]>
Commit | Line | Data |
---|---|---|
edd16368 SC |
1 | /* |
2 | * Disk Array driver for HP Smart Array SAS controllers | |
3 | * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P. | |
4 | * | |
5 | * This program is free software; you can redistribute it and/or modify | |
6 | * it under the terms of the GNU General Public License as published by | |
7 | * the Free Software Foundation; version 2 of the License. | |
8 | * | |
9 | * This program is distributed in the hope that it will be useful, | |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | |
12 | * NON INFRINGEMENT. See the GNU General Public License for more details. | |
13 | * | |
14 | * You should have received a copy of the GNU General Public License | |
15 | * along with this program; if not, write to the Free Software | |
16 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | |
17 | * | |
18 | * Questions/Comments/Bugfixes to iss_storagedev@hp.com | |
19 | * | |
20 | */ | |
21 | ||
22 | #include <linux/module.h> | |
23 | #include <linux/interrupt.h> | |
24 | #include <linux/types.h> | |
25 | #include <linux/pci.h> | |
e5a44df8 | 26 | #include <linux/pci-aspm.h> |
edd16368 SC |
27 | #include <linux/kernel.h> |
28 | #include <linux/slab.h> | |
29 | #include <linux/delay.h> | |
30 | #include <linux/fs.h> | |
31 | #include <linux/timer.h> | |
32 | #include <linux/seq_file.h> | |
33 | #include <linux/init.h> | |
34 | #include <linux/spinlock.h> | |
edd16368 SC |
35 | #include <linux/compat.h> |
36 | #include <linux/blktrace_api.h> | |
37 | #include <linux/uaccess.h> | |
38 | #include <linux/io.h> | |
39 | #include <linux/dma-mapping.h> | |
40 | #include <linux/completion.h> | |
41 | #include <linux/moduleparam.h> | |
42 | #include <scsi/scsi.h> | |
43 | #include <scsi/scsi_cmnd.h> | |
44 | #include <scsi/scsi_device.h> | |
45 | #include <scsi/scsi_host.h> | |
667e23d4 | 46 | #include <scsi/scsi_tcq.h> |
edd16368 SC |
47 | #include <linux/cciss_ioctl.h> |
48 | #include <linux/string.h> | |
49 | #include <linux/bitmap.h> | |
60063497 | 50 | #include <linux/atomic.h> |
edd16368 | 51 | #include <linux/kthread.h> |
a0c12413 | 52 | #include <linux/jiffies.h> |
edd16368 SC |
53 | #include "hpsa_cmd.h" |
54 | #include "hpsa.h" | |
55 | ||
56 | /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ | |
31468401 | 57 | #define HPSA_DRIVER_VERSION "2.0.2-1" |
edd16368 | 58 | #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" |
f79cfec6 | 59 | #define HPSA "hpsa" |
edd16368 SC |
60 | |
61 | /* How long to wait (in milliseconds) for board to go into simple mode */ | |
62 | #define MAX_CONFIG_WAIT 30000 | |
63 | #define MAX_IOCTL_CONFIG_WAIT 1000 | |
64 | ||
65 | /*define how many times we will try a command because of bus resets */ | |
66 | #define MAX_CMD_RETRIES 3 | |
67 | ||
68 | /* Embedded module documentation macros - see modules.h */ | |
69 | MODULE_AUTHOR("Hewlett-Packard Company"); | |
70 | MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ | |
71 | HPSA_DRIVER_VERSION); | |
72 | MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); | |
73 | MODULE_VERSION(HPSA_DRIVER_VERSION); | |
74 | MODULE_LICENSE("GPL"); | |
75 | ||
76 | static int hpsa_allow_any; | |
77 | module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); | |
78 | MODULE_PARM_DESC(hpsa_allow_any, | |
79 | "Allow hpsa driver to access unknown HP Smart Array hardware"); | |
02ec19c8 SC |
80 | static int hpsa_simple_mode; |
81 | module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); | |
82 | MODULE_PARM_DESC(hpsa_simple_mode, | |
83 | "Use 'simple mode' rather than 'performant mode'"); | |
edd16368 SC |
84 | |
85 | /* define the PCI info for the cards we can control */ | |
86 | static const struct pci_device_id hpsa_pci_device_id[] = { | |
edd16368 SC |
87 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, |
88 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, | |
89 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, | |
90 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, | |
91 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, | |
92 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a}, | |
93 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b}, | |
f8b01eb9 | 94 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, |
9143a961 | 95 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, |
96 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, | |
97 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, | |
98 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, | |
99 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, | |
100 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, | |
101 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, | |
7c03b870 | 102 | {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, |
6798cc0a | 103 | PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, |
edd16368 SC |
104 | {0,} |
105 | }; | |
106 | ||
107 | MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); | |
108 | ||
109 | /* board_id = Subsystem Device ID & Vendor ID | |
110 | * product = Marketing Name for the board | |
111 | * access = Address of the struct of function pointers | |
112 | */ | |
113 | static struct board_type products[] = { | |
edd16368 SC |
114 | {0x3241103C, "Smart Array P212", &SA5_access}, |
115 | {0x3243103C, "Smart Array P410", &SA5_access}, | |
116 | {0x3245103C, "Smart Array P410i", &SA5_access}, | |
117 | {0x3247103C, "Smart Array P411", &SA5_access}, | |
118 | {0x3249103C, "Smart Array P812", &SA5_access}, | |
119 | {0x324a103C, "Smart Array P712m", &SA5_access}, | |
120 | {0x324b103C, "Smart Array P711m", &SA5_access}, | |
9143a961 | 121 | {0x3350103C, "Smart Array", &SA5_access}, |
122 | {0x3351103C, "Smart Array", &SA5_access}, | |
123 | {0x3352103C, "Smart Array", &SA5_access}, | |
124 | {0x3353103C, "Smart Array", &SA5_access}, | |
125 | {0x3354103C, "Smart Array", &SA5_access}, | |
126 | {0x3355103C, "Smart Array", &SA5_access}, | |
127 | {0x3356103C, "Smart Array", &SA5_access}, | |
edd16368 SC |
128 | {0xFFFF103C, "Unknown Smart Array", &SA5_access}, |
129 | }; | |
130 | ||
131 | static int number_of_controllers; | |
132 | ||
a0c12413 SC |
133 | static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list); |
134 | static spinlock_t lockup_detector_lock; | |
135 | static struct task_struct *hpsa_lockup_detector; | |
136 | ||
10f66018 SC |
137 | static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); |
138 | static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); | |
edd16368 SC |
139 | static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg); |
140 | static void start_io(struct ctlr_info *h); | |
141 | ||
142 | #ifdef CONFIG_COMPAT | |
143 | static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg); | |
144 | #endif | |
145 | ||
146 | static void cmd_free(struct ctlr_info *h, struct CommandList *c); | |
147 | static void cmd_special_free(struct ctlr_info *h, struct CommandList *c); | |
148 | static struct CommandList *cmd_alloc(struct ctlr_info *h); | |
149 | static struct CommandList *cmd_special_alloc(struct ctlr_info *h); | |
01a02ffc SC |
150 | static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, |
151 | void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, | |
edd16368 SC |
152 | int cmd_type); |
153 | ||
f281233d | 154 | static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); |
a08a8471 SC |
155 | static void hpsa_scan_start(struct Scsi_Host *); |
156 | static int hpsa_scan_finished(struct Scsi_Host *sh, | |
157 | unsigned long elapsed_time); | |
667e23d4 SC |
158 | static int hpsa_change_queue_depth(struct scsi_device *sdev, |
159 | int qdepth, int reason); | |
edd16368 SC |
160 | |
161 | static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); | |
75167d2c | 162 | static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd); |
edd16368 SC |
163 | static int hpsa_slave_alloc(struct scsi_device *sdev); |
164 | static void hpsa_slave_destroy(struct scsi_device *sdev); | |
165 | ||
edd16368 | 166 | static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); |
edd16368 SC |
167 | static int check_for_unit_attention(struct ctlr_info *h, |
168 | struct CommandList *c); | |
169 | static void check_ioctl_unit_attention(struct ctlr_info *h, | |
170 | struct CommandList *c); | |
303932fd DB |
171 | /* performant mode helper functions */ |
172 | static void calc_bucket_map(int *bucket, int num_buckets, | |
173 | int nsgs, int *bucket_map); | |
7136f9a7 | 174 | static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); |
254f796b | 175 | static inline u32 next_command(struct ctlr_info *h, u8 q); |
1df8552a SC |
176 | static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev, |
177 | void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, | |
178 | u64 *cfg_offset); | |
179 | static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev, | |
180 | unsigned long *memory_bar); | |
18867659 | 181 | static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id); |
fe5389c8 SC |
182 | static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev, |
183 | void __iomem *vaddr, int wait_for_ready); | |
75167d2c | 184 | static inline void finish_cmd(struct CommandList *c); |
fe5389c8 SC |
185 | #define BOARD_NOT_READY 0 |
186 | #define BOARD_READY 1 | |
edd16368 | 187 | |
edd16368 SC |
188 | static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) |
189 | { | |
190 | unsigned long *priv = shost_priv(sdev->host); | |
191 | return (struct ctlr_info *) *priv; | |
192 | } | |
193 | ||
a23513e8 SC |
194 | static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) |
195 | { | |
196 | unsigned long *priv = shost_priv(sh); | |
197 | return (struct ctlr_info *) *priv; | |
198 | } | |
199 | ||
edd16368 SC |
200 | static int check_for_unit_attention(struct ctlr_info *h, |
201 | struct CommandList *c) | |
202 | { | |
203 | if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) | |
204 | return 0; | |
205 | ||
206 | switch (c->err_info->SenseInfo[12]) { | |
207 | case STATE_CHANGED: | |
f79cfec6 | 208 | dev_warn(&h->pdev->dev, HPSA "%d: a state change " |
edd16368 SC |
209 | "detected, command retried\n", h->ctlr); |
210 | break; | |
211 | case LUN_FAILED: | |
f79cfec6 | 212 | dev_warn(&h->pdev->dev, HPSA "%d: LUN failure " |
edd16368 SC |
213 | "detected, action required\n", h->ctlr); |
214 | break; | |
215 | case REPORT_LUNS_CHANGED: | |
f79cfec6 | 216 | dev_warn(&h->pdev->dev, HPSA "%d: report LUN data " |
31468401 | 217 | "changed, action required\n", h->ctlr); |
edd16368 | 218 | /* |
4f4eb9f1 ST |
219 | * Note: this REPORT_LUNS_CHANGED condition only occurs on the external |
220 | * target (array) devices. | |
edd16368 SC |
221 | */ |
222 | break; | |
223 | case POWER_OR_RESET: | |
f79cfec6 | 224 | dev_warn(&h->pdev->dev, HPSA "%d: a power on " |
edd16368 SC |
225 | "or device reset detected\n", h->ctlr); |
226 | break; | |
227 | case UNIT_ATTENTION_CLEARED: | |
f79cfec6 | 228 | dev_warn(&h->pdev->dev, HPSA "%d: unit attention " |
edd16368 SC |
229 | "cleared by another initiator\n", h->ctlr); |
230 | break; | |
231 | default: | |
f79cfec6 | 232 | dev_warn(&h->pdev->dev, HPSA "%d: unknown " |
edd16368 SC |
233 | "unit attention detected\n", h->ctlr); |
234 | break; | |
235 | } | |
236 | return 1; | |
237 | } | |
238 | ||
852af20a MB |
239 | static int check_for_busy(struct ctlr_info *h, struct CommandList *c) |
240 | { | |
241 | if (c->err_info->CommandStatus != CMD_TARGET_STATUS || | |
242 | (c->err_info->ScsiStatus != SAM_STAT_BUSY && | |
243 | c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) | |
244 | return 0; | |
245 | dev_warn(&h->pdev->dev, HPSA "device busy"); | |
246 | return 1; | |
247 | } | |
248 | ||
edd16368 SC |
249 | static ssize_t host_store_rescan(struct device *dev, |
250 | struct device_attribute *attr, | |
251 | const char *buf, size_t count) | |
252 | { | |
253 | struct ctlr_info *h; | |
254 | struct Scsi_Host *shost = class_to_shost(dev); | |
a23513e8 | 255 | h = shost_to_hba(shost); |
31468401 | 256 | hpsa_scan_start(h->scsi_host); |
edd16368 SC |
257 | return count; |
258 | } | |
259 | ||
d28ce020 SC |
260 | static ssize_t host_show_firmware_revision(struct device *dev, |
261 | struct device_attribute *attr, char *buf) | |
262 | { | |
263 | struct ctlr_info *h; | |
264 | struct Scsi_Host *shost = class_to_shost(dev); | |
265 | unsigned char *fwrev; | |
266 | ||
267 | h = shost_to_hba(shost); | |
268 | if (!h->hba_inquiry_data) | |
269 | return 0; | |
270 | fwrev = &h->hba_inquiry_data[32]; | |
271 | return snprintf(buf, 20, "%c%c%c%c\n", | |
272 | fwrev[0], fwrev[1], fwrev[2], fwrev[3]); | |
273 | } | |
274 | ||
94a13649 SC |
275 | static ssize_t host_show_commands_outstanding(struct device *dev, |
276 | struct device_attribute *attr, char *buf) | |
277 | { | |
278 | struct Scsi_Host *shost = class_to_shost(dev); | |
279 | struct ctlr_info *h = shost_to_hba(shost); | |
280 | ||
281 | return snprintf(buf, 20, "%d\n", h->commands_outstanding); | |
282 | } | |
283 | ||
745a7a25 SC |
284 | static ssize_t host_show_transport_mode(struct device *dev, |
285 | struct device_attribute *attr, char *buf) | |
286 | { | |
287 | struct ctlr_info *h; | |
288 | struct Scsi_Host *shost = class_to_shost(dev); | |
289 | ||
290 | h = shost_to_hba(shost); | |
291 | return snprintf(buf, 20, "%s\n", | |
960a30e7 | 292 | h->transMethod & CFGTBL_Trans_Performant ? |
745a7a25 SC |
293 | "performant" : "simple"); |
294 | } | |
295 | ||
46380786 | 296 | /* List of controllers which cannot be hard reset on kexec with reset_devices */ |
941b1cda SC |
297 | static u32 unresettable_controller[] = { |
298 | 0x324a103C, /* Smart Array P712m */ | |
299 | 0x324b103C, /* SmartArray P711m */ | |
300 | 0x3223103C, /* Smart Array P800 */ | |
301 | 0x3234103C, /* Smart Array P400 */ | |
302 | 0x3235103C, /* Smart Array P400i */ | |
303 | 0x3211103C, /* Smart Array E200i */ | |
304 | 0x3212103C, /* Smart Array E200 */ | |
305 | 0x3213103C, /* Smart Array E200i */ | |
306 | 0x3214103C, /* Smart Array E200i */ | |
307 | 0x3215103C, /* Smart Array E200i */ | |
308 | 0x3237103C, /* Smart Array E500 */ | |
309 | 0x323D103C, /* Smart Array P700m */ | |
7af0abbc | 310 | 0x40800E11, /* Smart Array 5i */ |
941b1cda SC |
311 | 0x409C0E11, /* Smart Array 6400 */ |
312 | 0x409D0E11, /* Smart Array 6400 EM */ | |
5a4f934e TH |
313 | 0x40700E11, /* Smart Array 5300 */ |
314 | 0x40820E11, /* Smart Array 532 */ | |
315 | 0x40830E11, /* Smart Array 5312 */ | |
316 | 0x409A0E11, /* Smart Array 641 */ | |
317 | 0x409B0E11, /* Smart Array 642 */ | |
318 | 0x40910E11, /* Smart Array 6i */ | |
941b1cda SC |
319 | }; |
320 | ||
46380786 SC |
321 | /* List of controllers which cannot even be soft reset */ |
322 | static u32 soft_unresettable_controller[] = { | |
7af0abbc | 323 | 0x40800E11, /* Smart Array 5i */ |
5a4f934e TH |
324 | 0x40700E11, /* Smart Array 5300 */ |
325 | 0x40820E11, /* Smart Array 532 */ | |
326 | 0x40830E11, /* Smart Array 5312 */ | |
327 | 0x409A0E11, /* Smart Array 641 */ | |
328 | 0x409B0E11, /* Smart Array 642 */ | |
329 | 0x40910E11, /* Smart Array 6i */ | |
46380786 SC |
330 | /* Exclude 640x boards. These are two pci devices in one slot |
331 | * which share a battery backed cache module. One controls the | |
332 | * cache, the other accesses the cache through the one that controls | |
333 | * it. If we reset the one controlling the cache, the other will | |
334 | * likely not be happy. Just forbid resetting this conjoined mess. | |
335 | * The 640x isn't really supported by hpsa anyway. | |
336 | */ | |
337 | 0x409C0E11, /* Smart Array 6400 */ | |
338 | 0x409D0E11, /* Smart Array 6400 EM */ | |
339 | }; | |
340 | ||
341 | static int ctlr_is_hard_resettable(u32 board_id) | |
941b1cda SC |
342 | { |
343 | int i; | |
344 | ||
345 | for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++) | |
46380786 SC |
346 | if (unresettable_controller[i] == board_id) |
347 | return 0; | |
348 | return 1; | |
349 | } | |
350 | ||
351 | static int ctlr_is_soft_resettable(u32 board_id) | |
352 | { | |
353 | int i; | |
354 | ||
355 | for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++) | |
356 | if (soft_unresettable_controller[i] == board_id) | |
941b1cda SC |
357 | return 0; |
358 | return 1; | |
359 | } | |
360 | ||
46380786 SC |
361 | static int ctlr_is_resettable(u32 board_id) |
362 | { | |
363 | return ctlr_is_hard_resettable(board_id) || | |
364 | ctlr_is_soft_resettable(board_id); | |
365 | } | |
366 | ||
941b1cda SC |
367 | static ssize_t host_show_resettable(struct device *dev, |
368 | struct device_attribute *attr, char *buf) | |
369 | { | |
370 | struct ctlr_info *h; | |
371 | struct Scsi_Host *shost = class_to_shost(dev); | |
372 | ||
373 | h = shost_to_hba(shost); | |
46380786 | 374 | return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); |
941b1cda SC |
375 | } |
376 | ||
edd16368 SC |
377 | static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) |
378 | { | |
379 | return (scsi3addr[3] & 0xC0) == 0x40; | |
380 | } | |
381 | ||
382 | static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", | |
d82357ea | 383 | "1(ADM)", "UNKNOWN" |
edd16368 SC |
384 | }; |
385 | #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) | |
386 | ||
387 | static ssize_t raid_level_show(struct device *dev, | |
388 | struct device_attribute *attr, char *buf) | |
389 | { | |
390 | ssize_t l = 0; | |
82a72c0a | 391 | unsigned char rlevel; |
edd16368 SC |
392 | struct ctlr_info *h; |
393 | struct scsi_device *sdev; | |
394 | struct hpsa_scsi_dev_t *hdev; | |
395 | unsigned long flags; | |
396 | ||
397 | sdev = to_scsi_device(dev); | |
398 | h = sdev_to_hba(sdev); | |
399 | spin_lock_irqsave(&h->lock, flags); | |
400 | hdev = sdev->hostdata; | |
401 | if (!hdev) { | |
402 | spin_unlock_irqrestore(&h->lock, flags); | |
403 | return -ENODEV; | |
404 | } | |
405 | ||
406 | /* Is this even a logical drive? */ | |
407 | if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { | |
408 | spin_unlock_irqrestore(&h->lock, flags); | |
409 | l = snprintf(buf, PAGE_SIZE, "N/A\n"); | |
410 | return l; | |
411 | } | |
412 | ||
413 | rlevel = hdev->raid_level; | |
414 | spin_unlock_irqrestore(&h->lock, flags); | |
82a72c0a | 415 | if (rlevel > RAID_UNKNOWN) |
edd16368 SC |
416 | rlevel = RAID_UNKNOWN; |
417 | l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); | |
418 | return l; | |
419 | } | |
420 | ||
421 | static ssize_t lunid_show(struct device *dev, | |
422 | struct device_attribute *attr, char *buf) | |
423 | { | |
424 | struct ctlr_info *h; | |
425 | struct scsi_device *sdev; | |
426 | struct hpsa_scsi_dev_t *hdev; | |
427 | unsigned long flags; | |
428 | unsigned char lunid[8]; | |
429 | ||
430 | sdev = to_scsi_device(dev); | |
431 | h = sdev_to_hba(sdev); | |
432 | spin_lock_irqsave(&h->lock, flags); | |
433 | hdev = sdev->hostdata; | |
434 | if (!hdev) { | |
435 | spin_unlock_irqrestore(&h->lock, flags); | |
436 | return -ENODEV; | |
437 | } | |
438 | memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); | |
439 | spin_unlock_irqrestore(&h->lock, flags); | |
440 | return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", | |
441 | lunid[0], lunid[1], lunid[2], lunid[3], | |
442 | lunid[4], lunid[5], lunid[6], lunid[7]); | |
443 | } | |
444 | ||
445 | static ssize_t unique_id_show(struct device *dev, | |
446 | struct device_attribute *attr, char *buf) | |
447 | { | |
448 | struct ctlr_info *h; | |
449 | struct scsi_device *sdev; | |
450 | struct hpsa_scsi_dev_t *hdev; | |
451 | unsigned long flags; | |
452 | unsigned char sn[16]; | |
453 | ||
454 | sdev = to_scsi_device(dev); | |
455 | h = sdev_to_hba(sdev); | |
456 | spin_lock_irqsave(&h->lock, flags); | |
457 | hdev = sdev->hostdata; | |
458 | if (!hdev) { | |
459 | spin_unlock_irqrestore(&h->lock, flags); | |
460 | return -ENODEV; | |
461 | } | |
462 | memcpy(sn, hdev->device_id, sizeof(sn)); | |
463 | spin_unlock_irqrestore(&h->lock, flags); | |
464 | return snprintf(buf, 16 * 2 + 2, | |
465 | "%02X%02X%02X%02X%02X%02X%02X%02X" | |
466 | "%02X%02X%02X%02X%02X%02X%02X%02X\n", | |
467 | sn[0], sn[1], sn[2], sn[3], | |
468 | sn[4], sn[5], sn[6], sn[7], | |
469 | sn[8], sn[9], sn[10], sn[11], | |
470 | sn[12], sn[13], sn[14], sn[15]); | |
471 | } | |
472 | ||
3f5eac3a SC |
473 | static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); |
474 | static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); | |
475 | static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); | |
476 | static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); | |
477 | static DEVICE_ATTR(firmware_revision, S_IRUGO, | |
478 | host_show_firmware_revision, NULL); | |
479 | static DEVICE_ATTR(commands_outstanding, S_IRUGO, | |
480 | host_show_commands_outstanding, NULL); | |
481 | static DEVICE_ATTR(transport_mode, S_IRUGO, | |
482 | host_show_transport_mode, NULL); | |
941b1cda SC |
483 | static DEVICE_ATTR(resettable, S_IRUGO, |
484 | host_show_resettable, NULL); | |
3f5eac3a SC |
485 | |
486 | static struct device_attribute *hpsa_sdev_attrs[] = { | |
487 | &dev_attr_raid_level, | |
488 | &dev_attr_lunid, | |
489 | &dev_attr_unique_id, | |
490 | NULL, | |
491 | }; | |
492 | ||
493 | static struct device_attribute *hpsa_shost_attrs[] = { | |
494 | &dev_attr_rescan, | |
495 | &dev_attr_firmware_revision, | |
496 | &dev_attr_commands_outstanding, | |
497 | &dev_attr_transport_mode, | |
941b1cda | 498 | &dev_attr_resettable, |
3f5eac3a SC |
499 | NULL, |
500 | }; | |
501 | ||
502 | static struct scsi_host_template hpsa_driver_template = { | |
503 | .module = THIS_MODULE, | |
f79cfec6 SC |
504 | .name = HPSA, |
505 | .proc_name = HPSA, | |
3f5eac3a SC |
506 | .queuecommand = hpsa_scsi_queue_command, |
507 | .scan_start = hpsa_scan_start, | |
508 | .scan_finished = hpsa_scan_finished, | |
509 | .change_queue_depth = hpsa_change_queue_depth, | |
510 | .this_id = -1, | |
511 | .use_clustering = ENABLE_CLUSTERING, | |
75167d2c | 512 | .eh_abort_handler = hpsa_eh_abort_handler, |
3f5eac3a SC |
513 | .eh_device_reset_handler = hpsa_eh_device_reset_handler, |
514 | .ioctl = hpsa_ioctl, | |
515 | .slave_alloc = hpsa_slave_alloc, | |
516 | .slave_destroy = hpsa_slave_destroy, | |
517 | #ifdef CONFIG_COMPAT | |
518 | .compat_ioctl = hpsa_compat_ioctl, | |
519 | #endif | |
520 | .sdev_attrs = hpsa_sdev_attrs, | |
521 | .shost_attrs = hpsa_shost_attrs, | |
c0d6a4d1 | 522 | .max_sectors = 8192, |
3f5eac3a SC |
523 | }; |
524 | ||
525 | ||
526 | /* Enqueuing and dequeuing functions for cmdlists. */ | |
527 | static inline void addQ(struct list_head *list, struct CommandList *c) | |
528 | { | |
529 | list_add_tail(&c->list, list); | |
530 | } | |
531 | ||
254f796b | 532 | static inline u32 next_command(struct ctlr_info *h, u8 q) |
3f5eac3a SC |
533 | { |
534 | u32 a; | |
254f796b | 535 | struct reply_pool *rq = &h->reply_queue[q]; |
e16a33ad | 536 | unsigned long flags; |
3f5eac3a SC |
537 | |
538 | if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) | |
254f796b | 539 | return h->access.command_completed(h, q); |
3f5eac3a | 540 | |
254f796b MG |
541 | if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { |
542 | a = rq->head[rq->current_entry]; | |
543 | rq->current_entry++; | |
e16a33ad | 544 | spin_lock_irqsave(&h->lock, flags); |
3f5eac3a | 545 | h->commands_outstanding--; |
e16a33ad | 546 | spin_unlock_irqrestore(&h->lock, flags); |
3f5eac3a SC |
547 | } else { |
548 | a = FIFO_EMPTY; | |
549 | } | |
550 | /* Check for wraparound */ | |
254f796b MG |
551 | if (rq->current_entry == h->max_commands) { |
552 | rq->current_entry = 0; | |
553 | rq->wraparound ^= 1; | |
3f5eac3a SC |
554 | } |
555 | return a; | |
556 | } | |
557 | ||
558 | /* set_performant_mode: Modify the tag for cciss performant | |
559 | * set bit 0 for pull model, bits 3-1 for block fetch | |
560 | * register number | |
561 | */ | |
562 | static void set_performant_mode(struct ctlr_info *h, struct CommandList *c) | |
563 | { | |
254f796b | 564 | if (likely(h->transMethod & CFGTBL_Trans_Performant)) { |
3f5eac3a | 565 | c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); |
254f796b MG |
566 | if (likely(h->msix_vector)) |
567 | c->Header.ReplyQueue = | |
568 | smp_processor_id() % h->nreply_queues; | |
569 | } | |
3f5eac3a SC |
570 | } |
571 | ||
e85c5974 SC |
572 | static int is_firmware_flash_cmd(u8 *cdb) |
573 | { | |
574 | return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; | |
575 | } | |
576 | ||
577 | /* | |
578 | * During firmware flash, the heartbeat register may not update as frequently | |
579 | * as it should. So we dial down lockup detection during firmware flash. and | |
580 | * dial it back up when firmware flash completes. | |
581 | */ | |
582 | #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) | |
583 | #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) | |
584 | static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, | |
585 | struct CommandList *c) | |
586 | { | |
587 | if (!is_firmware_flash_cmd(c->Request.CDB)) | |
588 | return; | |
589 | atomic_inc(&h->firmware_flash_in_progress); | |
590 | h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; | |
591 | } | |
592 | ||
593 | static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, | |
594 | struct CommandList *c) | |
595 | { | |
596 | if (is_firmware_flash_cmd(c->Request.CDB) && | |
597 | atomic_dec_and_test(&h->firmware_flash_in_progress)) | |
598 | h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; | |
599 | } | |
600 | ||
3f5eac3a SC |
601 | static void enqueue_cmd_and_start_io(struct ctlr_info *h, |
602 | struct CommandList *c) | |
603 | { | |
604 | unsigned long flags; | |
605 | ||
606 | set_performant_mode(h, c); | |
e85c5974 | 607 | dial_down_lockup_detection_during_fw_flash(h, c); |
3f5eac3a SC |
608 | spin_lock_irqsave(&h->lock, flags); |
609 | addQ(&h->reqQ, c); | |
610 | h->Qdepth++; | |
3f5eac3a | 611 | spin_unlock_irqrestore(&h->lock, flags); |
e16a33ad | 612 | start_io(h); |
3f5eac3a SC |
613 | } |
614 | ||
615 | static inline void removeQ(struct CommandList *c) | |
616 | { | |
617 | if (WARN_ON(list_empty(&c->list))) | |
618 | return; | |
619 | list_del_init(&c->list); | |
620 | } | |
621 | ||
622 | static inline int is_hba_lunid(unsigned char scsi3addr[]) | |
623 | { | |
624 | return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; | |
625 | } | |
626 | ||
627 | static inline int is_scsi_rev_5(struct ctlr_info *h) | |
628 | { | |
629 | if (!h->hba_inquiry_data) | |
630 | return 0; | |
631 | if ((h->hba_inquiry_data[2] & 0x07) == 5) | |
632 | return 1; | |
633 | return 0; | |
634 | } | |
635 | ||
edd16368 SC |
636 | static int hpsa_find_target_lun(struct ctlr_info *h, |
637 | unsigned char scsi3addr[], int bus, int *target, int *lun) | |
638 | { | |
639 | /* finds an unused bus, target, lun for a new physical device | |
640 | * assumes h->devlock is held | |
641 | */ | |
642 | int i, found = 0; | |
cfe5badc | 643 | DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); |
edd16368 | 644 | |
263d9401 | 645 | bitmap_zero(lun_taken, HPSA_MAX_DEVICES); |
edd16368 SC |
646 | |
647 | for (i = 0; i < h->ndevices; i++) { | |
648 | if (h->dev[i]->bus == bus && h->dev[i]->target != -1) | |
263d9401 | 649 | __set_bit(h->dev[i]->target, lun_taken); |
edd16368 SC |
650 | } |
651 | ||
263d9401 AM |
652 | i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); |
653 | if (i < HPSA_MAX_DEVICES) { | |
654 | /* *bus = 1; */ | |
655 | *target = i; | |
656 | *lun = 0; | |
657 | found = 1; | |
edd16368 SC |
658 | } |
659 | return !found; | |
660 | } | |
661 | ||
662 | /* Add an entry into h->dev[] array. */ | |
663 | static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, | |
664 | struct hpsa_scsi_dev_t *device, | |
665 | struct hpsa_scsi_dev_t *added[], int *nadded) | |
666 | { | |
667 | /* assumes h->devlock is held */ | |
668 | int n = h->ndevices; | |
669 | int i; | |
670 | unsigned char addr1[8], addr2[8]; | |
671 | struct hpsa_scsi_dev_t *sd; | |
672 | ||
cfe5badc | 673 | if (n >= HPSA_MAX_DEVICES) { |
edd16368 SC |
674 | dev_err(&h->pdev->dev, "too many devices, some will be " |
675 | "inaccessible.\n"); | |
676 | return -1; | |
677 | } | |
678 | ||
679 | /* physical devices do not have lun or target assigned until now. */ | |
680 | if (device->lun != -1) | |
681 | /* Logical device, lun is already assigned. */ | |
682 | goto lun_assigned; | |
683 | ||
684 | /* If this device a non-zero lun of a multi-lun device | |
685 | * byte 4 of the 8-byte LUN addr will contain the logical | |
686 | * unit no, zero otherise. | |
687 | */ | |
688 | if (device->scsi3addr[4] == 0) { | |
689 | /* This is not a non-zero lun of a multi-lun device */ | |
690 | if (hpsa_find_target_lun(h, device->scsi3addr, | |
691 | device->bus, &device->target, &device->lun) != 0) | |
692 | return -1; | |
693 | goto lun_assigned; | |
694 | } | |
695 | ||
696 | /* This is a non-zero lun of a multi-lun device. | |
697 | * Search through our list and find the device which | |
698 | * has the same 8 byte LUN address, excepting byte 4. | |
699 | * Assign the same bus and target for this new LUN. | |
700 | * Use the logical unit number from the firmware. | |
701 | */ | |
702 | memcpy(addr1, device->scsi3addr, 8); | |
703 | addr1[4] = 0; | |
704 | for (i = 0; i < n; i++) { | |
705 | sd = h->dev[i]; | |
706 | memcpy(addr2, sd->scsi3addr, 8); | |
707 | addr2[4] = 0; | |
708 | /* differ only in byte 4? */ | |
709 | if (memcmp(addr1, addr2, 8) == 0) { | |
710 | device->bus = sd->bus; | |
711 | device->target = sd->target; | |
712 | device->lun = device->scsi3addr[4]; | |
713 | break; | |
714 | } | |
715 | } | |
716 | if (device->lun == -1) { | |
717 | dev_warn(&h->pdev->dev, "physical device with no LUN=0," | |
718 | " suspect firmware bug or unsupported hardware " | |
719 | "configuration.\n"); | |
720 | return -1; | |
721 | } | |
722 | ||
723 | lun_assigned: | |
724 | ||
725 | h->dev[n] = device; | |
726 | h->ndevices++; | |
727 | added[*nadded] = device; | |
728 | (*nadded)++; | |
729 | ||
730 | /* initially, (before registering with scsi layer) we don't | |
731 | * know our hostno and we don't want to print anything first | |
732 | * time anyway (the scsi layer's inquiries will show that info) | |
733 | */ | |
734 | /* if (hostno != -1) */ | |
735 | dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", | |
736 | scsi_device_type(device->devtype), hostno, | |
737 | device->bus, device->target, device->lun); | |
738 | return 0; | |
739 | } | |
740 | ||
bd9244f7 ST |
741 | /* Update an entry in h->dev[] array. */ |
742 | static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno, | |
743 | int entry, struct hpsa_scsi_dev_t *new_entry) | |
744 | { | |
745 | /* assumes h->devlock is held */ | |
746 | BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); | |
747 | ||
748 | /* Raid level changed. */ | |
749 | h->dev[entry]->raid_level = new_entry->raid_level; | |
750 | dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n", | |
751 | scsi_device_type(new_entry->devtype), hostno, new_entry->bus, | |
752 | new_entry->target, new_entry->lun); | |
753 | } | |
754 | ||
2a8ccf31 SC |
755 | /* Replace an entry from h->dev[] array. */ |
756 | static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno, | |
757 | int entry, struct hpsa_scsi_dev_t *new_entry, | |
758 | struct hpsa_scsi_dev_t *added[], int *nadded, | |
759 | struct hpsa_scsi_dev_t *removed[], int *nremoved) | |
760 | { | |
761 | /* assumes h->devlock is held */ | |
cfe5badc | 762 | BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); |
2a8ccf31 SC |
763 | removed[*nremoved] = h->dev[entry]; |
764 | (*nremoved)++; | |
01350d05 SC |
765 | |
766 | /* | |
767 | * New physical devices won't have target/lun assigned yet | |
768 | * so we need to preserve the values in the slot we are replacing. | |
769 | */ | |
770 | if (new_entry->target == -1) { | |
771 | new_entry->target = h->dev[entry]->target; | |
772 | new_entry->lun = h->dev[entry]->lun; | |
773 | } | |
774 | ||
2a8ccf31 SC |
775 | h->dev[entry] = new_entry; |
776 | added[*nadded] = new_entry; | |
777 | (*nadded)++; | |
778 | dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n", | |
779 | scsi_device_type(new_entry->devtype), hostno, new_entry->bus, | |
780 | new_entry->target, new_entry->lun); | |
781 | } | |
782 | ||
edd16368 SC |
783 | /* Remove an entry from h->dev[] array. */ |
784 | static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, | |
785 | struct hpsa_scsi_dev_t *removed[], int *nremoved) | |
786 | { | |
787 | /* assumes h->devlock is held */ | |
788 | int i; | |
789 | struct hpsa_scsi_dev_t *sd; | |
790 | ||
cfe5badc | 791 | BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); |
edd16368 SC |
792 | |
793 | sd = h->dev[entry]; | |
794 | removed[*nremoved] = h->dev[entry]; | |
795 | (*nremoved)++; | |
796 | ||
797 | for (i = entry; i < h->ndevices-1; i++) | |
798 | h->dev[i] = h->dev[i+1]; | |
799 | h->ndevices--; | |
800 | dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", | |
801 | scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, | |
802 | sd->lun); | |
803 | } | |
804 | ||
805 | #define SCSI3ADDR_EQ(a, b) ( \ | |
806 | (a)[7] == (b)[7] && \ | |
807 | (a)[6] == (b)[6] && \ | |
808 | (a)[5] == (b)[5] && \ | |
809 | (a)[4] == (b)[4] && \ | |
810 | (a)[3] == (b)[3] && \ | |
811 | (a)[2] == (b)[2] && \ | |
812 | (a)[1] == (b)[1] && \ | |
813 | (a)[0] == (b)[0]) | |
814 | ||
815 | static void fixup_botched_add(struct ctlr_info *h, | |
816 | struct hpsa_scsi_dev_t *added) | |
817 | { | |
818 | /* called when scsi_add_device fails in order to re-adjust | |
819 | * h->dev[] to match the mid layer's view. | |
820 | */ | |
821 | unsigned long flags; | |
822 | int i, j; | |
823 | ||
824 | spin_lock_irqsave(&h->lock, flags); | |
825 | for (i = 0; i < h->ndevices; i++) { | |
826 | if (h->dev[i] == added) { | |
827 | for (j = i; j < h->ndevices-1; j++) | |
828 | h->dev[j] = h->dev[j+1]; | |
829 | h->ndevices--; | |
830 | break; | |
831 | } | |
832 | } | |
833 | spin_unlock_irqrestore(&h->lock, flags); | |
834 | kfree(added); | |
835 | } | |
836 | ||
837 | static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, | |
838 | struct hpsa_scsi_dev_t *dev2) | |
839 | { | |
edd16368 SC |
840 | /* we compare everything except lun and target as these |
841 | * are not yet assigned. Compare parts likely | |
842 | * to differ first | |
843 | */ | |
844 | if (memcmp(dev1->scsi3addr, dev2->scsi3addr, | |
845 | sizeof(dev1->scsi3addr)) != 0) | |
846 | return 0; | |
847 | if (memcmp(dev1->device_id, dev2->device_id, | |
848 | sizeof(dev1->device_id)) != 0) | |
849 | return 0; | |
850 | if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) | |
851 | return 0; | |
852 | if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) | |
853 | return 0; | |
edd16368 SC |
854 | if (dev1->devtype != dev2->devtype) |
855 | return 0; | |
edd16368 SC |
856 | if (dev1->bus != dev2->bus) |
857 | return 0; | |
858 | return 1; | |
859 | } | |
860 | ||
bd9244f7 ST |
861 | static inline int device_updated(struct hpsa_scsi_dev_t *dev1, |
862 | struct hpsa_scsi_dev_t *dev2) | |
863 | { | |
864 | /* Device attributes that can change, but don't mean | |
865 | * that the device is a different device, nor that the OS | |
866 | * needs to be told anything about the change. | |
867 | */ | |
868 | if (dev1->raid_level != dev2->raid_level) | |
869 | return 1; | |
870 | return 0; | |
871 | } | |
872 | ||
edd16368 SC |
873 | /* Find needle in haystack. If exact match found, return DEVICE_SAME, |
874 | * and return needle location in *index. If scsi3addr matches, but not | |
875 | * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle | |
bd9244f7 ST |
876 | * location in *index. |
877 | * In the case of a minor device attribute change, such as RAID level, just | |
878 | * return DEVICE_UPDATED, along with the updated device's location in index. | |
879 | * If needle not found, return DEVICE_NOT_FOUND. | |
edd16368 SC |
880 | */ |
881 | static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, | |
882 | struct hpsa_scsi_dev_t *haystack[], int haystack_size, | |
883 | int *index) | |
884 | { | |
885 | int i; | |
886 | #define DEVICE_NOT_FOUND 0 | |
887 | #define DEVICE_CHANGED 1 | |
888 | #define DEVICE_SAME 2 | |
bd9244f7 | 889 | #define DEVICE_UPDATED 3 |
edd16368 | 890 | for (i = 0; i < haystack_size; i++) { |
23231048 SC |
891 | if (haystack[i] == NULL) /* previously removed. */ |
892 | continue; | |
edd16368 SC |
893 | if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { |
894 | *index = i; | |
bd9244f7 ST |
895 | if (device_is_the_same(needle, haystack[i])) { |
896 | if (device_updated(needle, haystack[i])) | |
897 | return DEVICE_UPDATED; | |
edd16368 | 898 | return DEVICE_SAME; |
bd9244f7 | 899 | } else { |
edd16368 | 900 | return DEVICE_CHANGED; |
bd9244f7 | 901 | } |
edd16368 SC |
902 | } |
903 | } | |
904 | *index = -1; | |
905 | return DEVICE_NOT_FOUND; | |
906 | } | |
907 | ||
4967bd3e | 908 | static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, |
edd16368 SC |
909 | struct hpsa_scsi_dev_t *sd[], int nsds) |
910 | { | |
911 | /* sd contains scsi3 addresses and devtypes, and inquiry | |
912 | * data. This function takes what's in sd to be the current | |
913 | * reality and updates h->dev[] to reflect that reality. | |
914 | */ | |
915 | int i, entry, device_change, changes = 0; | |
916 | struct hpsa_scsi_dev_t *csd; | |
917 | unsigned long flags; | |
918 | struct hpsa_scsi_dev_t **added, **removed; | |
919 | int nadded, nremoved; | |
920 | struct Scsi_Host *sh = NULL; | |
921 | ||
cfe5badc ST |
922 | added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL); |
923 | removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL); | |
edd16368 SC |
924 | |
925 | if (!added || !removed) { | |
926 | dev_warn(&h->pdev->dev, "out of memory in " | |
927 | "adjust_hpsa_scsi_table\n"); | |
928 | goto free_and_out; | |
929 | } | |
930 | ||
931 | spin_lock_irqsave(&h->devlock, flags); | |
932 | ||
933 | /* find any devices in h->dev[] that are not in | |
934 | * sd[] and remove them from h->dev[], and for any | |
935 | * devices which have changed, remove the old device | |
936 | * info and add the new device info. | |
bd9244f7 ST |
937 | * If minor device attributes change, just update |
938 | * the existing device structure. | |
edd16368 SC |
939 | */ |
940 | i = 0; | |
941 | nremoved = 0; | |
942 | nadded = 0; | |
943 | while (i < h->ndevices) { | |
944 | csd = h->dev[i]; | |
945 | device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); | |
946 | if (device_change == DEVICE_NOT_FOUND) { | |
947 | changes++; | |
948 | hpsa_scsi_remove_entry(h, hostno, i, | |
949 | removed, &nremoved); | |
950 | continue; /* remove ^^^, hence i not incremented */ | |
951 | } else if (device_change == DEVICE_CHANGED) { | |
952 | changes++; | |
2a8ccf31 SC |
953 | hpsa_scsi_replace_entry(h, hostno, i, sd[entry], |
954 | added, &nadded, removed, &nremoved); | |
c7f172dc SC |
955 | /* Set it to NULL to prevent it from being freed |
956 | * at the bottom of hpsa_update_scsi_devices() | |
957 | */ | |
958 | sd[entry] = NULL; | |
bd9244f7 ST |
959 | } else if (device_change == DEVICE_UPDATED) { |
960 | hpsa_scsi_update_entry(h, hostno, i, sd[entry]); | |
edd16368 SC |
961 | } |
962 | i++; | |
963 | } | |
964 | ||
965 | /* Now, make sure every device listed in sd[] is also | |
966 | * listed in h->dev[], adding them if they aren't found | |
967 | */ | |
968 | ||
969 | for (i = 0; i < nsds; i++) { | |
970 | if (!sd[i]) /* if already added above. */ | |
971 | continue; | |
972 | device_change = hpsa_scsi_find_entry(sd[i], h->dev, | |
973 | h->ndevices, &entry); | |
974 | if (device_change == DEVICE_NOT_FOUND) { | |
975 | changes++; | |
976 | if (hpsa_scsi_add_entry(h, hostno, sd[i], | |
977 | added, &nadded) != 0) | |
978 | break; | |
979 | sd[i] = NULL; /* prevent from being freed later. */ | |
980 | } else if (device_change == DEVICE_CHANGED) { | |
981 | /* should never happen... */ | |
982 | changes++; | |
983 | dev_warn(&h->pdev->dev, | |
984 | "device unexpectedly changed.\n"); | |
985 | /* but if it does happen, we just ignore that device */ | |
986 | } | |
987 | } | |
988 | spin_unlock_irqrestore(&h->devlock, flags); | |
989 | ||
990 | /* Don't notify scsi mid layer of any changes the first time through | |
991 | * (or if there are no changes) scsi_scan_host will do it later the | |
992 | * first time through. | |
993 | */ | |
994 | if (hostno == -1 || !changes) | |
995 | goto free_and_out; | |
996 | ||
997 | sh = h->scsi_host; | |
998 | /* Notify scsi mid layer of any removed devices */ | |
999 | for (i = 0; i < nremoved; i++) { | |
1000 | struct scsi_device *sdev = | |
1001 | scsi_device_lookup(sh, removed[i]->bus, | |
1002 | removed[i]->target, removed[i]->lun); | |
1003 | if (sdev != NULL) { | |
1004 | scsi_remove_device(sdev); | |
1005 | scsi_device_put(sdev); | |
1006 | } else { | |
1007 | /* We don't expect to get here. | |
1008 | * future cmds to this device will get selection | |
1009 | * timeout as if the device was gone. | |
1010 | */ | |
1011 | dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " | |
1012 | " for removal.", hostno, removed[i]->bus, | |
1013 | removed[i]->target, removed[i]->lun); | |
1014 | } | |
1015 | kfree(removed[i]); | |
1016 | removed[i] = NULL; | |
1017 | } | |
1018 | ||
1019 | /* Notify scsi mid layer of any added devices */ | |
1020 | for (i = 0; i < nadded; i++) { | |
1021 | if (scsi_add_device(sh, added[i]->bus, | |
1022 | added[i]->target, added[i]->lun) == 0) | |
1023 | continue; | |
1024 | dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " | |
1025 | "device not added.\n", hostno, added[i]->bus, | |
1026 | added[i]->target, added[i]->lun); | |
1027 | /* now we have to remove it from h->dev, | |
1028 | * since it didn't get added to scsi mid layer | |
1029 | */ | |
1030 | fixup_botched_add(h, added[i]); | |
1031 | } | |
1032 | ||
1033 | free_and_out: | |
1034 | kfree(added); | |
1035 | kfree(removed); | |
edd16368 SC |
1036 | } |
1037 | ||
1038 | /* | |
1039 | * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t * | |
1040 | * Assume's h->devlock is held. | |
1041 | */ | |
1042 | static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, | |
1043 | int bus, int target, int lun) | |
1044 | { | |
1045 | int i; | |
1046 | struct hpsa_scsi_dev_t *sd; | |
1047 | ||
1048 | for (i = 0; i < h->ndevices; i++) { | |
1049 | sd = h->dev[i]; | |
1050 | if (sd->bus == bus && sd->target == target && sd->lun == lun) | |
1051 | return sd; | |
1052 | } | |
1053 | return NULL; | |
1054 | } | |
1055 | ||
1056 | /* link sdev->hostdata to our per-device structure. */ | |
1057 | static int hpsa_slave_alloc(struct scsi_device *sdev) | |
1058 | { | |
1059 | struct hpsa_scsi_dev_t *sd; | |
1060 | unsigned long flags; | |
1061 | struct ctlr_info *h; | |
1062 | ||
1063 | h = sdev_to_hba(sdev); | |
1064 | spin_lock_irqsave(&h->devlock, flags); | |
1065 | sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), | |
1066 | sdev_id(sdev), sdev->lun); | |
1067 | if (sd != NULL) | |
1068 | sdev->hostdata = sd; | |
1069 | spin_unlock_irqrestore(&h->devlock, flags); | |
1070 | return 0; | |
1071 | } | |
1072 | ||
1073 | static void hpsa_slave_destroy(struct scsi_device *sdev) | |
1074 | { | |
bcc44255 | 1075 | /* nothing to do. */ |
edd16368 SC |
1076 | } |
1077 | ||
33a2ffce SC |
1078 | static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) |
1079 | { | |
1080 | int i; | |
1081 | ||
1082 | if (!h->cmd_sg_list) | |
1083 | return; | |
1084 | for (i = 0; i < h->nr_cmds; i++) { | |
1085 | kfree(h->cmd_sg_list[i]); | |
1086 | h->cmd_sg_list[i] = NULL; | |
1087 | } | |
1088 | kfree(h->cmd_sg_list); | |
1089 | h->cmd_sg_list = NULL; | |
1090 | } | |
1091 | ||
1092 | static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h) | |
1093 | { | |
1094 | int i; | |
1095 | ||
1096 | if (h->chainsize <= 0) | |
1097 | return 0; | |
1098 | ||
1099 | h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, | |
1100 | GFP_KERNEL); | |
1101 | if (!h->cmd_sg_list) | |
1102 | return -ENOMEM; | |
1103 | for (i = 0; i < h->nr_cmds; i++) { | |
1104 | h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * | |
1105 | h->chainsize, GFP_KERNEL); | |
1106 | if (!h->cmd_sg_list[i]) | |
1107 | goto clean; | |
1108 | } | |
1109 | return 0; | |
1110 | ||
1111 | clean: | |
1112 | hpsa_free_sg_chain_blocks(h); | |
1113 | return -ENOMEM; | |
1114 | } | |
1115 | ||
1116 | static void hpsa_map_sg_chain_block(struct ctlr_info *h, | |
1117 | struct CommandList *c) | |
1118 | { | |
1119 | struct SGDescriptor *chain_sg, *chain_block; | |
1120 | u64 temp64; | |
1121 | ||
1122 | chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; | |
1123 | chain_block = h->cmd_sg_list[c->cmdindex]; | |
1124 | chain_sg->Ext = HPSA_SG_CHAIN; | |
1125 | chain_sg->Len = sizeof(*chain_sg) * | |
1126 | (c->Header.SGTotal - h->max_cmd_sg_entries); | |
1127 | temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len, | |
1128 | PCI_DMA_TODEVICE); | |
1129 | chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL); | |
1130 | chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL); | |
1131 | } | |
1132 | ||
1133 | static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, | |
1134 | struct CommandList *c) | |
1135 | { | |
1136 | struct SGDescriptor *chain_sg; | |
1137 | union u64bit temp64; | |
1138 | ||
1139 | if (c->Header.SGTotal <= h->max_cmd_sg_entries) | |
1140 | return; | |
1141 | ||
1142 | chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; | |
1143 | temp64.val32.lower = chain_sg->Addr.lower; | |
1144 | temp64.val32.upper = chain_sg->Addr.upper; | |
1145 | pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE); | |
1146 | } | |
1147 | ||
1fb011fb | 1148 | static void complete_scsi_command(struct CommandList *cp) |
edd16368 SC |
1149 | { |
1150 | struct scsi_cmnd *cmd; | |
1151 | struct ctlr_info *h; | |
1152 | struct ErrorInfo *ei; | |
1153 | ||
1154 | unsigned char sense_key; | |
1155 | unsigned char asc; /* additional sense code */ | |
1156 | unsigned char ascq; /* additional sense code qualifier */ | |
db111e18 | 1157 | unsigned long sense_data_size; |
edd16368 SC |
1158 | |
1159 | ei = cp->err_info; | |
1160 | cmd = (struct scsi_cmnd *) cp->scsi_cmd; | |
1161 | h = cp->h; | |
1162 | ||
1163 | scsi_dma_unmap(cmd); /* undo the DMA mappings */ | |
33a2ffce SC |
1164 | if (cp->Header.SGTotal > h->max_cmd_sg_entries) |
1165 | hpsa_unmap_sg_chain_block(h, cp); | |
edd16368 SC |
1166 | |
1167 | cmd->result = (DID_OK << 16); /* host byte */ | |
1168 | cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ | |
5512672f | 1169 | cmd->result |= ei->ScsiStatus; |
edd16368 SC |
1170 | |
1171 | /* copy the sense data whether we need to or not. */ | |
db111e18 SC |
1172 | if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) |
1173 | sense_data_size = SCSI_SENSE_BUFFERSIZE; | |
1174 | else | |
1175 | sense_data_size = sizeof(ei->SenseInfo); | |
1176 | if (ei->SenseLen < sense_data_size) | |
1177 | sense_data_size = ei->SenseLen; | |
1178 | ||
1179 | memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); | |
edd16368 SC |
1180 | scsi_set_resid(cmd, ei->ResidualCnt); |
1181 | ||
1182 | if (ei->CommandStatus == 0) { | |
1183 | cmd->scsi_done(cmd); | |
1184 | cmd_free(h, cp); | |
1185 | return; | |
1186 | } | |
1187 | ||
1188 | /* an error has occurred */ | |
1189 | switch (ei->CommandStatus) { | |
1190 | ||
1191 | case CMD_TARGET_STATUS: | |
1192 | if (ei->ScsiStatus) { | |
1193 | /* Get sense key */ | |
1194 | sense_key = 0xf & ei->SenseInfo[2]; | |
1195 | /* Get additional sense code */ | |
1196 | asc = ei->SenseInfo[12]; | |
1197 | /* Get addition sense code qualifier */ | |
1198 | ascq = ei->SenseInfo[13]; | |
1199 | } | |
1200 | ||
1201 | if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { | |
1202 | if (check_for_unit_attention(h, cp)) { | |
1203 | cmd->result = DID_SOFT_ERROR << 16; | |
1204 | break; | |
1205 | } | |
1206 | if (sense_key == ILLEGAL_REQUEST) { | |
1207 | /* | |
1208 | * SCSI REPORT_LUNS is commonly unsupported on | |
1209 | * Smart Array. Suppress noisy complaint. | |
1210 | */ | |
1211 | if (cp->Request.CDB[0] == REPORT_LUNS) | |
1212 | break; | |
1213 | ||
1214 | /* If ASC/ASCQ indicate Logical Unit | |
1215 | * Not Supported condition, | |
1216 | */ | |
1217 | if ((asc == 0x25) && (ascq == 0x0)) { | |
1218 | dev_warn(&h->pdev->dev, "cp %p " | |
1219 | "has check condition\n", cp); | |
1220 | break; | |
1221 | } | |
1222 | } | |
1223 | ||
1224 | if (sense_key == NOT_READY) { | |
1225 | /* If Sense is Not Ready, Logical Unit | |
1226 | * Not ready, Manual Intervention | |
1227 | * required | |
1228 | */ | |
1229 | if ((asc == 0x04) && (ascq == 0x03)) { | |
edd16368 SC |
1230 | dev_warn(&h->pdev->dev, "cp %p " |
1231 | "has check condition: unit " | |
1232 | "not ready, manual " | |
1233 | "intervention required\n", cp); | |
1234 | break; | |
1235 | } | |
1236 | } | |
1d3b3609 MG |
1237 | if (sense_key == ABORTED_COMMAND) { |
1238 | /* Aborted command is retryable */ | |
1239 | dev_warn(&h->pdev->dev, "cp %p " | |
1240 | "has check condition: aborted command: " | |
1241 | "ASC: 0x%x, ASCQ: 0x%x\n", | |
1242 | cp, asc, ascq); | |
1243 | cmd->result = DID_SOFT_ERROR << 16; | |
1244 | break; | |
1245 | } | |
edd16368 | 1246 | /* Must be some other type of check condition */ |
21b8e4ef | 1247 | dev_dbg(&h->pdev->dev, "cp %p has check condition: " |
edd16368 SC |
1248 | "unknown type: " |
1249 | "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " | |
1250 | "Returning result: 0x%x, " | |
1251 | "cmd=[%02x %02x %02x %02x %02x " | |
807be732 | 1252 | "%02x %02x %02x %02x %02x %02x " |
edd16368 SC |
1253 | "%02x %02x %02x %02x %02x]\n", |
1254 | cp, sense_key, asc, ascq, | |
1255 | cmd->result, | |
1256 | cmd->cmnd[0], cmd->cmnd[1], | |
1257 | cmd->cmnd[2], cmd->cmnd[3], | |
1258 | cmd->cmnd[4], cmd->cmnd[5], | |
1259 | cmd->cmnd[6], cmd->cmnd[7], | |
807be732 MM |
1260 | cmd->cmnd[8], cmd->cmnd[9], |
1261 | cmd->cmnd[10], cmd->cmnd[11], | |
1262 | cmd->cmnd[12], cmd->cmnd[13], | |
1263 | cmd->cmnd[14], cmd->cmnd[15]); | |
edd16368 SC |
1264 | break; |
1265 | } | |
1266 | ||
1267 | ||
1268 | /* Problem was not a check condition | |
1269 | * Pass it up to the upper layers... | |
1270 | */ | |
1271 | if (ei->ScsiStatus) { | |
1272 | dev_warn(&h->pdev->dev, "cp %p has status 0x%x " | |
1273 | "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " | |
1274 | "Returning result: 0x%x\n", | |
1275 | cp, ei->ScsiStatus, | |
1276 | sense_key, asc, ascq, | |
1277 | cmd->result); | |
1278 | } else { /* scsi status is zero??? How??? */ | |
1279 | dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " | |
1280 | "Returning no connection.\n", cp), | |
1281 | ||
1282 | /* Ordinarily, this case should never happen, | |
1283 | * but there is a bug in some released firmware | |
1284 | * revisions that allows it to happen if, for | |
1285 | * example, a 4100 backplane loses power and | |
1286 | * the tape drive is in it. We assume that | |
1287 | * it's a fatal error of some kind because we | |
1288 | * can't show that it wasn't. We will make it | |
1289 | * look like selection timeout since that is | |
1290 | * the most common reason for this to occur, | |
1291 | * and it's severe enough. | |
1292 | */ | |
1293 | ||
1294 | cmd->result = DID_NO_CONNECT << 16; | |
1295 | } | |
1296 | break; | |
1297 | ||
1298 | case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ | |
1299 | break; | |
1300 | case CMD_DATA_OVERRUN: | |
1301 | dev_warn(&h->pdev->dev, "cp %p has" | |
1302 | " completed with data overrun " | |
1303 | "reported\n", cp); | |
1304 | break; | |
1305 | case CMD_INVALID: { | |
1306 | /* print_bytes(cp, sizeof(*cp), 1, 0); | |
1307 | print_cmd(cp); */ | |
1308 | /* We get CMD_INVALID if you address a non-existent device | |
1309 | * instead of a selection timeout (no response). You will | |
1310 | * see this if you yank out a drive, then try to access it. | |
1311 | * This is kind of a shame because it means that any other | |
1312 | * CMD_INVALID (e.g. driver bug) will get interpreted as a | |
1313 | * missing target. */ | |
1314 | cmd->result = DID_NO_CONNECT << 16; | |
1315 | } | |
1316 | break; | |
1317 | case CMD_PROTOCOL_ERR: | |
1318 | dev_warn(&h->pdev->dev, "cp %p has " | |
1319 | "protocol error \n", cp); | |
1320 | break; | |
1321 | case CMD_HARDWARE_ERR: | |
1322 | cmd->result = DID_ERROR << 16; | |
1323 | dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp); | |
1324 | break; | |
1325 | case CMD_CONNECTION_LOST: | |
1326 | cmd->result = DID_ERROR << 16; | |
1327 | dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp); | |
1328 | break; | |
1329 | case CMD_ABORTED: | |
1330 | cmd->result = DID_ABORT << 16; | |
1331 | dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n", | |
1332 | cp, ei->ScsiStatus); | |
1333 | break; | |
1334 | case CMD_ABORT_FAILED: | |
1335 | cmd->result = DID_ERROR << 16; | |
1336 | dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp); | |
1337 | break; | |
1338 | case CMD_UNSOLICITED_ABORT: | |
f6e76055 SC |
1339 | cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ |
1340 | dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited " | |
edd16368 SC |
1341 | "abort\n", cp); |
1342 | break; | |
1343 | case CMD_TIMEOUT: | |
1344 | cmd->result = DID_TIME_OUT << 16; | |
1345 | dev_warn(&h->pdev->dev, "cp %p timedout\n", cp); | |
1346 | break; | |
1d5e2ed0 SC |
1347 | case CMD_UNABORTABLE: |
1348 | cmd->result = DID_ERROR << 16; | |
1349 | dev_warn(&h->pdev->dev, "Command unabortable\n"); | |
1350 | break; | |
edd16368 SC |
1351 | default: |
1352 | cmd->result = DID_ERROR << 16; | |
1353 | dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", | |
1354 | cp, ei->CommandStatus); | |
1355 | } | |
1356 | cmd->scsi_done(cmd); | |
1357 | cmd_free(h, cp); | |
1358 | } | |
1359 | ||
edd16368 SC |
1360 | static void hpsa_pci_unmap(struct pci_dev *pdev, |
1361 | struct CommandList *c, int sg_used, int data_direction) | |
1362 | { | |
1363 | int i; | |
1364 | union u64bit addr64; | |
1365 | ||
1366 | for (i = 0; i < sg_used; i++) { | |
1367 | addr64.val32.lower = c->SG[i].Addr.lower; | |
1368 | addr64.val32.upper = c->SG[i].Addr.upper; | |
1369 | pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len, | |
1370 | data_direction); | |
1371 | } | |
1372 | } | |
1373 | ||
1374 | static void hpsa_map_one(struct pci_dev *pdev, | |
1375 | struct CommandList *cp, | |
1376 | unsigned char *buf, | |
1377 | size_t buflen, | |
1378 | int data_direction) | |
1379 | { | |
01a02ffc | 1380 | u64 addr64; |
edd16368 SC |
1381 | |
1382 | if (buflen == 0 || data_direction == PCI_DMA_NONE) { | |
1383 | cp->Header.SGList = 0; | |
1384 | cp->Header.SGTotal = 0; | |
1385 | return; | |
1386 | } | |
1387 | ||
01a02ffc | 1388 | addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction); |
edd16368 | 1389 | cp->SG[0].Addr.lower = |
01a02ffc | 1390 | (u32) (addr64 & (u64) 0x00000000FFFFFFFF); |
edd16368 | 1391 | cp->SG[0].Addr.upper = |
01a02ffc | 1392 | (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF); |
edd16368 | 1393 | cp->SG[0].Len = buflen; |
01a02ffc SC |
1394 | cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */ |
1395 | cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */ | |
edd16368 SC |
1396 | } |
1397 | ||
1398 | static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, | |
1399 | struct CommandList *c) | |
1400 | { | |
1401 | DECLARE_COMPLETION_ONSTACK(wait); | |
1402 | ||
1403 | c->waiting = &wait; | |
1404 | enqueue_cmd_and_start_io(h, c); | |
1405 | wait_for_completion(&wait); | |
1406 | } | |
1407 | ||
a0c12413 SC |
1408 | static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h, |
1409 | struct CommandList *c) | |
1410 | { | |
1411 | unsigned long flags; | |
1412 | ||
1413 | /* If controller lockup detected, fake a hardware error. */ | |
1414 | spin_lock_irqsave(&h->lock, flags); | |
1415 | if (unlikely(h->lockup_detected)) { | |
1416 | spin_unlock_irqrestore(&h->lock, flags); | |
1417 | c->err_info->CommandStatus = CMD_HARDWARE_ERR; | |
1418 | } else { | |
1419 | spin_unlock_irqrestore(&h->lock, flags); | |
1420 | hpsa_scsi_do_simple_cmd_core(h, c); | |
1421 | } | |
1422 | } | |
1423 | ||
9c2fc160 | 1424 | #define MAX_DRIVER_CMD_RETRIES 25 |
edd16368 SC |
1425 | static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, |
1426 | struct CommandList *c, int data_direction) | |
1427 | { | |
9c2fc160 | 1428 | int backoff_time = 10, retry_count = 0; |
edd16368 SC |
1429 | |
1430 | do { | |
7630abd0 | 1431 | memset(c->err_info, 0, sizeof(*c->err_info)); |
edd16368 SC |
1432 | hpsa_scsi_do_simple_cmd_core(h, c); |
1433 | retry_count++; | |
9c2fc160 SC |
1434 | if (retry_count > 3) { |
1435 | msleep(backoff_time); | |
1436 | if (backoff_time < 1000) | |
1437 | backoff_time *= 2; | |
1438 | } | |
852af20a | 1439 | } while ((check_for_unit_attention(h, c) || |
9c2fc160 SC |
1440 | check_for_busy(h, c)) && |
1441 | retry_count <= MAX_DRIVER_CMD_RETRIES); | |
edd16368 SC |
1442 | hpsa_pci_unmap(h->pdev, c, 1, data_direction); |
1443 | } | |
1444 | ||
1445 | static void hpsa_scsi_interpret_error(struct CommandList *cp) | |
1446 | { | |
1447 | struct ErrorInfo *ei; | |
1448 | struct device *d = &cp->h->pdev->dev; | |
1449 | ||
1450 | ei = cp->err_info; | |
1451 | switch (ei->CommandStatus) { | |
1452 | case CMD_TARGET_STATUS: | |
1453 | dev_warn(d, "cmd %p has completed with errors\n", cp); | |
1454 | dev_warn(d, "cmd %p has SCSI Status = %x\n", cp, | |
1455 | ei->ScsiStatus); | |
1456 | if (ei->ScsiStatus == 0) | |
1457 | dev_warn(d, "SCSI status is abnormally zero. " | |
1458 | "(probably indicates selection timeout " | |
1459 | "reported incorrectly due to a known " | |
1460 | "firmware bug, circa July, 2001.)\n"); | |
1461 | break; | |
1462 | case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ | |
1463 | dev_info(d, "UNDERRUN\n"); | |
1464 | break; | |
1465 | case CMD_DATA_OVERRUN: | |
1466 | dev_warn(d, "cp %p has completed with data overrun\n", cp); | |
1467 | break; | |
1468 | case CMD_INVALID: { | |
1469 | /* controller unfortunately reports SCSI passthru's | |
1470 | * to non-existent targets as invalid commands. | |
1471 | */ | |
1472 | dev_warn(d, "cp %p is reported invalid (probably means " | |
1473 | "target device no longer present)\n", cp); | |
1474 | /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0); | |
1475 | print_cmd(cp); */ | |
1476 | } | |
1477 | break; | |
1478 | case CMD_PROTOCOL_ERR: | |
1479 | dev_warn(d, "cp %p has protocol error \n", cp); | |
1480 | break; | |
1481 | case CMD_HARDWARE_ERR: | |
1482 | /* cmd->result = DID_ERROR << 16; */ | |
1483 | dev_warn(d, "cp %p had hardware error\n", cp); | |
1484 | break; | |
1485 | case CMD_CONNECTION_LOST: | |
1486 | dev_warn(d, "cp %p had connection lost\n", cp); | |
1487 | break; | |
1488 | case CMD_ABORTED: | |
1489 | dev_warn(d, "cp %p was aborted\n", cp); | |
1490 | break; | |
1491 | case CMD_ABORT_FAILED: | |
1492 | dev_warn(d, "cp %p reports abort failed\n", cp); | |
1493 | break; | |
1494 | case CMD_UNSOLICITED_ABORT: | |
1495 | dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp); | |
1496 | break; | |
1497 | case CMD_TIMEOUT: | |
1498 | dev_warn(d, "cp %p timed out\n", cp); | |
1499 | break; | |
1d5e2ed0 SC |
1500 | case CMD_UNABORTABLE: |
1501 | dev_warn(d, "Command unabortable\n"); | |
1502 | break; | |
edd16368 SC |
1503 | default: |
1504 | dev_warn(d, "cp %p returned unknown status %x\n", cp, | |
1505 | ei->CommandStatus); | |
1506 | } | |
1507 | } | |
1508 | ||
1509 | static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, | |
1510 | unsigned char page, unsigned char *buf, | |
1511 | unsigned char bufsize) | |
1512 | { | |
1513 | int rc = IO_OK; | |
1514 | struct CommandList *c; | |
1515 | struct ErrorInfo *ei; | |
1516 | ||
1517 | c = cmd_special_alloc(h); | |
1518 | ||
1519 | if (c == NULL) { /* trouble... */ | |
1520 | dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | |
ecd9aad4 | 1521 | return -ENOMEM; |
edd16368 SC |
1522 | } |
1523 | ||
1524 | fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD); | |
1525 | hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); | |
1526 | ei = c->err_info; | |
1527 | if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { | |
1528 | hpsa_scsi_interpret_error(c); | |
1529 | rc = -1; | |
1530 | } | |
1531 | cmd_special_free(h, c); | |
1532 | return rc; | |
1533 | } | |
1534 | ||
1535 | static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr) | |
1536 | { | |
1537 | int rc = IO_OK; | |
1538 | struct CommandList *c; | |
1539 | struct ErrorInfo *ei; | |
1540 | ||
1541 | c = cmd_special_alloc(h); | |
1542 | ||
1543 | if (c == NULL) { /* trouble... */ | |
1544 | dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | |
e9ea04a6 | 1545 | return -ENOMEM; |
edd16368 SC |
1546 | } |
1547 | ||
1548 | fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG); | |
1549 | hpsa_scsi_do_simple_cmd_core(h, c); | |
1550 | /* no unmap needed here because no data xfer. */ | |
1551 | ||
1552 | ei = c->err_info; | |
1553 | if (ei->CommandStatus != 0) { | |
1554 | hpsa_scsi_interpret_error(c); | |
1555 | rc = -1; | |
1556 | } | |
1557 | cmd_special_free(h, c); | |
1558 | return rc; | |
1559 | } | |
1560 | ||
1561 | static void hpsa_get_raid_level(struct ctlr_info *h, | |
1562 | unsigned char *scsi3addr, unsigned char *raid_level) | |
1563 | { | |
1564 | int rc; | |
1565 | unsigned char *buf; | |
1566 | ||
1567 | *raid_level = RAID_UNKNOWN; | |
1568 | buf = kzalloc(64, GFP_KERNEL); | |
1569 | if (!buf) | |
1570 | return; | |
1571 | rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64); | |
1572 | if (rc == 0) | |
1573 | *raid_level = buf[8]; | |
1574 | if (*raid_level > RAID_UNKNOWN) | |
1575 | *raid_level = RAID_UNKNOWN; | |
1576 | kfree(buf); | |
1577 | return; | |
1578 | } | |
1579 | ||
1580 | /* Get the device id from inquiry page 0x83 */ | |
1581 | static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, | |
1582 | unsigned char *device_id, int buflen) | |
1583 | { | |
1584 | int rc; | |
1585 | unsigned char *buf; | |
1586 | ||
1587 | if (buflen > 16) | |
1588 | buflen = 16; | |
1589 | buf = kzalloc(64, GFP_KERNEL); | |
1590 | if (!buf) | |
1591 | return -1; | |
1592 | rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64); | |
1593 | if (rc == 0) | |
1594 | memcpy(device_id, &buf[8], buflen); | |
1595 | kfree(buf); | |
1596 | return rc != 0; | |
1597 | } | |
1598 | ||
1599 | static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, | |
1600 | struct ReportLUNdata *buf, int bufsize, | |
1601 | int extended_response) | |
1602 | { | |
1603 | int rc = IO_OK; | |
1604 | struct CommandList *c; | |
1605 | unsigned char scsi3addr[8]; | |
1606 | struct ErrorInfo *ei; | |
1607 | ||
1608 | c = cmd_special_alloc(h); | |
1609 | if (c == NULL) { /* trouble... */ | |
1610 | dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | |
1611 | return -1; | |
1612 | } | |
e89c0ae7 SC |
1613 | /* address the controller */ |
1614 | memset(scsi3addr, 0, sizeof(scsi3addr)); | |
edd16368 SC |
1615 | fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, |
1616 | buf, bufsize, 0, scsi3addr, TYPE_CMD); | |
1617 | if (extended_response) | |
1618 | c->Request.CDB[1] = extended_response; | |
1619 | hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); | |
1620 | ei = c->err_info; | |
1621 | if (ei->CommandStatus != 0 && | |
1622 | ei->CommandStatus != CMD_DATA_UNDERRUN) { | |
1623 | hpsa_scsi_interpret_error(c); | |
1624 | rc = -1; | |
1625 | } | |
1626 | cmd_special_free(h, c); | |
1627 | return rc; | |
1628 | } | |
1629 | ||
1630 | static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, | |
1631 | struct ReportLUNdata *buf, | |
1632 | int bufsize, int extended_response) | |
1633 | { | |
1634 | return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response); | |
1635 | } | |
1636 | ||
1637 | static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, | |
1638 | struct ReportLUNdata *buf, int bufsize) | |
1639 | { | |
1640 | return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); | |
1641 | } | |
1642 | ||
1643 | static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, | |
1644 | int bus, int target, int lun) | |
1645 | { | |
1646 | device->bus = bus; | |
1647 | device->target = target; | |
1648 | device->lun = lun; | |
1649 | } | |
1650 | ||
1651 | static int hpsa_update_device_info(struct ctlr_info *h, | |
0b0e1d6c SC |
1652 | unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, |
1653 | unsigned char *is_OBDR_device) | |
edd16368 | 1654 | { |
0b0e1d6c SC |
1655 | |
1656 | #define OBDR_SIG_OFFSET 43 | |
1657 | #define OBDR_TAPE_SIG "$DR-10" | |
1658 | #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) | |
1659 | #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) | |
1660 | ||
ea6d3bc3 | 1661 | unsigned char *inq_buff; |
0b0e1d6c | 1662 | unsigned char *obdr_sig; |
edd16368 | 1663 | |
ea6d3bc3 | 1664 | inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); |
edd16368 SC |
1665 | if (!inq_buff) |
1666 | goto bail_out; | |
1667 | ||
edd16368 SC |
1668 | /* Do an inquiry to the device to see what it is. */ |
1669 | if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, | |
1670 | (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { | |
1671 | /* Inquiry failed (msg printed already) */ | |
1672 | dev_err(&h->pdev->dev, | |
1673 | "hpsa_update_device_info: inquiry failed\n"); | |
1674 | goto bail_out; | |
1675 | } | |
1676 | ||
edd16368 SC |
1677 | this_device->devtype = (inq_buff[0] & 0x1f); |
1678 | memcpy(this_device->scsi3addr, scsi3addr, 8); | |
1679 | memcpy(this_device->vendor, &inq_buff[8], | |
1680 | sizeof(this_device->vendor)); | |
1681 | memcpy(this_device->model, &inq_buff[16], | |
1682 | sizeof(this_device->model)); | |
edd16368 SC |
1683 | memset(this_device->device_id, 0, |
1684 | sizeof(this_device->device_id)); | |
1685 | hpsa_get_device_id(h, scsi3addr, this_device->device_id, | |
1686 | sizeof(this_device->device_id)); | |
1687 | ||
1688 | if (this_device->devtype == TYPE_DISK && | |
1689 | is_logical_dev_addr_mode(scsi3addr)) | |
1690 | hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); | |
1691 | else | |
1692 | this_device->raid_level = RAID_UNKNOWN; | |
1693 | ||
0b0e1d6c SC |
1694 | if (is_OBDR_device) { |
1695 | /* See if this is a One-Button-Disaster-Recovery device | |
1696 | * by looking for "$DR-10" at offset 43 in inquiry data. | |
1697 | */ | |
1698 | obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; | |
1699 | *is_OBDR_device = (this_device->devtype == TYPE_ROM && | |
1700 | strncmp(obdr_sig, OBDR_TAPE_SIG, | |
1701 | OBDR_SIG_LEN) == 0); | |
1702 | } | |
1703 | ||
edd16368 SC |
1704 | kfree(inq_buff); |
1705 | return 0; | |
1706 | ||
1707 | bail_out: | |
1708 | kfree(inq_buff); | |
1709 | return 1; | |
1710 | } | |
1711 | ||
4f4eb9f1 | 1712 | static unsigned char *ext_target_model[] = { |
edd16368 SC |
1713 | "MSA2012", |
1714 | "MSA2024", | |
1715 | "MSA2312", | |
1716 | "MSA2324", | |
fda38518 | 1717 | "P2000 G3 SAS", |
edd16368 SC |
1718 | NULL, |
1719 | }; | |
1720 | ||
4f4eb9f1 | 1721 | static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) |
edd16368 SC |
1722 | { |
1723 | int i; | |
1724 | ||
4f4eb9f1 ST |
1725 | for (i = 0; ext_target_model[i]; i++) |
1726 | if (strncmp(device->model, ext_target_model[i], | |
1727 | strlen(ext_target_model[i])) == 0) | |
edd16368 SC |
1728 | return 1; |
1729 | return 0; | |
1730 | } | |
1731 | ||
1732 | /* Helper function to assign bus, target, lun mapping of devices. | |
4f4eb9f1 | 1733 | * Puts non-external target logical volumes on bus 0, external target logical |
edd16368 SC |
1734 | * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. |
1735 | * Logical drive target and lun are assigned at this time, but | |
1736 | * physical device lun and target assignment are deferred (assigned | |
1737 | * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) | |
1738 | */ | |
1739 | static void figure_bus_target_lun(struct ctlr_info *h, | |
1f310bde | 1740 | u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) |
edd16368 | 1741 | { |
1f310bde SC |
1742 | u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); |
1743 | ||
1744 | if (!is_logical_dev_addr_mode(lunaddrbytes)) { | |
1745 | /* physical device, target and lun filled in later */ | |
edd16368 | 1746 | if (is_hba_lunid(lunaddrbytes)) |
1f310bde | 1747 | hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff); |
edd16368 | 1748 | else |
1f310bde SC |
1749 | /* defer target, lun assignment for physical devices */ |
1750 | hpsa_set_bus_target_lun(device, 2, -1, -1); | |
1751 | return; | |
1752 | } | |
1753 | /* It's a logical device */ | |
4f4eb9f1 ST |
1754 | if (is_ext_target(h, device)) { |
1755 | /* external target way, put logicals on bus 1 | |
1f310bde SC |
1756 | * and match target/lun numbers box |
1757 | * reports, other smart array, bus 0, target 0, match lunid | |
1758 | */ | |
1759 | hpsa_set_bus_target_lun(device, | |
1760 | 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff); | |
1761 | return; | |
edd16368 | 1762 | } |
1f310bde | 1763 | hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff); |
edd16368 SC |
1764 | } |
1765 | ||
1766 | /* | |
1767 | * If there is no lun 0 on a target, linux won't find any devices. | |
4f4eb9f1 | 1768 | * For the external targets (arrays), we have to manually detect the enclosure |
edd16368 SC |
1769 | * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report |
1770 | * it for some reason. *tmpdevice is the target we're adding, | |
1771 | * this_device is a pointer into the current element of currentsd[] | |
1772 | * that we're building up in update_scsi_devices(), below. | |
1773 | * lunzerobits is a bitmap that tracks which targets already have a | |
1774 | * lun 0 assigned. | |
1775 | * Returns 1 if an enclosure was added, 0 if not. | |
1776 | */ | |
4f4eb9f1 | 1777 | static int add_ext_target_dev(struct ctlr_info *h, |
edd16368 | 1778 | struct hpsa_scsi_dev_t *tmpdevice, |
01a02ffc | 1779 | struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes, |
4f4eb9f1 | 1780 | unsigned long lunzerobits[], int *n_ext_target_devs) |
edd16368 SC |
1781 | { |
1782 | unsigned char scsi3addr[8]; | |
1783 | ||
1f310bde | 1784 | if (test_bit(tmpdevice->target, lunzerobits)) |
edd16368 SC |
1785 | return 0; /* There is already a lun 0 on this target. */ |
1786 | ||
1787 | if (!is_logical_dev_addr_mode(lunaddrbytes)) | |
1788 | return 0; /* It's the logical targets that may lack lun 0. */ | |
1789 | ||
4f4eb9f1 ST |
1790 | if (!is_ext_target(h, tmpdevice)) |
1791 | return 0; /* Only external target devices have this problem. */ | |
edd16368 | 1792 | |
1f310bde | 1793 | if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */ |
edd16368 SC |
1794 | return 0; |
1795 | ||
c4f8a299 | 1796 | memset(scsi3addr, 0, 8); |
1f310bde | 1797 | scsi3addr[3] = tmpdevice->target; |
edd16368 SC |
1798 | if (is_hba_lunid(scsi3addr)) |
1799 | return 0; /* Don't add the RAID controller here. */ | |
1800 | ||
339b2b14 SC |
1801 | if (is_scsi_rev_5(h)) |
1802 | return 0; /* p1210m doesn't need to do this. */ | |
1803 | ||
4f4eb9f1 | 1804 | if (*n_ext_target_devs >= MAX_EXT_TARGETS) { |
aca4a520 ST |
1805 | dev_warn(&h->pdev->dev, "Maximum number of external " |
1806 | "target devices exceeded. Check your hardware " | |
edd16368 SC |
1807 | "configuration."); |
1808 | return 0; | |
1809 | } | |
1810 | ||
0b0e1d6c | 1811 | if (hpsa_update_device_info(h, scsi3addr, this_device, NULL)) |
edd16368 | 1812 | return 0; |
4f4eb9f1 | 1813 | (*n_ext_target_devs)++; |
1f310bde SC |
1814 | hpsa_set_bus_target_lun(this_device, |
1815 | tmpdevice->bus, tmpdevice->target, 0); | |
1816 | set_bit(tmpdevice->target, lunzerobits); | |
edd16368 SC |
1817 | return 1; |
1818 | } | |
1819 | ||
1820 | /* | |
1821 | * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, | |
1822 | * logdev. The number of luns in physdev and logdev are returned in | |
1823 | * *nphysicals and *nlogicals, respectively. | |
1824 | * Returns 0 on success, -1 otherwise. | |
1825 | */ | |
1826 | static int hpsa_gather_lun_info(struct ctlr_info *h, | |
1827 | int reportlunsize, | |
01a02ffc SC |
1828 | struct ReportLUNdata *physdev, u32 *nphysicals, |
1829 | struct ReportLUNdata *logdev, u32 *nlogicals) | |
edd16368 SC |
1830 | { |
1831 | if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) { | |
1832 | dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); | |
1833 | return -1; | |
1834 | } | |
6df1e954 | 1835 | *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8; |
edd16368 SC |
1836 | if (*nphysicals > HPSA_MAX_PHYS_LUN) { |
1837 | dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded." | |
1838 | " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, | |
1839 | *nphysicals - HPSA_MAX_PHYS_LUN); | |
1840 | *nphysicals = HPSA_MAX_PHYS_LUN; | |
1841 | } | |
1842 | if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) { | |
1843 | dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); | |
1844 | return -1; | |
1845 | } | |
6df1e954 | 1846 | *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; |
edd16368 SC |
1847 | /* Reject Logicals in excess of our max capability. */ |
1848 | if (*nlogicals > HPSA_MAX_LUN) { | |
1849 | dev_warn(&h->pdev->dev, | |
1850 | "maximum logical LUNs (%d) exceeded. " | |
1851 | "%d LUNs ignored.\n", HPSA_MAX_LUN, | |
1852 | *nlogicals - HPSA_MAX_LUN); | |
1853 | *nlogicals = HPSA_MAX_LUN; | |
1854 | } | |
1855 | if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { | |
1856 | dev_warn(&h->pdev->dev, | |
1857 | "maximum logical + physical LUNs (%d) exceeded. " | |
1858 | "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, | |
1859 | *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); | |
1860 | *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; | |
1861 | } | |
1862 | return 0; | |
1863 | } | |
1864 | ||
339b2b14 SC |
1865 | u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i, |
1866 | int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list, | |
1867 | struct ReportLUNdata *logdev_list) | |
1868 | { | |
1869 | /* Helper function, figure out where the LUN ID info is coming from | |
1870 | * given index i, lists of physical and logical devices, where in | |
1871 | * the list the raid controller is supposed to appear (first or last) | |
1872 | */ | |
1873 | ||
1874 | int logicals_start = nphysicals + (raid_ctlr_position == 0); | |
1875 | int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); | |
1876 | ||
1877 | if (i == raid_ctlr_position) | |
1878 | return RAID_CTLR_LUNID; | |
1879 | ||
1880 | if (i < logicals_start) | |
1881 | return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0]; | |
1882 | ||
1883 | if (i < last_device) | |
1884 | return &logdev_list->LUN[i - nphysicals - | |
1885 | (raid_ctlr_position == 0)][0]; | |
1886 | BUG(); | |
1887 | return NULL; | |
1888 | } | |
1889 | ||
edd16368 SC |
1890 | static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) |
1891 | { | |
1892 | /* the idea here is we could get notified | |
1893 | * that some devices have changed, so we do a report | |
1894 | * physical luns and report logical luns cmd, and adjust | |
1895 | * our list of devices accordingly. | |
1896 | * | |
1897 | * The scsi3addr's of devices won't change so long as the | |
1898 | * adapter is not reset. That means we can rescan and | |
1899 | * tell which devices we already know about, vs. new | |
1900 | * devices, vs. disappearing devices. | |
1901 | */ | |
1902 | struct ReportLUNdata *physdev_list = NULL; | |
1903 | struct ReportLUNdata *logdev_list = NULL; | |
01a02ffc SC |
1904 | u32 nphysicals = 0; |
1905 | u32 nlogicals = 0; | |
1906 | u32 ndev_allocated = 0; | |
edd16368 SC |
1907 | struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; |
1908 | int ncurrent = 0; | |
1909 | int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8; | |
4f4eb9f1 | 1910 | int i, n_ext_target_devs, ndevs_to_allocate; |
339b2b14 | 1911 | int raid_ctlr_position; |
aca4a520 | 1912 | DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS); |
edd16368 | 1913 | |
cfe5badc | 1914 | currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL); |
edd16368 SC |
1915 | physdev_list = kzalloc(reportlunsize, GFP_KERNEL); |
1916 | logdev_list = kzalloc(reportlunsize, GFP_KERNEL); | |
edd16368 SC |
1917 | tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); |
1918 | ||
0b0e1d6c | 1919 | if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) { |
edd16368 SC |
1920 | dev_err(&h->pdev->dev, "out of memory\n"); |
1921 | goto out; | |
1922 | } | |
1923 | memset(lunzerobits, 0, sizeof(lunzerobits)); | |
1924 | ||
1925 | if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals, | |
1926 | logdev_list, &nlogicals)) | |
1927 | goto out; | |
1928 | ||
aca4a520 ST |
1929 | /* We might see up to the maximum number of logical and physical disks |
1930 | * plus external target devices, and a device for the local RAID | |
1931 | * controller. | |
edd16368 | 1932 | */ |
aca4a520 | 1933 | ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; |
edd16368 SC |
1934 | |
1935 | /* Allocate the per device structures */ | |
1936 | for (i = 0; i < ndevs_to_allocate; i++) { | |
b7ec021f ST |
1937 | if (i >= HPSA_MAX_DEVICES) { |
1938 | dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." | |
1939 | " %d devices ignored.\n", HPSA_MAX_DEVICES, | |
1940 | ndevs_to_allocate - HPSA_MAX_DEVICES); | |
1941 | break; | |
1942 | } | |
1943 | ||
edd16368 SC |
1944 | currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); |
1945 | if (!currentsd[i]) { | |
1946 | dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", | |
1947 | __FILE__, __LINE__); | |
1948 | goto out; | |
1949 | } | |
1950 | ndev_allocated++; | |
1951 | } | |
1952 | ||
339b2b14 SC |
1953 | if (unlikely(is_scsi_rev_5(h))) |
1954 | raid_ctlr_position = 0; | |
1955 | else | |
1956 | raid_ctlr_position = nphysicals + nlogicals; | |
1957 | ||
edd16368 | 1958 | /* adjust our table of devices */ |
4f4eb9f1 | 1959 | n_ext_target_devs = 0; |
edd16368 | 1960 | for (i = 0; i < nphysicals + nlogicals + 1; i++) { |
0b0e1d6c | 1961 | u8 *lunaddrbytes, is_OBDR = 0; |
edd16368 SC |
1962 | |
1963 | /* Figure out where the LUN ID info is coming from */ | |
339b2b14 SC |
1964 | lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, |
1965 | i, nphysicals, nlogicals, physdev_list, logdev_list); | |
edd16368 | 1966 | /* skip masked physical devices. */ |
339b2b14 SC |
1967 | if (lunaddrbytes[3] & 0xC0 && |
1968 | i < nphysicals + (raid_ctlr_position == 0)) | |
edd16368 SC |
1969 | continue; |
1970 | ||
1971 | /* Get device type, vendor, model, device id */ | |
0b0e1d6c SC |
1972 | if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice, |
1973 | &is_OBDR)) | |
edd16368 | 1974 | continue; /* skip it if we can't talk to it. */ |
1f310bde | 1975 | figure_bus_target_lun(h, lunaddrbytes, tmpdevice); |
edd16368 SC |
1976 | this_device = currentsd[ncurrent]; |
1977 | ||
1978 | /* | |
4f4eb9f1 | 1979 | * For external target devices, we have to insert a LUN 0 which |
edd16368 SC |
1980 | * doesn't show up in CCISS_REPORT_PHYSICAL data, but there |
1981 | * is nonetheless an enclosure device there. We have to | |
1982 | * present that otherwise linux won't find anything if | |
1983 | * there is no lun 0. | |
1984 | */ | |
4f4eb9f1 | 1985 | if (add_ext_target_dev(h, tmpdevice, this_device, |
1f310bde | 1986 | lunaddrbytes, lunzerobits, |
4f4eb9f1 | 1987 | &n_ext_target_devs)) { |
edd16368 SC |
1988 | ncurrent++; |
1989 | this_device = currentsd[ncurrent]; | |
1990 | } | |
1991 | ||
1992 | *this_device = *tmpdevice; | |
edd16368 SC |
1993 | |
1994 | switch (this_device->devtype) { | |
0b0e1d6c | 1995 | case TYPE_ROM: |
edd16368 SC |
1996 | /* We don't *really* support actual CD-ROM devices, |
1997 | * just "One Button Disaster Recovery" tape drive | |
1998 | * which temporarily pretends to be a CD-ROM drive. | |
1999 | * So we check that the device is really an OBDR tape | |
2000 | * device by checking for "$DR-10" in bytes 43-48 of | |
2001 | * the inquiry data. | |
2002 | */ | |
0b0e1d6c SC |
2003 | if (is_OBDR) |
2004 | ncurrent++; | |
edd16368 SC |
2005 | break; |
2006 | case TYPE_DISK: | |
2007 | if (i < nphysicals) | |
2008 | break; | |
2009 | ncurrent++; | |
2010 | break; | |
2011 | case TYPE_TAPE: | |
2012 | case TYPE_MEDIUM_CHANGER: | |
2013 | ncurrent++; | |
2014 | break; | |
2015 | case TYPE_RAID: | |
2016 | /* Only present the Smartarray HBA as a RAID controller. | |
2017 | * If it's a RAID controller other than the HBA itself | |
2018 | * (an external RAID controller, MSA500 or similar) | |
2019 | * don't present it. | |
2020 | */ | |
2021 | if (!is_hba_lunid(lunaddrbytes)) | |
2022 | break; | |
2023 | ncurrent++; | |
2024 | break; | |
2025 | default: | |
2026 | break; | |
2027 | } | |
cfe5badc | 2028 | if (ncurrent >= HPSA_MAX_DEVICES) |
edd16368 SC |
2029 | break; |
2030 | } | |
2031 | adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); | |
2032 | out: | |
2033 | kfree(tmpdevice); | |
2034 | for (i = 0; i < ndev_allocated; i++) | |
2035 | kfree(currentsd[i]); | |
2036 | kfree(currentsd); | |
edd16368 SC |
2037 | kfree(physdev_list); |
2038 | kfree(logdev_list); | |
edd16368 SC |
2039 | } |
2040 | ||
2041 | /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci | |
2042 | * dma mapping and fills in the scatter gather entries of the | |
2043 | * hpsa command, cp. | |
2044 | */ | |
33a2ffce | 2045 | static int hpsa_scatter_gather(struct ctlr_info *h, |
edd16368 SC |
2046 | struct CommandList *cp, |
2047 | struct scsi_cmnd *cmd) | |
2048 | { | |
2049 | unsigned int len; | |
2050 | struct scatterlist *sg; | |
01a02ffc | 2051 | u64 addr64; |
33a2ffce SC |
2052 | int use_sg, i, sg_index, chained; |
2053 | struct SGDescriptor *curr_sg; | |
edd16368 | 2054 | |
33a2ffce | 2055 | BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); |
edd16368 SC |
2056 | |
2057 | use_sg = scsi_dma_map(cmd); | |
2058 | if (use_sg < 0) | |
2059 | return use_sg; | |
2060 | ||
2061 | if (!use_sg) | |
2062 | goto sglist_finished; | |
2063 | ||
33a2ffce SC |
2064 | curr_sg = cp->SG; |
2065 | chained = 0; | |
2066 | sg_index = 0; | |
edd16368 | 2067 | scsi_for_each_sg(cmd, sg, use_sg, i) { |
33a2ffce SC |
2068 | if (i == h->max_cmd_sg_entries - 1 && |
2069 | use_sg > h->max_cmd_sg_entries) { | |
2070 | chained = 1; | |
2071 | curr_sg = h->cmd_sg_list[cp->cmdindex]; | |
2072 | sg_index = 0; | |
2073 | } | |
01a02ffc | 2074 | addr64 = (u64) sg_dma_address(sg); |
edd16368 | 2075 | len = sg_dma_len(sg); |
33a2ffce SC |
2076 | curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL); |
2077 | curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL); | |
2078 | curr_sg->Len = len; | |
2079 | curr_sg->Ext = 0; /* we are not chaining */ | |
2080 | curr_sg++; | |
2081 | } | |
2082 | ||
2083 | if (use_sg + chained > h->maxSG) | |
2084 | h->maxSG = use_sg + chained; | |
2085 | ||
2086 | if (chained) { | |
2087 | cp->Header.SGList = h->max_cmd_sg_entries; | |
2088 | cp->Header.SGTotal = (u16) (use_sg + 1); | |
2089 | hpsa_map_sg_chain_block(h, cp); | |
2090 | return 0; | |
edd16368 SC |
2091 | } |
2092 | ||
2093 | sglist_finished: | |
2094 | ||
01a02ffc SC |
2095 | cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ |
2096 | cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */ | |
edd16368 SC |
2097 | return 0; |
2098 | } | |
2099 | ||
2100 | ||
f281233d | 2101 | static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd, |
edd16368 SC |
2102 | void (*done)(struct scsi_cmnd *)) |
2103 | { | |
2104 | struct ctlr_info *h; | |
2105 | struct hpsa_scsi_dev_t *dev; | |
2106 | unsigned char scsi3addr[8]; | |
2107 | struct CommandList *c; | |
2108 | unsigned long flags; | |
2109 | ||
2110 | /* Get the ptr to our adapter structure out of cmd->host. */ | |
2111 | h = sdev_to_hba(cmd->device); | |
2112 | dev = cmd->device->hostdata; | |
2113 | if (!dev) { | |
2114 | cmd->result = DID_NO_CONNECT << 16; | |
2115 | done(cmd); | |
2116 | return 0; | |
2117 | } | |
2118 | memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); | |
2119 | ||
edd16368 | 2120 | spin_lock_irqsave(&h->lock, flags); |
a0c12413 SC |
2121 | if (unlikely(h->lockup_detected)) { |
2122 | spin_unlock_irqrestore(&h->lock, flags); | |
2123 | cmd->result = DID_ERROR << 16; | |
2124 | done(cmd); | |
2125 | return 0; | |
2126 | } | |
edd16368 | 2127 | spin_unlock_irqrestore(&h->lock, flags); |
e16a33ad | 2128 | c = cmd_alloc(h); |
edd16368 SC |
2129 | if (c == NULL) { /* trouble... */ |
2130 | dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); | |
2131 | return SCSI_MLQUEUE_HOST_BUSY; | |
2132 | } | |
2133 | ||
2134 | /* Fill in the command list header */ | |
2135 | ||
2136 | cmd->scsi_done = done; /* save this for use by completion code */ | |
2137 | ||
2138 | /* save c in case we have to abort it */ | |
2139 | cmd->host_scribble = (unsigned char *) c; | |
2140 | ||
2141 | c->cmd_type = CMD_SCSI; | |
2142 | c->scsi_cmd = cmd; | |
2143 | c->Header.ReplyQueue = 0; /* unused in simple mode */ | |
2144 | memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); | |
303932fd DB |
2145 | c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT); |
2146 | c->Header.Tag.lower |= DIRECT_LOOKUP_BIT; | |
edd16368 SC |
2147 | |
2148 | /* Fill in the request block... */ | |
2149 | ||
2150 | c->Request.Timeout = 0; | |
2151 | memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); | |
2152 | BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); | |
2153 | c->Request.CDBLen = cmd->cmd_len; | |
2154 | memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); | |
2155 | c->Request.Type.Type = TYPE_CMD; | |
2156 | c->Request.Type.Attribute = ATTR_SIMPLE; | |
2157 | switch (cmd->sc_data_direction) { | |
2158 | case DMA_TO_DEVICE: | |
2159 | c->Request.Type.Direction = XFER_WRITE; | |
2160 | break; | |
2161 | case DMA_FROM_DEVICE: | |
2162 | c->Request.Type.Direction = XFER_READ; | |
2163 | break; | |
2164 | case DMA_NONE: | |
2165 | c->Request.Type.Direction = XFER_NONE; | |
2166 | break; | |
2167 | case DMA_BIDIRECTIONAL: | |
2168 | /* This can happen if a buggy application does a scsi passthru | |
2169 | * and sets both inlen and outlen to non-zero. ( see | |
2170 | * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) | |
2171 | */ | |
2172 | ||
2173 | c->Request.Type.Direction = XFER_RSVD; | |
2174 | /* This is technically wrong, and hpsa controllers should | |
2175 | * reject it with CMD_INVALID, which is the most correct | |
2176 | * response, but non-fibre backends appear to let it | |
2177 | * slide by, and give the same results as if this field | |
2178 | * were set correctly. Either way is acceptable for | |
2179 | * our purposes here. | |
2180 | */ | |
2181 | ||
2182 | break; | |
2183 | ||
2184 | default: | |
2185 | dev_err(&h->pdev->dev, "unknown data direction: %d\n", | |
2186 | cmd->sc_data_direction); | |
2187 | BUG(); | |
2188 | break; | |
2189 | } | |
2190 | ||
33a2ffce | 2191 | if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ |
edd16368 SC |
2192 | cmd_free(h, c); |
2193 | return SCSI_MLQUEUE_HOST_BUSY; | |
2194 | } | |
2195 | enqueue_cmd_and_start_io(h, c); | |
2196 | /* the cmd'll come back via intr handler in complete_scsi_command() */ | |
2197 | return 0; | |
2198 | } | |
2199 | ||
f281233d JG |
2200 | static DEF_SCSI_QCMD(hpsa_scsi_queue_command) |
2201 | ||
a08a8471 SC |
2202 | static void hpsa_scan_start(struct Scsi_Host *sh) |
2203 | { | |
2204 | struct ctlr_info *h = shost_to_hba(sh); | |
2205 | unsigned long flags; | |
2206 | ||
2207 | /* wait until any scan already in progress is finished. */ | |
2208 | while (1) { | |
2209 | spin_lock_irqsave(&h->scan_lock, flags); | |
2210 | if (h->scan_finished) | |
2211 | break; | |
2212 | spin_unlock_irqrestore(&h->scan_lock, flags); | |
2213 | wait_event(h->scan_wait_queue, h->scan_finished); | |
2214 | /* Note: We don't need to worry about a race between this | |
2215 | * thread and driver unload because the midlayer will | |
2216 | * have incremented the reference count, so unload won't | |
2217 | * happen if we're in here. | |
2218 | */ | |
2219 | } | |
2220 | h->scan_finished = 0; /* mark scan as in progress */ | |
2221 | spin_unlock_irqrestore(&h->scan_lock, flags); | |
2222 | ||
2223 | hpsa_update_scsi_devices(h, h->scsi_host->host_no); | |
2224 | ||
2225 | spin_lock_irqsave(&h->scan_lock, flags); | |
2226 | h->scan_finished = 1; /* mark scan as finished. */ | |
2227 | wake_up_all(&h->scan_wait_queue); | |
2228 | spin_unlock_irqrestore(&h->scan_lock, flags); | |
2229 | } | |
2230 | ||
2231 | static int hpsa_scan_finished(struct Scsi_Host *sh, | |
2232 | unsigned long elapsed_time) | |
2233 | { | |
2234 | struct ctlr_info *h = shost_to_hba(sh); | |
2235 | unsigned long flags; | |
2236 | int finished; | |
2237 | ||
2238 | spin_lock_irqsave(&h->scan_lock, flags); | |
2239 | finished = h->scan_finished; | |
2240 | spin_unlock_irqrestore(&h->scan_lock, flags); | |
2241 | return finished; | |
2242 | } | |
2243 | ||
667e23d4 SC |
2244 | static int hpsa_change_queue_depth(struct scsi_device *sdev, |
2245 | int qdepth, int reason) | |
2246 | { | |
2247 | struct ctlr_info *h = sdev_to_hba(sdev); | |
2248 | ||
2249 | if (reason != SCSI_QDEPTH_DEFAULT) | |
2250 | return -ENOTSUPP; | |
2251 | ||
2252 | if (qdepth < 1) | |
2253 | qdepth = 1; | |
2254 | else | |
2255 | if (qdepth > h->nr_cmds) | |
2256 | qdepth = h->nr_cmds; | |
2257 | scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); | |
2258 | return sdev->queue_depth; | |
2259 | } | |
2260 | ||
edd16368 SC |
2261 | static void hpsa_unregister_scsi(struct ctlr_info *h) |
2262 | { | |
2263 | /* we are being forcibly unloaded, and may not refuse. */ | |
2264 | scsi_remove_host(h->scsi_host); | |
2265 | scsi_host_put(h->scsi_host); | |
2266 | h->scsi_host = NULL; | |
2267 | } | |
2268 | ||
2269 | static int hpsa_register_scsi(struct ctlr_info *h) | |
2270 | { | |
b705690d SC |
2271 | struct Scsi_Host *sh; |
2272 | int error; | |
edd16368 | 2273 | |
b705690d SC |
2274 | sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); |
2275 | if (sh == NULL) | |
2276 | goto fail; | |
2277 | ||
2278 | sh->io_port = 0; | |
2279 | sh->n_io_port = 0; | |
2280 | sh->this_id = -1; | |
2281 | sh->max_channel = 3; | |
2282 | sh->max_cmd_len = MAX_COMMAND_SIZE; | |
2283 | sh->max_lun = HPSA_MAX_LUN; | |
2284 | sh->max_id = HPSA_MAX_LUN; | |
2285 | sh->can_queue = h->nr_cmds; | |
2286 | sh->cmd_per_lun = h->nr_cmds; | |
2287 | sh->sg_tablesize = h->maxsgentries; | |
2288 | h->scsi_host = sh; | |
2289 | sh->hostdata[0] = (unsigned long) h; | |
2290 | sh->irq = h->intr[h->intr_mode]; | |
2291 | sh->unique_id = sh->irq; | |
2292 | error = scsi_add_host(sh, &h->pdev->dev); | |
2293 | if (error) | |
2294 | goto fail_host_put; | |
2295 | scsi_scan_host(sh); | |
2296 | return 0; | |
2297 | ||
2298 | fail_host_put: | |
2299 | dev_err(&h->pdev->dev, "%s: scsi_add_host" | |
2300 | " failed for controller %d\n", __func__, h->ctlr); | |
2301 | scsi_host_put(sh); | |
2302 | return error; | |
2303 | fail: | |
2304 | dev_err(&h->pdev->dev, "%s: scsi_host_alloc" | |
2305 | " failed for controller %d\n", __func__, h->ctlr); | |
2306 | return -ENOMEM; | |
edd16368 SC |
2307 | } |
2308 | ||
2309 | static int wait_for_device_to_become_ready(struct ctlr_info *h, | |
2310 | unsigned char lunaddr[]) | |
2311 | { | |
2312 | int rc = 0; | |
2313 | int count = 0; | |
2314 | int waittime = 1; /* seconds */ | |
2315 | struct CommandList *c; | |
2316 | ||
2317 | c = cmd_special_alloc(h); | |
2318 | if (!c) { | |
2319 | dev_warn(&h->pdev->dev, "out of memory in " | |
2320 | "wait_for_device_to_become_ready.\n"); | |
2321 | return IO_ERROR; | |
2322 | } | |
2323 | ||
2324 | /* Send test unit ready until device ready, or give up. */ | |
2325 | while (count < HPSA_TUR_RETRY_LIMIT) { | |
2326 | ||
2327 | /* Wait for a bit. do this first, because if we send | |
2328 | * the TUR right away, the reset will just abort it. | |
2329 | */ | |
2330 | msleep(1000 * waittime); | |
2331 | count++; | |
2332 | ||
2333 | /* Increase wait time with each try, up to a point. */ | |
2334 | if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) | |
2335 | waittime = waittime * 2; | |
2336 | ||
2337 | /* Send the Test Unit Ready */ | |
2338 | fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD); | |
2339 | hpsa_scsi_do_simple_cmd_core(h, c); | |
2340 | /* no unmap needed here because no data xfer. */ | |
2341 | ||
2342 | if (c->err_info->CommandStatus == CMD_SUCCESS) | |
2343 | break; | |
2344 | ||
2345 | if (c->err_info->CommandStatus == CMD_TARGET_STATUS && | |
2346 | c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && | |
2347 | (c->err_info->SenseInfo[2] == NO_SENSE || | |
2348 | c->err_info->SenseInfo[2] == UNIT_ATTENTION)) | |
2349 | break; | |
2350 | ||
2351 | dev_warn(&h->pdev->dev, "waiting %d secs " | |
2352 | "for device to become ready.\n", waittime); | |
2353 | rc = 1; /* device not ready. */ | |
2354 | } | |
2355 | ||
2356 | if (rc) | |
2357 | dev_warn(&h->pdev->dev, "giving up on device.\n"); | |
2358 | else | |
2359 | dev_warn(&h->pdev->dev, "device is ready.\n"); | |
2360 | ||
2361 | cmd_special_free(h, c); | |
2362 | return rc; | |
2363 | } | |
2364 | ||
2365 | /* Need at least one of these error handlers to keep ../scsi/hosts.c from | |
2366 | * complaining. Doing a host- or bus-reset can't do anything good here. | |
2367 | */ | |
2368 | static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) | |
2369 | { | |
2370 | int rc; | |
2371 | struct ctlr_info *h; | |
2372 | struct hpsa_scsi_dev_t *dev; | |
2373 | ||
2374 | /* find the controller to which the command to be aborted was sent */ | |
2375 | h = sdev_to_hba(scsicmd->device); | |
2376 | if (h == NULL) /* paranoia */ | |
2377 | return FAILED; | |
edd16368 SC |
2378 | dev = scsicmd->device->hostdata; |
2379 | if (!dev) { | |
2380 | dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " | |
2381 | "device lookup failed.\n"); | |
2382 | return FAILED; | |
2383 | } | |
d416b0c7 SC |
2384 | dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n", |
2385 | h->scsi_host->host_no, dev->bus, dev->target, dev->lun); | |
edd16368 SC |
2386 | /* send a reset to the SCSI LUN which the command was sent to */ |
2387 | rc = hpsa_send_reset(h, dev->scsi3addr); | |
2388 | if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) | |
2389 | return SUCCESS; | |
2390 | ||
2391 | dev_warn(&h->pdev->dev, "resetting device failed.\n"); | |
2392 | return FAILED; | |
2393 | } | |
2394 | ||
6cba3f19 SC |
2395 | static void swizzle_abort_tag(u8 *tag) |
2396 | { | |
2397 | u8 original_tag[8]; | |
2398 | ||
2399 | memcpy(original_tag, tag, 8); | |
2400 | tag[0] = original_tag[3]; | |
2401 | tag[1] = original_tag[2]; | |
2402 | tag[2] = original_tag[1]; | |
2403 | tag[3] = original_tag[0]; | |
2404 | tag[4] = original_tag[7]; | |
2405 | tag[5] = original_tag[6]; | |
2406 | tag[6] = original_tag[5]; | |
2407 | tag[7] = original_tag[4]; | |
2408 | } | |
2409 | ||
75167d2c | 2410 | static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr, |
6cba3f19 | 2411 | struct CommandList *abort, int swizzle) |
75167d2c SC |
2412 | { |
2413 | int rc = IO_OK; | |
2414 | struct CommandList *c; | |
2415 | struct ErrorInfo *ei; | |
2416 | ||
2417 | c = cmd_special_alloc(h); | |
2418 | if (c == NULL) { /* trouble... */ | |
2419 | dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | |
2420 | return -ENOMEM; | |
2421 | } | |
2422 | ||
2423 | fill_cmd(c, HPSA_ABORT_MSG, h, abort, 0, 0, scsi3addr, TYPE_MSG); | |
6cba3f19 SC |
2424 | if (swizzle) |
2425 | swizzle_abort_tag(&c->Request.CDB[4]); | |
75167d2c SC |
2426 | hpsa_scsi_do_simple_cmd_core(h, c); |
2427 | dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n", | |
2428 | __func__, abort->Header.Tag.upper, abort->Header.Tag.lower); | |
2429 | /* no unmap needed here because no data xfer. */ | |
2430 | ||
2431 | ei = c->err_info; | |
2432 | switch (ei->CommandStatus) { | |
2433 | case CMD_SUCCESS: | |
2434 | break; | |
2435 | case CMD_UNABORTABLE: /* Very common, don't make noise. */ | |
2436 | rc = -1; | |
2437 | break; | |
2438 | default: | |
2439 | dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n", | |
2440 | __func__, abort->Header.Tag.upper, | |
2441 | abort->Header.Tag.lower); | |
2442 | hpsa_scsi_interpret_error(c); | |
2443 | rc = -1; | |
2444 | break; | |
2445 | } | |
2446 | cmd_special_free(h, c); | |
2447 | dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__, | |
2448 | abort->Header.Tag.upper, abort->Header.Tag.lower); | |
2449 | return rc; | |
2450 | } | |
2451 | ||
2452 | /* | |
2453 | * hpsa_find_cmd_in_queue | |
2454 | * | |
2455 | * Used to determine whether a command (find) is still present | |
2456 | * in queue_head. Optionally excludes the last element of queue_head. | |
2457 | * | |
2458 | * This is used to avoid unnecessary aborts. Commands in h->reqQ have | |
2459 | * not yet been submitted, and so can be aborted by the driver without | |
2460 | * sending an abort to the hardware. | |
2461 | * | |
2462 | * Returns pointer to command if found in queue, NULL otherwise. | |
2463 | */ | |
2464 | static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h, | |
2465 | struct scsi_cmnd *find, struct list_head *queue_head) | |
2466 | { | |
2467 | unsigned long flags; | |
2468 | struct CommandList *c = NULL; /* ptr into cmpQ */ | |
2469 | ||
2470 | if (!find) | |
2471 | return 0; | |
2472 | spin_lock_irqsave(&h->lock, flags); | |
2473 | list_for_each_entry(c, queue_head, list) { | |
2474 | if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */ | |
2475 | continue; | |
2476 | if (c->scsi_cmd == find) { | |
2477 | spin_unlock_irqrestore(&h->lock, flags); | |
2478 | return c; | |
2479 | } | |
2480 | } | |
2481 | spin_unlock_irqrestore(&h->lock, flags); | |
2482 | return NULL; | |
2483 | } | |
2484 | ||
6cba3f19 SC |
2485 | static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h, |
2486 | u8 *tag, struct list_head *queue_head) | |
2487 | { | |
2488 | unsigned long flags; | |
2489 | struct CommandList *c; | |
2490 | ||
2491 | spin_lock_irqsave(&h->lock, flags); | |
2492 | list_for_each_entry(c, queue_head, list) { | |
2493 | if (memcmp(&c->Header.Tag, tag, 8) != 0) | |
2494 | continue; | |
2495 | spin_unlock_irqrestore(&h->lock, flags); | |
2496 | return c; | |
2497 | } | |
2498 | spin_unlock_irqrestore(&h->lock, flags); | |
2499 | return NULL; | |
2500 | } | |
2501 | ||
2502 | /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to | |
2503 | * tell which kind we're dealing with, so we send the abort both ways. There | |
2504 | * shouldn't be any collisions between swizzled and unswizzled tags due to the | |
2505 | * way we construct our tags but we check anyway in case the assumptions which | |
2506 | * make this true someday become false. | |
2507 | */ | |
2508 | static int hpsa_send_abort_both_ways(struct ctlr_info *h, | |
2509 | unsigned char *scsi3addr, struct CommandList *abort) | |
2510 | { | |
2511 | u8 swizzled_tag[8]; | |
2512 | struct CommandList *c; | |
2513 | int rc = 0, rc2 = 0; | |
2514 | ||
2515 | /* we do not expect to find the swizzled tag in our queue, but | |
2516 | * check anyway just to be sure the assumptions which make this | |
2517 | * the case haven't become wrong. | |
2518 | */ | |
2519 | memcpy(swizzled_tag, &abort->Request.CDB[4], 8); | |
2520 | swizzle_abort_tag(swizzled_tag); | |
2521 | c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ); | |
2522 | if (c != NULL) { | |
2523 | dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n"); | |
2524 | return hpsa_send_abort(h, scsi3addr, abort, 0); | |
2525 | } | |
2526 | rc = hpsa_send_abort(h, scsi3addr, abort, 0); | |
2527 | ||
2528 | /* if the command is still in our queue, we can't conclude that it was | |
2529 | * aborted (it might have just completed normally) but in any case | |
2530 | * we don't need to try to abort it another way. | |
2531 | */ | |
2532 | c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ); | |
2533 | if (c) | |
2534 | rc2 = hpsa_send_abort(h, scsi3addr, abort, 1); | |
2535 | return rc && rc2; | |
2536 | } | |
2537 | ||
75167d2c SC |
2538 | /* Send an abort for the specified command. |
2539 | * If the device and controller support it, | |
2540 | * send a task abort request. | |
2541 | */ | |
2542 | static int hpsa_eh_abort_handler(struct scsi_cmnd *sc) | |
2543 | { | |
2544 | ||
2545 | int i, rc; | |
2546 | struct ctlr_info *h; | |
2547 | struct hpsa_scsi_dev_t *dev; | |
2548 | struct CommandList *abort; /* pointer to command to be aborted */ | |
2549 | struct CommandList *found; | |
2550 | struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */ | |
2551 | char msg[256]; /* For debug messaging. */ | |
2552 | int ml = 0; | |
2553 | ||
2554 | /* Find the controller of the command to be aborted */ | |
2555 | h = sdev_to_hba(sc->device); | |
2556 | if (WARN(h == NULL, | |
2557 | "ABORT REQUEST FAILED, Controller lookup failed.\n")) | |
2558 | return FAILED; | |
2559 | ||
2560 | /* Check that controller supports some kind of task abort */ | |
2561 | if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) && | |
2562 | !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) | |
2563 | return FAILED; | |
2564 | ||
2565 | memset(msg, 0, sizeof(msg)); | |
2566 | ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ", | |
2567 | h->scsi_host->host_no, sc->device->channel, | |
2568 | sc->device->id, sc->device->lun); | |
2569 | ||
2570 | /* Find the device of the command to be aborted */ | |
2571 | dev = sc->device->hostdata; | |
2572 | if (!dev) { | |
2573 | dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n", | |
2574 | msg); | |
2575 | return FAILED; | |
2576 | } | |
2577 | ||
2578 | /* Get SCSI command to be aborted */ | |
2579 | abort = (struct CommandList *) sc->host_scribble; | |
2580 | if (abort == NULL) { | |
2581 | dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n", | |
2582 | msg); | |
2583 | return FAILED; | |
2584 | } | |
2585 | ||
2586 | ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", | |
2587 | abort->Header.Tag.upper, abort->Header.Tag.lower); | |
2588 | as = (struct scsi_cmnd *) abort->scsi_cmd; | |
2589 | if (as != NULL) | |
2590 | ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ", | |
2591 | as->cmnd[0], as->serial_number); | |
2592 | dev_dbg(&h->pdev->dev, "%s\n", msg); | |
2593 | dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n", | |
2594 | h->scsi_host->host_no, dev->bus, dev->target, dev->lun); | |
2595 | ||
2596 | /* Search reqQ to See if command is queued but not submitted, | |
2597 | * if so, complete the command with aborted status and remove | |
2598 | * it from the reqQ. | |
2599 | */ | |
2600 | found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ); | |
2601 | if (found) { | |
2602 | found->err_info->CommandStatus = CMD_ABORTED; | |
2603 | finish_cmd(found); | |
2604 | dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n", | |
2605 | msg); | |
2606 | return SUCCESS; | |
2607 | } | |
2608 | ||
2609 | /* not in reqQ, if also not in cmpQ, must have already completed */ | |
2610 | found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ); | |
2611 | if (!found) { | |
2612 | dev_dbg(&h->pdev->dev, "%s Request FAILED (not known to driver).\n", | |
2613 | msg); | |
2614 | return SUCCESS; | |
2615 | } | |
2616 | ||
2617 | /* | |
2618 | * Command is in flight, or possibly already completed | |
2619 | * by the firmware (but not to the scsi mid layer) but we can't | |
2620 | * distinguish which. Send the abort down. | |
2621 | */ | |
6cba3f19 | 2622 | rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort); |
75167d2c SC |
2623 | if (rc != 0) { |
2624 | dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg); | |
2625 | dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n", | |
2626 | h->scsi_host->host_no, | |
2627 | dev->bus, dev->target, dev->lun); | |
2628 | return FAILED; | |
2629 | } | |
2630 | dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg); | |
2631 | ||
2632 | /* If the abort(s) above completed and actually aborted the | |
2633 | * command, then the command to be aborted should already be | |
2634 | * completed. If not, wait around a bit more to see if they | |
2635 | * manage to complete normally. | |
2636 | */ | |
2637 | #define ABORT_COMPLETE_WAIT_SECS 30 | |
2638 | for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) { | |
2639 | found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ); | |
2640 | if (!found) | |
2641 | return SUCCESS; | |
2642 | msleep(100); | |
2643 | } | |
2644 | dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n", | |
2645 | msg, ABORT_COMPLETE_WAIT_SECS); | |
2646 | return FAILED; | |
2647 | } | |
2648 | ||
2649 | ||
edd16368 SC |
2650 | /* |
2651 | * For operations that cannot sleep, a command block is allocated at init, | |
2652 | * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track | |
2653 | * which ones are free or in use. Lock must be held when calling this. | |
2654 | * cmd_free() is the complement. | |
2655 | */ | |
2656 | static struct CommandList *cmd_alloc(struct ctlr_info *h) | |
2657 | { | |
2658 | struct CommandList *c; | |
2659 | int i; | |
2660 | union u64bit temp64; | |
2661 | dma_addr_t cmd_dma_handle, err_dma_handle; | |
e16a33ad | 2662 | unsigned long flags; |
edd16368 | 2663 | |
e16a33ad | 2664 | spin_lock_irqsave(&h->lock, flags); |
edd16368 SC |
2665 | do { |
2666 | i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); | |
e16a33ad MG |
2667 | if (i == h->nr_cmds) { |
2668 | spin_unlock_irqrestore(&h->lock, flags); | |
edd16368 | 2669 | return NULL; |
e16a33ad | 2670 | } |
edd16368 SC |
2671 | } while (test_and_set_bit |
2672 | (i & (BITS_PER_LONG - 1), | |
2673 | h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); | |
e16a33ad MG |
2674 | h->nr_allocs++; |
2675 | spin_unlock_irqrestore(&h->lock, flags); | |
2676 | ||
edd16368 SC |
2677 | c = h->cmd_pool + i; |
2678 | memset(c, 0, sizeof(*c)); | |
2679 | cmd_dma_handle = h->cmd_pool_dhandle | |
2680 | + i * sizeof(*c); | |
2681 | c->err_info = h->errinfo_pool + i; | |
2682 | memset(c->err_info, 0, sizeof(*c->err_info)); | |
2683 | err_dma_handle = h->errinfo_pool_dhandle | |
2684 | + i * sizeof(*c->err_info); | |
edd16368 SC |
2685 | |
2686 | c->cmdindex = i; | |
2687 | ||
9e0fc764 | 2688 | INIT_LIST_HEAD(&c->list); |
01a02ffc SC |
2689 | c->busaddr = (u32) cmd_dma_handle; |
2690 | temp64.val = (u64) err_dma_handle; | |
edd16368 SC |
2691 | c->ErrDesc.Addr.lower = temp64.val32.lower; |
2692 | c->ErrDesc.Addr.upper = temp64.val32.upper; | |
2693 | c->ErrDesc.Len = sizeof(*c->err_info); | |
2694 | ||
2695 | c->h = h; | |
2696 | return c; | |
2697 | } | |
2698 | ||
2699 | /* For operations that can wait for kmalloc to possibly sleep, | |
2700 | * this routine can be called. Lock need not be held to call | |
2701 | * cmd_special_alloc. cmd_special_free() is the complement. | |
2702 | */ | |
2703 | static struct CommandList *cmd_special_alloc(struct ctlr_info *h) | |
2704 | { | |
2705 | struct CommandList *c; | |
2706 | union u64bit temp64; | |
2707 | dma_addr_t cmd_dma_handle, err_dma_handle; | |
2708 | ||
2709 | c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle); | |
2710 | if (c == NULL) | |
2711 | return NULL; | |
2712 | memset(c, 0, sizeof(*c)); | |
2713 | ||
2714 | c->cmdindex = -1; | |
2715 | ||
2716 | c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info), | |
2717 | &err_dma_handle); | |
2718 | ||
2719 | if (c->err_info == NULL) { | |
2720 | pci_free_consistent(h->pdev, | |
2721 | sizeof(*c), c, cmd_dma_handle); | |
2722 | return NULL; | |
2723 | } | |
2724 | memset(c->err_info, 0, sizeof(*c->err_info)); | |
2725 | ||
9e0fc764 | 2726 | INIT_LIST_HEAD(&c->list); |
01a02ffc SC |
2727 | c->busaddr = (u32) cmd_dma_handle; |
2728 | temp64.val = (u64) err_dma_handle; | |
edd16368 SC |
2729 | c->ErrDesc.Addr.lower = temp64.val32.lower; |
2730 | c->ErrDesc.Addr.upper = temp64.val32.upper; | |
2731 | c->ErrDesc.Len = sizeof(*c->err_info); | |
2732 | ||
2733 | c->h = h; | |
2734 | return c; | |
2735 | } | |
2736 | ||
2737 | static void cmd_free(struct ctlr_info *h, struct CommandList *c) | |
2738 | { | |
2739 | int i; | |
e16a33ad | 2740 | unsigned long flags; |
edd16368 SC |
2741 | |
2742 | i = c - h->cmd_pool; | |
e16a33ad | 2743 | spin_lock_irqsave(&h->lock, flags); |
edd16368 SC |
2744 | clear_bit(i & (BITS_PER_LONG - 1), |
2745 | h->cmd_pool_bits + (i / BITS_PER_LONG)); | |
2746 | h->nr_frees++; | |
e16a33ad | 2747 | spin_unlock_irqrestore(&h->lock, flags); |
edd16368 SC |
2748 | } |
2749 | ||
2750 | static void cmd_special_free(struct ctlr_info *h, struct CommandList *c) | |
2751 | { | |
2752 | union u64bit temp64; | |
2753 | ||
2754 | temp64.val32.lower = c->ErrDesc.Addr.lower; | |
2755 | temp64.val32.upper = c->ErrDesc.Addr.upper; | |
2756 | pci_free_consistent(h->pdev, sizeof(*c->err_info), | |
2757 | c->err_info, (dma_addr_t) temp64.val); | |
2758 | pci_free_consistent(h->pdev, sizeof(*c), | |
d896f3f3 | 2759 | c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK)); |
edd16368 SC |
2760 | } |
2761 | ||
2762 | #ifdef CONFIG_COMPAT | |
2763 | ||
edd16368 SC |
2764 | static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg) |
2765 | { | |
2766 | IOCTL32_Command_struct __user *arg32 = | |
2767 | (IOCTL32_Command_struct __user *) arg; | |
2768 | IOCTL_Command_struct arg64; | |
2769 | IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); | |
2770 | int err; | |
2771 | u32 cp; | |
2772 | ||
938abd84 | 2773 | memset(&arg64, 0, sizeof(arg64)); |
edd16368 SC |
2774 | err = 0; |
2775 | err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, | |
2776 | sizeof(arg64.LUN_info)); | |
2777 | err |= copy_from_user(&arg64.Request, &arg32->Request, | |
2778 | sizeof(arg64.Request)); | |
2779 | err |= copy_from_user(&arg64.error_info, &arg32->error_info, | |
2780 | sizeof(arg64.error_info)); | |
2781 | err |= get_user(arg64.buf_size, &arg32->buf_size); | |
2782 | err |= get_user(cp, &arg32->buf); | |
2783 | arg64.buf = compat_ptr(cp); | |
2784 | err |= copy_to_user(p, &arg64, sizeof(arg64)); | |
2785 | ||
2786 | if (err) | |
2787 | return -EFAULT; | |
2788 | ||
e39eeaed | 2789 | err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p); |
edd16368 SC |
2790 | if (err) |
2791 | return err; | |
2792 | err |= copy_in_user(&arg32->error_info, &p->error_info, | |
2793 | sizeof(arg32->error_info)); | |
2794 | if (err) | |
2795 | return -EFAULT; | |
2796 | return err; | |
2797 | } | |
2798 | ||
2799 | static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, | |
2800 | int cmd, void *arg) | |
2801 | { | |
2802 | BIG_IOCTL32_Command_struct __user *arg32 = | |
2803 | (BIG_IOCTL32_Command_struct __user *) arg; | |
2804 | BIG_IOCTL_Command_struct arg64; | |
2805 | BIG_IOCTL_Command_struct __user *p = | |
2806 | compat_alloc_user_space(sizeof(arg64)); | |
2807 | int err; | |
2808 | u32 cp; | |
2809 | ||
938abd84 | 2810 | memset(&arg64, 0, sizeof(arg64)); |
edd16368 SC |
2811 | err = 0; |
2812 | err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, | |
2813 | sizeof(arg64.LUN_info)); | |
2814 | err |= copy_from_user(&arg64.Request, &arg32->Request, | |
2815 | sizeof(arg64.Request)); | |
2816 | err |= copy_from_user(&arg64.error_info, &arg32->error_info, | |
2817 | sizeof(arg64.error_info)); | |
2818 | err |= get_user(arg64.buf_size, &arg32->buf_size); | |
2819 | err |= get_user(arg64.malloc_size, &arg32->malloc_size); | |
2820 | err |= get_user(cp, &arg32->buf); | |
2821 | arg64.buf = compat_ptr(cp); | |
2822 | err |= copy_to_user(p, &arg64, sizeof(arg64)); | |
2823 | ||
2824 | if (err) | |
2825 | return -EFAULT; | |
2826 | ||
e39eeaed | 2827 | err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p); |
edd16368 SC |
2828 | if (err) |
2829 | return err; | |
2830 | err |= copy_in_user(&arg32->error_info, &p->error_info, | |
2831 | sizeof(arg32->error_info)); | |
2832 | if (err) | |
2833 | return -EFAULT; | |
2834 | return err; | |
2835 | } | |
71fe75a7 SC |
2836 | |
2837 | static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg) | |
2838 | { | |
2839 | switch (cmd) { | |
2840 | case CCISS_GETPCIINFO: | |
2841 | case CCISS_GETINTINFO: | |
2842 | case CCISS_SETINTINFO: | |
2843 | case CCISS_GETNODENAME: | |
2844 | case CCISS_SETNODENAME: | |
2845 | case CCISS_GETHEARTBEAT: | |
2846 | case CCISS_GETBUSTYPES: | |
2847 | case CCISS_GETFIRMVER: | |
2848 | case CCISS_GETDRIVVER: | |
2849 | case CCISS_REVALIDVOLS: | |
2850 | case CCISS_DEREGDISK: | |
2851 | case CCISS_REGNEWDISK: | |
2852 | case CCISS_REGNEWD: | |
2853 | case CCISS_RESCANDISK: | |
2854 | case CCISS_GETLUNINFO: | |
2855 | return hpsa_ioctl(dev, cmd, arg); | |
2856 | ||
2857 | case CCISS_PASSTHRU32: | |
2858 | return hpsa_ioctl32_passthru(dev, cmd, arg); | |
2859 | case CCISS_BIG_PASSTHRU32: | |
2860 | return hpsa_ioctl32_big_passthru(dev, cmd, arg); | |
2861 | ||
2862 | default: | |
2863 | return -ENOIOCTLCMD; | |
2864 | } | |
2865 | } | |
edd16368 SC |
2866 | #endif |
2867 | ||
2868 | static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) | |
2869 | { | |
2870 | struct hpsa_pci_info pciinfo; | |
2871 | ||
2872 | if (!argp) | |
2873 | return -EINVAL; | |
2874 | pciinfo.domain = pci_domain_nr(h->pdev->bus); | |
2875 | pciinfo.bus = h->pdev->bus->number; | |
2876 | pciinfo.dev_fn = h->pdev->devfn; | |
2877 | pciinfo.board_id = h->board_id; | |
2878 | if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) | |
2879 | return -EFAULT; | |
2880 | return 0; | |
2881 | } | |
2882 | ||
2883 | static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) | |
2884 | { | |
2885 | DriverVer_type DriverVer; | |
2886 | unsigned char vmaj, vmin, vsubmin; | |
2887 | int rc; | |
2888 | ||
2889 | rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", | |
2890 | &vmaj, &vmin, &vsubmin); | |
2891 | if (rc != 3) { | |
2892 | dev_info(&h->pdev->dev, "driver version string '%s' " | |
2893 | "unrecognized.", HPSA_DRIVER_VERSION); | |
2894 | vmaj = 0; | |
2895 | vmin = 0; | |
2896 | vsubmin = 0; | |
2897 | } | |
2898 | DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; | |
2899 | if (!argp) | |
2900 | return -EINVAL; | |
2901 | if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) | |
2902 | return -EFAULT; | |
2903 | return 0; | |
2904 | } | |
2905 | ||
2906 | static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) | |
2907 | { | |
2908 | IOCTL_Command_struct iocommand; | |
2909 | struct CommandList *c; | |
2910 | char *buff = NULL; | |
2911 | union u64bit temp64; | |
2912 | ||
2913 | if (!argp) | |
2914 | return -EINVAL; | |
2915 | if (!capable(CAP_SYS_RAWIO)) | |
2916 | return -EPERM; | |
2917 | if (copy_from_user(&iocommand, argp, sizeof(iocommand))) | |
2918 | return -EFAULT; | |
2919 | if ((iocommand.buf_size < 1) && | |
2920 | (iocommand.Request.Type.Direction != XFER_NONE)) { | |
2921 | return -EINVAL; | |
2922 | } | |
2923 | if (iocommand.buf_size > 0) { | |
2924 | buff = kmalloc(iocommand.buf_size, GFP_KERNEL); | |
2925 | if (buff == NULL) | |
2926 | return -EFAULT; | |
b03a7771 SC |
2927 | if (iocommand.Request.Type.Direction == XFER_WRITE) { |
2928 | /* Copy the data into the buffer we created */ | |
2929 | if (copy_from_user(buff, iocommand.buf, | |
2930 | iocommand.buf_size)) { | |
2931 | kfree(buff); | |
2932 | return -EFAULT; | |
2933 | } | |
2934 | } else { | |
2935 | memset(buff, 0, iocommand.buf_size); | |
edd16368 | 2936 | } |
b03a7771 | 2937 | } |
edd16368 SC |
2938 | c = cmd_special_alloc(h); |
2939 | if (c == NULL) { | |
2940 | kfree(buff); | |
2941 | return -ENOMEM; | |
2942 | } | |
2943 | /* Fill in the command type */ | |
2944 | c->cmd_type = CMD_IOCTL_PEND; | |
2945 | /* Fill in Command Header */ | |
2946 | c->Header.ReplyQueue = 0; /* unused in simple mode */ | |
2947 | if (iocommand.buf_size > 0) { /* buffer to fill */ | |
2948 | c->Header.SGList = 1; | |
2949 | c->Header.SGTotal = 1; | |
2950 | } else { /* no buffers to fill */ | |
2951 | c->Header.SGList = 0; | |
2952 | c->Header.SGTotal = 0; | |
2953 | } | |
2954 | memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); | |
2955 | /* use the kernel address the cmd block for tag */ | |
2956 | c->Header.Tag.lower = c->busaddr; | |
2957 | ||
2958 | /* Fill in Request block */ | |
2959 | memcpy(&c->Request, &iocommand.Request, | |
2960 | sizeof(c->Request)); | |
2961 | ||
2962 | /* Fill in the scatter gather information */ | |
2963 | if (iocommand.buf_size > 0) { | |
2964 | temp64.val = pci_map_single(h->pdev, buff, | |
2965 | iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); | |
2966 | c->SG[0].Addr.lower = temp64.val32.lower; | |
2967 | c->SG[0].Addr.upper = temp64.val32.upper; | |
2968 | c->SG[0].Len = iocommand.buf_size; | |
2969 | c->SG[0].Ext = 0; /* we are not chaining*/ | |
2970 | } | |
a0c12413 | 2971 | hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c); |
c2dd32e0 SC |
2972 | if (iocommand.buf_size > 0) |
2973 | hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); | |
edd16368 SC |
2974 | check_ioctl_unit_attention(h, c); |
2975 | ||
2976 | /* Copy the error information out */ | |
2977 | memcpy(&iocommand.error_info, c->err_info, | |
2978 | sizeof(iocommand.error_info)); | |
2979 | if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { | |
2980 | kfree(buff); | |
2981 | cmd_special_free(h, c); | |
2982 | return -EFAULT; | |
2983 | } | |
b03a7771 SC |
2984 | if (iocommand.Request.Type.Direction == XFER_READ && |
2985 | iocommand.buf_size > 0) { | |
edd16368 SC |
2986 | /* Copy the data out of the buffer we created */ |
2987 | if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { | |
2988 | kfree(buff); | |
2989 | cmd_special_free(h, c); | |
2990 | return -EFAULT; | |
2991 | } | |
2992 | } | |
2993 | kfree(buff); | |
2994 | cmd_special_free(h, c); | |
2995 | return 0; | |
2996 | } | |
2997 | ||
2998 | static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) | |
2999 | { | |
3000 | BIG_IOCTL_Command_struct *ioc; | |
3001 | struct CommandList *c; | |
3002 | unsigned char **buff = NULL; | |
3003 | int *buff_size = NULL; | |
3004 | union u64bit temp64; | |
3005 | BYTE sg_used = 0; | |
3006 | int status = 0; | |
3007 | int i; | |
01a02ffc SC |
3008 | u32 left; |
3009 | u32 sz; | |
edd16368 SC |
3010 | BYTE __user *data_ptr; |
3011 | ||
3012 | if (!argp) | |
3013 | return -EINVAL; | |
3014 | if (!capable(CAP_SYS_RAWIO)) | |
3015 | return -EPERM; | |
3016 | ioc = (BIG_IOCTL_Command_struct *) | |
3017 | kmalloc(sizeof(*ioc), GFP_KERNEL); | |
3018 | if (!ioc) { | |
3019 | status = -ENOMEM; | |
3020 | goto cleanup1; | |
3021 | } | |
3022 | if (copy_from_user(ioc, argp, sizeof(*ioc))) { | |
3023 | status = -EFAULT; | |
3024 | goto cleanup1; | |
3025 | } | |
3026 | if ((ioc->buf_size < 1) && | |
3027 | (ioc->Request.Type.Direction != XFER_NONE)) { | |
3028 | status = -EINVAL; | |
3029 | goto cleanup1; | |
3030 | } | |
3031 | /* Check kmalloc limits using all SGs */ | |
3032 | if (ioc->malloc_size > MAX_KMALLOC_SIZE) { | |
3033 | status = -EINVAL; | |
3034 | goto cleanup1; | |
3035 | } | |
d66ae08b | 3036 | if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) { |
edd16368 SC |
3037 | status = -EINVAL; |
3038 | goto cleanup1; | |
3039 | } | |
d66ae08b | 3040 | buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL); |
edd16368 SC |
3041 | if (!buff) { |
3042 | status = -ENOMEM; | |
3043 | goto cleanup1; | |
3044 | } | |
d66ae08b | 3045 | buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL); |
edd16368 SC |
3046 | if (!buff_size) { |
3047 | status = -ENOMEM; | |
3048 | goto cleanup1; | |
3049 | } | |
3050 | left = ioc->buf_size; | |
3051 | data_ptr = ioc->buf; | |
3052 | while (left) { | |
3053 | sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; | |
3054 | buff_size[sg_used] = sz; | |
3055 | buff[sg_used] = kmalloc(sz, GFP_KERNEL); | |
3056 | if (buff[sg_used] == NULL) { | |
3057 | status = -ENOMEM; | |
3058 | goto cleanup1; | |
3059 | } | |
3060 | if (ioc->Request.Type.Direction == XFER_WRITE) { | |
3061 | if (copy_from_user(buff[sg_used], data_ptr, sz)) { | |
3062 | status = -ENOMEM; | |
3063 | goto cleanup1; | |
3064 | } | |
3065 | } else | |
3066 | memset(buff[sg_used], 0, sz); | |
3067 | left -= sz; | |
3068 | data_ptr += sz; | |
3069 | sg_used++; | |
3070 | } | |
3071 | c = cmd_special_alloc(h); | |
3072 | if (c == NULL) { | |
3073 | status = -ENOMEM; | |
3074 | goto cleanup1; | |
3075 | } | |
3076 | c->cmd_type = CMD_IOCTL_PEND; | |
3077 | c->Header.ReplyQueue = 0; | |
b03a7771 | 3078 | c->Header.SGList = c->Header.SGTotal = sg_used; |
edd16368 SC |
3079 | memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); |
3080 | c->Header.Tag.lower = c->busaddr; | |
3081 | memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); | |
3082 | if (ioc->buf_size > 0) { | |
3083 | int i; | |
3084 | for (i = 0; i < sg_used; i++) { | |
3085 | temp64.val = pci_map_single(h->pdev, buff[i], | |
3086 | buff_size[i], PCI_DMA_BIDIRECTIONAL); | |
3087 | c->SG[i].Addr.lower = temp64.val32.lower; | |
3088 | c->SG[i].Addr.upper = temp64.val32.upper; | |
3089 | c->SG[i].Len = buff_size[i]; | |
3090 | /* we are not chaining */ | |
3091 | c->SG[i].Ext = 0; | |
3092 | } | |
3093 | } | |
a0c12413 | 3094 | hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c); |
b03a7771 SC |
3095 | if (sg_used) |
3096 | hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); | |
edd16368 SC |
3097 | check_ioctl_unit_attention(h, c); |
3098 | /* Copy the error information out */ | |
3099 | memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); | |
3100 | if (copy_to_user(argp, ioc, sizeof(*ioc))) { | |
3101 | cmd_special_free(h, c); | |
3102 | status = -EFAULT; | |
3103 | goto cleanup1; | |
3104 | } | |
b03a7771 | 3105 | if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) { |
edd16368 SC |
3106 | /* Copy the data out of the buffer we created */ |
3107 | BYTE __user *ptr = ioc->buf; | |
3108 | for (i = 0; i < sg_used; i++) { | |
3109 | if (copy_to_user(ptr, buff[i], buff_size[i])) { | |
3110 | cmd_special_free(h, c); | |
3111 | status = -EFAULT; | |
3112 | goto cleanup1; | |
3113 | } | |
3114 | ptr += buff_size[i]; | |
3115 | } | |
3116 | } | |
3117 | cmd_special_free(h, c); | |
3118 | status = 0; | |
3119 | cleanup1: | |
3120 | if (buff) { | |
3121 | for (i = 0; i < sg_used; i++) | |
3122 | kfree(buff[i]); | |
3123 | kfree(buff); | |
3124 | } | |
3125 | kfree(buff_size); | |
3126 | kfree(ioc); | |
3127 | return status; | |
3128 | } | |
3129 | ||
3130 | static void check_ioctl_unit_attention(struct ctlr_info *h, | |
3131 | struct CommandList *c) | |
3132 | { | |
3133 | if (c->err_info->CommandStatus == CMD_TARGET_STATUS && | |
3134 | c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) | |
3135 | (void) check_for_unit_attention(h, c); | |
3136 | } | |
3137 | /* | |
3138 | * ioctl | |
3139 | */ | |
3140 | static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg) | |
3141 | { | |
3142 | struct ctlr_info *h; | |
3143 | void __user *argp = (void __user *)arg; | |
3144 | ||
3145 | h = sdev_to_hba(dev); | |
3146 | ||
3147 | switch (cmd) { | |
3148 | case CCISS_DEREGDISK: | |
3149 | case CCISS_REGNEWDISK: | |
3150 | case CCISS_REGNEWD: | |
a08a8471 | 3151 | hpsa_scan_start(h->scsi_host); |
edd16368 SC |
3152 | return 0; |
3153 | case CCISS_GETPCIINFO: | |
3154 | return hpsa_getpciinfo_ioctl(h, argp); | |
3155 | case CCISS_GETDRIVVER: | |
3156 | return hpsa_getdrivver_ioctl(h, argp); | |
3157 | case CCISS_PASSTHRU: | |
3158 | return hpsa_passthru_ioctl(h, argp); | |
3159 | case CCISS_BIG_PASSTHRU: | |
3160 | return hpsa_big_passthru_ioctl(h, argp); | |
3161 | default: | |
3162 | return -ENOTTY; | |
3163 | } | |
3164 | } | |
3165 | ||
64670ac8 SC |
3166 | static int __devinit hpsa_send_host_reset(struct ctlr_info *h, |
3167 | unsigned char *scsi3addr, u8 reset_type) | |
3168 | { | |
3169 | struct CommandList *c; | |
3170 | ||
3171 | c = cmd_alloc(h); | |
3172 | if (!c) | |
3173 | return -ENOMEM; | |
3174 | fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, | |
3175 | RAID_CTLR_LUNID, TYPE_MSG); | |
3176 | c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ | |
3177 | c->waiting = NULL; | |
3178 | enqueue_cmd_and_start_io(h, c); | |
3179 | /* Don't wait for completion, the reset won't complete. Don't free | |
3180 | * the command either. This is the last command we will send before | |
3181 | * re-initializing everything, so it doesn't matter and won't leak. | |
3182 | */ | |
3183 | return 0; | |
3184 | } | |
3185 | ||
01a02ffc SC |
3186 | static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, |
3187 | void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, | |
edd16368 SC |
3188 | int cmd_type) |
3189 | { | |
3190 | int pci_dir = XFER_NONE; | |
75167d2c | 3191 | struct CommandList *a; /* for commands to be aborted */ |
edd16368 SC |
3192 | |
3193 | c->cmd_type = CMD_IOCTL_PEND; | |
3194 | c->Header.ReplyQueue = 0; | |
3195 | if (buff != NULL && size > 0) { | |
3196 | c->Header.SGList = 1; | |
3197 | c->Header.SGTotal = 1; | |
3198 | } else { | |
3199 | c->Header.SGList = 0; | |
3200 | c->Header.SGTotal = 0; | |
3201 | } | |
3202 | c->Header.Tag.lower = c->busaddr; | |
3203 | memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); | |
3204 | ||
3205 | c->Request.Type.Type = cmd_type; | |
3206 | if (cmd_type == TYPE_CMD) { | |
3207 | switch (cmd) { | |
3208 | case HPSA_INQUIRY: | |
3209 | /* are we trying to read a vital product page */ | |
3210 | if (page_code != 0) { | |
3211 | c->Request.CDB[1] = 0x01; | |
3212 | c->Request.CDB[2] = page_code; | |
3213 | } | |
3214 | c->Request.CDBLen = 6; | |
3215 | c->Request.Type.Attribute = ATTR_SIMPLE; | |
3216 | c->Request.Type.Direction = XFER_READ; | |
3217 | c->Request.Timeout = 0; | |
3218 | c->Request.CDB[0] = HPSA_INQUIRY; | |
3219 | c->Request.CDB[4] = size & 0xFF; | |
3220 | break; | |
3221 | case HPSA_REPORT_LOG: | |
3222 | case HPSA_REPORT_PHYS: | |
3223 | /* Talking to controller so It's a physical command | |
3224 | mode = 00 target = 0. Nothing to write. | |
3225 | */ | |
3226 | c->Request.CDBLen = 12; | |
3227 | c->Request.Type.Attribute = ATTR_SIMPLE; | |
3228 | c->Request.Type.Direction = XFER_READ; | |
3229 | c->Request.Timeout = 0; | |
3230 | c->Request.CDB[0] = cmd; | |
3231 | c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ | |
3232 | c->Request.CDB[7] = (size >> 16) & 0xFF; | |
3233 | c->Request.CDB[8] = (size >> 8) & 0xFF; | |
3234 | c->Request.CDB[9] = size & 0xFF; | |
3235 | break; | |
edd16368 SC |
3236 | case HPSA_CACHE_FLUSH: |
3237 | c->Request.CDBLen = 12; | |
3238 | c->Request.Type.Attribute = ATTR_SIMPLE; | |
3239 | c->Request.Type.Direction = XFER_WRITE; | |
3240 | c->Request.Timeout = 0; | |
3241 | c->Request.CDB[0] = BMIC_WRITE; | |
3242 | c->Request.CDB[6] = BMIC_CACHE_FLUSH; | |
bb158eab SC |
3243 | c->Request.CDB[7] = (size >> 8) & 0xFF; |
3244 | c->Request.CDB[8] = size & 0xFF; | |
edd16368 SC |
3245 | break; |
3246 | case TEST_UNIT_READY: | |
3247 | c->Request.CDBLen = 6; | |
3248 | c->Request.Type.Attribute = ATTR_SIMPLE; | |
3249 | c->Request.Type.Direction = XFER_NONE; | |
3250 | c->Request.Timeout = 0; | |
3251 | break; | |
3252 | default: | |
3253 | dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); | |
3254 | BUG(); | |
3255 | return; | |
3256 | } | |
3257 | } else if (cmd_type == TYPE_MSG) { | |
3258 | switch (cmd) { | |
3259 | ||
3260 | case HPSA_DEVICE_RESET_MSG: | |
3261 | c->Request.CDBLen = 16; | |
3262 | c->Request.Type.Type = 1; /* It is a MSG not a CMD */ | |
3263 | c->Request.Type.Attribute = ATTR_SIMPLE; | |
3264 | c->Request.Type.Direction = XFER_NONE; | |
3265 | c->Request.Timeout = 0; /* Don't time out */ | |
64670ac8 SC |
3266 | memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); |
3267 | c->Request.CDB[0] = cmd; | |
edd16368 SC |
3268 | c->Request.CDB[1] = 0x03; /* Reset target above */ |
3269 | /* If bytes 4-7 are zero, it means reset the */ | |
3270 | /* LunID device */ | |
3271 | c->Request.CDB[4] = 0x00; | |
3272 | c->Request.CDB[5] = 0x00; | |
3273 | c->Request.CDB[6] = 0x00; | |
3274 | c->Request.CDB[7] = 0x00; | |
75167d2c SC |
3275 | break; |
3276 | case HPSA_ABORT_MSG: | |
3277 | a = buff; /* point to command to be aborted */ | |
3278 | dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n", | |
3279 | a->Header.Tag.upper, a->Header.Tag.lower, | |
3280 | c->Header.Tag.upper, c->Header.Tag.lower); | |
3281 | c->Request.CDBLen = 16; | |
3282 | c->Request.Type.Type = TYPE_MSG; | |
3283 | c->Request.Type.Attribute = ATTR_SIMPLE; | |
3284 | c->Request.Type.Direction = XFER_WRITE; | |
3285 | c->Request.Timeout = 0; /* Don't time out */ | |
3286 | c->Request.CDB[0] = HPSA_TASK_MANAGEMENT; | |
3287 | c->Request.CDB[1] = HPSA_TMF_ABORT_TASK; | |
3288 | c->Request.CDB[2] = 0x00; /* reserved */ | |
3289 | c->Request.CDB[3] = 0x00; /* reserved */ | |
3290 | /* Tag to abort goes in CDB[4]-CDB[11] */ | |
3291 | c->Request.CDB[4] = a->Header.Tag.lower & 0xFF; | |
3292 | c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF; | |
3293 | c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF; | |
3294 | c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF; | |
3295 | c->Request.CDB[8] = a->Header.Tag.upper & 0xFF; | |
3296 | c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF; | |
3297 | c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF; | |
3298 | c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF; | |
3299 | c->Request.CDB[12] = 0x00; /* reserved */ | |
3300 | c->Request.CDB[13] = 0x00; /* reserved */ | |
3301 | c->Request.CDB[14] = 0x00; /* reserved */ | |
3302 | c->Request.CDB[15] = 0x00; /* reserved */ | |
edd16368 | 3303 | break; |
edd16368 SC |
3304 | default: |
3305 | dev_warn(&h->pdev->dev, "unknown message type %d\n", | |
3306 | cmd); | |
3307 | BUG(); | |
3308 | } | |
3309 | } else { | |
3310 | dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); | |
3311 | BUG(); | |
3312 | } | |
3313 | ||
3314 | switch (c->Request.Type.Direction) { | |
3315 | case XFER_READ: | |
3316 | pci_dir = PCI_DMA_FROMDEVICE; | |
3317 | break; | |
3318 | case XFER_WRITE: | |
3319 | pci_dir = PCI_DMA_TODEVICE; | |
3320 | break; | |
3321 | case XFER_NONE: | |
3322 | pci_dir = PCI_DMA_NONE; | |
3323 | break; | |
3324 | default: | |
3325 | pci_dir = PCI_DMA_BIDIRECTIONAL; | |
3326 | } | |
3327 | ||
3328 | hpsa_map_one(h->pdev, c, buff, size, pci_dir); | |
3329 | ||
3330 | return; | |
3331 | } | |
3332 | ||
3333 | /* | |
3334 | * Map (physical) PCI mem into (virtual) kernel space | |
3335 | */ | |
3336 | static void __iomem *remap_pci_mem(ulong base, ulong size) | |
3337 | { | |
3338 | ulong page_base = ((ulong) base) & PAGE_MASK; | |
3339 | ulong page_offs = ((ulong) base) - page_base; | |
3340 | void __iomem *page_remapped = ioremap(page_base, page_offs + size); | |
3341 | ||
3342 | return page_remapped ? (page_remapped + page_offs) : NULL; | |
3343 | } | |
3344 | ||
3345 | /* Takes cmds off the submission queue and sends them to the hardware, | |
3346 | * then puts them on the queue of cmds waiting for completion. | |
3347 | */ | |
3348 | static void start_io(struct ctlr_info *h) | |
3349 | { | |
3350 | struct CommandList *c; | |
e16a33ad | 3351 | unsigned long flags; |
edd16368 | 3352 | |
e16a33ad | 3353 | spin_lock_irqsave(&h->lock, flags); |
9e0fc764 SC |
3354 | while (!list_empty(&h->reqQ)) { |
3355 | c = list_entry(h->reqQ.next, struct CommandList, list); | |
edd16368 SC |
3356 | /* can't do anything if fifo is full */ |
3357 | if ((h->access.fifo_full(h))) { | |
3358 | dev_warn(&h->pdev->dev, "fifo full\n"); | |
3359 | break; | |
3360 | } | |
3361 | ||
3362 | /* Get the first entry from the Request Q */ | |
3363 | removeQ(c); | |
3364 | h->Qdepth--; | |
3365 | ||
edd16368 SC |
3366 | /* Put job onto the completed Q */ |
3367 | addQ(&h->cmpQ, c); | |
e16a33ad MG |
3368 | |
3369 | /* Must increment commands_outstanding before unlocking | |
3370 | * and submitting to avoid race checking for fifo full | |
3371 | * condition. | |
3372 | */ | |
3373 | h->commands_outstanding++; | |
3374 | if (h->commands_outstanding > h->max_outstanding) | |
3375 | h->max_outstanding = h->commands_outstanding; | |
3376 | ||
3377 | /* Tell the controller execute command */ | |
3378 | spin_unlock_irqrestore(&h->lock, flags); | |
3379 | h->access.submit_command(h, c); | |
3380 | spin_lock_irqsave(&h->lock, flags); | |
edd16368 | 3381 | } |
e16a33ad | 3382 | spin_unlock_irqrestore(&h->lock, flags); |
edd16368 SC |
3383 | } |
3384 | ||
254f796b | 3385 | static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) |
edd16368 | 3386 | { |
254f796b | 3387 | return h->access.command_completed(h, q); |
edd16368 SC |
3388 | } |
3389 | ||
900c5440 | 3390 | static inline bool interrupt_pending(struct ctlr_info *h) |
edd16368 SC |
3391 | { |
3392 | return h->access.intr_pending(h); | |
3393 | } | |
3394 | ||
3395 | static inline long interrupt_not_for_us(struct ctlr_info *h) | |
3396 | { | |
10f66018 SC |
3397 | return (h->access.intr_pending(h) == 0) || |
3398 | (h->interrupts_enabled == 0); | |
edd16368 SC |
3399 | } |
3400 | ||
01a02ffc SC |
3401 | static inline int bad_tag(struct ctlr_info *h, u32 tag_index, |
3402 | u32 raw_tag) | |
edd16368 SC |
3403 | { |
3404 | if (unlikely(tag_index >= h->nr_cmds)) { | |
3405 | dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); | |
3406 | return 1; | |
3407 | } | |
3408 | return 0; | |
3409 | } | |
3410 | ||
5a3d16f5 | 3411 | static inline void finish_cmd(struct CommandList *c) |
edd16368 | 3412 | { |
e16a33ad MG |
3413 | unsigned long flags; |
3414 | ||
3415 | spin_lock_irqsave(&c->h->lock, flags); | |
edd16368 | 3416 | removeQ(c); |
e16a33ad | 3417 | spin_unlock_irqrestore(&c->h->lock, flags); |
e85c5974 | 3418 | dial_up_lockup_detection_on_fw_flash_complete(c->h, c); |
edd16368 | 3419 | if (likely(c->cmd_type == CMD_SCSI)) |
1fb011fb | 3420 | complete_scsi_command(c); |
edd16368 SC |
3421 | else if (c->cmd_type == CMD_IOCTL_PEND) |
3422 | complete(c->waiting); | |
3423 | } | |
3424 | ||
a104c99f SC |
3425 | static inline u32 hpsa_tag_contains_index(u32 tag) |
3426 | { | |
a104c99f SC |
3427 | return tag & DIRECT_LOOKUP_BIT; |
3428 | } | |
3429 | ||
3430 | static inline u32 hpsa_tag_to_index(u32 tag) | |
3431 | { | |
a104c99f SC |
3432 | return tag >> DIRECT_LOOKUP_SHIFT; |
3433 | } | |
3434 | ||
a9a3a273 SC |
3435 | |
3436 | static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag) | |
a104c99f | 3437 | { |
a9a3a273 SC |
3438 | #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1) |
3439 | #define HPSA_SIMPLE_ERROR_BITS 0x03 | |
960a30e7 | 3440 | if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) |
a9a3a273 SC |
3441 | return tag & ~HPSA_SIMPLE_ERROR_BITS; |
3442 | return tag & ~HPSA_PERF_ERROR_BITS; | |
a104c99f SC |
3443 | } |
3444 | ||
303932fd | 3445 | /* process completion of an indexed ("direct lookup") command */ |
1d94f94d | 3446 | static inline void process_indexed_cmd(struct ctlr_info *h, |
303932fd DB |
3447 | u32 raw_tag) |
3448 | { | |
3449 | u32 tag_index; | |
3450 | struct CommandList *c; | |
3451 | ||
3452 | tag_index = hpsa_tag_to_index(raw_tag); | |
1d94f94d SC |
3453 | if (!bad_tag(h, tag_index, raw_tag)) { |
3454 | c = h->cmd_pool + tag_index; | |
3455 | finish_cmd(c); | |
3456 | } | |
303932fd DB |
3457 | } |
3458 | ||
3459 | /* process completion of a non-indexed command */ | |
1d94f94d | 3460 | static inline void process_nonindexed_cmd(struct ctlr_info *h, |
303932fd DB |
3461 | u32 raw_tag) |
3462 | { | |
3463 | u32 tag; | |
3464 | struct CommandList *c = NULL; | |
e16a33ad | 3465 | unsigned long flags; |
303932fd | 3466 | |
a9a3a273 | 3467 | tag = hpsa_tag_discard_error_bits(h, raw_tag); |
e16a33ad | 3468 | spin_lock_irqsave(&h->lock, flags); |
9e0fc764 | 3469 | list_for_each_entry(c, &h->cmpQ, list) { |
303932fd | 3470 | if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) { |
e16a33ad | 3471 | spin_unlock_irqrestore(&h->lock, flags); |
5a3d16f5 | 3472 | finish_cmd(c); |
1d94f94d | 3473 | return; |
303932fd DB |
3474 | } |
3475 | } | |
e16a33ad | 3476 | spin_unlock_irqrestore(&h->lock, flags); |
303932fd | 3477 | bad_tag(h, h->nr_cmds + 1, raw_tag); |
303932fd DB |
3478 | } |
3479 | ||
64670ac8 SC |
3480 | /* Some controllers, like p400, will give us one interrupt |
3481 | * after a soft reset, even if we turned interrupts off. | |
3482 | * Only need to check for this in the hpsa_xxx_discard_completions | |
3483 | * functions. | |
3484 | */ | |
3485 | static int ignore_bogus_interrupt(struct ctlr_info *h) | |
3486 | { | |
3487 | if (likely(!reset_devices)) | |
3488 | return 0; | |
3489 | ||
3490 | if (likely(h->interrupts_enabled)) | |
3491 | return 0; | |
3492 | ||
3493 | dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " | |
3494 | "(known firmware bug.) Ignoring.\n"); | |
3495 | ||
3496 | return 1; | |
3497 | } | |
3498 | ||
254f796b MG |
3499 | /* |
3500 | * Convert &h->q[x] (passed to interrupt handlers) back to h. | |
3501 | * Relies on (h-q[x] == x) being true for x such that | |
3502 | * 0 <= x < MAX_REPLY_QUEUES. | |
3503 | */ | |
3504 | static struct ctlr_info *queue_to_hba(u8 *queue) | |
64670ac8 | 3505 | { |
254f796b MG |
3506 | return container_of((queue - *queue), struct ctlr_info, q[0]); |
3507 | } | |
3508 | ||
3509 | static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) | |
3510 | { | |
3511 | struct ctlr_info *h = queue_to_hba(queue); | |
3512 | u8 q = *(u8 *) queue; | |
64670ac8 SC |
3513 | u32 raw_tag; |
3514 | ||
3515 | if (ignore_bogus_interrupt(h)) | |
3516 | return IRQ_NONE; | |
3517 | ||
3518 | if (interrupt_not_for_us(h)) | |
3519 | return IRQ_NONE; | |
a0c12413 | 3520 | h->last_intr_timestamp = get_jiffies_64(); |
64670ac8 | 3521 | while (interrupt_pending(h)) { |
254f796b | 3522 | raw_tag = get_next_completion(h, q); |
64670ac8 | 3523 | while (raw_tag != FIFO_EMPTY) |
254f796b | 3524 | raw_tag = next_command(h, q); |
64670ac8 | 3525 | } |
64670ac8 SC |
3526 | return IRQ_HANDLED; |
3527 | } | |
3528 | ||
254f796b | 3529 | static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) |
64670ac8 | 3530 | { |
254f796b | 3531 | struct ctlr_info *h = queue_to_hba(queue); |
64670ac8 | 3532 | u32 raw_tag; |
254f796b | 3533 | u8 q = *(u8 *) queue; |
64670ac8 SC |
3534 | |
3535 | if (ignore_bogus_interrupt(h)) | |
3536 | return IRQ_NONE; | |
3537 | ||
a0c12413 | 3538 | h->last_intr_timestamp = get_jiffies_64(); |
254f796b | 3539 | raw_tag = get_next_completion(h, q); |
64670ac8 | 3540 | while (raw_tag != FIFO_EMPTY) |
254f796b | 3541 | raw_tag = next_command(h, q); |
64670ac8 SC |
3542 | return IRQ_HANDLED; |
3543 | } | |
3544 | ||
254f796b | 3545 | static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) |
edd16368 | 3546 | { |
254f796b | 3547 | struct ctlr_info *h = queue_to_hba((u8 *) queue); |
303932fd | 3548 | u32 raw_tag; |
254f796b | 3549 | u8 q = *(u8 *) queue; |
edd16368 SC |
3550 | |
3551 | if (interrupt_not_for_us(h)) | |
3552 | return IRQ_NONE; | |
a0c12413 | 3553 | h->last_intr_timestamp = get_jiffies_64(); |
10f66018 | 3554 | while (interrupt_pending(h)) { |
254f796b | 3555 | raw_tag = get_next_completion(h, q); |
10f66018 | 3556 | while (raw_tag != FIFO_EMPTY) { |
1d94f94d SC |
3557 | if (likely(hpsa_tag_contains_index(raw_tag))) |
3558 | process_indexed_cmd(h, raw_tag); | |
10f66018 | 3559 | else |
1d94f94d | 3560 | process_nonindexed_cmd(h, raw_tag); |
254f796b | 3561 | raw_tag = next_command(h, q); |
10f66018 SC |
3562 | } |
3563 | } | |
10f66018 SC |
3564 | return IRQ_HANDLED; |
3565 | } | |
3566 | ||
254f796b | 3567 | static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) |
10f66018 | 3568 | { |
254f796b | 3569 | struct ctlr_info *h = queue_to_hba(queue); |
10f66018 | 3570 | u32 raw_tag; |
254f796b | 3571 | u8 q = *(u8 *) queue; |
10f66018 | 3572 | |
a0c12413 | 3573 | h->last_intr_timestamp = get_jiffies_64(); |
254f796b | 3574 | raw_tag = get_next_completion(h, q); |
303932fd | 3575 | while (raw_tag != FIFO_EMPTY) { |
1d94f94d SC |
3576 | if (likely(hpsa_tag_contains_index(raw_tag))) |
3577 | process_indexed_cmd(h, raw_tag); | |
303932fd | 3578 | else |
1d94f94d | 3579 | process_nonindexed_cmd(h, raw_tag); |
254f796b | 3580 | raw_tag = next_command(h, q); |
edd16368 | 3581 | } |
edd16368 SC |
3582 | return IRQ_HANDLED; |
3583 | } | |
3584 | ||
a9a3a273 SC |
3585 | /* Send a message CDB to the firmware. Careful, this only works |
3586 | * in simple mode, not performant mode due to the tag lookup. | |
3587 | * We only ever use this immediately after a controller reset. | |
3588 | */ | |
edd16368 SC |
3589 | static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode, |
3590 | unsigned char type) | |
3591 | { | |
3592 | struct Command { | |
3593 | struct CommandListHeader CommandHeader; | |
3594 | struct RequestBlock Request; | |
3595 | struct ErrDescriptor ErrorDescriptor; | |
3596 | }; | |
3597 | struct Command *cmd; | |
3598 | static const size_t cmd_sz = sizeof(*cmd) + | |
3599 | sizeof(cmd->ErrorDescriptor); | |
3600 | dma_addr_t paddr64; | |
3601 | uint32_t paddr32, tag; | |
3602 | void __iomem *vaddr; | |
3603 | int i, err; | |
3604 | ||
3605 | vaddr = pci_ioremap_bar(pdev, 0); | |
3606 | if (vaddr == NULL) | |
3607 | return -ENOMEM; | |
3608 | ||
3609 | /* The Inbound Post Queue only accepts 32-bit physical addresses for the | |
3610 | * CCISS commands, so they must be allocated from the lower 4GiB of | |
3611 | * memory. | |
3612 | */ | |
3613 | err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); | |
3614 | if (err) { | |
3615 | iounmap(vaddr); | |
3616 | return -ENOMEM; | |
3617 | } | |
3618 | ||
3619 | cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); | |
3620 | if (cmd == NULL) { | |
3621 | iounmap(vaddr); | |
3622 | return -ENOMEM; | |
3623 | } | |
3624 | ||
3625 | /* This must fit, because of the 32-bit consistent DMA mask. Also, | |
3626 | * although there's no guarantee, we assume that the address is at | |
3627 | * least 4-byte aligned (most likely, it's page-aligned). | |
3628 | */ | |
3629 | paddr32 = paddr64; | |
3630 | ||
3631 | cmd->CommandHeader.ReplyQueue = 0; | |
3632 | cmd->CommandHeader.SGList = 0; | |
3633 | cmd->CommandHeader.SGTotal = 0; | |
3634 | cmd->CommandHeader.Tag.lower = paddr32; | |
3635 | cmd->CommandHeader.Tag.upper = 0; | |
3636 | memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); | |
3637 | ||
3638 | cmd->Request.CDBLen = 16; | |
3639 | cmd->Request.Type.Type = TYPE_MSG; | |
3640 | cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; | |
3641 | cmd->Request.Type.Direction = XFER_NONE; | |
3642 | cmd->Request.Timeout = 0; /* Don't time out */ | |
3643 | cmd->Request.CDB[0] = opcode; | |
3644 | cmd->Request.CDB[1] = type; | |
3645 | memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ | |
3646 | cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd); | |
3647 | cmd->ErrorDescriptor.Addr.upper = 0; | |
3648 | cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo); | |
3649 | ||
3650 | writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); | |
3651 | ||
3652 | for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { | |
3653 | tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); | |
a9a3a273 | 3654 | if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32) |
edd16368 SC |
3655 | break; |
3656 | msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); | |
3657 | } | |
3658 | ||
3659 | iounmap(vaddr); | |
3660 | ||
3661 | /* we leak the DMA buffer here ... no choice since the controller could | |
3662 | * still complete the command. | |
3663 | */ | |
3664 | if (i == HPSA_MSG_SEND_RETRY_LIMIT) { | |
3665 | dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", | |
3666 | opcode, type); | |
3667 | return -ETIMEDOUT; | |
3668 | } | |
3669 | ||
3670 | pci_free_consistent(pdev, cmd_sz, cmd, paddr64); | |
3671 | ||
3672 | if (tag & HPSA_ERROR_BIT) { | |
3673 | dev_err(&pdev->dev, "controller message %02x:%02x failed\n", | |
3674 | opcode, type); | |
3675 | return -EIO; | |
3676 | } | |
3677 | ||
3678 | dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", | |
3679 | opcode, type); | |
3680 | return 0; | |
3681 | } | |
3682 | ||
edd16368 SC |
3683 | #define hpsa_noop(p) hpsa_message(p, 3, 0) |
3684 | ||
1df8552a | 3685 | static int hpsa_controller_hard_reset(struct pci_dev *pdev, |
cf0b08d0 | 3686 | void * __iomem vaddr, u32 use_doorbell) |
1df8552a SC |
3687 | { |
3688 | u16 pmcsr; | |
3689 | int pos; | |
3690 | ||
3691 | if (use_doorbell) { | |
3692 | /* For everything after the P600, the PCI power state method | |
3693 | * of resetting the controller doesn't work, so we have this | |
3694 | * other way using the doorbell register. | |
3695 | */ | |
3696 | dev_info(&pdev->dev, "using doorbell to reset controller\n"); | |
cf0b08d0 | 3697 | writel(use_doorbell, vaddr + SA5_DOORBELL); |
1df8552a SC |
3698 | } else { /* Try to do it the PCI power state way */ |
3699 | ||
3700 | /* Quoting from the Open CISS Specification: "The Power | |
3701 | * Management Control/Status Register (CSR) controls the power | |
3702 | * state of the device. The normal operating state is D0, | |
3703 | * CSR=00h. The software off state is D3, CSR=03h. To reset | |
3704 | * the controller, place the interface device in D3 then to D0, | |
3705 | * this causes a secondary PCI reset which will reset the | |
3706 | * controller." */ | |
3707 | ||
3708 | pos = pci_find_capability(pdev, PCI_CAP_ID_PM); | |
3709 | if (pos == 0) { | |
3710 | dev_err(&pdev->dev, | |
3711 | "hpsa_reset_controller: " | |
3712 | "PCI PM not supported\n"); | |
3713 | return -ENODEV; | |
3714 | } | |
3715 | dev_info(&pdev->dev, "using PCI PM to reset controller\n"); | |
3716 | /* enter the D3hot power management state */ | |
3717 | pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); | |
3718 | pmcsr &= ~PCI_PM_CTRL_STATE_MASK; | |
3719 | pmcsr |= PCI_D3hot; | |
3720 | pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); | |
3721 | ||
3722 | msleep(500); | |
3723 | ||
3724 | /* enter the D0 power management state */ | |
3725 | pmcsr &= ~PCI_PM_CTRL_STATE_MASK; | |
3726 | pmcsr |= PCI_D0; | |
3727 | pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); | |
c4853efe MM |
3728 | |
3729 | /* | |
3730 | * The P600 requires a small delay when changing states. | |
3731 | * Otherwise we may think the board did not reset and we bail. | |
3732 | * This for kdump only and is particular to the P600. | |
3733 | */ | |
3734 | msleep(500); | |
1df8552a SC |
3735 | } |
3736 | return 0; | |
3737 | } | |
3738 | ||
580ada3c SC |
3739 | static __devinit void init_driver_version(char *driver_version, int len) |
3740 | { | |
3741 | memset(driver_version, 0, len); | |
f79cfec6 | 3742 | strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); |
580ada3c SC |
3743 | } |
3744 | ||
3745 | static __devinit int write_driver_ver_to_cfgtable( | |
3746 | struct CfgTable __iomem *cfgtable) | |
3747 | { | |
3748 | char *driver_version; | |
3749 | int i, size = sizeof(cfgtable->driver_version); | |
3750 | ||
3751 | driver_version = kmalloc(size, GFP_KERNEL); | |
3752 | if (!driver_version) | |
3753 | return -ENOMEM; | |
3754 | ||
3755 | init_driver_version(driver_version, size); | |
3756 | for (i = 0; i < size; i++) | |
3757 | writeb(driver_version[i], &cfgtable->driver_version[i]); | |
3758 | kfree(driver_version); | |
3759 | return 0; | |
3760 | } | |
3761 | ||
3762 | static __devinit void read_driver_ver_from_cfgtable( | |
3763 | struct CfgTable __iomem *cfgtable, unsigned char *driver_ver) | |
3764 | { | |
3765 | int i; | |
3766 | ||
3767 | for (i = 0; i < sizeof(cfgtable->driver_version); i++) | |
3768 | driver_ver[i] = readb(&cfgtable->driver_version[i]); | |
3769 | } | |
3770 | ||
3771 | static __devinit int controller_reset_failed( | |
3772 | struct CfgTable __iomem *cfgtable) | |
3773 | { | |
3774 | ||
3775 | char *driver_ver, *old_driver_ver; | |
3776 | int rc, size = sizeof(cfgtable->driver_version); | |
3777 | ||
3778 | old_driver_ver = kmalloc(2 * size, GFP_KERNEL); | |
3779 | if (!old_driver_ver) | |
3780 | return -ENOMEM; | |
3781 | driver_ver = old_driver_ver + size; | |
3782 | ||
3783 | /* After a reset, the 32 bytes of "driver version" in the cfgtable | |
3784 | * should have been changed, otherwise we know the reset failed. | |
3785 | */ | |
3786 | init_driver_version(old_driver_ver, size); | |
3787 | read_driver_ver_from_cfgtable(cfgtable, driver_ver); | |
3788 | rc = !memcmp(driver_ver, old_driver_ver, size); | |
3789 | kfree(old_driver_ver); | |
3790 | return rc; | |
3791 | } | |
edd16368 | 3792 | /* This does a hard reset of the controller using PCI power management |
1df8552a | 3793 | * states or the using the doorbell register. |
edd16368 | 3794 | */ |
1df8552a | 3795 | static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev) |
edd16368 | 3796 | { |
1df8552a SC |
3797 | u64 cfg_offset; |
3798 | u32 cfg_base_addr; | |
3799 | u64 cfg_base_addr_index; | |
3800 | void __iomem *vaddr; | |
3801 | unsigned long paddr; | |
580ada3c | 3802 | u32 misc_fw_support; |
270d05de | 3803 | int rc; |
1df8552a | 3804 | struct CfgTable __iomem *cfgtable; |
cf0b08d0 | 3805 | u32 use_doorbell; |
18867659 | 3806 | u32 board_id; |
270d05de | 3807 | u16 command_register; |
edd16368 | 3808 | |
1df8552a SC |
3809 | /* For controllers as old as the P600, this is very nearly |
3810 | * the same thing as | |
edd16368 SC |
3811 | * |
3812 | * pci_save_state(pci_dev); | |
3813 | * pci_set_power_state(pci_dev, PCI_D3hot); | |
3814 | * pci_set_power_state(pci_dev, PCI_D0); | |
3815 | * pci_restore_state(pci_dev); | |
3816 | * | |
1df8552a SC |
3817 | * For controllers newer than the P600, the pci power state |
3818 | * method of resetting doesn't work so we have another way | |
3819 | * using the doorbell register. | |
edd16368 | 3820 | */ |
18867659 | 3821 | |
25c1e56a | 3822 | rc = hpsa_lookup_board_id(pdev, &board_id); |
46380786 | 3823 | if (rc < 0 || !ctlr_is_resettable(board_id)) { |
25c1e56a SC |
3824 | dev_warn(&pdev->dev, "Not resetting device.\n"); |
3825 | return -ENODEV; | |
3826 | } | |
46380786 SC |
3827 | |
3828 | /* if controller is soft- but not hard resettable... */ | |
3829 | if (!ctlr_is_hard_resettable(board_id)) | |
3830 | return -ENOTSUPP; /* try soft reset later. */ | |
18867659 | 3831 | |
270d05de SC |
3832 | /* Save the PCI command register */ |
3833 | pci_read_config_word(pdev, 4, &command_register); | |
3834 | /* Turn the board off. This is so that later pci_restore_state() | |
3835 | * won't turn the board on before the rest of config space is ready. | |
3836 | */ | |
3837 | pci_disable_device(pdev); | |
3838 | pci_save_state(pdev); | |
edd16368 | 3839 | |
1df8552a SC |
3840 | /* find the first memory BAR, so we can find the cfg table */ |
3841 | rc = hpsa_pci_find_memory_BAR(pdev, &paddr); | |
3842 | if (rc) | |
3843 | return rc; | |
3844 | vaddr = remap_pci_mem(paddr, 0x250); | |
3845 | if (!vaddr) | |
3846 | return -ENOMEM; | |
edd16368 | 3847 | |
1df8552a SC |
3848 | /* find cfgtable in order to check if reset via doorbell is supported */ |
3849 | rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, | |
3850 | &cfg_base_addr_index, &cfg_offset); | |
3851 | if (rc) | |
3852 | goto unmap_vaddr; | |
3853 | cfgtable = remap_pci_mem(pci_resource_start(pdev, | |
3854 | cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); | |
3855 | if (!cfgtable) { | |
3856 | rc = -ENOMEM; | |
3857 | goto unmap_vaddr; | |
3858 | } | |
580ada3c SC |
3859 | rc = write_driver_ver_to_cfgtable(cfgtable); |
3860 | if (rc) | |
3861 | goto unmap_vaddr; | |
edd16368 | 3862 | |
cf0b08d0 SC |
3863 | /* If reset via doorbell register is supported, use that. |
3864 | * There are two such methods. Favor the newest method. | |
3865 | */ | |
1df8552a | 3866 | misc_fw_support = readl(&cfgtable->misc_fw_support); |
cf0b08d0 SC |
3867 | use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; |
3868 | if (use_doorbell) { | |
3869 | use_doorbell = DOORBELL_CTLR_RESET2; | |
3870 | } else { | |
3871 | use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; | |
3872 | if (use_doorbell) { | |
fba63097 MM |
3873 | dev_warn(&pdev->dev, "Soft reset not supported. " |
3874 | "Firmware update is required.\n"); | |
64670ac8 | 3875 | rc = -ENOTSUPP; /* try soft reset */ |
cf0b08d0 SC |
3876 | goto unmap_cfgtable; |
3877 | } | |
3878 | } | |
edd16368 | 3879 | |
1df8552a SC |
3880 | rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); |
3881 | if (rc) | |
3882 | goto unmap_cfgtable; | |
edd16368 | 3883 | |
270d05de SC |
3884 | pci_restore_state(pdev); |
3885 | rc = pci_enable_device(pdev); | |
3886 | if (rc) { | |
3887 | dev_warn(&pdev->dev, "failed to enable device.\n"); | |
3888 | goto unmap_cfgtable; | |
edd16368 | 3889 | } |
270d05de | 3890 | pci_write_config_word(pdev, 4, command_register); |
edd16368 | 3891 | |
1df8552a SC |
3892 | /* Some devices (notably the HP Smart Array 5i Controller) |
3893 | need a little pause here */ | |
3894 | msleep(HPSA_POST_RESET_PAUSE_MSECS); | |
3895 | ||
fe5389c8 | 3896 | /* Wait for board to become not ready, then ready. */ |
2b870cb3 | 3897 | dev_info(&pdev->dev, "Waiting for board to reset.\n"); |
fe5389c8 | 3898 | rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY); |
64670ac8 | 3899 | if (rc) { |
fe5389c8 | 3900 | dev_warn(&pdev->dev, |
64670ac8 SC |
3901 | "failed waiting for board to reset." |
3902 | " Will try soft reset.\n"); | |
3903 | rc = -ENOTSUPP; /* Not expected, but try soft reset later */ | |
3904 | goto unmap_cfgtable; | |
3905 | } | |
fe5389c8 SC |
3906 | rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); |
3907 | if (rc) { | |
3908 | dev_warn(&pdev->dev, | |
64670ac8 SC |
3909 | "failed waiting for board to become ready " |
3910 | "after hard reset\n"); | |
fe5389c8 SC |
3911 | goto unmap_cfgtable; |
3912 | } | |
fe5389c8 | 3913 | |
580ada3c SC |
3914 | rc = controller_reset_failed(vaddr); |
3915 | if (rc < 0) | |
3916 | goto unmap_cfgtable; | |
3917 | if (rc) { | |
64670ac8 SC |
3918 | dev_warn(&pdev->dev, "Unable to successfully reset " |
3919 | "controller. Will try soft reset.\n"); | |
3920 | rc = -ENOTSUPP; | |
580ada3c | 3921 | } else { |
64670ac8 | 3922 | dev_info(&pdev->dev, "board ready after hard reset.\n"); |
1df8552a SC |
3923 | } |
3924 | ||
3925 | unmap_cfgtable: | |
3926 | iounmap(cfgtable); | |
3927 | ||
3928 | unmap_vaddr: | |
3929 | iounmap(vaddr); | |
3930 | return rc; | |
edd16368 SC |
3931 | } |
3932 | ||
3933 | /* | |
3934 | * We cannot read the structure directly, for portability we must use | |
3935 | * the io functions. | |
3936 | * This is for debug only. | |
3937 | */ | |
edd16368 SC |
3938 | static void print_cfg_table(struct device *dev, struct CfgTable *tb) |
3939 | { | |
58f8665c | 3940 | #ifdef HPSA_DEBUG |
edd16368 SC |
3941 | int i; |
3942 | char temp_name[17]; | |
3943 | ||
3944 | dev_info(dev, "Controller Configuration information\n"); | |
3945 | dev_info(dev, "------------------------------------\n"); | |
3946 | for (i = 0; i < 4; i++) | |
3947 | temp_name[i] = readb(&(tb->Signature[i])); | |
3948 | temp_name[4] = '\0'; | |
3949 | dev_info(dev, " Signature = %s\n", temp_name); | |
3950 | dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); | |
3951 | dev_info(dev, " Transport methods supported = 0x%x\n", | |
3952 | readl(&(tb->TransportSupport))); | |
3953 | dev_info(dev, " Transport methods active = 0x%x\n", | |
3954 | readl(&(tb->TransportActive))); | |
3955 | dev_info(dev, " Requested transport Method = 0x%x\n", | |
3956 | readl(&(tb->HostWrite.TransportRequest))); | |
3957 | dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", | |
3958 | readl(&(tb->HostWrite.CoalIntDelay))); | |
3959 | dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", | |
3960 | readl(&(tb->HostWrite.CoalIntCount))); | |
3961 | dev_info(dev, " Max outstanding commands = 0x%d\n", | |
3962 | readl(&(tb->CmdsOutMax))); | |
3963 | dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); | |
3964 | for (i = 0; i < 16; i++) | |
3965 | temp_name[i] = readb(&(tb->ServerName[i])); | |
3966 | temp_name[16] = '\0'; | |
3967 | dev_info(dev, " Server Name = %s\n", temp_name); | |
3968 | dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", | |
3969 | readl(&(tb->HeartBeat))); | |
edd16368 | 3970 | #endif /* HPSA_DEBUG */ |
58f8665c | 3971 | } |
edd16368 SC |
3972 | |
3973 | static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) | |
3974 | { | |
3975 | int i, offset, mem_type, bar_type; | |
3976 | ||
3977 | if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ | |
3978 | return 0; | |
3979 | offset = 0; | |
3980 | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { | |
3981 | bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; | |
3982 | if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) | |
3983 | offset += 4; | |
3984 | else { | |
3985 | mem_type = pci_resource_flags(pdev, i) & | |
3986 | PCI_BASE_ADDRESS_MEM_TYPE_MASK; | |
3987 | switch (mem_type) { | |
3988 | case PCI_BASE_ADDRESS_MEM_TYPE_32: | |
3989 | case PCI_BASE_ADDRESS_MEM_TYPE_1M: | |
3990 | offset += 4; /* 32 bit */ | |
3991 | break; | |
3992 | case PCI_BASE_ADDRESS_MEM_TYPE_64: | |
3993 | offset += 8; | |
3994 | break; | |
3995 | default: /* reserved in PCI 2.2 */ | |
3996 | dev_warn(&pdev->dev, | |
3997 | "base address is invalid\n"); | |
3998 | return -1; | |
3999 | break; | |
4000 | } | |
4001 | } | |
4002 | if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) | |
4003 | return i + 1; | |
4004 | } | |
4005 | return -1; | |
4006 | } | |
4007 | ||
4008 | /* If MSI/MSI-X is supported by the kernel we will try to enable it on | |
4009 | * controllers that are capable. If not, we use IO-APIC mode. | |
4010 | */ | |
4011 | ||
6b3f4c52 | 4012 | static void __devinit hpsa_interrupt_mode(struct ctlr_info *h) |
edd16368 SC |
4013 | { |
4014 | #ifdef CONFIG_PCI_MSI | |
254f796b MG |
4015 | int err, i; |
4016 | struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES]; | |
4017 | ||
4018 | for (i = 0; i < MAX_REPLY_QUEUES; i++) { | |
4019 | hpsa_msix_entries[i].vector = 0; | |
4020 | hpsa_msix_entries[i].entry = i; | |
4021 | } | |
edd16368 SC |
4022 | |
4023 | /* Some boards advertise MSI but don't really support it */ | |
6b3f4c52 SC |
4024 | if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || |
4025 | (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) | |
edd16368 | 4026 | goto default_int_mode; |
55c06c71 SC |
4027 | if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { |
4028 | dev_info(&h->pdev->dev, "MSIX\n"); | |
254f796b MG |
4029 | err = pci_enable_msix(h->pdev, hpsa_msix_entries, |
4030 | MAX_REPLY_QUEUES); | |
edd16368 | 4031 | if (!err) { |
254f796b MG |
4032 | for (i = 0; i < MAX_REPLY_QUEUES; i++) |
4033 | h->intr[i] = hpsa_msix_entries[i].vector; | |
edd16368 SC |
4034 | h->msix_vector = 1; |
4035 | return; | |
4036 | } | |
4037 | if (err > 0) { | |
55c06c71 | 4038 | dev_warn(&h->pdev->dev, "only %d MSI-X vectors " |
edd16368 SC |
4039 | "available\n", err); |
4040 | goto default_int_mode; | |
4041 | } else { | |
55c06c71 | 4042 | dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", |
edd16368 SC |
4043 | err); |
4044 | goto default_int_mode; | |
4045 | } | |
4046 | } | |
55c06c71 SC |
4047 | if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { |
4048 | dev_info(&h->pdev->dev, "MSI\n"); | |
4049 | if (!pci_enable_msi(h->pdev)) | |
edd16368 SC |
4050 | h->msi_vector = 1; |
4051 | else | |
55c06c71 | 4052 | dev_warn(&h->pdev->dev, "MSI init failed\n"); |
edd16368 SC |
4053 | } |
4054 | default_int_mode: | |
4055 | #endif /* CONFIG_PCI_MSI */ | |
4056 | /* if we get here we're going to use the default interrupt mode */ | |
a9a3a273 | 4057 | h->intr[h->intr_mode] = h->pdev->irq; |
edd16368 SC |
4058 | } |
4059 | ||
e5c880d1 SC |
4060 | static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id) |
4061 | { | |
4062 | int i; | |
4063 | u32 subsystem_vendor_id, subsystem_device_id; | |
4064 | ||
4065 | subsystem_vendor_id = pdev->subsystem_vendor; | |
4066 | subsystem_device_id = pdev->subsystem_device; | |
4067 | *board_id = ((subsystem_device_id << 16) & 0xffff0000) | | |
4068 | subsystem_vendor_id; | |
4069 | ||
4070 | for (i = 0; i < ARRAY_SIZE(products); i++) | |
4071 | if (*board_id == products[i].board_id) | |
4072 | return i; | |
4073 | ||
6798cc0a SC |
4074 | if ((subsystem_vendor_id != PCI_VENDOR_ID_HP && |
4075 | subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) || | |
4076 | !hpsa_allow_any) { | |
e5c880d1 SC |
4077 | dev_warn(&pdev->dev, "unrecognized board ID: " |
4078 | "0x%08x, ignoring.\n", *board_id); | |
4079 | return -ENODEV; | |
4080 | } | |
4081 | return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ | |
4082 | } | |
4083 | ||
12d2cd47 | 4084 | static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev, |
3a7774ce SC |
4085 | unsigned long *memory_bar) |
4086 | { | |
4087 | int i; | |
4088 | ||
4089 | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) | |
12d2cd47 | 4090 | if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { |
3a7774ce | 4091 | /* addressing mode bits already removed */ |
12d2cd47 SC |
4092 | *memory_bar = pci_resource_start(pdev, i); |
4093 | dev_dbg(&pdev->dev, "memory BAR = %lx\n", | |
3a7774ce SC |
4094 | *memory_bar); |
4095 | return 0; | |
4096 | } | |
12d2cd47 | 4097 | dev_warn(&pdev->dev, "no memory BAR found\n"); |
3a7774ce SC |
4098 | return -ENODEV; |
4099 | } | |
4100 | ||
fe5389c8 SC |
4101 | static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev, |
4102 | void __iomem *vaddr, int wait_for_ready) | |
2c4c8c8b | 4103 | { |
fe5389c8 | 4104 | int i, iterations; |
2c4c8c8b | 4105 | u32 scratchpad; |
fe5389c8 SC |
4106 | if (wait_for_ready) |
4107 | iterations = HPSA_BOARD_READY_ITERATIONS; | |
4108 | else | |
4109 | iterations = HPSA_BOARD_NOT_READY_ITERATIONS; | |
2c4c8c8b | 4110 | |
fe5389c8 SC |
4111 | for (i = 0; i < iterations; i++) { |
4112 | scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); | |
4113 | if (wait_for_ready) { | |
4114 | if (scratchpad == HPSA_FIRMWARE_READY) | |
4115 | return 0; | |
4116 | } else { | |
4117 | if (scratchpad != HPSA_FIRMWARE_READY) | |
4118 | return 0; | |
4119 | } | |
2c4c8c8b SC |
4120 | msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); |
4121 | } | |
fe5389c8 | 4122 | dev_warn(&pdev->dev, "board not ready, timed out.\n"); |
2c4c8c8b SC |
4123 | return -ENODEV; |
4124 | } | |
4125 | ||
a51fd47f SC |
4126 | static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev, |
4127 | void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, | |
4128 | u64 *cfg_offset) | |
4129 | { | |
4130 | *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); | |
4131 | *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); | |
4132 | *cfg_base_addr &= (u32) 0x0000ffff; | |
4133 | *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); | |
4134 | if (*cfg_base_addr_index == -1) { | |
4135 | dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); | |
4136 | return -ENODEV; | |
4137 | } | |
4138 | return 0; | |
4139 | } | |
4140 | ||
77c4495c | 4141 | static int __devinit hpsa_find_cfgtables(struct ctlr_info *h) |
edd16368 | 4142 | { |
01a02ffc SC |
4143 | u64 cfg_offset; |
4144 | u32 cfg_base_addr; | |
4145 | u64 cfg_base_addr_index; | |
303932fd | 4146 | u32 trans_offset; |
a51fd47f | 4147 | int rc; |
77c4495c | 4148 | |
a51fd47f SC |
4149 | rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, |
4150 | &cfg_base_addr_index, &cfg_offset); | |
4151 | if (rc) | |
4152 | return rc; | |
77c4495c | 4153 | h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, |
a51fd47f | 4154 | cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); |
77c4495c SC |
4155 | if (!h->cfgtable) |
4156 | return -ENOMEM; | |
580ada3c SC |
4157 | rc = write_driver_ver_to_cfgtable(h->cfgtable); |
4158 | if (rc) | |
4159 | return rc; | |
77c4495c | 4160 | /* Find performant mode table. */ |
a51fd47f | 4161 | trans_offset = readl(&h->cfgtable->TransMethodOffset); |
77c4495c SC |
4162 | h->transtable = remap_pci_mem(pci_resource_start(h->pdev, |
4163 | cfg_base_addr_index)+cfg_offset+trans_offset, | |
4164 | sizeof(*h->transtable)); | |
4165 | if (!h->transtable) | |
4166 | return -ENOMEM; | |
4167 | return 0; | |
4168 | } | |
4169 | ||
cba3d38b SC |
4170 | static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) |
4171 | { | |
4172 | h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); | |
72ceeaec SC |
4173 | |
4174 | /* Limit commands in memory limited kdump scenario. */ | |
4175 | if (reset_devices && h->max_commands > 32) | |
4176 | h->max_commands = 32; | |
4177 | ||
cba3d38b SC |
4178 | if (h->max_commands < 16) { |
4179 | dev_warn(&h->pdev->dev, "Controller reports " | |
4180 | "max supported commands of %d, an obvious lie. " | |
4181 | "Using 16. Ensure that firmware is up to date.\n", | |
4182 | h->max_commands); | |
4183 | h->max_commands = 16; | |
4184 | } | |
4185 | } | |
4186 | ||
b93d7536 SC |
4187 | /* Interrogate the hardware for some limits: |
4188 | * max commands, max SG elements without chaining, and with chaining, | |
4189 | * SG chain block size, etc. | |
4190 | */ | |
4191 | static void __devinit hpsa_find_board_params(struct ctlr_info *h) | |
4192 | { | |
cba3d38b | 4193 | hpsa_get_max_perf_mode_cmds(h); |
b93d7536 SC |
4194 | h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */ |
4195 | h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); | |
4196 | /* | |
4197 | * Limit in-command s/g elements to 32 save dma'able memory. | |
4198 | * Howvever spec says if 0, use 31 | |
4199 | */ | |
4200 | h->max_cmd_sg_entries = 31; | |
4201 | if (h->maxsgentries > 512) { | |
4202 | h->max_cmd_sg_entries = 32; | |
4203 | h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1; | |
4204 | h->maxsgentries--; /* save one for chain pointer */ | |
4205 | } else { | |
4206 | h->maxsgentries = 31; /* default to traditional values */ | |
4207 | h->chainsize = 0; | |
4208 | } | |
75167d2c SC |
4209 | |
4210 | /* Find out what task management functions are supported and cache */ | |
4211 | h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); | |
b93d7536 SC |
4212 | } |
4213 | ||
76c46e49 SC |
4214 | static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) |
4215 | { | |
0fc9fd40 | 4216 | if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { |
76c46e49 SC |
4217 | dev_warn(&h->pdev->dev, "not a valid CISS config table\n"); |
4218 | return false; | |
4219 | } | |
4220 | return true; | |
4221 | } | |
4222 | ||
f7c39101 SC |
4223 | /* Need to enable prefetch in the SCSI core for 6400 in x86 */ |
4224 | static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h) | |
4225 | { | |
4226 | #ifdef CONFIG_X86 | |
4227 | u32 prefetch; | |
4228 | ||
4229 | prefetch = readl(&(h->cfgtable->SCSI_Prefetch)); | |
4230 | prefetch |= 0x100; | |
4231 | writel(prefetch, &(h->cfgtable->SCSI_Prefetch)); | |
4232 | #endif | |
4233 | } | |
4234 | ||
3d0eab67 SC |
4235 | /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result |
4236 | * in a prefetch beyond physical memory. | |
4237 | */ | |
4238 | static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) | |
4239 | { | |
4240 | u32 dma_prefetch; | |
4241 | ||
4242 | if (h->board_id != 0x3225103C) | |
4243 | return; | |
4244 | dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); | |
4245 | dma_prefetch |= 0x8000; | |
4246 | writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); | |
4247 | } | |
4248 | ||
3f4336f3 | 4249 | static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h) |
eb6b2ae9 SC |
4250 | { |
4251 | int i; | |
6eaf46fd SC |
4252 | u32 doorbell_value; |
4253 | unsigned long flags; | |
eb6b2ae9 SC |
4254 | |
4255 | /* under certain very rare conditions, this can take awhile. | |
4256 | * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right | |
4257 | * as we enter this code.) | |
4258 | */ | |
4259 | for (i = 0; i < MAX_CONFIG_WAIT; i++) { | |
6eaf46fd SC |
4260 | spin_lock_irqsave(&h->lock, flags); |
4261 | doorbell_value = readl(h->vaddr + SA5_DOORBELL); | |
4262 | spin_unlock_irqrestore(&h->lock, flags); | |
382be668 | 4263 | if (!(doorbell_value & CFGTBL_ChangeReq)) |
eb6b2ae9 SC |
4264 | break; |
4265 | /* delay and try again */ | |
60d3f5b0 | 4266 | usleep_range(10000, 20000); |
eb6b2ae9 | 4267 | } |
3f4336f3 SC |
4268 | } |
4269 | ||
4270 | static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h) | |
4271 | { | |
4272 | u32 trans_support; | |
4273 | ||
4274 | trans_support = readl(&(h->cfgtable->TransportSupport)); | |
4275 | if (!(trans_support & SIMPLE_MODE)) | |
4276 | return -ENOTSUPP; | |
4277 | ||
4278 | h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); | |
4279 | /* Update the field, and then ring the doorbell */ | |
4280 | writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); | |
4281 | writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); | |
4282 | hpsa_wait_for_mode_change_ack(h); | |
eb6b2ae9 | 4283 | print_cfg_table(&h->pdev->dev, h->cfgtable); |
eb6b2ae9 SC |
4284 | if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { |
4285 | dev_warn(&h->pdev->dev, | |
4286 | "unable to get board into simple mode\n"); | |
4287 | return -ENODEV; | |
4288 | } | |
960a30e7 | 4289 | h->transMethod = CFGTBL_Trans_Simple; |
eb6b2ae9 SC |
4290 | return 0; |
4291 | } | |
4292 | ||
77c4495c SC |
4293 | static int __devinit hpsa_pci_init(struct ctlr_info *h) |
4294 | { | |
eb6b2ae9 | 4295 | int prod_index, err; |
edd16368 | 4296 | |
e5c880d1 SC |
4297 | prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id); |
4298 | if (prod_index < 0) | |
4299 | return -ENODEV; | |
4300 | h->product_name = products[prod_index].product_name; | |
4301 | h->access = *(products[prod_index].access); | |
edd16368 | 4302 | |
e5a44df8 MG |
4303 | pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | |
4304 | PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); | |
4305 | ||
55c06c71 | 4306 | err = pci_enable_device(h->pdev); |
edd16368 | 4307 | if (err) { |
55c06c71 | 4308 | dev_warn(&h->pdev->dev, "unable to enable PCI device\n"); |
edd16368 SC |
4309 | return err; |
4310 | } | |
4311 | ||
5cb460a6 SC |
4312 | /* Enable bus mastering (pci_disable_device may disable this) */ |
4313 | pci_set_master(h->pdev); | |
4314 | ||
f79cfec6 | 4315 | err = pci_request_regions(h->pdev, HPSA); |
edd16368 | 4316 | if (err) { |
55c06c71 SC |
4317 | dev_err(&h->pdev->dev, |
4318 | "cannot obtain PCI resources, aborting\n"); | |
edd16368 SC |
4319 | return err; |
4320 | } | |
6b3f4c52 | 4321 | hpsa_interrupt_mode(h); |
12d2cd47 | 4322 | err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); |
3a7774ce | 4323 | if (err) |
edd16368 | 4324 | goto err_out_free_res; |
edd16368 | 4325 | h->vaddr = remap_pci_mem(h->paddr, 0x250); |
204892e9 SC |
4326 | if (!h->vaddr) { |
4327 | err = -ENOMEM; | |
4328 | goto err_out_free_res; | |
4329 | } | |
fe5389c8 | 4330 | err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); |
2c4c8c8b | 4331 | if (err) |
edd16368 | 4332 | goto err_out_free_res; |
77c4495c SC |
4333 | err = hpsa_find_cfgtables(h); |
4334 | if (err) | |
edd16368 | 4335 | goto err_out_free_res; |
b93d7536 | 4336 | hpsa_find_board_params(h); |
edd16368 | 4337 | |
76c46e49 | 4338 | if (!hpsa_CISS_signature_present(h)) { |
edd16368 SC |
4339 | err = -ENODEV; |
4340 | goto err_out_free_res; | |
4341 | } | |
f7c39101 | 4342 | hpsa_enable_scsi_prefetch(h); |
3d0eab67 | 4343 | hpsa_p600_dma_prefetch_quirk(h); |
eb6b2ae9 SC |
4344 | err = hpsa_enter_simple_mode(h); |
4345 | if (err) | |
edd16368 | 4346 | goto err_out_free_res; |
edd16368 SC |
4347 | return 0; |
4348 | ||
4349 | err_out_free_res: | |
204892e9 SC |
4350 | if (h->transtable) |
4351 | iounmap(h->transtable); | |
4352 | if (h->cfgtable) | |
4353 | iounmap(h->cfgtable); | |
4354 | if (h->vaddr) | |
4355 | iounmap(h->vaddr); | |
f0bd0b68 | 4356 | pci_disable_device(h->pdev); |
55c06c71 | 4357 | pci_release_regions(h->pdev); |
edd16368 SC |
4358 | return err; |
4359 | } | |
4360 | ||
339b2b14 SC |
4361 | static void __devinit hpsa_hba_inquiry(struct ctlr_info *h) |
4362 | { | |
4363 | int rc; | |
4364 | ||
4365 | #define HBA_INQUIRY_BYTE_COUNT 64 | |
4366 | h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); | |
4367 | if (!h->hba_inquiry_data) | |
4368 | return; | |
4369 | rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, | |
4370 | h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); | |
4371 | if (rc != 0) { | |
4372 | kfree(h->hba_inquiry_data); | |
4373 | h->hba_inquiry_data = NULL; | |
4374 | } | |
4375 | } | |
4376 | ||
4c2a8c40 SC |
4377 | static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev) |
4378 | { | |
1df8552a | 4379 | int rc, i; |
4c2a8c40 SC |
4380 | |
4381 | if (!reset_devices) | |
4382 | return 0; | |
4383 | ||
1df8552a SC |
4384 | /* Reset the controller with a PCI power-cycle or via doorbell */ |
4385 | rc = hpsa_kdump_hard_reset_controller(pdev); | |
4c2a8c40 | 4386 | |
1df8552a SC |
4387 | /* -ENOTSUPP here means we cannot reset the controller |
4388 | * but it's already (and still) up and running in | |
18867659 SC |
4389 | * "performant mode". Or, it might be 640x, which can't reset |
4390 | * due to concerns about shared bbwc between 6402/6404 pair. | |
1df8552a SC |
4391 | */ |
4392 | if (rc == -ENOTSUPP) | |
64670ac8 | 4393 | return rc; /* just try to do the kdump anyhow. */ |
1df8552a SC |
4394 | if (rc) |
4395 | return -ENODEV; | |
4c2a8c40 SC |
4396 | |
4397 | /* Now try to get the controller to respond to a no-op */ | |
2b870cb3 | 4398 | dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n"); |
4c2a8c40 SC |
4399 | for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { |
4400 | if (hpsa_noop(pdev) == 0) | |
4401 | break; | |
4402 | else | |
4403 | dev_warn(&pdev->dev, "no-op failed%s\n", | |
4404 | (i < 11 ? "; re-trying" : "")); | |
4405 | } | |
4406 | return 0; | |
4407 | } | |
4408 | ||
2e9d1b36 SC |
4409 | static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h) |
4410 | { | |
4411 | h->cmd_pool_bits = kzalloc( | |
4412 | DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) * | |
4413 | sizeof(unsigned long), GFP_KERNEL); | |
4414 | h->cmd_pool = pci_alloc_consistent(h->pdev, | |
4415 | h->nr_cmds * sizeof(*h->cmd_pool), | |
4416 | &(h->cmd_pool_dhandle)); | |
4417 | h->errinfo_pool = pci_alloc_consistent(h->pdev, | |
4418 | h->nr_cmds * sizeof(*h->errinfo_pool), | |
4419 | &(h->errinfo_pool_dhandle)); | |
4420 | if ((h->cmd_pool_bits == NULL) | |
4421 | || (h->cmd_pool == NULL) | |
4422 | || (h->errinfo_pool == NULL)) { | |
4423 | dev_err(&h->pdev->dev, "out of memory in %s", __func__); | |
4424 | return -ENOMEM; | |
4425 | } | |
4426 | return 0; | |
4427 | } | |
4428 | ||
4429 | static void hpsa_free_cmd_pool(struct ctlr_info *h) | |
4430 | { | |
4431 | kfree(h->cmd_pool_bits); | |
4432 | if (h->cmd_pool) | |
4433 | pci_free_consistent(h->pdev, | |
4434 | h->nr_cmds * sizeof(struct CommandList), | |
4435 | h->cmd_pool, h->cmd_pool_dhandle); | |
4436 | if (h->errinfo_pool) | |
4437 | pci_free_consistent(h->pdev, | |
4438 | h->nr_cmds * sizeof(struct ErrorInfo), | |
4439 | h->errinfo_pool, | |
4440 | h->errinfo_pool_dhandle); | |
4441 | } | |
4442 | ||
0ae01a32 SC |
4443 | static int hpsa_request_irq(struct ctlr_info *h, |
4444 | irqreturn_t (*msixhandler)(int, void *), | |
4445 | irqreturn_t (*intxhandler)(int, void *)) | |
4446 | { | |
254f796b | 4447 | int rc, i; |
0ae01a32 | 4448 | |
254f796b MG |
4449 | /* |
4450 | * initialize h->q[x] = x so that interrupt handlers know which | |
4451 | * queue to process. | |
4452 | */ | |
4453 | for (i = 0; i < MAX_REPLY_QUEUES; i++) | |
4454 | h->q[i] = (u8) i; | |
4455 | ||
4456 | if (h->intr_mode == PERF_MODE_INT && h->msix_vector) { | |
4457 | /* If performant mode and MSI-X, use multiple reply queues */ | |
4458 | for (i = 0; i < MAX_REPLY_QUEUES; i++) | |
4459 | rc = request_irq(h->intr[i], msixhandler, | |
4460 | 0, h->devname, | |
4461 | &h->q[i]); | |
4462 | } else { | |
4463 | /* Use single reply pool */ | |
4464 | if (h->msix_vector || h->msi_vector) { | |
4465 | rc = request_irq(h->intr[h->intr_mode], | |
4466 | msixhandler, 0, h->devname, | |
4467 | &h->q[h->intr_mode]); | |
4468 | } else { | |
4469 | rc = request_irq(h->intr[h->intr_mode], | |
4470 | intxhandler, IRQF_SHARED, h->devname, | |
4471 | &h->q[h->intr_mode]); | |
4472 | } | |
4473 | } | |
0ae01a32 SC |
4474 | if (rc) { |
4475 | dev_err(&h->pdev->dev, "unable to get irq %d for %s\n", | |
4476 | h->intr[h->intr_mode], h->devname); | |
4477 | return -ENODEV; | |
4478 | } | |
4479 | return 0; | |
4480 | } | |
4481 | ||
64670ac8 SC |
4482 | static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h) |
4483 | { | |
4484 | if (hpsa_send_host_reset(h, RAID_CTLR_LUNID, | |
4485 | HPSA_RESET_TYPE_CONTROLLER)) { | |
4486 | dev_warn(&h->pdev->dev, "Resetting array controller failed.\n"); | |
4487 | return -EIO; | |
4488 | } | |
4489 | ||
4490 | dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); | |
4491 | if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) { | |
4492 | dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); | |
4493 | return -1; | |
4494 | } | |
4495 | ||
4496 | dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); | |
4497 | if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) { | |
4498 | dev_warn(&h->pdev->dev, "Board failed to become ready " | |
4499 | "after soft reset.\n"); | |
4500 | return -1; | |
4501 | } | |
4502 | ||
4503 | return 0; | |
4504 | } | |
4505 | ||
254f796b MG |
4506 | static void free_irqs(struct ctlr_info *h) |
4507 | { | |
4508 | int i; | |
4509 | ||
4510 | if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) { | |
4511 | /* Single reply queue, only one irq to free */ | |
4512 | i = h->intr_mode; | |
4513 | free_irq(h->intr[i], &h->q[i]); | |
4514 | return; | |
4515 | } | |
4516 | ||
4517 | for (i = 0; i < MAX_REPLY_QUEUES; i++) | |
4518 | free_irq(h->intr[i], &h->q[i]); | |
4519 | } | |
4520 | ||
0097f0f4 | 4521 | static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h) |
64670ac8 | 4522 | { |
254f796b | 4523 | free_irqs(h); |
64670ac8 | 4524 | #ifdef CONFIG_PCI_MSI |
0097f0f4 SC |
4525 | if (h->msix_vector) { |
4526 | if (h->pdev->msix_enabled) | |
4527 | pci_disable_msix(h->pdev); | |
4528 | } else if (h->msi_vector) { | |
4529 | if (h->pdev->msi_enabled) | |
4530 | pci_disable_msi(h->pdev); | |
4531 | } | |
64670ac8 | 4532 | #endif /* CONFIG_PCI_MSI */ |
0097f0f4 SC |
4533 | } |
4534 | ||
4535 | static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) | |
4536 | { | |
4537 | hpsa_free_irqs_and_disable_msix(h); | |
64670ac8 SC |
4538 | hpsa_free_sg_chain_blocks(h); |
4539 | hpsa_free_cmd_pool(h); | |
4540 | kfree(h->blockFetchTable); | |
4541 | pci_free_consistent(h->pdev, h->reply_pool_size, | |
4542 | h->reply_pool, h->reply_pool_dhandle); | |
4543 | if (h->vaddr) | |
4544 | iounmap(h->vaddr); | |
4545 | if (h->transtable) | |
4546 | iounmap(h->transtable); | |
4547 | if (h->cfgtable) | |
4548 | iounmap(h->cfgtable); | |
4549 | pci_release_regions(h->pdev); | |
4550 | kfree(h); | |
4551 | } | |
4552 | ||
a0c12413 SC |
4553 | static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h) |
4554 | { | |
4555 | assert_spin_locked(&lockup_detector_lock); | |
4556 | if (!hpsa_lockup_detector) | |
4557 | return; | |
4558 | if (h->lockup_detected) | |
4559 | return; /* already stopped the lockup detector */ | |
4560 | list_del(&h->lockup_list); | |
4561 | } | |
4562 | ||
4563 | /* Called when controller lockup detected. */ | |
4564 | static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list) | |
4565 | { | |
4566 | struct CommandList *c = NULL; | |
4567 | ||
4568 | assert_spin_locked(&h->lock); | |
4569 | /* Mark all outstanding commands as failed and complete them. */ | |
4570 | while (!list_empty(list)) { | |
4571 | c = list_entry(list->next, struct CommandList, list); | |
4572 | c->err_info->CommandStatus = CMD_HARDWARE_ERR; | |
5a3d16f5 | 4573 | finish_cmd(c); |
a0c12413 SC |
4574 | } |
4575 | } | |
4576 | ||
4577 | static void controller_lockup_detected(struct ctlr_info *h) | |
4578 | { | |
4579 | unsigned long flags; | |
4580 | ||
4581 | assert_spin_locked(&lockup_detector_lock); | |
4582 | remove_ctlr_from_lockup_detector_list(h); | |
4583 | h->access.set_intr_mask(h, HPSA_INTR_OFF); | |
4584 | spin_lock_irqsave(&h->lock, flags); | |
4585 | h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); | |
4586 | spin_unlock_irqrestore(&h->lock, flags); | |
4587 | dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n", | |
4588 | h->lockup_detected); | |
4589 | pci_disable_device(h->pdev); | |
4590 | spin_lock_irqsave(&h->lock, flags); | |
4591 | fail_all_cmds_on_list(h, &h->cmpQ); | |
4592 | fail_all_cmds_on_list(h, &h->reqQ); | |
4593 | spin_unlock_irqrestore(&h->lock, flags); | |
4594 | } | |
4595 | ||
a0c12413 SC |
4596 | static void detect_controller_lockup(struct ctlr_info *h) |
4597 | { | |
4598 | u64 now; | |
4599 | u32 heartbeat; | |
4600 | unsigned long flags; | |
4601 | ||
4602 | assert_spin_locked(&lockup_detector_lock); | |
4603 | now = get_jiffies_64(); | |
4604 | /* If we've received an interrupt recently, we're ok. */ | |
4605 | if (time_after64(h->last_intr_timestamp + | |
e85c5974 | 4606 | (h->heartbeat_sample_interval), now)) |
a0c12413 SC |
4607 | return; |
4608 | ||
4609 | /* | |
4610 | * If we've already checked the heartbeat recently, we're ok. | |
4611 | * This could happen if someone sends us a signal. We | |
4612 | * otherwise don't care about signals in this thread. | |
4613 | */ | |
4614 | if (time_after64(h->last_heartbeat_timestamp + | |
e85c5974 | 4615 | (h->heartbeat_sample_interval), now)) |
a0c12413 SC |
4616 | return; |
4617 | ||
4618 | /* If heartbeat has not changed since we last looked, we're not ok. */ | |
4619 | spin_lock_irqsave(&h->lock, flags); | |
4620 | heartbeat = readl(&h->cfgtable->HeartBeat); | |
4621 | spin_unlock_irqrestore(&h->lock, flags); | |
4622 | if (h->last_heartbeat == heartbeat) { | |
4623 | controller_lockup_detected(h); | |
4624 | return; | |
4625 | } | |
4626 | ||
4627 | /* We're ok. */ | |
4628 | h->last_heartbeat = heartbeat; | |
4629 | h->last_heartbeat_timestamp = now; | |
4630 | } | |
4631 | ||
4632 | static int detect_controller_lockup_thread(void *notused) | |
4633 | { | |
4634 | struct ctlr_info *h; | |
4635 | unsigned long flags; | |
4636 | ||
4637 | while (1) { | |
4638 | struct list_head *this, *tmp; | |
4639 | ||
4640 | schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL); | |
4641 | if (kthread_should_stop()) | |
4642 | break; | |
4643 | spin_lock_irqsave(&lockup_detector_lock, flags); | |
4644 | list_for_each_safe(this, tmp, &hpsa_ctlr_list) { | |
4645 | h = list_entry(this, struct ctlr_info, lockup_list); | |
4646 | detect_controller_lockup(h); | |
4647 | } | |
4648 | spin_unlock_irqrestore(&lockup_detector_lock, flags); | |
4649 | } | |
4650 | return 0; | |
4651 | } | |
4652 | ||
4653 | static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h) | |
4654 | { | |
4655 | unsigned long flags; | |
4656 | ||
e85c5974 | 4657 | h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; |
a0c12413 SC |
4658 | spin_lock_irqsave(&lockup_detector_lock, flags); |
4659 | list_add_tail(&h->lockup_list, &hpsa_ctlr_list); | |
4660 | spin_unlock_irqrestore(&lockup_detector_lock, flags); | |
4661 | } | |
4662 | ||
4663 | static void start_controller_lockup_detector(struct ctlr_info *h) | |
4664 | { | |
4665 | /* Start the lockup detector thread if not already started */ | |
4666 | if (!hpsa_lockup_detector) { | |
4667 | spin_lock_init(&lockup_detector_lock); | |
4668 | hpsa_lockup_detector = | |
4669 | kthread_run(detect_controller_lockup_thread, | |
f79cfec6 | 4670 | NULL, HPSA); |
a0c12413 SC |
4671 | } |
4672 | if (!hpsa_lockup_detector) { | |
4673 | dev_warn(&h->pdev->dev, | |
4674 | "Could not start lockup detector thread\n"); | |
4675 | return; | |
4676 | } | |
4677 | add_ctlr_to_lockup_detector_list(h); | |
4678 | } | |
4679 | ||
4680 | static void stop_controller_lockup_detector(struct ctlr_info *h) | |
4681 | { | |
4682 | unsigned long flags; | |
4683 | ||
4684 | spin_lock_irqsave(&lockup_detector_lock, flags); | |
4685 | remove_ctlr_from_lockup_detector_list(h); | |
4686 | /* If the list of ctlr's to monitor is empty, stop the thread */ | |
4687 | if (list_empty(&hpsa_ctlr_list)) { | |
775bf277 | 4688 | spin_unlock_irqrestore(&lockup_detector_lock, flags); |
a0c12413 | 4689 | kthread_stop(hpsa_lockup_detector); |
775bf277 | 4690 | spin_lock_irqsave(&lockup_detector_lock, flags); |
a0c12413 SC |
4691 | hpsa_lockup_detector = NULL; |
4692 | } | |
4693 | spin_unlock_irqrestore(&lockup_detector_lock, flags); | |
4694 | } | |
4695 | ||
edd16368 SC |
4696 | static int __devinit hpsa_init_one(struct pci_dev *pdev, |
4697 | const struct pci_device_id *ent) | |
4698 | { | |
4c2a8c40 | 4699 | int dac, rc; |
edd16368 | 4700 | struct ctlr_info *h; |
64670ac8 SC |
4701 | int try_soft_reset = 0; |
4702 | unsigned long flags; | |
edd16368 SC |
4703 | |
4704 | if (number_of_controllers == 0) | |
4705 | printk(KERN_INFO DRIVER_NAME "\n"); | |
edd16368 | 4706 | |
4c2a8c40 | 4707 | rc = hpsa_init_reset_devices(pdev); |
64670ac8 SC |
4708 | if (rc) { |
4709 | if (rc != -ENOTSUPP) | |
4710 | return rc; | |
4711 | /* If the reset fails in a particular way (it has no way to do | |
4712 | * a proper hard reset, so returns -ENOTSUPP) we can try to do | |
4713 | * a soft reset once we get the controller configured up to the | |
4714 | * point that it can accept a command. | |
4715 | */ | |
4716 | try_soft_reset = 1; | |
4717 | rc = 0; | |
4718 | } | |
4719 | ||
4720 | reinit_after_soft_reset: | |
edd16368 | 4721 | |
303932fd DB |
4722 | /* Command structures must be aligned on a 32-byte boundary because |
4723 | * the 5 lower bits of the address are used by the hardware. and by | |
4724 | * the driver. See comments in hpsa.h for more info. | |
4725 | */ | |
4726 | #define COMMANDLIST_ALIGNMENT 32 | |
4727 | BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); | |
edd16368 SC |
4728 | h = kzalloc(sizeof(*h), GFP_KERNEL); |
4729 | if (!h) | |
ecd9aad4 | 4730 | return -ENOMEM; |
edd16368 | 4731 | |
55c06c71 | 4732 | h->pdev = pdev; |
a9a3a273 | 4733 | h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; |
9e0fc764 SC |
4734 | INIT_LIST_HEAD(&h->cmpQ); |
4735 | INIT_LIST_HEAD(&h->reqQ); | |
6eaf46fd SC |
4736 | spin_lock_init(&h->lock); |
4737 | spin_lock_init(&h->scan_lock); | |
55c06c71 | 4738 | rc = hpsa_pci_init(h); |
ecd9aad4 | 4739 | if (rc != 0) |
edd16368 SC |
4740 | goto clean1; |
4741 | ||
f79cfec6 | 4742 | sprintf(h->devname, HPSA "%d", number_of_controllers); |
edd16368 SC |
4743 | h->ctlr = number_of_controllers; |
4744 | number_of_controllers++; | |
edd16368 SC |
4745 | |
4746 | /* configure PCI DMA stuff */ | |
ecd9aad4 SC |
4747 | rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); |
4748 | if (rc == 0) { | |
edd16368 | 4749 | dac = 1; |
ecd9aad4 SC |
4750 | } else { |
4751 | rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); | |
4752 | if (rc == 0) { | |
4753 | dac = 0; | |
4754 | } else { | |
4755 | dev_err(&pdev->dev, "no suitable DMA available\n"); | |
4756 | goto clean1; | |
4757 | } | |
edd16368 SC |
4758 | } |
4759 | ||
4760 | /* make sure the board interrupts are off */ | |
4761 | h->access.set_intr_mask(h, HPSA_INTR_OFF); | |
10f66018 | 4762 | |
0ae01a32 | 4763 | if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx)) |
edd16368 | 4764 | goto clean2; |
303932fd DB |
4765 | dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n", |
4766 | h->devname, pdev->device, | |
a9a3a273 | 4767 | h->intr[h->intr_mode], dac ? "" : " not"); |
2e9d1b36 | 4768 | if (hpsa_allocate_cmd_pool(h)) |
edd16368 | 4769 | goto clean4; |
33a2ffce SC |
4770 | if (hpsa_allocate_sg_chain_blocks(h)) |
4771 | goto clean4; | |
a08a8471 SC |
4772 | init_waitqueue_head(&h->scan_wait_queue); |
4773 | h->scan_finished = 1; /* no scan currently in progress */ | |
edd16368 SC |
4774 | |
4775 | pci_set_drvdata(pdev, h); | |
9a41338e SC |
4776 | h->ndevices = 0; |
4777 | h->scsi_host = NULL; | |
4778 | spin_lock_init(&h->devlock); | |
64670ac8 SC |
4779 | hpsa_put_ctlr_into_performant_mode(h); |
4780 | ||
4781 | /* At this point, the controller is ready to take commands. | |
4782 | * Now, if reset_devices and the hard reset didn't work, try | |
4783 | * the soft reset and see if that works. | |
4784 | */ | |
4785 | if (try_soft_reset) { | |
4786 | ||
4787 | /* This is kind of gross. We may or may not get a completion | |
4788 | * from the soft reset command, and if we do, then the value | |
4789 | * from the fifo may or may not be valid. So, we wait 10 secs | |
4790 | * after the reset throwing away any completions we get during | |
4791 | * that time. Unregister the interrupt handler and register | |
4792 | * fake ones to scoop up any residual completions. | |
4793 | */ | |
4794 | spin_lock_irqsave(&h->lock, flags); | |
4795 | h->access.set_intr_mask(h, HPSA_INTR_OFF); | |
4796 | spin_unlock_irqrestore(&h->lock, flags); | |
254f796b | 4797 | free_irqs(h); |
64670ac8 SC |
4798 | rc = hpsa_request_irq(h, hpsa_msix_discard_completions, |
4799 | hpsa_intx_discard_completions); | |
4800 | if (rc) { | |
4801 | dev_warn(&h->pdev->dev, "Failed to request_irq after " | |
4802 | "soft reset.\n"); | |
4803 | goto clean4; | |
4804 | } | |
4805 | ||
4806 | rc = hpsa_kdump_soft_reset(h); | |
4807 | if (rc) | |
4808 | /* Neither hard nor soft reset worked, we're hosed. */ | |
4809 | goto clean4; | |
4810 | ||
4811 | dev_info(&h->pdev->dev, "Board READY.\n"); | |
4812 | dev_info(&h->pdev->dev, | |
4813 | "Waiting for stale completions to drain.\n"); | |
4814 | h->access.set_intr_mask(h, HPSA_INTR_ON); | |
4815 | msleep(10000); | |
4816 | h->access.set_intr_mask(h, HPSA_INTR_OFF); | |
4817 | ||
4818 | rc = controller_reset_failed(h->cfgtable); | |
4819 | if (rc) | |
4820 | dev_info(&h->pdev->dev, | |
4821 | "Soft reset appears to have failed.\n"); | |
4822 | ||
4823 | /* since the controller's reset, we have to go back and re-init | |
4824 | * everything. Easiest to just forget what we've done and do it | |
4825 | * all over again. | |
4826 | */ | |
4827 | hpsa_undo_allocations_after_kdump_soft_reset(h); | |
4828 | try_soft_reset = 0; | |
4829 | if (rc) | |
4830 | /* don't go to clean4, we already unallocated */ | |
4831 | return -ENODEV; | |
4832 | ||
4833 | goto reinit_after_soft_reset; | |
4834 | } | |
edd16368 SC |
4835 | |
4836 | /* Turn the interrupts on so we can service requests */ | |
4837 | h->access.set_intr_mask(h, HPSA_INTR_ON); | |
4838 | ||
339b2b14 | 4839 | hpsa_hba_inquiry(h); |
edd16368 | 4840 | hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */ |
a0c12413 | 4841 | start_controller_lockup_detector(h); |
edd16368 SC |
4842 | return 1; |
4843 | ||
4844 | clean4: | |
33a2ffce | 4845 | hpsa_free_sg_chain_blocks(h); |
2e9d1b36 | 4846 | hpsa_free_cmd_pool(h); |
254f796b | 4847 | free_irqs(h); |
edd16368 SC |
4848 | clean2: |
4849 | clean1: | |
edd16368 | 4850 | kfree(h); |
ecd9aad4 | 4851 | return rc; |
edd16368 SC |
4852 | } |
4853 | ||
4854 | static void hpsa_flush_cache(struct ctlr_info *h) | |
4855 | { | |
4856 | char *flush_buf; | |
4857 | struct CommandList *c; | |
4858 | ||
4859 | flush_buf = kzalloc(4, GFP_KERNEL); | |
4860 | if (!flush_buf) | |
4861 | return; | |
4862 | ||
4863 | c = cmd_special_alloc(h); | |
4864 | if (!c) { | |
4865 | dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | |
4866 | goto out_of_memory; | |
4867 | } | |
4868 | fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, | |
4869 | RAID_CTLR_LUNID, TYPE_CMD); | |
4870 | hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); | |
4871 | if (c->err_info->CommandStatus != 0) | |
4872 | dev_warn(&h->pdev->dev, | |
4873 | "error flushing cache on controller\n"); | |
4874 | cmd_special_free(h, c); | |
4875 | out_of_memory: | |
4876 | kfree(flush_buf); | |
4877 | } | |
4878 | ||
4879 | static void hpsa_shutdown(struct pci_dev *pdev) | |
4880 | { | |
4881 | struct ctlr_info *h; | |
4882 | ||
4883 | h = pci_get_drvdata(pdev); | |
4884 | /* Turn board interrupts off and send the flush cache command | |
4885 | * sendcmd will turn off interrupt, and send the flush... | |
4886 | * To write all data in the battery backed cache to disks | |
4887 | */ | |
4888 | hpsa_flush_cache(h); | |
4889 | h->access.set_intr_mask(h, HPSA_INTR_OFF); | |
0097f0f4 | 4890 | hpsa_free_irqs_and_disable_msix(h); |
edd16368 SC |
4891 | } |
4892 | ||
55e14e76 SC |
4893 | static void __devexit hpsa_free_device_info(struct ctlr_info *h) |
4894 | { | |
4895 | int i; | |
4896 | ||
4897 | for (i = 0; i < h->ndevices; i++) | |
4898 | kfree(h->dev[i]); | |
4899 | } | |
4900 | ||
edd16368 SC |
4901 | static void __devexit hpsa_remove_one(struct pci_dev *pdev) |
4902 | { | |
4903 | struct ctlr_info *h; | |
4904 | ||
4905 | if (pci_get_drvdata(pdev) == NULL) { | |
a0c12413 | 4906 | dev_err(&pdev->dev, "unable to remove device\n"); |
edd16368 SC |
4907 | return; |
4908 | } | |
4909 | h = pci_get_drvdata(pdev); | |
a0c12413 | 4910 | stop_controller_lockup_detector(h); |
edd16368 SC |
4911 | hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */ |
4912 | hpsa_shutdown(pdev); | |
4913 | iounmap(h->vaddr); | |
204892e9 SC |
4914 | iounmap(h->transtable); |
4915 | iounmap(h->cfgtable); | |
55e14e76 | 4916 | hpsa_free_device_info(h); |
33a2ffce | 4917 | hpsa_free_sg_chain_blocks(h); |
edd16368 SC |
4918 | pci_free_consistent(h->pdev, |
4919 | h->nr_cmds * sizeof(struct CommandList), | |
4920 | h->cmd_pool, h->cmd_pool_dhandle); | |
4921 | pci_free_consistent(h->pdev, | |
4922 | h->nr_cmds * sizeof(struct ErrorInfo), | |
4923 | h->errinfo_pool, h->errinfo_pool_dhandle); | |
303932fd DB |
4924 | pci_free_consistent(h->pdev, h->reply_pool_size, |
4925 | h->reply_pool, h->reply_pool_dhandle); | |
edd16368 | 4926 | kfree(h->cmd_pool_bits); |
303932fd | 4927 | kfree(h->blockFetchTable); |
339b2b14 | 4928 | kfree(h->hba_inquiry_data); |
f0bd0b68 | 4929 | pci_disable_device(pdev); |
edd16368 SC |
4930 | pci_release_regions(pdev); |
4931 | pci_set_drvdata(pdev, NULL); | |
edd16368 SC |
4932 | kfree(h); |
4933 | } | |
4934 | ||
4935 | static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, | |
4936 | __attribute__((unused)) pm_message_t state) | |
4937 | { | |
4938 | return -ENOSYS; | |
4939 | } | |
4940 | ||
4941 | static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) | |
4942 | { | |
4943 | return -ENOSYS; | |
4944 | } | |
4945 | ||
4946 | static struct pci_driver hpsa_pci_driver = { | |
f79cfec6 | 4947 | .name = HPSA, |
edd16368 SC |
4948 | .probe = hpsa_init_one, |
4949 | .remove = __devexit_p(hpsa_remove_one), | |
4950 | .id_table = hpsa_pci_device_id, /* id_table */ | |
4951 | .shutdown = hpsa_shutdown, | |
4952 | .suspend = hpsa_suspend, | |
4953 | .resume = hpsa_resume, | |
4954 | }; | |
4955 | ||
303932fd DB |
4956 | /* Fill in bucket_map[], given nsgs (the max number of |
4957 | * scatter gather elements supported) and bucket[], | |
4958 | * which is an array of 8 integers. The bucket[] array | |
4959 | * contains 8 different DMA transfer sizes (in 16 | |
4960 | * byte increments) which the controller uses to fetch | |
4961 | * commands. This function fills in bucket_map[], which | |
4962 | * maps a given number of scatter gather elements to one of | |
4963 | * the 8 DMA transfer sizes. The point of it is to allow the | |
4964 | * controller to only do as much DMA as needed to fetch the | |
4965 | * command, with the DMA transfer size encoded in the lower | |
4966 | * bits of the command address. | |
4967 | */ | |
4968 | static void calc_bucket_map(int bucket[], int num_buckets, | |
4969 | int nsgs, int *bucket_map) | |
4970 | { | |
4971 | int i, j, b, size; | |
4972 | ||
4973 | /* even a command with 0 SGs requires 4 blocks */ | |
4974 | #define MINIMUM_TRANSFER_BLOCKS 4 | |
4975 | #define NUM_BUCKETS 8 | |
4976 | /* Note, bucket_map must have nsgs+1 entries. */ | |
4977 | for (i = 0; i <= nsgs; i++) { | |
4978 | /* Compute size of a command with i SG entries */ | |
4979 | size = i + MINIMUM_TRANSFER_BLOCKS; | |
4980 | b = num_buckets; /* Assume the biggest bucket */ | |
4981 | /* Find the bucket that is just big enough */ | |
4982 | for (j = 0; j < 8; j++) { | |
4983 | if (bucket[j] >= size) { | |
4984 | b = j; | |
4985 | break; | |
4986 | } | |
4987 | } | |
4988 | /* for a command with i SG entries, use bucket b. */ | |
4989 | bucket_map[i] = b; | |
4990 | } | |
4991 | } | |
4992 | ||
960a30e7 SC |
4993 | static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h, |
4994 | u32 use_short_tags) | |
303932fd | 4995 | { |
6c311b57 SC |
4996 | int i; |
4997 | unsigned long register_value; | |
def342bd SC |
4998 | |
4999 | /* This is a bit complicated. There are 8 registers on | |
5000 | * the controller which we write to to tell it 8 different | |
5001 | * sizes of commands which there may be. It's a way of | |
5002 | * reducing the DMA done to fetch each command. Encoded into | |
5003 | * each command's tag are 3 bits which communicate to the controller | |
5004 | * which of the eight sizes that command fits within. The size of | |
5005 | * each command depends on how many scatter gather entries there are. | |
5006 | * Each SG entry requires 16 bytes. The eight registers are programmed | |
5007 | * with the number of 16-byte blocks a command of that size requires. | |
5008 | * The smallest command possible requires 5 such 16 byte blocks. | |
d66ae08b | 5009 | * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte |
def342bd SC |
5010 | * blocks. Note, this only extends to the SG entries contained |
5011 | * within the command block, and does not extend to chained blocks | |
5012 | * of SG elements. bft[] contains the eight values we write to | |
5013 | * the registers. They are not evenly distributed, but have more | |
5014 | * sizes for small commands, and fewer sizes for larger commands. | |
5015 | */ | |
d66ae08b SC |
5016 | int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; |
5017 | BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); | |
303932fd DB |
5018 | /* 5 = 1 s/g entry or 4k |
5019 | * 6 = 2 s/g entry or 8k | |
5020 | * 8 = 4 s/g entry or 16k | |
5021 | * 10 = 6 s/g entry or 24k | |
5022 | */ | |
303932fd | 5023 | |
303932fd DB |
5024 | /* Controller spec: zero out this buffer. */ |
5025 | memset(h->reply_pool, 0, h->reply_pool_size); | |
303932fd | 5026 | |
d66ae08b SC |
5027 | bft[7] = SG_ENTRIES_IN_CMD + 4; |
5028 | calc_bucket_map(bft, ARRAY_SIZE(bft), | |
5029 | SG_ENTRIES_IN_CMD, h->blockFetchTable); | |
303932fd DB |
5030 | for (i = 0; i < 8; i++) |
5031 | writel(bft[i], &h->transtable->BlockFetch[i]); | |
5032 | ||
5033 | /* size of controller ring buffer */ | |
5034 | writel(h->max_commands, &h->transtable->RepQSize); | |
254f796b | 5035 | writel(h->nreply_queues, &h->transtable->RepQCount); |
303932fd DB |
5036 | writel(0, &h->transtable->RepQCtrAddrLow32); |
5037 | writel(0, &h->transtable->RepQCtrAddrHigh32); | |
254f796b MG |
5038 | |
5039 | for (i = 0; i < h->nreply_queues; i++) { | |
5040 | writel(0, &h->transtable->RepQAddr[i].upper); | |
5041 | writel(h->reply_pool_dhandle + | |
5042 | (h->max_commands * sizeof(u64) * i), | |
5043 | &h->transtable->RepQAddr[i].lower); | |
5044 | } | |
5045 | ||
5046 | writel(CFGTBL_Trans_Performant | use_short_tags | | |
5047 | CFGTBL_Trans_enable_directed_msix, | |
303932fd DB |
5048 | &(h->cfgtable->HostWrite.TransportRequest)); |
5049 | writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); | |
3f4336f3 | 5050 | hpsa_wait_for_mode_change_ack(h); |
303932fd DB |
5051 | register_value = readl(&(h->cfgtable->TransportActive)); |
5052 | if (!(register_value & CFGTBL_Trans_Performant)) { | |
5053 | dev_warn(&h->pdev->dev, "unable to get board into" | |
5054 | " performant mode\n"); | |
5055 | return; | |
5056 | } | |
960a30e7 SC |
5057 | /* Change the access methods to the performant access methods */ |
5058 | h->access = SA5_performant_access; | |
5059 | h->transMethod = CFGTBL_Trans_Performant; | |
6c311b57 SC |
5060 | } |
5061 | ||
5062 | static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) | |
5063 | { | |
5064 | u32 trans_support; | |
254f796b | 5065 | int i; |
6c311b57 | 5066 | |
02ec19c8 SC |
5067 | if (hpsa_simple_mode) |
5068 | return; | |
5069 | ||
6c311b57 SC |
5070 | trans_support = readl(&(h->cfgtable->TransportSupport)); |
5071 | if (!(trans_support & PERFORMANT_MODE)) | |
5072 | return; | |
5073 | ||
254f796b | 5074 | h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1; |
cba3d38b | 5075 | hpsa_get_max_perf_mode_cmds(h); |
6c311b57 | 5076 | /* Performant mode ring buffer and supporting data structures */ |
254f796b | 5077 | h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues; |
6c311b57 SC |
5078 | h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size, |
5079 | &(h->reply_pool_dhandle)); | |
5080 | ||
254f796b MG |
5081 | for (i = 0; i < h->nreply_queues; i++) { |
5082 | h->reply_queue[i].head = &h->reply_pool[h->max_commands * i]; | |
5083 | h->reply_queue[i].size = h->max_commands; | |
5084 | h->reply_queue[i].wraparound = 1; /* spec: init to 1 */ | |
5085 | h->reply_queue[i].current_entry = 0; | |
5086 | } | |
5087 | ||
6c311b57 | 5088 | /* Need a block fetch table for performant mode */ |
d66ae08b | 5089 | h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * |
6c311b57 SC |
5090 | sizeof(u32)), GFP_KERNEL); |
5091 | ||
5092 | if ((h->reply_pool == NULL) | |
5093 | || (h->blockFetchTable == NULL)) | |
5094 | goto clean_up; | |
5095 | ||
960a30e7 SC |
5096 | hpsa_enter_performant_mode(h, |
5097 | trans_support & CFGTBL_Trans_use_short_tags); | |
303932fd DB |
5098 | |
5099 | return; | |
5100 | ||
5101 | clean_up: | |
5102 | if (h->reply_pool) | |
5103 | pci_free_consistent(h->pdev, h->reply_pool_size, | |
5104 | h->reply_pool, h->reply_pool_dhandle); | |
5105 | kfree(h->blockFetchTable); | |
5106 | } | |
5107 | ||
edd16368 SC |
5108 | /* |
5109 | * This is it. Register the PCI driver information for the cards we control | |
5110 | * the OS will call our registered routines when it finds one of our cards. | |
5111 | */ | |
5112 | static int __init hpsa_init(void) | |
5113 | { | |
31468401 | 5114 | return pci_register_driver(&hpsa_pci_driver); |
edd16368 SC |
5115 | } |
5116 | ||
5117 | static void __exit hpsa_cleanup(void) | |
5118 | { | |
5119 | pci_unregister_driver(&hpsa_pci_driver); | |
edd16368 SC |
5120 | } |
5121 | ||
5122 | module_init(hpsa_init); | |
5123 | module_exit(hpsa_cleanup); |