = %d.\n", hw_fib->header.Command));
518 dprintk((KERN_DEBUG " XferState = %x.\n", hw_fib->header.XferState));
519 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
520 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
521 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
522 /*
523 * Fill in the Callback and CallbackContext if we are not
524 * going to wait.
525 */
526 if (!wait) {
527 fibptr->callback = callback;
528 fibptr->callback_data = callback_data;
529 }
530 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
531 list_add_tail(&fibptr->queue, &q->pendingq);
532 q->numpending++;
533
534 fibptr->done = 0;
535 fibptr->flags = 0;
536
537 if(aac_insert_entry(dev, index, qid, (nointr & aac_config.irq_mod)) < 0)
538 return -EWOULDBLOCK;
539 /*
540 * If the caller wanted us to wait for response wait now.
541 */
542
543 if (wait) {
544 spin_unlock_irqrestore(&fibptr->event_lock, flags);
9203344c
MH
545 /* Only set for first known interruptable command */
546 if (wait < 0) {
547 /*
548 * *VERY* Dangerous to time out a command, the
549 * assumption is made that we have no hope of
550 * functioning because an interrupt routing or other
551 * hardware failure has occurred.
552 */
553 unsigned long count = 36000000L; /* 3 minutes */
554 unsigned long qflags;
555 while (down_trylock(&fibptr->event_wait)) {
556 if (--count == 0) {
557 spin_lock_irqsave(q->lock, qflags);
558 q->numpending--;
559 list_del(&fibptr->queue);
560 spin_unlock_irqrestore(q->lock, qflags);
561 if (wait == -1) {
562 printk(KERN_ERR "aacraid: fib_send: first asynchronous command timed out.\n"
563 "Usually a result of a PCI interrupt routing problem;\n"
564 "update mother board BIOS or consider utilizing one of\n"
565 "the SAFE mode kernel options (acpi, apic etc)\n");
566 }
567 return -ETIMEDOUT;
568 }
569 udelay(5);
570 }
571 } else
572 down(&fibptr->event_wait);
1da177e4
LT
573 if(fibptr->done == 0)
574 BUG();
575
576 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
577 return -ETIMEDOUT;
578 } else {
579 return 0;
580 }
581 }
582 /*
583 * If the user does not want a response than return success otherwise
584 * return pending
585 */
586 if (reply)
587 return -EINPROGRESS;
588 else
589 return 0;
590}
591
592/**
593 * aac_consumer_get - get the top of the queue
594 * @dev: Adapter
595 * @q: Queue
596 * @entry: Return entry
597 *
598 * Will return a pointer to the entry on the top of the queue requested that
599 * we are a consumer of, and return the address of the queue entry. It does
600 * not change the state of the queue.
601 */
602
603int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
604{
605 u32 index;
606 int status;
607 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
608 status = 0;
609 } else {
610 /*
611 * The consumer index must be wrapped if we have reached
612 * the end of the queue, else we just use the entry
613 * pointed to by the header index
614 */
615 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
616 index = 0;
617 else
618 index = le32_to_cpu(*q->headers.consumer);
619 *entry = q->base + index;
620 status = 1;
621 }
622 return(status);
623}
624
625/**
626 * aac_consumer_free - free consumer entry
627 * @dev: Adapter
628 * @q: Queue
629 * @qid: Queue ident
630 *
631 * Frees up the current top of the queue we are a consumer of. If the
632 * queue was full notify the producer that the queue is no longer full.
633 */
634
635void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
636{
637 int wasfull = 0;
638 u32 notify;
639
640 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
641 wasfull = 1;
642
643 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
644 *q->headers.consumer = cpu_to_le32(1);
645 else
646 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
647
648 if (wasfull) {
649 switch (qid) {
650
651 case HostNormCmdQueue:
652 notify = HostNormCmdNotFull;
653 break;
654 case HostHighCmdQueue:
655 notify = HostHighCmdNotFull;
656 break;
657 case HostNormRespQueue:
658 notify = HostNormRespNotFull;
659 break;
660 case HostHighRespQueue:
661 notify = HostHighRespNotFull;
662 break;
663 default:
664 BUG();
665 return;
666 }
667 aac_adapter_notify(dev, notify);
668 }
669}
670
671/**
672 * fib_adapter_complete - complete adapter issued fib
673 * @fibptr: fib to complete
674 * @size: size of fib
675 *
676 * Will do all necessary work to complete a FIB that was sent from
677 * the adapter.
678 */
679
680int fib_adapter_complete(struct fib * fibptr, unsigned short size)
681{
682 struct hw_fib * hw_fib = fibptr->hw_fib;
683 struct aac_dev * dev = fibptr->dev;
684 unsigned long nointr = 0;
685 if (hw_fib->header.XferState == 0)
686 return 0;
687 /*
688 * If we plan to do anything check the structure type first.
689 */
690 if ( hw_fib->header.StructType != FIB_MAGIC ) {
691 return -EINVAL;
692 }
693 /*
694 * This block handles the case where the adapter had sent us a
695 * command and we have finished processing the command. We
696 * call completeFib when we are done processing the command
697 * and want to send a response back to the adapter. This will
698 * send the completed cdb to the adapter.
699 */
700 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
701 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
702 if (hw_fib->header.XferState & cpu_to_le32(HighPriority)) {
703 u32 index;
704 if (size)
705 {
706 size += sizeof(struct aac_fibhdr);
707 if (size > le16_to_cpu(hw_fib->header.SenderSize))
708 return -EMSGSIZE;
709 hw_fib->header.Size = cpu_to_le16(size);
710 }
711 if(aac_queue_get(dev, &index, AdapHighRespQueue, hw_fib, 1, NULL, &nointr) < 0) {
712 return -EWOULDBLOCK;
713 }
714 if (aac_insert_entry(dev, index, AdapHighRespQueue, (nointr & (int)aac_config.irq_mod)) != 0) {
715 }
56b58712
MH
716 } else if (hw_fib->header.XferState &
717 cpu_to_le32(NormalPriority)) {
1da177e4
LT
718 u32 index;
719
720 if (size) {
721 size += sizeof(struct aac_fibhdr);
722 if (size > le16_to_cpu(hw_fib->header.SenderSize))
723 return -EMSGSIZE;
724 hw_fib->header.Size = cpu_to_le16(size);
725 }
726 if (aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr) < 0)
727 return -EWOULDBLOCK;
728 if (aac_insert_entry(dev, index, AdapNormRespQueue, (nointr & (int)aac_config.irq_mod)) != 0)
729 {
730 }
731 }
732 }
733 else
734 {
735 printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n");
736 BUG();
737 }
738 return 0;
739}
740
741/**
742 * fib_complete - fib completion handler
743 * @fib: FIB to complete
744 *
745 * Will do all necessary work to complete a FIB.
746 */
747
748int fib_complete(struct fib * fibptr)
749{
750 struct hw_fib * hw_fib = fibptr->hw_fib;
751
752 /*
753 * Check for a fib which has already been completed
754 */
755
756 if (hw_fib->header.XferState == 0)
757 return 0;
758 /*
759 * If we plan to do anything check the structure type first.
760 */
761
762 if (hw_fib->header.StructType != FIB_MAGIC)
763 return -EINVAL;
764 /*
765 * This block completes a cdb which orginated on the host and we
766 * just need to deallocate the cdb or reinit it. At this point the
767 * command is complete that we had sent to the adapter and this
768 * cdb could be reused.
769 */
770 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
771 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
772 {
773 fib_dealloc(fibptr);
774 }
775 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
776 {
777 /*
778 * This handles the case when the host has aborted the I/O
779 * to the adapter because the adapter is not responding
780 */
781 fib_dealloc(fibptr);
782 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
783 fib_dealloc(fibptr);
784 } else {
785 BUG();
786 }
787 return 0;
788}
789
790/**
791 * aac_printf - handle printf from firmware
792 * @dev: Adapter
793 * @val: Message info
794 *
795 * Print a message passed to us by the controller firmware on the
796 * Adaptec board
797 */
798
799void aac_printf(struct aac_dev *dev, u32 val)
800{
1da177e4 801 char *cp = dev->printfbuf;
7c00ffa3
MH
802 if (dev->printf_enabled)
803 {
804 int length = val & 0xffff;
805 int level = (val >> 16) & 0xffff;
806
807 /*
808 * The size of the printfbuf is set in port.c
809 * There is no variable or define for it
810 */
811 if (length > 255)
812 length = 255;
813 if (cp[length] != 0)
814 cp[length] = 0;
815 if (level == LOG_AAC_HIGH_ERROR)
816 printk(KERN_WARNING "aacraid:%s", cp);
817 else
818 printk(KERN_INFO "aacraid:%s", cp);
819 }
1da177e4
LT
820 memset(cp, 0, 256);
821}
822
131256cf
MH
823
824/**
825 * aac_handle_aif - Handle a message from the firmware
826 * @dev: Which adapter this fib is from
827 * @fibptr: Pointer to fibptr from adapter
828 *
829 * This routine handles a driver notify fib from the adapter and
830 * dispatches it to the appropriate routine for handling.
831 */
832
833static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
834{
835 struct hw_fib * hw_fib = fibptr->hw_fib;
836 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
837 int busy;
838 u32 container;
839 struct scsi_device *device;
840 enum {
841 NOTHING,
842 DELETE,
843 ADD,
844 CHANGE
845 } device_config_needed;
846
847 /* Sniff for container changes */
848
849 if (!dev)
850 return;
851 container = (u32)-1;
852
853 /*
854 * We have set this up to try and minimize the number of
855 * re-configures that take place. As a result of this when
856 * certain AIF's come in we will set a flag waiting for another
857 * type of AIF before setting the re-config flag.
858 */
859 switch (le32_to_cpu(aifcmd->command)) {
860 case AifCmdDriverNotify:
861 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
862 /*
863 * Morph or Expand complete
864 */
865 case AifDenMorphComplete:
866 case AifDenVolumeExtendComplete:
867 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
868 if (container >= dev->maximum_num_containers)
869 break;
870
871 /*
872 * Find the Scsi_Device associated with the SCSI
873 * address. Make sure we have the right array, and if
874 * so set the flag to initiate a new re-config once we
875 * see an AifEnConfigChange AIF come through.
876 */
877
878 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
879 device = scsi_device_lookup(dev->scsi_host_ptr,
880 CONTAINER_TO_CHANNEL(container),
881 CONTAINER_TO_ID(container),
882 CONTAINER_TO_LUN(container));
883 if (device) {
884 dev->fsa_dev[container].config_needed = CHANGE;
885 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
886 scsi_device_put(device);
887 }
888 }
889 }
890
891 /*
892 * If we are waiting on something and this happens to be
893 * that thing then set the re-configure flag.
894 */
895 if (container != (u32)-1) {
896 if (container >= dev->maximum_num_containers)
897 break;
898 if (dev->fsa_dev[container].config_waiting_on ==
899 le32_to_cpu(*(u32 *)aifcmd->data))
900 dev->fsa_dev[container].config_waiting_on = 0;
901 } else for (container = 0;
902 container < dev->maximum_num_containers; ++container) {
903 if (dev->fsa_dev[container].config_waiting_on ==
904 le32_to_cpu(*(u32 *)aifcmd->data))
905 dev->fsa_dev[container].config_waiting_on = 0;
906 }
907 break;
908
909 case AifCmdEventNotify:
910 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
911 /*
912 * Add an Array.
913 */
914 case AifEnAddContainer:
915 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
916 if (container >= dev->maximum_num_containers)
917 break;
918 dev->fsa_dev[container].config_needed = ADD;
919 dev->fsa_dev[container].config_waiting_on =
920 AifEnConfigChange;
921 break;
922
923 /*
924 * Delete an Array.
925 */
926 case AifEnDeleteContainer:
927 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
928 if (container >= dev->maximum_num_containers)
929 break;
930 dev->fsa_dev[container].config_needed = DELETE;
931 dev->fsa_dev[container].config_waiting_on =
932 AifEnConfigChange;
933 break;
934
935 /*
936 * Container change detected. If we currently are not
937 * waiting on something else, setup to wait on a Config Change.
938 */
939 case AifEnContainerChange:
940 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
941 if (container >= dev->maximum_num_containers)
942 break;
943 if (dev->fsa_dev[container].config_waiting_on)
944 break;
945 dev->fsa_dev[container].config_needed = CHANGE;
946 dev->fsa_dev[container].config_waiting_on =
947 AifEnConfigChange;
948 break;
949
950 case AifEnConfigChange:
951 break;
952
953 }
954
955 /*
956 * If we are waiting on something and this happens to be
957 * that thing then set the re-configure flag.
958 */
959 if (container != (u32)-1) {
960 if (container >= dev->maximum_num_containers)
961 break;
962 if (dev->fsa_dev[container].config_waiting_on ==
963 le32_to_cpu(*(u32 *)aifcmd->data))
964 dev->fsa_dev[container].config_waiting_on = 0;
965 } else for (container = 0;
966 container < dev->maximum_num_containers; ++container) {
967 if (dev->fsa_dev[container].config_waiting_on ==
968 le32_to_cpu(*(u32 *)aifcmd->data))
969 dev->fsa_dev[container].config_waiting_on = 0;
970 }
971 break;
972
973 case AifCmdJobProgress:
974 /*
975 * These are job progress AIF's. When a Clear is being
976 * done on a container it is initially created then hidden from
977 * the OS. When the clear completes we don't get a config
978 * change so we monitor the job status complete on a clear then
979 * wait for a container change.
980 */
981
982 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
983 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
984 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
985 for (container = 0;
986 container < dev->maximum_num_containers;
987 ++container) {
988 /*
989 * Stomp on all config sequencing for all
990 * containers?
991 */
992 dev->fsa_dev[container].config_waiting_on =
993 AifEnContainerChange;
994 dev->fsa_dev[container].config_needed = ADD;
995 }
996 }
997 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
998 && (((u32 *)aifcmd->data)[6] == 0)
999 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
1000 for (container = 0;
1001 container < dev->maximum_num_containers;
1002 ++container) {
1003 /*
1004 * Stomp on all config sequencing for all
1005 * containers?
1006 */
1007 dev->fsa_dev[container].config_waiting_on =
1008 AifEnContainerChange;
1009 dev->fsa_dev[container].config_needed = DELETE;
1010 }
1011 }
1012 break;
1013 }
1014
1015 device_config_needed = NOTHING;
1016 for (container = 0; container < dev->maximum_num_containers;
1017 ++container) {
1018 if ((dev->fsa_dev[container].config_waiting_on == 0)
1019 && (dev->fsa_dev[container].config_needed != NOTHING)) {
1020 device_config_needed =
1021 dev->fsa_dev[container].config_needed;
1022 dev->fsa_dev[container].config_needed = NOTHING;
1023 break;
1024 }
1025 }
1026 if (device_config_needed == NOTHING)
1027 return;
1028
1029 /*
1030 * If we decided that a re-configuration needs to be done,
1031 * schedule it here on the way out the door, please close the door
1032 * behind you.
1033 */
1034
1035 busy = 0;
1036
1037
1038 /*
1039 * Find the Scsi_Device associated with the SCSI address,
1040 * and mark it as changed, invalidating the cache. This deals
1041 * with changes to existing device IDs.
1042 */
1043
1044 if (!dev || !dev->scsi_host_ptr)
1045 return;
1046 /*
1047 * force reload of disk info via probe_container
1048 */
1049 if ((device_config_needed == CHANGE)
1050 && (dev->fsa_dev[container].valid == 1))
1051 dev->fsa_dev[container].valid = 2;
1052 if ((device_config_needed == CHANGE) ||
1053 (device_config_needed == ADD))
1054 probe_container(dev, container);
1055 device = scsi_device_lookup(dev->scsi_host_ptr,
1056 CONTAINER_TO_CHANNEL(container),
1057 CONTAINER_TO_ID(container),
1058 CONTAINER_TO_LUN(container));
1059 if (device) {
1060 switch (device_config_needed) {
1061 case DELETE:
1062 scsi_remove_device(device);
1063 break;
1064 case CHANGE:
1065 if (!dev->fsa_dev[container].valid) {
1066 scsi_remove_device(device);
1067 break;
1068 }
1069 scsi_rescan_device(&device->sdev_gendev);
1070
1071 default:
1072 break;
1073 }
1074 scsi_device_put(device);
1075 }
1076 if (device_config_needed == ADD) {
1077 scsi_add_device(dev->scsi_host_ptr,
1078 CONTAINER_TO_CHANNEL(container),
1079 CONTAINER_TO_ID(container),
1080 CONTAINER_TO_LUN(container));
1081 }
1082
1083}
1084
1da177e4
LT
1085/**
1086 * aac_command_thread - command processing thread
1087 * @dev: Adapter to monitor
1088 *
1089 * Waits on the commandready event in it's queue. When the event gets set
1090 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1091 * until the queue is empty. When the queue is empty it will wait for
1092 * more FIBs.
1093 */
1094
1095int aac_command_thread(struct aac_dev * dev)
1096{
1097 struct hw_fib *hw_fib, *hw_newfib;
1098 struct fib *fib, *newfib;
1da177e4
LT
1099 struct aac_fib_context *fibctx;
1100 unsigned long flags;
1101 DECLARE_WAITQUEUE(wait, current);
1102
1103 /*
1104 * We can only have one thread per adapter for AIF's.
1105 */
1106 if (dev->aif_thread)
1107 return -EINVAL;
1108 /*
1109 * Set up the name that will appear in 'ps'
1110 * stored in task_struct.comm[16].
1111 */
1112 daemonize("aacraid");
1113 allow_signal(SIGKILL);
1114 /*
1115 * Let the DPC know it has a place to send the AIF's to.
1116 */
1117 dev->aif_thread = 1;
2f130980 1118 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1da177e4 1119 set_current_state(TASK_INTERRUPTIBLE);
2f130980 1120 dprintk ((KERN_INFO "aac_command_thread start\n"));
1da177e4
LT
1121 while(1)
1122 {
2f130980
MH
1123 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1124 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1da177e4
LT
1125 struct list_head *entry;
1126 struct aac_aifcmd * aifcmd;
1127
1128 set_current_state(TASK_RUNNING);
2f130980
MH
1129
1130 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1da177e4 1131 list_del(entry);
2f130980
MH
1132
1133 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1da177e4
LT
1134 fib = list_entry(entry, struct fib, fiblink);
1135 /*
1136 * We will process the FIB here or pass it to a
1137 * worker thread that is TBD. We Really can't
1138 * do anything at this point since we don't have
1139 * anything defined for this thread to do.
1140 */
1141 hw_fib = fib->hw_fib;
1142 memset(fib, 0, sizeof(struct fib));
1143 fib->type = FSAFS_NTC_FIB_CONTEXT;
1144 fib->size = sizeof( struct fib );
1145 fib->hw_fib = hw_fib;
1146 fib->data = hw_fib->data;
1147 fib->dev = dev;
1148 /*
1149 * We only handle AifRequest fibs from the adapter.
1150 */
1151 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1152 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1153 /* Handle Driver Notify Events */
131256cf 1154 aac_handle_aif(dev, fib);
56b58712
MH
1155 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1156 fib_adapter_complete(fib, (u16)sizeof(u32));
1da177e4
LT
1157 } else {
1158 struct list_head *entry;
1159 /* The u32 here is important and intended. We are using
1160 32bit wrapping time to fit the adapter field */
1161
1162 u32 time_now, time_last;
1163 unsigned long flagv;
2f130980
MH
1164 unsigned num;
1165 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1166 struct fib ** fib_pool, ** fib_p;
131256cf
MH
1167
1168 /* Sniff events */
1169 if ((aifcmd->command ==
1170 cpu_to_le32(AifCmdEventNotify)) ||
1171 (aifcmd->command ==
1172 cpu_to_le32(AifCmdJobProgress))) {
1173 aac_handle_aif(dev, fib);
1174 }
1175
1da177e4
LT
1176 time_now = jiffies/HZ;
1177
2f130980
MH
1178 /*
1179 * Warning: no sleep allowed while
1180 * holding spinlock. We take the estimate
1181 * and pre-allocate a set of fibs outside the
1182 * lock.
1183 */
1184 num = le32_to_cpu(dev->init->AdapterFibsSize)
1185 / sizeof(struct hw_fib); /* some extra */
1186 spin_lock_irqsave(&dev->fib_lock, flagv);
1187 entry = dev->fib_list.next;
1188 while (entry != &dev->fib_list) {
1189 entry = entry->next;
1190 ++num;
1191 }
1192 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1193 hw_fib_pool = NULL;
1194 fib_pool = NULL;
1195 if (num
1196 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1197 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1198 hw_fib_p = hw_fib_pool;
1199 fib_p = fib_pool;
1200 while (hw_fib_p < &hw_fib_pool[num]) {
1201 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1202 --hw_fib_p;
1203 break;
1204 }
1205 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1206 kfree(*(--hw_fib_p));
1207 break;
1208 }
1209 }
1210 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1211 kfree(fib_pool);
1212 fib_pool = NULL;
1213 kfree(hw_fib_pool);
1214 hw_fib_pool = NULL;
1215 }
1216 } else if (hw_fib_pool) {
1217 kfree(hw_fib_pool);
1218 hw_fib_pool = NULL;
1219 }
1da177e4
LT
1220 spin_lock_irqsave(&dev->fib_lock, flagv);
1221 entry = dev->fib_list.next;
1222 /*
1223 * For each Context that is on the
1224 * fibctxList, make a copy of the
1225 * fib, and then set the event to wake up the
1226 * thread that is waiting for it.
1227 */
2f130980
MH
1228 hw_fib_p = hw_fib_pool;
1229 fib_p = fib_pool;
1da177e4
LT
1230 while (entry != &dev->fib_list) {
1231 /*
1232 * Extract the fibctx
1233 */
1234 fibctx = list_entry(entry, struct aac_fib_context, next);
1235 /*
1236 * Check if the queue is getting
1237 * backlogged
1238 */
1239 if (fibctx->count > 20)
1240 {
1241 /*
1242 * It's *not* jiffies folks,
1243 * but jiffies / HZ so do not
1244 * panic ...
1245 */
1246 time_last = fibctx->jiffies;
1247 /*
1248 * Has it been > 2 minutes
1249 * since the last read off
1250 * the queue?
1251 */
1252 if ((time_now - time_last) > 120) {
1253 entry = entry->next;
1254 aac_close_fib_context(dev, fibctx);
1255 continue;
1256 }
1257 }
1258 /*
1259 * Warning: no sleep allowed while
1260 * holding spinlock
1261 */
2f130980
MH
1262 if (hw_fib_p < &hw_fib_pool[num]) {
1263 hw_newfib = *hw_fib_p;
1264 *(hw_fib_p++) = NULL;
1265 newfib = *fib_p;
1266 *(fib_p++) = NULL;
1da177e4
LT
1267 /*
1268 * Make the copy of the FIB
1269 */
1270 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1271 memcpy(newfib, fib, sizeof(struct fib));
1272 newfib->hw_fib = hw_newfib;
1273 /*
1274 * Put the FIB onto the
1275 * fibctx's fibs
1276 */
1277 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1278 fibctx->count++;
1279 /*
1280 * Set the event to wake up the
2f130980 1281 * thread that is waiting.
1da177e4
LT
1282 */
1283 up(&fibctx->wait_sem);
1284 } else {
1285 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1da177e4
LT
1286 }
1287 entry = entry->next;
1288 }
1289 /*
1290 * Set the status of this FIB
1291 */
56b58712 1292 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1da177e4
LT
1293 fib_adapter_complete(fib, sizeof(u32));
1294 spin_unlock_irqrestore(&dev->fib_lock, flagv);
2f130980
MH
1295 /* Free up the remaining resources */
1296 hw_fib_p = hw_fib_pool;
1297 fib_p = fib_pool;
1298 while (hw_fib_p < &hw_fib_pool[num]) {
1299 if (*hw_fib_p)
1300 kfree(*hw_fib_p);
1301 if (*fib_p)
1302 kfree(*fib_p);
1303 ++fib_p;
1304 ++hw_fib_p;
1305 }
1306 if (hw_fib_pool)
1307 kfree(hw_fib_pool);
1308 if (fib_pool)
1309 kfree(fib_pool);
1da177e4 1310 }
1da177e4 1311 kfree(fib);
2f130980 1312 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1da177e4
LT
1313 }
1314 /*
1315 * There are no more AIF's
1316 */
2f130980 1317 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1da177e4
LT
1318 schedule();
1319
1320 if(signal_pending(current))
1321 break;
1322 set_current_state(TASK_INTERRUPTIBLE);
1323 }
2f130980
MH
1324 if (dev->queues)
1325 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1da177e4
LT
1326 dev->aif_thread = 0;
1327 complete_and_exit(&dev->aif_completion, 0);
2f130980 1328 return 0;
1da177e4 1329}