]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/scsi/cxlflash/main.c
UBUNTU: SAUCE: cxlflash: Preserve number of interrupts for master contexts
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / cxlflash / main.c
CommitLineData
c21e0bbf
MO
1/*
2 * CXL Flash Device Driver
3 *
4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6 *
7 * Copyright (C) 2015 IBM Corporation
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <linux/delay.h>
16#include <linux/list.h>
17#include <linux/module.h>
18#include <linux/pci.h>
19
20#include <asm/unaligned.h>
21
22#include <misc/cxl.h>
23
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_host.h>
65be2c79 26#include <uapi/scsi/cxlflash_ioctl.h>
c21e0bbf
MO
27
28#include "main.h"
29#include "sislite.h"
30#include "common.h"
31
32MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35MODULE_LICENSE("GPL");
36
a834a36b
UK
37static struct class *cxlflash_class;
38static u32 cxlflash_major;
39static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
40
c21e0bbf
MO
41/**
42 * process_cmd_err() - command error handler
43 * @cmd: AFU command that experienced the error.
44 * @scp: SCSI command associated with the AFU command in error.
45 *
46 * Translates error bits from AFU command to SCSI command results.
47 */
48static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
49{
fb67d44d
MO
50 struct afu *afu = cmd->parent;
51 struct cxlflash_cfg *cfg = afu->parent;
52 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
53 struct sisl_ioarcb *ioarcb;
54 struct sisl_ioasa *ioasa;
8396012f 55 u32 resid;
c21e0bbf
MO
56
57 if (unlikely(!cmd))
58 return;
59
60 ioarcb = &(cmd->rcb);
61 ioasa = &(cmd->sa);
62
63 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
8396012f
MO
64 resid = ioasa->resid;
65 scsi_set_resid(scp, resid);
fb67d44d
MO
66 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
67 __func__, cmd, scp, resid);
c21e0bbf
MO
68 }
69
70 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
fb67d44d
MO
71 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
72 __func__, cmd, scp);
c21e0bbf
MO
73 scp->result = (DID_ERROR << 16);
74 }
75
fb67d44d
MO
76 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
77 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
78 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
79 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
c21e0bbf
MO
80
81 if (ioasa->rc.scsi_rc) {
82 /* We have a SCSI status */
83 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
84 memcpy(scp->sense_buffer, ioasa->sense_data,
85 SISL_SENSE_DATA_LEN);
86 scp->result = ioasa->rc.scsi_rc;
87 } else
88 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
89 }
90
91 /*
92 * We encountered an error. Set scp->result based on nature
93 * of error.
94 */
95 if (ioasa->rc.fc_rc) {
96 /* We have an FC status */
97 switch (ioasa->rc.fc_rc) {
98 case SISL_FC_RC_LINKDOWN:
99 scp->result = (DID_REQUEUE << 16);
100 break;
101 case SISL_FC_RC_RESID:
102 /* This indicates an FCP resid underrun */
103 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
104 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
105 * then we will handle this error else where.
106 * If not then we must handle it here.
8396012f 107 * This is probably an AFU bug.
c21e0bbf
MO
108 */
109 scp->result = (DID_ERROR << 16);
110 }
111 break;
112 case SISL_FC_RC_RESIDERR:
113 /* Resid mismatch between adapter and device */
114 case SISL_FC_RC_TGTABORT:
115 case SISL_FC_RC_ABORTOK:
116 case SISL_FC_RC_ABORTFAIL:
117 case SISL_FC_RC_NOLOGI:
118 case SISL_FC_RC_ABORTPEND:
119 case SISL_FC_RC_WRABORTPEND:
120 case SISL_FC_RC_NOEXP:
121 case SISL_FC_RC_INUSE:
122 scp->result = (DID_ERROR << 16);
123 break;
124 }
125 }
126
127 if (ioasa->rc.afu_rc) {
128 /* We have an AFU error */
129 switch (ioasa->rc.afu_rc) {
130 case SISL_AFU_RC_NO_CHANNELS:
8396012f 131 scp->result = (DID_NO_CONNECT << 16);
c21e0bbf
MO
132 break;
133 case SISL_AFU_RC_DATA_DMA_ERR:
134 switch (ioasa->afu_extra) {
135 case SISL_AFU_DMA_ERR_PAGE_IN:
136 /* Retry */
137 scp->result = (DID_IMM_RETRY << 16);
138 break;
139 case SISL_AFU_DMA_ERR_INVALID_EA:
140 default:
141 scp->result = (DID_ERROR << 16);
142 }
143 break;
144 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
145 /* Retry */
146 scp->result = (DID_ALLOC_FAILURE << 16);
147 break;
148 default:
149 scp->result = (DID_ERROR << 16);
150 }
151 }
152}
153
154/**
155 * cmd_complete() - command completion handler
156 * @cmd: AFU command that has completed.
157 *
8ba1ddb3
MO
158 * For SCSI commands this routine prepares and submits commands that have
159 * either completed or timed out to the SCSI stack. For internal commands
160 * (TMF or AFU), this routine simply notifies the originator that the
161 * command has completed.
c21e0bbf
MO
162 */
163static void cmd_complete(struct afu_cmd *cmd)
164{
165 struct scsi_cmnd *scp;
c21e0bbf
MO
166 ulong lock_flags;
167 struct afu *afu = cmd->parent;
168 struct cxlflash_cfg *cfg = afu->parent;
fb67d44d 169 struct device *dev = &cfg->dev->dev;
a002bf83 170 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
c21e0bbf 171
a002bf83
UK
172 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
173 list_del(&cmd->list);
174 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
175
fe7f9698
MO
176 if (cmd->scp) {
177 scp = cmd->scp;
8396012f 178 if (unlikely(cmd->sa.ioasc))
c21e0bbf
MO
179 process_cmd_err(cmd, scp);
180 else
181 scp->result = (DID_OK << 16);
182
fb67d44d
MO
183 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
184 __func__, scp, scp->result, cmd->sa.ioasc);
c21e0bbf 185 scp->scsi_done(scp);
8ba1ddb3
MO
186 } else if (cmd->cmd_tmf) {
187 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
188 cfg->tmf_active = false;
189 wake_up_all_locked(&cfg->tmf_waitq);
190 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
191 } else
192 complete(&cmd->cevent);
193}
194
a1ea04b3
UK
195/**
196 * flush_pending_cmds() - flush all pending commands on this hardware queue
197 * @hwq: Hardware queue to flush.
198 *
199 * The hardware send queue lock associated with this hardware queue must be
200 * held when calling this routine.
201 */
202static void flush_pending_cmds(struct hwq *hwq)
203{
8ba1ddb3 204 struct cxlflash_cfg *cfg = hwq->afu->parent;
a1ea04b3
UK
205 struct afu_cmd *cmd, *tmp;
206 struct scsi_cmnd *scp;
8ba1ddb3 207 ulong lock_flags;
a1ea04b3
UK
208
209 list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
210 /* Bypass command when on a doneq, cmd_complete() will handle */
211 if (!list_empty(&cmd->queue))
212 continue;
213
214 list_del(&cmd->list);
215
216 if (cmd->scp) {
217 scp = cmd->scp;
218 scp->result = (DID_IMM_RETRY << 16);
219 scp->scsi_done(scp);
220 } else {
221 cmd->cmd_aborted = true;
8ba1ddb3
MO
222
223 if (cmd->cmd_tmf) {
224 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
225 cfg->tmf_active = false;
226 wake_up_all_locked(&cfg->tmf_waitq);
227 spin_unlock_irqrestore(&cfg->tmf_slock,
228 lock_flags);
229 } else
230 complete(&cmd->cevent);
a1ea04b3
UK
231 }
232 }
233}
234
15305514 235/**
a96851d3
UK
236 * context_reset() - reset context via specified register
237 * @hwq: Hardware queue owning the context to be reset.
9c7d1ee5 238 * @reset_reg: MMIO register to perform reset.
a96851d3 239 *
7c4c41f1
UK
240 * When the reset is successful, the SISLite specification guarantees that
241 * the AFU has aborted all currently pending I/O. Accordingly, these commands
242 * must be flushed.
243 *
a96851d3 244 * Return: 0 on success, -errno on failure
15305514 245 */
a96851d3 246static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
15305514 247{
a96851d3 248 struct cxlflash_cfg *cfg = hwq->afu->parent;
3d2f617d 249 struct device *dev = &cfg->dev->dev;
a96851d3
UK
250 int rc = -ETIMEDOUT;
251 int nretry = 0;
252 u64 val = 0x1;
7c4c41f1 253 ulong lock_flags;
15305514 254
a96851d3 255 dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
15305514 256
7c4c41f1
UK
257 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
258
a96851d3 259 writeq_be(val, reset_reg);
15305514 260 do {
a96851d3
UK
261 val = readq_be(reset_reg);
262 if ((val & 0x1) == 0x0) {
263 rc = 0;
15305514 264 break;
a96851d3
UK
265 }
266
15305514 267 /* Double delay each time */
ea765431 268 udelay(1 << nretry);
15305514 269 } while (nretry++ < MC_ROOM_RETRY_CNT);
3d2f617d 270
7c4c41f1
UK
271 if (!rc)
272 flush_pending_cmds(hwq);
273
274 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
275
a96851d3
UK
276 dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
277 __func__, rc, val, nretry);
278 return rc;
15305514
MO
279}
280
9c7d1ee5 281/**
a96851d3
UK
282 * context_reset_ioarrin() - reset context via IOARRIN register
283 * @hwq: Hardware queue owning the context to be reset.
284 *
285 * Return: 0 on success, -errno on failure
9c7d1ee5 286 */
a96851d3 287static int context_reset_ioarrin(struct hwq *hwq)
9c7d1ee5 288{
a96851d3 289 return context_reset(hwq, &hwq->host_map->ioarrin);
9c7d1ee5
MO
290}
291
696d0b0c 292/**
a96851d3
UK
293 * context_reset_sq() - reset context via SQ_CONTEXT_RESET register
294 * @hwq: Hardware queue owning the context to be reset.
295 *
296 * Return: 0 on success, -errno on failure
696d0b0c 297 */
a96851d3 298static int context_reset_sq(struct hwq *hwq)
696d0b0c 299{
a96851d3 300 return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
696d0b0c
MO
301}
302
15305514 303/**
48b4be36 304 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
15305514
MO
305 * @afu: AFU associated with the host.
306 * @cmd: AFU command to send.
307 *
308 * Return:
1284fb0c 309 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
15305514 310 */
48b4be36 311static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
15305514
MO
312{
313 struct cxlflash_cfg *cfg = afu->parent;
314 struct device *dev = &cfg->dev->dev;
bfc0bab1 315 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
15305514 316 int rc = 0;
11f7b184
UK
317 s64 room;
318 ulong lock_flags;
15305514
MO
319
320 /*
11f7b184
UK
321 * To avoid the performance penalty of MMIO, spread the update of
322 * 'room' over multiple commands.
15305514 323 */
66ea9bcc 324 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
bfc0bab1
UK
325 if (--hwq->room < 0) {
326 room = readq_be(&hwq->host_map->cmd_room);
11f7b184
UK
327 if (room <= 0) {
328 dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
329 "0x%02X, room=0x%016llX\n",
330 __func__, cmd->rcb.cdb[0], room);
bfc0bab1 331 hwq->room = 0;
11f7b184
UK
332 rc = SCSI_MLQUEUE_HOST_BUSY;
333 goto out;
15305514 334 }
bfc0bab1 335 hwq->room = room - 1;
15305514
MO
336 }
337
a002bf83 338 list_add(&cmd->list, &hwq->pending_cmds);
bfc0bab1 339 writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
15305514 340out:
66ea9bcc 341 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
fb67d44d
MO
342 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", __func__,
343 cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
15305514 344 return rc;
15305514
MO
345}
346
696d0b0c
MO
347/**
348 * send_cmd_sq() - sends an AFU command via SQ ring
349 * @afu: AFU associated with the host.
350 * @cmd: AFU command to send.
351 *
352 * Return:
353 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
354 */
355static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
356{
357 struct cxlflash_cfg *cfg = afu->parent;
358 struct device *dev = &cfg->dev->dev;
bfc0bab1 359 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
696d0b0c
MO
360 int rc = 0;
361 int newval;
362 ulong lock_flags;
363
bfc0bab1 364 newval = atomic_dec_if_positive(&hwq->hsq_credits);
696d0b0c
MO
365 if (newval <= 0) {
366 rc = SCSI_MLQUEUE_HOST_BUSY;
367 goto out;
368 }
369
370 cmd->rcb.ioasa = &cmd->sa;
371
bfc0bab1 372 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
696d0b0c 373
bfc0bab1
UK
374 *hwq->hsq_curr = cmd->rcb;
375 if (hwq->hsq_curr < hwq->hsq_end)
376 hwq->hsq_curr++;
696d0b0c 377 else
bfc0bab1 378 hwq->hsq_curr = hwq->hsq_start;
a002bf83
UK
379
380 list_add(&cmd->list, &hwq->pending_cmds);
bfc0bab1 381 writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
696d0b0c 382
bfc0bab1 383 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
696d0b0c 384out:
fb67d44d
MO
385 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
386 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
bfc0bab1
UK
387 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
388 readq_be(&hwq->host_map->sq_head),
389 readq_be(&hwq->host_map->sq_tail));
696d0b0c
MO
390 return rc;
391}
392
15305514
MO
393/**
394 * wait_resp() - polls for a response or timeout to a sent AFU command
395 * @afu: AFU associated with the host.
396 * @cmd: AFU command that was sent.
9ba848ac 397 *
a96851d3 398 * Return: 0 on success, -errno on failure
15305514 399 */
9ba848ac 400static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
15305514 401{
fb67d44d
MO
402 struct cxlflash_cfg *cfg = afu->parent;
403 struct device *dev = &cfg->dev->dev;
9ba848ac 404 int rc = 0;
15305514
MO
405 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
406
407 timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
a96851d3
UK
408 if (!timeout)
409 rc = -ETIMEDOUT;
15305514 410
a1ea04b3
UK
411 if (cmd->cmd_aborted)
412 rc = -EAGAIN;
413
9ba848ac 414 if (unlikely(cmd->sa.ioasc != 0)) {
fb67d44d
MO
415 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
416 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
a96851d3 417 rc = -EIO;
9ba848ac
MO
418 }
419
420 return rc;
15305514
MO
421}
422
1dd0c0e4
MO
423/**
424 * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
425 * @host: SCSI host associated with device.
426 * @scp: SCSI command to send.
427 * @afu: SCSI command to send.
428 *
429 * Hashes a command based upon the hardware queue mode.
430 *
431 * Return: Trusted index of target hardware queue
432 */
433static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
434 struct afu *afu)
435{
436 u32 tag;
437 u32 hwq = 0;
438
439 if (afu->num_hwqs == 1)
440 return 0;
441
442 switch (afu->hwq_mode) {
443 case HWQ_MODE_RR:
444 hwq = afu->hwq_rr_count++ % afu->num_hwqs;
445 break;
446 case HWQ_MODE_TAG:
447 tag = blk_mq_unique_tag(scp->request);
448 hwq = blk_mq_unique_tag_to_hwq(tag);
449 break;
450 case HWQ_MODE_CPU:
451 hwq = smp_processor_id() % afu->num_hwqs;
452 break;
453 default:
454 WARN_ON_ONCE(1);
455 }
456
457 return hwq;
458}
459
c21e0bbf
MO
460/**
461 * send_tmf() - sends a Task Management Function (TMF)
32abbeda
MO
462 * @cfg: Internal structure associated with the host.
463 * @sdev: SCSI device destined for TMF.
c21e0bbf
MO
464 * @tmfcmd: TMF command to send.
465 *
466 * Return:
8ba1ddb3 467 * 0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure
c21e0bbf 468 */
32abbeda
MO
469static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev,
470 u64 tmfcmd)
c21e0bbf 471{
32abbeda 472 struct afu *afu = cfg->afu;
8ba1ddb3 473 struct afu_cmd *cmd = NULL;
4392ba49 474 struct device *dev = &cfg->dev->dev;
32abbeda 475 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
8ba1ddb3 476 char *buf = NULL;
c21e0bbf
MO
477 ulong lock_flags;
478 int rc = 0;
018d1dc9 479 ulong to;
c21e0bbf 480
8ba1ddb3
MO
481 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
482 if (unlikely(!buf)) {
483 dev_err(dev, "%s: no memory for command\n", __func__);
484 rc = -ENOMEM;
485 goto out;
486 }
487
488 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
489 INIT_LIST_HEAD(&cmd->queue);
490
018d1dc9
MO
491 /* When Task Management Function is active do not send another */
492 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf 493 if (cfg->tmf_active)
018d1dc9
MO
494 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
495 !cfg->tmf_active,
496 cfg->tmf_slock);
c21e0bbf 497 cfg->tmf_active = true;
018d1dc9 498 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf 499
d4ace351
MO
500 cmd->parent = afu;
501 cmd->cmd_tmf = true;
32abbeda 502 cmd->hwq_index = hwq->index;
d4ace351 503
bfc0bab1 504 cmd->rcb.ctx_id = hwq->ctx_hndl;
5fbb96c8 505 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
32abbeda
MO
506 cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel);
507 cmd->rcb.lun_id = lun_to_lunid(sdev->lun);
c21e0bbf 508 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
d4ace351
MO
509 SISL_REQ_FLAGS_SUP_UNDERRUN |
510 SISL_REQ_FLAGS_TMF_CMD);
c21e0bbf
MO
511 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
512
48b4be36 513 rc = afu->send_cmd(afu, cmd);
c21e0bbf 514 if (unlikely(rc)) {
018d1dc9 515 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf 516 cfg->tmf_active = false;
018d1dc9 517 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
518 goto out;
519 }
520
018d1dc9
MO
521 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
522 to = msecs_to_jiffies(5000);
523 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
524 !cfg->tmf_active,
525 cfg->tmf_slock,
526 to);
527 if (!to) {
fb67d44d 528 dev_err(dev, "%s: TMF timed out\n", __func__);
8ba1ddb3
MO
529 rc = -ETIMEDOUT;
530 } else if (cmd->cmd_aborted) {
531 dev_err(dev, "%s: TMF aborted\n", __func__);
532 rc = -EAGAIN;
533 } else if (cmd->sa.ioasc) {
534 dev_err(dev, "%s: TMF failed ioasc=%08x\n",
535 __func__, cmd->sa.ioasc);
536 rc = -EIO;
018d1dc9 537 }
8ba1ddb3 538 cfg->tmf_active = false;
018d1dc9 539 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf 540out:
8ba1ddb3 541 kfree(buf);
c21e0bbf
MO
542 return rc;
543}
544
545/**
546 * cxlflash_driver_info() - information handler for this host driver
547 * @host: SCSI host associated with device.
548 *
549 * Return: A string describing the device.
550 */
551static const char *cxlflash_driver_info(struct Scsi_Host *host)
552{
553 return CXLFLASH_ADAPTER_NAME;
554}
555
556/**
557 * cxlflash_queuecommand() - sends a mid-layer request
558 * @host: SCSI host associated with device.
559 * @scp: SCSI command to send.
560 *
1284fb0c 561 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
c21e0bbf
MO
562 */
563static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
564{
fb67d44d 565 struct cxlflash_cfg *cfg = shost_priv(host);
c21e0bbf 566 struct afu *afu = cfg->afu;
4392ba49 567 struct device *dev = &cfg->dev->dev;
479ad8e9 568 struct afu_cmd *cmd = sc_to_afuci(scp);
9d89326c 569 struct scatterlist *sg = scsi_sglist(scp);
1dd0c0e4
MO
570 int hwq_index = cmd_to_target_hwq(host, scp, afu);
571 struct hwq *hwq = get_hwq(afu, hwq_index);
9d89326c 572 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
c21e0bbf 573 ulong lock_flags;
c21e0bbf
MO
574 int rc = 0;
575
4392ba49 576 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
fb67d44d 577 "cdb=(%08x-%08x-%08x-%08x)\n",
4392ba49
MO
578 __func__, scp, host->host_no, scp->device->channel,
579 scp->device->id, scp->device->lun,
580 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
581 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
582 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
583 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
c21e0bbf 584
018d1dc9
MO
585 /*
586 * If a Task Management Function is active, wait for it to complete
c21e0bbf
MO
587 * before continuing with regular commands.
588 */
018d1dc9 589 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf 590 if (cfg->tmf_active) {
018d1dc9 591 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
592 rc = SCSI_MLQUEUE_HOST_BUSY;
593 goto out;
594 }
018d1dc9 595 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf 596
5cdac81a 597 switch (cfg->state) {
323e3342
MO
598 case STATE_PROBING:
599 case STATE_PROBED:
439e85c1 600 case STATE_RESET:
fb67d44d 601 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
5cdac81a
MO
602 rc = SCSI_MLQUEUE_HOST_BUSY;
603 goto out;
604 case STATE_FAILTERM:
fb67d44d 605 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
5cdac81a
MO
606 scp->result = (DID_NO_CONNECT << 16);
607 scp->scsi_done(scp);
608 rc = 0;
609 goto out;
610 default:
611 break;
612 }
613
9d89326c 614 if (likely(sg)) {
50b787f7
MO
615 cmd->rcb.data_len = sg->length;
616 cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
9d89326c 617 }
c21e0bbf 618
fe7f9698 619 cmd->scp = scp;
5fbb96c8 620 cmd->parent = afu;
1dd0c0e4 621 cmd->hwq_index = hwq_index;
c21e0bbf 622
ac713cf4 623 cmd->sa.ioasc = 0;
bfc0bab1 624 cmd->rcb.ctx_id = hwq->ctx_hndl;
9d89326c 625 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
8fa4f177 626 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
9d89326c 627 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
c21e0bbf 628
9d89326c
MO
629 if (scp->sc_data_direction == DMA_TO_DEVICE)
630 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
c21e0bbf 631
9d89326c 632 cmd->rcb.req_flags = req_flags;
c21e0bbf
MO
633 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
634
48b4be36 635 rc = afu->send_cmd(afu, cmd);
c21e0bbf
MO
636out:
637 return rc;
638}
639
640/**
15305514 641 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
1284fb0c 642 * @cfg: Internal structure associated with the host.
c21e0bbf 643 */
15305514 644static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
c21e0bbf 645{
15305514 646 struct pci_dev *pdev = cfg->dev;
c21e0bbf 647
15305514
MO
648 if (pci_channel_offline(pdev))
649 wait_event_timeout(cfg->reset_waitq,
650 !pci_channel_offline(pdev),
651 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
c21e0bbf
MO
652}
653
654/**
15305514 655 * free_mem() - free memory associated with the AFU
1284fb0c 656 * @cfg: Internal structure associated with the host.
c21e0bbf 657 */
15305514 658static void free_mem(struct cxlflash_cfg *cfg)
c21e0bbf 659{
15305514 660 struct afu *afu = cfg->afu;
c21e0bbf 661
15305514 662 if (cfg->afu) {
15305514
MO
663 free_pages((ulong)afu, get_order(sizeof(struct afu)));
664 cfg->afu = NULL;
5cdac81a 665 }
c21e0bbf
MO
666}
667
0b09e711
UK
668/**
669 * cxlflash_reset_sync() - synchronizing point for asynchronous resets
670 * @cfg: Internal structure associated with the host.
671 */
672static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
673{
674 if (cfg->async_reset_cookie == 0)
675 return;
676
677 /* Wait until all async calls prior to this cookie have completed */
678 async_synchronize_cookie(cfg->async_reset_cookie + 1);
679 cfg->async_reset_cookie = 0;
680}
681
c21e0bbf 682/**
15305514 683 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
1284fb0c 684 * @cfg: Internal structure associated with the host.
c21e0bbf 685 *
15305514 686 * Safe to call with AFU in a partially allocated/initialized state.
ee91e332 687 *
0df5bef7 688 * Cancels scheduled worker threads, waits for any active internal AFU
cba06e6d 689 * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
c21e0bbf 690 */
15305514 691static void stop_afu(struct cxlflash_cfg *cfg)
c21e0bbf 692{
15305514 693 struct afu *afu = cfg->afu;
bfc0bab1
UK
694 struct hwq *hwq;
695 int i;
c21e0bbf 696
0df5bef7 697 cancel_work_sync(&cfg->work_q);
0b09e711
UK
698 if (!current_is_async())
699 cxlflash_reset_sync(cfg);
0df5bef7 700
15305514 701 if (likely(afu)) {
de01283b
MO
702 while (atomic_read(&afu->cmds_active))
703 ssleep(1);
bfc0bab1
UK
704
705 if (afu_is_irqpoll_enabled(afu)) {
3065267a 706 for (i = 0; i < afu->num_hwqs; i++) {
bfc0bab1
UK
707 hwq = get_hwq(afu, i);
708
709 irq_poll_disable(&hwq->irqpoll);
710 }
711 }
712
c21e0bbf 713 if (likely(afu->afu_map)) {
29b4894f 714 cfg->ops->psa_unmap(afu->afu_map);
c21e0bbf
MO
715 afu->afu_map = NULL;
716 }
717 }
718}
719
720/**
9526f360 721 * term_intr() - disables all AFU interrupts
1284fb0c 722 * @cfg: Internal structure associated with the host.
c21e0bbf 723 * @level: Depth of allocation, where to begin waterfall tear down.
bfc0bab1 724 * @index: Index of the hardware queue.
c21e0bbf
MO
725 *
726 * Safe to call with AFU/MC in partially allocated/initialized state.
727 */
bfc0bab1
UK
728static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
729 u32 index)
c21e0bbf 730{
c21e0bbf 731 struct afu *afu = cfg->afu;
4392ba49 732 struct device *dev = &cfg->dev->dev;
bfc0bab1 733 struct hwq *hwq;
c21e0bbf 734
bfc0bab1
UK
735 if (!afu) {
736 dev_err(dev, "%s: returning with NULL afu\n", __func__);
737 return;
738 }
739
740 hwq = get_hwq(afu, index);
741
ee9f9eea 742 if (!hwq->ctx_cookie) {
bfc0bab1 743 dev_err(dev, "%s: returning with NULL MC\n", __func__);
c21e0bbf
MO
744 return;
745 }
746
747 switch (level) {
c21e0bbf 748 case UNMAP_THREE:
bfc0bab1
UK
749 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
750 if (index == PRIMARY_HWQ)
29b4894f 751 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq);
c21e0bbf 752 case UNMAP_TWO:
29b4894f 753 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq);
c21e0bbf 754 case UNMAP_ONE:
29b4894f 755 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq);
c21e0bbf 756 case FREE_IRQ:
29b4894f 757 cfg->ops->free_afu_irqs(hwq->ctx_cookie);
9526f360
MK
758 /* fall through */
759 case UNDO_NOOP:
760 /* No action required */
761 break;
762 }
763}
764
765/**
766 * term_mc() - terminates the master context
767 * @cfg: Internal structure associated with the host.
bfc0bab1 768 * @index: Index of the hardware queue.
9526f360
MK
769 *
770 * Safe to call with AFU/MC in partially allocated/initialized state.
771 */
bfc0bab1 772static void term_mc(struct cxlflash_cfg *cfg, u32 index)
9526f360 773{
9526f360
MK
774 struct afu *afu = cfg->afu;
775 struct device *dev = &cfg->dev->dev;
bfc0bab1 776 struct hwq *hwq;
a1ea04b3 777 ulong lock_flags;
9526f360 778
bfc0bab1
UK
779 if (!afu) {
780 dev_err(dev, "%s: returning with NULL afu\n", __func__);
9526f360 781 return;
c21e0bbf 782 }
9526f360 783
bfc0bab1
UK
784 hwq = get_hwq(afu, index);
785
ee9f9eea 786 if (!hwq->ctx_cookie) {
bfc0bab1
UK
787 dev_err(dev, "%s: returning with NULL MC\n", __func__);
788 return;
789 }
790
29b4894f 791 WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie));
bfc0bab1 792 if (index != PRIMARY_HWQ)
29b4894f 793 WARN_ON(cfg->ops->release_context(hwq->ctx_cookie));
ee9f9eea 794 hwq->ctx_cookie = NULL;
a1ea04b3
UK
795
796 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
797 flush_pending_cmds(hwq);
798 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
c21e0bbf
MO
799}
800
801/**
802 * term_afu() - terminates the AFU
1284fb0c 803 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
804 *
805 * Safe to call with AFU/MC in partially allocated/initialized state.
806 */
807static void term_afu(struct cxlflash_cfg *cfg)
808{
fb67d44d 809 struct device *dev = &cfg->dev->dev;
bfc0bab1 810 int k;
fb67d44d 811
9526f360
MK
812 /*
813 * Tear down is carefully orchestrated to ensure
814 * no interrupts can come in when the problem state
815 * area is unmapped.
816 *
bfc0bab1 817 * 1) Disable all AFU interrupts for each master
9526f360 818 * 2) Unmap the problem state area
bfc0bab1 819 * 3) Stop each master context
9526f360 820 */
3065267a 821 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
bfc0bab1
UK
822 term_intr(cfg, UNMAP_THREE, k);
823
48a17ad5 824 stop_afu(cfg);
c21e0bbf 825
3065267a 826 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
bfc0bab1 827 term_mc(cfg, k);
6ded8b3c 828
fb67d44d 829 dev_dbg(dev, "%s: returning\n", __func__);
c21e0bbf
MO
830}
831
704c4b0d
UK
832/**
833 * notify_shutdown() - notifies device of pending shutdown
834 * @cfg: Internal structure associated with the host.
835 * @wait: Whether to wait for shutdown processing to complete.
836 *
837 * This function will notify the AFU that the adapter is being shutdown
838 * and will wait for shutdown processing to complete if wait is true.
839 * This notification should flush pending I/Os to the device and halt
840 * further I/Os until the next AFU reset is issued and device restarted.
841 */
842static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
843{
844 struct afu *afu = cfg->afu;
845 struct device *dev = &cfg->dev->dev;
704c4b0d 846 struct dev_dependent_vals *ddv;
0aa14887 847 __be64 __iomem *fc_port_regs;
704c4b0d
UK
848 u64 reg, status;
849 int i, retry_cnt = 0;
850
851 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
852 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
853 return;
854
1bd2b282 855 if (!afu || !afu->afu_map) {
fb67d44d 856 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
1bd2b282
UK
857 return;
858 }
859
704c4b0d 860 /* Notify AFU */
78ae028e 861 for (i = 0; i < cfg->num_fc_ports; i++) {
0aa14887
MO
862 fc_port_regs = get_fc_port_regs(cfg, i);
863
864 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
704c4b0d 865 reg |= SISL_FC_SHUTDOWN_NORMAL;
0aa14887 866 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
704c4b0d
UK
867 }
868
869 if (!wait)
870 return;
871
872 /* Wait up to 1.5 seconds for shutdown processing to complete */
78ae028e 873 for (i = 0; i < cfg->num_fc_ports; i++) {
0aa14887 874 fc_port_regs = get_fc_port_regs(cfg, i);
704c4b0d 875 retry_cnt = 0;
0aa14887 876
704c4b0d 877 while (true) {
0aa14887 878 status = readq_be(&fc_port_regs[FC_STATUS / 8]);
704c4b0d
UK
879 if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
880 break;
881 if (++retry_cnt >= MC_RETRY_CNT) {
882 dev_dbg(dev, "%s: port %d shutdown processing "
883 "not yet completed\n", __func__, i);
884 break;
885 }
886 msleep(100 * retry_cnt);
887 }
888 }
889}
890
a834a36b
UK
891/**
892 * cxlflash_get_minor() - gets the first available minor number
893 *
894 * Return: Unique minor number that can be used to create the character device.
895 */
896static int cxlflash_get_minor(void)
897{
898 int minor;
899 long bit;
900
901 bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
902 if (bit >= CXLFLASH_MAX_ADAPTERS)
903 return -1;
904
905 minor = bit & MINORMASK;
906 set_bit(minor, cxlflash_minor);
907 return minor;
908}
909
910/**
911 * cxlflash_put_minor() - releases the minor number
912 * @minor: Minor number that is no longer needed.
913 */
914static void cxlflash_put_minor(int minor)
915{
916 clear_bit(minor, cxlflash_minor);
917}
918
919/**
920 * cxlflash_release_chrdev() - release the character device for the host
921 * @cfg: Internal structure associated with the host.
922 */
923static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
924{
a834a36b
UK
925 device_unregister(cfg->chardev);
926 cfg->chardev = NULL;
927 cdev_del(&cfg->cdev);
928 cxlflash_put_minor(MINOR(cfg->cdev.dev));
929}
930
c21e0bbf
MO
931/**
932 * cxlflash_remove() - PCI entry point to tear down host
933 * @pdev: PCI device associated with the host.
934 *
323e3342
MO
935 * Safe to use as a cleanup in partially allocated/initialized state. Note that
936 * the reset_waitq is flushed as part of the stop/termination of user contexts.
c21e0bbf
MO
937 */
938static void cxlflash_remove(struct pci_dev *pdev)
939{
940 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
fb67d44d 941 struct device *dev = &pdev->dev;
c21e0bbf
MO
942 ulong lock_flags;
943
babf985d 944 if (!pci_is_enabled(pdev)) {
fb67d44d 945 dev_dbg(dev, "%s: Device is disabled\n", __func__);
babf985d
UK
946 return;
947 }
948
c21e0bbf
MO
949 /* If a Task Management Function is active, wait for it to complete
950 * before continuing with remove.
951 */
018d1dc9 952 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf 953 if (cfg->tmf_active)
018d1dc9
MO
954 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
955 !cfg->tmf_active,
956 cfg->tmf_slock);
957 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf 958
704c4b0d
UK
959 /* Notify AFU and wait for shutdown processing to complete */
960 notify_shutdown(cfg, true);
961
5cdac81a 962 cfg->state = STATE_FAILTERM;
65be2c79 963 cxlflash_stop_term_user_contexts(cfg);
5cdac81a 964
c21e0bbf 965 switch (cfg->init_state) {
a834a36b
UK
966 case INIT_STATE_CDEV:
967 cxlflash_release_chrdev(cfg);
c21e0bbf 968 case INIT_STATE_SCSI:
65be2c79 969 cxlflash_term_local_luns(cfg);
c21e0bbf 970 scsi_remove_host(cfg->host);
c21e0bbf 971 case INIT_STATE_AFU:
b45cdbaf 972 term_afu(cfg);
c21e0bbf 973 case INIT_STATE_PCI:
c21e0bbf
MO
974 pci_disable_device(pdev);
975 case INIT_STATE_NONE:
c21e0bbf 976 free_mem(cfg);
8b5b1e87 977 scsi_host_put(cfg->host);
c21e0bbf
MO
978 break;
979 }
980
fb67d44d 981 dev_dbg(dev, "%s: returning\n", __func__);
c21e0bbf
MO
982}
983
984/**
985 * alloc_mem() - allocates the AFU and its command pool
1284fb0c 986 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
987 *
988 * A partially allocated state remains on failure.
989 *
990 * Return:
991 * 0 on success
992 * -ENOMEM on failure to allocate memory
993 */
994static int alloc_mem(struct cxlflash_cfg *cfg)
995{
996 int rc = 0;
4392ba49 997 struct device *dev = &cfg->dev->dev;
c21e0bbf 998
696d0b0c 999 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
c21e0bbf
MO
1000 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1001 get_order(sizeof(struct afu)));
1002 if (unlikely(!cfg->afu)) {
4392ba49
MO
1003 dev_err(dev, "%s: cannot get %d free pages\n",
1004 __func__, get_order(sizeof(struct afu)));
c21e0bbf
MO
1005 rc = -ENOMEM;
1006 goto out;
1007 }
1008 cfg->afu->parent = cfg;
3065267a 1009 cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
c21e0bbf 1010 cfg->afu->afu_map = NULL;
c21e0bbf
MO
1011out:
1012 return rc;
1013}
1014
1015/**
1016 * init_pci() - initializes the host as a PCI device
1284fb0c 1017 * @cfg: Internal structure associated with the host.
c21e0bbf 1018 *
1284fb0c 1019 * Return: 0 on success, -errno on failure
c21e0bbf
MO
1020 */
1021static int init_pci(struct cxlflash_cfg *cfg)
1022{
1023 struct pci_dev *pdev = cfg->dev;
fb67d44d 1024 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
1025 int rc = 0;
1026
c21e0bbf
MO
1027 rc = pci_enable_device(pdev);
1028 if (rc || pci_channel_offline(pdev)) {
1029 if (pci_channel_offline(pdev)) {
1030 cxlflash_wait_for_pci_err_recovery(cfg);
1031 rc = pci_enable_device(pdev);
1032 }
1033
1034 if (rc) {
fb67d44d 1035 dev_err(dev, "%s: Cannot enable adapter\n", __func__);
c21e0bbf 1036 cxlflash_wait_for_pci_err_recovery(cfg);
961487e4 1037 goto out;
c21e0bbf
MO
1038 }
1039 }
1040
c21e0bbf 1041out:
fb67d44d 1042 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
c21e0bbf 1043 return rc;
c21e0bbf
MO
1044}
1045
1046/**
1047 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1284fb0c 1048 * @cfg: Internal structure associated with the host.
c21e0bbf 1049 *
1284fb0c 1050 * Return: 0 on success, -errno on failure
c21e0bbf
MO
1051 */
1052static int init_scsi(struct cxlflash_cfg *cfg)
1053{
1054 struct pci_dev *pdev = cfg->dev;
fb67d44d 1055 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
1056 int rc = 0;
1057
1058 rc = scsi_add_host(cfg->host, &pdev->dev);
1059 if (rc) {
fb67d44d 1060 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
c21e0bbf
MO
1061 goto out;
1062 }
1063
1064 scsi_scan_host(cfg->host);
1065
1066out:
fb67d44d 1067 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
c21e0bbf
MO
1068 return rc;
1069}
1070
1071/**
1072 * set_port_online() - transitions the specified host FC port to online state
1073 * @fc_regs: Top of MMIO region defined for specified port.
1074 *
1075 * The provided MMIO region must be mapped prior to call. Online state means
1076 * that the FC link layer has synced, completed the handshaking process, and
1077 * is ready for login to start.
1078 */
1786f4a0 1079static void set_port_online(__be64 __iomem *fc_regs)
c21e0bbf
MO
1080{
1081 u64 cmdcfg;
1082
1083 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1084 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
1085 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
1086 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1087}
1088
1089/**
1090 * set_port_offline() - transitions the specified host FC port to offline state
1091 * @fc_regs: Top of MMIO region defined for specified port.
1092 *
1093 * The provided MMIO region must be mapped prior to call.
1094 */
1786f4a0 1095static void set_port_offline(__be64 __iomem *fc_regs)
c21e0bbf
MO
1096{
1097 u64 cmdcfg;
1098
1099 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1100 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
1101 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
1102 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1103}
1104
1105/**
1106 * wait_port_online() - waits for the specified host FC port come online
1107 * @fc_regs: Top of MMIO region defined for specified port.
1108 * @delay_us: Number of microseconds to delay between reading port status.
1109 * @nretry: Number of cycles to retry reading port status.
1110 *
1111 * The provided MMIO region must be mapped prior to call. This will timeout
1112 * when the cable is not plugged in.
1113 *
1114 * Return:
1115 * TRUE (1) when the specified port is online
1116 * FALSE (0) when the specified port fails to come online after timeout
c21e0bbf 1117 */
fb67d44d 1118static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
c21e0bbf
MO
1119{
1120 u64 status;
1121
fb67d44d 1122 WARN_ON(delay_us < 1000);
c21e0bbf
MO
1123
1124 do {
1125 msleep(delay_us / 1000);
1126 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
05dab432
MO
1127 if (status == U64_MAX)
1128 nretry /= 2;
c21e0bbf
MO
1129 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
1130 nretry--);
1131
1132 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
1133}
1134
1135/**
1136 * wait_port_offline() - waits for the specified host FC port go offline
1137 * @fc_regs: Top of MMIO region defined for specified port.
1138 * @delay_us: Number of microseconds to delay between reading port status.
1139 * @nretry: Number of cycles to retry reading port status.
1140 *
1141 * The provided MMIO region must be mapped prior to call.
1142 *
1143 * Return:
1144 * TRUE (1) when the specified port is offline
1145 * FALSE (0) when the specified port fails to go offline after timeout
c21e0bbf 1146 */
fb67d44d 1147static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
c21e0bbf
MO
1148{
1149 u64 status;
1150
fb67d44d 1151 WARN_ON(delay_us < 1000);
c21e0bbf
MO
1152
1153 do {
1154 msleep(delay_us / 1000);
1155 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
05dab432
MO
1156 if (status == U64_MAX)
1157 nretry /= 2;
c21e0bbf
MO
1158 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1159 nretry--);
1160
1161 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1162}
1163
1164/**
1165 * afu_set_wwpn() - configures the WWPN for the specified host FC port
1166 * @afu: AFU associated with the host that owns the specified FC port.
1167 * @port: Port number being configured.
1168 * @fc_regs: Top of MMIO region defined for specified port.
1169 * @wwpn: The world-wide-port-number previously discovered for port.
1170 *
1171 * The provided MMIO region must be mapped prior to call. As part of the
1172 * sequence to configure the WWPN, the port is toggled offline and then back
1173 * online. This toggling action can cause this routine to delay up to a few
1174 * seconds. When configured to use the internal LUN feature of the AFU, a
1175 * failure to come online is overridden.
c21e0bbf 1176 */
f8013261
MO
1177static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1178 u64 wwpn)
c21e0bbf 1179{
fb67d44d
MO
1180 struct cxlflash_cfg *cfg = afu->parent;
1181 struct device *dev = &cfg->dev->dev;
1182
c21e0bbf 1183 set_port_offline(fc_regs);
c21e0bbf
MO
1184 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1185 FC_PORT_STATUS_RETRY_CNT)) {
fb67d44d
MO
1186 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
1187 __func__, port);
c21e0bbf
MO
1188 }
1189
f8013261 1190 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
964497b3 1191
c21e0bbf 1192 set_port_online(fc_regs);
c21e0bbf
MO
1193 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1194 FC_PORT_STATUS_RETRY_CNT)) {
fb67d44d
MO
1195 dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
1196 __func__, port);
c21e0bbf 1197 }
c21e0bbf
MO
1198}
1199
1200/**
1201 * afu_link_reset() - resets the specified host FC port
1202 * @afu: AFU associated with the host that owns the specified FC port.
1203 * @port: Port number being configured.
1204 * @fc_regs: Top of MMIO region defined for specified port.
1205 *
1206 * The provided MMIO region must be mapped prior to call. The sequence to
1207 * reset the port involves toggling it offline and then back online. This
1208 * action can cause this routine to delay up to a few seconds. An effort
1209 * is made to maintain link with the device by switching to host to use
1210 * the alternate port exclusively while the reset takes place.
1211 * failure to come online is overridden.
1212 */
1786f4a0 1213static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
c21e0bbf 1214{
fb67d44d
MO
1215 struct cxlflash_cfg *cfg = afu->parent;
1216 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
1217 u64 port_sel;
1218
1219 /* first switch the AFU to the other links, if any */
1220 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
4da74db0 1221 port_sel &= ~(1ULL << port);
c21e0bbf
MO
1222 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1223 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1224
1225 set_port_offline(fc_regs);
1226 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1227 FC_PORT_STATUS_RETRY_CNT))
fb67d44d
MO
1228 dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1229 __func__, port);
c21e0bbf
MO
1230
1231 set_port_online(fc_regs);
1232 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1233 FC_PORT_STATUS_RETRY_CNT))
fb67d44d
MO
1234 dev_err(dev, "%s: wait on port %d to go online timed out\n",
1235 __func__, port);
c21e0bbf
MO
1236
1237 /* switch back to include this port */
4da74db0 1238 port_sel |= (1ULL << port);
c21e0bbf
MO
1239 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1240 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1241
fb67d44d 1242 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
c21e0bbf
MO
1243}
1244
c21e0bbf
MO
1245/**
1246 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1247 * @afu: AFU associated with the host.
1248 */
1249static void afu_err_intr_init(struct afu *afu)
1250{
78ae028e 1251 struct cxlflash_cfg *cfg = afu->parent;
0aa14887 1252 __be64 __iomem *fc_port_regs;
c21e0bbf 1253 int i;
bfc0bab1 1254 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
c21e0bbf
MO
1255 u64 reg;
1256
1257 /* global async interrupts: AFU clears afu_ctrl on context exit
1258 * if async interrupts were sent to that context. This prevents
1259 * the AFU form sending further async interrupts when
1260 * there is
1261 * nobody to receive them.
1262 */
1263
1264 /* mask all */
1265 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
bfc0bab1
UK
1266 /* set LISN# to send and point to primary master context */
1267 reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
c21e0bbf
MO
1268
1269 if (afu->internal_lun)
1270 reg |= 1; /* Bit 63 indicates local lun */
1271 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1272 /* clear all */
1273 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1274 /* unmask bits that are of interest */
1275 /* note: afu can send an interrupt after this step */
1276 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1277 /* clear again in case a bit came on after previous clear but before */
1278 /* unmask */
1279 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1280
1281 /* Clear/Set internal lun bits */
0aa14887
MO
1282 fc_port_regs = get_fc_port_regs(cfg, 0);
1283 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
c21e0bbf
MO
1284 reg &= SISL_FC_INTERNAL_MASK;
1285 if (afu->internal_lun)
1286 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
0aa14887 1287 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
c21e0bbf
MO
1288
1289 /* now clear FC errors */
78ae028e 1290 for (i = 0; i < cfg->num_fc_ports; i++) {
0aa14887
MO
1291 fc_port_regs = get_fc_port_regs(cfg, i);
1292
1293 writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1294 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
c21e0bbf
MO
1295 }
1296
1297 /* sync interrupts for master's IOARRIN write */
1298 /* note that unlike asyncs, there can be no pending sync interrupts */
1299 /* at this time (this is a fresh context and master has not written */
1300 /* IOARRIN yet), so there is nothing to clear. */
1301
1302 /* set LISN#, it is always sent to the context that wrote IOARRIN */
3065267a 1303 for (i = 0; i < afu->num_hwqs; i++) {
bfc0bab1
UK
1304 hwq = get_hwq(afu, i);
1305
1306 writeq_be(SISL_MSI_SYNC_ERROR, &hwq->host_map->ctx_ctrl);
1307 writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
1308 }
c21e0bbf
MO
1309}
1310
1311/**
1312 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1313 * @irq: Interrupt number.
1314 * @data: Private data provided at interrupt registration, the AFU.
1315 *
1316 * Return: Always return IRQ_HANDLED.
1317 */
1318static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1319{
bfc0bab1
UK
1320 struct hwq *hwq = (struct hwq *)data;
1321 struct cxlflash_cfg *cfg = hwq->afu->parent;
fb67d44d 1322 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
1323 u64 reg;
1324 u64 reg_unmasked;
1325
bfc0bab1 1326 reg = readq_be(&hwq->host_map->intr_status);
c21e0bbf
MO
1327 reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1328
1329 if (reg_unmasked == 0UL) {
fb67d44d
MO
1330 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1331 __func__, reg);
c21e0bbf
MO
1332 goto cxlflash_sync_err_irq_exit;
1333 }
1334
fb67d44d
MO
1335 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1336 __func__, reg);
c21e0bbf 1337
bfc0bab1 1338 writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
c21e0bbf
MO
1339
1340cxlflash_sync_err_irq_exit:
c21e0bbf
MO
1341 return IRQ_HANDLED;
1342}
1343
1344/**
76a6ebbe
MO
1345 * process_hrrq() - process the read-response queue
1346 * @afu: AFU associated with the host.
f918b4a8 1347 * @doneq: Queue of commands harvested from the RRQ.
cba06e6d 1348 * @budget: Threshold of RRQ entries to process.
f918b4a8
MO
1349 *
1350 * This routine must be called holding the disabled RRQ spin lock.
c21e0bbf 1351 *
76a6ebbe 1352 * Return: The number of entries processed.
c21e0bbf 1353 */
bfc0bab1 1354static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
c21e0bbf 1355{
bfc0bab1 1356 struct afu *afu = hwq->afu;
c21e0bbf 1357 struct afu_cmd *cmd;
696d0b0c
MO
1358 struct sisl_ioasa *ioasa;
1359 struct sisl_ioarcb *ioarcb;
bfc0bab1 1360 bool toggle = hwq->toggle;
76a6ebbe 1361 int num_hrrq = 0;
c21e0bbf 1362 u64 entry,
bfc0bab1
UK
1363 *hrrq_start = hwq->hrrq_start,
1364 *hrrq_end = hwq->hrrq_end,
1365 *hrrq_curr = hwq->hrrq_curr;
c21e0bbf 1366
cba06e6d 1367 /* Process ready RRQ entries up to the specified budget (if any) */
c21e0bbf
MO
1368 while (true) {
1369 entry = *hrrq_curr;
1370
1371 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1372 break;
1373
696d0b0c
MO
1374 entry &= ~SISL_RESP_HANDLE_T_BIT;
1375
1376 if (afu_is_sq_cmd_mode(afu)) {
1377 ioasa = (struct sisl_ioasa *)entry;
1378 cmd = container_of(ioasa, struct afu_cmd, sa);
1379 } else {
1380 ioarcb = (struct sisl_ioarcb *)entry;
1381 cmd = container_of(ioarcb, struct afu_cmd, rcb);
1382 }
1383
f918b4a8 1384 list_add_tail(&cmd->queue, doneq);
c21e0bbf
MO
1385
1386 /* Advance to next entry or wrap and flip the toggle bit */
1387 if (hrrq_curr < hrrq_end)
1388 hrrq_curr++;
1389 else {
1390 hrrq_curr = hrrq_start;
1391 toggle ^= SISL_RESP_HANDLE_T_BIT;
1392 }
696d0b0c 1393
bfc0bab1 1394 atomic_inc(&hwq->hsq_credits);
76a6ebbe 1395 num_hrrq++;
cba06e6d
MO
1396
1397 if (budget > 0 && num_hrrq >= budget)
1398 break;
c21e0bbf
MO
1399 }
1400
bfc0bab1
UK
1401 hwq->hrrq_curr = hrrq_curr;
1402 hwq->toggle = toggle;
c21e0bbf 1403
76a6ebbe
MO
1404 return num_hrrq;
1405}
1406
f918b4a8
MO
1407/**
1408 * process_cmd_doneq() - process a queue of harvested RRQ commands
1409 * @doneq: Queue of completed commands.
1410 *
1411 * Note that upon return the queue can no longer be trusted.
1412 */
1413static void process_cmd_doneq(struct list_head *doneq)
1414{
1415 struct afu_cmd *cmd, *tmp;
1416
1417 WARN_ON(list_empty(doneq));
1418
1419 list_for_each_entry_safe(cmd, tmp, doneq, queue)
1420 cmd_complete(cmd);
1421}
1422
cba06e6d
MO
1423/**
1424 * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1425 * @irqpoll: IRQ poll structure associated with queue to poll.
1426 * @budget: Threshold of RRQ entries to process per poll.
1427 *
1428 * Return: The number of entries processed.
1429 */
1430static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1431{
bfc0bab1 1432 struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
cba06e6d
MO
1433 unsigned long hrrq_flags;
1434 LIST_HEAD(doneq);
1435 int num_entries = 0;
1436
bfc0bab1 1437 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
cba06e6d 1438
bfc0bab1 1439 num_entries = process_hrrq(hwq, &doneq, budget);
cba06e6d
MO
1440 if (num_entries < budget)
1441 irq_poll_complete(irqpoll);
1442
bfc0bab1 1443 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
cba06e6d
MO
1444
1445 process_cmd_doneq(&doneq);
1446 return num_entries;
1447}
1448
76a6ebbe
MO
1449/**
1450 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1451 * @irq: Interrupt number.
1452 * @data: Private data provided at interrupt registration, the AFU.
1453 *
f918b4a8 1454 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
76a6ebbe
MO
1455 */
1456static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1457{
bfc0bab1
UK
1458 struct hwq *hwq = (struct hwq *)data;
1459 struct afu *afu = hwq->afu;
f918b4a8
MO
1460 unsigned long hrrq_flags;
1461 LIST_HEAD(doneq);
1462 int num_entries = 0;
76a6ebbe 1463
bfc0bab1 1464 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
cba06e6d
MO
1465
1466 if (afu_is_irqpoll_enabled(afu)) {
bfc0bab1
UK
1467 irq_poll_sched(&hwq->irqpoll);
1468 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
cba06e6d
MO
1469 return IRQ_HANDLED;
1470 }
1471
bfc0bab1
UK
1472 num_entries = process_hrrq(hwq, &doneq, -1);
1473 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
f918b4a8
MO
1474
1475 if (num_entries == 0)
1476 return IRQ_NONE;
1477
1478 process_cmd_doneq(&doneq);
c21e0bbf
MO
1479 return IRQ_HANDLED;
1480}
1481
e2ef33fa
MO
1482/*
1483 * Asynchronous interrupt information table
1484 *
1485 * NOTE:
1486 * - Order matters here as this array is indexed by bit position.
1487 *
1488 * - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1489 * as complex and complains due to a lack of parentheses/braces.
1490 */
1491#define ASTATUS_FC(_a, _b, _c, _d) \
1492 { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1493
1494#define BUILD_SISL_ASTATUS_FC_PORT(_a) \
1495 ASTATUS_FC(_a, LINK_UP, "link up", 0), \
1496 ASTATUS_FC(_a, LINK_DN, "link down", 0), \
1497 ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \
1498 ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \
1499 ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1500 ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \
1501 ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \
1502 ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
1503
1504static const struct asyc_intr_info ainfo[] = {
1505 BUILD_SISL_ASTATUS_FC_PORT(1),
1506 BUILD_SISL_ASTATUS_FC_PORT(0),
1507 BUILD_SISL_ASTATUS_FC_PORT(3),
1508 BUILD_SISL_ASTATUS_FC_PORT(2)
1509};
1510
c21e0bbf
MO
1511/**
1512 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1513 * @irq: Interrupt number.
1514 * @data: Private data provided at interrupt registration, the AFU.
1515 *
1516 * Return: Always return IRQ_HANDLED.
1517 */
1518static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1519{
bfc0bab1
UK
1520 struct hwq *hwq = (struct hwq *)data;
1521 struct afu *afu = hwq->afu;
4392ba49
MO
1522 struct cxlflash_cfg *cfg = afu->parent;
1523 struct device *dev = &cfg->dev->dev;
c21e0bbf 1524 const struct asyc_intr_info *info;
1786f4a0 1525 struct sisl_global_map __iomem *global = &afu->afu_map->global;
0aa14887 1526 __be64 __iomem *fc_port_regs;
e2ef33fa 1527 u64 reg_unmasked;
c21e0bbf 1528 u64 reg;
e2ef33fa 1529 u64 bit;
c21e0bbf 1530 u8 port;
c21e0bbf 1531
c21e0bbf
MO
1532 reg = readq_be(&global->regs.aintr_status);
1533 reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1534
e2ef33fa 1535 if (unlikely(reg_unmasked == 0)) {
fb67d44d 1536 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
4392ba49 1537 __func__, reg);
c21e0bbf
MO
1538 goto out;
1539 }
1540
f15fbf8d 1541 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
c21e0bbf
MO
1542 writeq_be(reg_unmasked, &global->regs.aintr_clear);
1543
f15fbf8d 1544 /* Check each bit that is on */
e2ef33fa
MO
1545 for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
1546 if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
1547 WARN_ON_ONCE(1);
c21e0bbf 1548 continue;
e2ef33fa
MO
1549 }
1550
1551 info = &ainfo[bit];
1552 if (unlikely(info->status != 1ULL << bit)) {
1553 WARN_ON_ONCE(1);
1554 continue;
1555 }
c21e0bbf
MO
1556
1557 port = info->port;
0aa14887 1558 fc_port_regs = get_fc_port_regs(cfg, port);
c21e0bbf 1559
fb67d44d 1560 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
4392ba49 1561 __func__, port, info->desc,
0aa14887 1562 readq_be(&fc_port_regs[FC_STATUS / 8]));
c21e0bbf
MO
1563
1564 /*
f15fbf8d 1565 * Do link reset first, some OTHER errors will set FC_ERROR
c21e0bbf
MO
1566 * again if cleared before or w/o a reset
1567 */
1568 if (info->action & LINK_RESET) {
4392ba49
MO
1569 dev_err(dev, "%s: FC Port %d: resetting link\n",
1570 __func__, port);
c21e0bbf
MO
1571 cfg->lr_state = LINK_RESET_REQUIRED;
1572 cfg->lr_port = port;
1573 schedule_work(&cfg->work_q);
1574 }
1575
1576 if (info->action & CLR_FC_ERROR) {
0aa14887 1577 reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
c21e0bbf
MO
1578
1579 /*
f15fbf8d 1580 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
c21e0bbf
MO
1581 * should be the same and tracing one is sufficient.
1582 */
1583
fb67d44d 1584 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
4392ba49 1585 __func__, port, reg);
c21e0bbf 1586
0aa14887
MO
1587 writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1588 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
c21e0bbf 1589 }
ef51074a
MO
1590
1591 if (info->action & SCAN_HOST) {
1592 atomic_inc(&cfg->scan_host_needed);
1593 schedule_work(&cfg->work_q);
1594 }
c21e0bbf
MO
1595 }
1596
1597out:
c21e0bbf
MO
1598 return IRQ_HANDLED;
1599}
1600
c21e0bbf
MO
1601/**
1602 * read_vpd() - obtains the WWPNs from VPD
1284fb0c 1603 * @cfg: Internal structure associated with the host.
78ae028e 1604 * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs
c21e0bbf 1605 *
1284fb0c 1606 * Return: 0 on success, -errno on failure
c21e0bbf
MO
1607 */
1608static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1609{
fb67d44d
MO
1610 struct device *dev = &cfg->dev->dev;
1611 struct pci_dev *pdev = cfg->dev;
c21e0bbf
MO
1612 int rc = 0;
1613 int ro_start, ro_size, i, j, k;
1614 ssize_t vpd_size;
1615 char vpd_data[CXLFLASH_VPD_LEN];
1616 char tmp_buf[WWPN_BUF_LEN] = { 0 };
0d419130
MO
1617 const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *)
1618 cfg->dev_id->driver_data;
1619 const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED;
1620 const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
c21e0bbf
MO
1621
1622 /* Get the VPD data from the device */
29b4894f 1623 vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
c21e0bbf 1624 if (unlikely(vpd_size <= 0)) {
fb67d44d
MO
1625 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1626 __func__, vpd_size);
c21e0bbf
MO
1627 rc = -ENODEV;
1628 goto out;
1629 }
1630
1631 /* Get the read only section offset */
1632 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1633 PCI_VPD_LRDT_RO_DATA);
1634 if (unlikely(ro_start < 0)) {
fb67d44d 1635 dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
c21e0bbf
MO
1636 rc = -ENODEV;
1637 goto out;
1638 }
1639
1640 /* Get the read only section size, cap when extends beyond read VPD */
1641 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1642 j = ro_size;
1643 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1644 if (unlikely((i + j) > vpd_size)) {
fb67d44d
MO
1645 dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
1646 __func__, (i + j), vpd_size);
c21e0bbf
MO
1647 ro_size = vpd_size - i;
1648 }
1649
1650 /*
1651 * Find the offset of the WWPN tag within the read only
1652 * VPD data and validate the found field (partials are
1653 * no good to us). Convert the ASCII data to an integer
1654 * value. Note that we must copy to a temporary buffer
1655 * because the conversion service requires that the ASCII
1656 * string be terminated.
0d419130
MO
1657 *
1658 * Allow for WWPN not being found for all devices, setting
1659 * the returned WWPN to zero when not found. Notify with a
1660 * log error for cards that should have had WWPN keywords
1661 * in the VPD - cards requiring WWPN will not have their
1662 * ports programmed and operate in an undefined state.
c21e0bbf 1663 */
78ae028e 1664 for (k = 0; k < cfg->num_fc_ports; k++) {
c21e0bbf
MO
1665 j = ro_size;
1666 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1667
1668 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
0d419130
MO
1669 if (i < 0) {
1670 if (wwpn_vpd_required)
1671 dev_err(dev, "%s: Port %d WWPN not found\n",
1672 __func__, k);
1673 wwpn[k] = 0ULL;
1674 continue;
c21e0bbf
MO
1675 }
1676
1677 j = pci_vpd_info_field_size(&vpd_data[i]);
1678 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1679 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
fb67d44d
MO
1680 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1681 __func__, k);
c21e0bbf
MO
1682 rc = -ENODEV;
1683 goto out;
1684 }
1685
1686 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1687 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1688 if (unlikely(rc)) {
fb67d44d
MO
1689 dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1690 __func__, k);
c21e0bbf
MO
1691 rc = -ENODEV;
1692 goto out;
1693 }
78ae028e
MO
1694
1695 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
c21e0bbf
MO
1696 }
1697
1698out:
fb67d44d 1699 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
c21e0bbf
MO
1700 return rc;
1701}
1702
1703/**
15305514 1704 * init_pcr() - initialize the provisioning and control registers
1284fb0c 1705 * @cfg: Internal structure associated with the host.
c21e0bbf 1706 *
15305514
MO
1707 * Also sets up fast access to the mapped registers and initializes AFU
1708 * command fields that never change.
c21e0bbf 1709 */
15305514 1710static void init_pcr(struct cxlflash_cfg *cfg)
c21e0bbf
MO
1711{
1712 struct afu *afu = cfg->afu;
1786f4a0 1713 struct sisl_ctrl_map __iomem *ctrl_map;
bfc0bab1 1714 struct hwq *hwq;
29b4894f 1715 void *cookie;
c21e0bbf
MO
1716 int i;
1717
1718 for (i = 0; i < MAX_CONTEXT; i++) {
1719 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
f15fbf8d
MO
1720 /* Disrupt any clients that could be running */
1721 /* e.g. clients that survived a master restart */
c21e0bbf
MO
1722 writeq_be(0, &ctrl_map->rht_start);
1723 writeq_be(0, &ctrl_map->rht_cnt_id);
1724 writeq_be(0, &ctrl_map->ctx_cap);
1725 }
1726
bfc0bab1 1727 /* Copy frequently used fields into hwq */
3065267a 1728 for (i = 0; i < afu->num_hwqs; i++) {
bfc0bab1 1729 hwq = get_hwq(afu, i);
29b4894f 1730 cookie = hwq->ctx_cookie;
bfc0bab1 1731
29b4894f 1732 hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie);
bfc0bab1
UK
1733 hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
1734 hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
c21e0bbf 1735
bfc0bab1
UK
1736 /* Program the Endian Control for the master context */
1737 writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
1738 }
c21e0bbf
MO
1739}
1740
1741/**
1742 * init_global() - initialize AFU global registers
1284fb0c 1743 * @cfg: Internal structure associated with the host.
c21e0bbf 1744 */
15305514 1745static int init_global(struct cxlflash_cfg *cfg)
c21e0bbf
MO
1746{
1747 struct afu *afu = cfg->afu;
4392ba49 1748 struct device *dev = &cfg->dev->dev;
bfc0bab1
UK
1749 struct hwq *hwq;
1750 struct sisl_host_map __iomem *hmap;
0aa14887 1751 __be64 __iomem *fc_port_regs;
78ae028e 1752 u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */
c21e0bbf
MO
1753 int i = 0, num_ports = 0;
1754 int rc = 0;
1755 u64 reg;
1756
1757 rc = read_vpd(cfg, &wwpn[0]);
1758 if (rc) {
4392ba49 1759 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
c21e0bbf
MO
1760 goto out;
1761 }
1762
bfc0bab1 1763 /* Set up RRQ and SQ in HWQ for master issued cmds */
3065267a 1764 for (i = 0; i < afu->num_hwqs; i++) {
bfc0bab1
UK
1765 hwq = get_hwq(afu, i);
1766 hmap = hwq->host_map;
c21e0bbf 1767
bfc0bab1
UK
1768 writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
1769 writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
1770
1771 if (afu_is_sq_cmd_mode(afu)) {
1772 writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
1773 writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
1774 }
696d0b0c
MO
1775 }
1776
c21e0bbf
MO
1777 /* AFU configuration */
1778 reg = readq_be(&afu->afu_map->global.regs.afu_config);
1779 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1780 /* enable all auto retry options and control endianness */
1781 /* leave others at default: */
1782 /* CTX_CAP write protected, mbox_r does not clear on read and */
1783 /* checker on if dual afu */
1784 writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1785
f15fbf8d 1786 /* Global port select: select either port */
c21e0bbf 1787 if (afu->internal_lun) {
f15fbf8d 1788 /* Only use port 0 */
c21e0bbf 1789 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
78ae028e 1790 num_ports = 0;
c21e0bbf 1791 } else {
8fa4f177
MO
1792 writeq_be(PORT_MASK(cfg->num_fc_ports),
1793 &afu->afu_map->global.regs.afu_port_sel);
78ae028e 1794 num_ports = cfg->num_fc_ports;
c21e0bbf
MO
1795 }
1796
1797 for (i = 0; i < num_ports; i++) {
0aa14887
MO
1798 fc_port_regs = get_fc_port_regs(cfg, i);
1799
f15fbf8d 1800 /* Unmask all errors (but they are still masked at AFU) */
0aa14887 1801 writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
f15fbf8d 1802 /* Clear CRC error cnt & set a threshold */
0aa14887
MO
1803 (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1804 writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
c21e0bbf 1805
f15fbf8d 1806 /* Set WWPNs. If already programmed, wwpn[i] is 0 */
f8013261 1807 if (wwpn[i] != 0)
0aa14887 1808 afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
c21e0bbf
MO
1809 /* Programming WWPN back to back causes additional
1810 * offline/online transitions and a PLOGI
1811 */
1812 msleep(100);
c21e0bbf
MO
1813 }
1814
f15fbf8d
MO
1815 /* Set up master's own CTX_CAP to allow real mode, host translation */
1816 /* tables, afu cmds and read/write GSCSI cmds. */
c21e0bbf 1817 /* First, unlock ctx_cap write by reading mbox */
3065267a 1818 for (i = 0; i < afu->num_hwqs; i++) {
bfc0bab1
UK
1819 hwq = get_hwq(afu, i);
1820
1821 (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */
1822 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1823 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1824 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1825 &hwq->ctrl_map->ctx_cap);
1826 }
3223c01a
MO
1827
1828 /*
1829 * Determine write-same unmap support for host by evaluating the unmap
1830 * sector support bit of the context control register associated with
1831 * the primary hardware queue. Note that while this status is reflected
1832 * in a context register, the outcome can be assumed to be host-wide.
1833 */
1834 hwq = get_hwq(afu, PRIMARY_HWQ);
1835 reg = readq_be(&hwq->host_map->ctx_ctrl);
1836 if (reg & SISL_CTX_CTRL_UNMAP_SECTOR)
1837 cfg->ws_unmap = true;
1838
f15fbf8d 1839 /* Initialize heartbeat */
c21e0bbf 1840 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
c21e0bbf
MO
1841out:
1842 return rc;
1843}
1844
1845/**
1846 * start_afu() - initializes and starts the AFU
1284fb0c 1847 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
1848 */
1849static int start_afu(struct cxlflash_cfg *cfg)
1850{
1851 struct afu *afu = cfg->afu;
fb67d44d 1852 struct device *dev = &cfg->dev->dev;
bfc0bab1 1853 struct hwq *hwq;
c21e0bbf 1854 int rc = 0;
bfc0bab1 1855 int i;
c21e0bbf 1856
c21e0bbf
MO
1857 init_pcr(cfg);
1858
bfc0bab1 1859 /* Initialize each HWQ */
3065267a 1860 for (i = 0; i < afu->num_hwqs; i++) {
bfc0bab1 1861 hwq = get_hwq(afu, i);
c21e0bbf 1862
bfc0bab1
UK
1863 /* After an AFU reset, RRQ entries are stale, clear them */
1864 memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
696d0b0c 1865
bfc0bab1
UK
1866 /* Initialize RRQ pointers */
1867 hwq->hrrq_start = &hwq->rrq_entry[0];
1868 hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
1869 hwq->hrrq_curr = hwq->hrrq_start;
1870 hwq->toggle = 1;
66ea9bcc
UK
1871
1872 /* Initialize spin locks */
bfc0bab1 1873 spin_lock_init(&hwq->hrrq_slock);
66ea9bcc 1874 spin_lock_init(&hwq->hsq_slock);
696d0b0c 1875
bfc0bab1
UK
1876 /* Initialize SQ */
1877 if (afu_is_sq_cmd_mode(afu)) {
1878 memset(&hwq->sq, 0, sizeof(hwq->sq));
1879 hwq->hsq_start = &hwq->sq[0];
1880 hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
1881 hwq->hsq_curr = hwq->hsq_start;
1882
bfc0bab1
UK
1883 atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
1884 }
1885
1886 /* Initialize IRQ poll */
1887 if (afu_is_irqpoll_enabled(afu))
1888 irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
1889 cxlflash_irqpoll);
1890
1891 }
cba06e6d 1892
c21e0bbf
MO
1893 rc = init_global(cfg);
1894
fb67d44d 1895 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
c21e0bbf
MO
1896 return rc;
1897}
1898
1899/**
9526f360 1900 * init_intr() - setup interrupt handlers for the master context
1284fb0c 1901 * @cfg: Internal structure associated with the host.
bfc0bab1 1902 * @hwq: Hardware queue to initialize.
c21e0bbf 1903 *
1284fb0c 1904 * Return: 0 on success, -errno on failure
c21e0bbf 1905 */
9526f360 1906static enum undo_level init_intr(struct cxlflash_cfg *cfg,
bfc0bab1 1907 struct hwq *hwq)
c21e0bbf 1908{
9526f360 1909 struct device *dev = &cfg->dev->dev;
ee9f9eea 1910 void *ctx = hwq->ctx_cookie;
c21e0bbf 1911 int rc = 0;
9526f360 1912 enum undo_level level = UNDO_NOOP;
bfc0bab1 1913 bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
77ee1667 1914 int num_irqs = hwq->num_irqs;
c21e0bbf 1915
29b4894f 1916 rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs);
c21e0bbf 1917 if (unlikely(rc)) {
fb67d44d 1918 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
c21e0bbf 1919 __func__, rc);
9526f360 1920 level = UNDO_NOOP;
c21e0bbf
MO
1921 goto out;
1922 }
1923
29b4894f
MO
1924 rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
1925 "SISL_MSI_SYNC_ERROR");
c21e0bbf 1926 if (unlikely(rc <= 0)) {
fb67d44d 1927 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
c21e0bbf
MO
1928 level = FREE_IRQ;
1929 goto out;
1930 }
1931
29b4894f
MO
1932 rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
1933 "SISL_MSI_RRQ_UPDATED");
c21e0bbf 1934 if (unlikely(rc <= 0)) {
fb67d44d 1935 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
c21e0bbf
MO
1936 level = UNMAP_ONE;
1937 goto out;
1938 }
1939
bfc0bab1
UK
1940 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
1941 if (!is_primary_hwq)
1942 goto out;
1943
29b4894f
MO
1944 rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
1945 "SISL_MSI_ASYNC_ERROR");
c21e0bbf 1946 if (unlikely(rc <= 0)) {
fb67d44d 1947 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
c21e0bbf
MO
1948 level = UNMAP_TWO;
1949 goto out;
1950 }
9526f360
MK
1951out:
1952 return level;
1953}
c21e0bbf 1954
9526f360
MK
1955/**
1956 * init_mc() - create and register as the master context
1957 * @cfg: Internal structure associated with the host.
bfc0bab1 1958 * index: HWQ Index of the master context.
9526f360
MK
1959 *
1960 * Return: 0 on success, -errno on failure
1961 */
bfc0bab1 1962static int init_mc(struct cxlflash_cfg *cfg, u32 index)
9526f360 1963{
ee9f9eea 1964 void *ctx;
9526f360 1965 struct device *dev = &cfg->dev->dev;
bfc0bab1 1966 struct hwq *hwq = get_hwq(cfg->afu, index);
9526f360 1967 int rc = 0;
77ee1667 1968 int num_irqs;
9526f360
MK
1969 enum undo_level level;
1970
bfc0bab1
UK
1971 hwq->afu = cfg->afu;
1972 hwq->index = index;
a002bf83 1973 INIT_LIST_HEAD(&hwq->pending_cmds);
bfc0bab1 1974
77ee1667 1975 if (index == PRIMARY_HWQ) {
29b4894f 1976 ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie);
77ee1667
UK
1977 num_irqs = 3;
1978 } else {
29b4894f 1979 ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie);
77ee1667
UK
1980 num_irqs = 2;
1981 }
4a275afe 1982 if (IS_ERR_OR_NULL(ctx)) {
9526f360 1983 rc = -ENOMEM;
bfc0bab1 1984 goto err1;
9526f360 1985 }
bfc0bab1 1986
ee9f9eea
UK
1987 WARN_ON(hwq->ctx_cookie);
1988 hwq->ctx_cookie = ctx;
77ee1667 1989 hwq->num_irqs = num_irqs;
9526f360
MK
1990
1991 /* Set it up as a master with the CXL */
29b4894f 1992 cfg->ops->set_master(ctx);
9526f360 1993
bfc0bab1
UK
1994 /* Reset AFU when initializing primary context */
1995 if (index == PRIMARY_HWQ) {
29b4894f 1996 rc = cfg->ops->afu_reset(ctx);
bfc0bab1
UK
1997 if (unlikely(rc)) {
1998 dev_err(dev, "%s: AFU reset failed rc=%d\n",
1999 __func__, rc);
2000 goto err1;
2001 }
9526f360
MK
2002 }
2003
bfc0bab1 2004 level = init_intr(cfg, hwq);
9526f360 2005 if (unlikely(level)) {
fb67d44d 2006 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
bfc0bab1 2007 goto err2;
9526f360 2008 }
c21e0bbf 2009
29b4894f
MO
2010 /* Finally, activate the context by starting it */
2011 rc = cfg->ops->start_context(hwq->ctx_cookie);
c21e0bbf
MO
2012 if (unlikely(rc)) {
2013 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
2014 level = UNMAP_THREE;
bfc0bab1 2015 goto err2;
c21e0bbf 2016 }
bfc0bab1
UK
2017
2018out:
fb67d44d 2019 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
c21e0bbf 2020 return rc;
bfc0bab1
UK
2021err2:
2022 term_intr(cfg, level, index);
2023 if (index != PRIMARY_HWQ)
29b4894f 2024 cfg->ops->release_context(ctx);
bfc0bab1 2025err1:
ee9f9eea 2026 hwq->ctx_cookie = NULL;
bfc0bab1 2027 goto out;
c21e0bbf
MO
2028}
2029
56518072
MO
2030/**
2031 * get_num_afu_ports() - determines and configures the number of AFU ports
2032 * @cfg: Internal structure associated with the host.
2033 *
2034 * This routine determines the number of AFU ports by converting the global
2035 * port selection mask. The converted value is only valid following an AFU
2036 * reset (explicit or power-on). This routine must be invoked shortly after
2037 * mapping as other routines are dependent on the number of ports during the
2038 * initialization sequence.
2039 *
2040 * To support legacy AFUs that might not have reflected an initial global
2041 * port mask (value read is 0), default to the number of ports originally
2042 * supported by the cxlflash driver (2) before hardware with other port
2043 * offerings was introduced.
2044 */
2045static void get_num_afu_ports(struct cxlflash_cfg *cfg)
2046{
2047 struct afu *afu = cfg->afu;
2048 struct device *dev = &cfg->dev->dev;
2049 u64 port_mask;
2050 int num_fc_ports = LEGACY_FC_PORTS;
2051
2052 port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
2053 if (port_mask != 0ULL)
2054 num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
2055
2056 dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
2057 __func__, port_mask, num_fc_ports);
2058
2059 cfg->num_fc_ports = num_fc_ports;
2060 cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
2061}
2062
c21e0bbf
MO
2063/**
2064 * init_afu() - setup as master context and start AFU
1284fb0c 2065 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
2066 *
2067 * This routine is a higher level of control for configuring the
2068 * AFU on probe and reset paths.
2069 *
1284fb0c 2070 * Return: 0 on success, -errno on failure
c21e0bbf
MO
2071 */
2072static int init_afu(struct cxlflash_cfg *cfg)
2073{
2074 u64 reg;
2075 int rc = 0;
2076 struct afu *afu = cfg->afu;
2077 struct device *dev = &cfg->dev->dev;
bfc0bab1
UK
2078 struct hwq *hwq;
2079 int i;
c21e0bbf 2080
29b4894f 2081 cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true);
5cdac81a 2082
3065267a
MO
2083 afu->num_hwqs = afu->desired_hwqs;
2084 for (i = 0; i < afu->num_hwqs; i++) {
bfc0bab1
UK
2085 rc = init_mc(cfg, i);
2086 if (rc) {
2087 dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
2088 __func__, rc, i);
2089 goto err1;
2090 }
c21e0bbf
MO
2091 }
2092
bfc0bab1
UK
2093 /* Map the entire MMIO space of the AFU using the first context */
2094 hwq = get_hwq(afu, PRIMARY_HWQ);
29b4894f 2095 afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie);
c21e0bbf 2096 if (!afu->afu_map) {
29b4894f 2097 dev_err(dev, "%s: psa_map failed\n", __func__);
ee3491ba 2098 rc = -ENOMEM;
c21e0bbf
MO
2099 goto err1;
2100 }
2101
e5ce067b
MO
2102 /* No byte reverse on reading afu_version or string will be backwards */
2103 reg = readq(&afu->afu_map->global.regs.afu_version);
2104 memcpy(afu->version, &reg, sizeof(reg));
c21e0bbf
MO
2105 afu->interface_version =
2106 readq_be(&afu->afu_map->global.regs.interface_version);
e5ce067b 2107 if ((afu->interface_version + 1) == 0) {
fb67d44d
MO
2108 dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
2109 "interface version %016llx\n", afu->version,
e5ce067b
MO
2110 afu->interface_version);
2111 rc = -EINVAL;
0df5bef7 2112 goto err1;
ee3491ba
MO
2113 }
2114
696d0b0c
MO
2115 if (afu_is_sq_cmd_mode(afu)) {
2116 afu->send_cmd = send_cmd_sq;
2117 afu->context_reset = context_reset_sq;
2118 } else {
2119 afu->send_cmd = send_cmd_ioarrin;
2120 afu->context_reset = context_reset_ioarrin;
2121 }
48b4be36 2122
fb67d44d
MO
2123 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
2124 afu->version, afu->interface_version);
c21e0bbf 2125
56518072
MO
2126 get_num_afu_ports(cfg);
2127
c21e0bbf
MO
2128 rc = start_afu(cfg);
2129 if (rc) {
fb67d44d 2130 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
0df5bef7 2131 goto err1;
c21e0bbf
MO
2132 }
2133
2134 afu_err_intr_init(cfg->afu);
3065267a 2135 for (i = 0; i < afu->num_hwqs; i++) {
bfc0bab1
UK
2136 hwq = get_hwq(afu, i);
2137
bfc0bab1
UK
2138 hwq->room = readq_be(&hwq->host_map->cmd_room);
2139 }
c21e0bbf 2140
2cb79266
MO
2141 /* Restore the LUN mappings */
2142 cxlflash_restore_luntable(cfg);
ee3491ba 2143out:
fb67d44d 2144 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
c21e0bbf 2145 return rc;
ee3491ba 2146
ee3491ba 2147err1:
3065267a 2148 for (i = afu->num_hwqs - 1; i >= 0; i--) {
bfc0bab1
UK
2149 term_intr(cfg, UNMAP_THREE, i);
2150 term_mc(cfg, i);
2151 }
ee3491ba 2152 goto out;
c21e0bbf
MO
2153}
2154
0b09e711
UK
2155/**
2156 * afu_reset() - resets the AFU
2157 * @cfg: Internal structure associated with the host.
2158 *
2159 * Return: 0 on success, -errno on failure
2160 */
2161static int afu_reset(struct cxlflash_cfg *cfg)
2162{
2163 struct device *dev = &cfg->dev->dev;
2164 int rc = 0;
2165
2166 /* Stop the context before the reset. Since the context is
2167 * no longer available restart it after the reset is complete
2168 */
2169 term_afu(cfg);
2170
2171 rc = init_afu(cfg);
2172
2173 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2174 return rc;
2175}
2176
2177/**
2178 * drain_ioctls() - wait until all currently executing ioctls have completed
2179 * @cfg: Internal structure associated with the host.
2180 *
2181 * Obtain write access to read/write semaphore that wraps ioctl
2182 * handling to 'drain' ioctls currently executing.
2183 */
2184static void drain_ioctls(struct cxlflash_cfg *cfg)
2185{
2186 down_write(&cfg->ioctl_rwsem);
2187 up_write(&cfg->ioctl_rwsem);
2188}
2189
2190/**
2191 * cxlflash_async_reset_host() - asynchronous host reset handler
2192 * @data: Private data provided while scheduling reset.
2193 * @cookie: Cookie that can be used for checkpointing.
2194 */
2195static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
2196{
2197 struct cxlflash_cfg *cfg = data;
2198 struct device *dev = &cfg->dev->dev;
2199 int rc = 0;
2200
2201 if (cfg->state != STATE_RESET) {
2202 dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
2203 __func__, cfg->state);
2204 goto out;
2205 }
2206
2207 drain_ioctls(cfg);
2208 cxlflash_mark_contexts_error(cfg);
2209 rc = afu_reset(cfg);
2210 if (rc)
2211 cfg->state = STATE_FAILTERM;
2212 else
2213 cfg->state = STATE_NORMAL;
2214 wake_up_all(&cfg->reset_waitq);
2215
2216out:
2217 scsi_unblock_requests(cfg->host);
2218}
2219
2220/**
2221 * cxlflash_schedule_async_reset() - schedule an asynchronous host reset
2222 * @cfg: Internal structure associated with the host.
2223 */
2224static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
2225{
2226 struct device *dev = &cfg->dev->dev;
2227
2228 if (cfg->state != STATE_NORMAL) {
2229 dev_dbg(dev, "%s: Not performing reset state=%d\n",
2230 __func__, cfg->state);
2231 return;
2232 }
2233
2234 cfg->state = STATE_RESET;
2235 scsi_block_requests(cfg->host);
2236 cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
2237 cfg);
2238}
2239
c21e0bbf 2240/**
cf243027 2241 * send_afu_cmd() - builds and sends an internal AFU command
c21e0bbf 2242 * @afu: AFU associated with the host.
cf243027 2243 * @rcb: Pre-populated IOARCB describing command to send.
c21e0bbf 2244 *
cf243027
MO
2245 * The AFU can only take one internal AFU command at a time. This limitation is
2246 * enforced by using a mutex to provide exclusive access to the AFU during the
2247 * operation. This design point requires calling threads to not be on interrupt
2248 * context due to the possibility of sleeping during concurrent AFU operations.
c21e0bbf 2249 *
cf243027
MO
2250 * The command status is optionally passed back to the caller when the caller
2251 * populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
5cdac81a 2252 *
c21e0bbf 2253 * Return:
539d890c 2254 * 0 on success, -errno on failure
c21e0bbf 2255 */
cf243027 2256static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
c21e0bbf 2257{
5cdac81a 2258 struct cxlflash_cfg *cfg = afu->parent;
4392ba49 2259 struct device *dev = &cfg->dev->dev;
c21e0bbf 2260 struct afu_cmd *cmd = NULL;
bfc0bab1 2261 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
350bb478 2262 char *buf = NULL;
c21e0bbf 2263 int rc = 0;
a96851d3 2264 int nretry = 0;
c21e0bbf
MO
2265 static DEFINE_MUTEX(sync_active);
2266
5cdac81a 2267 if (cfg->state != STATE_NORMAL) {
fb67d44d
MO
2268 dev_dbg(dev, "%s: Sync not required state=%u\n",
2269 __func__, cfg->state);
5cdac81a
MO
2270 return 0;
2271 }
2272
c21e0bbf 2273 mutex_lock(&sync_active);
de01283b 2274 atomic_inc(&afu->cmds_active);
a1ea04b3 2275 buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
350bb478
MO
2276 if (unlikely(!buf)) {
2277 dev_err(dev, "%s: no memory for command\n", __func__);
539d890c 2278 rc = -ENOMEM;
c21e0bbf
MO
2279 goto out;
2280 }
2281
350bb478 2282 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
a96851d3
UK
2283
2284retry:
a1ea04b3 2285 memset(cmd, 0, sizeof(*cmd));
cf243027 2286 memcpy(&cmd->rcb, rcb, sizeof(*rcb));
a1ea04b3 2287 INIT_LIST_HEAD(&cmd->queue);
350bb478 2288 init_completion(&cmd->cevent);
350bb478 2289 cmd->parent = afu;
bfc0bab1 2290 cmd->hwq_index = hwq->index;
bfc0bab1 2291 cmd->rcb.ctx_id = hwq->ctx_hndl;
c21e0bbf 2292
cf243027
MO
2293 dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
2294 __func__, afu, cmd, cmd->rcb.cdb[0], nretry);
c21e0bbf 2295
48b4be36 2296 rc = afu->send_cmd(afu, cmd);
539d890c
UK
2297 if (unlikely(rc)) {
2298 rc = -ENOBUFS;
c21e0bbf 2299 goto out;
539d890c 2300 }
c21e0bbf 2301
9ba848ac 2302 rc = wait_resp(afu, cmd);
a1ea04b3
UK
2303 switch (rc) {
2304 case -ETIMEDOUT:
a96851d3 2305 rc = afu->context_reset(hwq);
a1ea04b3
UK
2306 if (rc) {
2307 cxlflash_schedule_async_reset(cfg);
2308 break;
2309 }
2310 /* fall through to retry */
2311 case -EAGAIN:
2312 if (++nretry < 2)
a96851d3 2313 goto retry;
a1ea04b3
UK
2314 /* fall through to exit */
2315 default:
2316 break;
a96851d3
UK
2317 }
2318
cf243027
MO
2319 if (rcb->ioasa)
2320 *rcb->ioasa = cmd->sa;
c21e0bbf 2321out:
de01283b 2322 atomic_dec(&afu->cmds_active);
c21e0bbf 2323 mutex_unlock(&sync_active);
350bb478 2324 kfree(buf);
fb67d44d 2325 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
c21e0bbf
MO
2326 return rc;
2327}
2328
cf243027
MO
2329/**
2330 * cxlflash_afu_sync() - builds and sends an AFU sync command
2331 * @afu: AFU associated with the host.
2332 * @ctx: Identifies context requesting sync.
2333 * @res: Identifies resource requesting sync.
2334 * @mode: Type of sync to issue (lightweight, heavyweight, global).
2335 *
2336 * AFU sync operations are only necessary and allowed when the device is
2337 * operating normally. When not operating normally, sync requests can occur as
2338 * part of cleaning up resources associated with an adapter prior to removal.
2339 * In this scenario, these requests are simply ignored (safe due to the AFU
2340 * going away).
2341 *
2342 * Return:
2343 * 0 on success, -errno on failure
2344 */
2345int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
2346{
2347 struct cxlflash_cfg *cfg = afu->parent;
2348 struct device *dev = &cfg->dev->dev;
2349 struct sisl_ioarcb rcb = { 0 };
2350
2351 dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
2352 __func__, afu, ctx, res, mode);
2353
2354 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
2355 rcb.msi = SISL_MSI_RRQ_UPDATED;
2356 rcb.timeout = MC_AFU_SYNC_TIMEOUT;
2357
2358 rcb.cdb[0] = SISL_AFU_CMD_SYNC;
2359 rcb.cdb[1] = mode;
2360 put_unaligned_be16(ctx, &rcb.cdb[2]);
2361 put_unaligned_be32(res, &rcb.cdb[4]);
2362
2363 return send_afu_cmd(afu, &rcb);
2364}
2365
7c4c41f1
UK
2366/**
2367 * cxlflash_eh_abort_handler() - abort a SCSI command
2368 * @scp: SCSI command to abort.
2369 *
2370 * CXL Flash devices do not support a single command abort. Reset the context
2371 * as per SISLite specification. Flush any pending commands in the hardware
2372 * queue before the reset.
2373 *
2374 * Return: SUCCESS/FAILED as defined in scsi/scsi.h
2375 */
2376static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
2377{
2378 int rc = FAILED;
2379 struct Scsi_Host *host = scp->device->host;
2380 struct cxlflash_cfg *cfg = shost_priv(host);
2381 struct afu_cmd *cmd = sc_to_afuc(scp);
2382 struct device *dev = &cfg->dev->dev;
2383 struct afu *afu = cfg->afu;
2384 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
2385
2386 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2387 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2388 scp->device->channel, scp->device->id, scp->device->lun,
2389 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2390 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2391 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2392 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2393
2394 /* When the state is not normal, another reset/reload is in progress.
2395 * Return failed and the mid-layer will invoke host reset handler.
2396 */
2397 if (cfg->state != STATE_NORMAL) {
2398 dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
2399 __func__, cfg->state);
2400 goto out;
2401 }
2402
2403 rc = afu->context_reset(hwq);
2404 if (unlikely(rc))
2405 goto out;
2406
2407 rc = SUCCESS;
2408
2409out:
2410 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2411 return rc;
2412}
2413
15305514
MO
2414/**
2415 * cxlflash_eh_device_reset_handler() - reset a single LUN
2416 * @scp: SCSI command to send.
2417 *
2418 * Return:
2419 * SUCCESS as defined in scsi/scsi.h
2420 * FAILED as defined in scsi/scsi.h
2421 */
2422static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
2423{
2424 int rc = SUCCESS;
32abbeda
MO
2425 struct scsi_device *sdev = scp->device;
2426 struct Scsi_Host *host = sdev->host;
fb67d44d
MO
2427 struct cxlflash_cfg *cfg = shost_priv(host);
2428 struct device *dev = &cfg->dev->dev;
15305514
MO
2429 int rcr = 0;
2430
5a4d9d77
MO
2431 dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__,
2432 host->host_no, sdev->channel, sdev->id, sdev->lun);
ed486daa 2433retry:
15305514
MO
2434 switch (cfg->state) {
2435 case STATE_NORMAL:
32abbeda 2436 rcr = send_tmf(cfg, sdev, TMF_LUN_RESET);
15305514
MO
2437 if (unlikely(rcr))
2438 rc = FAILED;
2439 break;
2440 case STATE_RESET:
2441 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
ed486daa 2442 goto retry;
15305514
MO
2443 default:
2444 rc = FAILED;
2445 break;
2446 }
2447
fb67d44d 2448 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
15305514
MO
2449 return rc;
2450}
2451
2452/**
2453 * cxlflash_eh_host_reset_handler() - reset the host adapter
2454 * @scp: SCSI command from stack identifying host.
2455 *
1d3324c3
MO
2456 * Following a reset, the state is evaluated again in case an EEH occurred
2457 * during the reset. In such a scenario, the host reset will either yield
2458 * until the EEH recovery is complete or return success or failure based
2459 * upon the current device state.
2460 *
15305514
MO
2461 * Return:
2462 * SUCCESS as defined in scsi/scsi.h
2463 * FAILED as defined in scsi/scsi.h
2464 */
2465static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2466{
2467 int rc = SUCCESS;
2468 int rcr = 0;
2469 struct Scsi_Host *host = scp->device->host;
fb67d44d
MO
2470 struct cxlflash_cfg *cfg = shost_priv(host);
2471 struct device *dev = &cfg->dev->dev;
15305514 2472
5a4d9d77 2473 dev_dbg(dev, "%s: %d\n", __func__, host->host_no);
15305514
MO
2474
2475 switch (cfg->state) {
2476 case STATE_NORMAL:
2477 cfg->state = STATE_RESET;
f411396d 2478 drain_ioctls(cfg);
15305514
MO
2479 cxlflash_mark_contexts_error(cfg);
2480 rcr = afu_reset(cfg);
2481 if (rcr) {
2482 rc = FAILED;
2483 cfg->state = STATE_FAILTERM;
2484 } else
2485 cfg->state = STATE_NORMAL;
2486 wake_up_all(&cfg->reset_waitq);
1d3324c3
MO
2487 ssleep(1);
2488 /* fall through */
15305514
MO
2489 case STATE_RESET:
2490 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2491 if (cfg->state == STATE_NORMAL)
2492 break;
2493 /* fall through */
2494 default:
2495 rc = FAILED;
2496 break;
2497 }
2498
fb67d44d 2499 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
15305514
MO
2500 return rc;
2501}
2502
2503/**
2504 * cxlflash_change_queue_depth() - change the queue depth for the device
2505 * @sdev: SCSI device destined for queue depth change.
2506 * @qdepth: Requested queue depth value to set.
2507 *
2508 * The requested queue depth is capped to the maximum supported value.
2509 *
2510 * Return: The actual queue depth set.
2511 */
2512static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2513{
2514
2515 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2516 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2517
2518 scsi_change_queue_depth(sdev, qdepth);
2519 return sdev->queue_depth;
2520}
2521
2522/**
2523 * cxlflash_show_port_status() - queries and presents the current port status
e0f01a21 2524 * @port: Desired port for status reporting.
3b225cd3 2525 * @cfg: Internal structure associated with the host.
15305514
MO
2526 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2527 *
78ae028e 2528 * Return: The size of the ASCII string returned in @buf or -EINVAL.
15305514 2529 */
3b225cd3
MO
2530static ssize_t cxlflash_show_port_status(u32 port,
2531 struct cxlflash_cfg *cfg,
2532 char *buf)
15305514 2533{
78ae028e 2534 struct device *dev = &cfg->dev->dev;
15305514 2535 char *disp_status;
15305514 2536 u64 status;
0aa14887 2537 __be64 __iomem *fc_port_regs;
15305514 2538
78ae028e
MO
2539 WARN_ON(port >= MAX_FC_PORTS);
2540
2541 if (port >= cfg->num_fc_ports) {
2542 dev_info(dev, "%s: Port %d not supported on this card.\n",
2543 __func__, port);
2544 return -EINVAL;
2545 }
15305514 2546
0aa14887
MO
2547 fc_port_regs = get_fc_port_regs(cfg, port);
2548 status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
e0f01a21 2549 status &= FC_MTIP_STATUS_MASK;
15305514
MO
2550
2551 if (status == FC_MTIP_STATUS_ONLINE)
2552 disp_status = "online";
2553 else if (status == FC_MTIP_STATUS_OFFLINE)
2554 disp_status = "offline";
2555 else
2556 disp_status = "unknown";
2557
e0f01a21
MO
2558 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2559}
2560
2561/**
2562 * port0_show() - queries and presents the current status of port 0
2563 * @dev: Generic device associated with the host owning the port.
2564 * @attr: Device attribute representing the port.
2565 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2566 *
2567 * Return: The size of the ASCII string returned in @buf.
2568 */
2569static ssize_t port0_show(struct device *dev,
2570 struct device_attribute *attr,
2571 char *buf)
2572{
fb67d44d 2573 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
e0f01a21 2574
3b225cd3 2575 return cxlflash_show_port_status(0, cfg, buf);
15305514
MO
2576}
2577
2578/**
e0f01a21
MO
2579 * port1_show() - queries and presents the current status of port 1
2580 * @dev: Generic device associated with the host owning the port.
2581 * @attr: Device attribute representing the port.
2582 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2583 *
2584 * Return: The size of the ASCII string returned in @buf.
2585 */
2586static ssize_t port1_show(struct device *dev,
2587 struct device_attribute *attr,
2588 char *buf)
2589{
fb67d44d 2590 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
e0f01a21 2591
3b225cd3 2592 return cxlflash_show_port_status(1, cfg, buf);
e0f01a21
MO
2593}
2594
1cd7fabc
MO
2595/**
2596 * port2_show() - queries and presents the current status of port 2
2597 * @dev: Generic device associated with the host owning the port.
2598 * @attr: Device attribute representing the port.
2599 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2600 *
2601 * Return: The size of the ASCII string returned in @buf.
2602 */
2603static ssize_t port2_show(struct device *dev,
2604 struct device_attribute *attr,
2605 char *buf)
2606{
2607 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2608
2609 return cxlflash_show_port_status(2, cfg, buf);
2610}
2611
2612/**
2613 * port3_show() - queries and presents the current status of port 3
2614 * @dev: Generic device associated with the host owning the port.
2615 * @attr: Device attribute representing the port.
2616 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2617 *
2618 * Return: The size of the ASCII string returned in @buf.
2619 */
2620static ssize_t port3_show(struct device *dev,
2621 struct device_attribute *attr,
2622 char *buf)
2623{
2624 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2625
2626 return cxlflash_show_port_status(3, cfg, buf);
2627}
2628
e0f01a21
MO
2629/**
2630 * lun_mode_show() - presents the current LUN mode of the host
15305514 2631 * @dev: Generic device associated with the host.
e0f01a21 2632 * @attr: Device attribute representing the LUN mode.
15305514
MO
2633 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2634 *
2635 * Return: The size of the ASCII string returned in @buf.
2636 */
e0f01a21
MO
2637static ssize_t lun_mode_show(struct device *dev,
2638 struct device_attribute *attr, char *buf)
15305514 2639{
fb67d44d 2640 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
15305514
MO
2641 struct afu *afu = cfg->afu;
2642
e0f01a21 2643 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
15305514
MO
2644}
2645
2646/**
e0f01a21 2647 * lun_mode_store() - sets the LUN mode of the host
15305514 2648 * @dev: Generic device associated with the host.
e0f01a21 2649 * @attr: Device attribute representing the LUN mode.
15305514
MO
2650 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2651 * @count: Length of data resizing in @buf.
2652 *
2653 * The CXL Flash AFU supports a dummy LUN mode where the external
2654 * links and storage are not required. Space on the FPGA is used
2655 * to create 1 or 2 small LUNs which are presented to the system
2656 * as if they were a normal storage device. This feature is useful
2657 * during development and also provides manufacturing with a way
2658 * to test the AFU without an actual device.
2659 *
2660 * 0 = external LUN[s] (default)
2661 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2662 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2663 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2664 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2665 *
2666 * Return: The size of the ASCII string returned in @buf.
2667 */
e0f01a21
MO
2668static ssize_t lun_mode_store(struct device *dev,
2669 struct device_attribute *attr,
2670 const char *buf, size_t count)
15305514
MO
2671{
2672 struct Scsi_Host *shost = class_to_shost(dev);
fb67d44d 2673 struct cxlflash_cfg *cfg = shost_priv(shost);
15305514
MO
2674 struct afu *afu = cfg->afu;
2675 int rc;
2676 u32 lun_mode;
2677
2678 rc = kstrtouint(buf, 10, &lun_mode);
2679 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2680 afu->internal_lun = lun_mode;
603ecce9
MK
2681
2682 /*
2683 * When configured for internal LUN, there is only one channel,
78ae028e
MO
2684 * channel number 0, else there will be one less than the number
2685 * of fc ports for this card.
603ecce9
MK
2686 */
2687 if (afu->internal_lun)
2688 shost->max_channel = 0;
2689 else
8fa4f177 2690 shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
603ecce9 2691
15305514
MO
2692 afu_reset(cfg);
2693 scsi_scan_host(cfg->host);
2694 }
2695
2696 return count;
2697}
2698
2699/**
e0f01a21 2700 * ioctl_version_show() - presents the current ioctl version of the host
15305514
MO
2701 * @dev: Generic device associated with the host.
2702 * @attr: Device attribute representing the ioctl version.
2703 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2704 *
2705 * Return: The size of the ASCII string returned in @buf.
2706 */
e0f01a21
MO
2707static ssize_t ioctl_version_show(struct device *dev,
2708 struct device_attribute *attr, char *buf)
15305514 2709{
d6e32f53
MO
2710 ssize_t bytes = 0;
2711
2712 bytes = scnprintf(buf, PAGE_SIZE,
2713 "disk: %u\n", DK_CXLFLASH_VERSION_0);
2714 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2715 "host: %u\n", HT_CXLFLASH_VERSION_0);
2716
2717 return bytes;
15305514
MO
2718}
2719
2720/**
e0f01a21
MO
2721 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2722 * @port: Desired port for status reporting.
3b225cd3 2723 * @cfg: Internal structure associated with the host.
e0f01a21
MO
2724 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2725 *
78ae028e 2726 * Return: The size of the ASCII string returned in @buf or -EINVAL.
e0f01a21
MO
2727 */
2728static ssize_t cxlflash_show_port_lun_table(u32 port,
3b225cd3 2729 struct cxlflash_cfg *cfg,
e0f01a21
MO
2730 char *buf)
2731{
78ae028e 2732 struct device *dev = &cfg->dev->dev;
0aa14887 2733 __be64 __iomem *fc_port_luns;
e0f01a21
MO
2734 int i;
2735 ssize_t bytes = 0;
e0f01a21 2736
78ae028e
MO
2737 WARN_ON(port >= MAX_FC_PORTS);
2738
2739 if (port >= cfg->num_fc_ports) {
2740 dev_info(dev, "%s: Port %d not supported on this card.\n",
2741 __func__, port);
2742 return -EINVAL;
2743 }
e0f01a21 2744
0aa14887 2745 fc_port_luns = get_fc_port_luns(cfg, port);
e0f01a21
MO
2746
2747 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2748 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
0aa14887
MO
2749 "%03d: %016llx\n",
2750 i, readq_be(&fc_port_luns[i]));
e0f01a21
MO
2751 return bytes;
2752}
2753
2754/**
2755 * port0_lun_table_show() - presents the current LUN table of port 0
2756 * @dev: Generic device associated with the host owning the port.
2757 * @attr: Device attribute representing the port.
2758 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2759 *
2760 * Return: The size of the ASCII string returned in @buf.
2761 */
2762static ssize_t port0_lun_table_show(struct device *dev,
2763 struct device_attribute *attr,
2764 char *buf)
2765{
fb67d44d 2766 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
e0f01a21 2767
3b225cd3 2768 return cxlflash_show_port_lun_table(0, cfg, buf);
e0f01a21
MO
2769}
2770
2771/**
2772 * port1_lun_table_show() - presents the current LUN table of port 1
2773 * @dev: Generic device associated with the host owning the port.
2774 * @attr: Device attribute representing the port.
2775 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2776 *
2777 * Return: The size of the ASCII string returned in @buf.
2778 */
2779static ssize_t port1_lun_table_show(struct device *dev,
2780 struct device_attribute *attr,
2781 char *buf)
2782{
fb67d44d 2783 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
e0f01a21 2784
3b225cd3 2785 return cxlflash_show_port_lun_table(1, cfg, buf);
e0f01a21
MO
2786}
2787
1cd7fabc
MO
2788/**
2789 * port2_lun_table_show() - presents the current LUN table of port 2
2790 * @dev: Generic device associated with the host owning the port.
2791 * @attr: Device attribute representing the port.
2792 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2793 *
2794 * Return: The size of the ASCII string returned in @buf.
2795 */
2796static ssize_t port2_lun_table_show(struct device *dev,
2797 struct device_attribute *attr,
2798 char *buf)
2799{
2800 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2801
2802 return cxlflash_show_port_lun_table(2, cfg, buf);
2803}
2804
2805/**
2806 * port3_lun_table_show() - presents the current LUN table of port 3
2807 * @dev: Generic device associated with the host owning the port.
2808 * @attr: Device attribute representing the port.
2809 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2810 *
2811 * Return: The size of the ASCII string returned in @buf.
2812 */
2813static ssize_t port3_lun_table_show(struct device *dev,
2814 struct device_attribute *attr,
2815 char *buf)
2816{
2817 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2818
2819 return cxlflash_show_port_lun_table(3, cfg, buf);
2820}
2821
cba06e6d
MO
2822/**
2823 * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2824 * @dev: Generic device associated with the host.
2825 * @attr: Device attribute representing the IRQ poll weight.
2826 * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll
2827 * weight in ASCII.
2828 *
2829 * An IRQ poll weight of 0 indicates polling is disabled.
2830 *
2831 * Return: The size of the ASCII string returned in @buf.
2832 */
2833static ssize_t irqpoll_weight_show(struct device *dev,
2834 struct device_attribute *attr, char *buf)
2835{
2836 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2837 struct afu *afu = cfg->afu;
2838
2839 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2840}
2841
2842/**
2843 * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2844 * @dev: Generic device associated with the host.
2845 * @attr: Device attribute representing the IRQ poll weight.
2846 * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll
2847 * weight in ASCII.
2848 * @count: Length of data resizing in @buf.
2849 *
2850 * An IRQ poll weight of 0 indicates polling is disabled.
2851 *
2852 * Return: The size of the ASCII string returned in @buf.
2853 */
2854static ssize_t irqpoll_weight_store(struct device *dev,
2855 struct device_attribute *attr,
2856 const char *buf, size_t count)
2857{
2858 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2859 struct device *cfgdev = &cfg->dev->dev;
2860 struct afu *afu = cfg->afu;
bfc0bab1 2861 struct hwq *hwq;
cba06e6d 2862 u32 weight;
bfc0bab1 2863 int rc, i;
cba06e6d
MO
2864
2865 rc = kstrtouint(buf, 10, &weight);
2866 if (rc)
2867 return -EINVAL;
2868
2869 if (weight > 256) {
2870 dev_info(cfgdev,
2871 "Invalid IRQ poll weight. It must be 256 or less.\n");
2872 return -EINVAL;
2873 }
2874
2875 if (weight == afu->irqpoll_weight) {
2876 dev_info(cfgdev,
2877 "Current IRQ poll weight has the same weight.\n");
2878 return -EINVAL;
2879 }
2880
bfc0bab1 2881 if (afu_is_irqpoll_enabled(afu)) {
3065267a 2882 for (i = 0; i < afu->num_hwqs; i++) {
bfc0bab1
UK
2883 hwq = get_hwq(afu, i);
2884
2885 irq_poll_disable(&hwq->irqpoll);
2886 }
2887 }
cba06e6d
MO
2888
2889 afu->irqpoll_weight = weight;
2890
bfc0bab1 2891 if (weight > 0) {
3065267a 2892 for (i = 0; i < afu->num_hwqs; i++) {
bfc0bab1
UK
2893 hwq = get_hwq(afu, i);
2894
2895 irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
2896 }
2897 }
cba06e6d
MO
2898
2899 return count;
2900}
2901
3065267a
MO
2902/**
2903 * num_hwqs_show() - presents the number of hardware queues for the host
2904 * @dev: Generic device associated with the host.
2905 * @attr: Device attribute representing the number of hardware queues.
2906 * @buf: Buffer of length PAGE_SIZE to report back the number of hardware
2907 * queues in ASCII.
2908 *
2909 * Return: The size of the ASCII string returned in @buf.
2910 */
2911static ssize_t num_hwqs_show(struct device *dev,
2912 struct device_attribute *attr, char *buf)
2913{
2914 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2915 struct afu *afu = cfg->afu;
2916
2917 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
2918}
2919
2920/**
2921 * num_hwqs_store() - sets the number of hardware queues for the host
2922 * @dev: Generic device associated with the host.
2923 * @attr: Device attribute representing the number of hardware queues.
2924 * @buf: Buffer of length PAGE_SIZE containing the number of hardware
2925 * queues in ASCII.
2926 * @count: Length of data resizing in @buf.
2927 *
2928 * n > 0: num_hwqs = n
2929 * n = 0: num_hwqs = num_online_cpus()
2930 * n < 0: num_online_cpus() / abs(n)
2931 *
2932 * Return: The size of the ASCII string returned in @buf.
2933 */
2934static ssize_t num_hwqs_store(struct device *dev,
2935 struct device_attribute *attr,
2936 const char *buf, size_t count)
2937{
2938 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2939 struct afu *afu = cfg->afu;
2940 int rc;
2941 int nhwqs, num_hwqs;
2942
2943 rc = kstrtoint(buf, 10, &nhwqs);
2944 if (rc)
2945 return -EINVAL;
2946
2947 if (nhwqs >= 1)
2948 num_hwqs = nhwqs;
2949 else if (nhwqs == 0)
2950 num_hwqs = num_online_cpus();
2951 else
2952 num_hwqs = num_online_cpus() / abs(nhwqs);
2953
2954 afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
2955 WARN_ON_ONCE(afu->desired_hwqs == 0);
2956
2957retry:
2958 switch (cfg->state) {
2959 case STATE_NORMAL:
2960 cfg->state = STATE_RESET;
2961 drain_ioctls(cfg);
2962 cxlflash_mark_contexts_error(cfg);
2963 rc = afu_reset(cfg);
2964 if (rc)
2965 cfg->state = STATE_FAILTERM;
2966 else
2967 cfg->state = STATE_NORMAL;
2968 wake_up_all(&cfg->reset_waitq);
2969 break;
2970 case STATE_RESET:
2971 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2972 if (cfg->state == STATE_NORMAL)
2973 goto retry;
2974 default:
2975 /* Ideally should not happen */
2976 dev_err(dev, "%s: Device is not ready, state=%d\n",
2977 __func__, cfg->state);
2978 break;
2979 }
2980
2981 return count;
2982}
2983
1dd0c0e4
MO
2984static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
2985
2986/**
2987 * hwq_mode_show() - presents the HWQ steering mode for the host
2988 * @dev: Generic device associated with the host.
2989 * @attr: Device attribute representing the HWQ steering mode.
2990 * @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode
2991 * as a character string.
2992 *
2993 * Return: The size of the ASCII string returned in @buf.
2994 */
2995static ssize_t hwq_mode_show(struct device *dev,
2996 struct device_attribute *attr, char *buf)
2997{
2998 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2999 struct afu *afu = cfg->afu;
3000
3001 return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
3002}
3003
3004/**
3005 * hwq_mode_store() - sets the HWQ steering mode for the host
3006 * @dev: Generic device associated with the host.
3007 * @attr: Device attribute representing the HWQ steering mode.
3008 * @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode
3009 * as a character string.
3010 * @count: Length of data resizing in @buf.
3011 *
3012 * rr = Round-Robin
3013 * tag = Block MQ Tagging
3014 * cpu = CPU Affinity
3015 *
3016 * Return: The size of the ASCII string returned in @buf.
3017 */
3018static ssize_t hwq_mode_store(struct device *dev,
3019 struct device_attribute *attr,
3020 const char *buf, size_t count)
3021{
3022 struct Scsi_Host *shost = class_to_shost(dev);
3023 struct cxlflash_cfg *cfg = shost_priv(shost);
3024 struct device *cfgdev = &cfg->dev->dev;
3025 struct afu *afu = cfg->afu;
3026 int i;
3027 u32 mode = MAX_HWQ_MODE;
3028
3029 for (i = 0; i < MAX_HWQ_MODE; i++) {
3030 if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
3031 mode = i;
3032 break;
3033 }
3034 }
3035
3036 if (mode >= MAX_HWQ_MODE) {
3037 dev_info(cfgdev, "Invalid HWQ steering mode.\n");
3038 return -EINVAL;
3039 }
3040
3041 if ((mode == HWQ_MODE_TAG) && !shost_use_blk_mq(shost)) {
3042 dev_info(cfgdev, "SCSI-MQ is not enabled, use a different "
3043 "HWQ steering mode.\n");
3044 return -EINVAL;
3045 }
3046
3047 afu->hwq_mode = mode;
3048
3049 return count;
3050}
3051
e0f01a21
MO
3052/**
3053 * mode_show() - presents the current mode of the device
15305514
MO
3054 * @dev: Generic device associated with the device.
3055 * @attr: Device attribute representing the device mode.
3056 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
3057 *
3058 * Return: The size of the ASCII string returned in @buf.
3059 */
e0f01a21
MO
3060static ssize_t mode_show(struct device *dev,
3061 struct device_attribute *attr, char *buf)
15305514
MO
3062{
3063 struct scsi_device *sdev = to_scsi_device(dev);
3064
e0f01a21
MO
3065 return scnprintf(buf, PAGE_SIZE, "%s\n",
3066 sdev->hostdata ? "superpipe" : "legacy");
15305514
MO
3067}
3068
3069/*
3070 * Host attributes
3071 */
e0f01a21
MO
3072static DEVICE_ATTR_RO(port0);
3073static DEVICE_ATTR_RO(port1);
1cd7fabc
MO
3074static DEVICE_ATTR_RO(port2);
3075static DEVICE_ATTR_RO(port3);
e0f01a21
MO
3076static DEVICE_ATTR_RW(lun_mode);
3077static DEVICE_ATTR_RO(ioctl_version);
3078static DEVICE_ATTR_RO(port0_lun_table);
3079static DEVICE_ATTR_RO(port1_lun_table);
1cd7fabc
MO
3080static DEVICE_ATTR_RO(port2_lun_table);
3081static DEVICE_ATTR_RO(port3_lun_table);
cba06e6d 3082static DEVICE_ATTR_RW(irqpoll_weight);
3065267a 3083static DEVICE_ATTR_RW(num_hwqs);
1dd0c0e4 3084static DEVICE_ATTR_RW(hwq_mode);
15305514
MO
3085
3086static struct device_attribute *cxlflash_host_attrs[] = {
3087 &dev_attr_port0,
3088 &dev_attr_port1,
1cd7fabc
MO
3089 &dev_attr_port2,
3090 &dev_attr_port3,
15305514
MO
3091 &dev_attr_lun_mode,
3092 &dev_attr_ioctl_version,
e0f01a21
MO
3093 &dev_attr_port0_lun_table,
3094 &dev_attr_port1_lun_table,
1cd7fabc
MO
3095 &dev_attr_port2_lun_table,
3096 &dev_attr_port3_lun_table,
cba06e6d 3097 &dev_attr_irqpoll_weight,
3065267a 3098 &dev_attr_num_hwqs,
1dd0c0e4 3099 &dev_attr_hwq_mode,
15305514
MO
3100 NULL
3101};
3102
3103/*
3104 * Device attributes
3105 */
e0f01a21 3106static DEVICE_ATTR_RO(mode);
15305514
MO
3107
3108static struct device_attribute *cxlflash_dev_attrs[] = {
3109 &dev_attr_mode,
3110 NULL
3111};
3112
3113/*
3114 * Host template
3115 */
3116static struct scsi_host_template driver_template = {
3117 .module = THIS_MODULE,
3118 .name = CXLFLASH_ADAPTER_NAME,
3119 .info = cxlflash_driver_info,
3120 .ioctl = cxlflash_ioctl,
3121 .proc_name = CXLFLASH_NAME,
3122 .queuecommand = cxlflash_queuecommand,
7c4c41f1 3123 .eh_abort_handler = cxlflash_eh_abort_handler,
15305514
MO
3124 .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
3125 .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
3126 .change_queue_depth = cxlflash_change_queue_depth,
83430833 3127 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
15305514 3128 .can_queue = CXLFLASH_MAX_CMDS,
5fbb96c8 3129 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
15305514 3130 .this_id = -1,
68ab2d76 3131 .sg_tablesize = 1, /* No scatter gather support */
15305514
MO
3132 .max_sectors = CXLFLASH_MAX_SECTORS,
3133 .use_clustering = ENABLE_CLUSTERING,
3134 .shost_attrs = cxlflash_host_attrs,
3135 .sdev_attrs = cxlflash_dev_attrs,
3136};
3137
3138/*
3139 * Device dependent values
3140 */
96e1b660 3141static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
0d419130 3142 CXLFLASH_WWPN_VPD_REQUIRED };
96e1b660 3143static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
704c4b0d 3144 CXLFLASH_NOTIFY_SHUTDOWN };
94344520
MO
3145static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
3146 CXLFLASH_NOTIFY_SHUTDOWN };
15305514
MO
3147
3148/*
3149 * PCI device binding table
3150 */
3151static struct pci_device_id cxlflash_pci_table[] = {
3152 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
3153 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
a2746fb1
MK
3154 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
3155 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
94344520
MO
3156 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
3157 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
15305514
MO
3158 {}
3159};
3160
3161MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
3162
c21e0bbf
MO
3163/**
3164 * cxlflash_worker_thread() - work thread handler for the AFU
3165 * @work: Work structure contained within cxlflash associated with host.
3166 *
3167 * Handles the following events:
3168 * - Link reset which cannot be performed on interrupt context due to
3169 * blocking up to a few seconds
ef51074a 3170 * - Rescan the host
c21e0bbf
MO
3171 */
3172static void cxlflash_worker_thread(struct work_struct *work)
3173{
5cdac81a
MO
3174 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
3175 work_q);
c21e0bbf 3176 struct afu *afu = cfg->afu;
4392ba49 3177 struct device *dev = &cfg->dev->dev;
0aa14887 3178 __be64 __iomem *fc_port_regs;
c21e0bbf
MO
3179 int port;
3180 ulong lock_flags;
3181
5cdac81a
MO
3182 /* Avoid MMIO if the device has failed */
3183
3184 if (cfg->state != STATE_NORMAL)
3185 return;
3186
c21e0bbf
MO
3187 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3188
3189 if (cfg->lr_state == LINK_RESET_REQUIRED) {
3190 port = cfg->lr_port;
3191 if (port < 0)
4392ba49
MO
3192 dev_err(dev, "%s: invalid port index %d\n",
3193 __func__, port);
c21e0bbf
MO
3194 else {
3195 spin_unlock_irqrestore(cfg->host->host_lock,
3196 lock_flags);
3197
3198 /* The reset can block... */
0aa14887
MO
3199 fc_port_regs = get_fc_port_regs(cfg, port);
3200 afu_link_reset(afu, port, fc_port_regs);
c21e0bbf
MO
3201 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3202 }
3203
3204 cfg->lr_state = LINK_RESET_COMPLETE;
3205 }
3206
c21e0bbf 3207 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
ef51074a
MO
3208
3209 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
3210 scsi_scan_host(cfg->host);
c21e0bbf
MO
3211}
3212
a834a36b
UK
3213/**
3214 * cxlflash_chr_open() - character device open handler
3215 * @inode: Device inode associated with this character device.
3216 * @file: File pointer for this device.
3217 *
3218 * Only users with admin privileges are allowed to open the character device.
3219 *
3220 * Return: 0 on success, -errno on failure
3221 */
3222static int cxlflash_chr_open(struct inode *inode, struct file *file)
3223{
3224 struct cxlflash_cfg *cfg;
3225
3226 if (!capable(CAP_SYS_ADMIN))
3227 return -EACCES;
3228
3229 cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
3230 file->private_data = cfg;
3231
3232 return 0;
3233}
3234
d6e32f53
MO
3235/**
3236 * decode_hioctl() - translates encoded host ioctl to easily identifiable string
3237 * @cmd: The host ioctl command to decode.
3238 *
3239 * Return: A string identifying the decoded host ioctl.
3240 */
3241static char *decode_hioctl(int cmd)
3242{
3243 switch (cmd) {
9cf43a36
MO
3244 case HT_CXLFLASH_LUN_PROVISION:
3245 return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
d6e32f53
MO
3246 }
3247
3248 return "UNKNOWN";
3249}
3250
9cf43a36
MO
3251/**
3252 * cxlflash_lun_provision() - host LUN provisioning handler
3253 * @cfg: Internal structure associated with the host.
3254 * @arg: Kernel copy of userspace ioctl data structure.
3255 *
3256 * Return: 0 on success, -errno on failure
3257 */
3258static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
3259 struct ht_cxlflash_lun_provision *lunprov)
3260{
3261 struct afu *afu = cfg->afu;
3262 struct device *dev = &cfg->dev->dev;
3263 struct sisl_ioarcb rcb;
3264 struct sisl_ioasa asa;
3265 __be64 __iomem *fc_port_regs;
3266 u16 port = lunprov->port;
3267 u16 scmd = lunprov->hdr.subcmd;
3268 u16 type;
3269 u64 reg;
3270 u64 size;
3271 u64 lun_id;
3272 int rc = 0;
3273
3274 if (!afu_is_lun_provision(afu)) {
3275 rc = -ENOTSUPP;
3276 goto out;
3277 }
3278
3279 if (port >= cfg->num_fc_ports) {
3280 rc = -EINVAL;
3281 goto out;
3282 }
3283
3284 switch (scmd) {
3285 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
3286 type = SISL_AFU_LUN_PROVISION_CREATE;
3287 size = lunprov->size;
3288 lun_id = 0;
3289 break;
3290 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
3291 type = SISL_AFU_LUN_PROVISION_DELETE;
3292 size = 0;
3293 lun_id = lunprov->lun_id;
3294 break;
3295 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
3296 fc_port_regs = get_fc_port_regs(cfg, port);
3297
3298 reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
3299 lunprov->max_num_luns = reg;
3300 reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
3301 lunprov->cur_num_luns = reg;
3302 reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
3303 lunprov->max_cap_port = reg;
3304 reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
3305 lunprov->cur_cap_port = reg;
3306
3307 goto out;
3308 default:
3309 rc = -EINVAL;
3310 goto out;
3311 }
3312
3313 memset(&rcb, 0, sizeof(rcb));
3314 memset(&asa, 0, sizeof(asa));
3315 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
3316 rcb.lun_id = lun_id;
3317 rcb.msi = SISL_MSI_RRQ_UPDATED;
3318 rcb.timeout = MC_LUN_PROV_TIMEOUT;
3319 rcb.ioasa = &asa;
3320
3321 rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
3322 rcb.cdb[1] = type;
3323 rcb.cdb[2] = port;
3324 put_unaligned_be64(size, &rcb.cdb[8]);
3325
3326 rc = send_afu_cmd(afu, &rcb);
3327 if (rc) {
3328 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3329 __func__, rc, asa.ioasc, asa.afu_extra);
3330 goto out;
3331 }
3332
3333 if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
3334 lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
3335 memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
3336 }
3337out:
3338 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3339 return rc;
3340}
3341
bc88ac47
MO
3342/**
3343 * cxlflash_afu_debug() - host AFU debug handler
3344 * @cfg: Internal structure associated with the host.
3345 * @arg: Kernel copy of userspace ioctl data structure.
3346 *
3347 * For debug requests requiring a data buffer, always provide an aligned
3348 * (cache line) buffer to the AFU to appease any alignment requirements.
3349 *
3350 * Return: 0 on success, -errno on failure
3351 */
3352static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
3353 struct ht_cxlflash_afu_debug *afu_dbg)
3354{
3355 struct afu *afu = cfg->afu;
3356 struct device *dev = &cfg->dev->dev;
3357 struct sisl_ioarcb rcb;
3358 struct sisl_ioasa asa;
3359 char *buf = NULL;
3360 char *kbuf = NULL;
3361 void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
3362 u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
3363 u32 ulen = afu_dbg->data_len;
3364 bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
3365 int rc = 0;
3366
3367 if (!afu_is_afu_debug(afu)) {
3368 rc = -ENOTSUPP;
3369 goto out;
3370 }
3371
3372 if (ulen) {
3373 req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
3374
3375 if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
3376 rc = -EINVAL;
3377 goto out;
3378 }
3379
bc88ac47
MO
3380 buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
3381 if (unlikely(!buf)) {
3382 rc = -ENOMEM;
3383 goto out;
3384 }
3385
3386 kbuf = PTR_ALIGN(buf, cache_line_size());
3387
3388 if (is_write) {
3389 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
3390
eeac8cda
DC
3391 if (copy_from_user(kbuf, ubuf, ulen)) {
3392 rc = -EFAULT;
bc88ac47 3393 goto out;
eeac8cda 3394 }
bc88ac47
MO
3395 }
3396 }
3397
3398 memset(&rcb, 0, sizeof(rcb));
3399 memset(&asa, 0, sizeof(asa));
3400
3401 rcb.req_flags = req_flags;
3402 rcb.msi = SISL_MSI_RRQ_UPDATED;
3403 rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
3404 rcb.ioasa = &asa;
3405
3406 if (ulen) {
3407 rcb.data_len = ulen;
3408 rcb.data_ea = (uintptr_t)kbuf;
3409 }
3410
3411 rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
3412 memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
3413 HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
3414
3415 rc = send_afu_cmd(afu, &rcb);
3416 if (rc) {
3417 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3418 __func__, rc, asa.ioasc, asa.afu_extra);
3419 goto out;
3420 }
3421
eeac8cda
DC
3422 if (ulen && !is_write) {
3423 if (copy_to_user(ubuf, kbuf, ulen))
3424 rc = -EFAULT;
3425 }
bc88ac47
MO
3426out:
3427 kfree(buf);
3428 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3429 return rc;
3430}
3431
d6e32f53
MO
3432/**
3433 * cxlflash_chr_ioctl() - character device IOCTL handler
3434 * @file: File pointer for this device.
3435 * @cmd: IOCTL command.
3436 * @arg: Userspace ioctl data structure.
3437 *
3438 * A read/write semaphore is used to implement a 'drain' of currently
3439 * running ioctls. The read semaphore is taken at the beginning of each
3440 * ioctl thread and released upon concluding execution. Additionally the
3441 * semaphore should be released and then reacquired in any ioctl execution
3442 * path which will wait for an event to occur that is outside the scope of
3443 * the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
3444 * a thread simply needs to acquire the write semaphore.
3445 *
3446 * Return: 0 on success, -errno on failure
3447 */
3448static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
3449 unsigned long arg)
3450{
3451 typedef int (*hioctl) (struct cxlflash_cfg *, void *);
3452
3453 struct cxlflash_cfg *cfg = file->private_data;
3454 struct device *dev = &cfg->dev->dev;
3455 char buf[sizeof(union cxlflash_ht_ioctls)];
3456 void __user *uarg = (void __user *)arg;
3457 struct ht_cxlflash_hdr *hdr;
3458 size_t size = 0;
3459 bool known_ioctl = false;
3460 int idx = 0;
3461 int rc = 0;
3462 hioctl do_ioctl = NULL;
3463
3464 static const struct {
3465 size_t size;
3466 hioctl ioctl;
3467 } ioctl_tbl[] = { /* NOTE: order matters here */
9cf43a36
MO
3468 { sizeof(struct ht_cxlflash_lun_provision),
3469 (hioctl)cxlflash_lun_provision },
bc88ac47
MO
3470 { sizeof(struct ht_cxlflash_afu_debug),
3471 (hioctl)cxlflash_afu_debug },
d6e32f53
MO
3472 };
3473
3474 /* Hold read semaphore so we can drain if needed */
3475 down_read(&cfg->ioctl_rwsem);
3476
3477 dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
3478 __func__, cmd, idx, sizeof(ioctl_tbl));
3479
3480 switch (cmd) {
9cf43a36 3481 case HT_CXLFLASH_LUN_PROVISION:
bc88ac47 3482 case HT_CXLFLASH_AFU_DEBUG:
9cf43a36
MO
3483 known_ioctl = true;
3484 idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
3485 size = ioctl_tbl[idx].size;
3486 do_ioctl = ioctl_tbl[idx].ioctl;
3487
3488 if (likely(do_ioctl))
3489 break;
3490
3491 /* fall through */
d6e32f53
MO
3492 default:
3493 rc = -EINVAL;
3494 goto out;
3495 }
3496
3497 if (unlikely(copy_from_user(&buf, uarg, size))) {
3498 dev_err(dev, "%s: copy_from_user() fail "
3499 "size=%lu cmd=%d (%s) uarg=%p\n",
3500 __func__, size, cmd, decode_hioctl(cmd), uarg);
3501 rc = -EFAULT;
3502 goto out;
3503 }
3504
3505 hdr = (struct ht_cxlflash_hdr *)&buf;
3506 if (hdr->version != HT_CXLFLASH_VERSION_0) {
3507 dev_dbg(dev, "%s: Version %u not supported for %s\n",
3508 __func__, hdr->version, decode_hioctl(cmd));
3509 rc = -EINVAL;
3510 goto out;
3511 }
3512
3513 if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
3514 dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
3515 rc = -EINVAL;
3516 goto out;
3517 }
3518
3519 rc = do_ioctl(cfg, (void *)&buf);
3520 if (likely(!rc))
3521 if (unlikely(copy_to_user(uarg, &buf, size))) {
3522 dev_err(dev, "%s: copy_to_user() fail "
3523 "size=%lu cmd=%d (%s) uarg=%p\n",
3524 __func__, size, cmd, decode_hioctl(cmd), uarg);
3525 rc = -EFAULT;
3526 }
3527
3528 /* fall through to exit */
3529
3530out:
3531 up_read(&cfg->ioctl_rwsem);
3532 if (unlikely(rc && known_ioctl))
3533 dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3534 __func__, decode_hioctl(cmd), cmd, rc);
3535 else
3536 dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3537 __func__, decode_hioctl(cmd), cmd, rc);
3538 return rc;
3539}
3540
a834a36b
UK
3541/*
3542 * Character device file operations
3543 */
3544static const struct file_operations cxlflash_chr_fops = {
3545 .owner = THIS_MODULE,
3546 .open = cxlflash_chr_open,
d6e32f53
MO
3547 .unlocked_ioctl = cxlflash_chr_ioctl,
3548 .compat_ioctl = cxlflash_chr_ioctl,
a834a36b
UK
3549};
3550
3551/**
3552 * init_chrdev() - initialize the character device for the host
3553 * @cfg: Internal structure associated with the host.
3554 *
3555 * Return: 0 on success, -errno on failure
3556 */
3557static int init_chrdev(struct cxlflash_cfg *cfg)
3558{
3559 struct device *dev = &cfg->dev->dev;
3560 struct device *char_dev;
3561 dev_t devno;
3562 int minor;
3563 int rc = 0;
3564
3565 minor = cxlflash_get_minor();
3566 if (unlikely(minor < 0)) {
3567 dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
3568 rc = -ENOSPC;
3569 goto out;
3570 }
3571
3572 devno = MKDEV(cxlflash_major, minor);
3573 cdev_init(&cfg->cdev, &cxlflash_chr_fops);
3574
3575 rc = cdev_add(&cfg->cdev, devno, 1);
3576 if (rc) {
3577 dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
3578 goto err1;
3579 }
3580
3581 char_dev = device_create(cxlflash_class, NULL, devno,
3582 NULL, "cxlflash%d", minor);
3583 if (IS_ERR(char_dev)) {
3584 rc = PTR_ERR(char_dev);
3585 dev_err(dev, "%s: device_create failed rc=%d\n",
3586 __func__, rc);
3587 goto err2;
3588 }
3589
3590 cfg->chardev = char_dev;
3591out:
3592 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3593 return rc;
3594err2:
3595 cdev_del(&cfg->cdev);
3596err1:
3597 cxlflash_put_minor(minor);
3598 goto out;
3599}
3600
c21e0bbf
MO
3601/**
3602 * cxlflash_probe() - PCI entry point to add host
3603 * @pdev: PCI device associated with the host.
3604 * @dev_id: PCI device id associated with device.
3605 *
323e3342
MO
3606 * The device will initially start out in a 'probing' state and
3607 * transition to the 'normal' state at the end of a successful
3608 * probe. Should an EEH event occur during probe, the notification
3609 * thread (error_detected()) will wait until the probe handler
3610 * is nearly complete. At that time, the device will be moved to
3611 * a 'probed' state and the EEH thread woken up to drive the slot
3612 * reset and recovery (device moves to 'normal' state). Meanwhile,
3613 * the probe will be allowed to exit successfully.
3614 *
1284fb0c 3615 * Return: 0 on success, -errno on failure
c21e0bbf
MO
3616 */
3617static int cxlflash_probe(struct pci_dev *pdev,
3618 const struct pci_device_id *dev_id)
3619{
3620 struct Scsi_Host *host;
3621 struct cxlflash_cfg *cfg = NULL;
fb67d44d 3622 struct device *dev = &pdev->dev;
c21e0bbf
MO
3623 struct dev_dependent_vals *ddv;
3624 int rc = 0;
78ae028e 3625 int k;
c21e0bbf
MO
3626
3627 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
3628 __func__, pdev->irq);
3629
3630 ddv = (struct dev_dependent_vals *)dev_id->driver_data;
3631 driver_template.max_sectors = ddv->max_sectors;
3632
3633 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
3634 if (!host) {
fb67d44d 3635 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
c21e0bbf
MO
3636 rc = -ENOMEM;
3637 goto out;
3638 }
3639
3640 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
3641 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
c21e0bbf
MO
3642 host->unique_id = host->host_no;
3643 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
3644
fb67d44d 3645 cfg = shost_priv(host);
c21e0bbf
MO
3646 cfg->host = host;
3647 rc = alloc_mem(cfg);
3648 if (rc) {
fb67d44d 3649 dev_err(dev, "%s: alloc_mem failed\n", __func__);
c21e0bbf 3650 rc = -ENOMEM;
8b5b1e87 3651 scsi_host_put(cfg->host);
c21e0bbf
MO
3652 goto out;
3653 }
3654
3655 cfg->init_state = INIT_STATE_NONE;
3656 cfg->dev = pdev;
29b4894f 3657 cfg->ops = &cxlflash_cxl_ops;
17ead26f 3658 cfg->cxl_fops = cxlflash_cxl_fops;
2cb79266
MO
3659
3660 /*
78ae028e
MO
3661 * Promoted LUNs move to the top of the LUN table. The rest stay on
3662 * the bottom half. The bottom half grows from the end (index = 255),
3663 * whereas the top half grows from the beginning (index = 0).
3664 *
3665 * Initialize the last LUN index for all possible ports.
2cb79266 3666 */
78ae028e
MO
3667 cfg->promote_lun_index = 0;
3668
3669 for (k = 0; k < MAX_FC_PORTS; k++)
3670 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
2cb79266 3671
c21e0bbf 3672 cfg->dev_id = (struct pci_device_id *)dev_id;
c21e0bbf
MO
3673
3674 init_waitqueue_head(&cfg->tmf_waitq);
439e85c1 3675 init_waitqueue_head(&cfg->reset_waitq);
c21e0bbf
MO
3676
3677 INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
3678 cfg->lr_state = LINK_RESET_INVALID;
3679 cfg->lr_port = -1;
0d73122c 3680 spin_lock_init(&cfg->tmf_slock);
65be2c79
MO
3681 mutex_init(&cfg->ctx_tbl_list_mutex);
3682 mutex_init(&cfg->ctx_recovery_mutex);
0a27ae51 3683 init_rwsem(&cfg->ioctl_rwsem);
65be2c79
MO
3684 INIT_LIST_HEAD(&cfg->ctx_err_recovery);
3685 INIT_LIST_HEAD(&cfg->lluns);
c21e0bbf
MO
3686
3687 pci_set_drvdata(pdev, cfg);
3688
29b4894f 3689 cfg->afu_cookie = cfg->ops->create_afu(pdev);
c21e0bbf
MO
3690
3691 rc = init_pci(cfg);
3692 if (rc) {
fb67d44d 3693 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
c21e0bbf
MO
3694 goto out_remove;
3695 }
3696 cfg->init_state = INIT_STATE_PCI;
3697
3698 rc = init_afu(cfg);
323e3342 3699 if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
fb67d44d 3700 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
c21e0bbf
MO
3701 goto out_remove;
3702 }
3703 cfg->init_state = INIT_STATE_AFU;
3704
c21e0bbf
MO
3705 rc = init_scsi(cfg);
3706 if (rc) {
fb67d44d 3707 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
c21e0bbf
MO
3708 goto out_remove;
3709 }
3710 cfg->init_state = INIT_STATE_SCSI;
3711
a834a36b
UK
3712 rc = init_chrdev(cfg);
3713 if (rc) {
3714 dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
3715 goto out_remove;
3716 }
3717 cfg->init_state = INIT_STATE_CDEV;
3718
323e3342
MO
3719 if (wq_has_sleeper(&cfg->reset_waitq)) {
3720 cfg->state = STATE_PROBED;
3721 wake_up_all(&cfg->reset_waitq);
3722 } else
3723 cfg->state = STATE_NORMAL;
c21e0bbf 3724out:
fb67d44d 3725 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
c21e0bbf
MO
3726 return rc;
3727
3728out_remove:
3729 cxlflash_remove(pdev);
3730 goto out;
3731}
3732
5cdac81a
MO
3733/**
3734 * cxlflash_pci_error_detected() - called when a PCI error is detected
3735 * @pdev: PCI device struct.
3736 * @state: PCI channel state.
3737 *
1d3324c3
MO
3738 * When an EEH occurs during an active reset, wait until the reset is
3739 * complete and then take action based upon the device state.
3740 *
5cdac81a
MO
3741 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
3742 */
3743static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
3744 pci_channel_state_t state)
3745{
65be2c79 3746 int rc = 0;
5cdac81a
MO
3747 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3748 struct device *dev = &cfg->dev->dev;
3749
3750 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
3751
3752 switch (state) {
3753 case pci_channel_io_frozen:
323e3342
MO
3754 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
3755 cfg->state != STATE_PROBING);
1d3324c3
MO
3756 if (cfg->state == STATE_FAILTERM)
3757 return PCI_ERS_RESULT_DISCONNECT;
3758
439e85c1 3759 cfg->state = STATE_RESET;
5cdac81a 3760 scsi_block_requests(cfg->host);
0a27ae51 3761 drain_ioctls(cfg);
65be2c79
MO
3762 rc = cxlflash_mark_contexts_error(cfg);
3763 if (unlikely(rc))
fb67d44d 3764 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
65be2c79 3765 __func__, rc);
9526f360 3766 term_afu(cfg);
5cdac81a
MO
3767 return PCI_ERS_RESULT_NEED_RESET;
3768 case pci_channel_io_perm_failure:
3769 cfg->state = STATE_FAILTERM;
439e85c1 3770 wake_up_all(&cfg->reset_waitq);
5cdac81a
MO
3771 scsi_unblock_requests(cfg->host);
3772 return PCI_ERS_RESULT_DISCONNECT;
3773 default:
3774 break;
3775 }
3776 return PCI_ERS_RESULT_NEED_RESET;
3777}
3778
3779/**
3780 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
3781 * @pdev: PCI device struct.
3782 *
3783 * This routine is called by the pci error recovery code after the PCI
3784 * slot has been reset, just before we should resume normal operations.
3785 *
3786 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
3787 */
3788static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
3789{
3790 int rc = 0;
3791 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3792 struct device *dev = &cfg->dev->dev;
3793
3794 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3795
3796 rc = init_afu(cfg);
3797 if (unlikely(rc)) {
fb67d44d 3798 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
5cdac81a
MO
3799 return PCI_ERS_RESULT_DISCONNECT;
3800 }
3801
3802 return PCI_ERS_RESULT_RECOVERED;
3803}
3804
3805/**
3806 * cxlflash_pci_resume() - called when normal operation can resume
3807 * @pdev: PCI device struct
3808 */
3809static void cxlflash_pci_resume(struct pci_dev *pdev)
3810{
3811 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3812 struct device *dev = &cfg->dev->dev;
3813
3814 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3815
3816 cfg->state = STATE_NORMAL;
439e85c1 3817 wake_up_all(&cfg->reset_waitq);
5cdac81a
MO
3818 scsi_unblock_requests(cfg->host);
3819}
3820
a834a36b
UK
3821/**
3822 * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
3823 * @dev: Character device.
3824 * @mode: Mode that can be used to verify access.
3825 *
3826 * Return: Allocated string describing the devtmpfs structure.
3827 */
3828static char *cxlflash_devnode(struct device *dev, umode_t *mode)
3829{
3830 return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
3831}
3832
3833/**
3834 * cxlflash_class_init() - create character device class
3835 *
3836 * Return: 0 on success, -errno on failure
3837 */
3838static int cxlflash_class_init(void)
3839{
3840 dev_t devno;
3841 int rc = 0;
3842
3843 rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
3844 if (unlikely(rc)) {
3845 pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
3846 goto out;
3847 }
3848
3849 cxlflash_major = MAJOR(devno);
3850
3851 cxlflash_class = class_create(THIS_MODULE, "cxlflash");
3852 if (IS_ERR(cxlflash_class)) {
3853 rc = PTR_ERR(cxlflash_class);
3854 pr_err("%s: class_create failed rc=%d\n", __func__, rc);
3855 goto err;
3856 }
3857
3858 cxlflash_class->devnode = cxlflash_devnode;
3859out:
3860 pr_debug("%s: returning rc=%d\n", __func__, rc);
3861 return rc;
3862err:
3863 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3864 goto out;
3865}
3866
3867/**
3868 * cxlflash_class_exit() - destroy character device class
3869 */
3870static void cxlflash_class_exit(void)
3871{
3872 dev_t devno = MKDEV(cxlflash_major, 0);
3873
3874 class_destroy(cxlflash_class);
3875 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3876}
3877
5cdac81a
MO
3878static const struct pci_error_handlers cxlflash_err_handler = {
3879 .error_detected = cxlflash_pci_error_detected,
3880 .slot_reset = cxlflash_pci_slot_reset,
3881 .resume = cxlflash_pci_resume,
3882};
3883
c21e0bbf
MO
3884/*
3885 * PCI device structure
3886 */
3887static struct pci_driver cxlflash_driver = {
3888 .name = CXLFLASH_NAME,
3889 .id_table = cxlflash_pci_table,
3890 .probe = cxlflash_probe,
3891 .remove = cxlflash_remove,
babf985d 3892 .shutdown = cxlflash_remove,
5cdac81a 3893 .err_handler = &cxlflash_err_handler,
c21e0bbf
MO
3894};
3895
3896/**
3897 * init_cxlflash() - module entry point
3898 *
1284fb0c 3899 * Return: 0 on success, -errno on failure
c21e0bbf
MO
3900 */
3901static int __init init_cxlflash(void)
3902{
a834a36b
UK
3903 int rc;
3904
cd41e18d 3905 check_sizes();
65be2c79 3906 cxlflash_list_init();
a834a36b
UK
3907 rc = cxlflash_class_init();
3908 if (unlikely(rc))
3909 goto out;
65be2c79 3910
a834a36b
UK
3911 rc = pci_register_driver(&cxlflash_driver);
3912 if (unlikely(rc))
3913 goto err;
3914out:
3915 pr_debug("%s: returning rc=%d\n", __func__, rc);
3916 return rc;
3917err:
3918 cxlflash_class_exit();
3919 goto out;
c21e0bbf
MO
3920}
3921
3922/**
3923 * exit_cxlflash() - module exit point
3924 */
3925static void __exit exit_cxlflash(void)
3926{
65be2c79
MO
3927 cxlflash_term_global_luns();
3928 cxlflash_free_errpage();
3929
c21e0bbf 3930 pci_unregister_driver(&cxlflash_driver);
a834a36b 3931 cxlflash_class_exit();
c21e0bbf
MO
3932}
3933
3934module_init(init_cxlflash);
3935module_exit(exit_cxlflash);