]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/scsi/hpsa.c
hpsa: pass error from pci_set_consistent_dma_mask from hpsa_message
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / hpsa.c
CommitLineData
edd16368
SC
1/*
2 * Disk Array driver for HP Smart Array SAS controllers
51c35139 3 * Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
edd16368
SC
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 *
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
19 *
20 */
21
22#include <linux/module.h>
23#include <linux/interrupt.h>
24#include <linux/types.h>
25#include <linux/pci.h>
e5a44df8 26#include <linux/pci-aspm.h>
edd16368
SC
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/delay.h>
30#include <linux/fs.h>
31#include <linux/timer.h>
edd16368
SC
32#include <linux/init.h>
33#include <linux/spinlock.h>
edd16368
SC
34#include <linux/compat.h>
35#include <linux/blktrace_api.h>
36#include <linux/uaccess.h>
37#include <linux/io.h>
38#include <linux/dma-mapping.h>
39#include <linux/completion.h>
40#include <linux/moduleparam.h>
41#include <scsi/scsi.h>
42#include <scsi/scsi_cmnd.h>
43#include <scsi/scsi_device.h>
44#include <scsi/scsi_host.h>
667e23d4 45#include <scsi/scsi_tcq.h>
edd16368
SC
46#include <linux/cciss_ioctl.h>
47#include <linux/string.h>
48#include <linux/bitmap.h>
60063497 49#include <linux/atomic.h>
a0c12413 50#include <linux/jiffies.h>
42a91641 51#include <linux/percpu-defs.h>
094963da 52#include <linux/percpu.h>
2b08b3e9 53#include <asm/unaligned.h>
283b4a9b 54#include <asm/div64.h>
edd16368
SC
55#include "hpsa_cmd.h"
56#include "hpsa.h"
57
58/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
9a993302 59#define HPSA_DRIVER_VERSION "3.4.4-1"
edd16368 60#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
f79cfec6 61#define HPSA "hpsa"
edd16368
SC
62
63/* How long to wait (in milliseconds) for board to go into simple mode */
64#define MAX_CONFIG_WAIT 30000
65#define MAX_IOCTL_CONFIG_WAIT 1000
66
67/*define how many times we will try a command because of bus resets */
68#define MAX_CMD_RETRIES 3
69
70/* Embedded module documentation macros - see modules.h */
71MODULE_AUTHOR("Hewlett-Packard Company");
72MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
73 HPSA_DRIVER_VERSION);
74MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
75MODULE_VERSION(HPSA_DRIVER_VERSION);
76MODULE_LICENSE("GPL");
77
78static int hpsa_allow_any;
79module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
80MODULE_PARM_DESC(hpsa_allow_any,
81 "Allow hpsa driver to access unknown HP Smart Array hardware");
02ec19c8
SC
82static int hpsa_simple_mode;
83module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
84MODULE_PARM_DESC(hpsa_simple_mode,
85 "Use 'simple mode' rather than 'performant mode'");
edd16368
SC
86
87/* define the PCI info for the cards we can control */
88static const struct pci_device_id hpsa_pci_device_id[] = {
edd16368
SC
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
163dbcd8
MM
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
f8b01eb9 96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
9143a961 97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
fe0c9610
MM
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
fe0c9610
MM
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
97b9f53d
MM
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
3b7a45e5 120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
97b9f53d
MM
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
3b7a45e5
JH
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
8e616a5e
SC
129 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
130 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
131 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
132 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
133 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
7c03b870 134 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
6798cc0a 135 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
edd16368
SC
136 {0,}
137};
138
139MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
140
141/* board_id = Subsystem Device ID & Vendor ID
142 * product = Marketing Name for the board
143 * access = Address of the struct of function pointers
144 */
145static struct board_type products[] = {
edd16368
SC
146 {0x3241103C, "Smart Array P212", &SA5_access},
147 {0x3243103C, "Smart Array P410", &SA5_access},
148 {0x3245103C, "Smart Array P410i", &SA5_access},
149 {0x3247103C, "Smart Array P411", &SA5_access},
150 {0x3249103C, "Smart Array P812", &SA5_access},
163dbcd8
MM
151 {0x324A103C, "Smart Array P712m", &SA5_access},
152 {0x324B103C, "Smart Array P711m", &SA5_access},
7d2cce58 153 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
fe0c9610
MM
154 {0x3350103C, "Smart Array P222", &SA5_access},
155 {0x3351103C, "Smart Array P420", &SA5_access},
156 {0x3352103C, "Smart Array P421", &SA5_access},
157 {0x3353103C, "Smart Array P822", &SA5_access},
158 {0x3354103C, "Smart Array P420i", &SA5_access},
159 {0x3355103C, "Smart Array P220i", &SA5_access},
160 {0x3356103C, "Smart Array P721m", &SA5_access},
1fd6c8e3
MM
161 {0x1921103C, "Smart Array P830i", &SA5_access},
162 {0x1922103C, "Smart Array P430", &SA5_access},
163 {0x1923103C, "Smart Array P431", &SA5_access},
164 {0x1924103C, "Smart Array P830", &SA5_access},
165 {0x1926103C, "Smart Array P731m", &SA5_access},
166 {0x1928103C, "Smart Array P230i", &SA5_access},
167 {0x1929103C, "Smart Array P530", &SA5_access},
97b9f53d
MM
168 {0x21BD103C, "Smart Array", &SA5_access},
169 {0x21BE103C, "Smart Array", &SA5_access},
170 {0x21BF103C, "Smart Array", &SA5_access},
171 {0x21C0103C, "Smart Array", &SA5_access},
172 {0x21C1103C, "Smart Array", &SA5_access},
173 {0x21C2103C, "Smart Array", &SA5_access},
174 {0x21C3103C, "Smart Array", &SA5_access},
175 {0x21C4103C, "Smart Array", &SA5_access},
176 {0x21C5103C, "Smart Array", &SA5_access},
3b7a45e5 177 {0x21C6103C, "Smart Array", &SA5_access},
97b9f53d
MM
178 {0x21C7103C, "Smart Array", &SA5_access},
179 {0x21C8103C, "Smart Array", &SA5_access},
180 {0x21C9103C, "Smart Array", &SA5_access},
3b7a45e5
JH
181 {0x21CA103C, "Smart Array", &SA5_access},
182 {0x21CB103C, "Smart Array", &SA5_access},
183 {0x21CC103C, "Smart Array", &SA5_access},
184 {0x21CD103C, "Smart Array", &SA5_access},
185 {0x21CE103C, "Smart Array", &SA5_access},
8e616a5e
SC
186 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
187 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
188 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
189 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
190 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
edd16368
SC
191 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
192};
193
194static int number_of_controllers;
195
10f66018
SC
196static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
197static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
42a91641 198static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
0b57075d
SC
199static void lock_and_start_io(struct ctlr_info *h);
200static void start_io(struct ctlr_info *h, unsigned long *flags);
edd16368
SC
201
202#ifdef CONFIG_COMPAT
42a91641
DB
203static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
204 void __user *arg);
edd16368
SC
205#endif
206
207static void cmd_free(struct ctlr_info *h, struct CommandList *c);
208static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
209static struct CommandList *cmd_alloc(struct ctlr_info *h);
210static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
a2dac136 211static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
b7bb24eb 212 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
edd16368 213 int cmd_type);
b7bb24eb 214#define VPD_PAGE (1 << 8)
edd16368 215
f281233d 216static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
a08a8471
SC
217static void hpsa_scan_start(struct Scsi_Host *);
218static int hpsa_scan_finished(struct Scsi_Host *sh,
219 unsigned long elapsed_time);
7c0a0229 220static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
edd16368
SC
221
222static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
75167d2c 223static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
edd16368
SC
224static int hpsa_slave_alloc(struct scsi_device *sdev);
225static void hpsa_slave_destroy(struct scsi_device *sdev);
226
edd16368 227static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
edd16368
SC
228static int check_for_unit_attention(struct ctlr_info *h,
229 struct CommandList *c);
230static void check_ioctl_unit_attention(struct ctlr_info *h,
231 struct CommandList *c);
303932fd
DB
232/* performant mode helper functions */
233static void calc_bucket_map(int *bucket, int num_buckets,
2b08b3e9 234 int nsgs, int min_blocks, u32 *bucket_map);
6f039790 235static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
254f796b 236static inline u32 next_command(struct ctlr_info *h, u8 q);
6f039790
GKH
237static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
238 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
239 u64 *cfg_offset);
240static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
241 unsigned long *memory_bar);
242static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
243static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
244 int wait_for_ready);
75167d2c 245static inline void finish_cmd(struct CommandList *c);
283b4a9b 246static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
fe5389c8
SC
247#define BOARD_NOT_READY 0
248#define BOARD_READY 1
23100dd9 249static void hpsa_drain_accel_commands(struct ctlr_info *h);
76438d08 250static void hpsa_flush_cache(struct ctlr_info *h);
c349775e
ST
251static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
252 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
253 u8 *scsi3addr);
edd16368 254
edd16368
SC
255static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
256{
257 unsigned long *priv = shost_priv(sdev->host);
258 return (struct ctlr_info *) *priv;
259}
260
a23513e8
SC
261static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
262{
263 unsigned long *priv = shost_priv(sh);
264 return (struct ctlr_info *) *priv;
265}
266
edd16368
SC
267static int check_for_unit_attention(struct ctlr_info *h,
268 struct CommandList *c)
269{
270 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
271 return 0;
272
273 switch (c->err_info->SenseInfo[12]) {
274 case STATE_CHANGED:
f79cfec6 275 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
edd16368
SC
276 "detected, command retried\n", h->ctlr);
277 break;
278 case LUN_FAILED:
7f73695a
SC
279 dev_warn(&h->pdev->dev,
280 HPSA "%d: LUN failure detected\n", h->ctlr);
edd16368
SC
281 break;
282 case REPORT_LUNS_CHANGED:
7f73695a
SC
283 dev_warn(&h->pdev->dev,
284 HPSA "%d: report LUN data changed\n", h->ctlr);
edd16368 285 /*
4f4eb9f1
ST
286 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
287 * target (array) devices.
edd16368
SC
288 */
289 break;
290 case POWER_OR_RESET:
f79cfec6 291 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
edd16368
SC
292 "or device reset detected\n", h->ctlr);
293 break;
294 case UNIT_ATTENTION_CLEARED:
f79cfec6 295 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
edd16368
SC
296 "cleared by another initiator\n", h->ctlr);
297 break;
298 default:
f79cfec6 299 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
edd16368
SC
300 "unit attention detected\n", h->ctlr);
301 break;
302 }
303 return 1;
304}
305
852af20a
MB
306static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
307{
308 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
309 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
310 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
311 return 0;
312 dev_warn(&h->pdev->dev, HPSA "device busy");
313 return 1;
314}
315
da0697bd
ST
316static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
317 struct device_attribute *attr,
318 const char *buf, size_t count)
319{
320 int status, len;
321 struct ctlr_info *h;
322 struct Scsi_Host *shost = class_to_shost(dev);
323 char tmpbuf[10];
324
325 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
326 return -EACCES;
327 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
328 strncpy(tmpbuf, buf, len);
329 tmpbuf[len] = '\0';
330 if (sscanf(tmpbuf, "%d", &status) != 1)
331 return -EINVAL;
332 h = shost_to_hba(shost);
333 h->acciopath_status = !!status;
334 dev_warn(&h->pdev->dev,
335 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
336 h->acciopath_status ? "enabled" : "disabled");
337 return count;
338}
339
2ba8bfc8
SC
340static ssize_t host_store_raid_offload_debug(struct device *dev,
341 struct device_attribute *attr,
342 const char *buf, size_t count)
343{
344 int debug_level, len;
345 struct ctlr_info *h;
346 struct Scsi_Host *shost = class_to_shost(dev);
347 char tmpbuf[10];
348
349 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
350 return -EACCES;
351 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
352 strncpy(tmpbuf, buf, len);
353 tmpbuf[len] = '\0';
354 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
355 return -EINVAL;
356 if (debug_level < 0)
357 debug_level = 0;
358 h = shost_to_hba(shost);
359 h->raid_offload_debug = debug_level;
360 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
361 h->raid_offload_debug);
362 return count;
363}
364
edd16368
SC
365static ssize_t host_store_rescan(struct device *dev,
366 struct device_attribute *attr,
367 const char *buf, size_t count)
368{
369 struct ctlr_info *h;
370 struct Scsi_Host *shost = class_to_shost(dev);
a23513e8 371 h = shost_to_hba(shost);
31468401 372 hpsa_scan_start(h->scsi_host);
edd16368
SC
373 return count;
374}
375
d28ce020
SC
376static ssize_t host_show_firmware_revision(struct device *dev,
377 struct device_attribute *attr, char *buf)
378{
379 struct ctlr_info *h;
380 struct Scsi_Host *shost = class_to_shost(dev);
381 unsigned char *fwrev;
382
383 h = shost_to_hba(shost);
384 if (!h->hba_inquiry_data)
385 return 0;
386 fwrev = &h->hba_inquiry_data[32];
387 return snprintf(buf, 20, "%c%c%c%c\n",
388 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
389}
390
94a13649
SC
391static ssize_t host_show_commands_outstanding(struct device *dev,
392 struct device_attribute *attr, char *buf)
393{
394 struct Scsi_Host *shost = class_to_shost(dev);
395 struct ctlr_info *h = shost_to_hba(shost);
396
0cbf768e
SC
397 return snprintf(buf, 20, "%d\n",
398 atomic_read(&h->commands_outstanding));
94a13649
SC
399}
400
745a7a25
SC
401static ssize_t host_show_transport_mode(struct device *dev,
402 struct device_attribute *attr, char *buf)
403{
404 struct ctlr_info *h;
405 struct Scsi_Host *shost = class_to_shost(dev);
406
407 h = shost_to_hba(shost);
408 return snprintf(buf, 20, "%s\n",
960a30e7 409 h->transMethod & CFGTBL_Trans_Performant ?
745a7a25
SC
410 "performant" : "simple");
411}
412
da0697bd
ST
413static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
414 struct device_attribute *attr, char *buf)
415{
416 struct ctlr_info *h;
417 struct Scsi_Host *shost = class_to_shost(dev);
418
419 h = shost_to_hba(shost);
420 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
421 (h->acciopath_status == 1) ? "enabled" : "disabled");
422}
423
46380786 424/* List of controllers which cannot be hard reset on kexec with reset_devices */
941b1cda
SC
425static u32 unresettable_controller[] = {
426 0x324a103C, /* Smart Array P712m */
427 0x324b103C, /* SmartArray P711m */
428 0x3223103C, /* Smart Array P800 */
429 0x3234103C, /* Smart Array P400 */
430 0x3235103C, /* Smart Array P400i */
431 0x3211103C, /* Smart Array E200i */
432 0x3212103C, /* Smart Array E200 */
433 0x3213103C, /* Smart Array E200i */
434 0x3214103C, /* Smart Array E200i */
435 0x3215103C, /* Smart Array E200i */
436 0x3237103C, /* Smart Array E500 */
437 0x323D103C, /* Smart Array P700m */
7af0abbc 438 0x40800E11, /* Smart Array 5i */
941b1cda
SC
439 0x409C0E11, /* Smart Array 6400 */
440 0x409D0E11, /* Smart Array 6400 EM */
5a4f934e
TH
441 0x40700E11, /* Smart Array 5300 */
442 0x40820E11, /* Smart Array 532 */
443 0x40830E11, /* Smart Array 5312 */
444 0x409A0E11, /* Smart Array 641 */
445 0x409B0E11, /* Smart Array 642 */
446 0x40910E11, /* Smart Array 6i */
941b1cda
SC
447};
448
46380786
SC
449/* List of controllers which cannot even be soft reset */
450static u32 soft_unresettable_controller[] = {
7af0abbc 451 0x40800E11, /* Smart Array 5i */
5a4f934e
TH
452 0x40700E11, /* Smart Array 5300 */
453 0x40820E11, /* Smart Array 532 */
454 0x40830E11, /* Smart Array 5312 */
455 0x409A0E11, /* Smart Array 641 */
456 0x409B0E11, /* Smart Array 642 */
457 0x40910E11, /* Smart Array 6i */
46380786
SC
458 /* Exclude 640x boards. These are two pci devices in one slot
459 * which share a battery backed cache module. One controls the
460 * cache, the other accesses the cache through the one that controls
461 * it. If we reset the one controlling the cache, the other will
462 * likely not be happy. Just forbid resetting this conjoined mess.
463 * The 640x isn't really supported by hpsa anyway.
464 */
465 0x409C0E11, /* Smart Array 6400 */
466 0x409D0E11, /* Smart Array 6400 EM */
467};
468
469static int ctlr_is_hard_resettable(u32 board_id)
941b1cda
SC
470{
471 int i;
472
473 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
46380786
SC
474 if (unresettable_controller[i] == board_id)
475 return 0;
476 return 1;
477}
478
479static int ctlr_is_soft_resettable(u32 board_id)
480{
481 int i;
482
483 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
484 if (soft_unresettable_controller[i] == board_id)
941b1cda
SC
485 return 0;
486 return 1;
487}
488
46380786
SC
489static int ctlr_is_resettable(u32 board_id)
490{
491 return ctlr_is_hard_resettable(board_id) ||
492 ctlr_is_soft_resettable(board_id);
493}
494
941b1cda
SC
495static ssize_t host_show_resettable(struct device *dev,
496 struct device_attribute *attr, char *buf)
497{
498 struct ctlr_info *h;
499 struct Scsi_Host *shost = class_to_shost(dev);
500
501 h = shost_to_hba(shost);
46380786 502 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
941b1cda
SC
503}
504
edd16368
SC
505static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
506{
507 return (scsi3addr[3] & 0xC0) == 0x40;
508}
509
f2ef0ce7
RE
510static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
511 "1(+0)ADM", "UNKNOWN"
edd16368 512};
6b80b18f
ST
513#define HPSA_RAID_0 0
514#define HPSA_RAID_4 1
515#define HPSA_RAID_1 2 /* also used for RAID 10 */
516#define HPSA_RAID_5 3 /* also used for RAID 50 */
517#define HPSA_RAID_51 4
518#define HPSA_RAID_6 5 /* also used for RAID 60 */
519#define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
edd16368
SC
520#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
521
522static ssize_t raid_level_show(struct device *dev,
523 struct device_attribute *attr, char *buf)
524{
525 ssize_t l = 0;
82a72c0a 526 unsigned char rlevel;
edd16368
SC
527 struct ctlr_info *h;
528 struct scsi_device *sdev;
529 struct hpsa_scsi_dev_t *hdev;
530 unsigned long flags;
531
532 sdev = to_scsi_device(dev);
533 h = sdev_to_hba(sdev);
534 spin_lock_irqsave(&h->lock, flags);
535 hdev = sdev->hostdata;
536 if (!hdev) {
537 spin_unlock_irqrestore(&h->lock, flags);
538 return -ENODEV;
539 }
540
541 /* Is this even a logical drive? */
542 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
543 spin_unlock_irqrestore(&h->lock, flags);
544 l = snprintf(buf, PAGE_SIZE, "N/A\n");
545 return l;
546 }
547
548 rlevel = hdev->raid_level;
549 spin_unlock_irqrestore(&h->lock, flags);
82a72c0a 550 if (rlevel > RAID_UNKNOWN)
edd16368
SC
551 rlevel = RAID_UNKNOWN;
552 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
553 return l;
554}
555
556static ssize_t lunid_show(struct device *dev,
557 struct device_attribute *attr, char *buf)
558{
559 struct ctlr_info *h;
560 struct scsi_device *sdev;
561 struct hpsa_scsi_dev_t *hdev;
562 unsigned long flags;
563 unsigned char lunid[8];
564
565 sdev = to_scsi_device(dev);
566 h = sdev_to_hba(sdev);
567 spin_lock_irqsave(&h->lock, flags);
568 hdev = sdev->hostdata;
569 if (!hdev) {
570 spin_unlock_irqrestore(&h->lock, flags);
571 return -ENODEV;
572 }
573 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
574 spin_unlock_irqrestore(&h->lock, flags);
575 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
576 lunid[0], lunid[1], lunid[2], lunid[3],
577 lunid[4], lunid[5], lunid[6], lunid[7]);
578}
579
580static ssize_t unique_id_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
582{
583 struct ctlr_info *h;
584 struct scsi_device *sdev;
585 struct hpsa_scsi_dev_t *hdev;
586 unsigned long flags;
587 unsigned char sn[16];
588
589 sdev = to_scsi_device(dev);
590 h = sdev_to_hba(sdev);
591 spin_lock_irqsave(&h->lock, flags);
592 hdev = sdev->hostdata;
593 if (!hdev) {
594 spin_unlock_irqrestore(&h->lock, flags);
595 return -ENODEV;
596 }
597 memcpy(sn, hdev->device_id, sizeof(sn));
598 spin_unlock_irqrestore(&h->lock, flags);
599 return snprintf(buf, 16 * 2 + 2,
600 "%02X%02X%02X%02X%02X%02X%02X%02X"
601 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
602 sn[0], sn[1], sn[2], sn[3],
603 sn[4], sn[5], sn[6], sn[7],
604 sn[8], sn[9], sn[10], sn[11],
605 sn[12], sn[13], sn[14], sn[15]);
606}
607
c1988684
ST
608static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
609 struct device_attribute *attr, char *buf)
610{
611 struct ctlr_info *h;
612 struct scsi_device *sdev;
613 struct hpsa_scsi_dev_t *hdev;
614 unsigned long flags;
615 int offload_enabled;
616
617 sdev = to_scsi_device(dev);
618 h = sdev_to_hba(sdev);
619 spin_lock_irqsave(&h->lock, flags);
620 hdev = sdev->hostdata;
621 if (!hdev) {
622 spin_unlock_irqrestore(&h->lock, flags);
623 return -ENODEV;
624 }
625 offload_enabled = hdev->offload_enabled;
626 spin_unlock_irqrestore(&h->lock, flags);
627 return snprintf(buf, 20, "%d\n", offload_enabled);
628}
629
3f5eac3a
SC
630static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
631static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
632static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
633static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
c1988684
ST
634static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
635 host_show_hp_ssd_smart_path_enabled, NULL);
da0697bd
ST
636static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
637 host_show_hp_ssd_smart_path_status,
638 host_store_hp_ssd_smart_path_status);
2ba8bfc8
SC
639static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
640 host_store_raid_offload_debug);
3f5eac3a
SC
641static DEVICE_ATTR(firmware_revision, S_IRUGO,
642 host_show_firmware_revision, NULL);
643static DEVICE_ATTR(commands_outstanding, S_IRUGO,
644 host_show_commands_outstanding, NULL);
645static DEVICE_ATTR(transport_mode, S_IRUGO,
646 host_show_transport_mode, NULL);
941b1cda
SC
647static DEVICE_ATTR(resettable, S_IRUGO,
648 host_show_resettable, NULL);
3f5eac3a
SC
649
650static struct device_attribute *hpsa_sdev_attrs[] = {
651 &dev_attr_raid_level,
652 &dev_attr_lunid,
653 &dev_attr_unique_id,
c1988684 654 &dev_attr_hp_ssd_smart_path_enabled,
3f5eac3a
SC
655 NULL,
656};
657
658static struct device_attribute *hpsa_shost_attrs[] = {
659 &dev_attr_rescan,
660 &dev_attr_firmware_revision,
661 &dev_attr_commands_outstanding,
662 &dev_attr_transport_mode,
941b1cda 663 &dev_attr_resettable,
da0697bd 664 &dev_attr_hp_ssd_smart_path_status,
2ba8bfc8 665 &dev_attr_raid_offload_debug,
3f5eac3a
SC
666 NULL,
667};
668
669static struct scsi_host_template hpsa_driver_template = {
670 .module = THIS_MODULE,
f79cfec6
SC
671 .name = HPSA,
672 .proc_name = HPSA,
3f5eac3a
SC
673 .queuecommand = hpsa_scsi_queue_command,
674 .scan_start = hpsa_scan_start,
675 .scan_finished = hpsa_scan_finished,
7c0a0229 676 .change_queue_depth = hpsa_change_queue_depth,
3f5eac3a
SC
677 .this_id = -1,
678 .use_clustering = ENABLE_CLUSTERING,
75167d2c 679 .eh_abort_handler = hpsa_eh_abort_handler,
3f5eac3a
SC
680 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
681 .ioctl = hpsa_ioctl,
682 .slave_alloc = hpsa_slave_alloc,
683 .slave_destroy = hpsa_slave_destroy,
684#ifdef CONFIG_COMPAT
685 .compat_ioctl = hpsa_compat_ioctl,
686#endif
687 .sdev_attrs = hpsa_sdev_attrs,
688 .shost_attrs = hpsa_shost_attrs,
c0d6a4d1 689 .max_sectors = 8192,
54b2b50c 690 .no_write_same = 1,
3f5eac3a
SC
691};
692
693
694/* Enqueuing and dequeuing functions for cmdlists. */
695static inline void addQ(struct list_head *list, struct CommandList *c)
696{
697 list_add_tail(&c->list, list);
698}
699
254f796b 700static inline u32 next_command(struct ctlr_info *h, u8 q)
3f5eac3a
SC
701{
702 u32 a;
072b0518 703 struct reply_queue_buffer *rq = &h->reply_queue[q];
3f5eac3a 704
e1f7de0c
MG
705 if (h->transMethod & CFGTBL_Trans_io_accel1)
706 return h->access.command_completed(h, q);
707
3f5eac3a 708 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
254f796b 709 return h->access.command_completed(h, q);
3f5eac3a 710
254f796b
MG
711 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
712 a = rq->head[rq->current_entry];
713 rq->current_entry++;
0cbf768e 714 atomic_dec(&h->commands_outstanding);
3f5eac3a
SC
715 } else {
716 a = FIFO_EMPTY;
717 }
718 /* Check for wraparound */
254f796b
MG
719 if (rq->current_entry == h->max_commands) {
720 rq->current_entry = 0;
721 rq->wraparound ^= 1;
3f5eac3a
SC
722 }
723 return a;
724}
725
c349775e
ST
726/*
727 * There are some special bits in the bus address of the
728 * command that we have to set for the controller to know
729 * how to process the command:
730 *
731 * Normal performant mode:
732 * bit 0: 1 means performant mode, 0 means simple mode.
733 * bits 1-3 = block fetch table entry
734 * bits 4-6 = command type (== 0)
735 *
736 * ioaccel1 mode:
737 * bit 0 = "performant mode" bit.
738 * bits 1-3 = block fetch table entry
739 * bits 4-6 = command type (== 110)
740 * (command type is needed because ioaccel1 mode
741 * commands are submitted through the same register as normal
742 * mode commands, so this is how the controller knows whether
743 * the command is normal mode or ioaccel1 mode.)
744 *
745 * ioaccel2 mode:
746 * bit 0 = "performant mode" bit.
747 * bits 1-4 = block fetch table entry (note extra bit)
748 * bits 4-6 = not needed, because ioaccel2 mode has
749 * a separate special register for submitting commands.
750 */
751
3f5eac3a
SC
752/* set_performant_mode: Modify the tag for cciss performant
753 * set bit 0 for pull model, bits 3-1 for block fetch
754 * register number
755 */
756static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
757{
254f796b 758 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
3f5eac3a 759 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
eee0f03a 760 if (likely(h->msix_vector > 0))
254f796b 761 c->Header.ReplyQueue =
804a5cb5 762 raw_smp_processor_id() % h->nreply_queues;
254f796b 763 }
3f5eac3a
SC
764}
765
c349775e
ST
766static void set_ioaccel1_performant_mode(struct ctlr_info *h,
767 struct CommandList *c)
768{
769 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
770
771 /* Tell the controller to post the reply to the queue for this
772 * processor. This seems to give the best I/O throughput.
773 */
774 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
775 /* Set the bits in the address sent down to include:
776 * - performant mode bit (bit 0)
777 * - pull count (bits 1-3)
778 * - command type (bits 4-6)
779 */
780 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
781 IOACCEL1_BUSADDR_CMDTYPE;
782}
783
784static void set_ioaccel2_performant_mode(struct ctlr_info *h,
785 struct CommandList *c)
786{
787 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
788
789 /* Tell the controller to post the reply to the queue for this
790 * processor. This seems to give the best I/O throughput.
791 */
792 cp->reply_queue = smp_processor_id() % h->nreply_queues;
793 /* Set the bits in the address sent down to include:
794 * - performant mode bit not used in ioaccel mode 2
795 * - pull count (bits 0-3)
796 * - command type isn't needed for ioaccel2
797 */
798 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
799}
800
e85c5974
SC
801static int is_firmware_flash_cmd(u8 *cdb)
802{
803 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
804}
805
806/*
807 * During firmware flash, the heartbeat register may not update as frequently
808 * as it should. So we dial down lockup detection during firmware flash. and
809 * dial it back up when firmware flash completes.
810 */
811#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
812#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
813static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
814 struct CommandList *c)
815{
816 if (!is_firmware_flash_cmd(c->Request.CDB))
817 return;
818 atomic_inc(&h->firmware_flash_in_progress);
819 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
820}
821
822static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
823 struct CommandList *c)
824{
825 if (is_firmware_flash_cmd(c->Request.CDB) &&
826 atomic_dec_and_test(&h->firmware_flash_in_progress))
827 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
828}
829
3f5eac3a
SC
830static void enqueue_cmd_and_start_io(struct ctlr_info *h,
831 struct CommandList *c)
832{
833 unsigned long flags;
834
c349775e
ST
835 switch (c->cmd_type) {
836 case CMD_IOACCEL1:
837 set_ioaccel1_performant_mode(h, c);
838 break;
839 case CMD_IOACCEL2:
840 set_ioaccel2_performant_mode(h, c);
841 break;
842 default:
843 set_performant_mode(h, c);
844 }
e85c5974 845 dial_down_lockup_detection_during_fw_flash(h, c);
3f5eac3a
SC
846 spin_lock_irqsave(&h->lock, flags);
847 addQ(&h->reqQ, c);
848 h->Qdepth++;
0b57075d 849 start_io(h, &flags);
3f5eac3a
SC
850 spin_unlock_irqrestore(&h->lock, flags);
851}
852
853static inline void removeQ(struct CommandList *c)
854{
855 if (WARN_ON(list_empty(&c->list)))
856 return;
857 list_del_init(&c->list);
858}
859
860static inline int is_hba_lunid(unsigned char scsi3addr[])
861{
862 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
863}
864
865static inline int is_scsi_rev_5(struct ctlr_info *h)
866{
867 if (!h->hba_inquiry_data)
868 return 0;
869 if ((h->hba_inquiry_data[2] & 0x07) == 5)
870 return 1;
871 return 0;
872}
873
edd16368
SC
874static int hpsa_find_target_lun(struct ctlr_info *h,
875 unsigned char scsi3addr[], int bus, int *target, int *lun)
876{
877 /* finds an unused bus, target, lun for a new physical device
878 * assumes h->devlock is held
879 */
880 int i, found = 0;
cfe5badc 881 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
edd16368 882
263d9401 883 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
edd16368
SC
884
885 for (i = 0; i < h->ndevices; i++) {
886 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
263d9401 887 __set_bit(h->dev[i]->target, lun_taken);
edd16368
SC
888 }
889
263d9401
AM
890 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
891 if (i < HPSA_MAX_DEVICES) {
892 /* *bus = 1; */
893 *target = i;
894 *lun = 0;
895 found = 1;
edd16368
SC
896 }
897 return !found;
898}
899
900/* Add an entry into h->dev[] array. */
901static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
902 struct hpsa_scsi_dev_t *device,
903 struct hpsa_scsi_dev_t *added[], int *nadded)
904{
905 /* assumes h->devlock is held */
906 int n = h->ndevices;
907 int i;
908 unsigned char addr1[8], addr2[8];
909 struct hpsa_scsi_dev_t *sd;
910
cfe5badc 911 if (n >= HPSA_MAX_DEVICES) {
edd16368
SC
912 dev_err(&h->pdev->dev, "too many devices, some will be "
913 "inaccessible.\n");
914 return -1;
915 }
916
917 /* physical devices do not have lun or target assigned until now. */
918 if (device->lun != -1)
919 /* Logical device, lun is already assigned. */
920 goto lun_assigned;
921
922 /* If this device a non-zero lun of a multi-lun device
923 * byte 4 of the 8-byte LUN addr will contain the logical
2b08b3e9 924 * unit no, zero otherwise.
edd16368
SC
925 */
926 if (device->scsi3addr[4] == 0) {
927 /* This is not a non-zero lun of a multi-lun device */
928 if (hpsa_find_target_lun(h, device->scsi3addr,
929 device->bus, &device->target, &device->lun) != 0)
930 return -1;
931 goto lun_assigned;
932 }
933
934 /* This is a non-zero lun of a multi-lun device.
935 * Search through our list and find the device which
936 * has the same 8 byte LUN address, excepting byte 4.
937 * Assign the same bus and target for this new LUN.
938 * Use the logical unit number from the firmware.
939 */
940 memcpy(addr1, device->scsi3addr, 8);
941 addr1[4] = 0;
942 for (i = 0; i < n; i++) {
943 sd = h->dev[i];
944 memcpy(addr2, sd->scsi3addr, 8);
945 addr2[4] = 0;
946 /* differ only in byte 4? */
947 if (memcmp(addr1, addr2, 8) == 0) {
948 device->bus = sd->bus;
949 device->target = sd->target;
950 device->lun = device->scsi3addr[4];
951 break;
952 }
953 }
954 if (device->lun == -1) {
955 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
956 " suspect firmware bug or unsupported hardware "
957 "configuration.\n");
958 return -1;
959 }
960
961lun_assigned:
962
963 h->dev[n] = device;
964 h->ndevices++;
965 added[*nadded] = device;
966 (*nadded)++;
967
968 /* initially, (before registering with scsi layer) we don't
969 * know our hostno and we don't want to print anything first
970 * time anyway (the scsi layer's inquiries will show that info)
971 */
972 /* if (hostno != -1) */
973 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
974 scsi_device_type(device->devtype), hostno,
975 device->bus, device->target, device->lun);
976 return 0;
977}
978
bd9244f7
ST
979/* Update an entry in h->dev[] array. */
980static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
981 int entry, struct hpsa_scsi_dev_t *new_entry)
982{
983 /* assumes h->devlock is held */
984 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
985
986 /* Raid level changed. */
987 h->dev[entry]->raid_level = new_entry->raid_level;
250fb125
SC
988
989 /* Raid offload parameters changed. */
990 h->dev[entry]->offload_config = new_entry->offload_config;
991 h->dev[entry]->offload_enabled = new_entry->offload_enabled;
9fb0de2d
SC
992 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
993 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
994 h->dev[entry]->raid_map = new_entry->raid_map;
250fb125 995
bd9244f7
ST
996 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
997 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
998 new_entry->target, new_entry->lun);
999}
1000
2a8ccf31
SC
1001/* Replace an entry from h->dev[] array. */
1002static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1003 int entry, struct hpsa_scsi_dev_t *new_entry,
1004 struct hpsa_scsi_dev_t *added[], int *nadded,
1005 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1006{
1007 /* assumes h->devlock is held */
cfe5badc 1008 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
2a8ccf31
SC
1009 removed[*nremoved] = h->dev[entry];
1010 (*nremoved)++;
01350d05
SC
1011
1012 /*
1013 * New physical devices won't have target/lun assigned yet
1014 * so we need to preserve the values in the slot we are replacing.
1015 */
1016 if (new_entry->target == -1) {
1017 new_entry->target = h->dev[entry]->target;
1018 new_entry->lun = h->dev[entry]->lun;
1019 }
1020
2a8ccf31
SC
1021 h->dev[entry] = new_entry;
1022 added[*nadded] = new_entry;
1023 (*nadded)++;
1024 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1025 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1026 new_entry->target, new_entry->lun);
1027}
1028
edd16368
SC
1029/* Remove an entry from h->dev[] array. */
1030static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1031 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1032{
1033 /* assumes h->devlock is held */
1034 int i;
1035 struct hpsa_scsi_dev_t *sd;
1036
cfe5badc 1037 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
edd16368
SC
1038
1039 sd = h->dev[entry];
1040 removed[*nremoved] = h->dev[entry];
1041 (*nremoved)++;
1042
1043 for (i = entry; i < h->ndevices-1; i++)
1044 h->dev[i] = h->dev[i+1];
1045 h->ndevices--;
1046 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1047 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1048 sd->lun);
1049}
1050
1051#define SCSI3ADDR_EQ(a, b) ( \
1052 (a)[7] == (b)[7] && \
1053 (a)[6] == (b)[6] && \
1054 (a)[5] == (b)[5] && \
1055 (a)[4] == (b)[4] && \
1056 (a)[3] == (b)[3] && \
1057 (a)[2] == (b)[2] && \
1058 (a)[1] == (b)[1] && \
1059 (a)[0] == (b)[0])
1060
1061static void fixup_botched_add(struct ctlr_info *h,
1062 struct hpsa_scsi_dev_t *added)
1063{
1064 /* called when scsi_add_device fails in order to re-adjust
1065 * h->dev[] to match the mid layer's view.
1066 */
1067 unsigned long flags;
1068 int i, j;
1069
1070 spin_lock_irqsave(&h->lock, flags);
1071 for (i = 0; i < h->ndevices; i++) {
1072 if (h->dev[i] == added) {
1073 for (j = i; j < h->ndevices-1; j++)
1074 h->dev[j] = h->dev[j+1];
1075 h->ndevices--;
1076 break;
1077 }
1078 }
1079 spin_unlock_irqrestore(&h->lock, flags);
1080 kfree(added);
1081}
1082
1083static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1084 struct hpsa_scsi_dev_t *dev2)
1085{
edd16368
SC
1086 /* we compare everything except lun and target as these
1087 * are not yet assigned. Compare parts likely
1088 * to differ first
1089 */
1090 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1091 sizeof(dev1->scsi3addr)) != 0)
1092 return 0;
1093 if (memcmp(dev1->device_id, dev2->device_id,
1094 sizeof(dev1->device_id)) != 0)
1095 return 0;
1096 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1097 return 0;
1098 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1099 return 0;
edd16368
SC
1100 if (dev1->devtype != dev2->devtype)
1101 return 0;
edd16368
SC
1102 if (dev1->bus != dev2->bus)
1103 return 0;
1104 return 1;
1105}
1106
bd9244f7
ST
1107static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1108 struct hpsa_scsi_dev_t *dev2)
1109{
1110 /* Device attributes that can change, but don't mean
1111 * that the device is a different device, nor that the OS
1112 * needs to be told anything about the change.
1113 */
1114 if (dev1->raid_level != dev2->raid_level)
1115 return 1;
250fb125
SC
1116 if (dev1->offload_config != dev2->offload_config)
1117 return 1;
1118 if (dev1->offload_enabled != dev2->offload_enabled)
1119 return 1;
bd9244f7
ST
1120 return 0;
1121}
1122
edd16368
SC
1123/* Find needle in haystack. If exact match found, return DEVICE_SAME,
1124 * and return needle location in *index. If scsi3addr matches, but not
1125 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
bd9244f7
ST
1126 * location in *index.
1127 * In the case of a minor device attribute change, such as RAID level, just
1128 * return DEVICE_UPDATED, along with the updated device's location in index.
1129 * If needle not found, return DEVICE_NOT_FOUND.
edd16368
SC
1130 */
1131static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1132 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1133 int *index)
1134{
1135 int i;
1136#define DEVICE_NOT_FOUND 0
1137#define DEVICE_CHANGED 1
1138#define DEVICE_SAME 2
bd9244f7 1139#define DEVICE_UPDATED 3
edd16368 1140 for (i = 0; i < haystack_size; i++) {
23231048
SC
1141 if (haystack[i] == NULL) /* previously removed. */
1142 continue;
edd16368
SC
1143 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1144 *index = i;
bd9244f7
ST
1145 if (device_is_the_same(needle, haystack[i])) {
1146 if (device_updated(needle, haystack[i]))
1147 return DEVICE_UPDATED;
edd16368 1148 return DEVICE_SAME;
bd9244f7 1149 } else {
9846590e
SC
1150 /* Keep offline devices offline */
1151 if (needle->volume_offline)
1152 return DEVICE_NOT_FOUND;
edd16368 1153 return DEVICE_CHANGED;
bd9244f7 1154 }
edd16368
SC
1155 }
1156 }
1157 *index = -1;
1158 return DEVICE_NOT_FOUND;
1159}
1160
9846590e
SC
1161static void hpsa_monitor_offline_device(struct ctlr_info *h,
1162 unsigned char scsi3addr[])
1163{
1164 struct offline_device_entry *device;
1165 unsigned long flags;
1166
1167 /* Check to see if device is already on the list */
1168 spin_lock_irqsave(&h->offline_device_lock, flags);
1169 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1170 if (memcmp(device->scsi3addr, scsi3addr,
1171 sizeof(device->scsi3addr)) == 0) {
1172 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1173 return;
1174 }
1175 }
1176 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1177
1178 /* Device is not on the list, add it. */
1179 device = kmalloc(sizeof(*device), GFP_KERNEL);
1180 if (!device) {
1181 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1182 return;
1183 }
1184 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1185 spin_lock_irqsave(&h->offline_device_lock, flags);
1186 list_add_tail(&device->offline_list, &h->offline_device_list);
1187 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1188}
1189
1190/* Print a message explaining various offline volume states */
1191static void hpsa_show_volume_status(struct ctlr_info *h,
1192 struct hpsa_scsi_dev_t *sd)
1193{
1194 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1195 dev_info(&h->pdev->dev,
1196 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1197 h->scsi_host->host_no,
1198 sd->bus, sd->target, sd->lun);
1199 switch (sd->volume_offline) {
1200 case HPSA_LV_OK:
1201 break;
1202 case HPSA_LV_UNDERGOING_ERASE:
1203 dev_info(&h->pdev->dev,
1204 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1205 h->scsi_host->host_no,
1206 sd->bus, sd->target, sd->lun);
1207 break;
1208 case HPSA_LV_UNDERGOING_RPI:
1209 dev_info(&h->pdev->dev,
1210 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1211 h->scsi_host->host_no,
1212 sd->bus, sd->target, sd->lun);
1213 break;
1214 case HPSA_LV_PENDING_RPI:
1215 dev_info(&h->pdev->dev,
1216 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1217 h->scsi_host->host_no,
1218 sd->bus, sd->target, sd->lun);
1219 break;
1220 case HPSA_LV_ENCRYPTED_NO_KEY:
1221 dev_info(&h->pdev->dev,
1222 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1223 h->scsi_host->host_no,
1224 sd->bus, sd->target, sd->lun);
1225 break;
1226 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1227 dev_info(&h->pdev->dev,
1228 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1229 h->scsi_host->host_no,
1230 sd->bus, sd->target, sd->lun);
1231 break;
1232 case HPSA_LV_UNDERGOING_ENCRYPTION:
1233 dev_info(&h->pdev->dev,
1234 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1235 h->scsi_host->host_no,
1236 sd->bus, sd->target, sd->lun);
1237 break;
1238 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1239 dev_info(&h->pdev->dev,
1240 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1241 h->scsi_host->host_no,
1242 sd->bus, sd->target, sd->lun);
1243 break;
1244 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1245 dev_info(&h->pdev->dev,
1246 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1247 h->scsi_host->host_no,
1248 sd->bus, sd->target, sd->lun);
1249 break;
1250 case HPSA_LV_PENDING_ENCRYPTION:
1251 dev_info(&h->pdev->dev,
1252 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1253 h->scsi_host->host_no,
1254 sd->bus, sd->target, sd->lun);
1255 break;
1256 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1257 dev_info(&h->pdev->dev,
1258 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1259 h->scsi_host->host_no,
1260 sd->bus, sd->target, sd->lun);
1261 break;
1262 }
1263}
1264
4967bd3e 1265static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
edd16368
SC
1266 struct hpsa_scsi_dev_t *sd[], int nsds)
1267{
1268 /* sd contains scsi3 addresses and devtypes, and inquiry
1269 * data. This function takes what's in sd to be the current
1270 * reality and updates h->dev[] to reflect that reality.
1271 */
1272 int i, entry, device_change, changes = 0;
1273 struct hpsa_scsi_dev_t *csd;
1274 unsigned long flags;
1275 struct hpsa_scsi_dev_t **added, **removed;
1276 int nadded, nremoved;
1277 struct Scsi_Host *sh = NULL;
1278
cfe5badc
ST
1279 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1280 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
edd16368
SC
1281
1282 if (!added || !removed) {
1283 dev_warn(&h->pdev->dev, "out of memory in "
1284 "adjust_hpsa_scsi_table\n");
1285 goto free_and_out;
1286 }
1287
1288 spin_lock_irqsave(&h->devlock, flags);
1289
1290 /* find any devices in h->dev[] that are not in
1291 * sd[] and remove them from h->dev[], and for any
1292 * devices which have changed, remove the old device
1293 * info and add the new device info.
bd9244f7
ST
1294 * If minor device attributes change, just update
1295 * the existing device structure.
edd16368
SC
1296 */
1297 i = 0;
1298 nremoved = 0;
1299 nadded = 0;
1300 while (i < h->ndevices) {
1301 csd = h->dev[i];
1302 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1303 if (device_change == DEVICE_NOT_FOUND) {
1304 changes++;
1305 hpsa_scsi_remove_entry(h, hostno, i,
1306 removed, &nremoved);
1307 continue; /* remove ^^^, hence i not incremented */
1308 } else if (device_change == DEVICE_CHANGED) {
1309 changes++;
2a8ccf31
SC
1310 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1311 added, &nadded, removed, &nremoved);
c7f172dc
SC
1312 /* Set it to NULL to prevent it from being freed
1313 * at the bottom of hpsa_update_scsi_devices()
1314 */
1315 sd[entry] = NULL;
bd9244f7
ST
1316 } else if (device_change == DEVICE_UPDATED) {
1317 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
edd16368
SC
1318 }
1319 i++;
1320 }
1321
1322 /* Now, make sure every device listed in sd[] is also
1323 * listed in h->dev[], adding them if they aren't found
1324 */
1325
1326 for (i = 0; i < nsds; i++) {
1327 if (!sd[i]) /* if already added above. */
1328 continue;
9846590e
SC
1329
1330 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1331 * as the SCSI mid-layer does not handle such devices well.
1332 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1333 * at 160Hz, and prevents the system from coming up.
1334 */
1335 if (sd[i]->volume_offline) {
1336 hpsa_show_volume_status(h, sd[i]);
1337 dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1338 h->scsi_host->host_no,
1339 sd[i]->bus, sd[i]->target, sd[i]->lun);
1340 continue;
1341 }
1342
edd16368
SC
1343 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1344 h->ndevices, &entry);
1345 if (device_change == DEVICE_NOT_FOUND) {
1346 changes++;
1347 if (hpsa_scsi_add_entry(h, hostno, sd[i],
1348 added, &nadded) != 0)
1349 break;
1350 sd[i] = NULL; /* prevent from being freed later. */
1351 } else if (device_change == DEVICE_CHANGED) {
1352 /* should never happen... */
1353 changes++;
1354 dev_warn(&h->pdev->dev,
1355 "device unexpectedly changed.\n");
1356 /* but if it does happen, we just ignore that device */
1357 }
1358 }
1359 spin_unlock_irqrestore(&h->devlock, flags);
1360
9846590e
SC
1361 /* Monitor devices which are in one of several NOT READY states to be
1362 * brought online later. This must be done without holding h->devlock,
1363 * so don't touch h->dev[]
1364 */
1365 for (i = 0; i < nsds; i++) {
1366 if (!sd[i]) /* if already added above. */
1367 continue;
1368 if (sd[i]->volume_offline)
1369 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1370 }
1371
edd16368
SC
1372 /* Don't notify scsi mid layer of any changes the first time through
1373 * (or if there are no changes) scsi_scan_host will do it later the
1374 * first time through.
1375 */
1376 if (hostno == -1 || !changes)
1377 goto free_and_out;
1378
1379 sh = h->scsi_host;
1380 /* Notify scsi mid layer of any removed devices */
1381 for (i = 0; i < nremoved; i++) {
1382 struct scsi_device *sdev =
1383 scsi_device_lookup(sh, removed[i]->bus,
1384 removed[i]->target, removed[i]->lun);
1385 if (sdev != NULL) {
1386 scsi_remove_device(sdev);
1387 scsi_device_put(sdev);
1388 } else {
1389 /* We don't expect to get here.
1390 * future cmds to this device will get selection
1391 * timeout as if the device was gone.
1392 */
1393 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1394 " for removal.", hostno, removed[i]->bus,
1395 removed[i]->target, removed[i]->lun);
1396 }
1397 kfree(removed[i]);
1398 removed[i] = NULL;
1399 }
1400
1401 /* Notify scsi mid layer of any added devices */
1402 for (i = 0; i < nadded; i++) {
1403 if (scsi_add_device(sh, added[i]->bus,
1404 added[i]->target, added[i]->lun) == 0)
1405 continue;
1406 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1407 "device not added.\n", hostno, added[i]->bus,
1408 added[i]->target, added[i]->lun);
1409 /* now we have to remove it from h->dev,
1410 * since it didn't get added to scsi mid layer
1411 */
1412 fixup_botched_add(h, added[i]);
1413 }
1414
1415free_and_out:
1416 kfree(added);
1417 kfree(removed);
edd16368
SC
1418}
1419
1420/*
9e03aa2f 1421 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
edd16368
SC
1422 * Assume's h->devlock is held.
1423 */
1424static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1425 int bus, int target, int lun)
1426{
1427 int i;
1428 struct hpsa_scsi_dev_t *sd;
1429
1430 for (i = 0; i < h->ndevices; i++) {
1431 sd = h->dev[i];
1432 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1433 return sd;
1434 }
1435 return NULL;
1436}
1437
1438/* link sdev->hostdata to our per-device structure. */
1439static int hpsa_slave_alloc(struct scsi_device *sdev)
1440{
1441 struct hpsa_scsi_dev_t *sd;
1442 unsigned long flags;
1443 struct ctlr_info *h;
1444
1445 h = sdev_to_hba(sdev);
1446 spin_lock_irqsave(&h->devlock, flags);
1447 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1448 sdev_id(sdev), sdev->lun);
1449 if (sd != NULL)
1450 sdev->hostdata = sd;
1451 spin_unlock_irqrestore(&h->devlock, flags);
1452 return 0;
1453}
1454
1455static void hpsa_slave_destroy(struct scsi_device *sdev)
1456{
bcc44255 1457 /* nothing to do. */
edd16368
SC
1458}
1459
33a2ffce
SC
1460static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1461{
1462 int i;
1463
1464 if (!h->cmd_sg_list)
1465 return;
1466 for (i = 0; i < h->nr_cmds; i++) {
1467 kfree(h->cmd_sg_list[i]);
1468 h->cmd_sg_list[i] = NULL;
1469 }
1470 kfree(h->cmd_sg_list);
1471 h->cmd_sg_list = NULL;
1472}
1473
1474static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1475{
1476 int i;
1477
1478 if (h->chainsize <= 0)
1479 return 0;
1480
1481 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1482 GFP_KERNEL);
1483 if (!h->cmd_sg_list)
1484 return -ENOMEM;
1485 for (i = 0; i < h->nr_cmds; i++) {
1486 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1487 h->chainsize, GFP_KERNEL);
1488 if (!h->cmd_sg_list[i])
1489 goto clean;
1490 }
1491 return 0;
1492
1493clean:
1494 hpsa_free_sg_chain_blocks(h);
1495 return -ENOMEM;
1496}
1497
e2bea6df 1498static int hpsa_map_sg_chain_block(struct ctlr_info *h,
33a2ffce
SC
1499 struct CommandList *c)
1500{
1501 struct SGDescriptor *chain_sg, *chain_block;
1502 u64 temp64;
50a0decf 1503 u32 chain_len;
33a2ffce
SC
1504
1505 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1506 chain_block = h->cmd_sg_list[c->cmdindex];
50a0decf
SC
1507 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1508 chain_len = sizeof(*chain_sg) *
2b08b3e9 1509 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
50a0decf
SC
1510 chain_sg->Len = cpu_to_le32(chain_len);
1511 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
33a2ffce 1512 PCI_DMA_TODEVICE);
e2bea6df
SC
1513 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1514 /* prevent subsequent unmapping */
50a0decf 1515 chain_sg->Addr = cpu_to_le64(0);
e2bea6df
SC
1516 return -1;
1517 }
50a0decf 1518 chain_sg->Addr = cpu_to_le64(temp64);
e2bea6df 1519 return 0;
33a2ffce
SC
1520}
1521
1522static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1523 struct CommandList *c)
1524{
1525 struct SGDescriptor *chain_sg;
33a2ffce 1526
50a0decf 1527 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
33a2ffce
SC
1528 return;
1529
1530 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
50a0decf
SC
1531 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1532 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
33a2ffce
SC
1533}
1534
a09c1441
ST
1535
1536/* Decode the various types of errors on ioaccel2 path.
1537 * Return 1 for any error that should generate a RAID path retry.
1538 * Return 0 for errors that don't require a RAID path retry.
1539 */
1540static int handle_ioaccel_mode2_error(struct ctlr_info *h,
c349775e
ST
1541 struct CommandList *c,
1542 struct scsi_cmnd *cmd,
1543 struct io_accel2_cmd *c2)
1544{
1545 int data_len;
a09c1441 1546 int retry = 0;
c349775e
ST
1547
1548 switch (c2->error_data.serv_response) {
1549 case IOACCEL2_SERV_RESPONSE_COMPLETE:
1550 switch (c2->error_data.status) {
1551 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1552 break;
1553 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1554 dev_warn(&h->pdev->dev,
1555 "%s: task complete with check condition.\n",
1556 "HP SSD Smart Path");
ee6b1889 1557 cmd->result |= SAM_STAT_CHECK_CONDITION;
c349775e 1558 if (c2->error_data.data_present !=
ee6b1889
SC
1559 IOACCEL2_SENSE_DATA_PRESENT) {
1560 memset(cmd->sense_buffer, 0,
1561 SCSI_SENSE_BUFFERSIZE);
c349775e 1562 break;
ee6b1889 1563 }
c349775e
ST
1564 /* copy the sense data */
1565 data_len = c2->error_data.sense_data_len;
1566 if (data_len > SCSI_SENSE_BUFFERSIZE)
1567 data_len = SCSI_SENSE_BUFFERSIZE;
1568 if (data_len > sizeof(c2->error_data.sense_data_buff))
1569 data_len =
1570 sizeof(c2->error_data.sense_data_buff);
1571 memcpy(cmd->sense_buffer,
1572 c2->error_data.sense_data_buff, data_len);
a09c1441 1573 retry = 1;
c349775e
ST
1574 break;
1575 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1576 dev_warn(&h->pdev->dev,
1577 "%s: task complete with BUSY status.\n",
1578 "HP SSD Smart Path");
a09c1441 1579 retry = 1;
c349775e
ST
1580 break;
1581 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1582 dev_warn(&h->pdev->dev,
1583 "%s: task complete with reservation conflict.\n",
1584 "HP SSD Smart Path");
a09c1441 1585 retry = 1;
c349775e
ST
1586 break;
1587 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1588 /* Make scsi midlayer do unlimited retries */
1589 cmd->result = DID_IMM_RETRY << 16;
1590 break;
1591 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1592 dev_warn(&h->pdev->dev,
1593 "%s: task complete with aborted status.\n",
1594 "HP SSD Smart Path");
a09c1441 1595 retry = 1;
c349775e
ST
1596 break;
1597 default:
1598 dev_warn(&h->pdev->dev,
1599 "%s: task complete with unrecognized status: 0x%02x\n",
1600 "HP SSD Smart Path", c2->error_data.status);
a09c1441 1601 retry = 1;
c349775e
ST
1602 break;
1603 }
1604 break;
1605 case IOACCEL2_SERV_RESPONSE_FAILURE:
1606 /* don't expect to get here. */
1607 dev_warn(&h->pdev->dev,
1608 "unexpected delivery or target failure, status = 0x%02x\n",
1609 c2->error_data.status);
a09c1441 1610 retry = 1;
c349775e
ST
1611 break;
1612 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1613 break;
1614 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1615 break;
1616 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1617 dev_warn(&h->pdev->dev, "task management function rejected.\n");
a09c1441 1618 retry = 1;
c349775e
ST
1619 break;
1620 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1621 dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1622 break;
1623 default:
1624 dev_warn(&h->pdev->dev,
1625 "%s: Unrecognized server response: 0x%02x\n",
a09c1441
ST
1626 "HP SSD Smart Path",
1627 c2->error_data.serv_response);
1628 retry = 1;
c349775e
ST
1629 break;
1630 }
a09c1441
ST
1631
1632 return retry; /* retry on raid path? */
c349775e
ST
1633}
1634
1635static void process_ioaccel2_completion(struct ctlr_info *h,
1636 struct CommandList *c, struct scsi_cmnd *cmd,
1637 struct hpsa_scsi_dev_t *dev)
1638{
1639 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
a09c1441 1640 int raid_retry = 0;
c349775e
ST
1641
1642 /* check for good status */
1643 if (likely(c2->error_data.serv_response == 0 &&
1644 c2->error_data.status == 0)) {
1645 cmd_free(h, c);
1646 cmd->scsi_done(cmd);
1647 return;
1648 }
1649
1650 /* Any RAID offload error results in retry which will use
1651 * the normal I/O path so the controller can handle whatever's
1652 * wrong.
1653 */
1654 if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1655 c2->error_data.serv_response ==
1656 IOACCEL2_SERV_RESPONSE_FAILURE) {
c349775e 1657 dev->offload_enabled = 0;
e863d68e 1658 h->drv_req_rescan = 1; /* schedule controller for a rescan */
c349775e
ST
1659 cmd->result = DID_SOFT_ERROR << 16;
1660 cmd_free(h, c);
1661 cmd->scsi_done(cmd);
1662 return;
1663 }
a09c1441
ST
1664 raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1665 /* If error found, disable Smart Path, schedule a rescan,
1666 * and force a retry on the standard path.
1667 */
1668 if (raid_retry) {
1669 dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1670 "HP SSD Smart Path");
1671 dev->offload_enabled = 0; /* Disable Smart Path */
1672 h->drv_req_rescan = 1; /* schedule controller rescan */
1673 cmd->result = DID_SOFT_ERROR << 16;
1674 }
c349775e
ST
1675 cmd_free(h, c);
1676 cmd->scsi_done(cmd);
1677}
1678
1fb011fb 1679static void complete_scsi_command(struct CommandList *cp)
edd16368
SC
1680{
1681 struct scsi_cmnd *cmd;
1682 struct ctlr_info *h;
1683 struct ErrorInfo *ei;
283b4a9b 1684 struct hpsa_scsi_dev_t *dev;
edd16368
SC
1685
1686 unsigned char sense_key;
1687 unsigned char asc; /* additional sense code */
1688 unsigned char ascq; /* additional sense code qualifier */
db111e18 1689 unsigned long sense_data_size;
edd16368
SC
1690
1691 ei = cp->err_info;
1692 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1693 h = cp->h;
283b4a9b 1694 dev = cmd->device->hostdata;
edd16368
SC
1695
1696 scsi_dma_unmap(cmd); /* undo the DMA mappings */
e1f7de0c 1697 if ((cp->cmd_type == CMD_SCSI) &&
2b08b3e9 1698 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
33a2ffce 1699 hpsa_unmap_sg_chain_block(h, cp);
edd16368
SC
1700
1701 cmd->result = (DID_OK << 16); /* host byte */
1702 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
c349775e
ST
1703
1704 if (cp->cmd_type == CMD_IOACCEL2)
1705 return process_ioaccel2_completion(h, cp, cmd, dev);
1706
5512672f 1707 cmd->result |= ei->ScsiStatus;
edd16368 1708
6aa4c361
RE
1709 scsi_set_resid(cmd, ei->ResidualCnt);
1710 if (ei->CommandStatus == 0) {
1711 cmd_free(h, cp);
1712 cmd->scsi_done(cmd);
1713 return;
1714 }
1715
1716 /* copy the sense data */
db111e18
SC
1717 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1718 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1719 else
1720 sense_data_size = sizeof(ei->SenseInfo);
1721 if (ei->SenseLen < sense_data_size)
1722 sense_data_size = ei->SenseLen;
1723
1724 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
edd16368 1725
e1f7de0c
MG
1726 /* For I/O accelerator commands, copy over some fields to the normal
1727 * CISS header used below for error handling.
1728 */
1729 if (cp->cmd_type == CMD_IOACCEL1) {
1730 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2b08b3e9
DB
1731 cp->Header.SGList = scsi_sg_count(cmd);
1732 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
1733 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
1734 IOACCEL1_IOFLAGS_CDBLEN_MASK;
50a0decf 1735 cp->Header.tag = c->tag;
e1f7de0c
MG
1736 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1737 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
283b4a9b
SC
1738
1739 /* Any RAID offload error results in retry which will use
1740 * the normal I/O path so the controller can handle whatever's
1741 * wrong.
1742 */
1743 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1744 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1745 dev->offload_enabled = 0;
1746 cmd->result = DID_SOFT_ERROR << 16;
1747 cmd_free(h, cp);
1748 cmd->scsi_done(cmd);
1749 return;
1750 }
e1f7de0c
MG
1751 }
1752
edd16368
SC
1753 /* an error has occurred */
1754 switch (ei->CommandStatus) {
1755
1756 case CMD_TARGET_STATUS:
1757 if (ei->ScsiStatus) {
1758 /* Get sense key */
1759 sense_key = 0xf & ei->SenseInfo[2];
1760 /* Get additional sense code */
1761 asc = ei->SenseInfo[12];
1762 /* Get addition sense code qualifier */
1763 ascq = ei->SenseInfo[13];
1764 }
edd16368 1765 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1d3b3609 1766 if (sense_key == ABORTED_COMMAND) {
2e311fba 1767 cmd->result |= DID_SOFT_ERROR << 16;
1d3b3609
MG
1768 break;
1769 }
edd16368
SC
1770 break;
1771 }
edd16368
SC
1772 /* Problem was not a check condition
1773 * Pass it up to the upper layers...
1774 */
1775 if (ei->ScsiStatus) {
1776 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1777 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1778 "Returning result: 0x%x\n",
1779 cp, ei->ScsiStatus,
1780 sense_key, asc, ascq,
1781 cmd->result);
1782 } else { /* scsi status is zero??? How??? */
1783 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1784 "Returning no connection.\n", cp),
1785
1786 /* Ordinarily, this case should never happen,
1787 * but there is a bug in some released firmware
1788 * revisions that allows it to happen if, for
1789 * example, a 4100 backplane loses power and
1790 * the tape drive is in it. We assume that
1791 * it's a fatal error of some kind because we
1792 * can't show that it wasn't. We will make it
1793 * look like selection timeout since that is
1794 * the most common reason for this to occur,
1795 * and it's severe enough.
1796 */
1797
1798 cmd->result = DID_NO_CONNECT << 16;
1799 }
1800 break;
1801
1802 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1803 break;
1804 case CMD_DATA_OVERRUN:
1805 dev_warn(&h->pdev->dev, "cp %p has"
1806 " completed with data overrun "
1807 "reported\n", cp);
1808 break;
1809 case CMD_INVALID: {
1810 /* print_bytes(cp, sizeof(*cp), 1, 0);
1811 print_cmd(cp); */
1812 /* We get CMD_INVALID if you address a non-existent device
1813 * instead of a selection timeout (no response). You will
1814 * see this if you yank out a drive, then try to access it.
1815 * This is kind of a shame because it means that any other
1816 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1817 * missing target. */
1818 cmd->result = DID_NO_CONNECT << 16;
1819 }
1820 break;
1821 case CMD_PROTOCOL_ERR:
256d0eaa 1822 cmd->result = DID_ERROR << 16;
edd16368 1823 dev_warn(&h->pdev->dev, "cp %p has "
256d0eaa 1824 "protocol error\n", cp);
edd16368
SC
1825 break;
1826 case CMD_HARDWARE_ERR:
1827 cmd->result = DID_ERROR << 16;
1828 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1829 break;
1830 case CMD_CONNECTION_LOST:
1831 cmd->result = DID_ERROR << 16;
1832 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1833 break;
1834 case CMD_ABORTED:
1835 cmd->result = DID_ABORT << 16;
1836 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1837 cp, ei->ScsiStatus);
1838 break;
1839 case CMD_ABORT_FAILED:
1840 cmd->result = DID_ERROR << 16;
1841 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1842 break;
1843 case CMD_UNSOLICITED_ABORT:
f6e76055
SC
1844 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1845 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
edd16368
SC
1846 "abort\n", cp);
1847 break;
1848 case CMD_TIMEOUT:
1849 cmd->result = DID_TIME_OUT << 16;
1850 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1851 break;
1d5e2ed0
SC
1852 case CMD_UNABORTABLE:
1853 cmd->result = DID_ERROR << 16;
1854 dev_warn(&h->pdev->dev, "Command unabortable\n");
1855 break;
283b4a9b
SC
1856 case CMD_IOACCEL_DISABLED:
1857 /* This only handles the direct pass-through case since RAID
1858 * offload is handled above. Just attempt a retry.
1859 */
1860 cmd->result = DID_SOFT_ERROR << 16;
1861 dev_warn(&h->pdev->dev,
1862 "cp %p had HP SSD Smart Path error\n", cp);
1863 break;
edd16368
SC
1864 default:
1865 cmd->result = DID_ERROR << 16;
1866 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1867 cp, ei->CommandStatus);
1868 }
edd16368 1869 cmd_free(h, cp);
2cc5bfaf 1870 cmd->scsi_done(cmd);
edd16368
SC
1871}
1872
edd16368
SC
1873static void hpsa_pci_unmap(struct pci_dev *pdev,
1874 struct CommandList *c, int sg_used, int data_direction)
1875{
1876 int i;
edd16368 1877
50a0decf
SC
1878 for (i = 0; i < sg_used; i++)
1879 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
1880 le32_to_cpu(c->SG[i].Len),
1881 data_direction);
edd16368
SC
1882}
1883
a2dac136 1884static int hpsa_map_one(struct pci_dev *pdev,
edd16368
SC
1885 struct CommandList *cp,
1886 unsigned char *buf,
1887 size_t buflen,
1888 int data_direction)
1889{
01a02ffc 1890 u64 addr64;
edd16368
SC
1891
1892 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1893 cp->Header.SGList = 0;
50a0decf 1894 cp->Header.SGTotal = cpu_to_le16(0);
a2dac136 1895 return 0;
edd16368
SC
1896 }
1897
50a0decf 1898 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
eceaae18 1899 if (dma_mapping_error(&pdev->dev, addr64)) {
a2dac136 1900 /* Prevent subsequent unmap of something never mapped */
eceaae18 1901 cp->Header.SGList = 0;
50a0decf 1902 cp->Header.SGTotal = cpu_to_le16(0);
a2dac136 1903 return -1;
eceaae18 1904 }
50a0decf
SC
1905 cp->SG[0].Addr = cpu_to_le64(addr64);
1906 cp->SG[0].Len = cpu_to_le32(buflen);
1907 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
1908 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
1909 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
a2dac136 1910 return 0;
edd16368
SC
1911}
1912
1913static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1914 struct CommandList *c)
1915{
1916 DECLARE_COMPLETION_ONSTACK(wait);
1917
1918 c->waiting = &wait;
1919 enqueue_cmd_and_start_io(h, c);
1920 wait_for_completion(&wait);
1921}
1922
094963da
SC
1923static u32 lockup_detected(struct ctlr_info *h)
1924{
1925 int cpu;
1926 u32 rc, *lockup_detected;
1927
1928 cpu = get_cpu();
1929 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
1930 rc = *lockup_detected;
1931 put_cpu();
1932 return rc;
1933}
1934
a0c12413
SC
1935static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1936 struct CommandList *c)
1937{
a0c12413 1938 /* If controller lockup detected, fake a hardware error. */
094963da 1939 if (unlikely(lockup_detected(h)))
a0c12413 1940 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
094963da 1941 else
a0c12413 1942 hpsa_scsi_do_simple_cmd_core(h, c);
a0c12413
SC
1943}
1944
9c2fc160 1945#define MAX_DRIVER_CMD_RETRIES 25
edd16368
SC
1946static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1947 struct CommandList *c, int data_direction)
1948{
9c2fc160 1949 int backoff_time = 10, retry_count = 0;
edd16368
SC
1950
1951 do {
7630abd0 1952 memset(c->err_info, 0, sizeof(*c->err_info));
edd16368
SC
1953 hpsa_scsi_do_simple_cmd_core(h, c);
1954 retry_count++;
9c2fc160
SC
1955 if (retry_count > 3) {
1956 msleep(backoff_time);
1957 if (backoff_time < 1000)
1958 backoff_time *= 2;
1959 }
852af20a 1960 } while ((check_for_unit_attention(h, c) ||
9c2fc160
SC
1961 check_for_busy(h, c)) &&
1962 retry_count <= MAX_DRIVER_CMD_RETRIES);
edd16368
SC
1963 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1964}
1965
d1e8beac
SC
1966static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
1967 struct CommandList *c)
edd16368 1968{
d1e8beac
SC
1969 const u8 *cdb = c->Request.CDB;
1970 const u8 *lun = c->Header.LUN.LunAddrBytes;
1971
1972 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
1973 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1974 txt, lun[0], lun[1], lun[2], lun[3],
1975 lun[4], lun[5], lun[6], lun[7],
1976 cdb[0], cdb[1], cdb[2], cdb[3],
1977 cdb[4], cdb[5], cdb[6], cdb[7],
1978 cdb[8], cdb[9], cdb[10], cdb[11],
1979 cdb[12], cdb[13], cdb[14], cdb[15]);
1980}
1981
1982static void hpsa_scsi_interpret_error(struct ctlr_info *h,
1983 struct CommandList *cp)
1984{
1985 const struct ErrorInfo *ei = cp->err_info;
edd16368 1986 struct device *d = &cp->h->pdev->dev;
d1e8beac 1987 const u8 *sd = ei->SenseInfo;
edd16368 1988
edd16368
SC
1989 switch (ei->CommandStatus) {
1990 case CMD_TARGET_STATUS:
d1e8beac
SC
1991 hpsa_print_cmd(h, "SCSI status", cp);
1992 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
1993 dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
1994 sd[2] & 0x0f, sd[12], sd[13]);
1995 else
1996 dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
edd16368
SC
1997 if (ei->ScsiStatus == 0)
1998 dev_warn(d, "SCSI status is abnormally zero. "
1999 "(probably indicates selection timeout "
2000 "reported incorrectly due to a known "
2001 "firmware bug, circa July, 2001.)\n");
2002 break;
2003 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
edd16368
SC
2004 break;
2005 case CMD_DATA_OVERRUN:
d1e8beac 2006 hpsa_print_cmd(h, "overrun condition", cp);
edd16368
SC
2007 break;
2008 case CMD_INVALID: {
2009 /* controller unfortunately reports SCSI passthru's
2010 * to non-existent targets as invalid commands.
2011 */
d1e8beac
SC
2012 hpsa_print_cmd(h, "invalid command", cp);
2013 dev_warn(d, "probably means device no longer present\n");
edd16368
SC
2014 }
2015 break;
2016 case CMD_PROTOCOL_ERR:
d1e8beac 2017 hpsa_print_cmd(h, "protocol error", cp);
edd16368
SC
2018 break;
2019 case CMD_HARDWARE_ERR:
d1e8beac 2020 hpsa_print_cmd(h, "hardware error", cp);
edd16368
SC
2021 break;
2022 case CMD_CONNECTION_LOST:
d1e8beac 2023 hpsa_print_cmd(h, "connection lost", cp);
edd16368
SC
2024 break;
2025 case CMD_ABORTED:
d1e8beac 2026 hpsa_print_cmd(h, "aborted", cp);
edd16368
SC
2027 break;
2028 case CMD_ABORT_FAILED:
d1e8beac 2029 hpsa_print_cmd(h, "abort failed", cp);
edd16368
SC
2030 break;
2031 case CMD_UNSOLICITED_ABORT:
d1e8beac 2032 hpsa_print_cmd(h, "unsolicited abort", cp);
edd16368
SC
2033 break;
2034 case CMD_TIMEOUT:
d1e8beac 2035 hpsa_print_cmd(h, "timed out", cp);
edd16368 2036 break;
1d5e2ed0 2037 case CMD_UNABORTABLE:
d1e8beac 2038 hpsa_print_cmd(h, "unabortable", cp);
1d5e2ed0 2039 break;
edd16368 2040 default:
d1e8beac
SC
2041 hpsa_print_cmd(h, "unknown status", cp);
2042 dev_warn(d, "Unknown command status %x\n",
edd16368
SC
2043 ei->CommandStatus);
2044 }
2045}
2046
2047static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
b7bb24eb 2048 u16 page, unsigned char *buf,
edd16368
SC
2049 unsigned char bufsize)
2050{
2051 int rc = IO_OK;
2052 struct CommandList *c;
2053 struct ErrorInfo *ei;
2054
2055 c = cmd_special_alloc(h);
2056
2057 if (c == NULL) { /* trouble... */
2058 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
ecd9aad4 2059 return -ENOMEM;
edd16368
SC
2060 }
2061
a2dac136
SC
2062 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2063 page, scsi3addr, TYPE_CMD)) {
2064 rc = -1;
2065 goto out;
2066 }
edd16368
SC
2067 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2068 ei = c->err_info;
2069 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 2070 hpsa_scsi_interpret_error(h, c);
edd16368
SC
2071 rc = -1;
2072 }
a2dac136 2073out:
edd16368
SC
2074 cmd_special_free(h, c);
2075 return rc;
2076}
2077
316b221a
SC
2078static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2079 unsigned char *scsi3addr, unsigned char page,
2080 struct bmic_controller_parameters *buf, size_t bufsize)
2081{
2082 int rc = IO_OK;
2083 struct CommandList *c;
2084 struct ErrorInfo *ei;
2085
2086 c = cmd_special_alloc(h);
2087
2088 if (c == NULL) { /* trouble... */
2089 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2090 return -ENOMEM;
2091 }
2092
2093 if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2094 page, scsi3addr, TYPE_CMD)) {
2095 rc = -1;
2096 goto out;
2097 }
2098 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2099 ei = c->err_info;
2100 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2101 hpsa_scsi_interpret_error(h, c);
2102 rc = -1;
2103 }
2104out:
2105 cmd_special_free(h, c);
2106 return rc;
2107 }
2108
bf711ac6
ST
2109static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2110 u8 reset_type)
edd16368
SC
2111{
2112 int rc = IO_OK;
2113 struct CommandList *c;
2114 struct ErrorInfo *ei;
2115
2116 c = cmd_special_alloc(h);
2117
2118 if (c == NULL) { /* trouble... */
2119 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
e9ea04a6 2120 return -ENOMEM;
edd16368
SC
2121 }
2122
a2dac136 2123 /* fill_cmd can't fail here, no data buffer to map. */
bf711ac6
ST
2124 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2125 scsi3addr, TYPE_MSG);
2126 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
edd16368
SC
2127 hpsa_scsi_do_simple_cmd_core(h, c);
2128 /* no unmap needed here because no data xfer. */
2129
2130 ei = c->err_info;
2131 if (ei->CommandStatus != 0) {
d1e8beac 2132 hpsa_scsi_interpret_error(h, c);
edd16368
SC
2133 rc = -1;
2134 }
2135 cmd_special_free(h, c);
2136 return rc;
2137}
2138
2139static void hpsa_get_raid_level(struct ctlr_info *h,
2140 unsigned char *scsi3addr, unsigned char *raid_level)
2141{
2142 int rc;
2143 unsigned char *buf;
2144
2145 *raid_level = RAID_UNKNOWN;
2146 buf = kzalloc(64, GFP_KERNEL);
2147 if (!buf)
2148 return;
b7bb24eb 2149 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
edd16368
SC
2150 if (rc == 0)
2151 *raid_level = buf[8];
2152 if (*raid_level > RAID_UNKNOWN)
2153 *raid_level = RAID_UNKNOWN;
2154 kfree(buf);
2155 return;
2156}
2157
283b4a9b
SC
2158#define HPSA_MAP_DEBUG
2159#ifdef HPSA_MAP_DEBUG
2160static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2161 struct raid_map_data *map_buff)
2162{
2163 struct raid_map_disk_data *dd = &map_buff->data[0];
2164 int map, row, col;
2165 u16 map_cnt, row_cnt, disks_per_row;
2166
2167 if (rc != 0)
2168 return;
2169
2ba8bfc8
SC
2170 /* Show details only if debugging has been activated. */
2171 if (h->raid_offload_debug < 2)
2172 return;
2173
283b4a9b
SC
2174 dev_info(&h->pdev->dev, "structure_size = %u\n",
2175 le32_to_cpu(map_buff->structure_size));
2176 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2177 le32_to_cpu(map_buff->volume_blk_size));
2178 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2179 le64_to_cpu(map_buff->volume_blk_cnt));
2180 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2181 map_buff->phys_blk_shift);
2182 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2183 map_buff->parity_rotation_shift);
2184 dev_info(&h->pdev->dev, "strip_size = %u\n",
2185 le16_to_cpu(map_buff->strip_size));
2186 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2187 le64_to_cpu(map_buff->disk_starting_blk));
2188 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2189 le64_to_cpu(map_buff->disk_blk_cnt));
2190 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2191 le16_to_cpu(map_buff->data_disks_per_row));
2192 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2193 le16_to_cpu(map_buff->metadata_disks_per_row));
2194 dev_info(&h->pdev->dev, "row_cnt = %u\n",
2195 le16_to_cpu(map_buff->row_cnt));
2196 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2197 le16_to_cpu(map_buff->layout_map_count));
2b08b3e9 2198 dev_info(&h->pdev->dev, "flags = 0x%x\n",
dd0e19f3 2199 le16_to_cpu(map_buff->flags));
2b08b3e9
DB
2200 dev_info(&h->pdev->dev, "encrypytion = %s\n",
2201 le16_to_cpu(map_buff->flags) &
2202 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
dd0e19f3
ST
2203 dev_info(&h->pdev->dev, "dekindex = %u\n",
2204 le16_to_cpu(map_buff->dekindex));
283b4a9b
SC
2205 map_cnt = le16_to_cpu(map_buff->layout_map_count);
2206 for (map = 0; map < map_cnt; map++) {
2207 dev_info(&h->pdev->dev, "Map%u:\n", map);
2208 row_cnt = le16_to_cpu(map_buff->row_cnt);
2209 for (row = 0; row < row_cnt; row++) {
2210 dev_info(&h->pdev->dev, " Row%u:\n", row);
2211 disks_per_row =
2212 le16_to_cpu(map_buff->data_disks_per_row);
2213 for (col = 0; col < disks_per_row; col++, dd++)
2214 dev_info(&h->pdev->dev,
2215 " D%02u: h=0x%04x xor=%u,%u\n",
2216 col, dd->ioaccel_handle,
2217 dd->xor_mult[0], dd->xor_mult[1]);
2218 disks_per_row =
2219 le16_to_cpu(map_buff->metadata_disks_per_row);
2220 for (col = 0; col < disks_per_row; col++, dd++)
2221 dev_info(&h->pdev->dev,
2222 " M%02u: h=0x%04x xor=%u,%u\n",
2223 col, dd->ioaccel_handle,
2224 dd->xor_mult[0], dd->xor_mult[1]);
2225 }
2226 }
2227}
2228#else
2229static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2230 __attribute__((unused)) int rc,
2231 __attribute__((unused)) struct raid_map_data *map_buff)
2232{
2233}
2234#endif
2235
2236static int hpsa_get_raid_map(struct ctlr_info *h,
2237 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2238{
2239 int rc = 0;
2240 struct CommandList *c;
2241 struct ErrorInfo *ei;
2242
2243 c = cmd_special_alloc(h);
2244 if (c == NULL) {
2245 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2246 return -ENOMEM;
2247 }
2248 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2249 sizeof(this_device->raid_map), 0,
2250 scsi3addr, TYPE_CMD)) {
2251 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2252 cmd_special_free(h, c);
2253 return -ENOMEM;
2254 }
2255 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2256 ei = c->err_info;
2257 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 2258 hpsa_scsi_interpret_error(h, c);
283b4a9b
SC
2259 cmd_special_free(h, c);
2260 return -1;
2261 }
2262 cmd_special_free(h, c);
2263
2264 /* @todo in the future, dynamically allocate RAID map memory */
2265 if (le32_to_cpu(this_device->raid_map.structure_size) >
2266 sizeof(this_device->raid_map)) {
2267 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2268 rc = -1;
2269 }
2270 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2271 return rc;
2272}
2273
1b70150a
SC
2274static int hpsa_vpd_page_supported(struct ctlr_info *h,
2275 unsigned char scsi3addr[], u8 page)
2276{
2277 int rc;
2278 int i;
2279 int pages;
2280 unsigned char *buf, bufsize;
2281
2282 buf = kzalloc(256, GFP_KERNEL);
2283 if (!buf)
2284 return 0;
2285
2286 /* Get the size of the page list first */
2287 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2288 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2289 buf, HPSA_VPD_HEADER_SZ);
2290 if (rc != 0)
2291 goto exit_unsupported;
2292 pages = buf[3];
2293 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2294 bufsize = pages + HPSA_VPD_HEADER_SZ;
2295 else
2296 bufsize = 255;
2297
2298 /* Get the whole VPD page list */
2299 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2300 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2301 buf, bufsize);
2302 if (rc != 0)
2303 goto exit_unsupported;
2304
2305 pages = buf[3];
2306 for (i = 1; i <= pages; i++)
2307 if (buf[3 + i] == page)
2308 goto exit_supported;
2309exit_unsupported:
2310 kfree(buf);
2311 return 0;
2312exit_supported:
2313 kfree(buf);
2314 return 1;
2315}
2316
283b4a9b
SC
2317static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2318 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2319{
2320 int rc;
2321 unsigned char *buf;
2322 u8 ioaccel_status;
2323
2324 this_device->offload_config = 0;
2325 this_device->offload_enabled = 0;
2326
2327 buf = kzalloc(64, GFP_KERNEL);
2328 if (!buf)
2329 return;
1b70150a
SC
2330 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2331 goto out;
283b4a9b 2332 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
b7bb24eb 2333 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
283b4a9b
SC
2334 if (rc != 0)
2335 goto out;
2336
2337#define IOACCEL_STATUS_BYTE 4
2338#define OFFLOAD_CONFIGURED_BIT 0x01
2339#define OFFLOAD_ENABLED_BIT 0x02
2340 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2341 this_device->offload_config =
2342 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2343 if (this_device->offload_config) {
2344 this_device->offload_enabled =
2345 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2346 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2347 this_device->offload_enabled = 0;
2348 }
2349out:
2350 kfree(buf);
2351 return;
2352}
2353
edd16368
SC
2354/* Get the device id from inquiry page 0x83 */
2355static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2356 unsigned char *device_id, int buflen)
2357{
2358 int rc;
2359 unsigned char *buf;
2360
2361 if (buflen > 16)
2362 buflen = 16;
2363 buf = kzalloc(64, GFP_KERNEL);
2364 if (!buf)
a84d794d 2365 return -ENOMEM;
b7bb24eb 2366 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
edd16368
SC
2367 if (rc == 0)
2368 memcpy(device_id, &buf[8], buflen);
2369 kfree(buf);
2370 return rc != 0;
2371}
2372
2373static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2374 struct ReportLUNdata *buf, int bufsize,
2375 int extended_response)
2376{
2377 int rc = IO_OK;
2378 struct CommandList *c;
2379 unsigned char scsi3addr[8];
2380 struct ErrorInfo *ei;
2381
2382 c = cmd_special_alloc(h);
2383 if (c == NULL) { /* trouble... */
2384 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2385 return -1;
2386 }
e89c0ae7
SC
2387 /* address the controller */
2388 memset(scsi3addr, 0, sizeof(scsi3addr));
a2dac136
SC
2389 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2390 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2391 rc = -1;
2392 goto out;
2393 }
edd16368
SC
2394 if (extended_response)
2395 c->Request.CDB[1] = extended_response;
2396 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2397 ei = c->err_info;
2398 if (ei->CommandStatus != 0 &&
2399 ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 2400 hpsa_scsi_interpret_error(h, c);
edd16368 2401 rc = -1;
283b4a9b
SC
2402 } else {
2403 if (buf->extended_response_flag != extended_response) {
2404 dev_err(&h->pdev->dev,
2405 "report luns requested format %u, got %u\n",
2406 extended_response,
2407 buf->extended_response_flag);
2408 rc = -1;
2409 }
edd16368 2410 }
a2dac136 2411out:
edd16368
SC
2412 cmd_special_free(h, c);
2413 return rc;
2414}
2415
2416static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2417 struct ReportLUNdata *buf,
2418 int bufsize, int extended_response)
2419{
2420 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2421}
2422
2423static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2424 struct ReportLUNdata *buf, int bufsize)
2425{
2426 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2427}
2428
2429static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2430 int bus, int target, int lun)
2431{
2432 device->bus = bus;
2433 device->target = target;
2434 device->lun = lun;
2435}
2436
9846590e
SC
2437/* Use VPD inquiry to get details of volume status */
2438static int hpsa_get_volume_status(struct ctlr_info *h,
2439 unsigned char scsi3addr[])
2440{
2441 int rc;
2442 int status;
2443 int size;
2444 unsigned char *buf;
2445
2446 buf = kzalloc(64, GFP_KERNEL);
2447 if (!buf)
2448 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2449
2450 /* Does controller have VPD for logical volume status? */
24a4b078 2451 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
9846590e 2452 goto exit_failed;
9846590e
SC
2453
2454 /* Get the size of the VPD return buffer */
2455 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2456 buf, HPSA_VPD_HEADER_SZ);
24a4b078 2457 if (rc != 0)
9846590e 2458 goto exit_failed;
9846590e
SC
2459 size = buf[3];
2460
2461 /* Now get the whole VPD buffer */
2462 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2463 buf, size + HPSA_VPD_HEADER_SZ);
24a4b078 2464 if (rc != 0)
9846590e 2465 goto exit_failed;
9846590e
SC
2466 status = buf[4]; /* status byte */
2467
2468 kfree(buf);
2469 return status;
2470exit_failed:
2471 kfree(buf);
2472 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2473}
2474
2475/* Determine offline status of a volume.
2476 * Return either:
2477 * 0 (not offline)
67955ba3 2478 * 0xff (offline for unknown reasons)
9846590e
SC
2479 * # (integer code indicating one of several NOT READY states
2480 * describing why a volume is to be kept offline)
2481 */
67955ba3 2482static int hpsa_volume_offline(struct ctlr_info *h,
9846590e
SC
2483 unsigned char scsi3addr[])
2484{
2485 struct CommandList *c;
2486 unsigned char *sense, sense_key, asc, ascq;
2487 int ldstat = 0;
2488 u16 cmd_status;
2489 u8 scsi_status;
2490#define ASC_LUN_NOT_READY 0x04
2491#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2492#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2493
2494 c = cmd_alloc(h);
2495 if (!c)
2496 return 0;
2497 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2498 hpsa_scsi_do_simple_cmd_core(h, c);
2499 sense = c->err_info->SenseInfo;
2500 sense_key = sense[2];
2501 asc = sense[12];
2502 ascq = sense[13];
2503 cmd_status = c->err_info->CommandStatus;
2504 scsi_status = c->err_info->ScsiStatus;
2505 cmd_free(h, c);
2506 /* Is the volume 'not ready'? */
2507 if (cmd_status != CMD_TARGET_STATUS ||
2508 scsi_status != SAM_STAT_CHECK_CONDITION ||
2509 sense_key != NOT_READY ||
2510 asc != ASC_LUN_NOT_READY) {
2511 return 0;
2512 }
2513
2514 /* Determine the reason for not ready state */
2515 ldstat = hpsa_get_volume_status(h, scsi3addr);
2516
2517 /* Keep volume offline in certain cases: */
2518 switch (ldstat) {
2519 case HPSA_LV_UNDERGOING_ERASE:
2520 case HPSA_LV_UNDERGOING_RPI:
2521 case HPSA_LV_PENDING_RPI:
2522 case HPSA_LV_ENCRYPTED_NO_KEY:
2523 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2524 case HPSA_LV_UNDERGOING_ENCRYPTION:
2525 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2526 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2527 return ldstat;
2528 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2529 /* If VPD status page isn't available,
2530 * use ASC/ASCQ to determine state
2531 */
2532 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2533 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2534 return ldstat;
2535 break;
2536 default:
2537 break;
2538 }
2539 return 0;
2540}
2541
edd16368 2542static int hpsa_update_device_info(struct ctlr_info *h,
0b0e1d6c
SC
2543 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2544 unsigned char *is_OBDR_device)
edd16368 2545{
0b0e1d6c
SC
2546
2547#define OBDR_SIG_OFFSET 43
2548#define OBDR_TAPE_SIG "$DR-10"
2549#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2550#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2551
ea6d3bc3 2552 unsigned char *inq_buff;
0b0e1d6c 2553 unsigned char *obdr_sig;
edd16368 2554
ea6d3bc3 2555 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
edd16368
SC
2556 if (!inq_buff)
2557 goto bail_out;
2558
edd16368
SC
2559 /* Do an inquiry to the device to see what it is. */
2560 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2561 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2562 /* Inquiry failed (msg printed already) */
2563 dev_err(&h->pdev->dev,
2564 "hpsa_update_device_info: inquiry failed\n");
2565 goto bail_out;
2566 }
2567
edd16368
SC
2568 this_device->devtype = (inq_buff[0] & 0x1f);
2569 memcpy(this_device->scsi3addr, scsi3addr, 8);
2570 memcpy(this_device->vendor, &inq_buff[8],
2571 sizeof(this_device->vendor));
2572 memcpy(this_device->model, &inq_buff[16],
2573 sizeof(this_device->model));
edd16368
SC
2574 memset(this_device->device_id, 0,
2575 sizeof(this_device->device_id));
2576 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2577 sizeof(this_device->device_id));
2578
2579 if (this_device->devtype == TYPE_DISK &&
283b4a9b 2580 is_logical_dev_addr_mode(scsi3addr)) {
67955ba3
SC
2581 int volume_offline;
2582
edd16368 2583 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
283b4a9b
SC
2584 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2585 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
67955ba3
SC
2586 volume_offline = hpsa_volume_offline(h, scsi3addr);
2587 if (volume_offline < 0 || volume_offline > 0xff)
2588 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2589 this_device->volume_offline = volume_offline & 0xff;
283b4a9b 2590 } else {
edd16368 2591 this_device->raid_level = RAID_UNKNOWN;
283b4a9b
SC
2592 this_device->offload_config = 0;
2593 this_device->offload_enabled = 0;
9846590e 2594 this_device->volume_offline = 0;
283b4a9b 2595 }
edd16368 2596
0b0e1d6c
SC
2597 if (is_OBDR_device) {
2598 /* See if this is a One-Button-Disaster-Recovery device
2599 * by looking for "$DR-10" at offset 43 in inquiry data.
2600 */
2601 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2602 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2603 strncmp(obdr_sig, OBDR_TAPE_SIG,
2604 OBDR_SIG_LEN) == 0);
2605 }
2606
edd16368
SC
2607 kfree(inq_buff);
2608 return 0;
2609
2610bail_out:
2611 kfree(inq_buff);
2612 return 1;
2613}
2614
4f4eb9f1 2615static unsigned char *ext_target_model[] = {
edd16368
SC
2616 "MSA2012",
2617 "MSA2024",
2618 "MSA2312",
2619 "MSA2324",
fda38518 2620 "P2000 G3 SAS",
e06c8e5c 2621 "MSA 2040 SAS",
edd16368
SC
2622 NULL,
2623};
2624
4f4eb9f1 2625static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
edd16368
SC
2626{
2627 int i;
2628
4f4eb9f1
ST
2629 for (i = 0; ext_target_model[i]; i++)
2630 if (strncmp(device->model, ext_target_model[i],
2631 strlen(ext_target_model[i])) == 0)
edd16368
SC
2632 return 1;
2633 return 0;
2634}
2635
2636/* Helper function to assign bus, target, lun mapping of devices.
4f4eb9f1 2637 * Puts non-external target logical volumes on bus 0, external target logical
edd16368
SC
2638 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2639 * Logical drive target and lun are assigned at this time, but
2640 * physical device lun and target assignment are deferred (assigned
2641 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2642 */
2643static void figure_bus_target_lun(struct ctlr_info *h,
1f310bde 2644 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
edd16368 2645{
1f310bde
SC
2646 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2647
2648 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2649 /* physical device, target and lun filled in later */
edd16368 2650 if (is_hba_lunid(lunaddrbytes))
1f310bde 2651 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
edd16368 2652 else
1f310bde
SC
2653 /* defer target, lun assignment for physical devices */
2654 hpsa_set_bus_target_lun(device, 2, -1, -1);
2655 return;
2656 }
2657 /* It's a logical device */
4f4eb9f1
ST
2658 if (is_ext_target(h, device)) {
2659 /* external target way, put logicals on bus 1
1f310bde
SC
2660 * and match target/lun numbers box
2661 * reports, other smart array, bus 0, target 0, match lunid
2662 */
2663 hpsa_set_bus_target_lun(device,
2664 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2665 return;
edd16368 2666 }
1f310bde 2667 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
edd16368
SC
2668}
2669
2670/*
2671 * If there is no lun 0 on a target, linux won't find any devices.
4f4eb9f1 2672 * For the external targets (arrays), we have to manually detect the enclosure
edd16368
SC
2673 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2674 * it for some reason. *tmpdevice is the target we're adding,
2675 * this_device is a pointer into the current element of currentsd[]
2676 * that we're building up in update_scsi_devices(), below.
2677 * lunzerobits is a bitmap that tracks which targets already have a
2678 * lun 0 assigned.
2679 * Returns 1 if an enclosure was added, 0 if not.
2680 */
4f4eb9f1 2681static int add_ext_target_dev(struct ctlr_info *h,
edd16368 2682 struct hpsa_scsi_dev_t *tmpdevice,
01a02ffc 2683 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
4f4eb9f1 2684 unsigned long lunzerobits[], int *n_ext_target_devs)
edd16368
SC
2685{
2686 unsigned char scsi3addr[8];
2687
1f310bde 2688 if (test_bit(tmpdevice->target, lunzerobits))
edd16368
SC
2689 return 0; /* There is already a lun 0 on this target. */
2690
2691 if (!is_logical_dev_addr_mode(lunaddrbytes))
2692 return 0; /* It's the logical targets that may lack lun 0. */
2693
4f4eb9f1
ST
2694 if (!is_ext_target(h, tmpdevice))
2695 return 0; /* Only external target devices have this problem. */
edd16368 2696
1f310bde 2697 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
edd16368
SC
2698 return 0;
2699
c4f8a299 2700 memset(scsi3addr, 0, 8);
1f310bde 2701 scsi3addr[3] = tmpdevice->target;
edd16368
SC
2702 if (is_hba_lunid(scsi3addr))
2703 return 0; /* Don't add the RAID controller here. */
2704
339b2b14
SC
2705 if (is_scsi_rev_5(h))
2706 return 0; /* p1210m doesn't need to do this. */
2707
4f4eb9f1 2708 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
aca4a520
ST
2709 dev_warn(&h->pdev->dev, "Maximum number of external "
2710 "target devices exceeded. Check your hardware "
edd16368
SC
2711 "configuration.");
2712 return 0;
2713 }
2714
0b0e1d6c 2715 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
edd16368 2716 return 0;
4f4eb9f1 2717 (*n_ext_target_devs)++;
1f310bde
SC
2718 hpsa_set_bus_target_lun(this_device,
2719 tmpdevice->bus, tmpdevice->target, 0);
2720 set_bit(tmpdevice->target, lunzerobits);
edd16368
SC
2721 return 1;
2722}
2723
54b6e9e9
ST
2724/*
2725 * Get address of physical disk used for an ioaccel2 mode command:
2726 * 1. Extract ioaccel2 handle from the command.
2727 * 2. Find a matching ioaccel2 handle from list of physical disks.
2728 * 3. Return:
2729 * 1 and set scsi3addr to address of matching physical
2730 * 0 if no matching physical disk was found.
2731 */
2732static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2733 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2734{
2735 struct ReportExtendedLUNdata *physicals = NULL;
2736 int responsesize = 24; /* size of physical extended response */
2737 int extended = 2; /* flag forces reporting 'other dev info'. */
2738 int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2739 u32 nphysicals = 0; /* number of reported physical devs */
2740 int found = 0; /* found match (1) or not (0) */
2741 u32 find; /* handle we need to match */
2742 int i;
2743 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
2744 struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2745 struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2b08b3e9
DB
2746 __le32 it_nexus; /* 4 byte device handle for the ioaccel2 cmd */
2747 __le32 scsi_nexus; /* 4 byte device handle for the ioaccel2 cmd */
54b6e9e9
ST
2748
2749 if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2750 return 0; /* no match */
2751
2752 /* point to the ioaccel2 device handle */
2753 c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2754 if (c2a == NULL)
2755 return 0; /* no match */
2756
2757 scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2758 if (scmd == NULL)
2759 return 0; /* no match */
2760
2761 d = scmd->device->hostdata;
2762 if (d == NULL)
2763 return 0; /* no match */
2764
50a0decf 2765 it_nexus = cpu_to_le32(d->ioaccel_handle);
2b08b3e9
DB
2766 scsi_nexus = c2a->scsi_nexus;
2767 find = le32_to_cpu(c2a->scsi_nexus);
54b6e9e9 2768
2ba8bfc8
SC
2769 if (h->raid_offload_debug > 0)
2770 dev_info(&h->pdev->dev,
2771 "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2772 __func__, scsi_nexus,
2773 d->device_id[0], d->device_id[1], d->device_id[2],
2774 d->device_id[3], d->device_id[4], d->device_id[5],
2775 d->device_id[6], d->device_id[7], d->device_id[8],
2776 d->device_id[9], d->device_id[10], d->device_id[11],
2777 d->device_id[12], d->device_id[13], d->device_id[14],
2778 d->device_id[15]);
2779
54b6e9e9
ST
2780 /* Get the list of physical devices */
2781 physicals = kzalloc(reportsize, GFP_KERNEL);
3b51a7a3
JH
2782 if (physicals == NULL)
2783 return 0;
54b6e9e9
ST
2784 if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2785 reportsize, extended)) {
2786 dev_err(&h->pdev->dev,
2787 "Can't lookup %s device handle: report physical LUNs failed.\n",
2788 "HP SSD Smart Path");
2789 kfree(physicals);
2790 return 0;
2791 }
2792 nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2793 responsesize;
2794
54b6e9e9
ST
2795 /* find ioaccel2 handle in list of physicals: */
2796 for (i = 0; i < nphysicals; i++) {
d5b5d964
SC
2797 struct ext_report_lun_entry *entry = &physicals->LUN[i];
2798
54b6e9e9 2799 /* handle is in bytes 28-31 of each lun */
d5b5d964 2800 if (entry->ioaccel_handle != find)
54b6e9e9 2801 continue; /* didn't match */
54b6e9e9 2802 found = 1;
d5b5d964 2803 memcpy(scsi3addr, entry->lunid, 8);
2ba8bfc8
SC
2804 if (h->raid_offload_debug > 0)
2805 dev_info(&h->pdev->dev,
d5b5d964 2806 "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2ba8bfc8 2807 __func__, find,
d5b5d964 2808 entry->ioaccel_handle, scsi3addr);
54b6e9e9
ST
2809 break; /* found it */
2810 }
2811
2812 kfree(physicals);
2813 if (found)
2814 return 1;
2815 else
2816 return 0;
2817
2818}
edd16368
SC
2819/*
2820 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
2821 * logdev. The number of luns in physdev and logdev are returned in
2822 * *nphysicals and *nlogicals, respectively.
2823 * Returns 0 on success, -1 otherwise.
2824 */
2825static int hpsa_gather_lun_info(struct ctlr_info *h,
92084715 2826 int reportphyslunsize, int reportloglunsize,
283b4a9b 2827 struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
01a02ffc 2828 struct ReportLUNdata *logdev, u32 *nlogicals)
edd16368 2829{
283b4a9b
SC
2830 int physical_entry_size = 8;
2831
2832 *physical_mode = 0;
2833
2834 /* For I/O accelerator mode we need to read physical device handles */
317d4adf
MM
2835 if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2836 h->transMethod & CFGTBL_Trans_io_accel2) {
283b4a9b
SC
2837 *physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2838 physical_entry_size = 24;
2839 }
92084715 2840 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportphyslunsize,
283b4a9b 2841 *physical_mode)) {
edd16368
SC
2842 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2843 return -1;
2844 }
283b4a9b
SC
2845 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2846 physical_entry_size;
edd16368
SC
2847 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2848 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2849 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2850 *nphysicals - HPSA_MAX_PHYS_LUN);
2851 *nphysicals = HPSA_MAX_PHYS_LUN;
2852 }
92084715 2853 if (hpsa_scsi_do_report_log_luns(h, logdev, reportloglunsize)) {
edd16368
SC
2854 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2855 return -1;
2856 }
6df1e954 2857 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
edd16368
SC
2858 /* Reject Logicals in excess of our max capability. */
2859 if (*nlogicals > HPSA_MAX_LUN) {
2860 dev_warn(&h->pdev->dev,
2861 "maximum logical LUNs (%d) exceeded. "
2862 "%d LUNs ignored.\n", HPSA_MAX_LUN,
2863 *nlogicals - HPSA_MAX_LUN);
2864 *nlogicals = HPSA_MAX_LUN;
2865 }
2866 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2867 dev_warn(&h->pdev->dev,
2868 "maximum logical + physical LUNs (%d) exceeded. "
2869 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2870 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2871 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2872 }
2873 return 0;
2874}
2875
42a91641
DB
2876static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
2877 int i, int nphysicals, int nlogicals,
a93aa1fe 2878 struct ReportExtendedLUNdata *physdev_list,
339b2b14
SC
2879 struct ReportLUNdata *logdev_list)
2880{
2881 /* Helper function, figure out where the LUN ID info is coming from
2882 * given index i, lists of physical and logical devices, where in
2883 * the list the raid controller is supposed to appear (first or last)
2884 */
2885
2886 int logicals_start = nphysicals + (raid_ctlr_position == 0);
2887 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2888
2889 if (i == raid_ctlr_position)
2890 return RAID_CTLR_LUNID;
2891
2892 if (i < logicals_start)
d5b5d964
SC
2893 return &physdev_list->LUN[i -
2894 (raid_ctlr_position == 0)].lunid[0];
339b2b14
SC
2895
2896 if (i < last_device)
2897 return &logdev_list->LUN[i - nphysicals -
2898 (raid_ctlr_position == 0)][0];
2899 BUG();
2900 return NULL;
2901}
2902
316b221a
SC
2903static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2904{
2905 int rc;
6e8e8088 2906 int hba_mode_enabled;
316b221a
SC
2907 struct bmic_controller_parameters *ctlr_params;
2908 ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2909 GFP_KERNEL);
2910
2911 if (!ctlr_params)
96444fbb 2912 return -ENOMEM;
316b221a
SC
2913 rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2914 sizeof(struct bmic_controller_parameters));
96444fbb 2915 if (rc) {
316b221a 2916 kfree(ctlr_params);
96444fbb 2917 return rc;
316b221a 2918 }
6e8e8088
JH
2919
2920 hba_mode_enabled =
2921 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
2922 kfree(ctlr_params);
2923 return hba_mode_enabled;
316b221a
SC
2924}
2925
edd16368
SC
2926static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2927{
2928 /* the idea here is we could get notified
2929 * that some devices have changed, so we do a report
2930 * physical luns and report logical luns cmd, and adjust
2931 * our list of devices accordingly.
2932 *
2933 * The scsi3addr's of devices won't change so long as the
2934 * adapter is not reset. That means we can rescan and
2935 * tell which devices we already know about, vs. new
2936 * devices, vs. disappearing devices.
2937 */
a93aa1fe 2938 struct ReportExtendedLUNdata *physdev_list = NULL;
edd16368 2939 struct ReportLUNdata *logdev_list = NULL;
01a02ffc
SC
2940 u32 nphysicals = 0;
2941 u32 nlogicals = 0;
283b4a9b 2942 int physical_mode = 0;
01a02ffc 2943 u32 ndev_allocated = 0;
edd16368
SC
2944 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
2945 int ncurrent = 0;
4f4eb9f1 2946 int i, n_ext_target_devs, ndevs_to_allocate;
339b2b14 2947 int raid_ctlr_position;
2bbf5c7f 2948 int rescan_hba_mode;
aca4a520 2949 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
edd16368 2950
cfe5badc 2951 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
92084715
SC
2952 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
2953 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
edd16368
SC
2954 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
2955
0b0e1d6c 2956 if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
edd16368
SC
2957 dev_err(&h->pdev->dev, "out of memory\n");
2958 goto out;
2959 }
2960 memset(lunzerobits, 0, sizeof(lunzerobits));
2961
316b221a 2962 rescan_hba_mode = hpsa_hba_mode_enabled(h);
96444fbb
JH
2963 if (rescan_hba_mode < 0)
2964 goto out;
316b221a
SC
2965
2966 if (!h->hba_mode_enabled && rescan_hba_mode)
2967 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
2968 else if (h->hba_mode_enabled && !rescan_hba_mode)
2969 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
2970
2971 h->hba_mode_enabled = rescan_hba_mode;
2972
92084715
SC
2973 if (hpsa_gather_lun_info(h,
2974 sizeof(*physdev_list), sizeof(*logdev_list),
a93aa1fe 2975 (struct ReportLUNdata *) physdev_list, &nphysicals,
283b4a9b 2976 &physical_mode, logdev_list, &nlogicals))
edd16368
SC
2977 goto out;
2978
aca4a520
ST
2979 /* We might see up to the maximum number of logical and physical disks
2980 * plus external target devices, and a device for the local RAID
2981 * controller.
edd16368 2982 */
aca4a520 2983 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
edd16368
SC
2984
2985 /* Allocate the per device structures */
2986 for (i = 0; i < ndevs_to_allocate; i++) {
b7ec021f
ST
2987 if (i >= HPSA_MAX_DEVICES) {
2988 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
2989 " %d devices ignored.\n", HPSA_MAX_DEVICES,
2990 ndevs_to_allocate - HPSA_MAX_DEVICES);
2991 break;
2992 }
2993
edd16368
SC
2994 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2995 if (!currentsd[i]) {
2996 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2997 __FILE__, __LINE__);
2998 goto out;
2999 }
3000 ndev_allocated++;
3001 }
3002
8645291b 3003 if (is_scsi_rev_5(h))
339b2b14
SC
3004 raid_ctlr_position = 0;
3005 else
3006 raid_ctlr_position = nphysicals + nlogicals;
3007
edd16368 3008 /* adjust our table of devices */
4f4eb9f1 3009 n_ext_target_devs = 0;
edd16368 3010 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
0b0e1d6c 3011 u8 *lunaddrbytes, is_OBDR = 0;
edd16368
SC
3012
3013 /* Figure out where the LUN ID info is coming from */
339b2b14
SC
3014 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3015 i, nphysicals, nlogicals, physdev_list, logdev_list);
edd16368 3016 /* skip masked physical devices. */
339b2b14
SC
3017 if (lunaddrbytes[3] & 0xC0 &&
3018 i < nphysicals + (raid_ctlr_position == 0))
edd16368
SC
3019 continue;
3020
3021 /* Get device type, vendor, model, device id */
0b0e1d6c
SC
3022 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3023 &is_OBDR))
edd16368 3024 continue; /* skip it if we can't talk to it. */
1f310bde 3025 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
edd16368
SC
3026 this_device = currentsd[ncurrent];
3027
3028 /*
4f4eb9f1 3029 * For external target devices, we have to insert a LUN 0 which
edd16368
SC
3030 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3031 * is nonetheless an enclosure device there. We have to
3032 * present that otherwise linux won't find anything if
3033 * there is no lun 0.
3034 */
4f4eb9f1 3035 if (add_ext_target_dev(h, tmpdevice, this_device,
1f310bde 3036 lunaddrbytes, lunzerobits,
4f4eb9f1 3037 &n_ext_target_devs)) {
edd16368
SC
3038 ncurrent++;
3039 this_device = currentsd[ncurrent];
3040 }
3041
3042 *this_device = *tmpdevice;
edd16368
SC
3043
3044 switch (this_device->devtype) {
0b0e1d6c 3045 case TYPE_ROM:
edd16368
SC
3046 /* We don't *really* support actual CD-ROM devices,
3047 * just "One Button Disaster Recovery" tape drive
3048 * which temporarily pretends to be a CD-ROM drive.
3049 * So we check that the device is really an OBDR tape
3050 * device by checking for "$DR-10" in bytes 43-48 of
3051 * the inquiry data.
3052 */
0b0e1d6c
SC
3053 if (is_OBDR)
3054 ncurrent++;
edd16368
SC
3055 break;
3056 case TYPE_DISK:
316b221a
SC
3057 if (h->hba_mode_enabled) {
3058 /* never use raid mapper in HBA mode */
3059 this_device->offload_enabled = 0;
3060 ncurrent++;
3061 break;
3062 } else if (h->acciopath_status) {
3063 if (i >= nphysicals) {
3064 ncurrent++;
3065 break;
3066 }
3067 } else {
3068 if (i < nphysicals)
3069 break;
283b4a9b 3070 ncurrent++;
edd16368 3071 break;
283b4a9b
SC
3072 }
3073 if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3074 memcpy(&this_device->ioaccel_handle,
3075 &lunaddrbytes[20],
3076 sizeof(this_device->ioaccel_handle));
3077 ncurrent++;
3078 }
edd16368
SC
3079 break;
3080 case TYPE_TAPE:
3081 case TYPE_MEDIUM_CHANGER:
3082 ncurrent++;
3083 break;
3084 case TYPE_RAID:
3085 /* Only present the Smartarray HBA as a RAID controller.
3086 * If it's a RAID controller other than the HBA itself
3087 * (an external RAID controller, MSA500 or similar)
3088 * don't present it.
3089 */
3090 if (!is_hba_lunid(lunaddrbytes))
3091 break;
3092 ncurrent++;
3093 break;
3094 default:
3095 break;
3096 }
cfe5badc 3097 if (ncurrent >= HPSA_MAX_DEVICES)
edd16368
SC
3098 break;
3099 }
3100 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3101out:
3102 kfree(tmpdevice);
3103 for (i = 0; i < ndev_allocated; i++)
3104 kfree(currentsd[i]);
3105 kfree(currentsd);
edd16368
SC
3106 kfree(physdev_list);
3107 kfree(logdev_list);
edd16368
SC
3108}
3109
c7ee65b3
WS
3110/*
3111 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
edd16368
SC
3112 * dma mapping and fills in the scatter gather entries of the
3113 * hpsa command, cp.
3114 */
33a2ffce 3115static int hpsa_scatter_gather(struct ctlr_info *h,
edd16368
SC
3116 struct CommandList *cp,
3117 struct scsi_cmnd *cmd)
3118{
3119 unsigned int len;
3120 struct scatterlist *sg;
01a02ffc 3121 u64 addr64;
33a2ffce
SC
3122 int use_sg, i, sg_index, chained;
3123 struct SGDescriptor *curr_sg;
edd16368 3124
33a2ffce 3125 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
edd16368
SC
3126
3127 use_sg = scsi_dma_map(cmd);
3128 if (use_sg < 0)
3129 return use_sg;
3130
3131 if (!use_sg)
3132 goto sglist_finished;
3133
33a2ffce
SC
3134 curr_sg = cp->SG;
3135 chained = 0;
3136 sg_index = 0;
edd16368 3137 scsi_for_each_sg(cmd, sg, use_sg, i) {
33a2ffce
SC
3138 if (i == h->max_cmd_sg_entries - 1 &&
3139 use_sg > h->max_cmd_sg_entries) {
3140 chained = 1;
3141 curr_sg = h->cmd_sg_list[cp->cmdindex];
3142 sg_index = 0;
3143 }
01a02ffc 3144 addr64 = (u64) sg_dma_address(sg);
edd16368 3145 len = sg_dma_len(sg);
50a0decf
SC
3146 curr_sg->Addr = cpu_to_le64(addr64);
3147 curr_sg->Len = cpu_to_le32(len);
3148 curr_sg->Ext = cpu_to_le32(0);
33a2ffce
SC
3149 curr_sg++;
3150 }
50a0decf 3151 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
33a2ffce
SC
3152
3153 if (use_sg + chained > h->maxSG)
3154 h->maxSG = use_sg + chained;
3155
3156 if (chained) {
3157 cp->Header.SGList = h->max_cmd_sg_entries;
50a0decf 3158 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
e2bea6df
SC
3159 if (hpsa_map_sg_chain_block(h, cp)) {
3160 scsi_dma_unmap(cmd);
3161 return -1;
3162 }
33a2ffce 3163 return 0;
edd16368
SC
3164 }
3165
3166sglist_finished:
3167
01a02ffc 3168 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
c7ee65b3 3169 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
edd16368
SC
3170 return 0;
3171}
3172
283b4a9b
SC
3173#define IO_ACCEL_INELIGIBLE (1)
3174static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3175{
3176 int is_write = 0;
3177 u32 block;
3178 u32 block_cnt;
3179
3180 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3181 switch (cdb[0]) {
3182 case WRITE_6:
3183 case WRITE_12:
3184 is_write = 1;
3185 case READ_6:
3186 case READ_12:
3187 if (*cdb_len == 6) {
3188 block = (((u32) cdb[2]) << 8) | cdb[3];
3189 block_cnt = cdb[4];
3190 } else {
3191 BUG_ON(*cdb_len != 12);
3192 block = (((u32) cdb[2]) << 24) |
3193 (((u32) cdb[3]) << 16) |
3194 (((u32) cdb[4]) << 8) |
3195 cdb[5];
3196 block_cnt =
3197 (((u32) cdb[6]) << 24) |
3198 (((u32) cdb[7]) << 16) |
3199 (((u32) cdb[8]) << 8) |
3200 cdb[9];
3201 }
3202 if (block_cnt > 0xffff)
3203 return IO_ACCEL_INELIGIBLE;
3204
3205 cdb[0] = is_write ? WRITE_10 : READ_10;
3206 cdb[1] = 0;
3207 cdb[2] = (u8) (block >> 24);
3208 cdb[3] = (u8) (block >> 16);
3209 cdb[4] = (u8) (block >> 8);
3210 cdb[5] = (u8) (block);
3211 cdb[6] = 0;
3212 cdb[7] = (u8) (block_cnt >> 8);
3213 cdb[8] = (u8) (block_cnt);
3214 cdb[9] = 0;
3215 *cdb_len = 10;
3216 break;
3217 }
3218 return 0;
3219}
3220
c349775e 3221static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
283b4a9b
SC
3222 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3223 u8 *scsi3addr)
e1f7de0c
MG
3224{
3225 struct scsi_cmnd *cmd = c->scsi_cmd;
e1f7de0c
MG
3226 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3227 unsigned int len;
3228 unsigned int total_len = 0;
3229 struct scatterlist *sg;
3230 u64 addr64;
3231 int use_sg, i;
3232 struct SGDescriptor *curr_sg;
3233 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3234
283b4a9b
SC
3235 /* TODO: implement chaining support */
3236 if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3237 return IO_ACCEL_INELIGIBLE;
3238
e1f7de0c
MG
3239 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3240
283b4a9b
SC
3241 if (fixup_ioaccel_cdb(cdb, &cdb_len))
3242 return IO_ACCEL_INELIGIBLE;
3243
e1f7de0c
MG
3244 c->cmd_type = CMD_IOACCEL1;
3245
3246 /* Adjust the DMA address to point to the accelerated command buffer */
3247 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3248 (c->cmdindex * sizeof(*cp));
3249 BUG_ON(c->busaddr & 0x0000007F);
3250
3251 use_sg = scsi_dma_map(cmd);
3252 if (use_sg < 0)
3253 return use_sg;
3254
3255 if (use_sg) {
3256 curr_sg = cp->SG;
3257 scsi_for_each_sg(cmd, sg, use_sg, i) {
3258 addr64 = (u64) sg_dma_address(sg);
3259 len = sg_dma_len(sg);
3260 total_len += len;
50a0decf
SC
3261 curr_sg->Addr = cpu_to_le64(addr64);
3262 curr_sg->Len = cpu_to_le32(len);
3263 curr_sg->Ext = cpu_to_le32(0);
e1f7de0c
MG
3264 curr_sg++;
3265 }
50a0decf 3266 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
e1f7de0c
MG
3267
3268 switch (cmd->sc_data_direction) {
3269 case DMA_TO_DEVICE:
3270 control |= IOACCEL1_CONTROL_DATA_OUT;
3271 break;
3272 case DMA_FROM_DEVICE:
3273 control |= IOACCEL1_CONTROL_DATA_IN;
3274 break;
3275 case DMA_NONE:
3276 control |= IOACCEL1_CONTROL_NODATAXFER;
3277 break;
3278 default:
3279 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3280 cmd->sc_data_direction);
3281 BUG();
3282 break;
3283 }
3284 } else {
3285 control |= IOACCEL1_CONTROL_NODATAXFER;
3286 }
3287
c349775e 3288 c->Header.SGList = use_sg;
e1f7de0c 3289 /* Fill out the command structure to submit */
2b08b3e9
DB
3290 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
3291 cp->transfer_len = cpu_to_le32(total_len);
3292 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
3293 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
3294 cp->control = cpu_to_le32(control);
283b4a9b
SC
3295 memcpy(cp->CDB, cdb, cdb_len);
3296 memcpy(cp->CISS_LUN, scsi3addr, 8);
c349775e 3297 /* Tag was already set at init time. */
283b4a9b 3298 enqueue_cmd_and_start_io(h, c);
e1f7de0c
MG
3299 return 0;
3300}
edd16368 3301
283b4a9b
SC
3302/*
3303 * Queue a command directly to a device behind the controller using the
3304 * I/O accelerator path.
3305 */
3306static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3307 struct CommandList *c)
3308{
3309 struct scsi_cmnd *cmd = c->scsi_cmd;
3310 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3311
3312 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3313 cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3314}
3315
dd0e19f3
ST
3316/*
3317 * Set encryption parameters for the ioaccel2 request
3318 */
3319static void set_encrypt_ioaccel2(struct ctlr_info *h,
3320 struct CommandList *c, struct io_accel2_cmd *cp)
3321{
3322 struct scsi_cmnd *cmd = c->scsi_cmd;
3323 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3324 struct raid_map_data *map = &dev->raid_map;
3325 u64 first_block;
3326
3327 BUG_ON(!(dev->offload_config && dev->offload_enabled));
3328
3329 /* Are we doing encryption on this device */
2b08b3e9 3330 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
dd0e19f3
ST
3331 return;
3332 /* Set the data encryption key index. */
3333 cp->dekindex = map->dekindex;
3334
3335 /* Set the encryption enable flag, encoded into direction field. */
3336 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3337
3338 /* Set encryption tweak values based on logical block address
3339 * If block size is 512, tweak value is LBA.
3340 * For other block sizes, tweak is (LBA * block size)/ 512)
3341 */
3342 switch (cmd->cmnd[0]) {
3343 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3344 case WRITE_6:
3345 case READ_6:
2b08b3e9 3346 first_block = get_unaligned_be16(&cmd->cmnd[2]);
dd0e19f3
ST
3347 break;
3348 case WRITE_10:
3349 case READ_10:
dd0e19f3
ST
3350 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3351 case WRITE_12:
3352 case READ_12:
2b08b3e9 3353 first_block = get_unaligned_be32(&cmd->cmnd[2]);
dd0e19f3
ST
3354 break;
3355 case WRITE_16:
3356 case READ_16:
2b08b3e9 3357 first_block = get_unaligned_be64(&cmd->cmnd[2]);
dd0e19f3
ST
3358 break;
3359 default:
3360 dev_err(&h->pdev->dev,
2b08b3e9
DB
3361 "ERROR: %s: size (0x%x) not supported for encryption\n",
3362 __func__, cmd->cmnd[0]);
dd0e19f3
ST
3363 BUG();
3364 break;
3365 }
2b08b3e9
DB
3366
3367 if (le32_to_cpu(map->volume_blk_size) != 512)
3368 first_block = first_block *
3369 le32_to_cpu(map->volume_blk_size)/512;
3370
3371 cp->tweak_lower = cpu_to_le32(first_block);
3372 cp->tweak_upper = cpu_to_le32(first_block >> 32);
dd0e19f3
ST
3373}
3374
c349775e
ST
3375static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3376 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3377 u8 *scsi3addr)
3378{
3379 struct scsi_cmnd *cmd = c->scsi_cmd;
3380 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3381 struct ioaccel2_sg_element *curr_sg;
3382 int use_sg, i;
3383 struct scatterlist *sg;
3384 u64 addr64;
3385 u32 len;
3386 u32 total_len = 0;
3387
3388 if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3389 return IO_ACCEL_INELIGIBLE;
3390
3391 if (fixup_ioaccel_cdb(cdb, &cdb_len))
3392 return IO_ACCEL_INELIGIBLE;
3393 c->cmd_type = CMD_IOACCEL2;
3394 /* Adjust the DMA address to point to the accelerated command buffer */
3395 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3396 (c->cmdindex * sizeof(*cp));
3397 BUG_ON(c->busaddr & 0x0000007F);
3398
3399 memset(cp, 0, sizeof(*cp));
3400 cp->IU_type = IOACCEL2_IU_TYPE;
3401
3402 use_sg = scsi_dma_map(cmd);
3403 if (use_sg < 0)
3404 return use_sg;
3405
3406 if (use_sg) {
3407 BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3408 curr_sg = cp->sg;
3409 scsi_for_each_sg(cmd, sg, use_sg, i) {
3410 addr64 = (u64) sg_dma_address(sg);
3411 len = sg_dma_len(sg);
3412 total_len += len;
3413 curr_sg->address = cpu_to_le64(addr64);
3414 curr_sg->length = cpu_to_le32(len);
3415 curr_sg->reserved[0] = 0;
3416 curr_sg->reserved[1] = 0;
3417 curr_sg->reserved[2] = 0;
3418 curr_sg->chain_indicator = 0;
3419 curr_sg++;
3420 }
3421
3422 switch (cmd->sc_data_direction) {
3423 case DMA_TO_DEVICE:
dd0e19f3
ST
3424 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3425 cp->direction |= IOACCEL2_DIR_DATA_OUT;
c349775e
ST
3426 break;
3427 case DMA_FROM_DEVICE:
dd0e19f3
ST
3428 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3429 cp->direction |= IOACCEL2_DIR_DATA_IN;
c349775e
ST
3430 break;
3431 case DMA_NONE:
dd0e19f3
ST
3432 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3433 cp->direction |= IOACCEL2_DIR_NO_DATA;
c349775e
ST
3434 break;
3435 default:
3436 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3437 cmd->sc_data_direction);
3438 BUG();
3439 break;
3440 }
3441 } else {
dd0e19f3
ST
3442 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3443 cp->direction |= IOACCEL2_DIR_NO_DATA;
c349775e 3444 }
dd0e19f3
ST
3445
3446 /* Set encryption parameters, if necessary */
3447 set_encrypt_ioaccel2(h, c, cp);
3448
2b08b3e9
DB
3449 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3450 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT |
3451 DIRECT_LOOKUP_BIT);
c349775e 3452 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
c349775e
ST
3453
3454 /* fill in sg elements */
3455 cp->sg_count = (u8) use_sg;
3456
3457 cp->data_len = cpu_to_le32(total_len);
3458 cp->err_ptr = cpu_to_le64(c->busaddr +
3459 offsetof(struct io_accel2_cmd, error_data));
50a0decf 3460 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
c349775e
ST
3461
3462 enqueue_cmd_and_start_io(h, c);
3463 return 0;
3464}
3465
3466/*
3467 * Queue a command to the correct I/O accelerator path.
3468 */
3469static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3470 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3471 u8 *scsi3addr)
3472{
3473 if (h->transMethod & CFGTBL_Trans_io_accel1)
3474 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3475 cdb, cdb_len, scsi3addr);
3476 else
3477 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3478 cdb, cdb_len, scsi3addr);
3479}
3480
6b80b18f
ST
3481static void raid_map_helper(struct raid_map_data *map,
3482 int offload_to_mirror, u32 *map_index, u32 *current_group)
3483{
3484 if (offload_to_mirror == 0) {
3485 /* use physical disk in the first mirrored group. */
2b08b3e9 3486 *map_index %= le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
3487 return;
3488 }
3489 do {
3490 /* determine mirror group that *map_index indicates */
2b08b3e9
DB
3491 *current_group = *map_index /
3492 le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
3493 if (offload_to_mirror == *current_group)
3494 continue;
2b08b3e9 3495 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
6b80b18f 3496 /* select map index from next group */
2b08b3e9 3497 *map_index += le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
3498 (*current_group)++;
3499 } else {
3500 /* select map index from first group */
2b08b3e9 3501 *map_index %= le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
3502 *current_group = 0;
3503 }
3504 } while (offload_to_mirror != *current_group);
3505}
3506
283b4a9b
SC
3507/*
3508 * Attempt to perform offload RAID mapping for a logical volume I/O.
3509 */
3510static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3511 struct CommandList *c)
3512{
3513 struct scsi_cmnd *cmd = c->scsi_cmd;
3514 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3515 struct raid_map_data *map = &dev->raid_map;
3516 struct raid_map_disk_data *dd = &map->data[0];
3517 int is_write = 0;
3518 u32 map_index;
3519 u64 first_block, last_block;
3520 u32 block_cnt;
3521 u32 blocks_per_row;
3522 u64 first_row, last_row;
3523 u32 first_row_offset, last_row_offset;
3524 u32 first_column, last_column;
6b80b18f
ST
3525 u64 r0_first_row, r0_last_row;
3526 u32 r5or6_blocks_per_row;
3527 u64 r5or6_first_row, r5or6_last_row;
3528 u32 r5or6_first_row_offset, r5or6_last_row_offset;
3529 u32 r5or6_first_column, r5or6_last_column;
3530 u32 total_disks_per_row;
3531 u32 stripesize;
3532 u32 first_group, last_group, current_group;
283b4a9b
SC
3533 u32 map_row;
3534 u32 disk_handle;
3535 u64 disk_block;
3536 u32 disk_block_cnt;
3537 u8 cdb[16];
3538 u8 cdb_len;
2b08b3e9 3539 u16 strip_size;
283b4a9b
SC
3540#if BITS_PER_LONG == 32
3541 u64 tmpdiv;
3542#endif
6b80b18f 3543 int offload_to_mirror;
283b4a9b
SC
3544
3545 BUG_ON(!(dev->offload_config && dev->offload_enabled));
3546
3547 /* check for valid opcode, get LBA and block count */
3548 switch (cmd->cmnd[0]) {
3549 case WRITE_6:
3550 is_write = 1;
3551 case READ_6:
3552 first_block =
3553 (((u64) cmd->cmnd[2]) << 8) |
3554 cmd->cmnd[3];
3555 block_cnt = cmd->cmnd[4];
3fa89a04
SC
3556 if (block_cnt == 0)
3557 block_cnt = 256;
283b4a9b
SC
3558 break;
3559 case WRITE_10:
3560 is_write = 1;
3561 case READ_10:
3562 first_block =
3563 (((u64) cmd->cmnd[2]) << 24) |
3564 (((u64) cmd->cmnd[3]) << 16) |
3565 (((u64) cmd->cmnd[4]) << 8) |
3566 cmd->cmnd[5];
3567 block_cnt =
3568 (((u32) cmd->cmnd[7]) << 8) |
3569 cmd->cmnd[8];
3570 break;
3571 case WRITE_12:
3572 is_write = 1;
3573 case READ_12:
3574 first_block =
3575 (((u64) cmd->cmnd[2]) << 24) |
3576 (((u64) cmd->cmnd[3]) << 16) |
3577 (((u64) cmd->cmnd[4]) << 8) |
3578 cmd->cmnd[5];
3579 block_cnt =
3580 (((u32) cmd->cmnd[6]) << 24) |
3581 (((u32) cmd->cmnd[7]) << 16) |
3582 (((u32) cmd->cmnd[8]) << 8) |
3583 cmd->cmnd[9];
3584 break;
3585 case WRITE_16:
3586 is_write = 1;
3587 case READ_16:
3588 first_block =
3589 (((u64) cmd->cmnd[2]) << 56) |
3590 (((u64) cmd->cmnd[3]) << 48) |
3591 (((u64) cmd->cmnd[4]) << 40) |
3592 (((u64) cmd->cmnd[5]) << 32) |
3593 (((u64) cmd->cmnd[6]) << 24) |
3594 (((u64) cmd->cmnd[7]) << 16) |
3595 (((u64) cmd->cmnd[8]) << 8) |
3596 cmd->cmnd[9];
3597 block_cnt =
3598 (((u32) cmd->cmnd[10]) << 24) |
3599 (((u32) cmd->cmnd[11]) << 16) |
3600 (((u32) cmd->cmnd[12]) << 8) |
3601 cmd->cmnd[13];
3602 break;
3603 default:
3604 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3605 }
283b4a9b
SC
3606 last_block = first_block + block_cnt - 1;
3607
3608 /* check for write to non-RAID-0 */
3609 if (is_write && dev->raid_level != 0)
3610 return IO_ACCEL_INELIGIBLE;
3611
3612 /* check for invalid block or wraparound */
2b08b3e9
DB
3613 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
3614 last_block < first_block)
283b4a9b
SC
3615 return IO_ACCEL_INELIGIBLE;
3616
3617 /* calculate stripe information for the request */
2b08b3e9
DB
3618 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
3619 le16_to_cpu(map->strip_size);
3620 strip_size = le16_to_cpu(map->strip_size);
283b4a9b
SC
3621#if BITS_PER_LONG == 32
3622 tmpdiv = first_block;
3623 (void) do_div(tmpdiv, blocks_per_row);
3624 first_row = tmpdiv;
3625 tmpdiv = last_block;
3626 (void) do_div(tmpdiv, blocks_per_row);
3627 last_row = tmpdiv;
3628 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3629 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3630 tmpdiv = first_row_offset;
2b08b3e9 3631 (void) do_div(tmpdiv, strip_size);
283b4a9b
SC
3632 first_column = tmpdiv;
3633 tmpdiv = last_row_offset;
2b08b3e9 3634 (void) do_div(tmpdiv, strip_size);
283b4a9b
SC
3635 last_column = tmpdiv;
3636#else
3637 first_row = first_block / blocks_per_row;
3638 last_row = last_block / blocks_per_row;
3639 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3640 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
2b08b3e9
DB
3641 first_column = first_row_offset / strip_size;
3642 last_column = last_row_offset / strip_size;
283b4a9b
SC
3643#endif
3644
3645 /* if this isn't a single row/column then give to the controller */
3646 if ((first_row != last_row) || (first_column != last_column))
3647 return IO_ACCEL_INELIGIBLE;
3648
3649 /* proceeding with driver mapping */
2b08b3e9
DB
3650 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
3651 le16_to_cpu(map->metadata_disks_per_row);
283b4a9b 3652 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
2b08b3e9 3653 le16_to_cpu(map->row_cnt);
6b80b18f
ST
3654 map_index = (map_row * total_disks_per_row) + first_column;
3655
3656 switch (dev->raid_level) {
3657 case HPSA_RAID_0:
3658 break; /* nothing special to do */
3659 case HPSA_RAID_1:
3660 /* Handles load balance across RAID 1 members.
3661 * (2-drive R1 and R10 with even # of drives.)
3662 * Appropriate for SSDs, not optimal for HDDs
283b4a9b 3663 */
2b08b3e9 3664 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
283b4a9b 3665 if (dev->offload_to_mirror)
2b08b3e9 3666 map_index += le16_to_cpu(map->data_disks_per_row);
283b4a9b 3667 dev->offload_to_mirror = !dev->offload_to_mirror;
6b80b18f
ST
3668 break;
3669 case HPSA_RAID_ADM:
3670 /* Handles N-way mirrors (R1-ADM)
3671 * and R10 with # of drives divisible by 3.)
3672 */
2b08b3e9 3673 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
6b80b18f
ST
3674
3675 offload_to_mirror = dev->offload_to_mirror;
3676 raid_map_helper(map, offload_to_mirror,
3677 &map_index, &current_group);
3678 /* set mirror group to use next time */
3679 offload_to_mirror =
2b08b3e9
DB
3680 (offload_to_mirror >=
3681 le16_to_cpu(map->layout_map_count) - 1)
6b80b18f 3682 ? 0 : offload_to_mirror + 1;
6b80b18f
ST
3683 dev->offload_to_mirror = offload_to_mirror;
3684 /* Avoid direct use of dev->offload_to_mirror within this
3685 * function since multiple threads might simultaneously
3686 * increment it beyond the range of dev->layout_map_count -1.
3687 */
3688 break;
3689 case HPSA_RAID_5:
3690 case HPSA_RAID_6:
2b08b3e9 3691 if (le16_to_cpu(map->layout_map_count) <= 1)
6b80b18f
ST
3692 break;
3693
3694 /* Verify first and last block are in same RAID group */
3695 r5or6_blocks_per_row =
2b08b3e9
DB
3696 le16_to_cpu(map->strip_size) *
3697 le16_to_cpu(map->data_disks_per_row);
6b80b18f 3698 BUG_ON(r5or6_blocks_per_row == 0);
2b08b3e9
DB
3699 stripesize = r5or6_blocks_per_row *
3700 le16_to_cpu(map->layout_map_count);
6b80b18f
ST
3701#if BITS_PER_LONG == 32
3702 tmpdiv = first_block;
3703 first_group = do_div(tmpdiv, stripesize);
3704 tmpdiv = first_group;
3705 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3706 first_group = tmpdiv;
3707 tmpdiv = last_block;
3708 last_group = do_div(tmpdiv, stripesize);
3709 tmpdiv = last_group;
3710 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3711 last_group = tmpdiv;
3712#else
3713 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3714 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
6b80b18f 3715#endif
000ff7c2 3716 if (first_group != last_group)
6b80b18f
ST
3717 return IO_ACCEL_INELIGIBLE;
3718
3719 /* Verify request is in a single row of RAID 5/6 */
3720#if BITS_PER_LONG == 32
3721 tmpdiv = first_block;
3722 (void) do_div(tmpdiv, stripesize);
3723 first_row = r5or6_first_row = r0_first_row = tmpdiv;
3724 tmpdiv = last_block;
3725 (void) do_div(tmpdiv, stripesize);
3726 r5or6_last_row = r0_last_row = tmpdiv;
3727#else
3728 first_row = r5or6_first_row = r0_first_row =
3729 first_block / stripesize;
3730 r5or6_last_row = r0_last_row = last_block / stripesize;
3731#endif
3732 if (r5or6_first_row != r5or6_last_row)
3733 return IO_ACCEL_INELIGIBLE;
3734
3735
3736 /* Verify request is in a single column */
3737#if BITS_PER_LONG == 32
3738 tmpdiv = first_block;
3739 first_row_offset = do_div(tmpdiv, stripesize);
3740 tmpdiv = first_row_offset;
3741 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3742 r5or6_first_row_offset = first_row_offset;
3743 tmpdiv = last_block;
3744 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3745 tmpdiv = r5or6_last_row_offset;
3746 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3747 tmpdiv = r5or6_first_row_offset;
3748 (void) do_div(tmpdiv, map->strip_size);
3749 first_column = r5or6_first_column = tmpdiv;
3750 tmpdiv = r5or6_last_row_offset;
3751 (void) do_div(tmpdiv, map->strip_size);
3752 r5or6_last_column = tmpdiv;
3753#else
3754 first_row_offset = r5or6_first_row_offset =
3755 (u32)((first_block % stripesize) %
3756 r5or6_blocks_per_row);
3757
3758 r5or6_last_row_offset =
3759 (u32)((last_block % stripesize) %
3760 r5or6_blocks_per_row);
3761
3762 first_column = r5or6_first_column =
2b08b3e9 3763 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
6b80b18f 3764 r5or6_last_column =
2b08b3e9 3765 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
6b80b18f
ST
3766#endif
3767 if (r5or6_first_column != r5or6_last_column)
3768 return IO_ACCEL_INELIGIBLE;
3769
3770 /* Request is eligible */
3771 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
2b08b3e9 3772 le16_to_cpu(map->row_cnt);
6b80b18f
ST
3773
3774 map_index = (first_group *
2b08b3e9 3775 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
6b80b18f
ST
3776 (map_row * total_disks_per_row) + first_column;
3777 break;
3778 default:
3779 return IO_ACCEL_INELIGIBLE;
283b4a9b 3780 }
6b80b18f 3781
283b4a9b 3782 disk_handle = dd[map_index].ioaccel_handle;
2b08b3e9
DB
3783 disk_block = le64_to_cpu(map->disk_starting_blk) +
3784 first_row * le16_to_cpu(map->strip_size) +
3785 (first_row_offset - first_column *
3786 le16_to_cpu(map->strip_size));
283b4a9b
SC
3787 disk_block_cnt = block_cnt;
3788
3789 /* handle differing logical/physical block sizes */
3790 if (map->phys_blk_shift) {
3791 disk_block <<= map->phys_blk_shift;
3792 disk_block_cnt <<= map->phys_blk_shift;
3793 }
3794 BUG_ON(disk_block_cnt > 0xffff);
3795
3796 /* build the new CDB for the physical disk I/O */
3797 if (disk_block > 0xffffffff) {
3798 cdb[0] = is_write ? WRITE_16 : READ_16;
3799 cdb[1] = 0;
3800 cdb[2] = (u8) (disk_block >> 56);
3801 cdb[3] = (u8) (disk_block >> 48);
3802 cdb[4] = (u8) (disk_block >> 40);
3803 cdb[5] = (u8) (disk_block >> 32);
3804 cdb[6] = (u8) (disk_block >> 24);
3805 cdb[7] = (u8) (disk_block >> 16);
3806 cdb[8] = (u8) (disk_block >> 8);
3807 cdb[9] = (u8) (disk_block);
3808 cdb[10] = (u8) (disk_block_cnt >> 24);
3809 cdb[11] = (u8) (disk_block_cnt >> 16);
3810 cdb[12] = (u8) (disk_block_cnt >> 8);
3811 cdb[13] = (u8) (disk_block_cnt);
3812 cdb[14] = 0;
3813 cdb[15] = 0;
3814 cdb_len = 16;
3815 } else {
3816 cdb[0] = is_write ? WRITE_10 : READ_10;
3817 cdb[1] = 0;
3818 cdb[2] = (u8) (disk_block >> 24);
3819 cdb[3] = (u8) (disk_block >> 16);
3820 cdb[4] = (u8) (disk_block >> 8);
3821 cdb[5] = (u8) (disk_block);
3822 cdb[6] = 0;
3823 cdb[7] = (u8) (disk_block_cnt >> 8);
3824 cdb[8] = (u8) (disk_block_cnt);
3825 cdb[9] = 0;
3826 cdb_len = 10;
3827 }
3828 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3829 dev->scsi3addr);
3830}
3831
763aadbf
NB
3832/*
3833 * Running in struct Scsi_Host->host_lock less mode using LLD internal
3834 * struct ctlr_info *h->lock w/ spin_lock_irqsave() protection.
3835 */
3836static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
edd16368
SC
3837{
3838 struct ctlr_info *h;
3839 struct hpsa_scsi_dev_t *dev;
3840 unsigned char scsi3addr[8];
3841 struct CommandList *c;
283b4a9b 3842 int rc = 0;
edd16368
SC
3843
3844 /* Get the ptr to our adapter structure out of cmd->host. */
3845 h = sdev_to_hba(cmd->device);
3846 dev = cmd->device->hostdata;
3847 if (!dev) {
3848 cmd->result = DID_NO_CONNECT << 16;
763aadbf 3849 cmd->scsi_done(cmd);
edd16368
SC
3850 return 0;
3851 }
3852 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3853
094963da 3854 if (unlikely(lockup_detected(h))) {
a0c12413 3855 cmd->result = DID_ERROR << 16;
763aadbf 3856 cmd->scsi_done(cmd);
a0c12413
SC
3857 return 0;
3858 }
e16a33ad 3859 c = cmd_alloc(h);
edd16368
SC
3860 if (c == NULL) { /* trouble... */
3861 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3862 return SCSI_MLQUEUE_HOST_BUSY;
3863 }
3864
3865 /* Fill in the command list header */
edd16368
SC
3866 /* save c in case we have to abort it */
3867 cmd->host_scribble = (unsigned char *) c;
3868
3869 c->cmd_type = CMD_SCSI;
3870 c->scsi_cmd = cmd;
e1f7de0c 3871
283b4a9b
SC
3872 /* Call alternate submit routine for I/O accelerated commands.
3873 * Retries always go down the normal I/O path.
3874 */
3875 if (likely(cmd->retries == 0 &&
da0697bd
ST
3876 cmd->request->cmd_type == REQ_TYPE_FS &&
3877 h->acciopath_status)) {
283b4a9b
SC
3878 if (dev->offload_enabled) {
3879 rc = hpsa_scsi_ioaccel_raid_map(h, c);
3880 if (rc == 0)
3881 return 0; /* Sent on ioaccel path */
3882 if (rc < 0) { /* scsi_dma_map failed. */
3883 cmd_free(h, c);
3884 return SCSI_MLQUEUE_HOST_BUSY;
3885 }
3886 } else if (dev->ioaccel_handle) {
3887 rc = hpsa_scsi_ioaccel_direct_map(h, c);
3888 if (rc == 0)
3889 return 0; /* Sent on direct map path */
3890 if (rc < 0) { /* scsi_dma_map failed. */
3891 cmd_free(h, c);
3892 return SCSI_MLQUEUE_HOST_BUSY;
3893 }
3894 }
3895 }
e1f7de0c 3896
edd16368
SC
3897 c->Header.ReplyQueue = 0; /* unused in simple mode */
3898 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
50a0decf
SC
3899 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3900 DIRECT_LOOKUP_BIT);
edd16368
SC
3901
3902 /* Fill in the request block... */
3903
3904 c->Request.Timeout = 0;
3905 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
3906 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
3907 c->Request.CDBLen = cmd->cmd_len;
3908 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
edd16368
SC
3909 switch (cmd->sc_data_direction) {
3910 case DMA_TO_DEVICE:
a505b86f
SC
3911 c->Request.type_attr_dir =
3912 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
edd16368
SC
3913 break;
3914 case DMA_FROM_DEVICE:
a505b86f
SC
3915 c->Request.type_attr_dir =
3916 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
edd16368
SC
3917 break;
3918 case DMA_NONE:
a505b86f
SC
3919 c->Request.type_attr_dir =
3920 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
edd16368
SC
3921 break;
3922 case DMA_BIDIRECTIONAL:
3923 /* This can happen if a buggy application does a scsi passthru
3924 * and sets both inlen and outlen to non-zero. ( see
3925 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
3926 */
3927
a505b86f
SC
3928 c->Request.type_attr_dir =
3929 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
edd16368
SC
3930 /* This is technically wrong, and hpsa controllers should
3931 * reject it with CMD_INVALID, which is the most correct
3932 * response, but non-fibre backends appear to let it
3933 * slide by, and give the same results as if this field
3934 * were set correctly. Either way is acceptable for
3935 * our purposes here.
3936 */
3937
3938 break;
3939
3940 default:
3941 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3942 cmd->sc_data_direction);
3943 BUG();
3944 break;
3945 }
3946
33a2ffce 3947 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
edd16368
SC
3948 cmd_free(h, c);
3949 return SCSI_MLQUEUE_HOST_BUSY;
3950 }
3951 enqueue_cmd_and_start_io(h, c);
3952 /* the cmd'll come back via intr handler in complete_scsi_command() */
3953 return 0;
3954}
3955
5f389360
SC
3956static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
3957{
3958 unsigned long flags;
3959
3960 /*
3961 * Don't let rescans be initiated on a controller known
3962 * to be locked up. If the controller locks up *during*
3963 * a rescan, that thread is probably hosed, but at least
3964 * we can prevent new rescan threads from piling up on a
3965 * locked up controller.
3966 */
094963da 3967 if (unlikely(lockup_detected(h))) {
5f389360
SC
3968 spin_lock_irqsave(&h->scan_lock, flags);
3969 h->scan_finished = 1;
3970 wake_up_all(&h->scan_wait_queue);
3971 spin_unlock_irqrestore(&h->scan_lock, flags);
3972 return 1;
3973 }
5f389360
SC
3974 return 0;
3975}
3976
a08a8471
SC
3977static void hpsa_scan_start(struct Scsi_Host *sh)
3978{
3979 struct ctlr_info *h = shost_to_hba(sh);
3980 unsigned long flags;
3981
5f389360
SC
3982 if (do_not_scan_if_controller_locked_up(h))
3983 return;
3984
a08a8471
SC
3985 /* wait until any scan already in progress is finished. */
3986 while (1) {
3987 spin_lock_irqsave(&h->scan_lock, flags);
3988 if (h->scan_finished)
3989 break;
3990 spin_unlock_irqrestore(&h->scan_lock, flags);
3991 wait_event(h->scan_wait_queue, h->scan_finished);
3992 /* Note: We don't need to worry about a race between this
3993 * thread and driver unload because the midlayer will
3994 * have incremented the reference count, so unload won't
3995 * happen if we're in here.
3996 */
3997 }
3998 h->scan_finished = 0; /* mark scan as in progress */
3999 spin_unlock_irqrestore(&h->scan_lock, flags);
4000
5f389360
SC
4001 if (do_not_scan_if_controller_locked_up(h))
4002 return;
4003
a08a8471
SC
4004 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4005
4006 spin_lock_irqsave(&h->scan_lock, flags);
4007 h->scan_finished = 1; /* mark scan as finished. */
4008 wake_up_all(&h->scan_wait_queue);
4009 spin_unlock_irqrestore(&h->scan_lock, flags);
4010}
4011
7c0a0229
DB
4012static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4013{
4014 struct ctlr_info *h = sdev_to_hba(sdev);
4015
4016 if (qdepth < 1)
4017 qdepth = 1;
4018 else
4019 if (qdepth > h->nr_cmds)
4020 qdepth = h->nr_cmds;
4021 scsi_change_queue_depth(sdev, qdepth);
4022 return sdev->queue_depth;
4023}
4024
a08a8471
SC
4025static int hpsa_scan_finished(struct Scsi_Host *sh,
4026 unsigned long elapsed_time)
4027{
4028 struct ctlr_info *h = shost_to_hba(sh);
4029 unsigned long flags;
4030 int finished;
4031
4032 spin_lock_irqsave(&h->scan_lock, flags);
4033 finished = h->scan_finished;
4034 spin_unlock_irqrestore(&h->scan_lock, flags);
4035 return finished;
4036}
4037
edd16368
SC
4038static void hpsa_unregister_scsi(struct ctlr_info *h)
4039{
4040 /* we are being forcibly unloaded, and may not refuse. */
4041 scsi_remove_host(h->scsi_host);
4042 scsi_host_put(h->scsi_host);
4043 h->scsi_host = NULL;
4044}
4045
4046static int hpsa_register_scsi(struct ctlr_info *h)
4047{
b705690d
SC
4048 struct Scsi_Host *sh;
4049 int error;
edd16368 4050
b705690d
SC
4051 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4052 if (sh == NULL)
4053 goto fail;
4054
4055 sh->io_port = 0;
4056 sh->n_io_port = 0;
4057 sh->this_id = -1;
4058 sh->max_channel = 3;
4059 sh->max_cmd_len = MAX_COMMAND_SIZE;
4060 sh->max_lun = HPSA_MAX_LUN;
4061 sh->max_id = HPSA_MAX_LUN;
4062 sh->can_queue = h->nr_cmds;
316b221a
SC
4063 if (h->hba_mode_enabled)
4064 sh->cmd_per_lun = 7;
4065 else
4066 sh->cmd_per_lun = h->nr_cmds;
b705690d
SC
4067 sh->sg_tablesize = h->maxsgentries;
4068 h->scsi_host = sh;
4069 sh->hostdata[0] = (unsigned long) h;
4070 sh->irq = h->intr[h->intr_mode];
4071 sh->unique_id = sh->irq;
4072 error = scsi_add_host(sh, &h->pdev->dev);
4073 if (error)
4074 goto fail_host_put;
4075 scsi_scan_host(sh);
4076 return 0;
4077
4078 fail_host_put:
4079 dev_err(&h->pdev->dev, "%s: scsi_add_host"
4080 " failed for controller %d\n", __func__, h->ctlr);
4081 scsi_host_put(sh);
4082 return error;
4083 fail:
4084 dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4085 " failed for controller %d\n", __func__, h->ctlr);
4086 return -ENOMEM;
edd16368
SC
4087}
4088
4089static int wait_for_device_to_become_ready(struct ctlr_info *h,
4090 unsigned char lunaddr[])
4091{
8919358e 4092 int rc;
edd16368
SC
4093 int count = 0;
4094 int waittime = 1; /* seconds */
4095 struct CommandList *c;
4096
4097 c = cmd_special_alloc(h);
4098 if (!c) {
4099 dev_warn(&h->pdev->dev, "out of memory in "
4100 "wait_for_device_to_become_ready.\n");
4101 return IO_ERROR;
4102 }
4103
4104 /* Send test unit ready until device ready, or give up. */
4105 while (count < HPSA_TUR_RETRY_LIMIT) {
4106
4107 /* Wait for a bit. do this first, because if we send
4108 * the TUR right away, the reset will just abort it.
4109 */
4110 msleep(1000 * waittime);
4111 count++;
8919358e 4112 rc = 0; /* Device ready. */
edd16368
SC
4113
4114 /* Increase wait time with each try, up to a point. */
4115 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4116 waittime = waittime * 2;
4117
a2dac136
SC
4118 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4119 (void) fill_cmd(c, TEST_UNIT_READY, h,
4120 NULL, 0, 0, lunaddr, TYPE_CMD);
edd16368
SC
4121 hpsa_scsi_do_simple_cmd_core(h, c);
4122 /* no unmap needed here because no data xfer. */
4123
4124 if (c->err_info->CommandStatus == CMD_SUCCESS)
4125 break;
4126
4127 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4128 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4129 (c->err_info->SenseInfo[2] == NO_SENSE ||
4130 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4131 break;
4132
4133 dev_warn(&h->pdev->dev, "waiting %d secs "
4134 "for device to become ready.\n", waittime);
4135 rc = 1; /* device not ready. */
4136 }
4137
4138 if (rc)
4139 dev_warn(&h->pdev->dev, "giving up on device.\n");
4140 else
4141 dev_warn(&h->pdev->dev, "device is ready.\n");
4142
4143 cmd_special_free(h, c);
4144 return rc;
4145}
4146
4147/* Need at least one of these error handlers to keep ../scsi/hosts.c from
4148 * complaining. Doing a host- or bus-reset can't do anything good here.
4149 */
4150static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4151{
4152 int rc;
4153 struct ctlr_info *h;
4154 struct hpsa_scsi_dev_t *dev;
4155
4156 /* find the controller to which the command to be aborted was sent */
4157 h = sdev_to_hba(scsicmd->device);
4158 if (h == NULL) /* paranoia */
4159 return FAILED;
edd16368
SC
4160 dev = scsicmd->device->hostdata;
4161 if (!dev) {
4162 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4163 "device lookup failed.\n");
4164 return FAILED;
4165 }
d416b0c7
SC
4166 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4167 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
edd16368 4168 /* send a reset to the SCSI LUN which the command was sent to */
bf711ac6 4169 rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
edd16368
SC
4170 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4171 return SUCCESS;
4172
4173 dev_warn(&h->pdev->dev, "resetting device failed.\n");
4174 return FAILED;
4175}
4176
6cba3f19
SC
4177static void swizzle_abort_tag(u8 *tag)
4178{
4179 u8 original_tag[8];
4180
4181 memcpy(original_tag, tag, 8);
4182 tag[0] = original_tag[3];
4183 tag[1] = original_tag[2];
4184 tag[2] = original_tag[1];
4185 tag[3] = original_tag[0];
4186 tag[4] = original_tag[7];
4187 tag[5] = original_tag[6];
4188 tag[6] = original_tag[5];
4189 tag[7] = original_tag[4];
4190}
4191
17eb87d2 4192static void hpsa_get_tag(struct ctlr_info *h,
2b08b3e9 4193 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
17eb87d2 4194{
2b08b3e9 4195 u64 tag;
17eb87d2
ST
4196 if (c->cmd_type == CMD_IOACCEL1) {
4197 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4198 &h->ioaccel_cmd_pool[c->cmdindex];
2b08b3e9
DB
4199 tag = le64_to_cpu(cm1->tag);
4200 *tagupper = cpu_to_le32(tag >> 32);
4201 *taglower = cpu_to_le32(tag);
54b6e9e9
ST
4202 return;
4203 }
4204 if (c->cmd_type == CMD_IOACCEL2) {
4205 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4206 &h->ioaccel2_cmd_pool[c->cmdindex];
dd0e19f3
ST
4207 /* upper tag not used in ioaccel2 mode */
4208 memset(tagupper, 0, sizeof(*tagupper));
4209 *taglower = cm2->Tag;
54b6e9e9 4210 return;
17eb87d2 4211 }
2b08b3e9
DB
4212 tag = le64_to_cpu(c->Header.tag);
4213 *tagupper = cpu_to_le32(tag >> 32);
4214 *taglower = cpu_to_le32(tag);
17eb87d2
ST
4215}
4216
75167d2c 4217static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
6cba3f19 4218 struct CommandList *abort, int swizzle)
75167d2c
SC
4219{
4220 int rc = IO_OK;
4221 struct CommandList *c;
4222 struct ErrorInfo *ei;
2b08b3e9 4223 __le32 tagupper, taglower;
75167d2c
SC
4224
4225 c = cmd_special_alloc(h);
4226 if (c == NULL) { /* trouble... */
4227 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4228 return -ENOMEM;
4229 }
4230
a2dac136
SC
4231 /* fill_cmd can't fail here, no buffer to map */
4232 (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4233 0, 0, scsi3addr, TYPE_MSG);
6cba3f19
SC
4234 if (swizzle)
4235 swizzle_abort_tag(&c->Request.CDB[4]);
75167d2c 4236 hpsa_scsi_do_simple_cmd_core(h, c);
17eb87d2 4237 hpsa_get_tag(h, abort, &taglower, &tagupper);
75167d2c 4238 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
17eb87d2 4239 __func__, tagupper, taglower);
75167d2c
SC
4240 /* no unmap needed here because no data xfer. */
4241
4242 ei = c->err_info;
4243 switch (ei->CommandStatus) {
4244 case CMD_SUCCESS:
4245 break;
4246 case CMD_UNABORTABLE: /* Very common, don't make noise. */
4247 rc = -1;
4248 break;
4249 default:
4250 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
17eb87d2 4251 __func__, tagupper, taglower);
d1e8beac 4252 hpsa_scsi_interpret_error(h, c);
75167d2c
SC
4253 rc = -1;
4254 break;
4255 }
4256 cmd_special_free(h, c);
dd0e19f3
ST
4257 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4258 __func__, tagupper, taglower);
75167d2c
SC
4259 return rc;
4260}
4261
4262/*
4263 * hpsa_find_cmd_in_queue
4264 *
4265 * Used to determine whether a command (find) is still present
4266 * in queue_head. Optionally excludes the last element of queue_head.
4267 *
4268 * This is used to avoid unnecessary aborts. Commands in h->reqQ have
4269 * not yet been submitted, and so can be aborted by the driver without
4270 * sending an abort to the hardware.
4271 *
4272 * Returns pointer to command if found in queue, NULL otherwise.
4273 */
4274static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4275 struct scsi_cmnd *find, struct list_head *queue_head)
4276{
4277 unsigned long flags;
4278 struct CommandList *c = NULL; /* ptr into cmpQ */
4279
4280 if (!find)
42a91641 4281 return NULL;
75167d2c
SC
4282 spin_lock_irqsave(&h->lock, flags);
4283 list_for_each_entry(c, queue_head, list) {
4284 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4285 continue;
4286 if (c->scsi_cmd == find) {
4287 spin_unlock_irqrestore(&h->lock, flags);
4288 return c;
4289 }
4290 }
4291 spin_unlock_irqrestore(&h->lock, flags);
4292 return NULL;
4293}
4294
6cba3f19
SC
4295static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4296 u8 *tag, struct list_head *queue_head)
4297{
4298 unsigned long flags;
4299 struct CommandList *c;
4300
4301 spin_lock_irqsave(&h->lock, flags);
4302 list_for_each_entry(c, queue_head, list) {
50a0decf 4303 if (memcmp(&c->Header.tag, tag, 8) != 0)
6cba3f19
SC
4304 continue;
4305 spin_unlock_irqrestore(&h->lock, flags);
4306 return c;
4307 }
4308 spin_unlock_irqrestore(&h->lock, flags);
4309 return NULL;
4310}
4311
54b6e9e9
ST
4312/* ioaccel2 path firmware cannot handle abort task requests.
4313 * Change abort requests to physical target reset, and send to the
4314 * address of the physical disk used for the ioaccel 2 command.
4315 * Return 0 on success (IO_OK)
4316 * -1 on failure
4317 */
4318
4319static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4320 unsigned char *scsi3addr, struct CommandList *abort)
4321{
4322 int rc = IO_OK;
4323 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4324 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4325 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4326 unsigned char *psa = &phys_scsi3addr[0];
4327
4328 /* Get a pointer to the hpsa logical device. */
4329 scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4330 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4331 if (dev == NULL) {
4332 dev_warn(&h->pdev->dev,
4333 "Cannot abort: no device pointer for command.\n");
4334 return -1; /* not abortable */
4335 }
4336
2ba8bfc8
SC
4337 if (h->raid_offload_debug > 0)
4338 dev_info(&h->pdev->dev,
4339 "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4340 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4341 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4342 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4343
54b6e9e9
ST
4344 if (!dev->offload_enabled) {
4345 dev_warn(&h->pdev->dev,
4346 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4347 return -1; /* not abortable */
4348 }
4349
4350 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4351 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4352 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4353 return -1; /* not abortable */
4354 }
4355
4356 /* send the reset */
2ba8bfc8
SC
4357 if (h->raid_offload_debug > 0)
4358 dev_info(&h->pdev->dev,
4359 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4360 psa[0], psa[1], psa[2], psa[3],
4361 psa[4], psa[5], psa[6], psa[7]);
54b6e9e9
ST
4362 rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4363 if (rc != 0) {
4364 dev_warn(&h->pdev->dev,
4365 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4366 psa[0], psa[1], psa[2], psa[3],
4367 psa[4], psa[5], psa[6], psa[7]);
4368 return rc; /* failed to reset */
4369 }
4370
4371 /* wait for device to recover */
4372 if (wait_for_device_to_become_ready(h, psa) != 0) {
4373 dev_warn(&h->pdev->dev,
4374 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4375 psa[0], psa[1], psa[2], psa[3],
4376 psa[4], psa[5], psa[6], psa[7]);
4377 return -1; /* failed to recover */
4378 }
4379
4380 /* device recovered */
4381 dev_info(&h->pdev->dev,
4382 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4383 psa[0], psa[1], psa[2], psa[3],
4384 psa[4], psa[5], psa[6], psa[7]);
4385
4386 return rc; /* success */
4387}
4388
6cba3f19
SC
4389/* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
4390 * tell which kind we're dealing with, so we send the abort both ways. There
4391 * shouldn't be any collisions between swizzled and unswizzled tags due to the
4392 * way we construct our tags but we check anyway in case the assumptions which
4393 * make this true someday become false.
4394 */
4395static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4396 unsigned char *scsi3addr, struct CommandList *abort)
4397{
4398 u8 swizzled_tag[8];
4399 struct CommandList *c;
4400 int rc = 0, rc2 = 0;
4401
54b6e9e9
ST
4402 /* ioccelerator mode 2 commands should be aborted via the
4403 * accelerated path, since RAID path is unaware of these commands,
4404 * but underlying firmware can't handle abort TMF.
4405 * Change abort to physical device reset.
4406 */
4407 if (abort->cmd_type == CMD_IOACCEL2)
4408 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4409
6cba3f19
SC
4410 /* we do not expect to find the swizzled tag in our queue, but
4411 * check anyway just to be sure the assumptions which make this
4412 * the case haven't become wrong.
4413 */
4414 memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4415 swizzle_abort_tag(swizzled_tag);
4416 c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4417 if (c != NULL) {
4418 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4419 return hpsa_send_abort(h, scsi3addr, abort, 0);
4420 }
4421 rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4422
4423 /* if the command is still in our queue, we can't conclude that it was
4424 * aborted (it might have just completed normally) but in any case
4425 * we don't need to try to abort it another way.
4426 */
4427 c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4428 if (c)
4429 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4430 return rc && rc2;
4431}
4432
75167d2c
SC
4433/* Send an abort for the specified command.
4434 * If the device and controller support it,
4435 * send a task abort request.
4436 */
4437static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4438{
4439
4440 int i, rc;
4441 struct ctlr_info *h;
4442 struct hpsa_scsi_dev_t *dev;
4443 struct CommandList *abort; /* pointer to command to be aborted */
4444 struct CommandList *found;
4445 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
4446 char msg[256]; /* For debug messaging. */
4447 int ml = 0;
2b08b3e9 4448 __le32 tagupper, taglower;
75167d2c
SC
4449
4450 /* Find the controller of the command to be aborted */
4451 h = sdev_to_hba(sc->device);
4452 if (WARN(h == NULL,
4453 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
4454 return FAILED;
4455
4456 /* Check that controller supports some kind of task abort */
4457 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4458 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4459 return FAILED;
4460
4461 memset(msg, 0, sizeof(msg));
9cb78c16 4462 ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
75167d2c
SC
4463 h->scsi_host->host_no, sc->device->channel,
4464 sc->device->id, sc->device->lun);
4465
4466 /* Find the device of the command to be aborted */
4467 dev = sc->device->hostdata;
4468 if (!dev) {
4469 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4470 msg);
4471 return FAILED;
4472 }
4473
4474 /* Get SCSI command to be aborted */
4475 abort = (struct CommandList *) sc->host_scribble;
4476 if (abort == NULL) {
4477 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4478 msg);
4479 return FAILED;
4480 }
17eb87d2
ST
4481 hpsa_get_tag(h, abort, &taglower, &tagupper);
4482 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
75167d2c
SC
4483 as = (struct scsi_cmnd *) abort->scsi_cmd;
4484 if (as != NULL)
4485 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4486 as->cmnd[0], as->serial_number);
4487 dev_dbg(&h->pdev->dev, "%s\n", msg);
4488 dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4489 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4490
4491 /* Search reqQ to See if command is queued but not submitted,
4492 * if so, complete the command with aborted status and remove
4493 * it from the reqQ.
4494 */
4495 found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4496 if (found) {
4497 found->err_info->CommandStatus = CMD_ABORTED;
4498 finish_cmd(found);
4499 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4500 msg);
4501 return SUCCESS;
4502 }
4503
4504 /* not in reqQ, if also not in cmpQ, must have already completed */
4505 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4506 if (!found) {
d6ebd0f7 4507 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
75167d2c
SC
4508 msg);
4509 return SUCCESS;
4510 }
4511
4512 /*
4513 * Command is in flight, or possibly already completed
4514 * by the firmware (but not to the scsi mid layer) but we can't
4515 * distinguish which. Send the abort down.
4516 */
6cba3f19 4517 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
75167d2c
SC
4518 if (rc != 0) {
4519 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4520 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4521 h->scsi_host->host_no,
4522 dev->bus, dev->target, dev->lun);
4523 return FAILED;
4524 }
4525 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4526
4527 /* If the abort(s) above completed and actually aborted the
4528 * command, then the command to be aborted should already be
4529 * completed. If not, wait around a bit more to see if they
4530 * manage to complete normally.
4531 */
4532#define ABORT_COMPLETE_WAIT_SECS 30
4533 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4534 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4535 if (!found)
4536 return SUCCESS;
4537 msleep(100);
4538 }
4539 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4540 msg, ABORT_COMPLETE_WAIT_SECS);
4541 return FAILED;
4542}
4543
4544
edd16368
SC
4545/*
4546 * For operations that cannot sleep, a command block is allocated at init,
4547 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4548 * which ones are free or in use. Lock must be held when calling this.
4549 * cmd_free() is the complement.
4550 */
4551static struct CommandList *cmd_alloc(struct ctlr_info *h)
4552{
4553 struct CommandList *c;
4554 int i;
4555 union u64bit temp64;
4556 dma_addr_t cmd_dma_handle, err_dma_handle;
4c413128
SC
4557 int loopcount;
4558
4559 /* There is some *extremely* small but non-zero chance that that
4560 * multiple threads could get in here, and one thread could
4561 * be scanning through the list of bits looking for a free
4562 * one, but the free ones are always behind him, and other
4563 * threads sneak in behind him and eat them before he can
4564 * get to them, so that while there is always a free one, a
4565 * very unlucky thread might be starved anyway, never able to
4566 * beat the other threads. In reality, this happens so
4567 * infrequently as to be indistinguishable from never.
4568 */
edd16368 4569
4c413128 4570 loopcount = 0;
edd16368
SC
4571 do {
4572 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4c413128
SC
4573 if (i == h->nr_cmds)
4574 i = 0;
4575 loopcount++;
4576 } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
4577 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0 &&
4578 loopcount < 10);
4579
4580 /* Thread got starved? We do not expect this to ever happen. */
4581 if (loopcount >= 10)
4582 return NULL;
e16a33ad 4583
edd16368
SC
4584 c = h->cmd_pool + i;
4585 memset(c, 0, sizeof(*c));
4586 cmd_dma_handle = h->cmd_pool_dhandle
4587 + i * sizeof(*c);
4588 c->err_info = h->errinfo_pool + i;
4589 memset(c->err_info, 0, sizeof(*c->err_info));
4590 err_dma_handle = h->errinfo_pool_dhandle
4591 + i * sizeof(*c->err_info);
edd16368
SC
4592
4593 c->cmdindex = i;
4594
9e0fc764 4595 INIT_LIST_HEAD(&c->list);
01a02ffc
SC
4596 c->busaddr = (u32) cmd_dma_handle;
4597 temp64.val = (u64) err_dma_handle;
50a0decf
SC
4598 c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4599 c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
edd16368
SC
4600
4601 c->h = h;
4602 return c;
4603}
4604
4605/* For operations that can wait for kmalloc to possibly sleep,
4606 * this routine can be called. Lock need not be held to call
4607 * cmd_special_alloc. cmd_special_free() is the complement.
4608 */
4609static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
4610{
4611 struct CommandList *c;
edd16368
SC
4612 dma_addr_t cmd_dma_handle, err_dma_handle;
4613
7c845eb5 4614 c = pci_zalloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
edd16368
SC
4615 if (c == NULL)
4616 return NULL;
edd16368 4617
e1f7de0c 4618 c->cmd_type = CMD_SCSI;
edd16368
SC
4619 c->cmdindex = -1;
4620
7c845eb5
JP
4621 c->err_info = pci_zalloc_consistent(h->pdev, sizeof(*c->err_info),
4622 &err_dma_handle);
edd16368
SC
4623
4624 if (c->err_info == NULL) {
4625 pci_free_consistent(h->pdev,
4626 sizeof(*c), c, cmd_dma_handle);
4627 return NULL;
4628 }
edd16368 4629
9e0fc764 4630 INIT_LIST_HEAD(&c->list);
01a02ffc 4631 c->busaddr = (u32) cmd_dma_handle;
50a0decf
SC
4632 c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4633 c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
edd16368
SC
4634
4635 c->h = h;
4636 return c;
4637}
4638
4639static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4640{
4641 int i;
4642
4643 i = c - h->cmd_pool;
4644 clear_bit(i & (BITS_PER_LONG - 1),
4645 h->cmd_pool_bits + (i / BITS_PER_LONG));
edd16368
SC
4646}
4647
4648static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
4649{
edd16368 4650 pci_free_consistent(h->pdev, sizeof(*c->err_info),
50a0decf
SC
4651 c->err_info,
4652 (dma_addr_t) le64_to_cpu(c->ErrDesc.Addr));
edd16368 4653 pci_free_consistent(h->pdev, sizeof(*c),
d896f3f3 4654 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
edd16368
SC
4655}
4656
4657#ifdef CONFIG_COMPAT
4658
42a91641
DB
4659static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
4660 void __user *arg)
edd16368
SC
4661{
4662 IOCTL32_Command_struct __user *arg32 =
4663 (IOCTL32_Command_struct __user *) arg;
4664 IOCTL_Command_struct arg64;
4665 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4666 int err;
4667 u32 cp;
4668
938abd84 4669 memset(&arg64, 0, sizeof(arg64));
edd16368
SC
4670 err = 0;
4671 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4672 sizeof(arg64.LUN_info));
4673 err |= copy_from_user(&arg64.Request, &arg32->Request,
4674 sizeof(arg64.Request));
4675 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4676 sizeof(arg64.error_info));
4677 err |= get_user(arg64.buf_size, &arg32->buf_size);
4678 err |= get_user(cp, &arg32->buf);
4679 arg64.buf = compat_ptr(cp);
4680 err |= copy_to_user(p, &arg64, sizeof(arg64));
4681
4682 if (err)
4683 return -EFAULT;
4684
42a91641 4685 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
edd16368
SC
4686 if (err)
4687 return err;
4688 err |= copy_in_user(&arg32->error_info, &p->error_info,
4689 sizeof(arg32->error_info));
4690 if (err)
4691 return -EFAULT;
4692 return err;
4693}
4694
4695static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
42a91641 4696 int cmd, void __user *arg)
edd16368
SC
4697{
4698 BIG_IOCTL32_Command_struct __user *arg32 =
4699 (BIG_IOCTL32_Command_struct __user *) arg;
4700 BIG_IOCTL_Command_struct arg64;
4701 BIG_IOCTL_Command_struct __user *p =
4702 compat_alloc_user_space(sizeof(arg64));
4703 int err;
4704 u32 cp;
4705
938abd84 4706 memset(&arg64, 0, sizeof(arg64));
edd16368
SC
4707 err = 0;
4708 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4709 sizeof(arg64.LUN_info));
4710 err |= copy_from_user(&arg64.Request, &arg32->Request,
4711 sizeof(arg64.Request));
4712 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4713 sizeof(arg64.error_info));
4714 err |= get_user(arg64.buf_size, &arg32->buf_size);
4715 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4716 err |= get_user(cp, &arg32->buf);
4717 arg64.buf = compat_ptr(cp);
4718 err |= copy_to_user(p, &arg64, sizeof(arg64));
4719
4720 if (err)
4721 return -EFAULT;
4722
42a91641 4723 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
edd16368
SC
4724 if (err)
4725 return err;
4726 err |= copy_in_user(&arg32->error_info, &p->error_info,
4727 sizeof(arg32->error_info));
4728 if (err)
4729 return -EFAULT;
4730 return err;
4731}
71fe75a7 4732
42a91641 4733static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
71fe75a7
SC
4734{
4735 switch (cmd) {
4736 case CCISS_GETPCIINFO:
4737 case CCISS_GETINTINFO:
4738 case CCISS_SETINTINFO:
4739 case CCISS_GETNODENAME:
4740 case CCISS_SETNODENAME:
4741 case CCISS_GETHEARTBEAT:
4742 case CCISS_GETBUSTYPES:
4743 case CCISS_GETFIRMVER:
4744 case CCISS_GETDRIVVER:
4745 case CCISS_REVALIDVOLS:
4746 case CCISS_DEREGDISK:
4747 case CCISS_REGNEWDISK:
4748 case CCISS_REGNEWD:
4749 case CCISS_RESCANDISK:
4750 case CCISS_GETLUNINFO:
4751 return hpsa_ioctl(dev, cmd, arg);
4752
4753 case CCISS_PASSTHRU32:
4754 return hpsa_ioctl32_passthru(dev, cmd, arg);
4755 case CCISS_BIG_PASSTHRU32:
4756 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4757
4758 default:
4759 return -ENOIOCTLCMD;
4760 }
4761}
edd16368
SC
4762#endif
4763
4764static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4765{
4766 struct hpsa_pci_info pciinfo;
4767
4768 if (!argp)
4769 return -EINVAL;
4770 pciinfo.domain = pci_domain_nr(h->pdev->bus);
4771 pciinfo.bus = h->pdev->bus->number;
4772 pciinfo.dev_fn = h->pdev->devfn;
4773 pciinfo.board_id = h->board_id;
4774 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4775 return -EFAULT;
4776 return 0;
4777}
4778
4779static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4780{
4781 DriverVer_type DriverVer;
4782 unsigned char vmaj, vmin, vsubmin;
4783 int rc;
4784
4785 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4786 &vmaj, &vmin, &vsubmin);
4787 if (rc != 3) {
4788 dev_info(&h->pdev->dev, "driver version string '%s' "
4789 "unrecognized.", HPSA_DRIVER_VERSION);
4790 vmaj = 0;
4791 vmin = 0;
4792 vsubmin = 0;
4793 }
4794 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4795 if (!argp)
4796 return -EINVAL;
4797 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4798 return -EFAULT;
4799 return 0;
4800}
4801
4802static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4803{
4804 IOCTL_Command_struct iocommand;
4805 struct CommandList *c;
4806 char *buff = NULL;
50a0decf 4807 u64 temp64;
c1f63c8f 4808 int rc = 0;
edd16368
SC
4809
4810 if (!argp)
4811 return -EINVAL;
4812 if (!capable(CAP_SYS_RAWIO))
4813 return -EPERM;
4814 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4815 return -EFAULT;
4816 if ((iocommand.buf_size < 1) &&
4817 (iocommand.Request.Type.Direction != XFER_NONE)) {
4818 return -EINVAL;
4819 }
4820 if (iocommand.buf_size > 0) {
4821 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4822 if (buff == NULL)
4823 return -EFAULT;
9233fb10 4824 if (iocommand.Request.Type.Direction & XFER_WRITE) {
b03a7771
SC
4825 /* Copy the data into the buffer we created */
4826 if (copy_from_user(buff, iocommand.buf,
4827 iocommand.buf_size)) {
c1f63c8f
SC
4828 rc = -EFAULT;
4829 goto out_kfree;
b03a7771
SC
4830 }
4831 } else {
4832 memset(buff, 0, iocommand.buf_size);
edd16368 4833 }
b03a7771 4834 }
edd16368
SC
4835 c = cmd_special_alloc(h);
4836 if (c == NULL) {
c1f63c8f
SC
4837 rc = -ENOMEM;
4838 goto out_kfree;
edd16368
SC
4839 }
4840 /* Fill in the command type */
4841 c->cmd_type = CMD_IOCTL_PEND;
4842 /* Fill in Command Header */
4843 c->Header.ReplyQueue = 0; /* unused in simple mode */
4844 if (iocommand.buf_size > 0) { /* buffer to fill */
4845 c->Header.SGList = 1;
50a0decf 4846 c->Header.SGTotal = cpu_to_le16(1);
edd16368
SC
4847 } else { /* no buffers to fill */
4848 c->Header.SGList = 0;
50a0decf 4849 c->Header.SGTotal = cpu_to_le16(0);
edd16368
SC
4850 }
4851 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4852 /* use the kernel address the cmd block for tag */
2b08b3e9 4853 c->Header.tag = cpu_to_le64(c->busaddr);
edd16368
SC
4854
4855 /* Fill in Request block */
4856 memcpy(&c->Request, &iocommand.Request,
4857 sizeof(c->Request));
4858
4859 /* Fill in the scatter gather information */
4860 if (iocommand.buf_size > 0) {
50a0decf 4861 temp64 = pci_map_single(h->pdev, buff,
edd16368 4862 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
50a0decf
SC
4863 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
4864 c->SG[0].Addr = cpu_to_le64(0);
4865 c->SG[0].Len = cpu_to_le32(0);
bcc48ffa
SC
4866 rc = -ENOMEM;
4867 goto out;
4868 }
50a0decf
SC
4869 c->SG[0].Addr = cpu_to_le64(temp64);
4870 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
4871 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
edd16368 4872 }
a0c12413 4873 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
c2dd32e0
SC
4874 if (iocommand.buf_size > 0)
4875 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
edd16368
SC
4876 check_ioctl_unit_attention(h, c);
4877
4878 /* Copy the error information out */
4879 memcpy(&iocommand.error_info, c->err_info,
4880 sizeof(iocommand.error_info));
4881 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
c1f63c8f
SC
4882 rc = -EFAULT;
4883 goto out;
edd16368 4884 }
9233fb10 4885 if ((iocommand.Request.Type.Direction & XFER_READ) &&
b03a7771 4886 iocommand.buf_size > 0) {
edd16368
SC
4887 /* Copy the data out of the buffer we created */
4888 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
c1f63c8f
SC
4889 rc = -EFAULT;
4890 goto out;
edd16368
SC
4891 }
4892 }
c1f63c8f 4893out:
edd16368 4894 cmd_special_free(h, c);
c1f63c8f
SC
4895out_kfree:
4896 kfree(buff);
4897 return rc;
edd16368
SC
4898}
4899
4900static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4901{
4902 BIG_IOCTL_Command_struct *ioc;
4903 struct CommandList *c;
4904 unsigned char **buff = NULL;
4905 int *buff_size = NULL;
50a0decf 4906 u64 temp64;
edd16368
SC
4907 BYTE sg_used = 0;
4908 int status = 0;
01a02ffc
SC
4909 u32 left;
4910 u32 sz;
edd16368
SC
4911 BYTE __user *data_ptr;
4912
4913 if (!argp)
4914 return -EINVAL;
4915 if (!capable(CAP_SYS_RAWIO))
4916 return -EPERM;
4917 ioc = (BIG_IOCTL_Command_struct *)
4918 kmalloc(sizeof(*ioc), GFP_KERNEL);
4919 if (!ioc) {
4920 status = -ENOMEM;
4921 goto cleanup1;
4922 }
4923 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
4924 status = -EFAULT;
4925 goto cleanup1;
4926 }
4927 if ((ioc->buf_size < 1) &&
4928 (ioc->Request.Type.Direction != XFER_NONE)) {
4929 status = -EINVAL;
4930 goto cleanup1;
4931 }
4932 /* Check kmalloc limits using all SGs */
4933 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
4934 status = -EINVAL;
4935 goto cleanup1;
4936 }
d66ae08b 4937 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
edd16368
SC
4938 status = -EINVAL;
4939 goto cleanup1;
4940 }
d66ae08b 4941 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
edd16368
SC
4942 if (!buff) {
4943 status = -ENOMEM;
4944 goto cleanup1;
4945 }
d66ae08b 4946 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
edd16368
SC
4947 if (!buff_size) {
4948 status = -ENOMEM;
4949 goto cleanup1;
4950 }
4951 left = ioc->buf_size;
4952 data_ptr = ioc->buf;
4953 while (left) {
4954 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
4955 buff_size[sg_used] = sz;
4956 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
4957 if (buff[sg_used] == NULL) {
4958 status = -ENOMEM;
4959 goto cleanup1;
4960 }
9233fb10 4961 if (ioc->Request.Type.Direction & XFER_WRITE) {
edd16368 4962 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
0758f4f7 4963 status = -EFAULT;
edd16368
SC
4964 goto cleanup1;
4965 }
4966 } else
4967 memset(buff[sg_used], 0, sz);
4968 left -= sz;
4969 data_ptr += sz;
4970 sg_used++;
4971 }
4972 c = cmd_special_alloc(h);
4973 if (c == NULL) {
4974 status = -ENOMEM;
4975 goto cleanup1;
4976 }
4977 c->cmd_type = CMD_IOCTL_PEND;
4978 c->Header.ReplyQueue = 0;
50a0decf
SC
4979 c->Header.SGList = (u8) sg_used;
4980 c->Header.SGTotal = cpu_to_le16(sg_used);
edd16368 4981 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2b08b3e9 4982 c->Header.tag = cpu_to_le64(c->busaddr);
edd16368
SC
4983 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
4984 if (ioc->buf_size > 0) {
4985 int i;
4986 for (i = 0; i < sg_used; i++) {
50a0decf 4987 temp64 = pci_map_single(h->pdev, buff[i],
edd16368 4988 buff_size[i], PCI_DMA_BIDIRECTIONAL);
50a0decf
SC
4989 if (dma_mapping_error(&h->pdev->dev,
4990 (dma_addr_t) temp64)) {
4991 c->SG[i].Addr = cpu_to_le64(0);
4992 c->SG[i].Len = cpu_to_le32(0);
bcc48ffa
SC
4993 hpsa_pci_unmap(h->pdev, c, i,
4994 PCI_DMA_BIDIRECTIONAL);
4995 status = -ENOMEM;
e2d4a1f6 4996 goto cleanup0;
bcc48ffa 4997 }
50a0decf
SC
4998 c->SG[i].Addr = cpu_to_le64(temp64);
4999 c->SG[i].Len = cpu_to_le32(buff_size[i]);
5000 c->SG[i].Ext = cpu_to_le32(0);
edd16368 5001 }
50a0decf 5002 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
edd16368 5003 }
a0c12413 5004 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
b03a7771
SC
5005 if (sg_used)
5006 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
edd16368
SC
5007 check_ioctl_unit_attention(h, c);
5008 /* Copy the error information out */
5009 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5010 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
edd16368 5011 status = -EFAULT;
e2d4a1f6 5012 goto cleanup0;
edd16368 5013 }
9233fb10 5014 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
2b08b3e9
DB
5015 int i;
5016
edd16368
SC
5017 /* Copy the data out of the buffer we created */
5018 BYTE __user *ptr = ioc->buf;
5019 for (i = 0; i < sg_used; i++) {
5020 if (copy_to_user(ptr, buff[i], buff_size[i])) {
edd16368 5021 status = -EFAULT;
e2d4a1f6 5022 goto cleanup0;
edd16368
SC
5023 }
5024 ptr += buff_size[i];
5025 }
5026 }
edd16368 5027 status = 0;
e2d4a1f6
SC
5028cleanup0:
5029 cmd_special_free(h, c);
edd16368
SC
5030cleanup1:
5031 if (buff) {
2b08b3e9
DB
5032 int i;
5033
edd16368
SC
5034 for (i = 0; i < sg_used; i++)
5035 kfree(buff[i]);
5036 kfree(buff);
5037 }
5038 kfree(buff_size);
5039 kfree(ioc);
5040 return status;
5041}
5042
5043static void check_ioctl_unit_attention(struct ctlr_info *h,
5044 struct CommandList *c)
5045{
5046 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5047 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5048 (void) check_for_unit_attention(h, c);
5049}
0390f0c0
SC
5050
5051static int increment_passthru_count(struct ctlr_info *h)
5052{
5053 unsigned long flags;
5054
5055 spin_lock_irqsave(&h->passthru_count_lock, flags);
5056 if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5057 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5058 return -1;
5059 }
5060 h->passthru_count++;
5061 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5062 return 0;
5063}
5064
5065static void decrement_passthru_count(struct ctlr_info *h)
5066{
5067 unsigned long flags;
5068
5069 spin_lock_irqsave(&h->passthru_count_lock, flags);
5070 if (h->passthru_count <= 0) {
5071 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5072 /* not expecting to get here. */
5073 dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5074 return;
5075 }
5076 h->passthru_count--;
5077 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5078}
5079
edd16368
SC
5080/*
5081 * ioctl
5082 */
42a91641 5083static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
edd16368
SC
5084{
5085 struct ctlr_info *h;
5086 void __user *argp = (void __user *)arg;
0390f0c0 5087 int rc;
edd16368
SC
5088
5089 h = sdev_to_hba(dev);
5090
5091 switch (cmd) {
5092 case CCISS_DEREGDISK:
5093 case CCISS_REGNEWDISK:
5094 case CCISS_REGNEWD:
a08a8471 5095 hpsa_scan_start(h->scsi_host);
edd16368
SC
5096 return 0;
5097 case CCISS_GETPCIINFO:
5098 return hpsa_getpciinfo_ioctl(h, argp);
5099 case CCISS_GETDRIVVER:
5100 return hpsa_getdrivver_ioctl(h, argp);
5101 case CCISS_PASSTHRU:
0390f0c0
SC
5102 if (increment_passthru_count(h))
5103 return -EAGAIN;
5104 rc = hpsa_passthru_ioctl(h, argp);
5105 decrement_passthru_count(h);
5106 return rc;
edd16368 5107 case CCISS_BIG_PASSTHRU:
0390f0c0
SC
5108 if (increment_passthru_count(h))
5109 return -EAGAIN;
5110 rc = hpsa_big_passthru_ioctl(h, argp);
5111 decrement_passthru_count(h);
5112 return rc;
edd16368
SC
5113 default:
5114 return -ENOTTY;
5115 }
5116}
5117
6f039790
GKH
5118static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5119 u8 reset_type)
64670ac8
SC
5120{
5121 struct CommandList *c;
5122
5123 c = cmd_alloc(h);
5124 if (!c)
5125 return -ENOMEM;
a2dac136
SC
5126 /* fill_cmd can't fail here, no data buffer to map */
5127 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
64670ac8
SC
5128 RAID_CTLR_LUNID, TYPE_MSG);
5129 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5130 c->waiting = NULL;
5131 enqueue_cmd_and_start_io(h, c);
5132 /* Don't wait for completion, the reset won't complete. Don't free
5133 * the command either. This is the last command we will send before
5134 * re-initializing everything, so it doesn't matter and won't leak.
5135 */
5136 return 0;
5137}
5138
a2dac136 5139static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
b7bb24eb 5140 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
edd16368
SC
5141 int cmd_type)
5142{
5143 int pci_dir = XFER_NONE;
75167d2c 5144 struct CommandList *a; /* for commands to be aborted */
edd16368
SC
5145
5146 c->cmd_type = CMD_IOCTL_PEND;
5147 c->Header.ReplyQueue = 0;
5148 if (buff != NULL && size > 0) {
5149 c->Header.SGList = 1;
50a0decf 5150 c->Header.SGTotal = cpu_to_le16(1);
edd16368
SC
5151 } else {
5152 c->Header.SGList = 0;
50a0decf 5153 c->Header.SGTotal = cpu_to_le16(0);
edd16368 5154 }
2b08b3e9 5155 c->Header.tag = cpu_to_le64(c->busaddr);
edd16368
SC
5156 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5157
edd16368
SC
5158 if (cmd_type == TYPE_CMD) {
5159 switch (cmd) {
5160 case HPSA_INQUIRY:
5161 /* are we trying to read a vital product page */
b7bb24eb 5162 if (page_code & VPD_PAGE) {
edd16368 5163 c->Request.CDB[1] = 0x01;
b7bb24eb 5164 c->Request.CDB[2] = (page_code & 0xff);
edd16368
SC
5165 }
5166 c->Request.CDBLen = 6;
a505b86f
SC
5167 c->Request.type_attr_dir =
5168 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
edd16368
SC
5169 c->Request.Timeout = 0;
5170 c->Request.CDB[0] = HPSA_INQUIRY;
5171 c->Request.CDB[4] = size & 0xFF;
5172 break;
5173 case HPSA_REPORT_LOG:
5174 case HPSA_REPORT_PHYS:
5175 /* Talking to controller so It's a physical command
5176 mode = 00 target = 0. Nothing to write.
5177 */
5178 c->Request.CDBLen = 12;
a505b86f
SC
5179 c->Request.type_attr_dir =
5180 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
edd16368
SC
5181 c->Request.Timeout = 0;
5182 c->Request.CDB[0] = cmd;
5183 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5184 c->Request.CDB[7] = (size >> 16) & 0xFF;
5185 c->Request.CDB[8] = (size >> 8) & 0xFF;
5186 c->Request.CDB[9] = size & 0xFF;
5187 break;
edd16368
SC
5188 case HPSA_CACHE_FLUSH:
5189 c->Request.CDBLen = 12;
a505b86f
SC
5190 c->Request.type_attr_dir =
5191 TYPE_ATTR_DIR(cmd_type,
5192 ATTR_SIMPLE, XFER_WRITE);
edd16368
SC
5193 c->Request.Timeout = 0;
5194 c->Request.CDB[0] = BMIC_WRITE;
5195 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
bb158eab
SC
5196 c->Request.CDB[7] = (size >> 8) & 0xFF;
5197 c->Request.CDB[8] = size & 0xFF;
edd16368
SC
5198 break;
5199 case TEST_UNIT_READY:
5200 c->Request.CDBLen = 6;
a505b86f
SC
5201 c->Request.type_attr_dir =
5202 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
edd16368
SC
5203 c->Request.Timeout = 0;
5204 break;
283b4a9b
SC
5205 case HPSA_GET_RAID_MAP:
5206 c->Request.CDBLen = 12;
a505b86f
SC
5207 c->Request.type_attr_dir =
5208 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
283b4a9b
SC
5209 c->Request.Timeout = 0;
5210 c->Request.CDB[0] = HPSA_CISS_READ;
5211 c->Request.CDB[1] = cmd;
5212 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5213 c->Request.CDB[7] = (size >> 16) & 0xFF;
5214 c->Request.CDB[8] = (size >> 8) & 0xFF;
5215 c->Request.CDB[9] = size & 0xFF;
5216 break;
316b221a
SC
5217 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5218 c->Request.CDBLen = 10;
a505b86f
SC
5219 c->Request.type_attr_dir =
5220 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
316b221a
SC
5221 c->Request.Timeout = 0;
5222 c->Request.CDB[0] = BMIC_READ;
5223 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5224 c->Request.CDB[7] = (size >> 16) & 0xFF;
5225 c->Request.CDB[8] = (size >> 8) & 0xFF;
5226 break;
edd16368
SC
5227 default:
5228 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5229 BUG();
a2dac136 5230 return -1;
edd16368
SC
5231 }
5232 } else if (cmd_type == TYPE_MSG) {
5233 switch (cmd) {
5234
5235 case HPSA_DEVICE_RESET_MSG:
5236 c->Request.CDBLen = 16;
a505b86f
SC
5237 c->Request.type_attr_dir =
5238 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
edd16368 5239 c->Request.Timeout = 0; /* Don't time out */
64670ac8
SC
5240 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5241 c->Request.CDB[0] = cmd;
21e89afd 5242 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
edd16368
SC
5243 /* If bytes 4-7 are zero, it means reset the */
5244 /* LunID device */
5245 c->Request.CDB[4] = 0x00;
5246 c->Request.CDB[5] = 0x00;
5247 c->Request.CDB[6] = 0x00;
5248 c->Request.CDB[7] = 0x00;
75167d2c
SC
5249 break;
5250 case HPSA_ABORT_MSG:
5251 a = buff; /* point to command to be aborted */
2b08b3e9
DB
5252 dev_dbg(&h->pdev->dev,
5253 "Abort Tag:0x%016llx request Tag:0x%016llx",
50a0decf 5254 a->Header.tag, c->Header.tag);
75167d2c 5255 c->Request.CDBLen = 16;
a505b86f
SC
5256 c->Request.type_attr_dir =
5257 TYPE_ATTR_DIR(cmd_type,
5258 ATTR_SIMPLE, XFER_WRITE);
75167d2c
SC
5259 c->Request.Timeout = 0; /* Don't time out */
5260 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5261 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5262 c->Request.CDB[2] = 0x00; /* reserved */
5263 c->Request.CDB[3] = 0x00; /* reserved */
5264 /* Tag to abort goes in CDB[4]-CDB[11] */
2b08b3e9
DB
5265 memcpy(&c->Request.CDB[4], &a->Header.tag,
5266 sizeof(a->Header.tag));
75167d2c
SC
5267 c->Request.CDB[12] = 0x00; /* reserved */
5268 c->Request.CDB[13] = 0x00; /* reserved */
5269 c->Request.CDB[14] = 0x00; /* reserved */
5270 c->Request.CDB[15] = 0x00; /* reserved */
edd16368 5271 break;
edd16368
SC
5272 default:
5273 dev_warn(&h->pdev->dev, "unknown message type %d\n",
5274 cmd);
5275 BUG();
5276 }
5277 } else {
5278 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5279 BUG();
5280 }
5281
a505b86f 5282 switch (GET_DIR(c->Request.type_attr_dir)) {
edd16368
SC
5283 case XFER_READ:
5284 pci_dir = PCI_DMA_FROMDEVICE;
5285 break;
5286 case XFER_WRITE:
5287 pci_dir = PCI_DMA_TODEVICE;
5288 break;
5289 case XFER_NONE:
5290 pci_dir = PCI_DMA_NONE;
5291 break;
5292 default:
5293 pci_dir = PCI_DMA_BIDIRECTIONAL;
5294 }
a2dac136
SC
5295 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5296 return -1;
5297 return 0;
edd16368
SC
5298}
5299
5300/*
5301 * Map (physical) PCI mem into (virtual) kernel space
5302 */
5303static void __iomem *remap_pci_mem(ulong base, ulong size)
5304{
5305 ulong page_base = ((ulong) base) & PAGE_MASK;
5306 ulong page_offs = ((ulong) base) - page_base;
088ba34c
SC
5307 void __iomem *page_remapped = ioremap_nocache(page_base,
5308 page_offs + size);
edd16368
SC
5309
5310 return page_remapped ? (page_remapped + page_offs) : NULL;
5311}
5312
5313/* Takes cmds off the submission queue and sends them to the hardware,
5314 * then puts them on the queue of cmds waiting for completion.
0b57075d 5315 * Assumes h->lock is held
edd16368 5316 */
0b57075d 5317static void start_io(struct ctlr_info *h, unsigned long *flags)
edd16368
SC
5318{
5319 struct CommandList *c;
5320
9e0fc764
SC
5321 while (!list_empty(&h->reqQ)) {
5322 c = list_entry(h->reqQ.next, struct CommandList, list);
edd16368
SC
5323 /* can't do anything if fifo is full */
5324 if ((h->access.fifo_full(h))) {
396883e2 5325 h->fifo_recently_full = 1;
edd16368
SC
5326 dev_warn(&h->pdev->dev, "fifo full\n");
5327 break;
5328 }
396883e2 5329 h->fifo_recently_full = 0;
edd16368
SC
5330
5331 /* Get the first entry from the Request Q */
5332 removeQ(c);
5333 h->Qdepth--;
5334
edd16368
SC
5335 /* Put job onto the completed Q */
5336 addQ(&h->cmpQ, c);
0cbf768e 5337 atomic_inc(&h->commands_outstanding);
0b57075d 5338 spin_unlock_irqrestore(&h->lock, *flags);
0cbf768e 5339 /* Tell the controller execute command */
e16a33ad 5340 h->access.submit_command(h, c);
0b57075d 5341 spin_lock_irqsave(&h->lock, *flags);
edd16368 5342 }
0b57075d
SC
5343}
5344
5345static void lock_and_start_io(struct ctlr_info *h)
5346{
5347 unsigned long flags;
5348
5349 spin_lock_irqsave(&h->lock, flags);
5350 start_io(h, &flags);
e16a33ad 5351 spin_unlock_irqrestore(&h->lock, flags);
edd16368
SC
5352}
5353
254f796b 5354static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
edd16368 5355{
254f796b 5356 return h->access.command_completed(h, q);
edd16368
SC
5357}
5358
900c5440 5359static inline bool interrupt_pending(struct ctlr_info *h)
edd16368
SC
5360{
5361 return h->access.intr_pending(h);
5362}
5363
5364static inline long interrupt_not_for_us(struct ctlr_info *h)
5365{
10f66018
SC
5366 return (h->access.intr_pending(h) == 0) ||
5367 (h->interrupts_enabled == 0);
edd16368
SC
5368}
5369
01a02ffc
SC
5370static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5371 u32 raw_tag)
edd16368
SC
5372{
5373 if (unlikely(tag_index >= h->nr_cmds)) {
5374 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5375 return 1;
5376 }
5377 return 0;
5378}
5379
5a3d16f5 5380static inline void finish_cmd(struct CommandList *c)
edd16368 5381{
e16a33ad 5382 unsigned long flags;
396883e2
SC
5383 int io_may_be_stalled = 0;
5384 struct ctlr_info *h = c->h;
0cbf768e 5385 int count;
e16a33ad 5386
396883e2 5387 spin_lock_irqsave(&h->lock, flags);
edd16368 5388 removeQ(c);
396883e2
SC
5389
5390 /*
5391 * Check for possibly stalled i/o.
5392 *
5393 * If a fifo_full condition is encountered, requests will back up
5394 * in h->reqQ. This queue is only emptied out by start_io which is
5395 * only called when a new i/o request comes in. If no i/o's are
5396 * forthcoming, the i/o's in h->reqQ can get stuck. So we call
5397 * start_io from here if we detect such a danger.
5398 *
5399 * Normally, we shouldn't hit this case, but pounding on the
5400 * CCISS_PASSTHRU ioctl can provoke it. Only call start_io if
5401 * commands_outstanding is low. We want to avoid calling
5402 * start_io from in here as much as possible, and esp. don't
5403 * want to get in a cycle where we call start_io every time
5404 * through here.
5405 */
0cbf768e 5406 count = atomic_read(&h->commands_outstanding);
396883e2 5407 spin_unlock_irqrestore(&h->lock, flags);
0cbf768e
SC
5408 if (unlikely(h->fifo_recently_full) && count < 5)
5409 io_may_be_stalled = 1;
396883e2 5410
e85c5974 5411 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
c349775e
ST
5412 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5413 || c->cmd_type == CMD_IOACCEL2))
1fb011fb 5414 complete_scsi_command(c);
edd16368
SC
5415 else if (c->cmd_type == CMD_IOCTL_PEND)
5416 complete(c->waiting);
396883e2 5417 if (unlikely(io_may_be_stalled))
0b57075d 5418 lock_and_start_io(h);
edd16368
SC
5419}
5420
a104c99f
SC
5421static inline u32 hpsa_tag_contains_index(u32 tag)
5422{
a104c99f
SC
5423 return tag & DIRECT_LOOKUP_BIT;
5424}
5425
5426static inline u32 hpsa_tag_to_index(u32 tag)
5427{
a104c99f
SC
5428 return tag >> DIRECT_LOOKUP_SHIFT;
5429}
5430
a9a3a273
SC
5431
5432static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
a104c99f 5433{
a9a3a273
SC
5434#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5435#define HPSA_SIMPLE_ERROR_BITS 0x03
960a30e7 5436 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
a9a3a273
SC
5437 return tag & ~HPSA_SIMPLE_ERROR_BITS;
5438 return tag & ~HPSA_PERF_ERROR_BITS;
a104c99f
SC
5439}
5440
303932fd 5441/* process completion of an indexed ("direct lookup") command */
1d94f94d 5442static inline void process_indexed_cmd(struct ctlr_info *h,
303932fd
DB
5443 u32 raw_tag)
5444{
5445 u32 tag_index;
5446 struct CommandList *c;
5447
5448 tag_index = hpsa_tag_to_index(raw_tag);
1d94f94d
SC
5449 if (!bad_tag(h, tag_index, raw_tag)) {
5450 c = h->cmd_pool + tag_index;
5451 finish_cmd(c);
5452 }
303932fd
DB
5453}
5454
5455/* process completion of a non-indexed command */
1d94f94d 5456static inline void process_nonindexed_cmd(struct ctlr_info *h,
303932fd
DB
5457 u32 raw_tag)
5458{
5459 u32 tag;
5460 struct CommandList *c = NULL;
e16a33ad 5461 unsigned long flags;
303932fd 5462
a9a3a273 5463 tag = hpsa_tag_discard_error_bits(h, raw_tag);
e16a33ad 5464 spin_lock_irqsave(&h->lock, flags);
9e0fc764 5465 list_for_each_entry(c, &h->cmpQ, list) {
303932fd 5466 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
e16a33ad 5467 spin_unlock_irqrestore(&h->lock, flags);
5a3d16f5 5468 finish_cmd(c);
1d94f94d 5469 return;
303932fd
DB
5470 }
5471 }
e16a33ad 5472 spin_unlock_irqrestore(&h->lock, flags);
303932fd 5473 bad_tag(h, h->nr_cmds + 1, raw_tag);
303932fd
DB
5474}
5475
64670ac8
SC
5476/* Some controllers, like p400, will give us one interrupt
5477 * after a soft reset, even if we turned interrupts off.
5478 * Only need to check for this in the hpsa_xxx_discard_completions
5479 * functions.
5480 */
5481static int ignore_bogus_interrupt(struct ctlr_info *h)
5482{
5483 if (likely(!reset_devices))
5484 return 0;
5485
5486 if (likely(h->interrupts_enabled))
5487 return 0;
5488
5489 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5490 "(known firmware bug.) Ignoring.\n");
5491
5492 return 1;
5493}
5494
254f796b
MG
5495/*
5496 * Convert &h->q[x] (passed to interrupt handlers) back to h.
5497 * Relies on (h-q[x] == x) being true for x such that
5498 * 0 <= x < MAX_REPLY_QUEUES.
5499 */
5500static struct ctlr_info *queue_to_hba(u8 *queue)
64670ac8 5501{
254f796b
MG
5502 return container_of((queue - *queue), struct ctlr_info, q[0]);
5503}
5504
5505static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5506{
5507 struct ctlr_info *h = queue_to_hba(queue);
5508 u8 q = *(u8 *) queue;
64670ac8
SC
5509 u32 raw_tag;
5510
5511 if (ignore_bogus_interrupt(h))
5512 return IRQ_NONE;
5513
5514 if (interrupt_not_for_us(h))
5515 return IRQ_NONE;
a0c12413 5516 h->last_intr_timestamp = get_jiffies_64();
64670ac8 5517 while (interrupt_pending(h)) {
254f796b 5518 raw_tag = get_next_completion(h, q);
64670ac8 5519 while (raw_tag != FIFO_EMPTY)
254f796b 5520 raw_tag = next_command(h, q);
64670ac8 5521 }
64670ac8
SC
5522 return IRQ_HANDLED;
5523}
5524
254f796b 5525static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
64670ac8 5526{
254f796b 5527 struct ctlr_info *h = queue_to_hba(queue);
64670ac8 5528 u32 raw_tag;
254f796b 5529 u8 q = *(u8 *) queue;
64670ac8
SC
5530
5531 if (ignore_bogus_interrupt(h))
5532 return IRQ_NONE;
5533
a0c12413 5534 h->last_intr_timestamp = get_jiffies_64();
254f796b 5535 raw_tag = get_next_completion(h, q);
64670ac8 5536 while (raw_tag != FIFO_EMPTY)
254f796b 5537 raw_tag = next_command(h, q);
64670ac8
SC
5538 return IRQ_HANDLED;
5539}
5540
254f796b 5541static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
edd16368 5542{
254f796b 5543 struct ctlr_info *h = queue_to_hba((u8 *) queue);
303932fd 5544 u32 raw_tag;
254f796b 5545 u8 q = *(u8 *) queue;
edd16368
SC
5546
5547 if (interrupt_not_for_us(h))
5548 return IRQ_NONE;
a0c12413 5549 h->last_intr_timestamp = get_jiffies_64();
10f66018 5550 while (interrupt_pending(h)) {
254f796b 5551 raw_tag = get_next_completion(h, q);
10f66018 5552 while (raw_tag != FIFO_EMPTY) {
1d94f94d
SC
5553 if (likely(hpsa_tag_contains_index(raw_tag)))
5554 process_indexed_cmd(h, raw_tag);
10f66018 5555 else
1d94f94d 5556 process_nonindexed_cmd(h, raw_tag);
254f796b 5557 raw_tag = next_command(h, q);
10f66018
SC
5558 }
5559 }
10f66018
SC
5560 return IRQ_HANDLED;
5561}
5562
254f796b 5563static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
10f66018 5564{
254f796b 5565 struct ctlr_info *h = queue_to_hba(queue);
10f66018 5566 u32 raw_tag;
254f796b 5567 u8 q = *(u8 *) queue;
10f66018 5568
a0c12413 5569 h->last_intr_timestamp = get_jiffies_64();
254f796b 5570 raw_tag = get_next_completion(h, q);
303932fd 5571 while (raw_tag != FIFO_EMPTY) {
1d94f94d
SC
5572 if (likely(hpsa_tag_contains_index(raw_tag)))
5573 process_indexed_cmd(h, raw_tag);
303932fd 5574 else
1d94f94d 5575 process_nonindexed_cmd(h, raw_tag);
254f796b 5576 raw_tag = next_command(h, q);
edd16368 5577 }
edd16368
SC
5578 return IRQ_HANDLED;
5579}
5580
a9a3a273
SC
5581/* Send a message CDB to the firmware. Careful, this only works
5582 * in simple mode, not performant mode due to the tag lookup.
5583 * We only ever use this immediately after a controller reset.
5584 */
6f039790
GKH
5585static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5586 unsigned char type)
edd16368
SC
5587{
5588 struct Command {
5589 struct CommandListHeader CommandHeader;
5590 struct RequestBlock Request;
5591 struct ErrDescriptor ErrorDescriptor;
5592 };
5593 struct Command *cmd;
5594 static const size_t cmd_sz = sizeof(*cmd) +
5595 sizeof(cmd->ErrorDescriptor);
5596 dma_addr_t paddr64;
2b08b3e9
DB
5597 __le32 paddr32;
5598 u32 tag;
edd16368
SC
5599 void __iomem *vaddr;
5600 int i, err;
5601
5602 vaddr = pci_ioremap_bar(pdev, 0);
5603 if (vaddr == NULL)
5604 return -ENOMEM;
5605
5606 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5607 * CCISS commands, so they must be allocated from the lower 4GiB of
5608 * memory.
5609 */
5610 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5611 if (err) {
5612 iounmap(vaddr);
1eaec8f3 5613 return err;
edd16368
SC
5614 }
5615
5616 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5617 if (cmd == NULL) {
5618 iounmap(vaddr);
5619 return -ENOMEM;
5620 }
5621
5622 /* This must fit, because of the 32-bit consistent DMA mask. Also,
5623 * although there's no guarantee, we assume that the address is at
5624 * least 4-byte aligned (most likely, it's page-aligned).
5625 */
2b08b3e9 5626 paddr32 = cpu_to_le32(paddr64);
edd16368
SC
5627
5628 cmd->CommandHeader.ReplyQueue = 0;
5629 cmd->CommandHeader.SGList = 0;
50a0decf 5630 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
2b08b3e9 5631 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
edd16368
SC
5632 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5633
5634 cmd->Request.CDBLen = 16;
a505b86f
SC
5635 cmd->Request.type_attr_dir =
5636 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
edd16368
SC
5637 cmd->Request.Timeout = 0; /* Don't time out */
5638 cmd->Request.CDB[0] = opcode;
5639 cmd->Request.CDB[1] = type;
5640 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
50a0decf 5641 cmd->ErrorDescriptor.Addr =
2b08b3e9 5642 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
50a0decf 5643 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
edd16368 5644
2b08b3e9 5645 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
edd16368
SC
5646
5647 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5648 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
2b08b3e9 5649 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
edd16368
SC
5650 break;
5651 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5652 }
5653
5654 iounmap(vaddr);
5655
5656 /* we leak the DMA buffer here ... no choice since the controller could
5657 * still complete the command.
5658 */
5659 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5660 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5661 opcode, type);
5662 return -ETIMEDOUT;
5663 }
5664
5665 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5666
5667 if (tag & HPSA_ERROR_BIT) {
5668 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5669 opcode, type);
5670 return -EIO;
5671 }
5672
5673 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5674 opcode, type);
5675 return 0;
5676}
5677
edd16368
SC
5678#define hpsa_noop(p) hpsa_message(p, 3, 0)
5679
1df8552a 5680static int hpsa_controller_hard_reset(struct pci_dev *pdev,
42a91641 5681 void __iomem *vaddr, u32 use_doorbell)
1df8552a 5682{
1df8552a
SC
5683
5684 if (use_doorbell) {
5685 /* For everything after the P600, the PCI power state method
5686 * of resetting the controller doesn't work, so we have this
5687 * other way using the doorbell register.
5688 */
5689 dev_info(&pdev->dev, "using doorbell to reset controller\n");
cf0b08d0 5690 writel(use_doorbell, vaddr + SA5_DOORBELL);
85009239 5691
00701a96 5692 /* PMC hardware guys tell us we need a 10 second delay after
85009239
SC
5693 * doorbell reset and before any attempt to talk to the board
5694 * at all to ensure that this actually works and doesn't fall
5695 * over in some weird corner cases.
5696 */
00701a96 5697 msleep(10000);
1df8552a
SC
5698 } else { /* Try to do it the PCI power state way */
5699
5700 /* Quoting from the Open CISS Specification: "The Power
5701 * Management Control/Status Register (CSR) controls the power
5702 * state of the device. The normal operating state is D0,
5703 * CSR=00h. The software off state is D3, CSR=03h. To reset
5704 * the controller, place the interface device in D3 then to D0,
5705 * this causes a secondary PCI reset which will reset the
5706 * controller." */
2662cab8
DB
5707
5708 int rc = 0;
5709
1df8552a 5710 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
2662cab8 5711
1df8552a 5712 /* enter the D3hot power management state */
2662cab8
DB
5713 rc = pci_set_power_state(pdev, PCI_D3hot);
5714 if (rc)
5715 return rc;
1df8552a
SC
5716
5717 msleep(500);
5718
5719 /* enter the D0 power management state */
2662cab8
DB
5720 rc = pci_set_power_state(pdev, PCI_D0);
5721 if (rc)
5722 return rc;
c4853efe
MM
5723
5724 /*
5725 * The P600 requires a small delay when changing states.
5726 * Otherwise we may think the board did not reset and we bail.
5727 * This for kdump only and is particular to the P600.
5728 */
5729 msleep(500);
1df8552a
SC
5730 }
5731 return 0;
5732}
5733
6f039790 5734static void init_driver_version(char *driver_version, int len)
580ada3c
SC
5735{
5736 memset(driver_version, 0, len);
f79cfec6 5737 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
580ada3c
SC
5738}
5739
6f039790 5740static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
580ada3c
SC
5741{
5742 char *driver_version;
5743 int i, size = sizeof(cfgtable->driver_version);
5744
5745 driver_version = kmalloc(size, GFP_KERNEL);
5746 if (!driver_version)
5747 return -ENOMEM;
5748
5749 init_driver_version(driver_version, size);
5750 for (i = 0; i < size; i++)
5751 writeb(driver_version[i], &cfgtable->driver_version[i]);
5752 kfree(driver_version);
5753 return 0;
5754}
5755
6f039790
GKH
5756static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5757 unsigned char *driver_ver)
580ada3c
SC
5758{
5759 int i;
5760
5761 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5762 driver_ver[i] = readb(&cfgtable->driver_version[i]);
5763}
5764
6f039790 5765static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
580ada3c
SC
5766{
5767
5768 char *driver_ver, *old_driver_ver;
5769 int rc, size = sizeof(cfgtable->driver_version);
5770
5771 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5772 if (!old_driver_ver)
5773 return -ENOMEM;
5774 driver_ver = old_driver_ver + size;
5775
5776 /* After a reset, the 32 bytes of "driver version" in the cfgtable
5777 * should have been changed, otherwise we know the reset failed.
5778 */
5779 init_driver_version(old_driver_ver, size);
5780 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5781 rc = !memcmp(driver_ver, old_driver_ver, size);
5782 kfree(old_driver_ver);
5783 return rc;
5784}
edd16368 5785/* This does a hard reset of the controller using PCI power management
1df8552a 5786 * states or the using the doorbell register.
edd16368 5787 */
6f039790 5788static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
edd16368 5789{
1df8552a
SC
5790 u64 cfg_offset;
5791 u32 cfg_base_addr;
5792 u64 cfg_base_addr_index;
5793 void __iomem *vaddr;
5794 unsigned long paddr;
580ada3c 5795 u32 misc_fw_support;
270d05de 5796 int rc;
1df8552a 5797 struct CfgTable __iomem *cfgtable;
cf0b08d0 5798 u32 use_doorbell;
18867659 5799 u32 board_id;
270d05de 5800 u16 command_register;
edd16368 5801
1df8552a
SC
5802 /* For controllers as old as the P600, this is very nearly
5803 * the same thing as
edd16368
SC
5804 *
5805 * pci_save_state(pci_dev);
5806 * pci_set_power_state(pci_dev, PCI_D3hot);
5807 * pci_set_power_state(pci_dev, PCI_D0);
5808 * pci_restore_state(pci_dev);
5809 *
1df8552a
SC
5810 * For controllers newer than the P600, the pci power state
5811 * method of resetting doesn't work so we have another way
5812 * using the doorbell register.
edd16368 5813 */
18867659 5814
25c1e56a 5815 rc = hpsa_lookup_board_id(pdev, &board_id);
60f923b9
RE
5816 if (rc < 0) {
5817 dev_warn(&pdev->dev, "Board ID not found\n");
5818 return rc;
5819 }
5820 if (!ctlr_is_resettable(board_id)) {
5821 dev_warn(&pdev->dev, "Controller not resettable\n");
25c1e56a
SC
5822 return -ENODEV;
5823 }
46380786
SC
5824
5825 /* if controller is soft- but not hard resettable... */
5826 if (!ctlr_is_hard_resettable(board_id))
5827 return -ENOTSUPP; /* try soft reset later. */
18867659 5828
270d05de
SC
5829 /* Save the PCI command register */
5830 pci_read_config_word(pdev, 4, &command_register);
270d05de 5831 pci_save_state(pdev);
edd16368 5832
1df8552a
SC
5833 /* find the first memory BAR, so we can find the cfg table */
5834 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5835 if (rc)
5836 return rc;
5837 vaddr = remap_pci_mem(paddr, 0x250);
5838 if (!vaddr)
5839 return -ENOMEM;
edd16368 5840
1df8552a
SC
5841 /* find cfgtable in order to check if reset via doorbell is supported */
5842 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5843 &cfg_base_addr_index, &cfg_offset);
5844 if (rc)
5845 goto unmap_vaddr;
5846 cfgtable = remap_pci_mem(pci_resource_start(pdev,
5847 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5848 if (!cfgtable) {
5849 rc = -ENOMEM;
5850 goto unmap_vaddr;
5851 }
580ada3c
SC
5852 rc = write_driver_ver_to_cfgtable(cfgtable);
5853 if (rc)
03741d95 5854 goto unmap_cfgtable;
edd16368 5855
cf0b08d0
SC
5856 /* If reset via doorbell register is supported, use that.
5857 * There are two such methods. Favor the newest method.
5858 */
1df8552a 5859 misc_fw_support = readl(&cfgtable->misc_fw_support);
cf0b08d0
SC
5860 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5861 if (use_doorbell) {
5862 use_doorbell = DOORBELL_CTLR_RESET2;
5863 } else {
5864 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
5865 if (use_doorbell) {
050f7147
SC
5866 dev_warn(&pdev->dev,
5867 "Soft reset not supported. Firmware update is required.\n");
64670ac8 5868 rc = -ENOTSUPP; /* try soft reset */
cf0b08d0
SC
5869 goto unmap_cfgtable;
5870 }
5871 }
edd16368 5872
1df8552a
SC
5873 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
5874 if (rc)
5875 goto unmap_cfgtable;
edd16368 5876
270d05de 5877 pci_restore_state(pdev);
270d05de 5878 pci_write_config_word(pdev, 4, command_register);
edd16368 5879
1df8552a
SC
5880 /* Some devices (notably the HP Smart Array 5i Controller)
5881 need a little pause here */
5882 msleep(HPSA_POST_RESET_PAUSE_MSECS);
5883
fe5389c8
SC
5884 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
5885 if (rc) {
5886 dev_warn(&pdev->dev,
050f7147 5887 "Failed waiting for board to become ready after hard reset\n");
fe5389c8
SC
5888 goto unmap_cfgtable;
5889 }
fe5389c8 5890
580ada3c
SC
5891 rc = controller_reset_failed(vaddr);
5892 if (rc < 0)
5893 goto unmap_cfgtable;
5894 if (rc) {
64670ac8
SC
5895 dev_warn(&pdev->dev, "Unable to successfully reset "
5896 "controller. Will try soft reset.\n");
5897 rc = -ENOTSUPP;
580ada3c 5898 } else {
64670ac8 5899 dev_info(&pdev->dev, "board ready after hard reset.\n");
1df8552a
SC
5900 }
5901
5902unmap_cfgtable:
5903 iounmap(cfgtable);
5904
5905unmap_vaddr:
5906 iounmap(vaddr);
5907 return rc;
edd16368
SC
5908}
5909
5910/*
5911 * We cannot read the structure directly, for portability we must use
5912 * the io functions.
5913 * This is for debug only.
5914 */
42a91641 5915static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
edd16368 5916{
58f8665c 5917#ifdef HPSA_DEBUG
edd16368
SC
5918 int i;
5919 char temp_name[17];
5920
5921 dev_info(dev, "Controller Configuration information\n");
5922 dev_info(dev, "------------------------------------\n");
5923 for (i = 0; i < 4; i++)
5924 temp_name[i] = readb(&(tb->Signature[i]));
5925 temp_name[4] = '\0';
5926 dev_info(dev, " Signature = %s\n", temp_name);
5927 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
5928 dev_info(dev, " Transport methods supported = 0x%x\n",
5929 readl(&(tb->TransportSupport)));
5930 dev_info(dev, " Transport methods active = 0x%x\n",
5931 readl(&(tb->TransportActive)));
5932 dev_info(dev, " Requested transport Method = 0x%x\n",
5933 readl(&(tb->HostWrite.TransportRequest)));
5934 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
5935 readl(&(tb->HostWrite.CoalIntDelay)));
5936 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
5937 readl(&(tb->HostWrite.CoalIntCount)));
69d6e33d 5938 dev_info(dev, " Max outstanding commands = %d\n",
edd16368
SC
5939 readl(&(tb->CmdsOutMax)));
5940 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
5941 for (i = 0; i < 16; i++)
5942 temp_name[i] = readb(&(tb->ServerName[i]));
5943 temp_name[16] = '\0';
5944 dev_info(dev, " Server Name = %s\n", temp_name);
5945 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
5946 readl(&(tb->HeartBeat)));
edd16368 5947#endif /* HPSA_DEBUG */
58f8665c 5948}
edd16368
SC
5949
5950static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
5951{
5952 int i, offset, mem_type, bar_type;
5953
5954 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
5955 return 0;
5956 offset = 0;
5957 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5958 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
5959 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
5960 offset += 4;
5961 else {
5962 mem_type = pci_resource_flags(pdev, i) &
5963 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
5964 switch (mem_type) {
5965 case PCI_BASE_ADDRESS_MEM_TYPE_32:
5966 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
5967 offset += 4; /* 32 bit */
5968 break;
5969 case PCI_BASE_ADDRESS_MEM_TYPE_64:
5970 offset += 8;
5971 break;
5972 default: /* reserved in PCI 2.2 */
5973 dev_warn(&pdev->dev,
5974 "base address is invalid\n");
5975 return -1;
5976 break;
5977 }
5978 }
5979 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
5980 return i + 1;
5981 }
5982 return -1;
5983}
5984
5985/* If MSI/MSI-X is supported by the kernel we will try to enable it on
050f7147 5986 * controllers that are capable. If not, we use legacy INTx mode.
edd16368
SC
5987 */
5988
6f039790 5989static void hpsa_interrupt_mode(struct ctlr_info *h)
edd16368
SC
5990{
5991#ifdef CONFIG_PCI_MSI
254f796b
MG
5992 int err, i;
5993 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
5994
5995 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
5996 hpsa_msix_entries[i].vector = 0;
5997 hpsa_msix_entries[i].entry = i;
5998 }
edd16368
SC
5999
6000 /* Some boards advertise MSI but don't really support it */
6b3f4c52
SC
6001 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6002 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
edd16368 6003 goto default_int_mode;
55c06c71 6004 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
050f7147 6005 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
eee0f03a 6006 h->msix_vector = MAX_REPLY_QUEUES;
f89439bc
SC
6007 if (h->msix_vector > num_online_cpus())
6008 h->msix_vector = num_online_cpus();
18fce3c4
AG
6009 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6010 1, h->msix_vector);
6011 if (err < 0) {
6012 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6013 h->msix_vector = 0;
6014 goto single_msi_mode;
6015 } else if (err < h->msix_vector) {
55c06c71 6016 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
edd16368 6017 "available\n", err);
edd16368 6018 }
18fce3c4
AG
6019 h->msix_vector = err;
6020 for (i = 0; i < h->msix_vector; i++)
6021 h->intr[i] = hpsa_msix_entries[i].vector;
6022 return;
edd16368 6023 }
18fce3c4 6024single_msi_mode:
55c06c71 6025 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
050f7147 6026 dev_info(&h->pdev->dev, "MSI capable controller\n");
55c06c71 6027 if (!pci_enable_msi(h->pdev))
edd16368
SC
6028 h->msi_vector = 1;
6029 else
55c06c71 6030 dev_warn(&h->pdev->dev, "MSI init failed\n");
edd16368
SC
6031 }
6032default_int_mode:
6033#endif /* CONFIG_PCI_MSI */
6034 /* if we get here we're going to use the default interrupt mode */
a9a3a273 6035 h->intr[h->intr_mode] = h->pdev->irq;
edd16368
SC
6036}
6037
6f039790 6038static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
e5c880d1
SC
6039{
6040 int i;
6041 u32 subsystem_vendor_id, subsystem_device_id;
6042
6043 subsystem_vendor_id = pdev->subsystem_vendor;
6044 subsystem_device_id = pdev->subsystem_device;
6045 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6046 subsystem_vendor_id;
6047
6048 for (i = 0; i < ARRAY_SIZE(products); i++)
6049 if (*board_id == products[i].board_id)
6050 return i;
6051
6798cc0a
SC
6052 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6053 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6054 !hpsa_allow_any) {
e5c880d1
SC
6055 dev_warn(&pdev->dev, "unrecognized board ID: "
6056 "0x%08x, ignoring.\n", *board_id);
6057 return -ENODEV;
6058 }
6059 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6060}
6061
6f039790
GKH
6062static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6063 unsigned long *memory_bar)
3a7774ce
SC
6064{
6065 int i;
6066
6067 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
12d2cd47 6068 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3a7774ce 6069 /* addressing mode bits already removed */
12d2cd47
SC
6070 *memory_bar = pci_resource_start(pdev, i);
6071 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3a7774ce
SC
6072 *memory_bar);
6073 return 0;
6074 }
12d2cd47 6075 dev_warn(&pdev->dev, "no memory BAR found\n");
3a7774ce
SC
6076 return -ENODEV;
6077}
6078
6f039790
GKH
6079static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6080 int wait_for_ready)
2c4c8c8b 6081{
fe5389c8 6082 int i, iterations;
2c4c8c8b 6083 u32 scratchpad;
fe5389c8
SC
6084 if (wait_for_ready)
6085 iterations = HPSA_BOARD_READY_ITERATIONS;
6086 else
6087 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
2c4c8c8b 6088
fe5389c8
SC
6089 for (i = 0; i < iterations; i++) {
6090 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6091 if (wait_for_ready) {
6092 if (scratchpad == HPSA_FIRMWARE_READY)
6093 return 0;
6094 } else {
6095 if (scratchpad != HPSA_FIRMWARE_READY)
6096 return 0;
6097 }
2c4c8c8b
SC
6098 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6099 }
fe5389c8 6100 dev_warn(&pdev->dev, "board not ready, timed out.\n");
2c4c8c8b
SC
6101 return -ENODEV;
6102}
6103
6f039790
GKH
6104static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6105 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6106 u64 *cfg_offset)
a51fd47f
SC
6107{
6108 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6109 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6110 *cfg_base_addr &= (u32) 0x0000ffff;
6111 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6112 if (*cfg_base_addr_index == -1) {
6113 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6114 return -ENODEV;
6115 }
6116 return 0;
6117}
6118
6f039790 6119static int hpsa_find_cfgtables(struct ctlr_info *h)
edd16368 6120{
01a02ffc
SC
6121 u64 cfg_offset;
6122 u32 cfg_base_addr;
6123 u64 cfg_base_addr_index;
303932fd 6124 u32 trans_offset;
a51fd47f 6125 int rc;
77c4495c 6126
a51fd47f
SC
6127 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6128 &cfg_base_addr_index, &cfg_offset);
6129 if (rc)
6130 return rc;
77c4495c 6131 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
a51fd47f 6132 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
cd3c81c4
RE
6133 if (!h->cfgtable) {
6134 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
77c4495c 6135 return -ENOMEM;
cd3c81c4 6136 }
580ada3c
SC
6137 rc = write_driver_ver_to_cfgtable(h->cfgtable);
6138 if (rc)
6139 return rc;
77c4495c 6140 /* Find performant mode table. */
a51fd47f 6141 trans_offset = readl(&h->cfgtable->TransMethodOffset);
77c4495c
SC
6142 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6143 cfg_base_addr_index)+cfg_offset+trans_offset,
6144 sizeof(*h->transtable));
6145 if (!h->transtable)
6146 return -ENOMEM;
6147 return 0;
6148}
6149
6f039790 6150static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
cba3d38b
SC
6151{
6152 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
72ceeaec
SC
6153
6154 /* Limit commands in memory limited kdump scenario. */
6155 if (reset_devices && h->max_commands > 32)
6156 h->max_commands = 32;
6157
cba3d38b
SC
6158 if (h->max_commands < 16) {
6159 dev_warn(&h->pdev->dev, "Controller reports "
6160 "max supported commands of %d, an obvious lie. "
6161 "Using 16. Ensure that firmware is up to date.\n",
6162 h->max_commands);
6163 h->max_commands = 16;
6164 }
6165}
6166
c7ee65b3
WS
6167/* If the controller reports that the total max sg entries is greater than 512,
6168 * then we know that chained SG blocks work. (Original smart arrays did not
6169 * support chained SG blocks and would return zero for max sg entries.)
6170 */
6171static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
6172{
6173 return h->maxsgentries > 512;
6174}
6175
b93d7536
SC
6176/* Interrogate the hardware for some limits:
6177 * max commands, max SG elements without chaining, and with chaining,
6178 * SG chain block size, etc.
6179 */
6f039790 6180static void hpsa_find_board_params(struct ctlr_info *h)
b93d7536 6181{
cba3d38b 6182 hpsa_get_max_perf_mode_cmds(h);
b93d7536
SC
6183 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
6184 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
283b4a9b 6185 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
c7ee65b3
WS
6186 if (hpsa_supports_chained_sg_blocks(h)) {
6187 /* Limit in-command s/g elements to 32 save dma'able memory. */
b93d7536 6188 h->max_cmd_sg_entries = 32;
1a63ea6f 6189 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
b93d7536
SC
6190 h->maxsgentries--; /* save one for chain pointer */
6191 } else {
c7ee65b3
WS
6192 /*
6193 * Original smart arrays supported at most 31 s/g entries
6194 * embedded inline in the command (trying to use more
6195 * would lock up the controller)
6196 */
6197 h->max_cmd_sg_entries = 31;
1a63ea6f 6198 h->maxsgentries = 31; /* default to traditional values */
c7ee65b3 6199 h->chainsize = 0;
b93d7536 6200 }
75167d2c
SC
6201
6202 /* Find out what task management functions are supported and cache */
6203 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
0e7a7fce
ST
6204 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6205 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6206 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6207 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
b93d7536
SC
6208}
6209
76c46e49
SC
6210static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6211{
0fc9fd40 6212 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
050f7147 6213 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
76c46e49
SC
6214 return false;
6215 }
6216 return true;
6217}
6218
97a5e98c 6219static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
f7c39101 6220{
97a5e98c 6221 u32 driver_support;
f7c39101 6222
97a5e98c 6223 driver_support = readl(&(h->cfgtable->driver_support));
0b9e7b74
AB
6224 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6225#ifdef CONFIG_X86
97a5e98c 6226 driver_support |= ENABLE_SCSI_PREFETCH;
f7c39101 6227#endif
28e13446
SC
6228 driver_support |= ENABLE_UNIT_ATTN;
6229 writel(driver_support, &(h->cfgtable->driver_support));
f7c39101
SC
6230}
6231
3d0eab67
SC
6232/* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
6233 * in a prefetch beyond physical memory.
6234 */
6235static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6236{
6237 u32 dma_prefetch;
6238
6239 if (h->board_id != 0x3225103C)
6240 return;
6241 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6242 dma_prefetch |= 0x8000;
6243 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6244}
6245
76438d08
SC
6246static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6247{
6248 int i;
6249 u32 doorbell_value;
6250 unsigned long flags;
6251 /* wait until the clear_event_notify bit 6 is cleared by controller. */
6252 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6253 spin_lock_irqsave(&h->lock, flags);
6254 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6255 spin_unlock_irqrestore(&h->lock, flags);
6256 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6257 break;
6258 /* delay and try again */
6259 msleep(20);
6260 }
6261}
6262
6f039790 6263static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
eb6b2ae9
SC
6264{
6265 int i;
6eaf46fd
SC
6266 u32 doorbell_value;
6267 unsigned long flags;
eb6b2ae9
SC
6268
6269 /* under certain very rare conditions, this can take awhile.
6270 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6271 * as we enter this code.)
6272 */
6273 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6eaf46fd
SC
6274 spin_lock_irqsave(&h->lock, flags);
6275 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6276 spin_unlock_irqrestore(&h->lock, flags);
382be668 6277 if (!(doorbell_value & CFGTBL_ChangeReq))
eb6b2ae9
SC
6278 break;
6279 /* delay and try again */
60d3f5b0 6280 usleep_range(10000, 20000);
eb6b2ae9 6281 }
3f4336f3
SC
6282}
6283
6f039790 6284static int hpsa_enter_simple_mode(struct ctlr_info *h)
3f4336f3
SC
6285{
6286 u32 trans_support;
6287
6288 trans_support = readl(&(h->cfgtable->TransportSupport));
6289 if (!(trans_support & SIMPLE_MODE))
6290 return -ENOTSUPP;
6291
6292 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
283b4a9b 6293
3f4336f3
SC
6294 /* Update the field, and then ring the doorbell */
6295 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
b9af4937 6296 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
3f4336f3
SC
6297 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6298 hpsa_wait_for_mode_change_ack(h);
eb6b2ae9 6299 print_cfg_table(&h->pdev->dev, h->cfgtable);
283b4a9b
SC
6300 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6301 goto error;
960a30e7 6302 h->transMethod = CFGTBL_Trans_Simple;
eb6b2ae9 6303 return 0;
283b4a9b 6304error:
050f7147 6305 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
283b4a9b 6306 return -ENODEV;
eb6b2ae9
SC
6307}
6308
6f039790 6309static int hpsa_pci_init(struct ctlr_info *h)
77c4495c 6310{
eb6b2ae9 6311 int prod_index, err;
edd16368 6312
e5c880d1
SC
6313 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6314 if (prod_index < 0)
60f923b9 6315 return prod_index;
e5c880d1
SC
6316 h->product_name = products[prod_index].product_name;
6317 h->access = *(products[prod_index].access);
edd16368 6318
e5a44df8
MG
6319 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6320 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6321
55c06c71 6322 err = pci_enable_device(h->pdev);
edd16368 6323 if (err) {
55c06c71 6324 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
edd16368
SC
6325 return err;
6326 }
6327
f79cfec6 6328 err = pci_request_regions(h->pdev, HPSA);
edd16368 6329 if (err) {
55c06c71
SC
6330 dev_err(&h->pdev->dev,
6331 "cannot obtain PCI resources, aborting\n");
edd16368
SC
6332 return err;
6333 }
4fa604e1
RE
6334
6335 pci_set_master(h->pdev);
6336
6b3f4c52 6337 hpsa_interrupt_mode(h);
12d2cd47 6338 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3a7774ce 6339 if (err)
edd16368 6340 goto err_out_free_res;
edd16368 6341 h->vaddr = remap_pci_mem(h->paddr, 0x250);
204892e9
SC
6342 if (!h->vaddr) {
6343 err = -ENOMEM;
6344 goto err_out_free_res;
6345 }
fe5389c8 6346 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
2c4c8c8b 6347 if (err)
edd16368 6348 goto err_out_free_res;
77c4495c
SC
6349 err = hpsa_find_cfgtables(h);
6350 if (err)
edd16368 6351 goto err_out_free_res;
b93d7536 6352 hpsa_find_board_params(h);
edd16368 6353
76c46e49 6354 if (!hpsa_CISS_signature_present(h)) {
edd16368
SC
6355 err = -ENODEV;
6356 goto err_out_free_res;
6357 }
97a5e98c 6358 hpsa_set_driver_support_bits(h);
3d0eab67 6359 hpsa_p600_dma_prefetch_quirk(h);
eb6b2ae9
SC
6360 err = hpsa_enter_simple_mode(h);
6361 if (err)
edd16368 6362 goto err_out_free_res;
edd16368
SC
6363 return 0;
6364
6365err_out_free_res:
204892e9
SC
6366 if (h->transtable)
6367 iounmap(h->transtable);
6368 if (h->cfgtable)
6369 iounmap(h->cfgtable);
6370 if (h->vaddr)
6371 iounmap(h->vaddr);
f0bd0b68 6372 pci_disable_device(h->pdev);
55c06c71 6373 pci_release_regions(h->pdev);
edd16368
SC
6374 return err;
6375}
6376
6f039790 6377static void hpsa_hba_inquiry(struct ctlr_info *h)
339b2b14
SC
6378{
6379 int rc;
6380
6381#define HBA_INQUIRY_BYTE_COUNT 64
6382 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6383 if (!h->hba_inquiry_data)
6384 return;
6385 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6386 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6387 if (rc != 0) {
6388 kfree(h->hba_inquiry_data);
6389 h->hba_inquiry_data = NULL;
6390 }
6391}
6392
6f039790 6393static int hpsa_init_reset_devices(struct pci_dev *pdev)
4c2a8c40 6394{
1df8552a 6395 int rc, i;
3b747298 6396 void __iomem *vaddr;
4c2a8c40
SC
6397
6398 if (!reset_devices)
6399 return 0;
6400
132aa220
TH
6401 /* kdump kernel is loading, we don't know in which state is
6402 * the pci interface. The dev->enable_cnt is equal zero
6403 * so we call enable+disable, wait a while and switch it on.
6404 */
6405 rc = pci_enable_device(pdev);
6406 if (rc) {
6407 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6408 return -ENODEV;
6409 }
6410 pci_disable_device(pdev);
6411 msleep(260); /* a randomly chosen number */
6412 rc = pci_enable_device(pdev);
6413 if (rc) {
6414 dev_warn(&pdev->dev, "failed to enable device.\n");
6415 return -ENODEV;
6416 }
4fa604e1 6417
859c75ab 6418 pci_set_master(pdev);
4fa604e1 6419
3b747298
TH
6420 vaddr = pci_ioremap_bar(pdev, 0);
6421 if (vaddr == NULL) {
6422 rc = -ENOMEM;
6423 goto out_disable;
6424 }
6425 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
6426 iounmap(vaddr);
6427
1df8552a
SC
6428 /* Reset the controller with a PCI power-cycle or via doorbell */
6429 rc = hpsa_kdump_hard_reset_controller(pdev);
4c2a8c40 6430
1df8552a
SC
6431 /* -ENOTSUPP here means we cannot reset the controller
6432 * but it's already (and still) up and running in
18867659
SC
6433 * "performant mode". Or, it might be 640x, which can't reset
6434 * due to concerns about shared bbwc between 6402/6404 pair.
1df8552a 6435 */
adf1b3a3 6436 if (rc)
132aa220 6437 goto out_disable;
4c2a8c40
SC
6438
6439 /* Now try to get the controller to respond to a no-op */
1ba66c9c 6440 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
4c2a8c40
SC
6441 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6442 if (hpsa_noop(pdev) == 0)
6443 break;
6444 else
6445 dev_warn(&pdev->dev, "no-op failed%s\n",
6446 (i < 11 ? "; re-trying" : ""));
6447 }
132aa220
TH
6448
6449out_disable:
6450
6451 pci_disable_device(pdev);
6452 return rc;
4c2a8c40
SC
6453}
6454
6f039790 6455static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
2e9d1b36
SC
6456{
6457 h->cmd_pool_bits = kzalloc(
6458 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6459 sizeof(unsigned long), GFP_KERNEL);
6460 h->cmd_pool = pci_alloc_consistent(h->pdev,
6461 h->nr_cmds * sizeof(*h->cmd_pool),
6462 &(h->cmd_pool_dhandle));
6463 h->errinfo_pool = pci_alloc_consistent(h->pdev,
6464 h->nr_cmds * sizeof(*h->errinfo_pool),
6465 &(h->errinfo_pool_dhandle));
6466 if ((h->cmd_pool_bits == NULL)
6467 || (h->cmd_pool == NULL)
6468 || (h->errinfo_pool == NULL)) {
6469 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6470 return -ENOMEM;
6471 }
6472 return 0;
6473}
6474
6475static void hpsa_free_cmd_pool(struct ctlr_info *h)
6476{
6477 kfree(h->cmd_pool_bits);
6478 if (h->cmd_pool)
6479 pci_free_consistent(h->pdev,
6480 h->nr_cmds * sizeof(struct CommandList),
6481 h->cmd_pool, h->cmd_pool_dhandle);
aca9012a
SC
6482 if (h->ioaccel2_cmd_pool)
6483 pci_free_consistent(h->pdev,
6484 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6485 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
2e9d1b36
SC
6486 if (h->errinfo_pool)
6487 pci_free_consistent(h->pdev,
6488 h->nr_cmds * sizeof(struct ErrorInfo),
6489 h->errinfo_pool,
6490 h->errinfo_pool_dhandle);
e1f7de0c
MG
6491 if (h->ioaccel_cmd_pool)
6492 pci_free_consistent(h->pdev,
6493 h->nr_cmds * sizeof(struct io_accel1_cmd),
6494 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
2e9d1b36
SC
6495}
6496
41b3cf08
SC
6497static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6498{
ec429952 6499 int i, cpu;
41b3cf08
SC
6500
6501 cpu = cpumask_first(cpu_online_mask);
6502 for (i = 0; i < h->msix_vector; i++) {
ec429952 6503 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
41b3cf08
SC
6504 cpu = cpumask_next(cpu, cpu_online_mask);
6505 }
6506}
6507
ec501a18
RE
6508/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
6509static void hpsa_free_irqs(struct ctlr_info *h)
6510{
6511 int i;
6512
6513 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6514 /* Single reply queue, only one irq to free */
6515 i = h->intr_mode;
6516 irq_set_affinity_hint(h->intr[i], NULL);
6517 free_irq(h->intr[i], &h->q[i]);
6518 return;
6519 }
6520
6521 for (i = 0; i < h->msix_vector; i++) {
6522 irq_set_affinity_hint(h->intr[i], NULL);
6523 free_irq(h->intr[i], &h->q[i]);
6524 }
a4e17fc1
RE
6525 for (; i < MAX_REPLY_QUEUES; i++)
6526 h->q[i] = 0;
ec501a18
RE
6527}
6528
9ee61794
RE
6529/* returns 0 on success; cleans up and returns -Enn on error */
6530static int hpsa_request_irqs(struct ctlr_info *h,
0ae01a32
SC
6531 irqreturn_t (*msixhandler)(int, void *),
6532 irqreturn_t (*intxhandler)(int, void *))
6533{
254f796b 6534 int rc, i;
0ae01a32 6535
254f796b
MG
6536 /*
6537 * initialize h->q[x] = x so that interrupt handlers know which
6538 * queue to process.
6539 */
6540 for (i = 0; i < MAX_REPLY_QUEUES; i++)
6541 h->q[i] = (u8) i;
6542
eee0f03a 6543 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
254f796b 6544 /* If performant mode and MSI-X, use multiple reply queues */
a4e17fc1 6545 for (i = 0; i < h->msix_vector; i++) {
254f796b
MG
6546 rc = request_irq(h->intr[i], msixhandler,
6547 0, h->devname,
6548 &h->q[i]);
a4e17fc1
RE
6549 if (rc) {
6550 int j;
6551
6552 dev_err(&h->pdev->dev,
6553 "failed to get irq %d for %s\n",
6554 h->intr[i], h->devname);
6555 for (j = 0; j < i; j++) {
6556 free_irq(h->intr[j], &h->q[j]);
6557 h->q[j] = 0;
6558 }
6559 for (; j < MAX_REPLY_QUEUES; j++)
6560 h->q[j] = 0;
6561 return rc;
6562 }
6563 }
41b3cf08 6564 hpsa_irq_affinity_hints(h);
254f796b
MG
6565 } else {
6566 /* Use single reply pool */
eee0f03a 6567 if (h->msix_vector > 0 || h->msi_vector) {
254f796b
MG
6568 rc = request_irq(h->intr[h->intr_mode],
6569 msixhandler, 0, h->devname,
6570 &h->q[h->intr_mode]);
6571 } else {
6572 rc = request_irq(h->intr[h->intr_mode],
6573 intxhandler, IRQF_SHARED, h->devname,
6574 &h->q[h->intr_mode]);
6575 }
6576 }
0ae01a32
SC
6577 if (rc) {
6578 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6579 h->intr[h->intr_mode], h->devname);
6580 return -ENODEV;
6581 }
6582 return 0;
6583}
6584
6f039790 6585static int hpsa_kdump_soft_reset(struct ctlr_info *h)
64670ac8
SC
6586{
6587 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6588 HPSA_RESET_TYPE_CONTROLLER)) {
6589 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6590 return -EIO;
6591 }
6592
6593 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6594 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6595 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6596 return -1;
6597 }
6598
6599 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6600 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6601 dev_warn(&h->pdev->dev, "Board failed to become ready "
6602 "after soft reset.\n");
6603 return -1;
6604 }
6605
6606 return 0;
6607}
6608
0097f0f4 6609static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
64670ac8 6610{
ec501a18 6611 hpsa_free_irqs(h);
64670ac8 6612#ifdef CONFIG_PCI_MSI
0097f0f4
SC
6613 if (h->msix_vector) {
6614 if (h->pdev->msix_enabled)
6615 pci_disable_msix(h->pdev);
6616 } else if (h->msi_vector) {
6617 if (h->pdev->msi_enabled)
6618 pci_disable_msi(h->pdev);
6619 }
64670ac8 6620#endif /* CONFIG_PCI_MSI */
0097f0f4
SC
6621}
6622
072b0518
SC
6623static void hpsa_free_reply_queues(struct ctlr_info *h)
6624{
6625 int i;
6626
6627 for (i = 0; i < h->nreply_queues; i++) {
6628 if (!h->reply_queue[i].head)
6629 continue;
6630 pci_free_consistent(h->pdev, h->reply_queue_size,
6631 h->reply_queue[i].head, h->reply_queue[i].busaddr);
6632 h->reply_queue[i].head = NULL;
6633 h->reply_queue[i].busaddr = 0;
6634 }
6635}
6636
0097f0f4
SC
6637static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6638{
6639 hpsa_free_irqs_and_disable_msix(h);
64670ac8
SC
6640 hpsa_free_sg_chain_blocks(h);
6641 hpsa_free_cmd_pool(h);
e1f7de0c 6642 kfree(h->ioaccel1_blockFetchTable);
64670ac8 6643 kfree(h->blockFetchTable);
072b0518 6644 hpsa_free_reply_queues(h);
64670ac8
SC
6645 if (h->vaddr)
6646 iounmap(h->vaddr);
6647 if (h->transtable)
6648 iounmap(h->transtable);
6649 if (h->cfgtable)
6650 iounmap(h->cfgtable);
132aa220 6651 pci_disable_device(h->pdev);
64670ac8
SC
6652 pci_release_regions(h->pdev);
6653 kfree(h);
6654}
6655
a0c12413
SC
6656/* Called when controller lockup detected. */
6657static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6658{
6659 struct CommandList *c = NULL;
6660
6661 assert_spin_locked(&h->lock);
6662 /* Mark all outstanding commands as failed and complete them. */
6663 while (!list_empty(list)) {
6664 c = list_entry(list->next, struct CommandList, list);
6665 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
5a3d16f5 6666 finish_cmd(c);
a0c12413
SC
6667 }
6668}
6669
094963da
SC
6670static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6671{
6672 int i, cpu;
6673
6674 cpu = cpumask_first(cpu_online_mask);
6675 for (i = 0; i < num_online_cpus(); i++) {
6676 u32 *lockup_detected;
6677 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6678 *lockup_detected = value;
6679 cpu = cpumask_next(cpu, cpu_online_mask);
6680 }
6681 wmb(); /* be sure the per-cpu variables are out to memory */
6682}
6683
a0c12413
SC
6684static void controller_lockup_detected(struct ctlr_info *h)
6685{
6686 unsigned long flags;
094963da 6687 u32 lockup_detected;
a0c12413 6688
a0c12413
SC
6689 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6690 spin_lock_irqsave(&h->lock, flags);
094963da
SC
6691 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6692 if (!lockup_detected) {
6693 /* no heartbeat, but controller gave us a zero. */
6694 dev_warn(&h->pdev->dev,
6695 "lockup detected but scratchpad register is zero\n");
6696 lockup_detected = 0xffffffff;
6697 }
6698 set_lockup_detected_for_all_cpus(h, lockup_detected);
a0c12413
SC
6699 spin_unlock_irqrestore(&h->lock, flags);
6700 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
094963da 6701 lockup_detected);
a0c12413
SC
6702 pci_disable_device(h->pdev);
6703 spin_lock_irqsave(&h->lock, flags);
6704 fail_all_cmds_on_list(h, &h->cmpQ);
6705 fail_all_cmds_on_list(h, &h->reqQ);
6706 spin_unlock_irqrestore(&h->lock, flags);
6707}
6708
a0c12413
SC
6709static void detect_controller_lockup(struct ctlr_info *h)
6710{
6711 u64 now;
6712 u32 heartbeat;
6713 unsigned long flags;
6714
a0c12413
SC
6715 now = get_jiffies_64();
6716 /* If we've received an interrupt recently, we're ok. */
6717 if (time_after64(h->last_intr_timestamp +
e85c5974 6718 (h->heartbeat_sample_interval), now))
a0c12413
SC
6719 return;
6720
6721 /*
6722 * If we've already checked the heartbeat recently, we're ok.
6723 * This could happen if someone sends us a signal. We
6724 * otherwise don't care about signals in this thread.
6725 */
6726 if (time_after64(h->last_heartbeat_timestamp +
e85c5974 6727 (h->heartbeat_sample_interval), now))
a0c12413
SC
6728 return;
6729
6730 /* If heartbeat has not changed since we last looked, we're not ok. */
6731 spin_lock_irqsave(&h->lock, flags);
6732 heartbeat = readl(&h->cfgtable->HeartBeat);
6733 spin_unlock_irqrestore(&h->lock, flags);
6734 if (h->last_heartbeat == heartbeat) {
6735 controller_lockup_detected(h);
6736 return;
6737 }
6738
6739 /* We're ok. */
6740 h->last_heartbeat = heartbeat;
6741 h->last_heartbeat_timestamp = now;
6742}
6743
9846590e 6744static void hpsa_ack_ctlr_events(struct ctlr_info *h)
76438d08
SC
6745{
6746 int i;
6747 char *event_type;
6748
e863d68e
ST
6749 /* Clear the driver-requested rescan flag */
6750 h->drv_req_rescan = 0;
6751
76438d08 6752 /* Ask the controller to clear the events we're handling. */
1f7cee8c
SC
6753 if ((h->transMethod & (CFGTBL_Trans_io_accel1
6754 | CFGTBL_Trans_io_accel2)) &&
76438d08
SC
6755 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6756 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6757
6758 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6759 event_type = "state change";
6760 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6761 event_type = "configuration change";
6762 /* Stop sending new RAID offload reqs via the IO accelerator */
6763 scsi_block_requests(h->scsi_host);
6764 for (i = 0; i < h->ndevices; i++)
6765 h->dev[i]->offload_enabled = 0;
23100dd9 6766 hpsa_drain_accel_commands(h);
76438d08
SC
6767 /* Set 'accelerator path config change' bit */
6768 dev_warn(&h->pdev->dev,
6769 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6770 h->events, event_type);
6771 writel(h->events, &(h->cfgtable->clear_event_notify));
6772 /* Set the "clear event notify field update" bit 6 */
6773 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6774 /* Wait until ctlr clears 'clear event notify field', bit 6 */
6775 hpsa_wait_for_clear_event_notify_ack(h);
6776 scsi_unblock_requests(h->scsi_host);
6777 } else {
6778 /* Acknowledge controller notification events. */
6779 writel(h->events, &(h->cfgtable->clear_event_notify));
6780 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6781 hpsa_wait_for_clear_event_notify_ack(h);
6782#if 0
6783 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6784 hpsa_wait_for_mode_change_ack(h);
6785#endif
6786 }
9846590e 6787 return;
76438d08
SC
6788}
6789
6790/* Check a register on the controller to see if there are configuration
6791 * changes (added/changed/removed logical drives, etc.) which mean that
e863d68e
ST
6792 * we should rescan the controller for devices.
6793 * Also check flag for driver-initiated rescan.
76438d08 6794 */
9846590e 6795static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
76438d08 6796{
9846590e
SC
6797 if (h->drv_req_rescan)
6798 return 1;
6799
76438d08 6800 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
9846590e 6801 return 0;
76438d08
SC
6802
6803 h->events = readl(&(h->cfgtable->event_notify));
9846590e
SC
6804 return h->events & RESCAN_REQUIRED_EVENT_BITS;
6805}
76438d08 6806
9846590e
SC
6807/*
6808 * Check if any of the offline devices have become ready
6809 */
6810static int hpsa_offline_devices_ready(struct ctlr_info *h)
6811{
6812 unsigned long flags;
6813 struct offline_device_entry *d;
6814 struct list_head *this, *tmp;
6815
6816 spin_lock_irqsave(&h->offline_device_lock, flags);
6817 list_for_each_safe(this, tmp, &h->offline_device_list) {
6818 d = list_entry(this, struct offline_device_entry,
6819 offline_list);
6820 spin_unlock_irqrestore(&h->offline_device_lock, flags);
d1fea47c
SC
6821 if (!hpsa_volume_offline(h, d->scsi3addr)) {
6822 spin_lock_irqsave(&h->offline_device_lock, flags);
6823 list_del(&d->offline_list);
6824 spin_unlock_irqrestore(&h->offline_device_lock, flags);
9846590e 6825 return 1;
d1fea47c 6826 }
9846590e
SC
6827 spin_lock_irqsave(&h->offline_device_lock, flags);
6828 }
6829 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6830 return 0;
76438d08
SC
6831}
6832
9846590e 6833
8a98db73 6834static void hpsa_monitor_ctlr_worker(struct work_struct *work)
a0c12413
SC
6835{
6836 unsigned long flags;
8a98db73
SC
6837 struct ctlr_info *h = container_of(to_delayed_work(work),
6838 struct ctlr_info, monitor_ctlr_work);
6839 detect_controller_lockup(h);
094963da 6840 if (lockup_detected(h))
8a98db73 6841 return;
9846590e
SC
6842
6843 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6844 scsi_host_get(h->scsi_host);
6845 h->drv_req_rescan = 0;
6846 hpsa_ack_ctlr_events(h);
6847 hpsa_scan_start(h->scsi_host);
6848 scsi_host_put(h->scsi_host);
6849 }
6850
8a98db73
SC
6851 spin_lock_irqsave(&h->lock, flags);
6852 if (h->remove_in_progress) {
6853 spin_unlock_irqrestore(&h->lock, flags);
a0c12413
SC
6854 return;
6855 }
8a98db73
SC
6856 schedule_delayed_work(&h->monitor_ctlr_work,
6857 h->heartbeat_sample_interval);
6858 spin_unlock_irqrestore(&h->lock, flags);
a0c12413
SC
6859}
6860
6f039790 6861static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
edd16368 6862{
4c2a8c40 6863 int dac, rc;
edd16368 6864 struct ctlr_info *h;
64670ac8
SC
6865 int try_soft_reset = 0;
6866 unsigned long flags;
edd16368
SC
6867
6868 if (number_of_controllers == 0)
6869 printk(KERN_INFO DRIVER_NAME "\n");
edd16368 6870
4c2a8c40 6871 rc = hpsa_init_reset_devices(pdev);
64670ac8
SC
6872 if (rc) {
6873 if (rc != -ENOTSUPP)
6874 return rc;
6875 /* If the reset fails in a particular way (it has no way to do
6876 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6877 * a soft reset once we get the controller configured up to the
6878 * point that it can accept a command.
6879 */
6880 try_soft_reset = 1;
6881 rc = 0;
6882 }
6883
6884reinit_after_soft_reset:
edd16368 6885
303932fd
DB
6886 /* Command structures must be aligned on a 32-byte boundary because
6887 * the 5 lower bits of the address are used by the hardware. and by
6888 * the driver. See comments in hpsa.h for more info.
6889 */
303932fd 6890 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
edd16368
SC
6891 h = kzalloc(sizeof(*h), GFP_KERNEL);
6892 if (!h)
ecd9aad4 6893 return -ENOMEM;
edd16368 6894
55c06c71 6895 h->pdev = pdev;
a9a3a273 6896 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
9e0fc764
SC
6897 INIT_LIST_HEAD(&h->cmpQ);
6898 INIT_LIST_HEAD(&h->reqQ);
9846590e 6899 INIT_LIST_HEAD(&h->offline_device_list);
6eaf46fd 6900 spin_lock_init(&h->lock);
9846590e 6901 spin_lock_init(&h->offline_device_lock);
6eaf46fd 6902 spin_lock_init(&h->scan_lock);
0390f0c0 6903 spin_lock_init(&h->passthru_count_lock);
094963da
SC
6904
6905 /* Allocate and clear per-cpu variable lockup_detected */
6906 h->lockup_detected = alloc_percpu(u32);
2a5ac326
SC
6907 if (!h->lockup_detected) {
6908 rc = -ENOMEM;
094963da 6909 goto clean1;
2a5ac326 6910 }
094963da
SC
6911 set_lockup_detected_for_all_cpus(h, 0);
6912
55c06c71 6913 rc = hpsa_pci_init(h);
ecd9aad4 6914 if (rc != 0)
edd16368
SC
6915 goto clean1;
6916
f79cfec6 6917 sprintf(h->devname, HPSA "%d", number_of_controllers);
edd16368
SC
6918 h->ctlr = number_of_controllers;
6919 number_of_controllers++;
edd16368
SC
6920
6921 /* configure PCI DMA stuff */
ecd9aad4
SC
6922 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6923 if (rc == 0) {
edd16368 6924 dac = 1;
ecd9aad4
SC
6925 } else {
6926 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6927 if (rc == 0) {
6928 dac = 0;
6929 } else {
6930 dev_err(&pdev->dev, "no suitable DMA available\n");
6931 goto clean1;
6932 }
edd16368
SC
6933 }
6934
6935 /* make sure the board interrupts are off */
6936 h->access.set_intr_mask(h, HPSA_INTR_OFF);
10f66018 6937
9ee61794 6938 if (hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
edd16368 6939 goto clean2;
303932fd
DB
6940 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6941 h->devname, pdev->device,
a9a3a273 6942 h->intr[h->intr_mode], dac ? "" : " not");
2e9d1b36 6943 if (hpsa_allocate_cmd_pool(h))
edd16368 6944 goto clean4;
33a2ffce
SC
6945 if (hpsa_allocate_sg_chain_blocks(h))
6946 goto clean4;
a08a8471
SC
6947 init_waitqueue_head(&h->scan_wait_queue);
6948 h->scan_finished = 1; /* no scan currently in progress */
edd16368
SC
6949
6950 pci_set_drvdata(pdev, h);
9a41338e 6951 h->ndevices = 0;
316b221a 6952 h->hba_mode_enabled = 0;
9a41338e
SC
6953 h->scsi_host = NULL;
6954 spin_lock_init(&h->devlock);
64670ac8
SC
6955 hpsa_put_ctlr_into_performant_mode(h);
6956
6957 /* At this point, the controller is ready to take commands.
6958 * Now, if reset_devices and the hard reset didn't work, try
6959 * the soft reset and see if that works.
6960 */
6961 if (try_soft_reset) {
6962
6963 /* This is kind of gross. We may or may not get a completion
6964 * from the soft reset command, and if we do, then the value
6965 * from the fifo may or may not be valid. So, we wait 10 secs
6966 * after the reset throwing away any completions we get during
6967 * that time. Unregister the interrupt handler and register
6968 * fake ones to scoop up any residual completions.
6969 */
6970 spin_lock_irqsave(&h->lock, flags);
6971 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6972 spin_unlock_irqrestore(&h->lock, flags);
ec501a18 6973 hpsa_free_irqs(h);
9ee61794 6974 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
64670ac8
SC
6975 hpsa_intx_discard_completions);
6976 if (rc) {
9ee61794
RE
6977 dev_warn(&h->pdev->dev,
6978 "Failed to request_irq after soft reset.\n");
64670ac8
SC
6979 goto clean4;
6980 }
6981
6982 rc = hpsa_kdump_soft_reset(h);
6983 if (rc)
6984 /* Neither hard nor soft reset worked, we're hosed. */
6985 goto clean4;
6986
6987 dev_info(&h->pdev->dev, "Board READY.\n");
6988 dev_info(&h->pdev->dev,
6989 "Waiting for stale completions to drain.\n");
6990 h->access.set_intr_mask(h, HPSA_INTR_ON);
6991 msleep(10000);
6992 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6993
6994 rc = controller_reset_failed(h->cfgtable);
6995 if (rc)
6996 dev_info(&h->pdev->dev,
6997 "Soft reset appears to have failed.\n");
6998
6999 /* since the controller's reset, we have to go back and re-init
7000 * everything. Easiest to just forget what we've done and do it
7001 * all over again.
7002 */
7003 hpsa_undo_allocations_after_kdump_soft_reset(h);
7004 try_soft_reset = 0;
7005 if (rc)
7006 /* don't go to clean4, we already unallocated */
7007 return -ENODEV;
7008
7009 goto reinit_after_soft_reset;
7010 }
edd16368 7011
316b221a
SC
7012 /* Enable Accelerated IO path at driver layer */
7013 h->acciopath_status = 1;
da0697bd 7014
e863d68e
ST
7015 h->drv_req_rescan = 0;
7016
edd16368
SC
7017 /* Turn the interrupts on so we can service requests */
7018 h->access.set_intr_mask(h, HPSA_INTR_ON);
7019
339b2b14 7020 hpsa_hba_inquiry(h);
edd16368 7021 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
8a98db73
SC
7022
7023 /* Monitor the controller for firmware lockups */
7024 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7025 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7026 schedule_delayed_work(&h->monitor_ctlr_work,
7027 h->heartbeat_sample_interval);
88bf6d62 7028 return 0;
edd16368
SC
7029
7030clean4:
33a2ffce 7031 hpsa_free_sg_chain_blocks(h);
2e9d1b36 7032 hpsa_free_cmd_pool(h);
ec501a18 7033 hpsa_free_irqs(h);
edd16368
SC
7034clean2:
7035clean1:
094963da
SC
7036 if (h->lockup_detected)
7037 free_percpu(h->lockup_detected);
edd16368 7038 kfree(h);
ecd9aad4 7039 return rc;
edd16368
SC
7040}
7041
7042static void hpsa_flush_cache(struct ctlr_info *h)
7043{
7044 char *flush_buf;
7045 struct CommandList *c;
702890e3
SC
7046
7047 /* Don't bother trying to flush the cache if locked up */
094963da 7048 if (unlikely(lockup_detected(h)))
702890e3 7049 return;
edd16368
SC
7050 flush_buf = kzalloc(4, GFP_KERNEL);
7051 if (!flush_buf)
7052 return;
7053
7054 c = cmd_special_alloc(h);
7055 if (!c) {
7056 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
7057 goto out_of_memory;
7058 }
a2dac136
SC
7059 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7060 RAID_CTLR_LUNID, TYPE_CMD)) {
7061 goto out;
7062 }
edd16368
SC
7063 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7064 if (c->err_info->CommandStatus != 0)
a2dac136 7065out:
edd16368
SC
7066 dev_warn(&h->pdev->dev,
7067 "error flushing cache on controller\n");
7068 cmd_special_free(h, c);
7069out_of_memory:
7070 kfree(flush_buf);
7071}
7072
7073static void hpsa_shutdown(struct pci_dev *pdev)
7074{
7075 struct ctlr_info *h;
7076
7077 h = pci_get_drvdata(pdev);
7078 /* Turn board interrupts off and send the flush cache command
7079 * sendcmd will turn off interrupt, and send the flush...
7080 * To write all data in the battery backed cache to disks
7081 */
7082 hpsa_flush_cache(h);
7083 h->access.set_intr_mask(h, HPSA_INTR_OFF);
0097f0f4 7084 hpsa_free_irqs_and_disable_msix(h);
edd16368
SC
7085}
7086
6f039790 7087static void hpsa_free_device_info(struct ctlr_info *h)
55e14e76
SC
7088{
7089 int i;
7090
7091 for (i = 0; i < h->ndevices; i++)
7092 kfree(h->dev[i]);
7093}
7094
6f039790 7095static void hpsa_remove_one(struct pci_dev *pdev)
edd16368
SC
7096{
7097 struct ctlr_info *h;
8a98db73 7098 unsigned long flags;
edd16368
SC
7099
7100 if (pci_get_drvdata(pdev) == NULL) {
a0c12413 7101 dev_err(&pdev->dev, "unable to remove device\n");
edd16368
SC
7102 return;
7103 }
7104 h = pci_get_drvdata(pdev);
8a98db73
SC
7105
7106 /* Get rid of any controller monitoring work items */
7107 spin_lock_irqsave(&h->lock, flags);
7108 h->remove_in_progress = 1;
7109 cancel_delayed_work(&h->monitor_ctlr_work);
7110 spin_unlock_irqrestore(&h->lock, flags);
7111
edd16368
SC
7112 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
7113 hpsa_shutdown(pdev);
7114 iounmap(h->vaddr);
204892e9
SC
7115 iounmap(h->transtable);
7116 iounmap(h->cfgtable);
55e14e76 7117 hpsa_free_device_info(h);
33a2ffce 7118 hpsa_free_sg_chain_blocks(h);
edd16368
SC
7119 pci_free_consistent(h->pdev,
7120 h->nr_cmds * sizeof(struct CommandList),
7121 h->cmd_pool, h->cmd_pool_dhandle);
7122 pci_free_consistent(h->pdev,
7123 h->nr_cmds * sizeof(struct ErrorInfo),
7124 h->errinfo_pool, h->errinfo_pool_dhandle);
072b0518 7125 hpsa_free_reply_queues(h);
edd16368 7126 kfree(h->cmd_pool_bits);
303932fd 7127 kfree(h->blockFetchTable);
e1f7de0c 7128 kfree(h->ioaccel1_blockFetchTable);
aca9012a 7129 kfree(h->ioaccel2_blockFetchTable);
339b2b14 7130 kfree(h->hba_inquiry_data);
f0bd0b68 7131 pci_disable_device(pdev);
edd16368 7132 pci_release_regions(pdev);
094963da 7133 free_percpu(h->lockup_detected);
edd16368
SC
7134 kfree(h);
7135}
7136
7137static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7138 __attribute__((unused)) pm_message_t state)
7139{
7140 return -ENOSYS;
7141}
7142
7143static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7144{
7145 return -ENOSYS;
7146}
7147
7148static struct pci_driver hpsa_pci_driver = {
f79cfec6 7149 .name = HPSA,
edd16368 7150 .probe = hpsa_init_one,
6f039790 7151 .remove = hpsa_remove_one,
edd16368
SC
7152 .id_table = hpsa_pci_device_id, /* id_table */
7153 .shutdown = hpsa_shutdown,
7154 .suspend = hpsa_suspend,
7155 .resume = hpsa_resume,
7156};
7157
303932fd
DB
7158/* Fill in bucket_map[], given nsgs (the max number of
7159 * scatter gather elements supported) and bucket[],
7160 * which is an array of 8 integers. The bucket[] array
7161 * contains 8 different DMA transfer sizes (in 16
7162 * byte increments) which the controller uses to fetch
7163 * commands. This function fills in bucket_map[], which
7164 * maps a given number of scatter gather elements to one of
7165 * the 8 DMA transfer sizes. The point of it is to allow the
7166 * controller to only do as much DMA as needed to fetch the
7167 * command, with the DMA transfer size encoded in the lower
7168 * bits of the command address.
7169 */
7170static void calc_bucket_map(int bucket[], int num_buckets,
2b08b3e9 7171 int nsgs, int min_blocks, u32 *bucket_map)
303932fd
DB
7172{
7173 int i, j, b, size;
7174
303932fd
DB
7175 /* Note, bucket_map must have nsgs+1 entries. */
7176 for (i = 0; i <= nsgs; i++) {
7177 /* Compute size of a command with i SG entries */
e1f7de0c 7178 size = i + min_blocks;
303932fd
DB
7179 b = num_buckets; /* Assume the biggest bucket */
7180 /* Find the bucket that is just big enough */
e1f7de0c 7181 for (j = 0; j < num_buckets; j++) {
303932fd
DB
7182 if (bucket[j] >= size) {
7183 b = j;
7184 break;
7185 }
7186 }
7187 /* for a command with i SG entries, use bucket b. */
7188 bucket_map[i] = b;
7189 }
7190}
7191
e1f7de0c 7192static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
303932fd 7193{
6c311b57
SC
7194 int i;
7195 unsigned long register_value;
e1f7de0c
MG
7196 unsigned long transMethod = CFGTBL_Trans_Performant |
7197 (trans_support & CFGTBL_Trans_use_short_tags) |
b9af4937
SC
7198 CFGTBL_Trans_enable_directed_msix |
7199 (trans_support & (CFGTBL_Trans_io_accel1 |
7200 CFGTBL_Trans_io_accel2));
e1f7de0c 7201 struct access_method access = SA5_performant_access;
def342bd
SC
7202
7203 /* This is a bit complicated. There are 8 registers on
7204 * the controller which we write to to tell it 8 different
7205 * sizes of commands which there may be. It's a way of
7206 * reducing the DMA done to fetch each command. Encoded into
7207 * each command's tag are 3 bits which communicate to the controller
7208 * which of the eight sizes that command fits within. The size of
7209 * each command depends on how many scatter gather entries there are.
7210 * Each SG entry requires 16 bytes. The eight registers are programmed
7211 * with the number of 16-byte blocks a command of that size requires.
7212 * The smallest command possible requires 5 such 16 byte blocks.
d66ae08b 7213 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
def342bd
SC
7214 * blocks. Note, this only extends to the SG entries contained
7215 * within the command block, and does not extend to chained blocks
7216 * of SG elements. bft[] contains the eight values we write to
7217 * the registers. They are not evenly distributed, but have more
7218 * sizes for small commands, and fewer sizes for larger commands.
7219 */
d66ae08b 7220 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
b9af4937
SC
7221#define MIN_IOACCEL2_BFT_ENTRY 5
7222#define HPSA_IOACCEL2_HEADER_SZ 4
7223 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7224 13, 14, 15, 16, 17, 18, 19,
7225 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7226 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7227 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7228 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7229 16 * MIN_IOACCEL2_BFT_ENTRY);
7230 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
d66ae08b 7231 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
303932fd
DB
7232 /* 5 = 1 s/g entry or 4k
7233 * 6 = 2 s/g entry or 8k
7234 * 8 = 4 s/g entry or 16k
7235 * 10 = 6 s/g entry or 24k
7236 */
303932fd 7237
b3a52e79
SC
7238 /* If the controller supports either ioaccel method then
7239 * we can also use the RAID stack submit path that does not
7240 * perform the superfluous readl() after each command submission.
7241 */
7242 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7243 access = SA5_performant_access_no_read;
7244
303932fd 7245 /* Controller spec: zero out this buffer. */
072b0518
SC
7246 for (i = 0; i < h->nreply_queues; i++)
7247 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
303932fd 7248
d66ae08b
SC
7249 bft[7] = SG_ENTRIES_IN_CMD + 4;
7250 calc_bucket_map(bft, ARRAY_SIZE(bft),
e1f7de0c 7251 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
303932fd
DB
7252 for (i = 0; i < 8; i++)
7253 writel(bft[i], &h->transtable->BlockFetch[i]);
7254
7255 /* size of controller ring buffer */
7256 writel(h->max_commands, &h->transtable->RepQSize);
254f796b 7257 writel(h->nreply_queues, &h->transtable->RepQCount);
303932fd
DB
7258 writel(0, &h->transtable->RepQCtrAddrLow32);
7259 writel(0, &h->transtable->RepQCtrAddrHigh32);
254f796b
MG
7260
7261 for (i = 0; i < h->nreply_queues; i++) {
7262 writel(0, &h->transtable->RepQAddr[i].upper);
072b0518 7263 writel(h->reply_queue[i].busaddr,
254f796b
MG
7264 &h->transtable->RepQAddr[i].lower);
7265 }
7266
b9af4937 7267 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
e1f7de0c
MG
7268 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7269 /*
7270 * enable outbound interrupt coalescing in accelerator mode;
7271 */
7272 if (trans_support & CFGTBL_Trans_io_accel1) {
7273 access = SA5_ioaccel_mode1_access;
7274 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7275 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
c349775e
ST
7276 } else {
7277 if (trans_support & CFGTBL_Trans_io_accel2) {
7278 access = SA5_ioaccel_mode2_access;
7279 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7280 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7281 }
e1f7de0c 7282 }
303932fd 7283 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3f4336f3 7284 hpsa_wait_for_mode_change_ack(h);
303932fd
DB
7285 register_value = readl(&(h->cfgtable->TransportActive));
7286 if (!(register_value & CFGTBL_Trans_Performant)) {
050f7147
SC
7287 dev_err(&h->pdev->dev,
7288 "performant mode problem - transport not active\n");
303932fd
DB
7289 return;
7290 }
960a30e7 7291 /* Change the access methods to the performant access methods */
e1f7de0c
MG
7292 h->access = access;
7293 h->transMethod = transMethod;
7294
b9af4937
SC
7295 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7296 (trans_support & CFGTBL_Trans_io_accel2)))
e1f7de0c
MG
7297 return;
7298
b9af4937
SC
7299 if (trans_support & CFGTBL_Trans_io_accel1) {
7300 /* Set up I/O accelerator mode */
7301 for (i = 0; i < h->nreply_queues; i++) {
7302 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7303 h->reply_queue[i].current_entry =
7304 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7305 }
7306 bft[7] = h->ioaccel_maxsg + 8;
7307 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7308 h->ioaccel1_blockFetchTable);
e1f7de0c 7309
b9af4937 7310 /* initialize all reply queue entries to unused */
072b0518
SC
7311 for (i = 0; i < h->nreply_queues; i++)
7312 memset(h->reply_queue[i].head,
7313 (u8) IOACCEL_MODE1_REPLY_UNUSED,
7314 h->reply_queue_size);
e1f7de0c 7315
b9af4937
SC
7316 /* set all the constant fields in the accelerator command
7317 * frames once at init time to save CPU cycles later.
7318 */
7319 for (i = 0; i < h->nr_cmds; i++) {
7320 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7321
7322 cp->function = IOACCEL1_FUNCTION_SCSIIO;
7323 cp->err_info = (u32) (h->errinfo_pool_dhandle +
7324 (i * sizeof(struct ErrorInfo)));
7325 cp->err_info_len = sizeof(struct ErrorInfo);
7326 cp->sgl_offset = IOACCEL1_SGLOFFSET;
2b08b3e9
DB
7327 cp->host_context_flags =
7328 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
b9af4937
SC
7329 cp->timeout_sec = 0;
7330 cp->ReplyQueue = 0;
50a0decf
SC
7331 cp->tag =
7332 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT) |
7333 DIRECT_LOOKUP_BIT);
7334 cp->host_addr =
7335 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
b9af4937 7336 (i * sizeof(struct io_accel1_cmd)));
b9af4937
SC
7337 }
7338 } else if (trans_support & CFGTBL_Trans_io_accel2) {
7339 u64 cfg_offset, cfg_base_addr_index;
7340 u32 bft2_offset, cfg_base_addr;
7341 int rc;
7342
7343 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7344 &cfg_base_addr_index, &cfg_offset);
7345 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7346 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7347 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7348 4, h->ioaccel2_blockFetchTable);
7349 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7350 BUILD_BUG_ON(offsetof(struct CfgTable,
7351 io_accel_request_size_offset) != 0xb8);
7352 h->ioaccel2_bft2_regs =
7353 remap_pci_mem(pci_resource_start(h->pdev,
7354 cfg_base_addr_index) +
7355 cfg_offset + bft2_offset,
7356 ARRAY_SIZE(bft2) *
7357 sizeof(*h->ioaccel2_bft2_regs));
7358 for (i = 0; i < ARRAY_SIZE(bft2); i++)
7359 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
e1f7de0c 7360 }
b9af4937
SC
7361 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7362 hpsa_wait_for_mode_change_ack(h);
e1f7de0c
MG
7363}
7364
7365static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7366{
283b4a9b
SC
7367 h->ioaccel_maxsg =
7368 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7369 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7370 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7371
e1f7de0c
MG
7372 /* Command structures must be aligned on a 128-byte boundary
7373 * because the 7 lower bits of the address are used by the
7374 * hardware.
7375 */
e1f7de0c
MG
7376 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7377 IOACCEL1_COMMANDLIST_ALIGNMENT);
7378 h->ioaccel_cmd_pool =
7379 pci_alloc_consistent(h->pdev,
7380 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7381 &(h->ioaccel_cmd_pool_dhandle));
7382
7383 h->ioaccel1_blockFetchTable =
283b4a9b 7384 kmalloc(((h->ioaccel_maxsg + 1) *
e1f7de0c
MG
7385 sizeof(u32)), GFP_KERNEL);
7386
7387 if ((h->ioaccel_cmd_pool == NULL) ||
7388 (h->ioaccel1_blockFetchTable == NULL))
7389 goto clean_up;
7390
7391 memset(h->ioaccel_cmd_pool, 0,
7392 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7393 return 0;
7394
7395clean_up:
7396 if (h->ioaccel_cmd_pool)
7397 pci_free_consistent(h->pdev,
7398 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7399 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7400 kfree(h->ioaccel1_blockFetchTable);
7401 return 1;
6c311b57
SC
7402}
7403
aca9012a
SC
7404static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7405{
7406 /* Allocate ioaccel2 mode command blocks and block fetch table */
7407
7408 h->ioaccel_maxsg =
7409 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7410 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7411 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7412
aca9012a
SC
7413 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7414 IOACCEL2_COMMANDLIST_ALIGNMENT);
7415 h->ioaccel2_cmd_pool =
7416 pci_alloc_consistent(h->pdev,
7417 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7418 &(h->ioaccel2_cmd_pool_dhandle));
7419
7420 h->ioaccel2_blockFetchTable =
7421 kmalloc(((h->ioaccel_maxsg + 1) *
7422 sizeof(u32)), GFP_KERNEL);
7423
7424 if ((h->ioaccel2_cmd_pool == NULL) ||
7425 (h->ioaccel2_blockFetchTable == NULL))
7426 goto clean_up;
7427
7428 memset(h->ioaccel2_cmd_pool, 0,
7429 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7430 return 0;
7431
7432clean_up:
7433 if (h->ioaccel2_cmd_pool)
7434 pci_free_consistent(h->pdev,
7435 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7436 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7437 kfree(h->ioaccel2_blockFetchTable);
7438 return 1;
7439}
7440
6f039790 7441static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
6c311b57
SC
7442{
7443 u32 trans_support;
e1f7de0c
MG
7444 unsigned long transMethod = CFGTBL_Trans_Performant |
7445 CFGTBL_Trans_use_short_tags;
254f796b 7446 int i;
6c311b57 7447
02ec19c8
SC
7448 if (hpsa_simple_mode)
7449 return;
7450
67c99a72 7451 trans_support = readl(&(h->cfgtable->TransportSupport));
7452 if (!(trans_support & PERFORMANT_MODE))
7453 return;
7454
e1f7de0c
MG
7455 /* Check for I/O accelerator mode support */
7456 if (trans_support & CFGTBL_Trans_io_accel1) {
7457 transMethod |= CFGTBL_Trans_io_accel1 |
7458 CFGTBL_Trans_enable_directed_msix;
7459 if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7460 goto clean_up;
aca9012a
SC
7461 } else {
7462 if (trans_support & CFGTBL_Trans_io_accel2) {
7463 transMethod |= CFGTBL_Trans_io_accel2 |
7464 CFGTBL_Trans_enable_directed_msix;
7465 if (ioaccel2_alloc_cmds_and_bft(h))
7466 goto clean_up;
7467 }
e1f7de0c
MG
7468 }
7469
eee0f03a 7470 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
cba3d38b 7471 hpsa_get_max_perf_mode_cmds(h);
6c311b57 7472 /* Performant mode ring buffer and supporting data structures */
072b0518 7473 h->reply_queue_size = h->max_commands * sizeof(u64);
6c311b57 7474
254f796b 7475 for (i = 0; i < h->nreply_queues; i++) {
072b0518
SC
7476 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7477 h->reply_queue_size,
7478 &(h->reply_queue[i].busaddr));
7479 if (!h->reply_queue[i].head)
7480 goto clean_up;
254f796b
MG
7481 h->reply_queue[i].size = h->max_commands;
7482 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
7483 h->reply_queue[i].current_entry = 0;
7484 }
7485
6c311b57 7486 /* Need a block fetch table for performant mode */
d66ae08b 7487 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
6c311b57 7488 sizeof(u32)), GFP_KERNEL);
072b0518 7489 if (!h->blockFetchTable)
6c311b57
SC
7490 goto clean_up;
7491
e1f7de0c 7492 hpsa_enter_performant_mode(h, trans_support);
303932fd
DB
7493 return;
7494
7495clean_up:
072b0518 7496 hpsa_free_reply_queues(h);
303932fd
DB
7497 kfree(h->blockFetchTable);
7498}
7499
23100dd9 7500static int is_accelerated_cmd(struct CommandList *c)
76438d08 7501{
23100dd9
SC
7502 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7503}
7504
7505static void hpsa_drain_accel_commands(struct ctlr_info *h)
7506{
7507 struct CommandList *c = NULL;
76438d08 7508 unsigned long flags;
23100dd9 7509 int accel_cmds_out;
76438d08
SC
7510
7511 do { /* wait for all outstanding commands to drain out */
23100dd9 7512 accel_cmds_out = 0;
76438d08 7513 spin_lock_irqsave(&h->lock, flags);
23100dd9
SC
7514 list_for_each_entry(c, &h->cmpQ, list)
7515 accel_cmds_out += is_accelerated_cmd(c);
7516 list_for_each_entry(c, &h->reqQ, list)
7517 accel_cmds_out += is_accelerated_cmd(c);
76438d08 7518 spin_unlock_irqrestore(&h->lock, flags);
23100dd9 7519 if (accel_cmds_out <= 0)
76438d08
SC
7520 break;
7521 msleep(100);
7522 } while (1);
7523}
7524
edd16368
SC
7525/*
7526 * This is it. Register the PCI driver information for the cards we control
7527 * the OS will call our registered routines when it finds one of our cards.
7528 */
7529static int __init hpsa_init(void)
7530{
31468401 7531 return pci_register_driver(&hpsa_pci_driver);
edd16368
SC
7532}
7533
7534static void __exit hpsa_cleanup(void)
7535{
7536 pci_unregister_driver(&hpsa_pci_driver);
edd16368
SC
7537}
7538
e1f7de0c
MG
7539static void __attribute__((unused)) verify_offsets(void)
7540{
dd0e19f3
ST
7541#define VERIFY_OFFSET(member, offset) \
7542 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7543
7544 VERIFY_OFFSET(structure_size, 0);
7545 VERIFY_OFFSET(volume_blk_size, 4);
7546 VERIFY_OFFSET(volume_blk_cnt, 8);
7547 VERIFY_OFFSET(phys_blk_shift, 16);
7548 VERIFY_OFFSET(parity_rotation_shift, 17);
7549 VERIFY_OFFSET(strip_size, 18);
7550 VERIFY_OFFSET(disk_starting_blk, 20);
7551 VERIFY_OFFSET(disk_blk_cnt, 28);
7552 VERIFY_OFFSET(data_disks_per_row, 36);
7553 VERIFY_OFFSET(metadata_disks_per_row, 38);
7554 VERIFY_OFFSET(row_cnt, 40);
7555 VERIFY_OFFSET(layout_map_count, 42);
7556 VERIFY_OFFSET(flags, 44);
7557 VERIFY_OFFSET(dekindex, 46);
7558 /* VERIFY_OFFSET(reserved, 48 */
7559 VERIFY_OFFSET(data, 64);
7560
7561#undef VERIFY_OFFSET
7562
b66cc250
MM
7563#define VERIFY_OFFSET(member, offset) \
7564 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7565
7566 VERIFY_OFFSET(IU_type, 0);
7567 VERIFY_OFFSET(direction, 1);
7568 VERIFY_OFFSET(reply_queue, 2);
7569 /* VERIFY_OFFSET(reserved1, 3); */
7570 VERIFY_OFFSET(scsi_nexus, 4);
7571 VERIFY_OFFSET(Tag, 8);
7572 VERIFY_OFFSET(cdb, 16);
7573 VERIFY_OFFSET(cciss_lun, 32);
7574 VERIFY_OFFSET(data_len, 40);
7575 VERIFY_OFFSET(cmd_priority_task_attr, 44);
7576 VERIFY_OFFSET(sg_count, 45);
7577 /* VERIFY_OFFSET(reserved3 */
7578 VERIFY_OFFSET(err_ptr, 48);
7579 VERIFY_OFFSET(err_len, 56);
7580 /* VERIFY_OFFSET(reserved4 */
7581 VERIFY_OFFSET(sg, 64);
7582
7583#undef VERIFY_OFFSET
7584
e1f7de0c
MG
7585#define VERIFY_OFFSET(member, offset) \
7586 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7587
7588 VERIFY_OFFSET(dev_handle, 0x00);
7589 VERIFY_OFFSET(reserved1, 0x02);
7590 VERIFY_OFFSET(function, 0x03);
7591 VERIFY_OFFSET(reserved2, 0x04);
7592 VERIFY_OFFSET(err_info, 0x0C);
7593 VERIFY_OFFSET(reserved3, 0x10);
7594 VERIFY_OFFSET(err_info_len, 0x12);
7595 VERIFY_OFFSET(reserved4, 0x13);
7596 VERIFY_OFFSET(sgl_offset, 0x14);
7597 VERIFY_OFFSET(reserved5, 0x15);
7598 VERIFY_OFFSET(transfer_len, 0x1C);
7599 VERIFY_OFFSET(reserved6, 0x20);
7600 VERIFY_OFFSET(io_flags, 0x24);
7601 VERIFY_OFFSET(reserved7, 0x26);
7602 VERIFY_OFFSET(LUN, 0x34);
7603 VERIFY_OFFSET(control, 0x3C);
7604 VERIFY_OFFSET(CDB, 0x40);
7605 VERIFY_OFFSET(reserved8, 0x50);
7606 VERIFY_OFFSET(host_context_flags, 0x60);
7607 VERIFY_OFFSET(timeout_sec, 0x62);
7608 VERIFY_OFFSET(ReplyQueue, 0x64);
7609 VERIFY_OFFSET(reserved9, 0x65);
50a0decf 7610 VERIFY_OFFSET(tag, 0x68);
e1f7de0c
MG
7611 VERIFY_OFFSET(host_addr, 0x70);
7612 VERIFY_OFFSET(CISS_LUN, 0x78);
7613 VERIFY_OFFSET(SG, 0x78 + 8);
7614#undef VERIFY_OFFSET
7615}
7616
edd16368
SC
7617module_init(hpsa_init);
7618module_exit(hpsa_cleanup);