]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/scsi/hpsa.c
hpsa: do not ignore return value of hpsa_register_scsi
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / hpsa.c
CommitLineData
edd16368
SC
1/*
2 * Disk Array driver for HP Smart Array SAS controllers
51c35139 3 * Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
edd16368
SC
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 *
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
19 *
20 */
21
22#include <linux/module.h>
23#include <linux/interrupt.h>
24#include <linux/types.h>
25#include <linux/pci.h>
e5a44df8 26#include <linux/pci-aspm.h>
edd16368
SC
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/delay.h>
30#include <linux/fs.h>
31#include <linux/timer.h>
edd16368
SC
32#include <linux/init.h>
33#include <linux/spinlock.h>
edd16368
SC
34#include <linux/compat.h>
35#include <linux/blktrace_api.h>
36#include <linux/uaccess.h>
37#include <linux/io.h>
38#include <linux/dma-mapping.h>
39#include <linux/completion.h>
40#include <linux/moduleparam.h>
41#include <scsi/scsi.h>
42#include <scsi/scsi_cmnd.h>
43#include <scsi/scsi_device.h>
44#include <scsi/scsi_host.h>
667e23d4 45#include <scsi/scsi_tcq.h>
9437ac43 46#include <scsi/scsi_eh.h>
edd16368
SC
47#include <linux/cciss_ioctl.h>
48#include <linux/string.h>
49#include <linux/bitmap.h>
60063497 50#include <linux/atomic.h>
a0c12413 51#include <linux/jiffies.h>
42a91641 52#include <linux/percpu-defs.h>
094963da 53#include <linux/percpu.h>
2b08b3e9 54#include <asm/unaligned.h>
283b4a9b 55#include <asm/div64.h>
edd16368
SC
56#include "hpsa_cmd.h"
57#include "hpsa.h"
58
59/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
9a993302 60#define HPSA_DRIVER_VERSION "3.4.4-1"
edd16368 61#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
f79cfec6 62#define HPSA "hpsa"
edd16368 63
007e7aa9
RE
64/* How long to wait for CISS doorbell communication */
65#define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
66#define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
67#define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
68#define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
edd16368
SC
69#define MAX_IOCTL_CONFIG_WAIT 1000
70
71/*define how many times we will try a command because of bus resets */
72#define MAX_CMD_RETRIES 3
73
74/* Embedded module documentation macros - see modules.h */
75MODULE_AUTHOR("Hewlett-Packard Company");
76MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
77 HPSA_DRIVER_VERSION);
78MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
79MODULE_VERSION(HPSA_DRIVER_VERSION);
80MODULE_LICENSE("GPL");
81
82static int hpsa_allow_any;
83module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
84MODULE_PARM_DESC(hpsa_allow_any,
85 "Allow hpsa driver to access unknown HP Smart Array hardware");
02ec19c8
SC
86static int hpsa_simple_mode;
87module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88MODULE_PARM_DESC(hpsa_simple_mode,
89 "Use 'simple mode' rather than 'performant mode'");
edd16368
SC
90
91/* define the PCI info for the cards we can control */
92static const struct pci_device_id hpsa_pci_device_id[] = {
edd16368
SC
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
163dbcd8
MM
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
f8b01eb9 100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
9143a961 101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
fe0c9610
MM
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
fe0c9610
MM
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
97b9f53d
MM
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
3b7a45e5 124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
97b9f53d
MM
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
3b7a45e5
JH
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
8e616a5e
SC
133 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
134 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
135 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
136 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
137 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
7c03b870 138 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
6798cc0a 139 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
edd16368
SC
140 {0,}
141};
142
143MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
144
145/* board_id = Subsystem Device ID & Vendor ID
146 * product = Marketing Name for the board
147 * access = Address of the struct of function pointers
148 */
149static struct board_type products[] = {
edd16368
SC
150 {0x3241103C, "Smart Array P212", &SA5_access},
151 {0x3243103C, "Smart Array P410", &SA5_access},
152 {0x3245103C, "Smart Array P410i", &SA5_access},
153 {0x3247103C, "Smart Array P411", &SA5_access},
154 {0x3249103C, "Smart Array P812", &SA5_access},
163dbcd8
MM
155 {0x324A103C, "Smart Array P712m", &SA5_access},
156 {0x324B103C, "Smart Array P711m", &SA5_access},
7d2cce58 157 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
fe0c9610
MM
158 {0x3350103C, "Smart Array P222", &SA5_access},
159 {0x3351103C, "Smart Array P420", &SA5_access},
160 {0x3352103C, "Smart Array P421", &SA5_access},
161 {0x3353103C, "Smart Array P822", &SA5_access},
162 {0x3354103C, "Smart Array P420i", &SA5_access},
163 {0x3355103C, "Smart Array P220i", &SA5_access},
164 {0x3356103C, "Smart Array P721m", &SA5_access},
1fd6c8e3
MM
165 {0x1921103C, "Smart Array P830i", &SA5_access},
166 {0x1922103C, "Smart Array P430", &SA5_access},
167 {0x1923103C, "Smart Array P431", &SA5_access},
168 {0x1924103C, "Smart Array P830", &SA5_access},
169 {0x1926103C, "Smart Array P731m", &SA5_access},
170 {0x1928103C, "Smart Array P230i", &SA5_access},
171 {0x1929103C, "Smart Array P530", &SA5_access},
27fb8137
DB
172 {0x21BD103C, "Smart Array P244br", &SA5_access},
173 {0x21BE103C, "Smart Array P741m", &SA5_access},
174 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
175 {0x21C0103C, "Smart Array P440ar", &SA5_access},
c8ae0ab1 176 {0x21C1103C, "Smart Array P840ar", &SA5_access},
27fb8137
DB
177 {0x21C2103C, "Smart Array P440", &SA5_access},
178 {0x21C3103C, "Smart Array P441", &SA5_access},
97b9f53d 179 {0x21C4103C, "Smart Array", &SA5_access},
27fb8137
DB
180 {0x21C5103C, "Smart Array P841", &SA5_access},
181 {0x21C6103C, "Smart HBA H244br", &SA5_access},
182 {0x21C7103C, "Smart HBA H240", &SA5_access},
183 {0x21C8103C, "Smart HBA H241", &SA5_access},
97b9f53d 184 {0x21C9103C, "Smart Array", &SA5_access},
27fb8137
DB
185 {0x21CA103C, "Smart Array P246br", &SA5_access},
186 {0x21CB103C, "Smart Array P840", &SA5_access},
3b7a45e5
JH
187 {0x21CC103C, "Smart Array", &SA5_access},
188 {0x21CD103C, "Smart Array", &SA5_access},
27fb8137 189 {0x21CE103C, "Smart HBA", &SA5_access},
8e616a5e
SC
190 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
191 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
192 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
193 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
194 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
edd16368
SC
195 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
196};
197
198static int number_of_controllers;
199
10f66018
SC
200static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
201static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
42a91641 202static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
edd16368
SC
203
204#ifdef CONFIG_COMPAT
42a91641
DB
205static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
206 void __user *arg);
edd16368
SC
207#endif
208
209static void cmd_free(struct ctlr_info *h, struct CommandList *c);
edd16368 210static struct CommandList *cmd_alloc(struct ctlr_info *h);
a2dac136 211static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
b7bb24eb 212 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
edd16368 213 int cmd_type);
2c143342 214static void hpsa_free_cmd_pool(struct ctlr_info *h);
b7bb24eb 215#define VPD_PAGE (1 << 8)
edd16368 216
f281233d 217static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
a08a8471
SC
218static void hpsa_scan_start(struct Scsi_Host *);
219static int hpsa_scan_finished(struct Scsi_Host *sh,
220 unsigned long elapsed_time);
7c0a0229 221static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
edd16368
SC
222
223static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
75167d2c 224static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
edd16368 225static int hpsa_slave_alloc(struct scsi_device *sdev);
41ce4c35 226static int hpsa_slave_configure(struct scsi_device *sdev);
edd16368
SC
227static void hpsa_slave_destroy(struct scsi_device *sdev);
228
edd16368 229static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
edd16368
SC
230static int check_for_unit_attention(struct ctlr_info *h,
231 struct CommandList *c);
232static void check_ioctl_unit_attention(struct ctlr_info *h,
233 struct CommandList *c);
303932fd
DB
234/* performant mode helper functions */
235static void calc_bucket_map(int *bucket, int num_buckets,
2b08b3e9 236 int nsgs, int min_blocks, u32 *bucket_map);
6f039790 237static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
254f796b 238static inline u32 next_command(struct ctlr_info *h, u8 q);
6f039790
GKH
239static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
240 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
241 u64 *cfg_offset);
242static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
243 unsigned long *memory_bar);
244static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
245static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
246 int wait_for_ready);
75167d2c 247static inline void finish_cmd(struct CommandList *c);
c706a795 248static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
fe5389c8
SC
249#define BOARD_NOT_READY 0
250#define BOARD_READY 1
23100dd9 251static void hpsa_drain_accel_commands(struct ctlr_info *h);
76438d08 252static void hpsa_flush_cache(struct ctlr_info *h);
c349775e
ST
253static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
254 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 255 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
080ef1cc 256static void hpsa_command_resubmit_worker(struct work_struct *work);
25163bd5
WS
257static u32 lockup_detected(struct ctlr_info *h);
258static int detect_controller_lockup(struct ctlr_info *h);
edd16368 259
edd16368
SC
260static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
261{
262 unsigned long *priv = shost_priv(sdev->host);
263 return (struct ctlr_info *) *priv;
264}
265
a23513e8
SC
266static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
267{
268 unsigned long *priv = shost_priv(sh);
269 return (struct ctlr_info *) *priv;
270}
271
9437ac43
SC
272/* extract sense key, asc, and ascq from sense data. -1 means invalid. */
273static void decode_sense_data(const u8 *sense_data, int sense_data_len,
274 u8 *sense_key, u8 *asc, u8 *ascq)
275{
276 struct scsi_sense_hdr sshdr;
277 bool rc;
278
279 *sense_key = -1;
280 *asc = -1;
281 *ascq = -1;
282
283 if (sense_data_len < 1)
284 return;
285
286 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
287 if (rc) {
288 *sense_key = sshdr.sense_key;
289 *asc = sshdr.asc;
290 *ascq = sshdr.ascq;
291 }
292}
293
edd16368
SC
294static int check_for_unit_attention(struct ctlr_info *h,
295 struct CommandList *c)
296{
9437ac43
SC
297 u8 sense_key, asc, ascq;
298 int sense_len;
299
300 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
301 sense_len = sizeof(c->err_info->SenseInfo);
302 else
303 sense_len = c->err_info->SenseLen;
304
305 decode_sense_data(c->err_info->SenseInfo, sense_len,
306 &sense_key, &asc, &ascq);
307 if (sense_key != UNIT_ATTENTION || asc == -1)
edd16368
SC
308 return 0;
309
9437ac43 310 switch (asc) {
edd16368 311 case STATE_CHANGED:
9437ac43
SC
312 dev_warn(&h->pdev->dev,
313 HPSA "%d: a state change detected, command retried\n",
314 h->ctlr);
edd16368
SC
315 break;
316 case LUN_FAILED:
7f73695a
SC
317 dev_warn(&h->pdev->dev,
318 HPSA "%d: LUN failure detected\n", h->ctlr);
edd16368
SC
319 break;
320 case REPORT_LUNS_CHANGED:
7f73695a
SC
321 dev_warn(&h->pdev->dev,
322 HPSA "%d: report LUN data changed\n", h->ctlr);
edd16368 323 /*
4f4eb9f1
ST
324 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
325 * target (array) devices.
edd16368
SC
326 */
327 break;
328 case POWER_OR_RESET:
f79cfec6 329 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
edd16368
SC
330 "or device reset detected\n", h->ctlr);
331 break;
332 case UNIT_ATTENTION_CLEARED:
f79cfec6 333 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
edd16368
SC
334 "cleared by another initiator\n", h->ctlr);
335 break;
336 default:
f79cfec6 337 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
edd16368
SC
338 "unit attention detected\n", h->ctlr);
339 break;
340 }
341 return 1;
342}
343
852af20a
MB
344static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
345{
346 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
347 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
348 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
349 return 0;
350 dev_warn(&h->pdev->dev, HPSA "device busy");
351 return 1;
352}
353
e985c58f
SC
354static u32 lockup_detected(struct ctlr_info *h);
355static ssize_t host_show_lockup_detected(struct device *dev,
356 struct device_attribute *attr, char *buf)
357{
358 int ld;
359 struct ctlr_info *h;
360 struct Scsi_Host *shost = class_to_shost(dev);
361
362 h = shost_to_hba(shost);
363 ld = lockup_detected(h);
364
365 return sprintf(buf, "ld=%d\n", ld);
366}
367
da0697bd
ST
368static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
369 struct device_attribute *attr,
370 const char *buf, size_t count)
371{
372 int status, len;
373 struct ctlr_info *h;
374 struct Scsi_Host *shost = class_to_shost(dev);
375 char tmpbuf[10];
376
377 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
378 return -EACCES;
379 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
380 strncpy(tmpbuf, buf, len);
381 tmpbuf[len] = '\0';
382 if (sscanf(tmpbuf, "%d", &status) != 1)
383 return -EINVAL;
384 h = shost_to_hba(shost);
385 h->acciopath_status = !!status;
386 dev_warn(&h->pdev->dev,
387 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
388 h->acciopath_status ? "enabled" : "disabled");
389 return count;
390}
391
2ba8bfc8
SC
392static ssize_t host_store_raid_offload_debug(struct device *dev,
393 struct device_attribute *attr,
394 const char *buf, size_t count)
395{
396 int debug_level, len;
397 struct ctlr_info *h;
398 struct Scsi_Host *shost = class_to_shost(dev);
399 char tmpbuf[10];
400
401 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
402 return -EACCES;
403 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
404 strncpy(tmpbuf, buf, len);
405 tmpbuf[len] = '\0';
406 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
407 return -EINVAL;
408 if (debug_level < 0)
409 debug_level = 0;
410 h = shost_to_hba(shost);
411 h->raid_offload_debug = debug_level;
412 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
413 h->raid_offload_debug);
414 return count;
415}
416
edd16368
SC
417static ssize_t host_store_rescan(struct device *dev,
418 struct device_attribute *attr,
419 const char *buf, size_t count)
420{
421 struct ctlr_info *h;
422 struct Scsi_Host *shost = class_to_shost(dev);
a23513e8 423 h = shost_to_hba(shost);
31468401 424 hpsa_scan_start(h->scsi_host);
edd16368
SC
425 return count;
426}
427
d28ce020
SC
428static ssize_t host_show_firmware_revision(struct device *dev,
429 struct device_attribute *attr, char *buf)
430{
431 struct ctlr_info *h;
432 struct Scsi_Host *shost = class_to_shost(dev);
433 unsigned char *fwrev;
434
435 h = shost_to_hba(shost);
436 if (!h->hba_inquiry_data)
437 return 0;
438 fwrev = &h->hba_inquiry_data[32];
439 return snprintf(buf, 20, "%c%c%c%c\n",
440 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
441}
442
94a13649
SC
443static ssize_t host_show_commands_outstanding(struct device *dev,
444 struct device_attribute *attr, char *buf)
445{
446 struct Scsi_Host *shost = class_to_shost(dev);
447 struct ctlr_info *h = shost_to_hba(shost);
448
0cbf768e
SC
449 return snprintf(buf, 20, "%d\n",
450 atomic_read(&h->commands_outstanding));
94a13649
SC
451}
452
745a7a25
SC
453static ssize_t host_show_transport_mode(struct device *dev,
454 struct device_attribute *attr, char *buf)
455{
456 struct ctlr_info *h;
457 struct Scsi_Host *shost = class_to_shost(dev);
458
459 h = shost_to_hba(shost);
460 return snprintf(buf, 20, "%s\n",
960a30e7 461 h->transMethod & CFGTBL_Trans_Performant ?
745a7a25
SC
462 "performant" : "simple");
463}
464
da0697bd
ST
465static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
466 struct device_attribute *attr, char *buf)
467{
468 struct ctlr_info *h;
469 struct Scsi_Host *shost = class_to_shost(dev);
470
471 h = shost_to_hba(shost);
472 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
473 (h->acciopath_status == 1) ? "enabled" : "disabled");
474}
475
46380786 476/* List of controllers which cannot be hard reset on kexec with reset_devices */
941b1cda
SC
477static u32 unresettable_controller[] = {
478 0x324a103C, /* Smart Array P712m */
9b5c48c2 479 0x324b103C, /* Smart Array P711m */
941b1cda
SC
480 0x3223103C, /* Smart Array P800 */
481 0x3234103C, /* Smart Array P400 */
482 0x3235103C, /* Smart Array P400i */
483 0x3211103C, /* Smart Array E200i */
484 0x3212103C, /* Smart Array E200 */
485 0x3213103C, /* Smart Array E200i */
486 0x3214103C, /* Smart Array E200i */
487 0x3215103C, /* Smart Array E200i */
488 0x3237103C, /* Smart Array E500 */
489 0x323D103C, /* Smart Array P700m */
7af0abbc 490 0x40800E11, /* Smart Array 5i */
941b1cda
SC
491 0x409C0E11, /* Smart Array 6400 */
492 0x409D0E11, /* Smart Array 6400 EM */
5a4f934e
TH
493 0x40700E11, /* Smart Array 5300 */
494 0x40820E11, /* Smart Array 532 */
495 0x40830E11, /* Smart Array 5312 */
496 0x409A0E11, /* Smart Array 641 */
497 0x409B0E11, /* Smart Array 642 */
498 0x40910E11, /* Smart Array 6i */
941b1cda
SC
499};
500
46380786
SC
501/* List of controllers which cannot even be soft reset */
502static u32 soft_unresettable_controller[] = {
7af0abbc 503 0x40800E11, /* Smart Array 5i */
5a4f934e
TH
504 0x40700E11, /* Smart Array 5300 */
505 0x40820E11, /* Smart Array 532 */
506 0x40830E11, /* Smart Array 5312 */
507 0x409A0E11, /* Smart Array 641 */
508 0x409B0E11, /* Smart Array 642 */
509 0x40910E11, /* Smart Array 6i */
46380786
SC
510 /* Exclude 640x boards. These are two pci devices in one slot
511 * which share a battery backed cache module. One controls the
512 * cache, the other accesses the cache through the one that controls
513 * it. If we reset the one controlling the cache, the other will
514 * likely not be happy. Just forbid resetting this conjoined mess.
515 * The 640x isn't really supported by hpsa anyway.
516 */
517 0x409C0E11, /* Smart Array 6400 */
518 0x409D0E11, /* Smart Array 6400 EM */
519};
520
9b5c48c2
SC
521static u32 needs_abort_tags_swizzled[] = {
522 0x323D103C, /* Smart Array P700m */
523 0x324a103C, /* Smart Array P712m */
524 0x324b103C, /* SmartArray P711m */
525};
526
527static int board_id_in_array(u32 a[], int nelems, u32 board_id)
941b1cda
SC
528{
529 int i;
530
9b5c48c2
SC
531 for (i = 0; i < nelems; i++)
532 if (a[i] == board_id)
533 return 1;
534 return 0;
46380786
SC
535}
536
9b5c48c2 537static int ctlr_is_hard_resettable(u32 board_id)
46380786 538{
9b5c48c2
SC
539 return !board_id_in_array(unresettable_controller,
540 ARRAY_SIZE(unresettable_controller), board_id);
541}
46380786 542
9b5c48c2
SC
543static int ctlr_is_soft_resettable(u32 board_id)
544{
545 return !board_id_in_array(soft_unresettable_controller,
546 ARRAY_SIZE(soft_unresettable_controller), board_id);
941b1cda
SC
547}
548
46380786
SC
549static int ctlr_is_resettable(u32 board_id)
550{
551 return ctlr_is_hard_resettable(board_id) ||
552 ctlr_is_soft_resettable(board_id);
553}
554
9b5c48c2
SC
555static int ctlr_needs_abort_tags_swizzled(u32 board_id)
556{
557 return board_id_in_array(needs_abort_tags_swizzled,
558 ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
559}
560
941b1cda
SC
561static ssize_t host_show_resettable(struct device *dev,
562 struct device_attribute *attr, char *buf)
563{
564 struct ctlr_info *h;
565 struct Scsi_Host *shost = class_to_shost(dev);
566
567 h = shost_to_hba(shost);
46380786 568 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
941b1cda
SC
569}
570
edd16368
SC
571static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
572{
573 return (scsi3addr[3] & 0xC0) == 0x40;
574}
575
f2ef0ce7
RE
576static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
577 "1(+0)ADM", "UNKNOWN"
edd16368 578};
6b80b18f
ST
579#define HPSA_RAID_0 0
580#define HPSA_RAID_4 1
581#define HPSA_RAID_1 2 /* also used for RAID 10 */
582#define HPSA_RAID_5 3 /* also used for RAID 50 */
583#define HPSA_RAID_51 4
584#define HPSA_RAID_6 5 /* also used for RAID 60 */
585#define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
edd16368
SC
586#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
587
588static ssize_t raid_level_show(struct device *dev,
589 struct device_attribute *attr, char *buf)
590{
591 ssize_t l = 0;
82a72c0a 592 unsigned char rlevel;
edd16368
SC
593 struct ctlr_info *h;
594 struct scsi_device *sdev;
595 struct hpsa_scsi_dev_t *hdev;
596 unsigned long flags;
597
598 sdev = to_scsi_device(dev);
599 h = sdev_to_hba(sdev);
600 spin_lock_irqsave(&h->lock, flags);
601 hdev = sdev->hostdata;
602 if (!hdev) {
603 spin_unlock_irqrestore(&h->lock, flags);
604 return -ENODEV;
605 }
606
607 /* Is this even a logical drive? */
608 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
609 spin_unlock_irqrestore(&h->lock, flags);
610 l = snprintf(buf, PAGE_SIZE, "N/A\n");
611 return l;
612 }
613
614 rlevel = hdev->raid_level;
615 spin_unlock_irqrestore(&h->lock, flags);
82a72c0a 616 if (rlevel > RAID_UNKNOWN)
edd16368
SC
617 rlevel = RAID_UNKNOWN;
618 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
619 return l;
620}
621
622static ssize_t lunid_show(struct device *dev,
623 struct device_attribute *attr, char *buf)
624{
625 struct ctlr_info *h;
626 struct scsi_device *sdev;
627 struct hpsa_scsi_dev_t *hdev;
628 unsigned long flags;
629 unsigned char lunid[8];
630
631 sdev = to_scsi_device(dev);
632 h = sdev_to_hba(sdev);
633 spin_lock_irqsave(&h->lock, flags);
634 hdev = sdev->hostdata;
635 if (!hdev) {
636 spin_unlock_irqrestore(&h->lock, flags);
637 return -ENODEV;
638 }
639 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
640 spin_unlock_irqrestore(&h->lock, flags);
641 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
642 lunid[0], lunid[1], lunid[2], lunid[3],
643 lunid[4], lunid[5], lunid[6], lunid[7]);
644}
645
646static ssize_t unique_id_show(struct device *dev,
647 struct device_attribute *attr, char *buf)
648{
649 struct ctlr_info *h;
650 struct scsi_device *sdev;
651 struct hpsa_scsi_dev_t *hdev;
652 unsigned long flags;
653 unsigned char sn[16];
654
655 sdev = to_scsi_device(dev);
656 h = sdev_to_hba(sdev);
657 spin_lock_irqsave(&h->lock, flags);
658 hdev = sdev->hostdata;
659 if (!hdev) {
660 spin_unlock_irqrestore(&h->lock, flags);
661 return -ENODEV;
662 }
663 memcpy(sn, hdev->device_id, sizeof(sn));
664 spin_unlock_irqrestore(&h->lock, flags);
665 return snprintf(buf, 16 * 2 + 2,
666 "%02X%02X%02X%02X%02X%02X%02X%02X"
667 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
668 sn[0], sn[1], sn[2], sn[3],
669 sn[4], sn[5], sn[6], sn[7],
670 sn[8], sn[9], sn[10], sn[11],
671 sn[12], sn[13], sn[14], sn[15]);
672}
673
c1988684
ST
674static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
675 struct device_attribute *attr, char *buf)
676{
677 struct ctlr_info *h;
678 struct scsi_device *sdev;
679 struct hpsa_scsi_dev_t *hdev;
680 unsigned long flags;
681 int offload_enabled;
682
683 sdev = to_scsi_device(dev);
684 h = sdev_to_hba(sdev);
685 spin_lock_irqsave(&h->lock, flags);
686 hdev = sdev->hostdata;
687 if (!hdev) {
688 spin_unlock_irqrestore(&h->lock, flags);
689 return -ENODEV;
690 }
691 offload_enabled = hdev->offload_enabled;
692 spin_unlock_irqrestore(&h->lock, flags);
693 return snprintf(buf, 20, "%d\n", offload_enabled);
694}
695
3f5eac3a
SC
696static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
697static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
698static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
699static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
c1988684
ST
700static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
701 host_show_hp_ssd_smart_path_enabled, NULL);
da0697bd
ST
702static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
703 host_show_hp_ssd_smart_path_status,
704 host_store_hp_ssd_smart_path_status);
2ba8bfc8
SC
705static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
706 host_store_raid_offload_debug);
3f5eac3a
SC
707static DEVICE_ATTR(firmware_revision, S_IRUGO,
708 host_show_firmware_revision, NULL);
709static DEVICE_ATTR(commands_outstanding, S_IRUGO,
710 host_show_commands_outstanding, NULL);
711static DEVICE_ATTR(transport_mode, S_IRUGO,
712 host_show_transport_mode, NULL);
941b1cda
SC
713static DEVICE_ATTR(resettable, S_IRUGO,
714 host_show_resettable, NULL);
e985c58f
SC
715static DEVICE_ATTR(lockup_detected, S_IRUGO,
716 host_show_lockup_detected, NULL);
3f5eac3a
SC
717
718static struct device_attribute *hpsa_sdev_attrs[] = {
719 &dev_attr_raid_level,
720 &dev_attr_lunid,
721 &dev_attr_unique_id,
c1988684 722 &dev_attr_hp_ssd_smart_path_enabled,
e985c58f 723 &dev_attr_lockup_detected,
3f5eac3a
SC
724 NULL,
725};
726
727static struct device_attribute *hpsa_shost_attrs[] = {
728 &dev_attr_rescan,
729 &dev_attr_firmware_revision,
730 &dev_attr_commands_outstanding,
731 &dev_attr_transport_mode,
941b1cda 732 &dev_attr_resettable,
da0697bd 733 &dev_attr_hp_ssd_smart_path_status,
2ba8bfc8 734 &dev_attr_raid_offload_debug,
3f5eac3a
SC
735 NULL,
736};
737
41ce4c35
SC
738#define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
739 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
740
3f5eac3a
SC
741static struct scsi_host_template hpsa_driver_template = {
742 .module = THIS_MODULE,
f79cfec6
SC
743 .name = HPSA,
744 .proc_name = HPSA,
3f5eac3a
SC
745 .queuecommand = hpsa_scsi_queue_command,
746 .scan_start = hpsa_scan_start,
747 .scan_finished = hpsa_scan_finished,
7c0a0229 748 .change_queue_depth = hpsa_change_queue_depth,
3f5eac3a
SC
749 .this_id = -1,
750 .use_clustering = ENABLE_CLUSTERING,
75167d2c 751 .eh_abort_handler = hpsa_eh_abort_handler,
3f5eac3a
SC
752 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
753 .ioctl = hpsa_ioctl,
754 .slave_alloc = hpsa_slave_alloc,
41ce4c35 755 .slave_configure = hpsa_slave_configure,
3f5eac3a
SC
756 .slave_destroy = hpsa_slave_destroy,
757#ifdef CONFIG_COMPAT
758 .compat_ioctl = hpsa_compat_ioctl,
759#endif
760 .sdev_attrs = hpsa_sdev_attrs,
761 .shost_attrs = hpsa_shost_attrs,
c0d6a4d1 762 .max_sectors = 8192,
54b2b50c 763 .no_write_same = 1,
3f5eac3a
SC
764};
765
254f796b 766static inline u32 next_command(struct ctlr_info *h, u8 q)
3f5eac3a
SC
767{
768 u32 a;
072b0518 769 struct reply_queue_buffer *rq = &h->reply_queue[q];
3f5eac3a 770
e1f7de0c
MG
771 if (h->transMethod & CFGTBL_Trans_io_accel1)
772 return h->access.command_completed(h, q);
773
3f5eac3a 774 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
254f796b 775 return h->access.command_completed(h, q);
3f5eac3a 776
254f796b
MG
777 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
778 a = rq->head[rq->current_entry];
779 rq->current_entry++;
0cbf768e 780 atomic_dec(&h->commands_outstanding);
3f5eac3a
SC
781 } else {
782 a = FIFO_EMPTY;
783 }
784 /* Check for wraparound */
254f796b
MG
785 if (rq->current_entry == h->max_commands) {
786 rq->current_entry = 0;
787 rq->wraparound ^= 1;
3f5eac3a
SC
788 }
789 return a;
790}
791
c349775e
ST
792/*
793 * There are some special bits in the bus address of the
794 * command that we have to set for the controller to know
795 * how to process the command:
796 *
797 * Normal performant mode:
798 * bit 0: 1 means performant mode, 0 means simple mode.
799 * bits 1-3 = block fetch table entry
800 * bits 4-6 = command type (== 0)
801 *
802 * ioaccel1 mode:
803 * bit 0 = "performant mode" bit.
804 * bits 1-3 = block fetch table entry
805 * bits 4-6 = command type (== 110)
806 * (command type is needed because ioaccel1 mode
807 * commands are submitted through the same register as normal
808 * mode commands, so this is how the controller knows whether
809 * the command is normal mode or ioaccel1 mode.)
810 *
811 * ioaccel2 mode:
812 * bit 0 = "performant mode" bit.
813 * bits 1-4 = block fetch table entry (note extra bit)
814 * bits 4-6 = not needed, because ioaccel2 mode has
815 * a separate special register for submitting commands.
816 */
817
25163bd5
WS
818/*
819 * set_performant_mode: Modify the tag for cciss performant
3f5eac3a
SC
820 * set bit 0 for pull model, bits 3-1 for block fetch
821 * register number
822 */
25163bd5
WS
823#define DEFAULT_REPLY_QUEUE (-1)
824static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
825 int reply_queue)
3f5eac3a 826{
254f796b 827 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
3f5eac3a 828 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
25163bd5
WS
829 if (unlikely(!h->msix_vector))
830 return;
831 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
254f796b 832 c->Header.ReplyQueue =
804a5cb5 833 raw_smp_processor_id() % h->nreply_queues;
25163bd5
WS
834 else
835 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
254f796b 836 }
3f5eac3a
SC
837}
838
c349775e 839static void set_ioaccel1_performant_mode(struct ctlr_info *h,
25163bd5
WS
840 struct CommandList *c,
841 int reply_queue)
c349775e
ST
842{
843 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
844
25163bd5
WS
845 /*
846 * Tell the controller to post the reply to the queue for this
c349775e
ST
847 * processor. This seems to give the best I/O throughput.
848 */
25163bd5
WS
849 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
850 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
851 else
852 cp->ReplyQueue = reply_queue % h->nreply_queues;
853 /*
854 * Set the bits in the address sent down to include:
c349775e
ST
855 * - performant mode bit (bit 0)
856 * - pull count (bits 1-3)
857 * - command type (bits 4-6)
858 */
859 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
860 IOACCEL1_BUSADDR_CMDTYPE;
861}
862
863static void set_ioaccel2_performant_mode(struct ctlr_info *h,
25163bd5
WS
864 struct CommandList *c,
865 int reply_queue)
c349775e
ST
866{
867 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
868
25163bd5
WS
869 /*
870 * Tell the controller to post the reply to the queue for this
c349775e
ST
871 * processor. This seems to give the best I/O throughput.
872 */
25163bd5
WS
873 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
874 cp->reply_queue = smp_processor_id() % h->nreply_queues;
875 else
876 cp->reply_queue = reply_queue % h->nreply_queues;
877 /*
878 * Set the bits in the address sent down to include:
c349775e
ST
879 * - performant mode bit not used in ioaccel mode 2
880 * - pull count (bits 0-3)
881 * - command type isn't needed for ioaccel2
882 */
883 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
884}
885
e85c5974
SC
886static int is_firmware_flash_cmd(u8 *cdb)
887{
888 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
889}
890
891/*
892 * During firmware flash, the heartbeat register may not update as frequently
893 * as it should. So we dial down lockup detection during firmware flash. and
894 * dial it back up when firmware flash completes.
895 */
896#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
897#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
898static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
899 struct CommandList *c)
900{
901 if (!is_firmware_flash_cmd(c->Request.CDB))
902 return;
903 atomic_inc(&h->firmware_flash_in_progress);
904 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
905}
906
907static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
908 struct CommandList *c)
909{
910 if (is_firmware_flash_cmd(c->Request.CDB) &&
911 atomic_dec_and_test(&h->firmware_flash_in_progress))
912 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
913}
914
25163bd5
WS
915static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
916 struct CommandList *c, int reply_queue)
3f5eac3a 917{
c05e8866
SC
918 dial_down_lockup_detection_during_fw_flash(h, c);
919 atomic_inc(&h->commands_outstanding);
c349775e
ST
920 switch (c->cmd_type) {
921 case CMD_IOACCEL1:
25163bd5 922 set_ioaccel1_performant_mode(h, c, reply_queue);
c05e8866 923 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
c349775e
ST
924 break;
925 case CMD_IOACCEL2:
25163bd5 926 set_ioaccel2_performant_mode(h, c, reply_queue);
c05e8866 927 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
c349775e
ST
928 break;
929 default:
25163bd5 930 set_performant_mode(h, c, reply_queue);
c05e8866 931 h->access.submit_command(h, c);
c349775e 932 }
3f5eac3a
SC
933}
934
25163bd5
WS
935static void enqueue_cmd_and_start_io(struct ctlr_info *h,
936 struct CommandList *c)
937{
938 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
939}
940
3f5eac3a
SC
941static inline int is_hba_lunid(unsigned char scsi3addr[])
942{
943 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
944}
945
946static inline int is_scsi_rev_5(struct ctlr_info *h)
947{
948 if (!h->hba_inquiry_data)
949 return 0;
950 if ((h->hba_inquiry_data[2] & 0x07) == 5)
951 return 1;
952 return 0;
953}
954
edd16368
SC
955static int hpsa_find_target_lun(struct ctlr_info *h,
956 unsigned char scsi3addr[], int bus, int *target, int *lun)
957{
958 /* finds an unused bus, target, lun for a new physical device
959 * assumes h->devlock is held
960 */
961 int i, found = 0;
cfe5badc 962 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
edd16368 963
263d9401 964 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
edd16368
SC
965
966 for (i = 0; i < h->ndevices; i++) {
967 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
263d9401 968 __set_bit(h->dev[i]->target, lun_taken);
edd16368
SC
969 }
970
263d9401
AM
971 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
972 if (i < HPSA_MAX_DEVICES) {
973 /* *bus = 1; */
974 *target = i;
975 *lun = 0;
976 found = 1;
edd16368
SC
977 }
978 return !found;
979}
980
0d96ef5f
WS
981static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
982 struct hpsa_scsi_dev_t *dev, char *description)
983{
984 dev_printk(level, &h->pdev->dev,
985 "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
986 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
987 description,
988 scsi_device_type(dev->devtype),
989 dev->vendor,
990 dev->model,
991 dev->raid_level > RAID_UNKNOWN ?
992 "RAID-?" : raid_label[dev->raid_level],
993 dev->offload_config ? '+' : '-',
994 dev->offload_enabled ? '+' : '-',
995 dev->expose_state);
996}
997
edd16368
SC
998/* Add an entry into h->dev[] array. */
999static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
1000 struct hpsa_scsi_dev_t *device,
1001 struct hpsa_scsi_dev_t *added[], int *nadded)
1002{
1003 /* assumes h->devlock is held */
1004 int n = h->ndevices;
1005 int i;
1006 unsigned char addr1[8], addr2[8];
1007 struct hpsa_scsi_dev_t *sd;
1008
cfe5badc 1009 if (n >= HPSA_MAX_DEVICES) {
edd16368
SC
1010 dev_err(&h->pdev->dev, "too many devices, some will be "
1011 "inaccessible.\n");
1012 return -1;
1013 }
1014
1015 /* physical devices do not have lun or target assigned until now. */
1016 if (device->lun != -1)
1017 /* Logical device, lun is already assigned. */
1018 goto lun_assigned;
1019
1020 /* If this device a non-zero lun of a multi-lun device
1021 * byte 4 of the 8-byte LUN addr will contain the logical
2b08b3e9 1022 * unit no, zero otherwise.
edd16368
SC
1023 */
1024 if (device->scsi3addr[4] == 0) {
1025 /* This is not a non-zero lun of a multi-lun device */
1026 if (hpsa_find_target_lun(h, device->scsi3addr,
1027 device->bus, &device->target, &device->lun) != 0)
1028 return -1;
1029 goto lun_assigned;
1030 }
1031
1032 /* This is a non-zero lun of a multi-lun device.
1033 * Search through our list and find the device which
1034 * has the same 8 byte LUN address, excepting byte 4.
1035 * Assign the same bus and target for this new LUN.
1036 * Use the logical unit number from the firmware.
1037 */
1038 memcpy(addr1, device->scsi3addr, 8);
1039 addr1[4] = 0;
1040 for (i = 0; i < n; i++) {
1041 sd = h->dev[i];
1042 memcpy(addr2, sd->scsi3addr, 8);
1043 addr2[4] = 0;
1044 /* differ only in byte 4? */
1045 if (memcmp(addr1, addr2, 8) == 0) {
1046 device->bus = sd->bus;
1047 device->target = sd->target;
1048 device->lun = device->scsi3addr[4];
1049 break;
1050 }
1051 }
1052 if (device->lun == -1) {
1053 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1054 " suspect firmware bug or unsupported hardware "
1055 "configuration.\n");
1056 return -1;
1057 }
1058
1059lun_assigned:
1060
1061 h->dev[n] = device;
1062 h->ndevices++;
41ce4c35
SC
1063 device->offload_to_be_enabled = device->offload_enabled;
1064 device->offload_enabled = 0;
edd16368
SC
1065 added[*nadded] = device;
1066 (*nadded)++;
0d96ef5f
WS
1067 hpsa_show_dev_msg(KERN_INFO, h, device,
1068 device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
edd16368
SC
1069 return 0;
1070}
1071
bd9244f7
ST
1072/* Update an entry in h->dev[] array. */
1073static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
1074 int entry, struct hpsa_scsi_dev_t *new_entry)
1075{
1076 /* assumes h->devlock is held */
1077 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1078
1079 /* Raid level changed. */
1080 h->dev[entry]->raid_level = new_entry->raid_level;
250fb125 1081
03383736
DB
1082 /* Raid offload parameters changed. Careful about the ordering. */
1083 if (new_entry->offload_config && new_entry->offload_enabled) {
1084 /*
1085 * if drive is newly offload_enabled, we want to copy the
1086 * raid map data first. If previously offload_enabled and
1087 * offload_config were set, raid map data had better be
1088 * the same as it was before. if raid map data is changed
1089 * then it had better be the case that
1090 * h->dev[entry]->offload_enabled is currently 0.
1091 */
1092 h->dev[entry]->raid_map = new_entry->raid_map;
1093 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
03383736 1094 }
250fb125 1095 h->dev[entry]->offload_config = new_entry->offload_config;
9fb0de2d 1096 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
03383736 1097 h->dev[entry]->queue_depth = new_entry->queue_depth;
250fb125 1098
41ce4c35
SC
1099 /*
1100 * We can turn off ioaccel offload now, but need to delay turning
1101 * it on until we can update h->dev[entry]->phys_disk[], but we
1102 * can't do that until all the devices are updated.
1103 */
1104 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1105 if (!new_entry->offload_enabled)
1106 h->dev[entry]->offload_enabled = 0;
1107
0d96ef5f 1108 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
bd9244f7
ST
1109}
1110
2a8ccf31
SC
1111/* Replace an entry from h->dev[] array. */
1112static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1113 int entry, struct hpsa_scsi_dev_t *new_entry,
1114 struct hpsa_scsi_dev_t *added[], int *nadded,
1115 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1116{
1117 /* assumes h->devlock is held */
cfe5badc 1118 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
2a8ccf31
SC
1119 removed[*nremoved] = h->dev[entry];
1120 (*nremoved)++;
01350d05
SC
1121
1122 /*
1123 * New physical devices won't have target/lun assigned yet
1124 * so we need to preserve the values in the slot we are replacing.
1125 */
1126 if (new_entry->target == -1) {
1127 new_entry->target = h->dev[entry]->target;
1128 new_entry->lun = h->dev[entry]->lun;
1129 }
1130
41ce4c35
SC
1131 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1132 new_entry->offload_enabled = 0;
2a8ccf31
SC
1133 h->dev[entry] = new_entry;
1134 added[*nadded] = new_entry;
1135 (*nadded)++;
0d96ef5f 1136 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
2a8ccf31
SC
1137}
1138
edd16368
SC
1139/* Remove an entry from h->dev[] array. */
1140static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1141 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1142{
1143 /* assumes h->devlock is held */
1144 int i;
1145 struct hpsa_scsi_dev_t *sd;
1146
cfe5badc 1147 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
edd16368
SC
1148
1149 sd = h->dev[entry];
1150 removed[*nremoved] = h->dev[entry];
1151 (*nremoved)++;
1152
1153 for (i = entry; i < h->ndevices-1; i++)
1154 h->dev[i] = h->dev[i+1];
1155 h->ndevices--;
0d96ef5f 1156 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
edd16368
SC
1157}
1158
1159#define SCSI3ADDR_EQ(a, b) ( \
1160 (a)[7] == (b)[7] && \
1161 (a)[6] == (b)[6] && \
1162 (a)[5] == (b)[5] && \
1163 (a)[4] == (b)[4] && \
1164 (a)[3] == (b)[3] && \
1165 (a)[2] == (b)[2] && \
1166 (a)[1] == (b)[1] && \
1167 (a)[0] == (b)[0])
1168
1169static void fixup_botched_add(struct ctlr_info *h,
1170 struct hpsa_scsi_dev_t *added)
1171{
1172 /* called when scsi_add_device fails in order to re-adjust
1173 * h->dev[] to match the mid layer's view.
1174 */
1175 unsigned long flags;
1176 int i, j;
1177
1178 spin_lock_irqsave(&h->lock, flags);
1179 for (i = 0; i < h->ndevices; i++) {
1180 if (h->dev[i] == added) {
1181 for (j = i; j < h->ndevices-1; j++)
1182 h->dev[j] = h->dev[j+1];
1183 h->ndevices--;
1184 break;
1185 }
1186 }
1187 spin_unlock_irqrestore(&h->lock, flags);
1188 kfree(added);
1189}
1190
1191static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1192 struct hpsa_scsi_dev_t *dev2)
1193{
edd16368
SC
1194 /* we compare everything except lun and target as these
1195 * are not yet assigned. Compare parts likely
1196 * to differ first
1197 */
1198 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1199 sizeof(dev1->scsi3addr)) != 0)
1200 return 0;
1201 if (memcmp(dev1->device_id, dev2->device_id,
1202 sizeof(dev1->device_id)) != 0)
1203 return 0;
1204 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1205 return 0;
1206 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1207 return 0;
edd16368
SC
1208 if (dev1->devtype != dev2->devtype)
1209 return 0;
edd16368
SC
1210 if (dev1->bus != dev2->bus)
1211 return 0;
1212 return 1;
1213}
1214
bd9244f7
ST
1215static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1216 struct hpsa_scsi_dev_t *dev2)
1217{
1218 /* Device attributes that can change, but don't mean
1219 * that the device is a different device, nor that the OS
1220 * needs to be told anything about the change.
1221 */
1222 if (dev1->raid_level != dev2->raid_level)
1223 return 1;
250fb125
SC
1224 if (dev1->offload_config != dev2->offload_config)
1225 return 1;
1226 if (dev1->offload_enabled != dev2->offload_enabled)
1227 return 1;
03383736
DB
1228 if (dev1->queue_depth != dev2->queue_depth)
1229 return 1;
bd9244f7
ST
1230 return 0;
1231}
1232
edd16368
SC
1233/* Find needle in haystack. If exact match found, return DEVICE_SAME,
1234 * and return needle location in *index. If scsi3addr matches, but not
1235 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
bd9244f7
ST
1236 * location in *index.
1237 * In the case of a minor device attribute change, such as RAID level, just
1238 * return DEVICE_UPDATED, along with the updated device's location in index.
1239 * If needle not found, return DEVICE_NOT_FOUND.
edd16368
SC
1240 */
1241static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1242 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1243 int *index)
1244{
1245 int i;
1246#define DEVICE_NOT_FOUND 0
1247#define DEVICE_CHANGED 1
1248#define DEVICE_SAME 2
bd9244f7 1249#define DEVICE_UPDATED 3
edd16368 1250 for (i = 0; i < haystack_size; i++) {
23231048
SC
1251 if (haystack[i] == NULL) /* previously removed. */
1252 continue;
edd16368
SC
1253 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1254 *index = i;
bd9244f7
ST
1255 if (device_is_the_same(needle, haystack[i])) {
1256 if (device_updated(needle, haystack[i]))
1257 return DEVICE_UPDATED;
edd16368 1258 return DEVICE_SAME;
bd9244f7 1259 } else {
9846590e
SC
1260 /* Keep offline devices offline */
1261 if (needle->volume_offline)
1262 return DEVICE_NOT_FOUND;
edd16368 1263 return DEVICE_CHANGED;
bd9244f7 1264 }
edd16368
SC
1265 }
1266 }
1267 *index = -1;
1268 return DEVICE_NOT_FOUND;
1269}
1270
9846590e
SC
1271static void hpsa_monitor_offline_device(struct ctlr_info *h,
1272 unsigned char scsi3addr[])
1273{
1274 struct offline_device_entry *device;
1275 unsigned long flags;
1276
1277 /* Check to see if device is already on the list */
1278 spin_lock_irqsave(&h->offline_device_lock, flags);
1279 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1280 if (memcmp(device->scsi3addr, scsi3addr,
1281 sizeof(device->scsi3addr)) == 0) {
1282 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1283 return;
1284 }
1285 }
1286 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1287
1288 /* Device is not on the list, add it. */
1289 device = kmalloc(sizeof(*device), GFP_KERNEL);
1290 if (!device) {
1291 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1292 return;
1293 }
1294 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1295 spin_lock_irqsave(&h->offline_device_lock, flags);
1296 list_add_tail(&device->offline_list, &h->offline_device_list);
1297 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1298}
1299
1300/* Print a message explaining various offline volume states */
1301static void hpsa_show_volume_status(struct ctlr_info *h,
1302 struct hpsa_scsi_dev_t *sd)
1303{
1304 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1305 dev_info(&h->pdev->dev,
1306 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1307 h->scsi_host->host_no,
1308 sd->bus, sd->target, sd->lun);
1309 switch (sd->volume_offline) {
1310 case HPSA_LV_OK:
1311 break;
1312 case HPSA_LV_UNDERGOING_ERASE:
1313 dev_info(&h->pdev->dev,
1314 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1315 h->scsi_host->host_no,
1316 sd->bus, sd->target, sd->lun);
1317 break;
1318 case HPSA_LV_UNDERGOING_RPI:
1319 dev_info(&h->pdev->dev,
1320 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1321 h->scsi_host->host_no,
1322 sd->bus, sd->target, sd->lun);
1323 break;
1324 case HPSA_LV_PENDING_RPI:
1325 dev_info(&h->pdev->dev,
1326 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1327 h->scsi_host->host_no,
1328 sd->bus, sd->target, sd->lun);
1329 break;
1330 case HPSA_LV_ENCRYPTED_NO_KEY:
1331 dev_info(&h->pdev->dev,
1332 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1333 h->scsi_host->host_no,
1334 sd->bus, sd->target, sd->lun);
1335 break;
1336 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1337 dev_info(&h->pdev->dev,
1338 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1339 h->scsi_host->host_no,
1340 sd->bus, sd->target, sd->lun);
1341 break;
1342 case HPSA_LV_UNDERGOING_ENCRYPTION:
1343 dev_info(&h->pdev->dev,
1344 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1345 h->scsi_host->host_no,
1346 sd->bus, sd->target, sd->lun);
1347 break;
1348 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1349 dev_info(&h->pdev->dev,
1350 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1351 h->scsi_host->host_no,
1352 sd->bus, sd->target, sd->lun);
1353 break;
1354 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1355 dev_info(&h->pdev->dev,
1356 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1357 h->scsi_host->host_no,
1358 sd->bus, sd->target, sd->lun);
1359 break;
1360 case HPSA_LV_PENDING_ENCRYPTION:
1361 dev_info(&h->pdev->dev,
1362 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1363 h->scsi_host->host_no,
1364 sd->bus, sd->target, sd->lun);
1365 break;
1366 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1367 dev_info(&h->pdev->dev,
1368 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1369 h->scsi_host->host_no,
1370 sd->bus, sd->target, sd->lun);
1371 break;
1372 }
1373}
1374
03383736
DB
1375/*
1376 * Figure the list of physical drive pointers for a logical drive with
1377 * raid offload configured.
1378 */
1379static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1380 struct hpsa_scsi_dev_t *dev[], int ndevices,
1381 struct hpsa_scsi_dev_t *logical_drive)
1382{
1383 struct raid_map_data *map = &logical_drive->raid_map;
1384 struct raid_map_disk_data *dd = &map->data[0];
1385 int i, j;
1386 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1387 le16_to_cpu(map->metadata_disks_per_row);
1388 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1389 le16_to_cpu(map->layout_map_count) *
1390 total_disks_per_row;
1391 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1392 total_disks_per_row;
1393 int qdepth;
1394
1395 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1396 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1397
1398 qdepth = 0;
1399 for (i = 0; i < nraid_map_entries; i++) {
1400 logical_drive->phys_disk[i] = NULL;
1401 if (!logical_drive->offload_config)
1402 continue;
1403 for (j = 0; j < ndevices; j++) {
1404 if (dev[j]->devtype != TYPE_DISK)
1405 continue;
1406 if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1407 continue;
1408 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1409 continue;
1410
1411 logical_drive->phys_disk[i] = dev[j];
1412 if (i < nphys_disk)
1413 qdepth = min(h->nr_cmds, qdepth +
1414 logical_drive->phys_disk[i]->queue_depth);
1415 break;
1416 }
1417
1418 /*
1419 * This can happen if a physical drive is removed and
1420 * the logical drive is degraded. In that case, the RAID
1421 * map data will refer to a physical disk which isn't actually
1422 * present. And in that case offload_enabled should already
1423 * be 0, but we'll turn it off here just in case
1424 */
1425 if (!logical_drive->phys_disk[i]) {
1426 logical_drive->offload_enabled = 0;
41ce4c35
SC
1427 logical_drive->offload_to_be_enabled = 0;
1428 logical_drive->queue_depth = 8;
03383736
DB
1429 }
1430 }
1431 if (nraid_map_entries)
1432 /*
1433 * This is correct for reads, too high for full stripe writes,
1434 * way too high for partial stripe writes
1435 */
1436 logical_drive->queue_depth = qdepth;
1437 else
1438 logical_drive->queue_depth = h->nr_cmds;
1439}
1440
1441static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1442 struct hpsa_scsi_dev_t *dev[], int ndevices)
1443{
1444 int i;
1445
1446 for (i = 0; i < ndevices; i++) {
1447 if (dev[i]->devtype != TYPE_DISK)
1448 continue;
1449 if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1450 continue;
41ce4c35
SC
1451
1452 /*
1453 * If offload is currently enabled, the RAID map and
1454 * phys_disk[] assignment *better* not be changing
1455 * and since it isn't changing, we do not need to
1456 * update it.
1457 */
1458 if (dev[i]->offload_enabled)
1459 continue;
1460
03383736
DB
1461 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1462 }
1463}
1464
4967bd3e 1465static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
edd16368
SC
1466 struct hpsa_scsi_dev_t *sd[], int nsds)
1467{
1468 /* sd contains scsi3 addresses and devtypes, and inquiry
1469 * data. This function takes what's in sd to be the current
1470 * reality and updates h->dev[] to reflect that reality.
1471 */
1472 int i, entry, device_change, changes = 0;
1473 struct hpsa_scsi_dev_t *csd;
1474 unsigned long flags;
1475 struct hpsa_scsi_dev_t **added, **removed;
1476 int nadded, nremoved;
1477 struct Scsi_Host *sh = NULL;
1478
cfe5badc
ST
1479 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1480 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
edd16368
SC
1481
1482 if (!added || !removed) {
1483 dev_warn(&h->pdev->dev, "out of memory in "
1484 "adjust_hpsa_scsi_table\n");
1485 goto free_and_out;
1486 }
1487
1488 spin_lock_irqsave(&h->devlock, flags);
1489
1490 /* find any devices in h->dev[] that are not in
1491 * sd[] and remove them from h->dev[], and for any
1492 * devices which have changed, remove the old device
1493 * info and add the new device info.
bd9244f7
ST
1494 * If minor device attributes change, just update
1495 * the existing device structure.
edd16368
SC
1496 */
1497 i = 0;
1498 nremoved = 0;
1499 nadded = 0;
1500 while (i < h->ndevices) {
1501 csd = h->dev[i];
1502 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1503 if (device_change == DEVICE_NOT_FOUND) {
1504 changes++;
1505 hpsa_scsi_remove_entry(h, hostno, i,
1506 removed, &nremoved);
1507 continue; /* remove ^^^, hence i not incremented */
1508 } else if (device_change == DEVICE_CHANGED) {
1509 changes++;
2a8ccf31
SC
1510 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1511 added, &nadded, removed, &nremoved);
c7f172dc
SC
1512 /* Set it to NULL to prevent it from being freed
1513 * at the bottom of hpsa_update_scsi_devices()
1514 */
1515 sd[entry] = NULL;
bd9244f7
ST
1516 } else if (device_change == DEVICE_UPDATED) {
1517 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
edd16368
SC
1518 }
1519 i++;
1520 }
1521
1522 /* Now, make sure every device listed in sd[] is also
1523 * listed in h->dev[], adding them if they aren't found
1524 */
1525
1526 for (i = 0; i < nsds; i++) {
1527 if (!sd[i]) /* if already added above. */
1528 continue;
9846590e
SC
1529
1530 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1531 * as the SCSI mid-layer does not handle such devices well.
1532 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1533 * at 160Hz, and prevents the system from coming up.
1534 */
1535 if (sd[i]->volume_offline) {
1536 hpsa_show_volume_status(h, sd[i]);
0d96ef5f 1537 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
9846590e
SC
1538 continue;
1539 }
1540
edd16368
SC
1541 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1542 h->ndevices, &entry);
1543 if (device_change == DEVICE_NOT_FOUND) {
1544 changes++;
1545 if (hpsa_scsi_add_entry(h, hostno, sd[i],
1546 added, &nadded) != 0)
1547 break;
1548 sd[i] = NULL; /* prevent from being freed later. */
1549 } else if (device_change == DEVICE_CHANGED) {
1550 /* should never happen... */
1551 changes++;
1552 dev_warn(&h->pdev->dev,
1553 "device unexpectedly changed.\n");
1554 /* but if it does happen, we just ignore that device */
1555 }
1556 }
41ce4c35
SC
1557 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1558
1559 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1560 * any logical drives that need it enabled.
1561 */
1562 for (i = 0; i < h->ndevices; i++)
1563 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1564
edd16368
SC
1565 spin_unlock_irqrestore(&h->devlock, flags);
1566
9846590e
SC
1567 /* Monitor devices which are in one of several NOT READY states to be
1568 * brought online later. This must be done without holding h->devlock,
1569 * so don't touch h->dev[]
1570 */
1571 for (i = 0; i < nsds; i++) {
1572 if (!sd[i]) /* if already added above. */
1573 continue;
1574 if (sd[i]->volume_offline)
1575 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1576 }
1577
edd16368
SC
1578 /* Don't notify scsi mid layer of any changes the first time through
1579 * (or if there are no changes) scsi_scan_host will do it later the
1580 * first time through.
1581 */
1582 if (hostno == -1 || !changes)
1583 goto free_and_out;
1584
1585 sh = h->scsi_host;
1586 /* Notify scsi mid layer of any removed devices */
1587 for (i = 0; i < nremoved; i++) {
41ce4c35
SC
1588 if (removed[i]->expose_state & HPSA_SCSI_ADD) {
1589 struct scsi_device *sdev =
1590 scsi_device_lookup(sh, removed[i]->bus,
1591 removed[i]->target, removed[i]->lun);
1592 if (sdev != NULL) {
1593 scsi_remove_device(sdev);
1594 scsi_device_put(sdev);
1595 } else {
1596 /*
1597 * We don't expect to get here.
1598 * future cmds to this device will get selection
1599 * timeout as if the device was gone.
1600 */
0d96ef5f
WS
1601 hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
1602 "didn't find device for removal.");
41ce4c35 1603 }
edd16368
SC
1604 }
1605 kfree(removed[i]);
1606 removed[i] = NULL;
1607 }
1608
1609 /* Notify scsi mid layer of any added devices */
1610 for (i = 0; i < nadded; i++) {
41ce4c35
SC
1611 if (!(added[i]->expose_state & HPSA_SCSI_ADD))
1612 continue;
edd16368
SC
1613 if (scsi_add_device(sh, added[i]->bus,
1614 added[i]->target, added[i]->lun) == 0)
1615 continue;
0d96ef5f
WS
1616 hpsa_show_dev_msg(KERN_WARNING, h, added[i],
1617 "addition failed, device not added.");
edd16368
SC
1618 /* now we have to remove it from h->dev,
1619 * since it didn't get added to scsi mid layer
1620 */
1621 fixup_botched_add(h, added[i]);
1622 }
1623
1624free_and_out:
1625 kfree(added);
1626 kfree(removed);
edd16368
SC
1627}
1628
1629/*
9e03aa2f 1630 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
edd16368
SC
1631 * Assume's h->devlock is held.
1632 */
1633static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1634 int bus, int target, int lun)
1635{
1636 int i;
1637 struct hpsa_scsi_dev_t *sd;
1638
1639 for (i = 0; i < h->ndevices; i++) {
1640 sd = h->dev[i];
1641 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1642 return sd;
1643 }
1644 return NULL;
1645}
1646
edd16368
SC
1647static int hpsa_slave_alloc(struct scsi_device *sdev)
1648{
1649 struct hpsa_scsi_dev_t *sd;
1650 unsigned long flags;
1651 struct ctlr_info *h;
1652
1653 h = sdev_to_hba(sdev);
1654 spin_lock_irqsave(&h->devlock, flags);
1655 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1656 sdev_id(sdev), sdev->lun);
41ce4c35 1657 if (likely(sd)) {
03383736 1658 atomic_set(&sd->ioaccel_cmds_out, 0);
41ce4c35
SC
1659 sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
1660 } else
1661 sdev->hostdata = NULL;
edd16368
SC
1662 spin_unlock_irqrestore(&h->devlock, flags);
1663 return 0;
1664}
1665
41ce4c35
SC
1666/* configure scsi device based on internal per-device structure */
1667static int hpsa_slave_configure(struct scsi_device *sdev)
1668{
1669 struct hpsa_scsi_dev_t *sd;
1670 int queue_depth;
1671
1672 sd = sdev->hostdata;
1673 sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);
1674
1675 if (sd)
1676 queue_depth = sd->queue_depth != 0 ?
1677 sd->queue_depth : sdev->host->can_queue;
1678 else
1679 queue_depth = sdev->host->can_queue;
1680
1681 scsi_change_queue_depth(sdev, queue_depth);
1682
1683 return 0;
1684}
1685
edd16368
SC
1686static void hpsa_slave_destroy(struct scsi_device *sdev)
1687{
bcc44255 1688 /* nothing to do. */
edd16368
SC
1689}
1690
33a2ffce
SC
1691static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1692{
1693 int i;
1694
1695 if (!h->cmd_sg_list)
1696 return;
1697 for (i = 0; i < h->nr_cmds; i++) {
1698 kfree(h->cmd_sg_list[i]);
1699 h->cmd_sg_list[i] = NULL;
1700 }
1701 kfree(h->cmd_sg_list);
1702 h->cmd_sg_list = NULL;
1703}
1704
1705static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1706{
1707 int i;
1708
1709 if (h->chainsize <= 0)
1710 return 0;
1711
1712 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1713 GFP_KERNEL);
3d4e6af8
RE
1714 if (!h->cmd_sg_list) {
1715 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
33a2ffce 1716 return -ENOMEM;
3d4e6af8 1717 }
33a2ffce
SC
1718 for (i = 0; i < h->nr_cmds; i++) {
1719 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1720 h->chainsize, GFP_KERNEL);
3d4e6af8
RE
1721 if (!h->cmd_sg_list[i]) {
1722 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
33a2ffce 1723 goto clean;
3d4e6af8 1724 }
33a2ffce
SC
1725 }
1726 return 0;
1727
1728clean:
1729 hpsa_free_sg_chain_blocks(h);
1730 return -ENOMEM;
1731}
1732
e2bea6df 1733static int hpsa_map_sg_chain_block(struct ctlr_info *h,
33a2ffce
SC
1734 struct CommandList *c)
1735{
1736 struct SGDescriptor *chain_sg, *chain_block;
1737 u64 temp64;
50a0decf 1738 u32 chain_len;
33a2ffce
SC
1739
1740 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1741 chain_block = h->cmd_sg_list[c->cmdindex];
50a0decf
SC
1742 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1743 chain_len = sizeof(*chain_sg) *
2b08b3e9 1744 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
50a0decf
SC
1745 chain_sg->Len = cpu_to_le32(chain_len);
1746 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
33a2ffce 1747 PCI_DMA_TODEVICE);
e2bea6df
SC
1748 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1749 /* prevent subsequent unmapping */
50a0decf 1750 chain_sg->Addr = cpu_to_le64(0);
e2bea6df
SC
1751 return -1;
1752 }
50a0decf 1753 chain_sg->Addr = cpu_to_le64(temp64);
e2bea6df 1754 return 0;
33a2ffce
SC
1755}
1756
1757static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1758 struct CommandList *c)
1759{
1760 struct SGDescriptor *chain_sg;
33a2ffce 1761
50a0decf 1762 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
33a2ffce
SC
1763 return;
1764
1765 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
50a0decf
SC
1766 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1767 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
33a2ffce
SC
1768}
1769
a09c1441
ST
1770
1771/* Decode the various types of errors on ioaccel2 path.
1772 * Return 1 for any error that should generate a RAID path retry.
1773 * Return 0 for errors that don't require a RAID path retry.
1774 */
1775static int handle_ioaccel_mode2_error(struct ctlr_info *h,
c349775e
ST
1776 struct CommandList *c,
1777 struct scsi_cmnd *cmd,
1778 struct io_accel2_cmd *c2)
1779{
1780 int data_len;
a09c1441 1781 int retry = 0;
c349775e
ST
1782
1783 switch (c2->error_data.serv_response) {
1784 case IOACCEL2_SERV_RESPONSE_COMPLETE:
1785 switch (c2->error_data.status) {
1786 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1787 break;
1788 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1789 dev_warn(&h->pdev->dev,
1790 "%s: task complete with check condition.\n",
1791 "HP SSD Smart Path");
ee6b1889 1792 cmd->result |= SAM_STAT_CHECK_CONDITION;
c349775e 1793 if (c2->error_data.data_present !=
ee6b1889
SC
1794 IOACCEL2_SENSE_DATA_PRESENT) {
1795 memset(cmd->sense_buffer, 0,
1796 SCSI_SENSE_BUFFERSIZE);
c349775e 1797 break;
ee6b1889 1798 }
c349775e
ST
1799 /* copy the sense data */
1800 data_len = c2->error_data.sense_data_len;
1801 if (data_len > SCSI_SENSE_BUFFERSIZE)
1802 data_len = SCSI_SENSE_BUFFERSIZE;
1803 if (data_len > sizeof(c2->error_data.sense_data_buff))
1804 data_len =
1805 sizeof(c2->error_data.sense_data_buff);
1806 memcpy(cmd->sense_buffer,
1807 c2->error_data.sense_data_buff, data_len);
a09c1441 1808 retry = 1;
c349775e
ST
1809 break;
1810 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1811 dev_warn(&h->pdev->dev,
1812 "%s: task complete with BUSY status.\n",
1813 "HP SSD Smart Path");
a09c1441 1814 retry = 1;
c349775e
ST
1815 break;
1816 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1817 dev_warn(&h->pdev->dev,
1818 "%s: task complete with reservation conflict.\n",
1819 "HP SSD Smart Path");
a09c1441 1820 retry = 1;
c349775e
ST
1821 break;
1822 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1823 /* Make scsi midlayer do unlimited retries */
1824 cmd->result = DID_IMM_RETRY << 16;
1825 break;
1826 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1827 dev_warn(&h->pdev->dev,
1828 "%s: task complete with aborted status.\n",
1829 "HP SSD Smart Path");
a09c1441 1830 retry = 1;
c349775e
ST
1831 break;
1832 default:
1833 dev_warn(&h->pdev->dev,
1834 "%s: task complete with unrecognized status: 0x%02x\n",
1835 "HP SSD Smart Path", c2->error_data.status);
a09c1441 1836 retry = 1;
c349775e
ST
1837 break;
1838 }
1839 break;
1840 case IOACCEL2_SERV_RESPONSE_FAILURE:
1841 /* don't expect to get here. */
1842 dev_warn(&h->pdev->dev,
1843 "unexpected delivery or target failure, status = 0x%02x\n",
1844 c2->error_data.status);
a09c1441 1845 retry = 1;
c349775e
ST
1846 break;
1847 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1848 break;
1849 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1850 break;
1851 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1852 dev_warn(&h->pdev->dev, "task management function rejected.\n");
a09c1441 1853 retry = 1;
c349775e
ST
1854 break;
1855 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1856 dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1857 break;
1858 default:
1859 dev_warn(&h->pdev->dev,
1860 "%s: Unrecognized server response: 0x%02x\n",
a09c1441
ST
1861 "HP SSD Smart Path",
1862 c2->error_data.serv_response);
1863 retry = 1;
c349775e
ST
1864 break;
1865 }
a09c1441
ST
1866
1867 return retry; /* retry on raid path? */
c349775e
ST
1868}
1869
1870static void process_ioaccel2_completion(struct ctlr_info *h,
1871 struct CommandList *c, struct scsi_cmnd *cmd,
1872 struct hpsa_scsi_dev_t *dev)
1873{
1874 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1875
1876 /* check for good status */
1877 if (likely(c2->error_data.serv_response == 0 &&
1878 c2->error_data.status == 0)) {
1879 cmd_free(h, c);
1880 cmd->scsi_done(cmd);
1881 return;
1882 }
1883
1884 /* Any RAID offload error results in retry which will use
1885 * the normal I/O path so the controller can handle whatever's
1886 * wrong.
1887 */
1888 if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1889 c2->error_data.serv_response ==
1890 IOACCEL2_SERV_RESPONSE_FAILURE) {
080ef1cc
DB
1891 if (c2->error_data.status ==
1892 IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
1893 dev->offload_enabled = 0;
1894 goto retry_cmd;
a09c1441 1895 }
080ef1cc
DB
1896
1897 if (handle_ioaccel_mode2_error(h, c, cmd, c2))
1898 goto retry_cmd;
1899
c349775e
ST
1900 cmd_free(h, c);
1901 cmd->scsi_done(cmd);
080ef1cc
DB
1902 return;
1903
1904retry_cmd:
1905 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
1906 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
c349775e
ST
1907}
1908
9437ac43
SC
1909/* Returns 0 on success, < 0 otherwise. */
1910static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
1911 struct CommandList *cp)
1912{
1913 u8 tmf_status = cp->err_info->ScsiStatus;
1914
1915 switch (tmf_status) {
1916 case CISS_TMF_COMPLETE:
1917 /*
1918 * CISS_TMF_COMPLETE never happens, instead,
1919 * ei->CommandStatus == 0 for this case.
1920 */
1921 case CISS_TMF_SUCCESS:
1922 return 0;
1923 case CISS_TMF_INVALID_FRAME:
1924 case CISS_TMF_NOT_SUPPORTED:
1925 case CISS_TMF_FAILED:
1926 case CISS_TMF_WRONG_LUN:
1927 case CISS_TMF_OVERLAPPED_TAG:
1928 break;
1929 default:
1930 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
1931 tmf_status);
1932 break;
1933 }
1934 return -tmf_status;
1935}
1936
1fb011fb 1937static void complete_scsi_command(struct CommandList *cp)
edd16368
SC
1938{
1939 struct scsi_cmnd *cmd;
1940 struct ctlr_info *h;
1941 struct ErrorInfo *ei;
283b4a9b 1942 struct hpsa_scsi_dev_t *dev;
edd16368 1943
9437ac43
SC
1944 u8 sense_key;
1945 u8 asc; /* additional sense code */
1946 u8 ascq; /* additional sense code qualifier */
db111e18 1947 unsigned long sense_data_size;
edd16368
SC
1948
1949 ei = cp->err_info;
7fa3030c 1950 cmd = cp->scsi_cmd;
edd16368 1951 h = cp->h;
283b4a9b 1952 dev = cmd->device->hostdata;
edd16368
SC
1953
1954 scsi_dma_unmap(cmd); /* undo the DMA mappings */
e1f7de0c 1955 if ((cp->cmd_type == CMD_SCSI) &&
2b08b3e9 1956 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
33a2ffce 1957 hpsa_unmap_sg_chain_block(h, cp);
edd16368
SC
1958
1959 cmd->result = (DID_OK << 16); /* host byte */
1960 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
c349775e 1961
03383736
DB
1962 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
1963 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
1964
25163bd5
WS
1965 /*
1966 * We check for lockup status here as it may be set for
1967 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
1968 * fail_all_oustanding_cmds()
1969 */
1970 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
1971 /* DID_NO_CONNECT will prevent a retry */
1972 cmd->result = DID_NO_CONNECT << 16;
1973 cmd_free(h, cp);
1974 cmd->scsi_done(cmd);
1975 return;
1976 }
1977
c349775e
ST
1978 if (cp->cmd_type == CMD_IOACCEL2)
1979 return process_ioaccel2_completion(h, cp, cmd, dev);
1980
6aa4c361
RE
1981 scsi_set_resid(cmd, ei->ResidualCnt);
1982 if (ei->CommandStatus == 0) {
03383736
DB
1983 if (cp->cmd_type == CMD_IOACCEL1)
1984 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
6aa4c361
RE
1985 cmd_free(h, cp);
1986 cmd->scsi_done(cmd);
1987 return;
1988 }
1989
e1f7de0c
MG
1990 /* For I/O accelerator commands, copy over some fields to the normal
1991 * CISS header used below for error handling.
1992 */
1993 if (cp->cmd_type == CMD_IOACCEL1) {
1994 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2b08b3e9
DB
1995 cp->Header.SGList = scsi_sg_count(cmd);
1996 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
1997 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
1998 IOACCEL1_IOFLAGS_CDBLEN_MASK;
50a0decf 1999 cp->Header.tag = c->tag;
e1f7de0c
MG
2000 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2001 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
283b4a9b
SC
2002
2003 /* Any RAID offload error results in retry which will use
2004 * the normal I/O path so the controller can handle whatever's
2005 * wrong.
2006 */
2007 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
2008 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2009 dev->offload_enabled = 0;
080ef1cc
DB
2010 INIT_WORK(&cp->work, hpsa_command_resubmit_worker);
2011 queue_work_on(raw_smp_processor_id(),
2012 h->resubmit_wq, &cp->work);
283b4a9b
SC
2013 return;
2014 }
e1f7de0c
MG
2015 }
2016
edd16368
SC
2017 /* an error has occurred */
2018 switch (ei->CommandStatus) {
2019
2020 case CMD_TARGET_STATUS:
9437ac43
SC
2021 cmd->result |= ei->ScsiStatus;
2022 /* copy the sense data */
2023 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2024 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2025 else
2026 sense_data_size = sizeof(ei->SenseInfo);
2027 if (ei->SenseLen < sense_data_size)
2028 sense_data_size = ei->SenseLen;
2029 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2030 if (ei->ScsiStatus)
2031 decode_sense_data(ei->SenseInfo, sense_data_size,
2032 &sense_key, &asc, &ascq);
edd16368 2033 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1d3b3609 2034 if (sense_key == ABORTED_COMMAND) {
2e311fba 2035 cmd->result |= DID_SOFT_ERROR << 16;
1d3b3609
MG
2036 break;
2037 }
edd16368
SC
2038 break;
2039 }
edd16368
SC
2040 /* Problem was not a check condition
2041 * Pass it up to the upper layers...
2042 */
2043 if (ei->ScsiStatus) {
2044 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2045 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2046 "Returning result: 0x%x\n",
2047 cp, ei->ScsiStatus,
2048 sense_key, asc, ascq,
2049 cmd->result);
2050 } else { /* scsi status is zero??? How??? */
2051 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2052 "Returning no connection.\n", cp),
2053
2054 /* Ordinarily, this case should never happen,
2055 * but there is a bug in some released firmware
2056 * revisions that allows it to happen if, for
2057 * example, a 4100 backplane loses power and
2058 * the tape drive is in it. We assume that
2059 * it's a fatal error of some kind because we
2060 * can't show that it wasn't. We will make it
2061 * look like selection timeout since that is
2062 * the most common reason for this to occur,
2063 * and it's severe enough.
2064 */
2065
2066 cmd->result = DID_NO_CONNECT << 16;
2067 }
2068 break;
2069
2070 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2071 break;
2072 case CMD_DATA_OVERRUN:
f42e81e1
SC
2073 dev_warn(&h->pdev->dev,
2074 "CDB %16phN data overrun\n", cp->Request.CDB);
edd16368
SC
2075 break;
2076 case CMD_INVALID: {
2077 /* print_bytes(cp, sizeof(*cp), 1, 0);
2078 print_cmd(cp); */
2079 /* We get CMD_INVALID if you address a non-existent device
2080 * instead of a selection timeout (no response). You will
2081 * see this if you yank out a drive, then try to access it.
2082 * This is kind of a shame because it means that any other
2083 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2084 * missing target. */
2085 cmd->result = DID_NO_CONNECT << 16;
2086 }
2087 break;
2088 case CMD_PROTOCOL_ERR:
256d0eaa 2089 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2090 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2091 cp->Request.CDB);
edd16368
SC
2092 break;
2093 case CMD_HARDWARE_ERR:
2094 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2095 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2096 cp->Request.CDB);
edd16368
SC
2097 break;
2098 case CMD_CONNECTION_LOST:
2099 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2100 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2101 cp->Request.CDB);
edd16368
SC
2102 break;
2103 case CMD_ABORTED:
2104 cmd->result = DID_ABORT << 16;
f42e81e1
SC
2105 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2106 cp->Request.CDB, ei->ScsiStatus);
edd16368
SC
2107 break;
2108 case CMD_ABORT_FAILED:
2109 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2110 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2111 cp->Request.CDB);
edd16368
SC
2112 break;
2113 case CMD_UNSOLICITED_ABORT:
f6e76055 2114 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
f42e81e1
SC
2115 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2116 cp->Request.CDB);
edd16368
SC
2117 break;
2118 case CMD_TIMEOUT:
2119 cmd->result = DID_TIME_OUT << 16;
f42e81e1
SC
2120 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2121 cp->Request.CDB);
edd16368 2122 break;
1d5e2ed0
SC
2123 case CMD_UNABORTABLE:
2124 cmd->result = DID_ERROR << 16;
2125 dev_warn(&h->pdev->dev, "Command unabortable\n");
2126 break;
9437ac43
SC
2127 case CMD_TMF_STATUS:
2128 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2129 cmd->result = DID_ERROR << 16;
2130 break;
283b4a9b
SC
2131 case CMD_IOACCEL_DISABLED:
2132 /* This only handles the direct pass-through case since RAID
2133 * offload is handled above. Just attempt a retry.
2134 */
2135 cmd->result = DID_SOFT_ERROR << 16;
2136 dev_warn(&h->pdev->dev,
2137 "cp %p had HP SSD Smart Path error\n", cp);
2138 break;
edd16368
SC
2139 default:
2140 cmd->result = DID_ERROR << 16;
2141 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2142 cp, ei->CommandStatus);
2143 }
edd16368 2144 cmd_free(h, cp);
2cc5bfaf 2145 cmd->scsi_done(cmd);
edd16368
SC
2146}
2147
edd16368
SC
2148static void hpsa_pci_unmap(struct pci_dev *pdev,
2149 struct CommandList *c, int sg_used, int data_direction)
2150{
2151 int i;
edd16368 2152
50a0decf
SC
2153 for (i = 0; i < sg_used; i++)
2154 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2155 le32_to_cpu(c->SG[i].Len),
2156 data_direction);
edd16368
SC
2157}
2158
a2dac136 2159static int hpsa_map_one(struct pci_dev *pdev,
edd16368
SC
2160 struct CommandList *cp,
2161 unsigned char *buf,
2162 size_t buflen,
2163 int data_direction)
2164{
01a02ffc 2165 u64 addr64;
edd16368
SC
2166
2167 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2168 cp->Header.SGList = 0;
50a0decf 2169 cp->Header.SGTotal = cpu_to_le16(0);
a2dac136 2170 return 0;
edd16368
SC
2171 }
2172
50a0decf 2173 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
eceaae18 2174 if (dma_mapping_error(&pdev->dev, addr64)) {
a2dac136 2175 /* Prevent subsequent unmap of something never mapped */
eceaae18 2176 cp->Header.SGList = 0;
50a0decf 2177 cp->Header.SGTotal = cpu_to_le16(0);
a2dac136 2178 return -1;
eceaae18 2179 }
50a0decf
SC
2180 cp->SG[0].Addr = cpu_to_le64(addr64);
2181 cp->SG[0].Len = cpu_to_le32(buflen);
2182 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2183 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2184 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
a2dac136 2185 return 0;
edd16368
SC
2186}
2187
25163bd5
WS
2188#define NO_TIMEOUT ((unsigned long) -1)
2189#define DEFAULT_TIMEOUT 30000 /* milliseconds */
2190static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2191 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
edd16368
SC
2192{
2193 DECLARE_COMPLETION_ONSTACK(wait);
2194
2195 c->waiting = &wait;
25163bd5
WS
2196 __enqueue_cmd_and_start_io(h, c, reply_queue);
2197 if (timeout_msecs == NO_TIMEOUT) {
2198 /* TODO: get rid of this no-timeout thing */
2199 wait_for_completion_io(&wait);
2200 return IO_OK;
2201 }
2202 if (!wait_for_completion_io_timeout(&wait,
2203 msecs_to_jiffies(timeout_msecs))) {
2204 dev_warn(&h->pdev->dev, "Command timed out.\n");
2205 return -ETIMEDOUT;
2206 }
2207 return IO_OK;
2208}
2209
2210static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2211 int reply_queue, unsigned long timeout_msecs)
2212{
2213 if (unlikely(lockup_detected(h))) {
2214 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2215 return IO_OK;
2216 }
2217 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
edd16368
SC
2218}
2219
094963da
SC
2220static u32 lockup_detected(struct ctlr_info *h)
2221{
2222 int cpu;
2223 u32 rc, *lockup_detected;
2224
2225 cpu = get_cpu();
2226 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2227 rc = *lockup_detected;
2228 put_cpu();
2229 return rc;
2230}
2231
9c2fc160 2232#define MAX_DRIVER_CMD_RETRIES 25
25163bd5
WS
2233static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2234 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
edd16368 2235{
9c2fc160 2236 int backoff_time = 10, retry_count = 0;
25163bd5 2237 int rc;
edd16368
SC
2238
2239 do {
7630abd0 2240 memset(c->err_info, 0, sizeof(*c->err_info));
25163bd5
WS
2241 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2242 timeout_msecs);
2243 if (rc)
2244 break;
edd16368 2245 retry_count++;
9c2fc160
SC
2246 if (retry_count > 3) {
2247 msleep(backoff_time);
2248 if (backoff_time < 1000)
2249 backoff_time *= 2;
2250 }
852af20a 2251 } while ((check_for_unit_attention(h, c) ||
9c2fc160
SC
2252 check_for_busy(h, c)) &&
2253 retry_count <= MAX_DRIVER_CMD_RETRIES);
edd16368 2254 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
25163bd5
WS
2255 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2256 rc = -EIO;
2257 return rc;
edd16368
SC
2258}
2259
d1e8beac
SC
2260static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2261 struct CommandList *c)
edd16368 2262{
d1e8beac
SC
2263 const u8 *cdb = c->Request.CDB;
2264 const u8 *lun = c->Header.LUN.LunAddrBytes;
2265
2266 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2267 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2268 txt, lun[0], lun[1], lun[2], lun[3],
2269 lun[4], lun[5], lun[6], lun[7],
2270 cdb[0], cdb[1], cdb[2], cdb[3],
2271 cdb[4], cdb[5], cdb[6], cdb[7],
2272 cdb[8], cdb[9], cdb[10], cdb[11],
2273 cdb[12], cdb[13], cdb[14], cdb[15]);
2274}
2275
2276static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2277 struct CommandList *cp)
2278{
2279 const struct ErrorInfo *ei = cp->err_info;
edd16368 2280 struct device *d = &cp->h->pdev->dev;
9437ac43
SC
2281 u8 sense_key, asc, ascq;
2282 int sense_len;
edd16368 2283
edd16368
SC
2284 switch (ei->CommandStatus) {
2285 case CMD_TARGET_STATUS:
9437ac43
SC
2286 if (ei->SenseLen > sizeof(ei->SenseInfo))
2287 sense_len = sizeof(ei->SenseInfo);
2288 else
2289 sense_len = ei->SenseLen;
2290 decode_sense_data(ei->SenseInfo, sense_len,
2291 &sense_key, &asc, &ascq);
d1e8beac
SC
2292 hpsa_print_cmd(h, "SCSI status", cp);
2293 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
9437ac43
SC
2294 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2295 sense_key, asc, ascq);
d1e8beac 2296 else
9437ac43 2297 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
edd16368
SC
2298 if (ei->ScsiStatus == 0)
2299 dev_warn(d, "SCSI status is abnormally zero. "
2300 "(probably indicates selection timeout "
2301 "reported incorrectly due to a known "
2302 "firmware bug, circa July, 2001.)\n");
2303 break;
2304 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
edd16368
SC
2305 break;
2306 case CMD_DATA_OVERRUN:
d1e8beac 2307 hpsa_print_cmd(h, "overrun condition", cp);
edd16368
SC
2308 break;
2309 case CMD_INVALID: {
2310 /* controller unfortunately reports SCSI passthru's
2311 * to non-existent targets as invalid commands.
2312 */
d1e8beac
SC
2313 hpsa_print_cmd(h, "invalid command", cp);
2314 dev_warn(d, "probably means device no longer present\n");
edd16368
SC
2315 }
2316 break;
2317 case CMD_PROTOCOL_ERR:
d1e8beac 2318 hpsa_print_cmd(h, "protocol error", cp);
edd16368
SC
2319 break;
2320 case CMD_HARDWARE_ERR:
d1e8beac 2321 hpsa_print_cmd(h, "hardware error", cp);
edd16368
SC
2322 break;
2323 case CMD_CONNECTION_LOST:
d1e8beac 2324 hpsa_print_cmd(h, "connection lost", cp);
edd16368
SC
2325 break;
2326 case CMD_ABORTED:
d1e8beac 2327 hpsa_print_cmd(h, "aborted", cp);
edd16368
SC
2328 break;
2329 case CMD_ABORT_FAILED:
d1e8beac 2330 hpsa_print_cmd(h, "abort failed", cp);
edd16368
SC
2331 break;
2332 case CMD_UNSOLICITED_ABORT:
d1e8beac 2333 hpsa_print_cmd(h, "unsolicited abort", cp);
edd16368
SC
2334 break;
2335 case CMD_TIMEOUT:
d1e8beac 2336 hpsa_print_cmd(h, "timed out", cp);
edd16368 2337 break;
1d5e2ed0 2338 case CMD_UNABORTABLE:
d1e8beac 2339 hpsa_print_cmd(h, "unabortable", cp);
1d5e2ed0 2340 break;
25163bd5
WS
2341 case CMD_CTLR_LOCKUP:
2342 hpsa_print_cmd(h, "controller lockup detected", cp);
2343 break;
edd16368 2344 default:
d1e8beac
SC
2345 hpsa_print_cmd(h, "unknown status", cp);
2346 dev_warn(d, "Unknown command status %x\n",
edd16368
SC
2347 ei->CommandStatus);
2348 }
2349}
2350
2351static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
b7bb24eb 2352 u16 page, unsigned char *buf,
edd16368
SC
2353 unsigned char bufsize)
2354{
2355 int rc = IO_OK;
2356 struct CommandList *c;
2357 struct ErrorInfo *ei;
2358
45fcb86e 2359 c = cmd_alloc(h);
edd16368 2360
574f05d3 2361 if (c == NULL) {
45fcb86e 2362 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
ecd9aad4 2363 return -ENOMEM;
edd16368
SC
2364 }
2365
a2dac136
SC
2366 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2367 page, scsi3addr, TYPE_CMD)) {
2368 rc = -1;
2369 goto out;
2370 }
25163bd5
WS
2371 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2372 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2373 if (rc)
2374 goto out;
edd16368
SC
2375 ei = c->err_info;
2376 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 2377 hpsa_scsi_interpret_error(h, c);
edd16368
SC
2378 rc = -1;
2379 }
a2dac136 2380out:
45fcb86e 2381 cmd_free(h, c);
edd16368
SC
2382 return rc;
2383}
2384
316b221a
SC
2385static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2386 unsigned char *scsi3addr, unsigned char page,
2387 struct bmic_controller_parameters *buf, size_t bufsize)
2388{
2389 int rc = IO_OK;
2390 struct CommandList *c;
2391 struct ErrorInfo *ei;
2392
45fcb86e 2393 c = cmd_alloc(h);
316b221a 2394 if (c == NULL) { /* trouble... */
45fcb86e 2395 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
316b221a
SC
2396 return -ENOMEM;
2397 }
2398
2399 if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2400 page, scsi3addr, TYPE_CMD)) {
2401 rc = -1;
2402 goto out;
2403 }
25163bd5
WS
2404 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2405 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2406 if (rc)
2407 goto out;
316b221a
SC
2408 ei = c->err_info;
2409 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2410 hpsa_scsi_interpret_error(h, c);
2411 rc = -1;
2412 }
2413out:
45fcb86e 2414 cmd_free(h, c);
316b221a
SC
2415 return rc;
2416 }
2417
bf711ac6 2418static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
25163bd5 2419 u8 reset_type, int reply_queue)
edd16368
SC
2420{
2421 int rc = IO_OK;
2422 struct CommandList *c;
2423 struct ErrorInfo *ei;
2424
45fcb86e 2425 c = cmd_alloc(h);
edd16368
SC
2426
2427 if (c == NULL) { /* trouble... */
45fcb86e 2428 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
e9ea04a6 2429 return -ENOMEM;
edd16368
SC
2430 }
2431
a2dac136 2432 /* fill_cmd can't fail here, no data buffer to map. */
bf711ac6
ST
2433 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2434 scsi3addr, TYPE_MSG);
2435 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
25163bd5
WS
2436 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2437 if (rc) {
2438 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2439 goto out;
2440 }
edd16368
SC
2441 /* no unmap needed here because no data xfer. */
2442
2443 ei = c->err_info;
2444 if (ei->CommandStatus != 0) {
d1e8beac 2445 hpsa_scsi_interpret_error(h, c);
edd16368
SC
2446 rc = -1;
2447 }
25163bd5 2448out:
45fcb86e 2449 cmd_free(h, c);
edd16368
SC
2450 return rc;
2451}
2452
2453static void hpsa_get_raid_level(struct ctlr_info *h,
2454 unsigned char *scsi3addr, unsigned char *raid_level)
2455{
2456 int rc;
2457 unsigned char *buf;
2458
2459 *raid_level = RAID_UNKNOWN;
2460 buf = kzalloc(64, GFP_KERNEL);
2461 if (!buf)
2462 return;
b7bb24eb 2463 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
edd16368
SC
2464 if (rc == 0)
2465 *raid_level = buf[8];
2466 if (*raid_level > RAID_UNKNOWN)
2467 *raid_level = RAID_UNKNOWN;
2468 kfree(buf);
2469 return;
2470}
2471
283b4a9b
SC
2472#define HPSA_MAP_DEBUG
2473#ifdef HPSA_MAP_DEBUG
2474static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2475 struct raid_map_data *map_buff)
2476{
2477 struct raid_map_disk_data *dd = &map_buff->data[0];
2478 int map, row, col;
2479 u16 map_cnt, row_cnt, disks_per_row;
2480
2481 if (rc != 0)
2482 return;
2483
2ba8bfc8
SC
2484 /* Show details only if debugging has been activated. */
2485 if (h->raid_offload_debug < 2)
2486 return;
2487
283b4a9b
SC
2488 dev_info(&h->pdev->dev, "structure_size = %u\n",
2489 le32_to_cpu(map_buff->structure_size));
2490 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2491 le32_to_cpu(map_buff->volume_blk_size));
2492 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2493 le64_to_cpu(map_buff->volume_blk_cnt));
2494 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2495 map_buff->phys_blk_shift);
2496 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2497 map_buff->parity_rotation_shift);
2498 dev_info(&h->pdev->dev, "strip_size = %u\n",
2499 le16_to_cpu(map_buff->strip_size));
2500 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2501 le64_to_cpu(map_buff->disk_starting_blk));
2502 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2503 le64_to_cpu(map_buff->disk_blk_cnt));
2504 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2505 le16_to_cpu(map_buff->data_disks_per_row));
2506 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2507 le16_to_cpu(map_buff->metadata_disks_per_row));
2508 dev_info(&h->pdev->dev, "row_cnt = %u\n",
2509 le16_to_cpu(map_buff->row_cnt));
2510 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2511 le16_to_cpu(map_buff->layout_map_count));
2b08b3e9 2512 dev_info(&h->pdev->dev, "flags = 0x%x\n",
dd0e19f3 2513 le16_to_cpu(map_buff->flags));
2b08b3e9
DB
2514 dev_info(&h->pdev->dev, "encrypytion = %s\n",
2515 le16_to_cpu(map_buff->flags) &
2516 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
dd0e19f3
ST
2517 dev_info(&h->pdev->dev, "dekindex = %u\n",
2518 le16_to_cpu(map_buff->dekindex));
283b4a9b
SC
2519 map_cnt = le16_to_cpu(map_buff->layout_map_count);
2520 for (map = 0; map < map_cnt; map++) {
2521 dev_info(&h->pdev->dev, "Map%u:\n", map);
2522 row_cnt = le16_to_cpu(map_buff->row_cnt);
2523 for (row = 0; row < row_cnt; row++) {
2524 dev_info(&h->pdev->dev, " Row%u:\n", row);
2525 disks_per_row =
2526 le16_to_cpu(map_buff->data_disks_per_row);
2527 for (col = 0; col < disks_per_row; col++, dd++)
2528 dev_info(&h->pdev->dev,
2529 " D%02u: h=0x%04x xor=%u,%u\n",
2530 col, dd->ioaccel_handle,
2531 dd->xor_mult[0], dd->xor_mult[1]);
2532 disks_per_row =
2533 le16_to_cpu(map_buff->metadata_disks_per_row);
2534 for (col = 0; col < disks_per_row; col++, dd++)
2535 dev_info(&h->pdev->dev,
2536 " M%02u: h=0x%04x xor=%u,%u\n",
2537 col, dd->ioaccel_handle,
2538 dd->xor_mult[0], dd->xor_mult[1]);
2539 }
2540 }
2541}
2542#else
2543static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2544 __attribute__((unused)) int rc,
2545 __attribute__((unused)) struct raid_map_data *map_buff)
2546{
2547}
2548#endif
2549
2550static int hpsa_get_raid_map(struct ctlr_info *h,
2551 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2552{
2553 int rc = 0;
2554 struct CommandList *c;
2555 struct ErrorInfo *ei;
2556
45fcb86e 2557 c = cmd_alloc(h);
283b4a9b 2558 if (c == NULL) {
45fcb86e 2559 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
283b4a9b
SC
2560 return -ENOMEM;
2561 }
2562 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2563 sizeof(this_device->raid_map), 0,
2564 scsi3addr, TYPE_CMD)) {
2565 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
25163bd5
WS
2566 rc = -ENOMEM;
2567 goto out;
283b4a9b 2568 }
25163bd5
WS
2569 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2570 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2571 if (rc)
2572 goto out;
283b4a9b
SC
2573 ei = c->err_info;
2574 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 2575 hpsa_scsi_interpret_error(h, c);
25163bd5
WS
2576 rc = -1;
2577 goto out;
283b4a9b 2578 }
45fcb86e 2579 cmd_free(h, c);
283b4a9b
SC
2580
2581 /* @todo in the future, dynamically allocate RAID map memory */
2582 if (le32_to_cpu(this_device->raid_map.structure_size) >
2583 sizeof(this_device->raid_map)) {
2584 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2585 rc = -1;
2586 }
2587 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2588 return rc;
25163bd5
WS
2589out:
2590 cmd_free(h, c);
2591 return rc;
283b4a9b
SC
2592}
2593
03383736
DB
2594static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
2595 unsigned char scsi3addr[], u16 bmic_device_index,
2596 struct bmic_identify_physical_device *buf, size_t bufsize)
2597{
2598 int rc = IO_OK;
2599 struct CommandList *c;
2600 struct ErrorInfo *ei;
2601
2602 c = cmd_alloc(h);
2603 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
2604 0, RAID_CTLR_LUNID, TYPE_CMD);
2605 if (rc)
2606 goto out;
2607
2608 c->Request.CDB[2] = bmic_device_index & 0xff;
2609 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
2610
25163bd5
WS
2611 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
2612 NO_TIMEOUT);
03383736
DB
2613 ei = c->err_info;
2614 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2615 hpsa_scsi_interpret_error(h, c);
2616 rc = -1;
2617 }
2618out:
2619 cmd_free(h, c);
2620 return rc;
2621}
2622
1b70150a
SC
2623static int hpsa_vpd_page_supported(struct ctlr_info *h,
2624 unsigned char scsi3addr[], u8 page)
2625{
2626 int rc;
2627 int i;
2628 int pages;
2629 unsigned char *buf, bufsize;
2630
2631 buf = kzalloc(256, GFP_KERNEL);
2632 if (!buf)
2633 return 0;
2634
2635 /* Get the size of the page list first */
2636 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2637 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2638 buf, HPSA_VPD_HEADER_SZ);
2639 if (rc != 0)
2640 goto exit_unsupported;
2641 pages = buf[3];
2642 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2643 bufsize = pages + HPSA_VPD_HEADER_SZ;
2644 else
2645 bufsize = 255;
2646
2647 /* Get the whole VPD page list */
2648 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2649 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2650 buf, bufsize);
2651 if (rc != 0)
2652 goto exit_unsupported;
2653
2654 pages = buf[3];
2655 for (i = 1; i <= pages; i++)
2656 if (buf[3 + i] == page)
2657 goto exit_supported;
2658exit_unsupported:
2659 kfree(buf);
2660 return 0;
2661exit_supported:
2662 kfree(buf);
2663 return 1;
2664}
2665
283b4a9b
SC
2666static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2667 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2668{
2669 int rc;
2670 unsigned char *buf;
2671 u8 ioaccel_status;
2672
2673 this_device->offload_config = 0;
2674 this_device->offload_enabled = 0;
41ce4c35 2675 this_device->offload_to_be_enabled = 0;
283b4a9b
SC
2676
2677 buf = kzalloc(64, GFP_KERNEL);
2678 if (!buf)
2679 return;
1b70150a
SC
2680 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2681 goto out;
283b4a9b 2682 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
b7bb24eb 2683 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
283b4a9b
SC
2684 if (rc != 0)
2685 goto out;
2686
2687#define IOACCEL_STATUS_BYTE 4
2688#define OFFLOAD_CONFIGURED_BIT 0x01
2689#define OFFLOAD_ENABLED_BIT 0x02
2690 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2691 this_device->offload_config =
2692 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2693 if (this_device->offload_config) {
2694 this_device->offload_enabled =
2695 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2696 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2697 this_device->offload_enabled = 0;
2698 }
41ce4c35 2699 this_device->offload_to_be_enabled = this_device->offload_enabled;
283b4a9b
SC
2700out:
2701 kfree(buf);
2702 return;
2703}
2704
edd16368
SC
2705/* Get the device id from inquiry page 0x83 */
2706static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2707 unsigned char *device_id, int buflen)
2708{
2709 int rc;
2710 unsigned char *buf;
2711
2712 if (buflen > 16)
2713 buflen = 16;
2714 buf = kzalloc(64, GFP_KERNEL);
2715 if (!buf)
a84d794d 2716 return -ENOMEM;
b7bb24eb 2717 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
edd16368
SC
2718 if (rc == 0)
2719 memcpy(device_id, &buf[8], buflen);
2720 kfree(buf);
2721 return rc != 0;
2722}
2723
2724static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
03383736 2725 void *buf, int bufsize,
edd16368
SC
2726 int extended_response)
2727{
2728 int rc = IO_OK;
2729 struct CommandList *c;
2730 unsigned char scsi3addr[8];
2731 struct ErrorInfo *ei;
2732
45fcb86e 2733 c = cmd_alloc(h);
edd16368 2734 if (c == NULL) { /* trouble... */
45fcb86e 2735 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
edd16368
SC
2736 return -1;
2737 }
e89c0ae7
SC
2738 /* address the controller */
2739 memset(scsi3addr, 0, sizeof(scsi3addr));
a2dac136
SC
2740 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2741 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2742 rc = -1;
2743 goto out;
2744 }
edd16368
SC
2745 if (extended_response)
2746 c->Request.CDB[1] = extended_response;
25163bd5
WS
2747 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2748 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2749 if (rc)
2750 goto out;
edd16368
SC
2751 ei = c->err_info;
2752 if (ei->CommandStatus != 0 &&
2753 ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 2754 hpsa_scsi_interpret_error(h, c);
edd16368 2755 rc = -1;
283b4a9b 2756 } else {
03383736
DB
2757 struct ReportLUNdata *rld = buf;
2758
2759 if (rld->extended_response_flag != extended_response) {
283b4a9b
SC
2760 dev_err(&h->pdev->dev,
2761 "report luns requested format %u, got %u\n",
2762 extended_response,
03383736 2763 rld->extended_response_flag);
283b4a9b
SC
2764 rc = -1;
2765 }
edd16368 2766 }
a2dac136 2767out:
45fcb86e 2768 cmd_free(h, c);
edd16368
SC
2769 return rc;
2770}
2771
2772static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
03383736 2773 struct ReportExtendedLUNdata *buf, int bufsize)
edd16368 2774{
03383736
DB
2775 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
2776 HPSA_REPORT_PHYS_EXTENDED);
edd16368
SC
2777}
2778
2779static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2780 struct ReportLUNdata *buf, int bufsize)
2781{
2782 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2783}
2784
2785static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2786 int bus, int target, int lun)
2787{
2788 device->bus = bus;
2789 device->target = target;
2790 device->lun = lun;
2791}
2792
9846590e
SC
2793/* Use VPD inquiry to get details of volume status */
2794static int hpsa_get_volume_status(struct ctlr_info *h,
2795 unsigned char scsi3addr[])
2796{
2797 int rc;
2798 int status;
2799 int size;
2800 unsigned char *buf;
2801
2802 buf = kzalloc(64, GFP_KERNEL);
2803 if (!buf)
2804 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2805
2806 /* Does controller have VPD for logical volume status? */
24a4b078 2807 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
9846590e 2808 goto exit_failed;
9846590e
SC
2809
2810 /* Get the size of the VPD return buffer */
2811 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2812 buf, HPSA_VPD_HEADER_SZ);
24a4b078 2813 if (rc != 0)
9846590e 2814 goto exit_failed;
9846590e
SC
2815 size = buf[3];
2816
2817 /* Now get the whole VPD buffer */
2818 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2819 buf, size + HPSA_VPD_HEADER_SZ);
24a4b078 2820 if (rc != 0)
9846590e 2821 goto exit_failed;
9846590e
SC
2822 status = buf[4]; /* status byte */
2823
2824 kfree(buf);
2825 return status;
2826exit_failed:
2827 kfree(buf);
2828 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2829}
2830
2831/* Determine offline status of a volume.
2832 * Return either:
2833 * 0 (not offline)
67955ba3 2834 * 0xff (offline for unknown reasons)
9846590e
SC
2835 * # (integer code indicating one of several NOT READY states
2836 * describing why a volume is to be kept offline)
2837 */
67955ba3 2838static int hpsa_volume_offline(struct ctlr_info *h,
9846590e
SC
2839 unsigned char scsi3addr[])
2840{
2841 struct CommandList *c;
9437ac43
SC
2842 unsigned char *sense;
2843 u8 sense_key, asc, ascq;
2844 int sense_len;
25163bd5 2845 int rc, ldstat = 0;
9846590e
SC
2846 u16 cmd_status;
2847 u8 scsi_status;
2848#define ASC_LUN_NOT_READY 0x04
2849#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2850#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2851
2852 c = cmd_alloc(h);
2853 if (!c)
2854 return 0;
2855 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
25163bd5
WS
2856 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
2857 if (rc) {
2858 cmd_free(h, c);
2859 return 0;
2860 }
9846590e 2861 sense = c->err_info->SenseInfo;
9437ac43
SC
2862 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
2863 sense_len = sizeof(c->err_info->SenseInfo);
2864 else
2865 sense_len = c->err_info->SenseLen;
2866 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
9846590e
SC
2867 cmd_status = c->err_info->CommandStatus;
2868 scsi_status = c->err_info->ScsiStatus;
2869 cmd_free(h, c);
2870 /* Is the volume 'not ready'? */
2871 if (cmd_status != CMD_TARGET_STATUS ||
2872 scsi_status != SAM_STAT_CHECK_CONDITION ||
2873 sense_key != NOT_READY ||
2874 asc != ASC_LUN_NOT_READY) {
2875 return 0;
2876 }
2877
2878 /* Determine the reason for not ready state */
2879 ldstat = hpsa_get_volume_status(h, scsi3addr);
2880
2881 /* Keep volume offline in certain cases: */
2882 switch (ldstat) {
2883 case HPSA_LV_UNDERGOING_ERASE:
2884 case HPSA_LV_UNDERGOING_RPI:
2885 case HPSA_LV_PENDING_RPI:
2886 case HPSA_LV_ENCRYPTED_NO_KEY:
2887 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2888 case HPSA_LV_UNDERGOING_ENCRYPTION:
2889 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2890 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2891 return ldstat;
2892 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2893 /* If VPD status page isn't available,
2894 * use ASC/ASCQ to determine state
2895 */
2896 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2897 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2898 return ldstat;
2899 break;
2900 default:
2901 break;
2902 }
2903 return 0;
2904}
2905
9b5c48c2
SC
2906/*
2907 * Find out if a logical device supports aborts by simply trying one.
2908 * Smart Array may claim not to support aborts on logical drives, but
2909 * if a MSA2000 * is connected, the drives on that will be presented
2910 * by the Smart Array as logical drives, and aborts may be sent to
2911 * those devices successfully. So the simplest way to find out is
2912 * to simply try an abort and see how the device responds.
2913 */
2914static int hpsa_device_supports_aborts(struct ctlr_info *h,
2915 unsigned char *scsi3addr)
2916{
2917 struct CommandList *c;
2918 struct ErrorInfo *ei;
2919 int rc = 0;
2920
2921 u64 tag = (u64) -1; /* bogus tag */
2922
2923 /* Assume that physical devices support aborts */
2924 if (!is_logical_dev_addr_mode(scsi3addr))
2925 return 1;
2926
2927 c = cmd_alloc(h);
2928 if (!c)
2929 return -ENOMEM;
2930 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
2931 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
2932 /* no unmap needed here because no data xfer. */
2933 ei = c->err_info;
2934 switch (ei->CommandStatus) {
2935 case CMD_INVALID:
2936 rc = 0;
2937 break;
2938 case CMD_UNABORTABLE:
2939 case CMD_ABORT_FAILED:
2940 rc = 1;
2941 break;
9437ac43
SC
2942 case CMD_TMF_STATUS:
2943 rc = hpsa_evaluate_tmf_status(h, c);
2944 break;
9b5c48c2
SC
2945 default:
2946 rc = 0;
2947 break;
2948 }
2949 cmd_free(h, c);
2950 return rc;
2951}
2952
edd16368 2953static int hpsa_update_device_info(struct ctlr_info *h,
0b0e1d6c
SC
2954 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2955 unsigned char *is_OBDR_device)
edd16368 2956{
0b0e1d6c
SC
2957
2958#define OBDR_SIG_OFFSET 43
2959#define OBDR_TAPE_SIG "$DR-10"
2960#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2961#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2962
ea6d3bc3 2963 unsigned char *inq_buff;
0b0e1d6c 2964 unsigned char *obdr_sig;
edd16368 2965
ea6d3bc3 2966 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
edd16368
SC
2967 if (!inq_buff)
2968 goto bail_out;
2969
edd16368
SC
2970 /* Do an inquiry to the device to see what it is. */
2971 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2972 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2973 /* Inquiry failed (msg printed already) */
2974 dev_err(&h->pdev->dev,
2975 "hpsa_update_device_info: inquiry failed\n");
2976 goto bail_out;
2977 }
2978
edd16368
SC
2979 this_device->devtype = (inq_buff[0] & 0x1f);
2980 memcpy(this_device->scsi3addr, scsi3addr, 8);
2981 memcpy(this_device->vendor, &inq_buff[8],
2982 sizeof(this_device->vendor));
2983 memcpy(this_device->model, &inq_buff[16],
2984 sizeof(this_device->model));
edd16368
SC
2985 memset(this_device->device_id, 0,
2986 sizeof(this_device->device_id));
2987 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2988 sizeof(this_device->device_id));
2989
2990 if (this_device->devtype == TYPE_DISK &&
283b4a9b 2991 is_logical_dev_addr_mode(scsi3addr)) {
67955ba3
SC
2992 int volume_offline;
2993
edd16368 2994 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
283b4a9b
SC
2995 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2996 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
67955ba3
SC
2997 volume_offline = hpsa_volume_offline(h, scsi3addr);
2998 if (volume_offline < 0 || volume_offline > 0xff)
2999 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3000 this_device->volume_offline = volume_offline & 0xff;
283b4a9b 3001 } else {
edd16368 3002 this_device->raid_level = RAID_UNKNOWN;
283b4a9b
SC
3003 this_device->offload_config = 0;
3004 this_device->offload_enabled = 0;
41ce4c35 3005 this_device->offload_to_be_enabled = 0;
9846590e 3006 this_device->volume_offline = 0;
03383736 3007 this_device->queue_depth = h->nr_cmds;
283b4a9b 3008 }
edd16368 3009
0b0e1d6c
SC
3010 if (is_OBDR_device) {
3011 /* See if this is a One-Button-Disaster-Recovery device
3012 * by looking for "$DR-10" at offset 43 in inquiry data.
3013 */
3014 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3015 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3016 strncmp(obdr_sig, OBDR_TAPE_SIG,
3017 OBDR_SIG_LEN) == 0);
3018 }
edd16368
SC
3019 kfree(inq_buff);
3020 return 0;
3021
3022bail_out:
3023 kfree(inq_buff);
3024 return 1;
3025}
3026
9b5c48c2
SC
3027static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3028 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3029{
3030 unsigned long flags;
3031 int rc, entry;
3032 /*
3033 * See if this device supports aborts. If we already know
3034 * the device, we already know if it supports aborts, otherwise
3035 * we have to find out if it supports aborts by trying one.
3036 */
3037 spin_lock_irqsave(&h->devlock, flags);
3038 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3039 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3040 entry >= 0 && entry < h->ndevices) {
3041 dev->supports_aborts = h->dev[entry]->supports_aborts;
3042 spin_unlock_irqrestore(&h->devlock, flags);
3043 } else {
3044 spin_unlock_irqrestore(&h->devlock, flags);
3045 dev->supports_aborts =
3046 hpsa_device_supports_aborts(h, scsi3addr);
3047 if (dev->supports_aborts < 0)
3048 dev->supports_aborts = 0;
3049 }
3050}
3051
4f4eb9f1 3052static unsigned char *ext_target_model[] = {
edd16368
SC
3053 "MSA2012",
3054 "MSA2024",
3055 "MSA2312",
3056 "MSA2324",
fda38518 3057 "P2000 G3 SAS",
e06c8e5c 3058 "MSA 2040 SAS",
edd16368
SC
3059 NULL,
3060};
3061
4f4eb9f1 3062static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
edd16368
SC
3063{
3064 int i;
3065
4f4eb9f1
ST
3066 for (i = 0; ext_target_model[i]; i++)
3067 if (strncmp(device->model, ext_target_model[i],
3068 strlen(ext_target_model[i])) == 0)
edd16368
SC
3069 return 1;
3070 return 0;
3071}
3072
3073/* Helper function to assign bus, target, lun mapping of devices.
4f4eb9f1 3074 * Puts non-external target logical volumes on bus 0, external target logical
edd16368
SC
3075 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
3076 * Logical drive target and lun are assigned at this time, but
3077 * physical device lun and target assignment are deferred (assigned
3078 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3079 */
3080static void figure_bus_target_lun(struct ctlr_info *h,
1f310bde 3081 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
edd16368 3082{
1f310bde
SC
3083 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
3084
3085 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3086 /* physical device, target and lun filled in later */
edd16368 3087 if (is_hba_lunid(lunaddrbytes))
1f310bde 3088 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
edd16368 3089 else
1f310bde
SC
3090 /* defer target, lun assignment for physical devices */
3091 hpsa_set_bus_target_lun(device, 2, -1, -1);
3092 return;
3093 }
3094 /* It's a logical device */
4f4eb9f1
ST
3095 if (is_ext_target(h, device)) {
3096 /* external target way, put logicals on bus 1
1f310bde
SC
3097 * and match target/lun numbers box
3098 * reports, other smart array, bus 0, target 0, match lunid
3099 */
3100 hpsa_set_bus_target_lun(device,
3101 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
3102 return;
edd16368 3103 }
1f310bde 3104 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
edd16368
SC
3105}
3106
3107/*
3108 * If there is no lun 0 on a target, linux won't find any devices.
4f4eb9f1 3109 * For the external targets (arrays), we have to manually detect the enclosure
edd16368
SC
3110 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3111 * it for some reason. *tmpdevice is the target we're adding,
3112 * this_device is a pointer into the current element of currentsd[]
3113 * that we're building up in update_scsi_devices(), below.
3114 * lunzerobits is a bitmap that tracks which targets already have a
3115 * lun 0 assigned.
3116 * Returns 1 if an enclosure was added, 0 if not.
3117 */
4f4eb9f1 3118static int add_ext_target_dev(struct ctlr_info *h,
edd16368 3119 struct hpsa_scsi_dev_t *tmpdevice,
01a02ffc 3120 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
4f4eb9f1 3121 unsigned long lunzerobits[], int *n_ext_target_devs)
edd16368
SC
3122{
3123 unsigned char scsi3addr[8];
3124
1f310bde 3125 if (test_bit(tmpdevice->target, lunzerobits))
edd16368
SC
3126 return 0; /* There is already a lun 0 on this target. */
3127
3128 if (!is_logical_dev_addr_mode(lunaddrbytes))
3129 return 0; /* It's the logical targets that may lack lun 0. */
3130
4f4eb9f1
ST
3131 if (!is_ext_target(h, tmpdevice))
3132 return 0; /* Only external target devices have this problem. */
edd16368 3133
1f310bde 3134 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
edd16368
SC
3135 return 0;
3136
c4f8a299 3137 memset(scsi3addr, 0, 8);
1f310bde 3138 scsi3addr[3] = tmpdevice->target;
edd16368
SC
3139 if (is_hba_lunid(scsi3addr))
3140 return 0; /* Don't add the RAID controller here. */
3141
339b2b14
SC
3142 if (is_scsi_rev_5(h))
3143 return 0; /* p1210m doesn't need to do this. */
3144
4f4eb9f1 3145 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
aca4a520
ST
3146 dev_warn(&h->pdev->dev, "Maximum number of external "
3147 "target devices exceeded. Check your hardware "
edd16368
SC
3148 "configuration.");
3149 return 0;
3150 }
3151
0b0e1d6c 3152 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
edd16368 3153 return 0;
4f4eb9f1 3154 (*n_ext_target_devs)++;
1f310bde
SC
3155 hpsa_set_bus_target_lun(this_device,
3156 tmpdevice->bus, tmpdevice->target, 0);
9b5c48c2 3157 hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
1f310bde 3158 set_bit(tmpdevice->target, lunzerobits);
edd16368
SC
3159 return 1;
3160}
3161
54b6e9e9
ST
3162/*
3163 * Get address of physical disk used for an ioaccel2 mode command:
3164 * 1. Extract ioaccel2 handle from the command.
3165 * 2. Find a matching ioaccel2 handle from list of physical disks.
3166 * 3. Return:
3167 * 1 and set scsi3addr to address of matching physical
3168 * 0 if no matching physical disk was found.
3169 */
3170static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3171 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3172{
41ce4c35
SC
3173 struct io_accel2_cmd *c2 =
3174 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3175 unsigned long flags;
54b6e9e9 3176 int i;
54b6e9e9 3177
41ce4c35
SC
3178 spin_lock_irqsave(&h->devlock, flags);
3179 for (i = 0; i < h->ndevices; i++)
3180 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3181 memcpy(scsi3addr, h->dev[i]->scsi3addr,
3182 sizeof(h->dev[i]->scsi3addr));
3183 spin_unlock_irqrestore(&h->devlock, flags);
3184 return 1;
3185 }
3186 spin_unlock_irqrestore(&h->devlock, flags);
3187 return 0;
54b6e9e9 3188}
41ce4c35 3189
edd16368
SC
3190/*
3191 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3192 * logdev. The number of luns in physdev and logdev are returned in
3193 * *nphysicals and *nlogicals, respectively.
3194 * Returns 0 on success, -1 otherwise.
3195 */
3196static int hpsa_gather_lun_info(struct ctlr_info *h,
03383736 3197 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
01a02ffc 3198 struct ReportLUNdata *logdev, u32 *nlogicals)
edd16368 3199{
03383736 3200 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
edd16368
SC
3201 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3202 return -1;
3203 }
03383736 3204 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
edd16368 3205 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
03383736
DB
3206 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3207 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
edd16368
SC
3208 *nphysicals = HPSA_MAX_PHYS_LUN;
3209 }
03383736 3210 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
edd16368
SC
3211 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3212 return -1;
3213 }
6df1e954 3214 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
edd16368
SC
3215 /* Reject Logicals in excess of our max capability. */
3216 if (*nlogicals > HPSA_MAX_LUN) {
3217 dev_warn(&h->pdev->dev,
3218 "maximum logical LUNs (%d) exceeded. "
3219 "%d LUNs ignored.\n", HPSA_MAX_LUN,
3220 *nlogicals - HPSA_MAX_LUN);
3221 *nlogicals = HPSA_MAX_LUN;
3222 }
3223 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3224 dev_warn(&h->pdev->dev,
3225 "maximum logical + physical LUNs (%d) exceeded. "
3226 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3227 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3228 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3229 }
3230 return 0;
3231}
3232
42a91641
DB
3233static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3234 int i, int nphysicals, int nlogicals,
a93aa1fe 3235 struct ReportExtendedLUNdata *physdev_list,
339b2b14
SC
3236 struct ReportLUNdata *logdev_list)
3237{
3238 /* Helper function, figure out where the LUN ID info is coming from
3239 * given index i, lists of physical and logical devices, where in
3240 * the list the raid controller is supposed to appear (first or last)
3241 */
3242
3243 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3244 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3245
3246 if (i == raid_ctlr_position)
3247 return RAID_CTLR_LUNID;
3248
3249 if (i < logicals_start)
d5b5d964
SC
3250 return &physdev_list->LUN[i -
3251 (raid_ctlr_position == 0)].lunid[0];
339b2b14
SC
3252
3253 if (i < last_device)
3254 return &logdev_list->LUN[i - nphysicals -
3255 (raid_ctlr_position == 0)][0];
3256 BUG();
3257 return NULL;
3258}
3259
316b221a
SC
3260static int hpsa_hba_mode_enabled(struct ctlr_info *h)
3261{
3262 int rc;
6e8e8088 3263 int hba_mode_enabled;
316b221a
SC
3264 struct bmic_controller_parameters *ctlr_params;
3265 ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
3266 GFP_KERNEL);
3267
3268 if (!ctlr_params)
96444fbb 3269 return -ENOMEM;
316b221a
SC
3270 rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
3271 sizeof(struct bmic_controller_parameters));
96444fbb 3272 if (rc) {
316b221a 3273 kfree(ctlr_params);
96444fbb 3274 return rc;
316b221a 3275 }
6e8e8088
JH
3276
3277 hba_mode_enabled =
3278 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
3279 kfree(ctlr_params);
3280 return hba_mode_enabled;
316b221a
SC
3281}
3282
03383736
DB
3283/* get physical drive ioaccel handle and queue depth */
3284static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3285 struct hpsa_scsi_dev_t *dev,
3286 u8 *lunaddrbytes,
3287 struct bmic_identify_physical_device *id_phys)
3288{
3289 int rc;
3290 struct ext_report_lun_entry *rle =
3291 (struct ext_report_lun_entry *) lunaddrbytes;
3292
3293 dev->ioaccel_handle = rle->ioaccel_handle;
3294 memset(id_phys, 0, sizeof(*id_phys));
3295 rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3296 GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3297 sizeof(*id_phys));
3298 if (!rc)
3299 /* Reserve space for FW operations */
3300#define DRIVE_CMDS_RESERVED_FOR_FW 2
3301#define DRIVE_QUEUE_DEPTH 7
3302 dev->queue_depth =
3303 le16_to_cpu(id_phys->current_queue_depth_limit) -
3304 DRIVE_CMDS_RESERVED_FOR_FW;
3305 else
3306 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3307 atomic_set(&dev->ioaccel_cmds_out, 0);
3308}
3309
edd16368
SC
3310static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3311{
3312 /* the idea here is we could get notified
3313 * that some devices have changed, so we do a report
3314 * physical luns and report logical luns cmd, and adjust
3315 * our list of devices accordingly.
3316 *
3317 * The scsi3addr's of devices won't change so long as the
3318 * adapter is not reset. That means we can rescan and
3319 * tell which devices we already know about, vs. new
3320 * devices, vs. disappearing devices.
3321 */
a93aa1fe 3322 struct ReportExtendedLUNdata *physdev_list = NULL;
edd16368 3323 struct ReportLUNdata *logdev_list = NULL;
03383736 3324 struct bmic_identify_physical_device *id_phys = NULL;
01a02ffc
SC
3325 u32 nphysicals = 0;
3326 u32 nlogicals = 0;
3327 u32 ndev_allocated = 0;
edd16368
SC
3328 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3329 int ncurrent = 0;
4f4eb9f1 3330 int i, n_ext_target_devs, ndevs_to_allocate;
339b2b14 3331 int raid_ctlr_position;
2bbf5c7f 3332 int rescan_hba_mode;
aca4a520 3333 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
edd16368 3334
cfe5badc 3335 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
92084715
SC
3336 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3337 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
edd16368 3338 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
03383736 3339 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
edd16368 3340
03383736
DB
3341 if (!currentsd || !physdev_list || !logdev_list ||
3342 !tmpdevice || !id_phys) {
edd16368
SC
3343 dev_err(&h->pdev->dev, "out of memory\n");
3344 goto out;
3345 }
3346 memset(lunzerobits, 0, sizeof(lunzerobits));
3347
316b221a 3348 rescan_hba_mode = hpsa_hba_mode_enabled(h);
96444fbb
JH
3349 if (rescan_hba_mode < 0)
3350 goto out;
316b221a
SC
3351
3352 if (!h->hba_mode_enabled && rescan_hba_mode)
3353 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3354 else if (h->hba_mode_enabled && !rescan_hba_mode)
3355 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3356
3357 h->hba_mode_enabled = rescan_hba_mode;
3358
03383736
DB
3359 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3360 logdev_list, &nlogicals))
edd16368
SC
3361 goto out;
3362
aca4a520
ST
3363 /* We might see up to the maximum number of logical and physical disks
3364 * plus external target devices, and a device for the local RAID
3365 * controller.
edd16368 3366 */
aca4a520 3367 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
edd16368
SC
3368
3369 /* Allocate the per device structures */
3370 for (i = 0; i < ndevs_to_allocate; i++) {
b7ec021f
ST
3371 if (i >= HPSA_MAX_DEVICES) {
3372 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3373 " %d devices ignored.\n", HPSA_MAX_DEVICES,
3374 ndevs_to_allocate - HPSA_MAX_DEVICES);
3375 break;
3376 }
3377
edd16368
SC
3378 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3379 if (!currentsd[i]) {
3380 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3381 __FILE__, __LINE__);
3382 goto out;
3383 }
3384 ndev_allocated++;
3385 }
3386
8645291b 3387 if (is_scsi_rev_5(h))
339b2b14
SC
3388 raid_ctlr_position = 0;
3389 else
3390 raid_ctlr_position = nphysicals + nlogicals;
3391
edd16368 3392 /* adjust our table of devices */
4f4eb9f1 3393 n_ext_target_devs = 0;
edd16368 3394 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
0b0e1d6c 3395 u8 *lunaddrbytes, is_OBDR = 0;
edd16368
SC
3396
3397 /* Figure out where the LUN ID info is coming from */
339b2b14
SC
3398 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3399 i, nphysicals, nlogicals, physdev_list, logdev_list);
41ce4c35
SC
3400
3401 /* skip masked non-disk devices */
3402 if (MASKED_DEVICE(lunaddrbytes))
3403 if (i < nphysicals + (raid_ctlr_position == 0) &&
3404 NON_DISK_PHYS_DEV(lunaddrbytes))
3405 continue;
edd16368
SC
3406
3407 /* Get device type, vendor, model, device id */
0b0e1d6c
SC
3408 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3409 &is_OBDR))
edd16368 3410 continue; /* skip it if we can't talk to it. */
1f310bde 3411 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
9b5c48c2 3412 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
edd16368
SC
3413 this_device = currentsd[ncurrent];
3414
3415 /*
4f4eb9f1 3416 * For external target devices, we have to insert a LUN 0 which
edd16368
SC
3417 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3418 * is nonetheless an enclosure device there. We have to
3419 * present that otherwise linux won't find anything if
3420 * there is no lun 0.
3421 */
4f4eb9f1 3422 if (add_ext_target_dev(h, tmpdevice, this_device,
1f310bde 3423 lunaddrbytes, lunzerobits,
4f4eb9f1 3424 &n_ext_target_devs)) {
edd16368
SC
3425 ncurrent++;
3426 this_device = currentsd[ncurrent];
3427 }
3428
3429 *this_device = *tmpdevice;
edd16368 3430
41ce4c35
SC
3431 /* do not expose masked devices */
3432 if (MASKED_DEVICE(lunaddrbytes) &&
3433 i < nphysicals + (raid_ctlr_position == 0)) {
3434 if (h->hba_mode_enabled)
3435 dev_warn(&h->pdev->dev,
3436 "Masked physical device detected\n");
3437 this_device->expose_state = HPSA_DO_NOT_EXPOSE;
3438 } else {
3439 this_device->expose_state =
3440 HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
3441 }
3442
edd16368 3443 switch (this_device->devtype) {
0b0e1d6c 3444 case TYPE_ROM:
edd16368
SC
3445 /* We don't *really* support actual CD-ROM devices,
3446 * just "One Button Disaster Recovery" tape drive
3447 * which temporarily pretends to be a CD-ROM drive.
3448 * So we check that the device is really an OBDR tape
3449 * device by checking for "$DR-10" in bytes 43-48 of
3450 * the inquiry data.
3451 */
0b0e1d6c
SC
3452 if (is_OBDR)
3453 ncurrent++;
edd16368
SC
3454 break;
3455 case TYPE_DISK:
316b221a
SC
3456 if (h->hba_mode_enabled) {
3457 /* never use raid mapper in HBA mode */
3458 this_device->offload_enabled = 0;
3459 ncurrent++;
3460 break;
3461 } else if (h->acciopath_status) {
3462 if (i >= nphysicals) {
3463 ncurrent++;
3464 break;
3465 }
3466 } else {
3467 if (i < nphysicals)
3468 break;
283b4a9b 3469 ncurrent++;
edd16368 3470 break;
283b4a9b 3471 }
03383736
DB
3472 if (h->transMethod & CFGTBL_Trans_io_accel1 ||
3473 h->transMethod & CFGTBL_Trans_io_accel2) {
3474 hpsa_get_ioaccel_drive_info(h, this_device,
3475 lunaddrbytes, id_phys);
3476 atomic_set(&this_device->ioaccel_cmds_out, 0);
283b4a9b
SC
3477 ncurrent++;
3478 }
edd16368
SC
3479 break;
3480 case TYPE_TAPE:
3481 case TYPE_MEDIUM_CHANGER:
3482 ncurrent++;
3483 break;
41ce4c35
SC
3484 case TYPE_ENCLOSURE:
3485 if (h->hba_mode_enabled)
3486 ncurrent++;
3487 break;
edd16368
SC
3488 case TYPE_RAID:
3489 /* Only present the Smartarray HBA as a RAID controller.
3490 * If it's a RAID controller other than the HBA itself
3491 * (an external RAID controller, MSA500 or similar)
3492 * don't present it.
3493 */
3494 if (!is_hba_lunid(lunaddrbytes))
3495 break;
3496 ncurrent++;
3497 break;
3498 default:
3499 break;
3500 }
cfe5badc 3501 if (ncurrent >= HPSA_MAX_DEVICES)
edd16368
SC
3502 break;
3503 }
3504 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3505out:
3506 kfree(tmpdevice);
3507 for (i = 0; i < ndev_allocated; i++)
3508 kfree(currentsd[i]);
3509 kfree(currentsd);
edd16368
SC
3510 kfree(physdev_list);
3511 kfree(logdev_list);
03383736 3512 kfree(id_phys);
edd16368
SC
3513}
3514
ec5cbf04
WS
3515static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3516 struct scatterlist *sg)
3517{
3518 u64 addr64 = (u64) sg_dma_address(sg);
3519 unsigned int len = sg_dma_len(sg);
3520
3521 desc->Addr = cpu_to_le64(addr64);
3522 desc->Len = cpu_to_le32(len);
3523 desc->Ext = 0;
3524}
3525
c7ee65b3
WS
3526/*
3527 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
edd16368
SC
3528 * dma mapping and fills in the scatter gather entries of the
3529 * hpsa command, cp.
3530 */
33a2ffce 3531static int hpsa_scatter_gather(struct ctlr_info *h,
edd16368
SC
3532 struct CommandList *cp,
3533 struct scsi_cmnd *cmd)
3534{
edd16368 3535 struct scatterlist *sg;
33a2ffce
SC
3536 int use_sg, i, sg_index, chained;
3537 struct SGDescriptor *curr_sg;
edd16368 3538
33a2ffce 3539 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
edd16368
SC
3540
3541 use_sg = scsi_dma_map(cmd);
3542 if (use_sg < 0)
3543 return use_sg;
3544
3545 if (!use_sg)
3546 goto sglist_finished;
3547
33a2ffce
SC
3548 curr_sg = cp->SG;
3549 chained = 0;
3550 sg_index = 0;
edd16368 3551 scsi_for_each_sg(cmd, sg, use_sg, i) {
33a2ffce
SC
3552 if (i == h->max_cmd_sg_entries - 1 &&
3553 use_sg > h->max_cmd_sg_entries) {
3554 chained = 1;
3555 curr_sg = h->cmd_sg_list[cp->cmdindex];
3556 sg_index = 0;
3557 }
ec5cbf04 3558 hpsa_set_sg_descriptor(curr_sg, sg);
33a2ffce
SC
3559 curr_sg++;
3560 }
ec5cbf04
WS
3561
3562 /* Back the pointer up to the last entry and mark it as "last". */
50a0decf 3563 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
33a2ffce
SC
3564
3565 if (use_sg + chained > h->maxSG)
3566 h->maxSG = use_sg + chained;
3567
3568 if (chained) {
3569 cp->Header.SGList = h->max_cmd_sg_entries;
50a0decf 3570 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
e2bea6df
SC
3571 if (hpsa_map_sg_chain_block(h, cp)) {
3572 scsi_dma_unmap(cmd);
3573 return -1;
3574 }
33a2ffce 3575 return 0;
edd16368
SC
3576 }
3577
3578sglist_finished:
3579
01a02ffc 3580 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
c7ee65b3 3581 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
edd16368
SC
3582 return 0;
3583}
3584
283b4a9b
SC
3585#define IO_ACCEL_INELIGIBLE (1)
3586static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3587{
3588 int is_write = 0;
3589 u32 block;
3590 u32 block_cnt;
3591
3592 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3593 switch (cdb[0]) {
3594 case WRITE_6:
3595 case WRITE_12:
3596 is_write = 1;
3597 case READ_6:
3598 case READ_12:
3599 if (*cdb_len == 6) {
3600 block = (((u32) cdb[2]) << 8) | cdb[3];
3601 block_cnt = cdb[4];
3602 } else {
3603 BUG_ON(*cdb_len != 12);
3604 block = (((u32) cdb[2]) << 24) |
3605 (((u32) cdb[3]) << 16) |
3606 (((u32) cdb[4]) << 8) |
3607 cdb[5];
3608 block_cnt =
3609 (((u32) cdb[6]) << 24) |
3610 (((u32) cdb[7]) << 16) |
3611 (((u32) cdb[8]) << 8) |
3612 cdb[9];
3613 }
3614 if (block_cnt > 0xffff)
3615 return IO_ACCEL_INELIGIBLE;
3616
3617 cdb[0] = is_write ? WRITE_10 : READ_10;
3618 cdb[1] = 0;
3619 cdb[2] = (u8) (block >> 24);
3620 cdb[3] = (u8) (block >> 16);
3621 cdb[4] = (u8) (block >> 8);
3622 cdb[5] = (u8) (block);
3623 cdb[6] = 0;
3624 cdb[7] = (u8) (block_cnt >> 8);
3625 cdb[8] = (u8) (block_cnt);
3626 cdb[9] = 0;
3627 *cdb_len = 10;
3628 break;
3629 }
3630 return 0;
3631}
3632
c349775e 3633static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
283b4a9b 3634 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 3635 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
e1f7de0c
MG
3636{
3637 struct scsi_cmnd *cmd = c->scsi_cmd;
e1f7de0c
MG
3638 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3639 unsigned int len;
3640 unsigned int total_len = 0;
3641 struct scatterlist *sg;
3642 u64 addr64;
3643 int use_sg, i;
3644 struct SGDescriptor *curr_sg;
3645 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3646
283b4a9b 3647 /* TODO: implement chaining support */
03383736
DB
3648 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3649 atomic_dec(&phys_disk->ioaccel_cmds_out);
283b4a9b 3650 return IO_ACCEL_INELIGIBLE;
03383736 3651 }
283b4a9b 3652
e1f7de0c
MG
3653 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3654
03383736
DB
3655 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3656 atomic_dec(&phys_disk->ioaccel_cmds_out);
283b4a9b 3657 return IO_ACCEL_INELIGIBLE;
03383736 3658 }
283b4a9b 3659
e1f7de0c
MG
3660 c->cmd_type = CMD_IOACCEL1;
3661
3662 /* Adjust the DMA address to point to the accelerated command buffer */
3663 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3664 (c->cmdindex * sizeof(*cp));
3665 BUG_ON(c->busaddr & 0x0000007F);
3666
3667 use_sg = scsi_dma_map(cmd);
03383736
DB
3668 if (use_sg < 0) {
3669 atomic_dec(&phys_disk->ioaccel_cmds_out);
e1f7de0c 3670 return use_sg;
03383736 3671 }
e1f7de0c
MG
3672
3673 if (use_sg) {
3674 curr_sg = cp->SG;
3675 scsi_for_each_sg(cmd, sg, use_sg, i) {
3676 addr64 = (u64) sg_dma_address(sg);
3677 len = sg_dma_len(sg);
3678 total_len += len;
50a0decf
SC
3679 curr_sg->Addr = cpu_to_le64(addr64);
3680 curr_sg->Len = cpu_to_le32(len);
3681 curr_sg->Ext = cpu_to_le32(0);
e1f7de0c
MG
3682 curr_sg++;
3683 }
50a0decf 3684 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
e1f7de0c
MG
3685
3686 switch (cmd->sc_data_direction) {
3687 case DMA_TO_DEVICE:
3688 control |= IOACCEL1_CONTROL_DATA_OUT;
3689 break;
3690 case DMA_FROM_DEVICE:
3691 control |= IOACCEL1_CONTROL_DATA_IN;
3692 break;
3693 case DMA_NONE:
3694 control |= IOACCEL1_CONTROL_NODATAXFER;
3695 break;
3696 default:
3697 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3698 cmd->sc_data_direction);
3699 BUG();
3700 break;
3701 }
3702 } else {
3703 control |= IOACCEL1_CONTROL_NODATAXFER;
3704 }
3705
c349775e 3706 c->Header.SGList = use_sg;
e1f7de0c 3707 /* Fill out the command structure to submit */
2b08b3e9
DB
3708 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
3709 cp->transfer_len = cpu_to_le32(total_len);
3710 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
3711 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
3712 cp->control = cpu_to_le32(control);
283b4a9b
SC
3713 memcpy(cp->CDB, cdb, cdb_len);
3714 memcpy(cp->CISS_LUN, scsi3addr, 8);
c349775e 3715 /* Tag was already set at init time. */
283b4a9b 3716 enqueue_cmd_and_start_io(h, c);
e1f7de0c
MG
3717 return 0;
3718}
edd16368 3719
283b4a9b
SC
3720/*
3721 * Queue a command directly to a device behind the controller using the
3722 * I/O accelerator path.
3723 */
3724static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3725 struct CommandList *c)
3726{
3727 struct scsi_cmnd *cmd = c->scsi_cmd;
3728 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3729
03383736
DB
3730 c->phys_disk = dev;
3731
283b4a9b 3732 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
03383736 3733 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
283b4a9b
SC
3734}
3735
dd0e19f3
ST
3736/*
3737 * Set encryption parameters for the ioaccel2 request
3738 */
3739static void set_encrypt_ioaccel2(struct ctlr_info *h,
3740 struct CommandList *c, struct io_accel2_cmd *cp)
3741{
3742 struct scsi_cmnd *cmd = c->scsi_cmd;
3743 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3744 struct raid_map_data *map = &dev->raid_map;
3745 u64 first_block;
3746
dd0e19f3 3747 /* Are we doing encryption on this device */
2b08b3e9 3748 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
dd0e19f3
ST
3749 return;
3750 /* Set the data encryption key index. */
3751 cp->dekindex = map->dekindex;
3752
3753 /* Set the encryption enable flag, encoded into direction field. */
3754 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3755
3756 /* Set encryption tweak values based on logical block address
3757 * If block size is 512, tweak value is LBA.
3758 * For other block sizes, tweak is (LBA * block size)/ 512)
3759 */
3760 switch (cmd->cmnd[0]) {
3761 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3762 case WRITE_6:
3763 case READ_6:
2b08b3e9 3764 first_block = get_unaligned_be16(&cmd->cmnd[2]);
dd0e19f3
ST
3765 break;
3766 case WRITE_10:
3767 case READ_10:
dd0e19f3
ST
3768 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3769 case WRITE_12:
3770 case READ_12:
2b08b3e9 3771 first_block = get_unaligned_be32(&cmd->cmnd[2]);
dd0e19f3
ST
3772 break;
3773 case WRITE_16:
3774 case READ_16:
2b08b3e9 3775 first_block = get_unaligned_be64(&cmd->cmnd[2]);
dd0e19f3
ST
3776 break;
3777 default:
3778 dev_err(&h->pdev->dev,
2b08b3e9
DB
3779 "ERROR: %s: size (0x%x) not supported for encryption\n",
3780 __func__, cmd->cmnd[0]);
dd0e19f3
ST
3781 BUG();
3782 break;
3783 }
2b08b3e9
DB
3784
3785 if (le32_to_cpu(map->volume_blk_size) != 512)
3786 first_block = first_block *
3787 le32_to_cpu(map->volume_blk_size)/512;
3788
3789 cp->tweak_lower = cpu_to_le32(first_block);
3790 cp->tweak_upper = cpu_to_le32(first_block >> 32);
dd0e19f3
ST
3791}
3792
c349775e
ST
3793static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3794 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 3795 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
c349775e
ST
3796{
3797 struct scsi_cmnd *cmd = c->scsi_cmd;
3798 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3799 struct ioaccel2_sg_element *curr_sg;
3800 int use_sg, i;
3801 struct scatterlist *sg;
3802 u64 addr64;
3803 u32 len;
3804 u32 total_len = 0;
3805
03383736
DB
3806 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3807 atomic_dec(&phys_disk->ioaccel_cmds_out);
c349775e 3808 return IO_ACCEL_INELIGIBLE;
03383736 3809 }
c349775e 3810
03383736
DB
3811 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3812 atomic_dec(&phys_disk->ioaccel_cmds_out);
c349775e 3813 return IO_ACCEL_INELIGIBLE;
03383736
DB
3814 }
3815
c349775e
ST
3816 c->cmd_type = CMD_IOACCEL2;
3817 /* Adjust the DMA address to point to the accelerated command buffer */
3818 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3819 (c->cmdindex * sizeof(*cp));
3820 BUG_ON(c->busaddr & 0x0000007F);
3821
3822 memset(cp, 0, sizeof(*cp));
3823 cp->IU_type = IOACCEL2_IU_TYPE;
3824
3825 use_sg = scsi_dma_map(cmd);
03383736
DB
3826 if (use_sg < 0) {
3827 atomic_dec(&phys_disk->ioaccel_cmds_out);
c349775e 3828 return use_sg;
03383736 3829 }
c349775e
ST
3830
3831 if (use_sg) {
3832 BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3833 curr_sg = cp->sg;
3834 scsi_for_each_sg(cmd, sg, use_sg, i) {
3835 addr64 = (u64) sg_dma_address(sg);
3836 len = sg_dma_len(sg);
3837 total_len += len;
3838 curr_sg->address = cpu_to_le64(addr64);
3839 curr_sg->length = cpu_to_le32(len);
3840 curr_sg->reserved[0] = 0;
3841 curr_sg->reserved[1] = 0;
3842 curr_sg->reserved[2] = 0;
3843 curr_sg->chain_indicator = 0;
3844 curr_sg++;
3845 }
3846
3847 switch (cmd->sc_data_direction) {
3848 case DMA_TO_DEVICE:
dd0e19f3
ST
3849 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3850 cp->direction |= IOACCEL2_DIR_DATA_OUT;
c349775e
ST
3851 break;
3852 case DMA_FROM_DEVICE:
dd0e19f3
ST
3853 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3854 cp->direction |= IOACCEL2_DIR_DATA_IN;
c349775e
ST
3855 break;
3856 case DMA_NONE:
dd0e19f3
ST
3857 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3858 cp->direction |= IOACCEL2_DIR_NO_DATA;
c349775e
ST
3859 break;
3860 default:
3861 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3862 cmd->sc_data_direction);
3863 BUG();
3864 break;
3865 }
3866 } else {
dd0e19f3
ST
3867 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3868 cp->direction |= IOACCEL2_DIR_NO_DATA;
c349775e 3869 }
dd0e19f3
ST
3870
3871 /* Set encryption parameters, if necessary */
3872 set_encrypt_ioaccel2(h, c, cp);
3873
2b08b3e9 3874 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
f2405db8 3875 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
c349775e 3876 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
c349775e
ST
3877
3878 /* fill in sg elements */
3879 cp->sg_count = (u8) use_sg;
3880
3881 cp->data_len = cpu_to_le32(total_len);
3882 cp->err_ptr = cpu_to_le64(c->busaddr +
3883 offsetof(struct io_accel2_cmd, error_data));
50a0decf 3884 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
c349775e
ST
3885
3886 enqueue_cmd_and_start_io(h, c);
3887 return 0;
3888}
3889
3890/*
3891 * Queue a command to the correct I/O accelerator path.
3892 */
3893static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3894 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 3895 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
c349775e 3896{
03383736
DB
3897 /* Try to honor the device's queue depth */
3898 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
3899 phys_disk->queue_depth) {
3900 atomic_dec(&phys_disk->ioaccel_cmds_out);
3901 return IO_ACCEL_INELIGIBLE;
3902 }
c349775e
ST
3903 if (h->transMethod & CFGTBL_Trans_io_accel1)
3904 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
03383736
DB
3905 cdb, cdb_len, scsi3addr,
3906 phys_disk);
c349775e
ST
3907 else
3908 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
03383736
DB
3909 cdb, cdb_len, scsi3addr,
3910 phys_disk);
c349775e
ST
3911}
3912
6b80b18f
ST
3913static void raid_map_helper(struct raid_map_data *map,
3914 int offload_to_mirror, u32 *map_index, u32 *current_group)
3915{
3916 if (offload_to_mirror == 0) {
3917 /* use physical disk in the first mirrored group. */
2b08b3e9 3918 *map_index %= le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
3919 return;
3920 }
3921 do {
3922 /* determine mirror group that *map_index indicates */
2b08b3e9
DB
3923 *current_group = *map_index /
3924 le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
3925 if (offload_to_mirror == *current_group)
3926 continue;
2b08b3e9 3927 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
6b80b18f 3928 /* select map index from next group */
2b08b3e9 3929 *map_index += le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
3930 (*current_group)++;
3931 } else {
3932 /* select map index from first group */
2b08b3e9 3933 *map_index %= le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
3934 *current_group = 0;
3935 }
3936 } while (offload_to_mirror != *current_group);
3937}
3938
283b4a9b
SC
3939/*
3940 * Attempt to perform offload RAID mapping for a logical volume I/O.
3941 */
3942static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3943 struct CommandList *c)
3944{
3945 struct scsi_cmnd *cmd = c->scsi_cmd;
3946 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3947 struct raid_map_data *map = &dev->raid_map;
3948 struct raid_map_disk_data *dd = &map->data[0];
3949 int is_write = 0;
3950 u32 map_index;
3951 u64 first_block, last_block;
3952 u32 block_cnt;
3953 u32 blocks_per_row;
3954 u64 first_row, last_row;
3955 u32 first_row_offset, last_row_offset;
3956 u32 first_column, last_column;
6b80b18f
ST
3957 u64 r0_first_row, r0_last_row;
3958 u32 r5or6_blocks_per_row;
3959 u64 r5or6_first_row, r5or6_last_row;
3960 u32 r5or6_first_row_offset, r5or6_last_row_offset;
3961 u32 r5or6_first_column, r5or6_last_column;
3962 u32 total_disks_per_row;
3963 u32 stripesize;
3964 u32 first_group, last_group, current_group;
283b4a9b
SC
3965 u32 map_row;
3966 u32 disk_handle;
3967 u64 disk_block;
3968 u32 disk_block_cnt;
3969 u8 cdb[16];
3970 u8 cdb_len;
2b08b3e9 3971 u16 strip_size;
283b4a9b
SC
3972#if BITS_PER_LONG == 32
3973 u64 tmpdiv;
3974#endif
6b80b18f 3975 int offload_to_mirror;
283b4a9b 3976
283b4a9b
SC
3977 /* check for valid opcode, get LBA and block count */
3978 switch (cmd->cmnd[0]) {
3979 case WRITE_6:
3980 is_write = 1;
3981 case READ_6:
3982 first_block =
3983 (((u64) cmd->cmnd[2]) << 8) |
3984 cmd->cmnd[3];
3985 block_cnt = cmd->cmnd[4];
3fa89a04
SC
3986 if (block_cnt == 0)
3987 block_cnt = 256;
283b4a9b
SC
3988 break;
3989 case WRITE_10:
3990 is_write = 1;
3991 case READ_10:
3992 first_block =
3993 (((u64) cmd->cmnd[2]) << 24) |
3994 (((u64) cmd->cmnd[3]) << 16) |
3995 (((u64) cmd->cmnd[4]) << 8) |
3996 cmd->cmnd[5];
3997 block_cnt =
3998 (((u32) cmd->cmnd[7]) << 8) |
3999 cmd->cmnd[8];
4000 break;
4001 case WRITE_12:
4002 is_write = 1;
4003 case READ_12:
4004 first_block =
4005 (((u64) cmd->cmnd[2]) << 24) |
4006 (((u64) cmd->cmnd[3]) << 16) |
4007 (((u64) cmd->cmnd[4]) << 8) |
4008 cmd->cmnd[5];
4009 block_cnt =
4010 (((u32) cmd->cmnd[6]) << 24) |
4011 (((u32) cmd->cmnd[7]) << 16) |
4012 (((u32) cmd->cmnd[8]) << 8) |
4013 cmd->cmnd[9];
4014 break;
4015 case WRITE_16:
4016 is_write = 1;
4017 case READ_16:
4018 first_block =
4019 (((u64) cmd->cmnd[2]) << 56) |
4020 (((u64) cmd->cmnd[3]) << 48) |
4021 (((u64) cmd->cmnd[4]) << 40) |
4022 (((u64) cmd->cmnd[5]) << 32) |
4023 (((u64) cmd->cmnd[6]) << 24) |
4024 (((u64) cmd->cmnd[7]) << 16) |
4025 (((u64) cmd->cmnd[8]) << 8) |
4026 cmd->cmnd[9];
4027 block_cnt =
4028 (((u32) cmd->cmnd[10]) << 24) |
4029 (((u32) cmd->cmnd[11]) << 16) |
4030 (((u32) cmd->cmnd[12]) << 8) |
4031 cmd->cmnd[13];
4032 break;
4033 default:
4034 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4035 }
283b4a9b
SC
4036 last_block = first_block + block_cnt - 1;
4037
4038 /* check for write to non-RAID-0 */
4039 if (is_write && dev->raid_level != 0)
4040 return IO_ACCEL_INELIGIBLE;
4041
4042 /* check for invalid block or wraparound */
2b08b3e9
DB
4043 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4044 last_block < first_block)
283b4a9b
SC
4045 return IO_ACCEL_INELIGIBLE;
4046
4047 /* calculate stripe information for the request */
2b08b3e9
DB
4048 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4049 le16_to_cpu(map->strip_size);
4050 strip_size = le16_to_cpu(map->strip_size);
283b4a9b
SC
4051#if BITS_PER_LONG == 32
4052 tmpdiv = first_block;
4053 (void) do_div(tmpdiv, blocks_per_row);
4054 first_row = tmpdiv;
4055 tmpdiv = last_block;
4056 (void) do_div(tmpdiv, blocks_per_row);
4057 last_row = tmpdiv;
4058 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4059 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4060 tmpdiv = first_row_offset;
2b08b3e9 4061 (void) do_div(tmpdiv, strip_size);
283b4a9b
SC
4062 first_column = tmpdiv;
4063 tmpdiv = last_row_offset;
2b08b3e9 4064 (void) do_div(tmpdiv, strip_size);
283b4a9b
SC
4065 last_column = tmpdiv;
4066#else
4067 first_row = first_block / blocks_per_row;
4068 last_row = last_block / blocks_per_row;
4069 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4070 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
2b08b3e9
DB
4071 first_column = first_row_offset / strip_size;
4072 last_column = last_row_offset / strip_size;
283b4a9b
SC
4073#endif
4074
4075 /* if this isn't a single row/column then give to the controller */
4076 if ((first_row != last_row) || (first_column != last_column))
4077 return IO_ACCEL_INELIGIBLE;
4078
4079 /* proceeding with driver mapping */
2b08b3e9
DB
4080 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4081 le16_to_cpu(map->metadata_disks_per_row);
283b4a9b 4082 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
2b08b3e9 4083 le16_to_cpu(map->row_cnt);
6b80b18f
ST
4084 map_index = (map_row * total_disks_per_row) + first_column;
4085
4086 switch (dev->raid_level) {
4087 case HPSA_RAID_0:
4088 break; /* nothing special to do */
4089 case HPSA_RAID_1:
4090 /* Handles load balance across RAID 1 members.
4091 * (2-drive R1 and R10 with even # of drives.)
4092 * Appropriate for SSDs, not optimal for HDDs
283b4a9b 4093 */
2b08b3e9 4094 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
283b4a9b 4095 if (dev->offload_to_mirror)
2b08b3e9 4096 map_index += le16_to_cpu(map->data_disks_per_row);
283b4a9b 4097 dev->offload_to_mirror = !dev->offload_to_mirror;
6b80b18f
ST
4098 break;
4099 case HPSA_RAID_ADM:
4100 /* Handles N-way mirrors (R1-ADM)
4101 * and R10 with # of drives divisible by 3.)
4102 */
2b08b3e9 4103 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
6b80b18f
ST
4104
4105 offload_to_mirror = dev->offload_to_mirror;
4106 raid_map_helper(map, offload_to_mirror,
4107 &map_index, &current_group);
4108 /* set mirror group to use next time */
4109 offload_to_mirror =
2b08b3e9
DB
4110 (offload_to_mirror >=
4111 le16_to_cpu(map->layout_map_count) - 1)
6b80b18f 4112 ? 0 : offload_to_mirror + 1;
6b80b18f
ST
4113 dev->offload_to_mirror = offload_to_mirror;
4114 /* Avoid direct use of dev->offload_to_mirror within this
4115 * function since multiple threads might simultaneously
4116 * increment it beyond the range of dev->layout_map_count -1.
4117 */
4118 break;
4119 case HPSA_RAID_5:
4120 case HPSA_RAID_6:
2b08b3e9 4121 if (le16_to_cpu(map->layout_map_count) <= 1)
6b80b18f
ST
4122 break;
4123
4124 /* Verify first and last block are in same RAID group */
4125 r5or6_blocks_per_row =
2b08b3e9
DB
4126 le16_to_cpu(map->strip_size) *
4127 le16_to_cpu(map->data_disks_per_row);
6b80b18f 4128 BUG_ON(r5or6_blocks_per_row == 0);
2b08b3e9
DB
4129 stripesize = r5or6_blocks_per_row *
4130 le16_to_cpu(map->layout_map_count);
6b80b18f
ST
4131#if BITS_PER_LONG == 32
4132 tmpdiv = first_block;
4133 first_group = do_div(tmpdiv, stripesize);
4134 tmpdiv = first_group;
4135 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4136 first_group = tmpdiv;
4137 tmpdiv = last_block;
4138 last_group = do_div(tmpdiv, stripesize);
4139 tmpdiv = last_group;
4140 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4141 last_group = tmpdiv;
4142#else
4143 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4144 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
6b80b18f 4145#endif
000ff7c2 4146 if (first_group != last_group)
6b80b18f
ST
4147 return IO_ACCEL_INELIGIBLE;
4148
4149 /* Verify request is in a single row of RAID 5/6 */
4150#if BITS_PER_LONG == 32
4151 tmpdiv = first_block;
4152 (void) do_div(tmpdiv, stripesize);
4153 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4154 tmpdiv = last_block;
4155 (void) do_div(tmpdiv, stripesize);
4156 r5or6_last_row = r0_last_row = tmpdiv;
4157#else
4158 first_row = r5or6_first_row = r0_first_row =
4159 first_block / stripesize;
4160 r5or6_last_row = r0_last_row = last_block / stripesize;
4161#endif
4162 if (r5or6_first_row != r5or6_last_row)
4163 return IO_ACCEL_INELIGIBLE;
4164
4165
4166 /* Verify request is in a single column */
4167#if BITS_PER_LONG == 32
4168 tmpdiv = first_block;
4169 first_row_offset = do_div(tmpdiv, stripesize);
4170 tmpdiv = first_row_offset;
4171 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4172 r5or6_first_row_offset = first_row_offset;
4173 tmpdiv = last_block;
4174 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4175 tmpdiv = r5or6_last_row_offset;
4176 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4177 tmpdiv = r5or6_first_row_offset;
4178 (void) do_div(tmpdiv, map->strip_size);
4179 first_column = r5or6_first_column = tmpdiv;
4180 tmpdiv = r5or6_last_row_offset;
4181 (void) do_div(tmpdiv, map->strip_size);
4182 r5or6_last_column = tmpdiv;
4183#else
4184 first_row_offset = r5or6_first_row_offset =
4185 (u32)((first_block % stripesize) %
4186 r5or6_blocks_per_row);
4187
4188 r5or6_last_row_offset =
4189 (u32)((last_block % stripesize) %
4190 r5or6_blocks_per_row);
4191
4192 first_column = r5or6_first_column =
2b08b3e9 4193 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
6b80b18f 4194 r5or6_last_column =
2b08b3e9 4195 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
6b80b18f
ST
4196#endif
4197 if (r5or6_first_column != r5or6_last_column)
4198 return IO_ACCEL_INELIGIBLE;
4199
4200 /* Request is eligible */
4201 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
2b08b3e9 4202 le16_to_cpu(map->row_cnt);
6b80b18f
ST
4203
4204 map_index = (first_group *
2b08b3e9 4205 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
6b80b18f
ST
4206 (map_row * total_disks_per_row) + first_column;
4207 break;
4208 default:
4209 return IO_ACCEL_INELIGIBLE;
283b4a9b 4210 }
6b80b18f 4211
07543e0c
SC
4212 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4213 return IO_ACCEL_INELIGIBLE;
4214
03383736
DB
4215 c->phys_disk = dev->phys_disk[map_index];
4216
283b4a9b 4217 disk_handle = dd[map_index].ioaccel_handle;
2b08b3e9
DB
4218 disk_block = le64_to_cpu(map->disk_starting_blk) +
4219 first_row * le16_to_cpu(map->strip_size) +
4220 (first_row_offset - first_column *
4221 le16_to_cpu(map->strip_size));
283b4a9b
SC
4222 disk_block_cnt = block_cnt;
4223
4224 /* handle differing logical/physical block sizes */
4225 if (map->phys_blk_shift) {
4226 disk_block <<= map->phys_blk_shift;
4227 disk_block_cnt <<= map->phys_blk_shift;
4228 }
4229 BUG_ON(disk_block_cnt > 0xffff);
4230
4231 /* build the new CDB for the physical disk I/O */
4232 if (disk_block > 0xffffffff) {
4233 cdb[0] = is_write ? WRITE_16 : READ_16;
4234 cdb[1] = 0;
4235 cdb[2] = (u8) (disk_block >> 56);
4236 cdb[3] = (u8) (disk_block >> 48);
4237 cdb[4] = (u8) (disk_block >> 40);
4238 cdb[5] = (u8) (disk_block >> 32);
4239 cdb[6] = (u8) (disk_block >> 24);
4240 cdb[7] = (u8) (disk_block >> 16);
4241 cdb[8] = (u8) (disk_block >> 8);
4242 cdb[9] = (u8) (disk_block);
4243 cdb[10] = (u8) (disk_block_cnt >> 24);
4244 cdb[11] = (u8) (disk_block_cnt >> 16);
4245 cdb[12] = (u8) (disk_block_cnt >> 8);
4246 cdb[13] = (u8) (disk_block_cnt);
4247 cdb[14] = 0;
4248 cdb[15] = 0;
4249 cdb_len = 16;
4250 } else {
4251 cdb[0] = is_write ? WRITE_10 : READ_10;
4252 cdb[1] = 0;
4253 cdb[2] = (u8) (disk_block >> 24);
4254 cdb[3] = (u8) (disk_block >> 16);
4255 cdb[4] = (u8) (disk_block >> 8);
4256 cdb[5] = (u8) (disk_block);
4257 cdb[6] = 0;
4258 cdb[7] = (u8) (disk_block_cnt >> 8);
4259 cdb[8] = (u8) (disk_block_cnt);
4260 cdb[9] = 0;
4261 cdb_len = 10;
4262 }
4263 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
03383736
DB
4264 dev->scsi3addr,
4265 dev->phys_disk[map_index]);
283b4a9b
SC
4266}
4267
25163bd5
WS
4268/*
4269 * Submit commands down the "normal" RAID stack path
4270 * All callers to hpsa_ciss_submit must check lockup_detected
4271 * beforehand, before (opt.) and after calling cmd_alloc
4272 */
574f05d3
SC
4273static int hpsa_ciss_submit(struct ctlr_info *h,
4274 struct CommandList *c, struct scsi_cmnd *cmd,
4275 unsigned char scsi3addr[])
edd16368 4276{
edd16368 4277 cmd->host_scribble = (unsigned char *) c;
edd16368
SC
4278 c->cmd_type = CMD_SCSI;
4279 c->scsi_cmd = cmd;
4280 c->Header.ReplyQueue = 0; /* unused in simple mode */
4281 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
f2405db8 4282 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
edd16368
SC
4283
4284 /* Fill in the request block... */
4285
4286 c->Request.Timeout = 0;
edd16368
SC
4287 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4288 c->Request.CDBLen = cmd->cmd_len;
4289 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
edd16368
SC
4290 switch (cmd->sc_data_direction) {
4291 case DMA_TO_DEVICE:
a505b86f
SC
4292 c->Request.type_attr_dir =
4293 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
edd16368
SC
4294 break;
4295 case DMA_FROM_DEVICE:
a505b86f
SC
4296 c->Request.type_attr_dir =
4297 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
edd16368
SC
4298 break;
4299 case DMA_NONE:
a505b86f
SC
4300 c->Request.type_attr_dir =
4301 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
edd16368
SC
4302 break;
4303 case DMA_BIDIRECTIONAL:
4304 /* This can happen if a buggy application does a scsi passthru
4305 * and sets both inlen and outlen to non-zero. ( see
4306 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4307 */
4308
a505b86f
SC
4309 c->Request.type_attr_dir =
4310 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
edd16368
SC
4311 /* This is technically wrong, and hpsa controllers should
4312 * reject it with CMD_INVALID, which is the most correct
4313 * response, but non-fibre backends appear to let it
4314 * slide by, and give the same results as if this field
4315 * were set correctly. Either way is acceptable for
4316 * our purposes here.
4317 */
4318
4319 break;
4320
4321 default:
4322 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4323 cmd->sc_data_direction);
4324 BUG();
4325 break;
4326 }
4327
33a2ffce 4328 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
edd16368
SC
4329 cmd_free(h, c);
4330 return SCSI_MLQUEUE_HOST_BUSY;
4331 }
4332 enqueue_cmd_and_start_io(h, c);
4333 /* the cmd'll come back via intr handler in complete_scsi_command() */
4334 return 0;
4335}
4336
360c73bd
SC
4337static void hpsa_cmd_init(struct ctlr_info *h, int index,
4338 struct CommandList *c)
4339{
4340 dma_addr_t cmd_dma_handle, err_dma_handle;
4341
4342 /* Zero out all of commandlist except the last field, refcount */
4343 memset(c, 0, offsetof(struct CommandList, refcount));
4344 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4345 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4346 c->err_info = h->errinfo_pool + index;
4347 memset(c->err_info, 0, sizeof(*c->err_info));
4348 err_dma_handle = h->errinfo_pool_dhandle
4349 + index * sizeof(*c->err_info);
4350 c->cmdindex = index;
4351 c->busaddr = (u32) cmd_dma_handle;
4352 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4353 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4354 c->h = h;
4355}
4356
4357static void hpsa_preinitialize_commands(struct ctlr_info *h)
4358{
4359 int i;
4360
4361 for (i = 0; i < h->nr_cmds; i++) {
4362 struct CommandList *c = h->cmd_pool + i;
4363
4364 hpsa_cmd_init(h, i, c);
4365 atomic_set(&c->refcount, 0);
4366 }
4367}
4368
4369static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4370 struct CommandList *c)
4371{
4372 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4373
4374 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4375 memset(c->err_info, 0, sizeof(*c->err_info));
4376 c->busaddr = (u32) cmd_dma_handle;
4377}
4378
080ef1cc
DB
4379static void hpsa_command_resubmit_worker(struct work_struct *work)
4380{
4381 struct scsi_cmnd *cmd;
4382 struct hpsa_scsi_dev_t *dev;
4383 struct CommandList *c =
4384 container_of(work, struct CommandList, work);
4385
4386 cmd = c->scsi_cmd;
4387 dev = cmd->device->hostdata;
4388 if (!dev) {
4389 cmd->result = DID_NO_CONNECT << 16;
4390 cmd->scsi_done(cmd);
4391 return;
4392 }
360c73bd 4393 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
080ef1cc
DB
4394 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4395 /*
4396 * If we get here, it means dma mapping failed. Try
4397 * again via scsi mid layer, which will then get
4398 * SCSI_MLQUEUE_HOST_BUSY.
4399 */
4400 cmd->result = DID_IMM_RETRY << 16;
4401 cmd->scsi_done(cmd);
4402 }
4403}
4404
574f05d3
SC
4405/* Running in struct Scsi_Host->host_lock less mode */
4406static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4407{
4408 struct ctlr_info *h;
4409 struct hpsa_scsi_dev_t *dev;
4410 unsigned char scsi3addr[8];
4411 struct CommandList *c;
4412 int rc = 0;
4413
4414 /* Get the ptr to our adapter structure out of cmd->host. */
4415 h = sdev_to_hba(cmd->device);
4416 dev = cmd->device->hostdata;
4417 if (!dev) {
4418 cmd->result = DID_NO_CONNECT << 16;
4419 cmd->scsi_done(cmd);
4420 return 0;
4421 }
4422 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4423
4424 if (unlikely(lockup_detected(h))) {
25163bd5 4425 cmd->result = DID_NO_CONNECT << 16;
574f05d3
SC
4426 cmd->scsi_done(cmd);
4427 return 0;
4428 }
4429 c = cmd_alloc(h);
4430 if (c == NULL) { /* trouble... */
4431 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4432 return SCSI_MLQUEUE_HOST_BUSY;
4433 }
407863cb 4434 if (unlikely(lockup_detected(h))) {
25163bd5 4435 cmd->result = DID_NO_CONNECT << 16;
407863cb
SC
4436 cmd_free(h, c);
4437 cmd->scsi_done(cmd);
4438 return 0;
4439 }
574f05d3 4440
407863cb
SC
4441 /*
4442 * Call alternate submit routine for I/O accelerated commands.
574f05d3
SC
4443 * Retries always go down the normal I/O path.
4444 */
4445 if (likely(cmd->retries == 0 &&
4446 cmd->request->cmd_type == REQ_TYPE_FS &&
4447 h->acciopath_status)) {
4448
4449 cmd->host_scribble = (unsigned char *) c;
574f05d3
SC
4450
4451 if (dev->offload_enabled) {
360c73bd
SC
4452 hpsa_cmd_init(h, c->cmdindex, c);
4453 c->cmd_type = CMD_SCSI;
4454 c->scsi_cmd = cmd;
574f05d3
SC
4455 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4456 if (rc == 0)
4457 return 0; /* Sent on ioaccel path */
4458 if (rc < 0) { /* scsi_dma_map failed. */
4459 cmd_free(h, c);
4460 return SCSI_MLQUEUE_HOST_BUSY;
4461 }
4462 } else if (dev->ioaccel_handle) {
360c73bd
SC
4463 hpsa_cmd_init(h, c->cmdindex, c);
4464 c->cmd_type = CMD_SCSI;
4465 c->scsi_cmd = cmd;
574f05d3
SC
4466 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4467 if (rc == 0)
4468 return 0; /* Sent on direct map path */
4469 if (rc < 0) { /* scsi_dma_map failed. */
4470 cmd_free(h, c);
4471 return SCSI_MLQUEUE_HOST_BUSY;
4472 }
4473 }
4474 }
4475 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4476}
4477
8ebc9248 4478static void hpsa_scan_complete(struct ctlr_info *h)
5f389360
SC
4479{
4480 unsigned long flags;
4481
8ebc9248
WS
4482 spin_lock_irqsave(&h->scan_lock, flags);
4483 h->scan_finished = 1;
4484 wake_up_all(&h->scan_wait_queue);
4485 spin_unlock_irqrestore(&h->scan_lock, flags);
5f389360
SC
4486}
4487
a08a8471
SC
4488static void hpsa_scan_start(struct Scsi_Host *sh)
4489{
4490 struct ctlr_info *h = shost_to_hba(sh);
4491 unsigned long flags;
4492
8ebc9248
WS
4493 /*
4494 * Don't let rescans be initiated on a controller known to be locked
4495 * up. If the controller locks up *during* a rescan, that thread is
4496 * probably hosed, but at least we can prevent new rescan threads from
4497 * piling up on a locked up controller.
4498 */
4499 if (unlikely(lockup_detected(h)))
4500 return hpsa_scan_complete(h);
5f389360 4501
a08a8471
SC
4502 /* wait until any scan already in progress is finished. */
4503 while (1) {
4504 spin_lock_irqsave(&h->scan_lock, flags);
4505 if (h->scan_finished)
4506 break;
4507 spin_unlock_irqrestore(&h->scan_lock, flags);
4508 wait_event(h->scan_wait_queue, h->scan_finished);
4509 /* Note: We don't need to worry about a race between this
4510 * thread and driver unload because the midlayer will
4511 * have incremented the reference count, so unload won't
4512 * happen if we're in here.
4513 */
4514 }
4515 h->scan_finished = 0; /* mark scan as in progress */
4516 spin_unlock_irqrestore(&h->scan_lock, flags);
4517
8ebc9248
WS
4518 if (unlikely(lockup_detected(h)))
4519 return hpsa_scan_complete(h);
5f389360 4520
a08a8471
SC
4521 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4522
8ebc9248 4523 hpsa_scan_complete(h);
a08a8471
SC
4524}
4525
7c0a0229
DB
4526static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4527{
03383736
DB
4528 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4529
4530 if (!logical_drive)
4531 return -ENODEV;
7c0a0229
DB
4532
4533 if (qdepth < 1)
4534 qdepth = 1;
03383736
DB
4535 else if (qdepth > logical_drive->queue_depth)
4536 qdepth = logical_drive->queue_depth;
4537
4538 return scsi_change_queue_depth(sdev, qdepth);
7c0a0229
DB
4539}
4540
a08a8471
SC
4541static int hpsa_scan_finished(struct Scsi_Host *sh,
4542 unsigned long elapsed_time)
4543{
4544 struct ctlr_info *h = shost_to_hba(sh);
4545 unsigned long flags;
4546 int finished;
4547
4548 spin_lock_irqsave(&h->scan_lock, flags);
4549 finished = h->scan_finished;
4550 spin_unlock_irqrestore(&h->scan_lock, flags);
4551 return finished;
4552}
4553
edd16368
SC
4554static void hpsa_unregister_scsi(struct ctlr_info *h)
4555{
4556 /* we are being forcibly unloaded, and may not refuse. */
4557 scsi_remove_host(h->scsi_host);
4558 scsi_host_put(h->scsi_host);
4559 h->scsi_host = NULL;
4560}
4561
4562static int hpsa_register_scsi(struct ctlr_info *h)
4563{
b705690d
SC
4564 struct Scsi_Host *sh;
4565 int error;
edd16368 4566
b705690d
SC
4567 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4568 if (sh == NULL)
4569 goto fail;
4570
4571 sh->io_port = 0;
4572 sh->n_io_port = 0;
4573 sh->this_id = -1;
4574 sh->max_channel = 3;
4575 sh->max_cmd_len = MAX_COMMAND_SIZE;
4576 sh->max_lun = HPSA_MAX_LUN;
4577 sh->max_id = HPSA_MAX_LUN;
41ce4c35 4578 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
03383736 4579 sh->cmd_per_lun = sh->can_queue;
b705690d
SC
4580 sh->sg_tablesize = h->maxsgentries;
4581 h->scsi_host = sh;
4582 sh->hostdata[0] = (unsigned long) h;
4583 sh->irq = h->intr[h->intr_mode];
4584 sh->unique_id = sh->irq;
4585 error = scsi_add_host(sh, &h->pdev->dev);
4586 if (error)
4587 goto fail_host_put;
4588 scsi_scan_host(sh);
4589 return 0;
4590
4591 fail_host_put:
4592 dev_err(&h->pdev->dev, "%s: scsi_add_host"
4593 " failed for controller %d\n", __func__, h->ctlr);
4594 scsi_host_put(sh);
4595 return error;
4596 fail:
4597 dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4598 " failed for controller %d\n", __func__, h->ctlr);
4599 return -ENOMEM;
edd16368
SC
4600}
4601
4602static int wait_for_device_to_become_ready(struct ctlr_info *h,
4603 unsigned char lunaddr[])
4604{
8919358e 4605 int rc;
edd16368
SC
4606 int count = 0;
4607 int waittime = 1; /* seconds */
4608 struct CommandList *c;
4609
45fcb86e 4610 c = cmd_alloc(h);
edd16368
SC
4611 if (!c) {
4612 dev_warn(&h->pdev->dev, "out of memory in "
4613 "wait_for_device_to_become_ready.\n");
4614 return IO_ERROR;
4615 }
4616
4617 /* Send test unit ready until device ready, or give up. */
4618 while (count < HPSA_TUR_RETRY_LIMIT) {
4619
4620 /* Wait for a bit. do this first, because if we send
4621 * the TUR right away, the reset will just abort it.
4622 */
4623 msleep(1000 * waittime);
4624 count++;
8919358e 4625 rc = 0; /* Device ready. */
edd16368
SC
4626
4627 /* Increase wait time with each try, up to a point. */
4628 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4629 waittime = waittime * 2;
4630
a2dac136
SC
4631 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4632 (void) fill_cmd(c, TEST_UNIT_READY, h,
4633 NULL, 0, 0, lunaddr, TYPE_CMD);
25163bd5
WS
4634 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
4635 NO_TIMEOUT);
4636 if (rc)
4637 goto do_it_again;
edd16368
SC
4638 /* no unmap needed here because no data xfer. */
4639
4640 if (c->err_info->CommandStatus == CMD_SUCCESS)
4641 break;
4642
4643 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4644 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4645 (c->err_info->SenseInfo[2] == NO_SENSE ||
4646 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4647 break;
25163bd5 4648do_it_again:
edd16368
SC
4649 dev_warn(&h->pdev->dev, "waiting %d secs "
4650 "for device to become ready.\n", waittime);
4651 rc = 1; /* device not ready. */
4652 }
4653
4654 if (rc)
4655 dev_warn(&h->pdev->dev, "giving up on device.\n");
4656 else
4657 dev_warn(&h->pdev->dev, "device is ready.\n");
4658
45fcb86e 4659 cmd_free(h, c);
edd16368
SC
4660 return rc;
4661}
4662
4663/* Need at least one of these error handlers to keep ../scsi/hosts.c from
4664 * complaining. Doing a host- or bus-reset can't do anything good here.
4665 */
4666static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4667{
4668 int rc;
4669 struct ctlr_info *h;
4670 struct hpsa_scsi_dev_t *dev;
4671
4672 /* find the controller to which the command to be aborted was sent */
4673 h = sdev_to_hba(scsicmd->device);
4674 if (h == NULL) /* paranoia */
4675 return FAILED;
e345893b
DB
4676
4677 if (lockup_detected(h))
4678 return FAILED;
4679
edd16368
SC
4680 dev = scsicmd->device->hostdata;
4681 if (!dev) {
4682 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4683 "device lookup failed.\n");
4684 return FAILED;
4685 }
25163bd5
WS
4686
4687 /* if controller locked up, we can guarantee command won't complete */
4688 if (lockup_detected(h)) {
4689 dev_warn(&h->pdev->dev,
4690 "scsi %d:%d:%d:%d RESET FAILED, lockup detected\n",
4691 h->scsi_host->host_no, dev->bus, dev->target,
4692 dev->lun);
4693 return FAILED;
4694 }
4695
4696 /* this reset request might be the result of a lockup; check */
4697 if (detect_controller_lockup(h)) {
4698 dev_warn(&h->pdev->dev,
4699 "scsi %d:%d:%d:%d RESET FAILED, new lockup detected\n",
4700 h->scsi_host->host_no, dev->bus, dev->target,
4701 dev->lun);
4702 return FAILED;
4703 }
4704
4705 hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");
4706
edd16368 4707 /* send a reset to the SCSI LUN which the command was sent to */
25163bd5
WS
4708 rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
4709 DEFAULT_REPLY_QUEUE);
edd16368
SC
4710 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4711 return SUCCESS;
4712
25163bd5
WS
4713 dev_warn(&h->pdev->dev,
4714 "scsi %d:%d:%d:%d reset failed\n",
4715 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
edd16368
SC
4716 return FAILED;
4717}
4718
6cba3f19
SC
4719static void swizzle_abort_tag(u8 *tag)
4720{
4721 u8 original_tag[8];
4722
4723 memcpy(original_tag, tag, 8);
4724 tag[0] = original_tag[3];
4725 tag[1] = original_tag[2];
4726 tag[2] = original_tag[1];
4727 tag[3] = original_tag[0];
4728 tag[4] = original_tag[7];
4729 tag[5] = original_tag[6];
4730 tag[6] = original_tag[5];
4731 tag[7] = original_tag[4];
4732}
4733
17eb87d2 4734static void hpsa_get_tag(struct ctlr_info *h,
2b08b3e9 4735 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
17eb87d2 4736{
2b08b3e9 4737 u64 tag;
17eb87d2
ST
4738 if (c->cmd_type == CMD_IOACCEL1) {
4739 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4740 &h->ioaccel_cmd_pool[c->cmdindex];
2b08b3e9
DB
4741 tag = le64_to_cpu(cm1->tag);
4742 *tagupper = cpu_to_le32(tag >> 32);
4743 *taglower = cpu_to_le32(tag);
54b6e9e9
ST
4744 return;
4745 }
4746 if (c->cmd_type == CMD_IOACCEL2) {
4747 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4748 &h->ioaccel2_cmd_pool[c->cmdindex];
dd0e19f3
ST
4749 /* upper tag not used in ioaccel2 mode */
4750 memset(tagupper, 0, sizeof(*tagupper));
4751 *taglower = cm2->Tag;
54b6e9e9 4752 return;
17eb87d2 4753 }
2b08b3e9
DB
4754 tag = le64_to_cpu(c->Header.tag);
4755 *tagupper = cpu_to_le32(tag >> 32);
4756 *taglower = cpu_to_le32(tag);
17eb87d2
ST
4757}
4758
75167d2c 4759static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
9b5c48c2 4760 struct CommandList *abort, int reply_queue)
75167d2c
SC
4761{
4762 int rc = IO_OK;
4763 struct CommandList *c;
4764 struct ErrorInfo *ei;
2b08b3e9 4765 __le32 tagupper, taglower;
75167d2c 4766
45fcb86e 4767 c = cmd_alloc(h);
75167d2c 4768 if (c == NULL) { /* trouble... */
45fcb86e 4769 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
75167d2c
SC
4770 return -ENOMEM;
4771 }
4772
a2dac136 4773 /* fill_cmd can't fail here, no buffer to map */
9b5c48c2 4774 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
a2dac136 4775 0, 0, scsi3addr, TYPE_MSG);
9b5c48c2 4776 if (h->needs_abort_tags_swizzled)
6cba3f19 4777 swizzle_abort_tag(&c->Request.CDB[4]);
25163bd5 4778 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
17eb87d2 4779 hpsa_get_tag(h, abort, &taglower, &tagupper);
25163bd5 4780 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
17eb87d2 4781 __func__, tagupper, taglower);
75167d2c
SC
4782 /* no unmap needed here because no data xfer. */
4783
4784 ei = c->err_info;
4785 switch (ei->CommandStatus) {
4786 case CMD_SUCCESS:
4787 break;
9437ac43
SC
4788 case CMD_TMF_STATUS:
4789 rc = hpsa_evaluate_tmf_status(h, c);
4790 break;
75167d2c
SC
4791 case CMD_UNABORTABLE: /* Very common, don't make noise. */
4792 rc = -1;
4793 break;
4794 default:
4795 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
17eb87d2 4796 __func__, tagupper, taglower);
d1e8beac 4797 hpsa_scsi_interpret_error(h, c);
75167d2c
SC
4798 rc = -1;
4799 break;
4800 }
45fcb86e 4801 cmd_free(h, c);
dd0e19f3
ST
4802 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4803 __func__, tagupper, taglower);
75167d2c
SC
4804 return rc;
4805}
4806
54b6e9e9
ST
4807/* ioaccel2 path firmware cannot handle abort task requests.
4808 * Change abort requests to physical target reset, and send to the
4809 * address of the physical disk used for the ioaccel 2 command.
4810 * Return 0 on success (IO_OK)
4811 * -1 on failure
4812 */
4813
4814static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
25163bd5 4815 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
54b6e9e9
ST
4816{
4817 int rc = IO_OK;
4818 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4819 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4820 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4821 unsigned char *psa = &phys_scsi3addr[0];
4822
4823 /* Get a pointer to the hpsa logical device. */
7fa3030c 4824 scmd = abort->scsi_cmd;
54b6e9e9
ST
4825 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4826 if (dev == NULL) {
4827 dev_warn(&h->pdev->dev,
4828 "Cannot abort: no device pointer for command.\n");
4829 return -1; /* not abortable */
4830 }
4831
2ba8bfc8
SC
4832 if (h->raid_offload_debug > 0)
4833 dev_info(&h->pdev->dev,
0d96ef5f 4834 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2ba8bfc8 4835 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
0d96ef5f 4836 "Reset as abort",
2ba8bfc8
SC
4837 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4838 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4839
54b6e9e9
ST
4840 if (!dev->offload_enabled) {
4841 dev_warn(&h->pdev->dev,
4842 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4843 return -1; /* not abortable */
4844 }
4845
4846 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4847 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4848 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4849 return -1; /* not abortable */
4850 }
4851
4852 /* send the reset */
2ba8bfc8
SC
4853 if (h->raid_offload_debug > 0)
4854 dev_info(&h->pdev->dev,
4855 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4856 psa[0], psa[1], psa[2], psa[3],
4857 psa[4], psa[5], psa[6], psa[7]);
25163bd5 4858 rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
54b6e9e9
ST
4859 if (rc != 0) {
4860 dev_warn(&h->pdev->dev,
4861 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4862 psa[0], psa[1], psa[2], psa[3],
4863 psa[4], psa[5], psa[6], psa[7]);
4864 return rc; /* failed to reset */
4865 }
4866
4867 /* wait for device to recover */
4868 if (wait_for_device_to_become_ready(h, psa) != 0) {
4869 dev_warn(&h->pdev->dev,
4870 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4871 psa[0], psa[1], psa[2], psa[3],
4872 psa[4], psa[5], psa[6], psa[7]);
4873 return -1; /* failed to recover */
4874 }
4875
4876 /* device recovered */
4877 dev_info(&h->pdev->dev,
4878 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4879 psa[0], psa[1], psa[2], psa[3],
4880 psa[4], psa[5], psa[6], psa[7]);
4881
4882 return rc; /* success */
4883}
4884
6cba3f19 4885static int hpsa_send_abort_both_ways(struct ctlr_info *h,
25163bd5 4886 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
6cba3f19 4887{
54b6e9e9
ST
4888 /* ioccelerator mode 2 commands should be aborted via the
4889 * accelerated path, since RAID path is unaware of these commands,
4890 * but underlying firmware can't handle abort TMF.
4891 * Change abort to physical device reset.
4892 */
4893 if (abort->cmd_type == CMD_IOACCEL2)
25163bd5
WS
4894 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
4895 abort, reply_queue);
9b5c48c2 4896 return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
25163bd5 4897}
54b6e9e9 4898
25163bd5
WS
4899/* Find out which reply queue a command was meant to return on */
4900static int hpsa_extract_reply_queue(struct ctlr_info *h,
4901 struct CommandList *c)
4902{
4903 if (c->cmd_type == CMD_IOACCEL2)
4904 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
4905 return c->Header.ReplyQueue;
6cba3f19
SC
4906}
4907
9b5c48c2
SC
4908/*
4909 * Limit concurrency of abort commands to prevent
4910 * over-subscription of commands
4911 */
4912static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
4913{
4914#define ABORT_CMD_WAIT_MSECS 5000
4915 return !wait_event_timeout(h->abort_cmd_wait_queue,
4916 atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
4917 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
4918}
4919
75167d2c
SC
4920/* Send an abort for the specified command.
4921 * If the device and controller support it,
4922 * send a task abort request.
4923 */
4924static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4925{
4926
4927 int i, rc;
4928 struct ctlr_info *h;
4929 struct hpsa_scsi_dev_t *dev;
4930 struct CommandList *abort; /* pointer to command to be aborted */
75167d2c
SC
4931 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
4932 char msg[256]; /* For debug messaging. */
4933 int ml = 0;
2b08b3e9 4934 __le32 tagupper, taglower;
25163bd5
WS
4935 int refcount, reply_queue;
4936
4937 if (sc == NULL)
4938 return FAILED;
75167d2c 4939
9b5c48c2
SC
4940 if (sc->device == NULL)
4941 return FAILED;
4942
75167d2c
SC
4943 /* Find the controller of the command to be aborted */
4944 h = sdev_to_hba(sc->device);
9b5c48c2 4945 if (h == NULL)
75167d2c
SC
4946 return FAILED;
4947
25163bd5
WS
4948 /* Find the device of the command to be aborted */
4949 dev = sc->device->hostdata;
4950 if (!dev) {
4951 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4952 msg);
e345893b 4953 return FAILED;
25163bd5
WS
4954 }
4955
4956 /* If controller locked up, we can guarantee command won't complete */
4957 if (lockup_detected(h)) {
4958 hpsa_show_dev_msg(KERN_WARNING, h, dev,
4959 "ABORT FAILED, lockup detected");
4960 return FAILED;
4961 }
4962
4963 /* This is a good time to check if controller lockup has occurred */
4964 if (detect_controller_lockup(h)) {
4965 hpsa_show_dev_msg(KERN_WARNING, h, dev,
4966 "ABORT FAILED, new lockup detected");
4967 return FAILED;
4968 }
e345893b 4969
75167d2c
SC
4970 /* Check that controller supports some kind of task abort */
4971 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4972 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4973 return FAILED;
4974
4975 memset(msg, 0, sizeof(msg));
0d96ef5f 4976 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s",
75167d2c 4977 h->scsi_host->host_no, sc->device->channel,
0d96ef5f
WS
4978 sc->device->id, sc->device->lun,
4979 "Aborting command");
75167d2c 4980
75167d2c
SC
4981 /* Get SCSI command to be aborted */
4982 abort = (struct CommandList *) sc->host_scribble;
4983 if (abort == NULL) {
281a7fd0
WS
4984 /* This can happen if the command already completed. */
4985 return SUCCESS;
4986 }
4987 refcount = atomic_inc_return(&abort->refcount);
4988 if (refcount == 1) { /* Command is done already. */
4989 cmd_free(h, abort);
4990 return SUCCESS;
75167d2c 4991 }
9b5c48c2
SC
4992
4993 /* Don't bother trying the abort if we know it won't work. */
4994 if (abort->cmd_type != CMD_IOACCEL2 &&
4995 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
4996 cmd_free(h, abort);
4997 return FAILED;
4998 }
4999
17eb87d2 5000 hpsa_get_tag(h, abort, &taglower, &tagupper);
25163bd5 5001 reply_queue = hpsa_extract_reply_queue(h, abort);
17eb87d2 5002 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
7fa3030c 5003 as = abort->scsi_cmd;
75167d2c
SC
5004 if (as != NULL)
5005 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
5006 as->cmnd[0], as->serial_number);
5007 dev_dbg(&h->pdev->dev, "%s\n", msg);
0d96ef5f 5008 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
75167d2c
SC
5009 /*
5010 * Command is in flight, or possibly already completed
5011 * by the firmware (but not to the scsi mid layer) but we can't
5012 * distinguish which. Send the abort down.
5013 */
9b5c48c2
SC
5014 if (wait_for_available_abort_cmd(h)) {
5015 dev_warn(&h->pdev->dev,
5016 "Timed out waiting for an abort command to become available.\n");
5017 cmd_free(h, abort);
5018 return FAILED;
5019 }
25163bd5 5020 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
9b5c48c2
SC
5021 atomic_inc(&h->abort_cmds_available);
5022 wake_up_all(&h->abort_cmd_wait_queue);
75167d2c 5023 if (rc != 0) {
0d96ef5f
WS
5024 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5025 "FAILED to abort command");
281a7fd0 5026 cmd_free(h, abort);
75167d2c
SC
5027 return FAILED;
5028 }
5029 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
5030
5031 /* If the abort(s) above completed and actually aborted the
5032 * command, then the command to be aborted should already be
5033 * completed. If not, wait around a bit more to see if they
5034 * manage to complete normally.
5035 */
5036#define ABORT_COMPLETE_WAIT_SECS 30
5037 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
281a7fd0
WS
5038 refcount = atomic_read(&abort->refcount);
5039 if (refcount < 2) {
5040 cmd_free(h, abort);
75167d2c 5041 return SUCCESS;
281a7fd0
WS
5042 } else {
5043 msleep(100);
5044 }
75167d2c
SC
5045 }
5046 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
5047 msg, ABORT_COMPLETE_WAIT_SECS);
281a7fd0 5048 cmd_free(h, abort);
75167d2c
SC
5049 return FAILED;
5050}
5051
edd16368
SC
5052/*
5053 * For operations that cannot sleep, a command block is allocated at init,
5054 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5055 * which ones are free or in use. Lock must be held when calling this.
5056 * cmd_free() is the complement.
5057 */
281a7fd0 5058
edd16368
SC
5059static struct CommandList *cmd_alloc(struct ctlr_info *h)
5060{
5061 struct CommandList *c;
360c73bd 5062 int refcount, i;
33811026 5063 unsigned long offset;
4c413128 5064
33811026
RE
5065 /*
5066 * There is some *extremely* small but non-zero chance that that
4c413128
SC
5067 * multiple threads could get in here, and one thread could
5068 * be scanning through the list of bits looking for a free
5069 * one, but the free ones are always behind him, and other
5070 * threads sneak in behind him and eat them before he can
5071 * get to them, so that while there is always a free one, a
5072 * very unlucky thread might be starved anyway, never able to
5073 * beat the other threads. In reality, this happens so
5074 * infrequently as to be indistinguishable from never.
5075 */
edd16368 5076
33811026 5077 offset = h->last_allocation; /* benignly racy */
281a7fd0
WS
5078 for (;;) {
5079 i = find_next_zero_bit(h->cmd_pool_bits, h->nr_cmds, offset);
5080 if (unlikely(i == h->nr_cmds)) {
5081 offset = 0;
5082 continue;
5083 }
5084 c = h->cmd_pool + i;
5085 refcount = atomic_inc_return(&c->refcount);
5086 if (unlikely(refcount > 1)) {
5087 cmd_free(h, c); /* already in use */
5088 offset = (i + 1) % h->nr_cmds;
5089 continue;
5090 }
5091 set_bit(i & (BITS_PER_LONG - 1),
5092 h->cmd_pool_bits + (i / BITS_PER_LONG));
5093 break; /* it's ours now. */
5094 }
33811026 5095 h->last_allocation = i; /* benignly racy */
360c73bd 5096 hpsa_cmd_partial_init(h, i, c);
edd16368
SC
5097 return c;
5098}
5099
edd16368
SC
5100static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5101{
281a7fd0
WS
5102 if (atomic_dec_and_test(&c->refcount)) {
5103 int i;
edd16368 5104
281a7fd0
WS
5105 i = c - h->cmd_pool;
5106 clear_bit(i & (BITS_PER_LONG - 1),
5107 h->cmd_pool_bits + (i / BITS_PER_LONG));
5108 }
edd16368
SC
5109}
5110
edd16368
SC
5111#ifdef CONFIG_COMPAT
5112
42a91641
DB
5113static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5114 void __user *arg)
edd16368
SC
5115{
5116 IOCTL32_Command_struct __user *arg32 =
5117 (IOCTL32_Command_struct __user *) arg;
5118 IOCTL_Command_struct arg64;
5119 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5120 int err;
5121 u32 cp;
5122
938abd84 5123 memset(&arg64, 0, sizeof(arg64));
edd16368
SC
5124 err = 0;
5125 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5126 sizeof(arg64.LUN_info));
5127 err |= copy_from_user(&arg64.Request, &arg32->Request,
5128 sizeof(arg64.Request));
5129 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5130 sizeof(arg64.error_info));
5131 err |= get_user(arg64.buf_size, &arg32->buf_size);
5132 err |= get_user(cp, &arg32->buf);
5133 arg64.buf = compat_ptr(cp);
5134 err |= copy_to_user(p, &arg64, sizeof(arg64));
5135
5136 if (err)
5137 return -EFAULT;
5138
42a91641 5139 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
edd16368
SC
5140 if (err)
5141 return err;
5142 err |= copy_in_user(&arg32->error_info, &p->error_info,
5143 sizeof(arg32->error_info));
5144 if (err)
5145 return -EFAULT;
5146 return err;
5147}
5148
5149static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
42a91641 5150 int cmd, void __user *arg)
edd16368
SC
5151{
5152 BIG_IOCTL32_Command_struct __user *arg32 =
5153 (BIG_IOCTL32_Command_struct __user *) arg;
5154 BIG_IOCTL_Command_struct arg64;
5155 BIG_IOCTL_Command_struct __user *p =
5156 compat_alloc_user_space(sizeof(arg64));
5157 int err;
5158 u32 cp;
5159
938abd84 5160 memset(&arg64, 0, sizeof(arg64));
edd16368
SC
5161 err = 0;
5162 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5163 sizeof(arg64.LUN_info));
5164 err |= copy_from_user(&arg64.Request, &arg32->Request,
5165 sizeof(arg64.Request));
5166 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5167 sizeof(arg64.error_info));
5168 err |= get_user(arg64.buf_size, &arg32->buf_size);
5169 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5170 err |= get_user(cp, &arg32->buf);
5171 arg64.buf = compat_ptr(cp);
5172 err |= copy_to_user(p, &arg64, sizeof(arg64));
5173
5174 if (err)
5175 return -EFAULT;
5176
42a91641 5177 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
edd16368
SC
5178 if (err)
5179 return err;
5180 err |= copy_in_user(&arg32->error_info, &p->error_info,
5181 sizeof(arg32->error_info));
5182 if (err)
5183 return -EFAULT;
5184 return err;
5185}
71fe75a7 5186
42a91641 5187static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
71fe75a7
SC
5188{
5189 switch (cmd) {
5190 case CCISS_GETPCIINFO:
5191 case CCISS_GETINTINFO:
5192 case CCISS_SETINTINFO:
5193 case CCISS_GETNODENAME:
5194 case CCISS_SETNODENAME:
5195 case CCISS_GETHEARTBEAT:
5196 case CCISS_GETBUSTYPES:
5197 case CCISS_GETFIRMVER:
5198 case CCISS_GETDRIVVER:
5199 case CCISS_REVALIDVOLS:
5200 case CCISS_DEREGDISK:
5201 case CCISS_REGNEWDISK:
5202 case CCISS_REGNEWD:
5203 case CCISS_RESCANDISK:
5204 case CCISS_GETLUNINFO:
5205 return hpsa_ioctl(dev, cmd, arg);
5206
5207 case CCISS_PASSTHRU32:
5208 return hpsa_ioctl32_passthru(dev, cmd, arg);
5209 case CCISS_BIG_PASSTHRU32:
5210 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5211
5212 default:
5213 return -ENOIOCTLCMD;
5214 }
5215}
edd16368
SC
5216#endif
5217
5218static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5219{
5220 struct hpsa_pci_info pciinfo;
5221
5222 if (!argp)
5223 return -EINVAL;
5224 pciinfo.domain = pci_domain_nr(h->pdev->bus);
5225 pciinfo.bus = h->pdev->bus->number;
5226 pciinfo.dev_fn = h->pdev->devfn;
5227 pciinfo.board_id = h->board_id;
5228 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5229 return -EFAULT;
5230 return 0;
5231}
5232
5233static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5234{
5235 DriverVer_type DriverVer;
5236 unsigned char vmaj, vmin, vsubmin;
5237 int rc;
5238
5239 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5240 &vmaj, &vmin, &vsubmin);
5241 if (rc != 3) {
5242 dev_info(&h->pdev->dev, "driver version string '%s' "
5243 "unrecognized.", HPSA_DRIVER_VERSION);
5244 vmaj = 0;
5245 vmin = 0;
5246 vsubmin = 0;
5247 }
5248 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
5249 if (!argp)
5250 return -EINVAL;
5251 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
5252 return -EFAULT;
5253 return 0;
5254}
5255
5256static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5257{
5258 IOCTL_Command_struct iocommand;
5259 struct CommandList *c;
5260 char *buff = NULL;
50a0decf 5261 u64 temp64;
c1f63c8f 5262 int rc = 0;
edd16368
SC
5263
5264 if (!argp)
5265 return -EINVAL;
5266 if (!capable(CAP_SYS_RAWIO))
5267 return -EPERM;
5268 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
5269 return -EFAULT;
5270 if ((iocommand.buf_size < 1) &&
5271 (iocommand.Request.Type.Direction != XFER_NONE)) {
5272 return -EINVAL;
5273 }
5274 if (iocommand.buf_size > 0) {
5275 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
5276 if (buff == NULL)
5277 return -EFAULT;
9233fb10 5278 if (iocommand.Request.Type.Direction & XFER_WRITE) {
b03a7771
SC
5279 /* Copy the data into the buffer we created */
5280 if (copy_from_user(buff, iocommand.buf,
5281 iocommand.buf_size)) {
c1f63c8f
SC
5282 rc = -EFAULT;
5283 goto out_kfree;
b03a7771
SC
5284 }
5285 } else {
5286 memset(buff, 0, iocommand.buf_size);
edd16368 5287 }
b03a7771 5288 }
45fcb86e 5289 c = cmd_alloc(h);
edd16368 5290 if (c == NULL) {
c1f63c8f
SC
5291 rc = -ENOMEM;
5292 goto out_kfree;
edd16368
SC
5293 }
5294 /* Fill in the command type */
5295 c->cmd_type = CMD_IOCTL_PEND;
5296 /* Fill in Command Header */
5297 c->Header.ReplyQueue = 0; /* unused in simple mode */
5298 if (iocommand.buf_size > 0) { /* buffer to fill */
5299 c->Header.SGList = 1;
50a0decf 5300 c->Header.SGTotal = cpu_to_le16(1);
edd16368
SC
5301 } else { /* no buffers to fill */
5302 c->Header.SGList = 0;
50a0decf 5303 c->Header.SGTotal = cpu_to_le16(0);
edd16368
SC
5304 }
5305 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
edd16368
SC
5306
5307 /* Fill in Request block */
5308 memcpy(&c->Request, &iocommand.Request,
5309 sizeof(c->Request));
5310
5311 /* Fill in the scatter gather information */
5312 if (iocommand.buf_size > 0) {
50a0decf 5313 temp64 = pci_map_single(h->pdev, buff,
edd16368 5314 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
50a0decf
SC
5315 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
5316 c->SG[0].Addr = cpu_to_le64(0);
5317 c->SG[0].Len = cpu_to_le32(0);
bcc48ffa
SC
5318 rc = -ENOMEM;
5319 goto out;
5320 }
50a0decf
SC
5321 c->SG[0].Addr = cpu_to_le64(temp64);
5322 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
5323 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
edd16368 5324 }
25163bd5 5325 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
c2dd32e0
SC
5326 if (iocommand.buf_size > 0)
5327 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
edd16368 5328 check_ioctl_unit_attention(h, c);
25163bd5
WS
5329 if (rc) {
5330 rc = -EIO;
5331 goto out;
5332 }
edd16368
SC
5333
5334 /* Copy the error information out */
5335 memcpy(&iocommand.error_info, c->err_info,
5336 sizeof(iocommand.error_info));
5337 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
c1f63c8f
SC
5338 rc = -EFAULT;
5339 goto out;
edd16368 5340 }
9233fb10 5341 if ((iocommand.Request.Type.Direction & XFER_READ) &&
b03a7771 5342 iocommand.buf_size > 0) {
edd16368
SC
5343 /* Copy the data out of the buffer we created */
5344 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
c1f63c8f
SC
5345 rc = -EFAULT;
5346 goto out;
edd16368
SC
5347 }
5348 }
c1f63c8f 5349out:
45fcb86e 5350 cmd_free(h, c);
c1f63c8f
SC
5351out_kfree:
5352 kfree(buff);
5353 return rc;
edd16368
SC
5354}
5355
5356static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5357{
5358 BIG_IOCTL_Command_struct *ioc;
5359 struct CommandList *c;
5360 unsigned char **buff = NULL;
5361 int *buff_size = NULL;
50a0decf 5362 u64 temp64;
edd16368
SC
5363 BYTE sg_used = 0;
5364 int status = 0;
01a02ffc
SC
5365 u32 left;
5366 u32 sz;
edd16368
SC
5367 BYTE __user *data_ptr;
5368
5369 if (!argp)
5370 return -EINVAL;
5371 if (!capable(CAP_SYS_RAWIO))
5372 return -EPERM;
5373 ioc = (BIG_IOCTL_Command_struct *)
5374 kmalloc(sizeof(*ioc), GFP_KERNEL);
5375 if (!ioc) {
5376 status = -ENOMEM;
5377 goto cleanup1;
5378 }
5379 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5380 status = -EFAULT;
5381 goto cleanup1;
5382 }
5383 if ((ioc->buf_size < 1) &&
5384 (ioc->Request.Type.Direction != XFER_NONE)) {
5385 status = -EINVAL;
5386 goto cleanup1;
5387 }
5388 /* Check kmalloc limits using all SGs */
5389 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5390 status = -EINVAL;
5391 goto cleanup1;
5392 }
d66ae08b 5393 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
edd16368
SC
5394 status = -EINVAL;
5395 goto cleanup1;
5396 }
d66ae08b 5397 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
edd16368
SC
5398 if (!buff) {
5399 status = -ENOMEM;
5400 goto cleanup1;
5401 }
d66ae08b 5402 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
edd16368
SC
5403 if (!buff_size) {
5404 status = -ENOMEM;
5405 goto cleanup1;
5406 }
5407 left = ioc->buf_size;
5408 data_ptr = ioc->buf;
5409 while (left) {
5410 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
5411 buff_size[sg_used] = sz;
5412 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
5413 if (buff[sg_used] == NULL) {
5414 status = -ENOMEM;
5415 goto cleanup1;
5416 }
9233fb10 5417 if (ioc->Request.Type.Direction & XFER_WRITE) {
edd16368 5418 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
0758f4f7 5419 status = -EFAULT;
edd16368
SC
5420 goto cleanup1;
5421 }
5422 } else
5423 memset(buff[sg_used], 0, sz);
5424 left -= sz;
5425 data_ptr += sz;
5426 sg_used++;
5427 }
45fcb86e 5428 c = cmd_alloc(h);
edd16368
SC
5429 if (c == NULL) {
5430 status = -ENOMEM;
5431 goto cleanup1;
5432 }
5433 c->cmd_type = CMD_IOCTL_PEND;
5434 c->Header.ReplyQueue = 0;
50a0decf
SC
5435 c->Header.SGList = (u8) sg_used;
5436 c->Header.SGTotal = cpu_to_le16(sg_used);
edd16368 5437 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
edd16368
SC
5438 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5439 if (ioc->buf_size > 0) {
5440 int i;
5441 for (i = 0; i < sg_used; i++) {
50a0decf 5442 temp64 = pci_map_single(h->pdev, buff[i],
edd16368 5443 buff_size[i], PCI_DMA_BIDIRECTIONAL);
50a0decf
SC
5444 if (dma_mapping_error(&h->pdev->dev,
5445 (dma_addr_t) temp64)) {
5446 c->SG[i].Addr = cpu_to_le64(0);
5447 c->SG[i].Len = cpu_to_le32(0);
bcc48ffa
SC
5448 hpsa_pci_unmap(h->pdev, c, i,
5449 PCI_DMA_BIDIRECTIONAL);
5450 status = -ENOMEM;
e2d4a1f6 5451 goto cleanup0;
bcc48ffa 5452 }
50a0decf
SC
5453 c->SG[i].Addr = cpu_to_le64(temp64);
5454 c->SG[i].Len = cpu_to_le32(buff_size[i]);
5455 c->SG[i].Ext = cpu_to_le32(0);
edd16368 5456 }
50a0decf 5457 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
edd16368 5458 }
25163bd5 5459 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
b03a7771
SC
5460 if (sg_used)
5461 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
edd16368 5462 check_ioctl_unit_attention(h, c);
25163bd5
WS
5463 if (status) {
5464 status = -EIO;
5465 goto cleanup0;
5466 }
5467
edd16368
SC
5468 /* Copy the error information out */
5469 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5470 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
edd16368 5471 status = -EFAULT;
e2d4a1f6 5472 goto cleanup0;
edd16368 5473 }
9233fb10 5474 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
2b08b3e9
DB
5475 int i;
5476
edd16368
SC
5477 /* Copy the data out of the buffer we created */
5478 BYTE __user *ptr = ioc->buf;
5479 for (i = 0; i < sg_used; i++) {
5480 if (copy_to_user(ptr, buff[i], buff_size[i])) {
edd16368 5481 status = -EFAULT;
e2d4a1f6 5482 goto cleanup0;
edd16368
SC
5483 }
5484 ptr += buff_size[i];
5485 }
5486 }
edd16368 5487 status = 0;
e2d4a1f6 5488cleanup0:
45fcb86e 5489 cmd_free(h, c);
edd16368
SC
5490cleanup1:
5491 if (buff) {
2b08b3e9
DB
5492 int i;
5493
edd16368
SC
5494 for (i = 0; i < sg_used; i++)
5495 kfree(buff[i]);
5496 kfree(buff);
5497 }
5498 kfree(buff_size);
5499 kfree(ioc);
5500 return status;
5501}
5502
5503static void check_ioctl_unit_attention(struct ctlr_info *h,
5504 struct CommandList *c)
5505{
5506 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5507 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5508 (void) check_for_unit_attention(h, c);
5509}
0390f0c0 5510
edd16368
SC
5511/*
5512 * ioctl
5513 */
42a91641 5514static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
edd16368
SC
5515{
5516 struct ctlr_info *h;
5517 void __user *argp = (void __user *)arg;
0390f0c0 5518 int rc;
edd16368
SC
5519
5520 h = sdev_to_hba(dev);
5521
5522 switch (cmd) {
5523 case CCISS_DEREGDISK:
5524 case CCISS_REGNEWDISK:
5525 case CCISS_REGNEWD:
a08a8471 5526 hpsa_scan_start(h->scsi_host);
edd16368
SC
5527 return 0;
5528 case CCISS_GETPCIINFO:
5529 return hpsa_getpciinfo_ioctl(h, argp);
5530 case CCISS_GETDRIVVER:
5531 return hpsa_getdrivver_ioctl(h, argp);
5532 case CCISS_PASSTHRU:
34f0c627 5533 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
0390f0c0
SC
5534 return -EAGAIN;
5535 rc = hpsa_passthru_ioctl(h, argp);
34f0c627 5536 atomic_inc(&h->passthru_cmds_avail);
0390f0c0 5537 return rc;
edd16368 5538 case CCISS_BIG_PASSTHRU:
34f0c627 5539 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
0390f0c0
SC
5540 return -EAGAIN;
5541 rc = hpsa_big_passthru_ioctl(h, argp);
34f0c627 5542 atomic_inc(&h->passthru_cmds_avail);
0390f0c0 5543 return rc;
edd16368
SC
5544 default:
5545 return -ENOTTY;
5546 }
5547}
5548
6f039790
GKH
5549static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5550 u8 reset_type)
64670ac8
SC
5551{
5552 struct CommandList *c;
5553
5554 c = cmd_alloc(h);
5555 if (!c)
5556 return -ENOMEM;
a2dac136
SC
5557 /* fill_cmd can't fail here, no data buffer to map */
5558 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
64670ac8
SC
5559 RAID_CTLR_LUNID, TYPE_MSG);
5560 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5561 c->waiting = NULL;
5562 enqueue_cmd_and_start_io(h, c);
5563 /* Don't wait for completion, the reset won't complete. Don't free
5564 * the command either. This is the last command we will send before
5565 * re-initializing everything, so it doesn't matter and won't leak.
5566 */
5567 return 0;
5568}
5569
a2dac136 5570static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
b7bb24eb 5571 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
edd16368
SC
5572 int cmd_type)
5573{
5574 int pci_dir = XFER_NONE;
9b5c48c2 5575 u64 tag; /* for commands to be aborted */
edd16368
SC
5576
5577 c->cmd_type = CMD_IOCTL_PEND;
5578 c->Header.ReplyQueue = 0;
5579 if (buff != NULL && size > 0) {
5580 c->Header.SGList = 1;
50a0decf 5581 c->Header.SGTotal = cpu_to_le16(1);
edd16368
SC
5582 } else {
5583 c->Header.SGList = 0;
50a0decf 5584 c->Header.SGTotal = cpu_to_le16(0);
edd16368 5585 }
edd16368
SC
5586 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5587
edd16368
SC
5588 if (cmd_type == TYPE_CMD) {
5589 switch (cmd) {
5590 case HPSA_INQUIRY:
5591 /* are we trying to read a vital product page */
b7bb24eb 5592 if (page_code & VPD_PAGE) {
edd16368 5593 c->Request.CDB[1] = 0x01;
b7bb24eb 5594 c->Request.CDB[2] = (page_code & 0xff);
edd16368
SC
5595 }
5596 c->Request.CDBLen = 6;
a505b86f
SC
5597 c->Request.type_attr_dir =
5598 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
edd16368
SC
5599 c->Request.Timeout = 0;
5600 c->Request.CDB[0] = HPSA_INQUIRY;
5601 c->Request.CDB[4] = size & 0xFF;
5602 break;
5603 case HPSA_REPORT_LOG:
5604 case HPSA_REPORT_PHYS:
5605 /* Talking to controller so It's a physical command
5606 mode = 00 target = 0. Nothing to write.
5607 */
5608 c->Request.CDBLen = 12;
a505b86f
SC
5609 c->Request.type_attr_dir =
5610 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
edd16368
SC
5611 c->Request.Timeout = 0;
5612 c->Request.CDB[0] = cmd;
5613 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5614 c->Request.CDB[7] = (size >> 16) & 0xFF;
5615 c->Request.CDB[8] = (size >> 8) & 0xFF;
5616 c->Request.CDB[9] = size & 0xFF;
5617 break;
edd16368
SC
5618 case HPSA_CACHE_FLUSH:
5619 c->Request.CDBLen = 12;
a505b86f
SC
5620 c->Request.type_attr_dir =
5621 TYPE_ATTR_DIR(cmd_type,
5622 ATTR_SIMPLE, XFER_WRITE);
edd16368
SC
5623 c->Request.Timeout = 0;
5624 c->Request.CDB[0] = BMIC_WRITE;
5625 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
bb158eab
SC
5626 c->Request.CDB[7] = (size >> 8) & 0xFF;
5627 c->Request.CDB[8] = size & 0xFF;
edd16368
SC
5628 break;
5629 case TEST_UNIT_READY:
5630 c->Request.CDBLen = 6;
a505b86f
SC
5631 c->Request.type_attr_dir =
5632 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
edd16368
SC
5633 c->Request.Timeout = 0;
5634 break;
283b4a9b
SC
5635 case HPSA_GET_RAID_MAP:
5636 c->Request.CDBLen = 12;
a505b86f
SC
5637 c->Request.type_attr_dir =
5638 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
283b4a9b
SC
5639 c->Request.Timeout = 0;
5640 c->Request.CDB[0] = HPSA_CISS_READ;
5641 c->Request.CDB[1] = cmd;
5642 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5643 c->Request.CDB[7] = (size >> 16) & 0xFF;
5644 c->Request.CDB[8] = (size >> 8) & 0xFF;
5645 c->Request.CDB[9] = size & 0xFF;
5646 break;
316b221a
SC
5647 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5648 c->Request.CDBLen = 10;
a505b86f
SC
5649 c->Request.type_attr_dir =
5650 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
316b221a
SC
5651 c->Request.Timeout = 0;
5652 c->Request.CDB[0] = BMIC_READ;
5653 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5654 c->Request.CDB[7] = (size >> 16) & 0xFF;
5655 c->Request.CDB[8] = (size >> 8) & 0xFF;
5656 break;
03383736
DB
5657 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
5658 c->Request.CDBLen = 10;
5659 c->Request.type_attr_dir =
5660 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5661 c->Request.Timeout = 0;
5662 c->Request.CDB[0] = BMIC_READ;
5663 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
5664 c->Request.CDB[7] = (size >> 16) & 0xFF;
5665 c->Request.CDB[8] = (size >> 8) & 0XFF;
5666 break;
edd16368
SC
5667 default:
5668 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5669 BUG();
a2dac136 5670 return -1;
edd16368
SC
5671 }
5672 } else if (cmd_type == TYPE_MSG) {
5673 switch (cmd) {
5674
5675 case HPSA_DEVICE_RESET_MSG:
5676 c->Request.CDBLen = 16;
a505b86f
SC
5677 c->Request.type_attr_dir =
5678 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
edd16368 5679 c->Request.Timeout = 0; /* Don't time out */
64670ac8
SC
5680 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5681 c->Request.CDB[0] = cmd;
21e89afd 5682 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
edd16368
SC
5683 /* If bytes 4-7 are zero, it means reset the */
5684 /* LunID device */
5685 c->Request.CDB[4] = 0x00;
5686 c->Request.CDB[5] = 0x00;
5687 c->Request.CDB[6] = 0x00;
5688 c->Request.CDB[7] = 0x00;
75167d2c
SC
5689 break;
5690 case HPSA_ABORT_MSG:
9b5c48c2 5691 memcpy(&tag, buff, sizeof(tag));
2b08b3e9 5692 dev_dbg(&h->pdev->dev,
9b5c48c2
SC
5693 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
5694 tag, c->Header.tag);
75167d2c 5695 c->Request.CDBLen = 16;
a505b86f
SC
5696 c->Request.type_attr_dir =
5697 TYPE_ATTR_DIR(cmd_type,
5698 ATTR_SIMPLE, XFER_WRITE);
75167d2c
SC
5699 c->Request.Timeout = 0; /* Don't time out */
5700 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5701 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5702 c->Request.CDB[2] = 0x00; /* reserved */
5703 c->Request.CDB[3] = 0x00; /* reserved */
5704 /* Tag to abort goes in CDB[4]-CDB[11] */
9b5c48c2 5705 memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
75167d2c
SC
5706 c->Request.CDB[12] = 0x00; /* reserved */
5707 c->Request.CDB[13] = 0x00; /* reserved */
5708 c->Request.CDB[14] = 0x00; /* reserved */
5709 c->Request.CDB[15] = 0x00; /* reserved */
edd16368 5710 break;
edd16368
SC
5711 default:
5712 dev_warn(&h->pdev->dev, "unknown message type %d\n",
5713 cmd);
5714 BUG();
5715 }
5716 } else {
5717 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5718 BUG();
5719 }
5720
a505b86f 5721 switch (GET_DIR(c->Request.type_attr_dir)) {
edd16368
SC
5722 case XFER_READ:
5723 pci_dir = PCI_DMA_FROMDEVICE;
5724 break;
5725 case XFER_WRITE:
5726 pci_dir = PCI_DMA_TODEVICE;
5727 break;
5728 case XFER_NONE:
5729 pci_dir = PCI_DMA_NONE;
5730 break;
5731 default:
5732 pci_dir = PCI_DMA_BIDIRECTIONAL;
5733 }
a2dac136
SC
5734 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5735 return -1;
5736 return 0;
edd16368
SC
5737}
5738
5739/*
5740 * Map (physical) PCI mem into (virtual) kernel space
5741 */
5742static void __iomem *remap_pci_mem(ulong base, ulong size)
5743{
5744 ulong page_base = ((ulong) base) & PAGE_MASK;
5745 ulong page_offs = ((ulong) base) - page_base;
088ba34c
SC
5746 void __iomem *page_remapped = ioremap_nocache(page_base,
5747 page_offs + size);
edd16368
SC
5748
5749 return page_remapped ? (page_remapped + page_offs) : NULL;
5750}
5751
254f796b 5752static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
edd16368 5753{
254f796b 5754 return h->access.command_completed(h, q);
edd16368
SC
5755}
5756
900c5440 5757static inline bool interrupt_pending(struct ctlr_info *h)
edd16368
SC
5758{
5759 return h->access.intr_pending(h);
5760}
5761
5762static inline long interrupt_not_for_us(struct ctlr_info *h)
5763{
10f66018
SC
5764 return (h->access.intr_pending(h) == 0) ||
5765 (h->interrupts_enabled == 0);
edd16368
SC
5766}
5767
01a02ffc
SC
5768static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5769 u32 raw_tag)
edd16368
SC
5770{
5771 if (unlikely(tag_index >= h->nr_cmds)) {
5772 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5773 return 1;
5774 }
5775 return 0;
5776}
5777
5a3d16f5 5778static inline void finish_cmd(struct CommandList *c)
edd16368 5779{
e85c5974 5780 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
c349775e
ST
5781 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5782 || c->cmd_type == CMD_IOACCEL2))
1fb011fb 5783 complete_scsi_command(c);
edd16368
SC
5784 else if (c->cmd_type == CMD_IOCTL_PEND)
5785 complete(c->waiting);
a104c99f
SC
5786}
5787
a9a3a273
SC
5788
5789static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
a104c99f 5790{
a9a3a273
SC
5791#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5792#define HPSA_SIMPLE_ERROR_BITS 0x03
960a30e7 5793 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
a9a3a273
SC
5794 return tag & ~HPSA_SIMPLE_ERROR_BITS;
5795 return tag & ~HPSA_PERF_ERROR_BITS;
a104c99f
SC
5796}
5797
303932fd 5798/* process completion of an indexed ("direct lookup") command */
1d94f94d 5799static inline void process_indexed_cmd(struct ctlr_info *h,
303932fd
DB
5800 u32 raw_tag)
5801{
5802 u32 tag_index;
5803 struct CommandList *c;
5804
f2405db8 5805 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
1d94f94d
SC
5806 if (!bad_tag(h, tag_index, raw_tag)) {
5807 c = h->cmd_pool + tag_index;
5808 finish_cmd(c);
5809 }
303932fd
DB
5810}
5811
64670ac8
SC
5812/* Some controllers, like p400, will give us one interrupt
5813 * after a soft reset, even if we turned interrupts off.
5814 * Only need to check for this in the hpsa_xxx_discard_completions
5815 * functions.
5816 */
5817static int ignore_bogus_interrupt(struct ctlr_info *h)
5818{
5819 if (likely(!reset_devices))
5820 return 0;
5821
5822 if (likely(h->interrupts_enabled))
5823 return 0;
5824
5825 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5826 "(known firmware bug.) Ignoring.\n");
5827
5828 return 1;
5829}
5830
254f796b
MG
5831/*
5832 * Convert &h->q[x] (passed to interrupt handlers) back to h.
5833 * Relies on (h-q[x] == x) being true for x such that
5834 * 0 <= x < MAX_REPLY_QUEUES.
5835 */
5836static struct ctlr_info *queue_to_hba(u8 *queue)
64670ac8 5837{
254f796b
MG
5838 return container_of((queue - *queue), struct ctlr_info, q[0]);
5839}
5840
5841static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5842{
5843 struct ctlr_info *h = queue_to_hba(queue);
5844 u8 q = *(u8 *) queue;
64670ac8
SC
5845 u32 raw_tag;
5846
5847 if (ignore_bogus_interrupt(h))
5848 return IRQ_NONE;
5849
5850 if (interrupt_not_for_us(h))
5851 return IRQ_NONE;
a0c12413 5852 h->last_intr_timestamp = get_jiffies_64();
64670ac8 5853 while (interrupt_pending(h)) {
254f796b 5854 raw_tag = get_next_completion(h, q);
64670ac8 5855 while (raw_tag != FIFO_EMPTY)
254f796b 5856 raw_tag = next_command(h, q);
64670ac8 5857 }
64670ac8
SC
5858 return IRQ_HANDLED;
5859}
5860
254f796b 5861static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
64670ac8 5862{
254f796b 5863 struct ctlr_info *h = queue_to_hba(queue);
64670ac8 5864 u32 raw_tag;
254f796b 5865 u8 q = *(u8 *) queue;
64670ac8
SC
5866
5867 if (ignore_bogus_interrupt(h))
5868 return IRQ_NONE;
5869
a0c12413 5870 h->last_intr_timestamp = get_jiffies_64();
254f796b 5871 raw_tag = get_next_completion(h, q);
64670ac8 5872 while (raw_tag != FIFO_EMPTY)
254f796b 5873 raw_tag = next_command(h, q);
64670ac8
SC
5874 return IRQ_HANDLED;
5875}
5876
254f796b 5877static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
edd16368 5878{
254f796b 5879 struct ctlr_info *h = queue_to_hba((u8 *) queue);
303932fd 5880 u32 raw_tag;
254f796b 5881 u8 q = *(u8 *) queue;
edd16368
SC
5882
5883 if (interrupt_not_for_us(h))
5884 return IRQ_NONE;
a0c12413 5885 h->last_intr_timestamp = get_jiffies_64();
10f66018 5886 while (interrupt_pending(h)) {
254f796b 5887 raw_tag = get_next_completion(h, q);
10f66018 5888 while (raw_tag != FIFO_EMPTY) {
f2405db8 5889 process_indexed_cmd(h, raw_tag);
254f796b 5890 raw_tag = next_command(h, q);
10f66018
SC
5891 }
5892 }
10f66018
SC
5893 return IRQ_HANDLED;
5894}
5895
254f796b 5896static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
10f66018 5897{
254f796b 5898 struct ctlr_info *h = queue_to_hba(queue);
10f66018 5899 u32 raw_tag;
254f796b 5900 u8 q = *(u8 *) queue;
10f66018 5901
a0c12413 5902 h->last_intr_timestamp = get_jiffies_64();
254f796b 5903 raw_tag = get_next_completion(h, q);
303932fd 5904 while (raw_tag != FIFO_EMPTY) {
f2405db8 5905 process_indexed_cmd(h, raw_tag);
254f796b 5906 raw_tag = next_command(h, q);
edd16368 5907 }
edd16368
SC
5908 return IRQ_HANDLED;
5909}
5910
a9a3a273
SC
5911/* Send a message CDB to the firmware. Careful, this only works
5912 * in simple mode, not performant mode due to the tag lookup.
5913 * We only ever use this immediately after a controller reset.
5914 */
6f039790
GKH
5915static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5916 unsigned char type)
edd16368
SC
5917{
5918 struct Command {
5919 struct CommandListHeader CommandHeader;
5920 struct RequestBlock Request;
5921 struct ErrDescriptor ErrorDescriptor;
5922 };
5923 struct Command *cmd;
5924 static const size_t cmd_sz = sizeof(*cmd) +
5925 sizeof(cmd->ErrorDescriptor);
5926 dma_addr_t paddr64;
2b08b3e9
DB
5927 __le32 paddr32;
5928 u32 tag;
edd16368
SC
5929 void __iomem *vaddr;
5930 int i, err;
5931
5932 vaddr = pci_ioremap_bar(pdev, 0);
5933 if (vaddr == NULL)
5934 return -ENOMEM;
5935
5936 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5937 * CCISS commands, so they must be allocated from the lower 4GiB of
5938 * memory.
5939 */
5940 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5941 if (err) {
5942 iounmap(vaddr);
1eaec8f3 5943 return err;
edd16368
SC
5944 }
5945
5946 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5947 if (cmd == NULL) {
5948 iounmap(vaddr);
5949 return -ENOMEM;
5950 }
5951
5952 /* This must fit, because of the 32-bit consistent DMA mask. Also,
5953 * although there's no guarantee, we assume that the address is at
5954 * least 4-byte aligned (most likely, it's page-aligned).
5955 */
2b08b3e9 5956 paddr32 = cpu_to_le32(paddr64);
edd16368
SC
5957
5958 cmd->CommandHeader.ReplyQueue = 0;
5959 cmd->CommandHeader.SGList = 0;
50a0decf 5960 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
2b08b3e9 5961 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
edd16368
SC
5962 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5963
5964 cmd->Request.CDBLen = 16;
a505b86f
SC
5965 cmd->Request.type_attr_dir =
5966 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
edd16368
SC
5967 cmd->Request.Timeout = 0; /* Don't time out */
5968 cmd->Request.CDB[0] = opcode;
5969 cmd->Request.CDB[1] = type;
5970 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
50a0decf 5971 cmd->ErrorDescriptor.Addr =
2b08b3e9 5972 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
50a0decf 5973 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
edd16368 5974
2b08b3e9 5975 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
edd16368
SC
5976
5977 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5978 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
2b08b3e9 5979 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
edd16368
SC
5980 break;
5981 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5982 }
5983
5984 iounmap(vaddr);
5985
5986 /* we leak the DMA buffer here ... no choice since the controller could
5987 * still complete the command.
5988 */
5989 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5990 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5991 opcode, type);
5992 return -ETIMEDOUT;
5993 }
5994
5995 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5996
5997 if (tag & HPSA_ERROR_BIT) {
5998 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5999 opcode, type);
6000 return -EIO;
6001 }
6002
6003 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6004 opcode, type);
6005 return 0;
6006}
6007
edd16368
SC
6008#define hpsa_noop(p) hpsa_message(p, 3, 0)
6009
1df8552a 6010static int hpsa_controller_hard_reset(struct pci_dev *pdev,
42a91641 6011 void __iomem *vaddr, u32 use_doorbell)
1df8552a 6012{
1df8552a
SC
6013
6014 if (use_doorbell) {
6015 /* For everything after the P600, the PCI power state method
6016 * of resetting the controller doesn't work, so we have this
6017 * other way using the doorbell register.
6018 */
6019 dev_info(&pdev->dev, "using doorbell to reset controller\n");
cf0b08d0 6020 writel(use_doorbell, vaddr + SA5_DOORBELL);
85009239 6021
00701a96 6022 /* PMC hardware guys tell us we need a 10 second delay after
85009239
SC
6023 * doorbell reset and before any attempt to talk to the board
6024 * at all to ensure that this actually works and doesn't fall
6025 * over in some weird corner cases.
6026 */
00701a96 6027 msleep(10000);
1df8552a
SC
6028 } else { /* Try to do it the PCI power state way */
6029
6030 /* Quoting from the Open CISS Specification: "The Power
6031 * Management Control/Status Register (CSR) controls the power
6032 * state of the device. The normal operating state is D0,
6033 * CSR=00h. The software off state is D3, CSR=03h. To reset
6034 * the controller, place the interface device in D3 then to D0,
6035 * this causes a secondary PCI reset which will reset the
6036 * controller." */
2662cab8
DB
6037
6038 int rc = 0;
6039
1df8552a 6040 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
2662cab8 6041
1df8552a 6042 /* enter the D3hot power management state */
2662cab8
DB
6043 rc = pci_set_power_state(pdev, PCI_D3hot);
6044 if (rc)
6045 return rc;
1df8552a
SC
6046
6047 msleep(500);
6048
6049 /* enter the D0 power management state */
2662cab8
DB
6050 rc = pci_set_power_state(pdev, PCI_D0);
6051 if (rc)
6052 return rc;
c4853efe
MM
6053
6054 /*
6055 * The P600 requires a small delay when changing states.
6056 * Otherwise we may think the board did not reset and we bail.
6057 * This for kdump only and is particular to the P600.
6058 */
6059 msleep(500);
1df8552a
SC
6060 }
6061 return 0;
6062}
6063
6f039790 6064static void init_driver_version(char *driver_version, int len)
580ada3c
SC
6065{
6066 memset(driver_version, 0, len);
f79cfec6 6067 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
580ada3c
SC
6068}
6069
6f039790 6070static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
580ada3c
SC
6071{
6072 char *driver_version;
6073 int i, size = sizeof(cfgtable->driver_version);
6074
6075 driver_version = kmalloc(size, GFP_KERNEL);
6076 if (!driver_version)
6077 return -ENOMEM;
6078
6079 init_driver_version(driver_version, size);
6080 for (i = 0; i < size; i++)
6081 writeb(driver_version[i], &cfgtable->driver_version[i]);
6082 kfree(driver_version);
6083 return 0;
6084}
6085
6f039790
GKH
6086static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6087 unsigned char *driver_ver)
580ada3c
SC
6088{
6089 int i;
6090
6091 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6092 driver_ver[i] = readb(&cfgtable->driver_version[i]);
6093}
6094
6f039790 6095static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
580ada3c
SC
6096{
6097
6098 char *driver_ver, *old_driver_ver;
6099 int rc, size = sizeof(cfgtable->driver_version);
6100
6101 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6102 if (!old_driver_ver)
6103 return -ENOMEM;
6104 driver_ver = old_driver_ver + size;
6105
6106 /* After a reset, the 32 bytes of "driver version" in the cfgtable
6107 * should have been changed, otherwise we know the reset failed.
6108 */
6109 init_driver_version(old_driver_ver, size);
6110 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6111 rc = !memcmp(driver_ver, old_driver_ver, size);
6112 kfree(old_driver_ver);
6113 return rc;
6114}
edd16368 6115/* This does a hard reset of the controller using PCI power management
1df8552a 6116 * states or the using the doorbell register.
edd16368 6117 */
6b6c1cd7 6118static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
edd16368 6119{
1df8552a
SC
6120 u64 cfg_offset;
6121 u32 cfg_base_addr;
6122 u64 cfg_base_addr_index;
6123 void __iomem *vaddr;
6124 unsigned long paddr;
580ada3c 6125 u32 misc_fw_support;
270d05de 6126 int rc;
1df8552a 6127 struct CfgTable __iomem *cfgtable;
cf0b08d0 6128 u32 use_doorbell;
270d05de 6129 u16 command_register;
edd16368 6130
1df8552a
SC
6131 /* For controllers as old as the P600, this is very nearly
6132 * the same thing as
edd16368
SC
6133 *
6134 * pci_save_state(pci_dev);
6135 * pci_set_power_state(pci_dev, PCI_D3hot);
6136 * pci_set_power_state(pci_dev, PCI_D0);
6137 * pci_restore_state(pci_dev);
6138 *
1df8552a
SC
6139 * For controllers newer than the P600, the pci power state
6140 * method of resetting doesn't work so we have another way
6141 * using the doorbell register.
edd16368 6142 */
18867659 6143
60f923b9
RE
6144 if (!ctlr_is_resettable(board_id)) {
6145 dev_warn(&pdev->dev, "Controller not resettable\n");
25c1e56a
SC
6146 return -ENODEV;
6147 }
46380786
SC
6148
6149 /* if controller is soft- but not hard resettable... */
6150 if (!ctlr_is_hard_resettable(board_id))
6151 return -ENOTSUPP; /* try soft reset later. */
18867659 6152
270d05de
SC
6153 /* Save the PCI command register */
6154 pci_read_config_word(pdev, 4, &command_register);
270d05de 6155 pci_save_state(pdev);
edd16368 6156
1df8552a
SC
6157 /* find the first memory BAR, so we can find the cfg table */
6158 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6159 if (rc)
6160 return rc;
6161 vaddr = remap_pci_mem(paddr, 0x250);
6162 if (!vaddr)
6163 return -ENOMEM;
edd16368 6164
1df8552a
SC
6165 /* find cfgtable in order to check if reset via doorbell is supported */
6166 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6167 &cfg_base_addr_index, &cfg_offset);
6168 if (rc)
6169 goto unmap_vaddr;
6170 cfgtable = remap_pci_mem(pci_resource_start(pdev,
6171 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6172 if (!cfgtable) {
6173 rc = -ENOMEM;
6174 goto unmap_vaddr;
6175 }
580ada3c
SC
6176 rc = write_driver_ver_to_cfgtable(cfgtable);
6177 if (rc)
03741d95 6178 goto unmap_cfgtable;
edd16368 6179
cf0b08d0
SC
6180 /* If reset via doorbell register is supported, use that.
6181 * There are two such methods. Favor the newest method.
6182 */
1df8552a 6183 misc_fw_support = readl(&cfgtable->misc_fw_support);
cf0b08d0
SC
6184 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6185 if (use_doorbell) {
6186 use_doorbell = DOORBELL_CTLR_RESET2;
6187 } else {
6188 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6189 if (use_doorbell) {
050f7147
SC
6190 dev_warn(&pdev->dev,
6191 "Soft reset not supported. Firmware update is required.\n");
64670ac8 6192 rc = -ENOTSUPP; /* try soft reset */
cf0b08d0
SC
6193 goto unmap_cfgtable;
6194 }
6195 }
edd16368 6196
1df8552a
SC
6197 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6198 if (rc)
6199 goto unmap_cfgtable;
edd16368 6200
270d05de 6201 pci_restore_state(pdev);
270d05de 6202 pci_write_config_word(pdev, 4, command_register);
edd16368 6203
1df8552a
SC
6204 /* Some devices (notably the HP Smart Array 5i Controller)
6205 need a little pause here */
6206 msleep(HPSA_POST_RESET_PAUSE_MSECS);
6207
fe5389c8
SC
6208 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6209 if (rc) {
6210 dev_warn(&pdev->dev,
050f7147 6211 "Failed waiting for board to become ready after hard reset\n");
fe5389c8
SC
6212 goto unmap_cfgtable;
6213 }
fe5389c8 6214
580ada3c
SC
6215 rc = controller_reset_failed(vaddr);
6216 if (rc < 0)
6217 goto unmap_cfgtable;
6218 if (rc) {
64670ac8
SC
6219 dev_warn(&pdev->dev, "Unable to successfully reset "
6220 "controller. Will try soft reset.\n");
6221 rc = -ENOTSUPP;
580ada3c 6222 } else {
64670ac8 6223 dev_info(&pdev->dev, "board ready after hard reset.\n");
1df8552a
SC
6224 }
6225
6226unmap_cfgtable:
6227 iounmap(cfgtable);
6228
6229unmap_vaddr:
6230 iounmap(vaddr);
6231 return rc;
edd16368
SC
6232}
6233
6234/*
6235 * We cannot read the structure directly, for portability we must use
6236 * the io functions.
6237 * This is for debug only.
6238 */
42a91641 6239static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
edd16368 6240{
58f8665c 6241#ifdef HPSA_DEBUG
edd16368
SC
6242 int i;
6243 char temp_name[17];
6244
6245 dev_info(dev, "Controller Configuration information\n");
6246 dev_info(dev, "------------------------------------\n");
6247 for (i = 0; i < 4; i++)
6248 temp_name[i] = readb(&(tb->Signature[i]));
6249 temp_name[4] = '\0';
6250 dev_info(dev, " Signature = %s\n", temp_name);
6251 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
6252 dev_info(dev, " Transport methods supported = 0x%x\n",
6253 readl(&(tb->TransportSupport)));
6254 dev_info(dev, " Transport methods active = 0x%x\n",
6255 readl(&(tb->TransportActive)));
6256 dev_info(dev, " Requested transport Method = 0x%x\n",
6257 readl(&(tb->HostWrite.TransportRequest)));
6258 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
6259 readl(&(tb->HostWrite.CoalIntDelay)));
6260 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
6261 readl(&(tb->HostWrite.CoalIntCount)));
69d6e33d 6262 dev_info(dev, " Max outstanding commands = %d\n",
edd16368
SC
6263 readl(&(tb->CmdsOutMax)));
6264 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6265 for (i = 0; i < 16; i++)
6266 temp_name[i] = readb(&(tb->ServerName[i]));
6267 temp_name[16] = '\0';
6268 dev_info(dev, " Server Name = %s\n", temp_name);
6269 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
6270 readl(&(tb->HeartBeat)));
edd16368 6271#endif /* HPSA_DEBUG */
58f8665c 6272}
edd16368
SC
6273
6274static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6275{
6276 int i, offset, mem_type, bar_type;
6277
6278 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
6279 return 0;
6280 offset = 0;
6281 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6282 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6283 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6284 offset += 4;
6285 else {
6286 mem_type = pci_resource_flags(pdev, i) &
6287 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6288 switch (mem_type) {
6289 case PCI_BASE_ADDRESS_MEM_TYPE_32:
6290 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6291 offset += 4; /* 32 bit */
6292 break;
6293 case PCI_BASE_ADDRESS_MEM_TYPE_64:
6294 offset += 8;
6295 break;
6296 default: /* reserved in PCI 2.2 */
6297 dev_warn(&pdev->dev,
6298 "base address is invalid\n");
6299 return -1;
6300 break;
6301 }
6302 }
6303 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6304 return i + 1;
6305 }
6306 return -1;
6307}
6308
6309/* If MSI/MSI-X is supported by the kernel we will try to enable it on
050f7147 6310 * controllers that are capable. If not, we use legacy INTx mode.
edd16368
SC
6311 */
6312
6f039790 6313static void hpsa_interrupt_mode(struct ctlr_info *h)
edd16368
SC
6314{
6315#ifdef CONFIG_PCI_MSI
254f796b
MG
6316 int err, i;
6317 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6318
6319 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6320 hpsa_msix_entries[i].vector = 0;
6321 hpsa_msix_entries[i].entry = i;
6322 }
edd16368
SC
6323
6324 /* Some boards advertise MSI but don't really support it */
6b3f4c52
SC
6325 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6326 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
edd16368 6327 goto default_int_mode;
55c06c71 6328 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
050f7147 6329 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
eee0f03a 6330 h->msix_vector = MAX_REPLY_QUEUES;
f89439bc
SC
6331 if (h->msix_vector > num_online_cpus())
6332 h->msix_vector = num_online_cpus();
18fce3c4
AG
6333 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6334 1, h->msix_vector);
6335 if (err < 0) {
6336 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6337 h->msix_vector = 0;
6338 goto single_msi_mode;
6339 } else if (err < h->msix_vector) {
55c06c71 6340 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
edd16368 6341 "available\n", err);
edd16368 6342 }
18fce3c4
AG
6343 h->msix_vector = err;
6344 for (i = 0; i < h->msix_vector; i++)
6345 h->intr[i] = hpsa_msix_entries[i].vector;
6346 return;
edd16368 6347 }
18fce3c4 6348single_msi_mode:
55c06c71 6349 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
050f7147 6350 dev_info(&h->pdev->dev, "MSI capable controller\n");
55c06c71 6351 if (!pci_enable_msi(h->pdev))
edd16368
SC
6352 h->msi_vector = 1;
6353 else
55c06c71 6354 dev_warn(&h->pdev->dev, "MSI init failed\n");
edd16368
SC
6355 }
6356default_int_mode:
6357#endif /* CONFIG_PCI_MSI */
6358 /* if we get here we're going to use the default interrupt mode */
a9a3a273 6359 h->intr[h->intr_mode] = h->pdev->irq;
edd16368
SC
6360}
6361
6f039790 6362static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
e5c880d1
SC
6363{
6364 int i;
6365 u32 subsystem_vendor_id, subsystem_device_id;
6366
6367 subsystem_vendor_id = pdev->subsystem_vendor;
6368 subsystem_device_id = pdev->subsystem_device;
6369 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6370 subsystem_vendor_id;
6371
6372 for (i = 0; i < ARRAY_SIZE(products); i++)
6373 if (*board_id == products[i].board_id)
6374 return i;
6375
6798cc0a
SC
6376 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6377 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6378 !hpsa_allow_any) {
e5c880d1
SC
6379 dev_warn(&pdev->dev, "unrecognized board ID: "
6380 "0x%08x, ignoring.\n", *board_id);
6381 return -ENODEV;
6382 }
6383 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6384}
6385
6f039790
GKH
6386static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6387 unsigned long *memory_bar)
3a7774ce
SC
6388{
6389 int i;
6390
6391 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
12d2cd47 6392 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3a7774ce 6393 /* addressing mode bits already removed */
12d2cd47
SC
6394 *memory_bar = pci_resource_start(pdev, i);
6395 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3a7774ce
SC
6396 *memory_bar);
6397 return 0;
6398 }
12d2cd47 6399 dev_warn(&pdev->dev, "no memory BAR found\n");
3a7774ce
SC
6400 return -ENODEV;
6401}
6402
6f039790
GKH
6403static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6404 int wait_for_ready)
2c4c8c8b 6405{
fe5389c8 6406 int i, iterations;
2c4c8c8b 6407 u32 scratchpad;
fe5389c8
SC
6408 if (wait_for_ready)
6409 iterations = HPSA_BOARD_READY_ITERATIONS;
6410 else
6411 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
2c4c8c8b 6412
fe5389c8
SC
6413 for (i = 0; i < iterations; i++) {
6414 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6415 if (wait_for_ready) {
6416 if (scratchpad == HPSA_FIRMWARE_READY)
6417 return 0;
6418 } else {
6419 if (scratchpad != HPSA_FIRMWARE_READY)
6420 return 0;
6421 }
2c4c8c8b
SC
6422 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6423 }
fe5389c8 6424 dev_warn(&pdev->dev, "board not ready, timed out.\n");
2c4c8c8b
SC
6425 return -ENODEV;
6426}
6427
6f039790
GKH
6428static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6429 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6430 u64 *cfg_offset)
a51fd47f
SC
6431{
6432 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6433 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6434 *cfg_base_addr &= (u32) 0x0000ffff;
6435 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6436 if (*cfg_base_addr_index == -1) {
6437 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6438 return -ENODEV;
6439 }
6440 return 0;
6441}
6442
6f039790 6443static int hpsa_find_cfgtables(struct ctlr_info *h)
edd16368 6444{
01a02ffc
SC
6445 u64 cfg_offset;
6446 u32 cfg_base_addr;
6447 u64 cfg_base_addr_index;
303932fd 6448 u32 trans_offset;
a51fd47f 6449 int rc;
77c4495c 6450
a51fd47f
SC
6451 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6452 &cfg_base_addr_index, &cfg_offset);
6453 if (rc)
6454 return rc;
77c4495c 6455 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
a51fd47f 6456 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
cd3c81c4
RE
6457 if (!h->cfgtable) {
6458 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
77c4495c 6459 return -ENOMEM;
cd3c81c4 6460 }
580ada3c
SC
6461 rc = write_driver_ver_to_cfgtable(h->cfgtable);
6462 if (rc)
6463 return rc;
77c4495c 6464 /* Find performant mode table. */
a51fd47f 6465 trans_offset = readl(&h->cfgtable->TransMethodOffset);
77c4495c
SC
6466 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6467 cfg_base_addr_index)+cfg_offset+trans_offset,
6468 sizeof(*h->transtable));
6469 if (!h->transtable)
6470 return -ENOMEM;
6471 return 0;
6472}
6473
6f039790 6474static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
cba3d38b 6475{
41ce4c35
SC
6476#define MIN_MAX_COMMANDS 16
6477 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
6478
6479 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
72ceeaec
SC
6480
6481 /* Limit commands in memory limited kdump scenario. */
6482 if (reset_devices && h->max_commands > 32)
6483 h->max_commands = 32;
6484
41ce4c35
SC
6485 if (h->max_commands < MIN_MAX_COMMANDS) {
6486 dev_warn(&h->pdev->dev,
6487 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
6488 h->max_commands,
6489 MIN_MAX_COMMANDS);
6490 h->max_commands = MIN_MAX_COMMANDS;
cba3d38b
SC
6491 }
6492}
6493
c7ee65b3
WS
6494/* If the controller reports that the total max sg entries is greater than 512,
6495 * then we know that chained SG blocks work. (Original smart arrays did not
6496 * support chained SG blocks and would return zero for max sg entries.)
6497 */
6498static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
6499{
6500 return h->maxsgentries > 512;
6501}
6502
b93d7536
SC
6503/* Interrogate the hardware for some limits:
6504 * max commands, max SG elements without chaining, and with chaining,
6505 * SG chain block size, etc.
6506 */
6f039790 6507static void hpsa_find_board_params(struct ctlr_info *h)
b93d7536 6508{
cba3d38b 6509 hpsa_get_max_perf_mode_cmds(h);
45fcb86e 6510 h->nr_cmds = h->max_commands;
b93d7536 6511 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
283b4a9b 6512 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
c7ee65b3
WS
6513 if (hpsa_supports_chained_sg_blocks(h)) {
6514 /* Limit in-command s/g elements to 32 save dma'able memory. */
b93d7536 6515 h->max_cmd_sg_entries = 32;
1a63ea6f 6516 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
b93d7536
SC
6517 h->maxsgentries--; /* save one for chain pointer */
6518 } else {
c7ee65b3
WS
6519 /*
6520 * Original smart arrays supported at most 31 s/g entries
6521 * embedded inline in the command (trying to use more
6522 * would lock up the controller)
6523 */
6524 h->max_cmd_sg_entries = 31;
1a63ea6f 6525 h->maxsgentries = 31; /* default to traditional values */
c7ee65b3 6526 h->chainsize = 0;
b93d7536 6527 }
75167d2c
SC
6528
6529 /* Find out what task management functions are supported and cache */
6530 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
0e7a7fce
ST
6531 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6532 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6533 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6534 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
b93d7536
SC
6535}
6536
76c46e49
SC
6537static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6538{
0fc9fd40 6539 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
050f7147 6540 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
76c46e49
SC
6541 return false;
6542 }
6543 return true;
6544}
6545
97a5e98c 6546static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
f7c39101 6547{
97a5e98c 6548 u32 driver_support;
f7c39101 6549
97a5e98c 6550 driver_support = readl(&(h->cfgtable->driver_support));
0b9e7b74
AB
6551 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6552#ifdef CONFIG_X86
97a5e98c 6553 driver_support |= ENABLE_SCSI_PREFETCH;
f7c39101 6554#endif
28e13446
SC
6555 driver_support |= ENABLE_UNIT_ATTN;
6556 writel(driver_support, &(h->cfgtable->driver_support));
f7c39101
SC
6557}
6558
3d0eab67
SC
6559/* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
6560 * in a prefetch beyond physical memory.
6561 */
6562static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6563{
6564 u32 dma_prefetch;
6565
6566 if (h->board_id != 0x3225103C)
6567 return;
6568 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6569 dma_prefetch |= 0x8000;
6570 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6571}
6572
c706a795 6573static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
76438d08
SC
6574{
6575 int i;
6576 u32 doorbell_value;
6577 unsigned long flags;
6578 /* wait until the clear_event_notify bit 6 is cleared by controller. */
007e7aa9 6579 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
76438d08
SC
6580 spin_lock_irqsave(&h->lock, flags);
6581 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6582 spin_unlock_irqrestore(&h->lock, flags);
6583 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
c706a795 6584 goto done;
76438d08 6585 /* delay and try again */
007e7aa9 6586 msleep(CLEAR_EVENT_WAIT_INTERVAL);
76438d08 6587 }
c706a795
RE
6588 return -ENODEV;
6589done:
6590 return 0;
76438d08
SC
6591}
6592
c706a795 6593static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
eb6b2ae9
SC
6594{
6595 int i;
6eaf46fd
SC
6596 u32 doorbell_value;
6597 unsigned long flags;
eb6b2ae9
SC
6598
6599 /* under certain very rare conditions, this can take awhile.
6600 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6601 * as we enter this code.)
6602 */
007e7aa9 6603 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
25163bd5
WS
6604 if (h->remove_in_progress)
6605 goto done;
6eaf46fd
SC
6606 spin_lock_irqsave(&h->lock, flags);
6607 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6608 spin_unlock_irqrestore(&h->lock, flags);
382be668 6609 if (!(doorbell_value & CFGTBL_ChangeReq))
c706a795 6610 goto done;
eb6b2ae9 6611 /* delay and try again */
007e7aa9 6612 msleep(MODE_CHANGE_WAIT_INTERVAL);
eb6b2ae9 6613 }
c706a795
RE
6614 return -ENODEV;
6615done:
6616 return 0;
3f4336f3
SC
6617}
6618
c706a795 6619/* return -ENODEV or other reason on error, 0 on success */
6f039790 6620static int hpsa_enter_simple_mode(struct ctlr_info *h)
3f4336f3
SC
6621{
6622 u32 trans_support;
6623
6624 trans_support = readl(&(h->cfgtable->TransportSupport));
6625 if (!(trans_support & SIMPLE_MODE))
6626 return -ENOTSUPP;
6627
6628 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
283b4a9b 6629
3f4336f3
SC
6630 /* Update the field, and then ring the doorbell */
6631 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
b9af4937 6632 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
3f4336f3 6633 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
c706a795
RE
6634 if (hpsa_wait_for_mode_change_ack(h))
6635 goto error;
eb6b2ae9 6636 print_cfg_table(&h->pdev->dev, h->cfgtable);
283b4a9b
SC
6637 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6638 goto error;
960a30e7 6639 h->transMethod = CFGTBL_Trans_Simple;
eb6b2ae9 6640 return 0;
283b4a9b 6641error:
050f7147 6642 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
283b4a9b 6643 return -ENODEV;
eb6b2ae9
SC
6644}
6645
6f039790 6646static int hpsa_pci_init(struct ctlr_info *h)
77c4495c 6647{
eb6b2ae9 6648 int prod_index, err;
edd16368 6649
e5c880d1
SC
6650 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6651 if (prod_index < 0)
60f923b9 6652 return prod_index;
e5c880d1
SC
6653 h->product_name = products[prod_index].product_name;
6654 h->access = *(products[prod_index].access);
edd16368 6655
9b5c48c2
SC
6656 h->needs_abort_tags_swizzled =
6657 ctlr_needs_abort_tags_swizzled(h->board_id);
6658
e5a44df8
MG
6659 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6660 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6661
55c06c71 6662 err = pci_enable_device(h->pdev);
edd16368 6663 if (err) {
55c06c71 6664 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
edd16368
SC
6665 return err;
6666 }
6667
f79cfec6 6668 err = pci_request_regions(h->pdev, HPSA);
edd16368 6669 if (err) {
55c06c71
SC
6670 dev_err(&h->pdev->dev,
6671 "cannot obtain PCI resources, aborting\n");
edd16368
SC
6672 return err;
6673 }
4fa604e1
RE
6674
6675 pci_set_master(h->pdev);
6676
6b3f4c52 6677 hpsa_interrupt_mode(h);
12d2cd47 6678 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3a7774ce 6679 if (err)
edd16368 6680 goto err_out_free_res;
edd16368 6681 h->vaddr = remap_pci_mem(h->paddr, 0x250);
204892e9
SC
6682 if (!h->vaddr) {
6683 err = -ENOMEM;
6684 goto err_out_free_res;
6685 }
fe5389c8 6686 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
2c4c8c8b 6687 if (err)
edd16368 6688 goto err_out_free_res;
77c4495c
SC
6689 err = hpsa_find_cfgtables(h);
6690 if (err)
edd16368 6691 goto err_out_free_res;
b93d7536 6692 hpsa_find_board_params(h);
edd16368 6693
76c46e49 6694 if (!hpsa_CISS_signature_present(h)) {
edd16368
SC
6695 err = -ENODEV;
6696 goto err_out_free_res;
6697 }
97a5e98c 6698 hpsa_set_driver_support_bits(h);
3d0eab67 6699 hpsa_p600_dma_prefetch_quirk(h);
eb6b2ae9
SC
6700 err = hpsa_enter_simple_mode(h);
6701 if (err)
edd16368 6702 goto err_out_free_res;
edd16368
SC
6703 return 0;
6704
6705err_out_free_res:
204892e9
SC
6706 if (h->transtable)
6707 iounmap(h->transtable);
6708 if (h->cfgtable)
6709 iounmap(h->cfgtable);
6710 if (h->vaddr)
6711 iounmap(h->vaddr);
f0bd0b68 6712 pci_disable_device(h->pdev);
55c06c71 6713 pci_release_regions(h->pdev);
edd16368
SC
6714 return err;
6715}
6716
6f039790 6717static void hpsa_hba_inquiry(struct ctlr_info *h)
339b2b14
SC
6718{
6719 int rc;
6720
6721#define HBA_INQUIRY_BYTE_COUNT 64
6722 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6723 if (!h->hba_inquiry_data)
6724 return;
6725 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6726 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6727 if (rc != 0) {
6728 kfree(h->hba_inquiry_data);
6729 h->hba_inquiry_data = NULL;
6730 }
6731}
6732
6b6c1cd7 6733static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
4c2a8c40 6734{
1df8552a 6735 int rc, i;
3b747298 6736 void __iomem *vaddr;
4c2a8c40
SC
6737
6738 if (!reset_devices)
6739 return 0;
6740
132aa220
TH
6741 /* kdump kernel is loading, we don't know in which state is
6742 * the pci interface. The dev->enable_cnt is equal zero
6743 * so we call enable+disable, wait a while and switch it on.
6744 */
6745 rc = pci_enable_device(pdev);
6746 if (rc) {
6747 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6748 return -ENODEV;
6749 }
6750 pci_disable_device(pdev);
6751 msleep(260); /* a randomly chosen number */
6752 rc = pci_enable_device(pdev);
6753 if (rc) {
6754 dev_warn(&pdev->dev, "failed to enable device.\n");
6755 return -ENODEV;
6756 }
4fa604e1 6757
859c75ab 6758 pci_set_master(pdev);
4fa604e1 6759
3b747298
TH
6760 vaddr = pci_ioremap_bar(pdev, 0);
6761 if (vaddr == NULL) {
6762 rc = -ENOMEM;
6763 goto out_disable;
6764 }
6765 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
6766 iounmap(vaddr);
6767
1df8552a 6768 /* Reset the controller with a PCI power-cycle or via doorbell */
6b6c1cd7 6769 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
4c2a8c40 6770
1df8552a
SC
6771 /* -ENOTSUPP here means we cannot reset the controller
6772 * but it's already (and still) up and running in
18867659
SC
6773 * "performant mode". Or, it might be 640x, which can't reset
6774 * due to concerns about shared bbwc between 6402/6404 pair.
1df8552a 6775 */
adf1b3a3 6776 if (rc)
132aa220 6777 goto out_disable;
4c2a8c40
SC
6778
6779 /* Now try to get the controller to respond to a no-op */
1ba66c9c 6780 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
4c2a8c40
SC
6781 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6782 if (hpsa_noop(pdev) == 0)
6783 break;
6784 else
6785 dev_warn(&pdev->dev, "no-op failed%s\n",
6786 (i < 11 ? "; re-trying" : ""));
6787 }
132aa220
TH
6788
6789out_disable:
6790
6791 pci_disable_device(pdev);
6792 return rc;
4c2a8c40
SC
6793}
6794
d37ffbe4 6795static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
2e9d1b36
SC
6796{
6797 h->cmd_pool_bits = kzalloc(
6798 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6799 sizeof(unsigned long), GFP_KERNEL);
6800 h->cmd_pool = pci_alloc_consistent(h->pdev,
6801 h->nr_cmds * sizeof(*h->cmd_pool),
6802 &(h->cmd_pool_dhandle));
6803 h->errinfo_pool = pci_alloc_consistent(h->pdev,
6804 h->nr_cmds * sizeof(*h->errinfo_pool),
6805 &(h->errinfo_pool_dhandle));
6806 if ((h->cmd_pool_bits == NULL)
6807 || (h->cmd_pool == NULL)
6808 || (h->errinfo_pool == NULL)) {
6809 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
2c143342 6810 goto clean_up;
2e9d1b36 6811 }
360c73bd 6812 hpsa_preinitialize_commands(h);
2e9d1b36 6813 return 0;
2c143342
RE
6814clean_up:
6815 hpsa_free_cmd_pool(h);
6816 return -ENOMEM;
2e9d1b36
SC
6817}
6818
6819static void hpsa_free_cmd_pool(struct ctlr_info *h)
6820{
6821 kfree(h->cmd_pool_bits);
6822 if (h->cmd_pool)
6823 pci_free_consistent(h->pdev,
6824 h->nr_cmds * sizeof(struct CommandList),
6825 h->cmd_pool, h->cmd_pool_dhandle);
aca9012a
SC
6826 if (h->ioaccel2_cmd_pool)
6827 pci_free_consistent(h->pdev,
6828 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6829 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
2e9d1b36
SC
6830 if (h->errinfo_pool)
6831 pci_free_consistent(h->pdev,
6832 h->nr_cmds * sizeof(struct ErrorInfo),
6833 h->errinfo_pool,
6834 h->errinfo_pool_dhandle);
e1f7de0c
MG
6835 if (h->ioaccel_cmd_pool)
6836 pci_free_consistent(h->pdev,
6837 h->nr_cmds * sizeof(struct io_accel1_cmd),
6838 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
2e9d1b36
SC
6839}
6840
41b3cf08
SC
6841static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6842{
ec429952 6843 int i, cpu;
41b3cf08
SC
6844
6845 cpu = cpumask_first(cpu_online_mask);
6846 for (i = 0; i < h->msix_vector; i++) {
ec429952 6847 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
41b3cf08
SC
6848 cpu = cpumask_next(cpu, cpu_online_mask);
6849 }
6850}
6851
ec501a18
RE
6852/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
6853static void hpsa_free_irqs(struct ctlr_info *h)
6854{
6855 int i;
6856
6857 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6858 /* Single reply queue, only one irq to free */
6859 i = h->intr_mode;
6860 irq_set_affinity_hint(h->intr[i], NULL);
6861 free_irq(h->intr[i], &h->q[i]);
6862 return;
6863 }
6864
6865 for (i = 0; i < h->msix_vector; i++) {
6866 irq_set_affinity_hint(h->intr[i], NULL);
6867 free_irq(h->intr[i], &h->q[i]);
6868 }
a4e17fc1
RE
6869 for (; i < MAX_REPLY_QUEUES; i++)
6870 h->q[i] = 0;
ec501a18
RE
6871}
6872
9ee61794
RE
6873/* returns 0 on success; cleans up and returns -Enn on error */
6874static int hpsa_request_irqs(struct ctlr_info *h,
0ae01a32
SC
6875 irqreturn_t (*msixhandler)(int, void *),
6876 irqreturn_t (*intxhandler)(int, void *))
6877{
254f796b 6878 int rc, i;
0ae01a32 6879
254f796b
MG
6880 /*
6881 * initialize h->q[x] = x so that interrupt handlers know which
6882 * queue to process.
6883 */
6884 for (i = 0; i < MAX_REPLY_QUEUES; i++)
6885 h->q[i] = (u8) i;
6886
eee0f03a 6887 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
254f796b 6888 /* If performant mode and MSI-X, use multiple reply queues */
a4e17fc1 6889 for (i = 0; i < h->msix_vector; i++) {
254f796b
MG
6890 rc = request_irq(h->intr[i], msixhandler,
6891 0, h->devname,
6892 &h->q[i]);
a4e17fc1
RE
6893 if (rc) {
6894 int j;
6895
6896 dev_err(&h->pdev->dev,
6897 "failed to get irq %d for %s\n",
6898 h->intr[i], h->devname);
6899 for (j = 0; j < i; j++) {
6900 free_irq(h->intr[j], &h->q[j]);
6901 h->q[j] = 0;
6902 }
6903 for (; j < MAX_REPLY_QUEUES; j++)
6904 h->q[j] = 0;
6905 return rc;
6906 }
6907 }
41b3cf08 6908 hpsa_irq_affinity_hints(h);
254f796b
MG
6909 } else {
6910 /* Use single reply pool */
eee0f03a 6911 if (h->msix_vector > 0 || h->msi_vector) {
254f796b
MG
6912 rc = request_irq(h->intr[h->intr_mode],
6913 msixhandler, 0, h->devname,
6914 &h->q[h->intr_mode]);
6915 } else {
6916 rc = request_irq(h->intr[h->intr_mode],
6917 intxhandler, IRQF_SHARED, h->devname,
6918 &h->q[h->intr_mode]);
6919 }
6920 }
0ae01a32
SC
6921 if (rc) {
6922 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6923 h->intr[h->intr_mode], h->devname);
6924 return -ENODEV;
6925 }
6926 return 0;
6927}
6928
6f039790 6929static int hpsa_kdump_soft_reset(struct ctlr_info *h)
64670ac8
SC
6930{
6931 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6932 HPSA_RESET_TYPE_CONTROLLER)) {
6933 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6934 return -EIO;
6935 }
6936
6937 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6938 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6939 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6940 return -1;
6941 }
6942
6943 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6944 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6945 dev_warn(&h->pdev->dev, "Board failed to become ready "
6946 "after soft reset.\n");
6947 return -1;
6948 }
6949
6950 return 0;
6951}
6952
0097f0f4 6953static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
64670ac8 6954{
ec501a18 6955 hpsa_free_irqs(h);
64670ac8 6956#ifdef CONFIG_PCI_MSI
0097f0f4
SC
6957 if (h->msix_vector) {
6958 if (h->pdev->msix_enabled)
6959 pci_disable_msix(h->pdev);
6960 } else if (h->msi_vector) {
6961 if (h->pdev->msi_enabled)
6962 pci_disable_msi(h->pdev);
6963 }
64670ac8 6964#endif /* CONFIG_PCI_MSI */
0097f0f4
SC
6965}
6966
072b0518
SC
6967static void hpsa_free_reply_queues(struct ctlr_info *h)
6968{
6969 int i;
6970
6971 for (i = 0; i < h->nreply_queues; i++) {
6972 if (!h->reply_queue[i].head)
6973 continue;
6974 pci_free_consistent(h->pdev, h->reply_queue_size,
6975 h->reply_queue[i].head, h->reply_queue[i].busaddr);
6976 h->reply_queue[i].head = NULL;
6977 h->reply_queue[i].busaddr = 0;
6978 }
6979}
6980
0097f0f4
SC
6981static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6982{
6983 hpsa_free_irqs_and_disable_msix(h);
64670ac8
SC
6984 hpsa_free_sg_chain_blocks(h);
6985 hpsa_free_cmd_pool(h);
e1f7de0c 6986 kfree(h->ioaccel1_blockFetchTable);
64670ac8 6987 kfree(h->blockFetchTable);
072b0518 6988 hpsa_free_reply_queues(h);
64670ac8
SC
6989 if (h->vaddr)
6990 iounmap(h->vaddr);
6991 if (h->transtable)
6992 iounmap(h->transtable);
6993 if (h->cfgtable)
6994 iounmap(h->cfgtable);
132aa220 6995 pci_disable_device(h->pdev);
64670ac8
SC
6996 pci_release_regions(h->pdev);
6997 kfree(h);
6998}
6999
a0c12413 7000/* Called when controller lockup detected. */
f2405db8 7001static void fail_all_outstanding_cmds(struct ctlr_info *h)
a0c12413 7002{
281a7fd0
WS
7003 int i, refcount;
7004 struct CommandList *c;
25163bd5 7005 int failcount = 0;
a0c12413 7006
080ef1cc 7007 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
f2405db8 7008 for (i = 0; i < h->nr_cmds; i++) {
f2405db8 7009 c = h->cmd_pool + i;
281a7fd0
WS
7010 refcount = atomic_inc_return(&c->refcount);
7011 if (refcount > 1) {
25163bd5 7012 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
281a7fd0 7013 finish_cmd(c);
433b5f4d 7014 atomic_dec(&h->commands_outstanding);
25163bd5 7015 failcount++;
281a7fd0
WS
7016 }
7017 cmd_free(h, c);
a0c12413 7018 }
25163bd5
WS
7019 dev_warn(&h->pdev->dev,
7020 "failed %d commands in fail_all\n", failcount);
a0c12413
SC
7021}
7022
094963da
SC
7023static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7024{
c8ed0010 7025 int cpu;
094963da 7026
c8ed0010 7027 for_each_online_cpu(cpu) {
094963da
SC
7028 u32 *lockup_detected;
7029 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7030 *lockup_detected = value;
094963da
SC
7031 }
7032 wmb(); /* be sure the per-cpu variables are out to memory */
7033}
7034
a0c12413
SC
7035static void controller_lockup_detected(struct ctlr_info *h)
7036{
7037 unsigned long flags;
094963da 7038 u32 lockup_detected;
a0c12413 7039
a0c12413
SC
7040 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7041 spin_lock_irqsave(&h->lock, flags);
094963da
SC
7042 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7043 if (!lockup_detected) {
7044 /* no heartbeat, but controller gave us a zero. */
7045 dev_warn(&h->pdev->dev,
25163bd5
WS
7046 "lockup detected after %d but scratchpad register is zero\n",
7047 h->heartbeat_sample_interval / HZ);
094963da
SC
7048 lockup_detected = 0xffffffff;
7049 }
7050 set_lockup_detected_for_all_cpus(h, lockup_detected);
a0c12413 7051 spin_unlock_irqrestore(&h->lock, flags);
25163bd5
WS
7052 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7053 lockup_detected, h->heartbeat_sample_interval / HZ);
a0c12413 7054 pci_disable_device(h->pdev);
f2405db8 7055 fail_all_outstanding_cmds(h);
a0c12413
SC
7056}
7057
25163bd5 7058static int detect_controller_lockup(struct ctlr_info *h)
a0c12413
SC
7059{
7060 u64 now;
7061 u32 heartbeat;
7062 unsigned long flags;
7063
a0c12413
SC
7064 now = get_jiffies_64();
7065 /* If we've received an interrupt recently, we're ok. */
7066 if (time_after64(h->last_intr_timestamp +
e85c5974 7067 (h->heartbeat_sample_interval), now))
25163bd5 7068 return false;
a0c12413
SC
7069
7070 /*
7071 * If we've already checked the heartbeat recently, we're ok.
7072 * This could happen if someone sends us a signal. We
7073 * otherwise don't care about signals in this thread.
7074 */
7075 if (time_after64(h->last_heartbeat_timestamp +
e85c5974 7076 (h->heartbeat_sample_interval), now))
25163bd5 7077 return false;
a0c12413
SC
7078
7079 /* If heartbeat has not changed since we last looked, we're not ok. */
7080 spin_lock_irqsave(&h->lock, flags);
7081 heartbeat = readl(&h->cfgtable->HeartBeat);
7082 spin_unlock_irqrestore(&h->lock, flags);
7083 if (h->last_heartbeat == heartbeat) {
7084 controller_lockup_detected(h);
25163bd5 7085 return true;
a0c12413
SC
7086 }
7087
7088 /* We're ok. */
7089 h->last_heartbeat = heartbeat;
7090 h->last_heartbeat_timestamp = now;
25163bd5 7091 return false;
a0c12413
SC
7092}
7093
9846590e 7094static void hpsa_ack_ctlr_events(struct ctlr_info *h)
76438d08
SC
7095{
7096 int i;
7097 char *event_type;
7098
e4aa3e6a
SC
7099 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7100 return;
7101
76438d08 7102 /* Ask the controller to clear the events we're handling. */
1f7cee8c
SC
7103 if ((h->transMethod & (CFGTBL_Trans_io_accel1
7104 | CFGTBL_Trans_io_accel2)) &&
76438d08
SC
7105 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
7106 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
7107
7108 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
7109 event_type = "state change";
7110 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
7111 event_type = "configuration change";
7112 /* Stop sending new RAID offload reqs via the IO accelerator */
7113 scsi_block_requests(h->scsi_host);
7114 for (i = 0; i < h->ndevices; i++)
7115 h->dev[i]->offload_enabled = 0;
23100dd9 7116 hpsa_drain_accel_commands(h);
76438d08
SC
7117 /* Set 'accelerator path config change' bit */
7118 dev_warn(&h->pdev->dev,
7119 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7120 h->events, event_type);
7121 writel(h->events, &(h->cfgtable->clear_event_notify));
7122 /* Set the "clear event notify field update" bit 6 */
7123 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7124 /* Wait until ctlr clears 'clear event notify field', bit 6 */
7125 hpsa_wait_for_clear_event_notify_ack(h);
7126 scsi_unblock_requests(h->scsi_host);
7127 } else {
7128 /* Acknowledge controller notification events. */
7129 writel(h->events, &(h->cfgtable->clear_event_notify));
7130 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7131 hpsa_wait_for_clear_event_notify_ack(h);
7132#if 0
7133 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7134 hpsa_wait_for_mode_change_ack(h);
7135#endif
7136 }
9846590e 7137 return;
76438d08
SC
7138}
7139
7140/* Check a register on the controller to see if there are configuration
7141 * changes (added/changed/removed logical drives, etc.) which mean that
e863d68e
ST
7142 * we should rescan the controller for devices.
7143 * Also check flag for driver-initiated rescan.
76438d08 7144 */
9846590e 7145static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
76438d08
SC
7146{
7147 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
9846590e 7148 return 0;
76438d08
SC
7149
7150 h->events = readl(&(h->cfgtable->event_notify));
9846590e
SC
7151 return h->events & RESCAN_REQUIRED_EVENT_BITS;
7152}
76438d08 7153
9846590e
SC
7154/*
7155 * Check if any of the offline devices have become ready
7156 */
7157static int hpsa_offline_devices_ready(struct ctlr_info *h)
7158{
7159 unsigned long flags;
7160 struct offline_device_entry *d;
7161 struct list_head *this, *tmp;
7162
7163 spin_lock_irqsave(&h->offline_device_lock, flags);
7164 list_for_each_safe(this, tmp, &h->offline_device_list) {
7165 d = list_entry(this, struct offline_device_entry,
7166 offline_list);
7167 spin_unlock_irqrestore(&h->offline_device_lock, flags);
d1fea47c
SC
7168 if (!hpsa_volume_offline(h, d->scsi3addr)) {
7169 spin_lock_irqsave(&h->offline_device_lock, flags);
7170 list_del(&d->offline_list);
7171 spin_unlock_irqrestore(&h->offline_device_lock, flags);
9846590e 7172 return 1;
d1fea47c 7173 }
9846590e
SC
7174 spin_lock_irqsave(&h->offline_device_lock, flags);
7175 }
7176 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7177 return 0;
76438d08
SC
7178}
7179
6636e7f4 7180static void hpsa_rescan_ctlr_worker(struct work_struct *work)
a0c12413
SC
7181{
7182 unsigned long flags;
8a98db73 7183 struct ctlr_info *h = container_of(to_delayed_work(work),
6636e7f4
DB
7184 struct ctlr_info, rescan_ctlr_work);
7185
7186
7187 if (h->remove_in_progress)
8a98db73 7188 return;
9846590e
SC
7189
7190 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
7191 scsi_host_get(h->scsi_host);
9846590e
SC
7192 hpsa_ack_ctlr_events(h);
7193 hpsa_scan_start(h->scsi_host);
7194 scsi_host_put(h->scsi_host);
7195 }
8a98db73 7196 spin_lock_irqsave(&h->lock, flags);
6636e7f4
DB
7197 if (!h->remove_in_progress)
7198 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7199 h->heartbeat_sample_interval);
7200 spin_unlock_irqrestore(&h->lock, flags);
7201}
7202
7203static void hpsa_monitor_ctlr_worker(struct work_struct *work)
7204{
7205 unsigned long flags;
7206 struct ctlr_info *h = container_of(to_delayed_work(work),
7207 struct ctlr_info, monitor_ctlr_work);
7208
7209 detect_controller_lockup(h);
7210 if (lockup_detected(h))
a0c12413 7211 return;
6636e7f4
DB
7212
7213 spin_lock_irqsave(&h->lock, flags);
7214 if (!h->remove_in_progress)
7215 schedule_delayed_work(&h->monitor_ctlr_work,
8a98db73
SC
7216 h->heartbeat_sample_interval);
7217 spin_unlock_irqrestore(&h->lock, flags);
a0c12413
SC
7218}
7219
6636e7f4
DB
7220static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
7221 char *name)
7222{
7223 struct workqueue_struct *wq = NULL;
6636e7f4 7224
397ea9cb 7225 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
6636e7f4
DB
7226 if (!wq)
7227 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
7228
7229 return wq;
7230}
7231
6f039790 7232static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
edd16368 7233{
4c2a8c40 7234 int dac, rc;
edd16368 7235 struct ctlr_info *h;
64670ac8
SC
7236 int try_soft_reset = 0;
7237 unsigned long flags;
6b6c1cd7 7238 u32 board_id;
edd16368
SC
7239
7240 if (number_of_controllers == 0)
7241 printk(KERN_INFO DRIVER_NAME "\n");
edd16368 7242
6b6c1cd7
TH
7243 rc = hpsa_lookup_board_id(pdev, &board_id);
7244 if (rc < 0) {
7245 dev_warn(&pdev->dev, "Board ID not found\n");
7246 return rc;
7247 }
7248
7249 rc = hpsa_init_reset_devices(pdev, board_id);
64670ac8
SC
7250 if (rc) {
7251 if (rc != -ENOTSUPP)
7252 return rc;
7253 /* If the reset fails in a particular way (it has no way to do
7254 * a proper hard reset, so returns -ENOTSUPP) we can try to do
7255 * a soft reset once we get the controller configured up to the
7256 * point that it can accept a command.
7257 */
7258 try_soft_reset = 1;
7259 rc = 0;
7260 }
7261
7262reinit_after_soft_reset:
edd16368 7263
303932fd
DB
7264 /* Command structures must be aligned on a 32-byte boundary because
7265 * the 5 lower bits of the address are used by the hardware. and by
7266 * the driver. See comments in hpsa.h for more info.
7267 */
303932fd 7268 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
edd16368
SC
7269 h = kzalloc(sizeof(*h), GFP_KERNEL);
7270 if (!h)
ecd9aad4 7271 return -ENOMEM;
edd16368 7272
55c06c71 7273 h->pdev = pdev;
a9a3a273 7274 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
9846590e 7275 INIT_LIST_HEAD(&h->offline_device_list);
6eaf46fd 7276 spin_lock_init(&h->lock);
9846590e 7277 spin_lock_init(&h->offline_device_lock);
6eaf46fd 7278 spin_lock_init(&h->scan_lock);
34f0c627 7279 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
9b5c48c2 7280 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
094963da 7281
6636e7f4
DB
7282 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
7283 if (!h->rescan_ctlr_wq) {
7284 rc = -ENOMEM;
7285 goto clean1;
7286 }
7287
7288 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
080ef1cc 7289 if (!h->resubmit_wq) {
080ef1cc
DB
7290 rc = -ENOMEM;
7291 goto clean1;
7292 }
6636e7f4 7293
094963da
SC
7294 /* Allocate and clear per-cpu variable lockup_detected */
7295 h->lockup_detected = alloc_percpu(u32);
2a5ac326
SC
7296 if (!h->lockup_detected) {
7297 rc = -ENOMEM;
094963da 7298 goto clean1;
2a5ac326 7299 }
094963da
SC
7300 set_lockup_detected_for_all_cpus(h, 0);
7301
55c06c71 7302 rc = hpsa_pci_init(h);
ecd9aad4 7303 if (rc != 0)
edd16368
SC
7304 goto clean1;
7305
f79cfec6 7306 sprintf(h->devname, HPSA "%d", number_of_controllers);
edd16368
SC
7307 h->ctlr = number_of_controllers;
7308 number_of_controllers++;
edd16368
SC
7309
7310 /* configure PCI DMA stuff */
ecd9aad4
SC
7311 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
7312 if (rc == 0) {
edd16368 7313 dac = 1;
ecd9aad4
SC
7314 } else {
7315 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
7316 if (rc == 0) {
7317 dac = 0;
7318 } else {
7319 dev_err(&pdev->dev, "no suitable DMA available\n");
7320 goto clean1;
7321 }
edd16368
SC
7322 }
7323
7324 /* make sure the board interrupts are off */
7325 h->access.set_intr_mask(h, HPSA_INTR_OFF);
10f66018 7326
9ee61794 7327 if (hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
edd16368 7328 goto clean2;
303932fd
DB
7329 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
7330 h->devname, pdev->device,
a9a3a273 7331 h->intr[h->intr_mode], dac ? "" : " not");
d37ffbe4 7332 rc = hpsa_alloc_cmd_pool(h);
8947fd10
RE
7333 if (rc)
7334 goto clean2_and_free_irqs;
33a2ffce
SC
7335 if (hpsa_allocate_sg_chain_blocks(h))
7336 goto clean4;
a08a8471 7337 init_waitqueue_head(&h->scan_wait_queue);
9b5c48c2 7338 init_waitqueue_head(&h->abort_cmd_wait_queue);
a08a8471 7339 h->scan_finished = 1; /* no scan currently in progress */
edd16368
SC
7340
7341 pci_set_drvdata(pdev, h);
9a41338e 7342 h->ndevices = 0;
316b221a 7343 h->hba_mode_enabled = 0;
9a41338e
SC
7344 h->scsi_host = NULL;
7345 spin_lock_init(&h->devlock);
64670ac8
SC
7346 hpsa_put_ctlr_into_performant_mode(h);
7347
7348 /* At this point, the controller is ready to take commands.
7349 * Now, if reset_devices and the hard reset didn't work, try
7350 * the soft reset and see if that works.
7351 */
7352 if (try_soft_reset) {
7353
7354 /* This is kind of gross. We may or may not get a completion
7355 * from the soft reset command, and if we do, then the value
7356 * from the fifo may or may not be valid. So, we wait 10 secs
7357 * after the reset throwing away any completions we get during
7358 * that time. Unregister the interrupt handler and register
7359 * fake ones to scoop up any residual completions.
7360 */
7361 spin_lock_irqsave(&h->lock, flags);
7362 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7363 spin_unlock_irqrestore(&h->lock, flags);
ec501a18 7364 hpsa_free_irqs(h);
9ee61794 7365 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
64670ac8
SC
7366 hpsa_intx_discard_completions);
7367 if (rc) {
9ee61794
RE
7368 dev_warn(&h->pdev->dev,
7369 "Failed to request_irq after soft reset.\n");
64670ac8
SC
7370 goto clean4;
7371 }
7372
7373 rc = hpsa_kdump_soft_reset(h);
7374 if (rc)
7375 /* Neither hard nor soft reset worked, we're hosed. */
7376 goto clean4;
7377
7378 dev_info(&h->pdev->dev, "Board READY.\n");
7379 dev_info(&h->pdev->dev,
7380 "Waiting for stale completions to drain.\n");
7381 h->access.set_intr_mask(h, HPSA_INTR_ON);
7382 msleep(10000);
7383 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7384
7385 rc = controller_reset_failed(h->cfgtable);
7386 if (rc)
7387 dev_info(&h->pdev->dev,
7388 "Soft reset appears to have failed.\n");
7389
7390 /* since the controller's reset, we have to go back and re-init
7391 * everything. Easiest to just forget what we've done and do it
7392 * all over again.
7393 */
7394 hpsa_undo_allocations_after_kdump_soft_reset(h);
7395 try_soft_reset = 0;
7396 if (rc)
7397 /* don't go to clean4, we already unallocated */
7398 return -ENODEV;
7399
7400 goto reinit_after_soft_reset;
7401 }
edd16368 7402
316b221a
SC
7403 /* Enable Accelerated IO path at driver layer */
7404 h->acciopath_status = 1;
da0697bd 7405
e863d68e 7406
edd16368
SC
7407 /* Turn the interrupts on so we can service requests */
7408 h->access.set_intr_mask(h, HPSA_INTR_ON);
7409
339b2b14 7410 hpsa_hba_inquiry(h);
4a4384ce
SC
7411 rc = hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
7412 if (rc)
7413 goto clean4;
8a98db73
SC
7414
7415 /* Monitor the controller for firmware lockups */
7416 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7417 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7418 schedule_delayed_work(&h->monitor_ctlr_work,
7419 h->heartbeat_sample_interval);
6636e7f4
DB
7420 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
7421 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7422 h->heartbeat_sample_interval);
88bf6d62 7423 return 0;
edd16368
SC
7424
7425clean4:
33a2ffce 7426 hpsa_free_sg_chain_blocks(h);
2e9d1b36 7427 hpsa_free_cmd_pool(h);
8947fd10 7428clean2_and_free_irqs:
ec501a18 7429 hpsa_free_irqs(h);
edd16368
SC
7430clean2:
7431clean1:
080ef1cc
DB
7432 if (h->resubmit_wq)
7433 destroy_workqueue(h->resubmit_wq);
6636e7f4
DB
7434 if (h->rescan_ctlr_wq)
7435 destroy_workqueue(h->rescan_ctlr_wq);
094963da
SC
7436 if (h->lockup_detected)
7437 free_percpu(h->lockup_detected);
edd16368 7438 kfree(h);
ecd9aad4 7439 return rc;
edd16368
SC
7440}
7441
7442static void hpsa_flush_cache(struct ctlr_info *h)
7443{
7444 char *flush_buf;
7445 struct CommandList *c;
25163bd5 7446 int rc;
702890e3
SC
7447
7448 /* Don't bother trying to flush the cache if locked up */
25163bd5 7449 /* FIXME not necessary if do_simple_cmd does the check */
094963da 7450 if (unlikely(lockup_detected(h)))
702890e3 7451 return;
edd16368
SC
7452 flush_buf = kzalloc(4, GFP_KERNEL);
7453 if (!flush_buf)
7454 return;
7455
45fcb86e 7456 c = cmd_alloc(h);
edd16368 7457 if (!c) {
45fcb86e 7458 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
edd16368
SC
7459 goto out_of_memory;
7460 }
a2dac136
SC
7461 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7462 RAID_CTLR_LUNID, TYPE_CMD)) {
7463 goto out;
7464 }
25163bd5
WS
7465 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
7466 PCI_DMA_TODEVICE, NO_TIMEOUT);
7467 if (rc)
7468 goto out;
edd16368 7469 if (c->err_info->CommandStatus != 0)
a2dac136 7470out:
edd16368
SC
7471 dev_warn(&h->pdev->dev,
7472 "error flushing cache on controller\n");
45fcb86e 7473 cmd_free(h, c);
edd16368
SC
7474out_of_memory:
7475 kfree(flush_buf);
7476}
7477
7478static void hpsa_shutdown(struct pci_dev *pdev)
7479{
7480 struct ctlr_info *h;
7481
7482 h = pci_get_drvdata(pdev);
7483 /* Turn board interrupts off and send the flush cache command
7484 * sendcmd will turn off interrupt, and send the flush...
7485 * To write all data in the battery backed cache to disks
7486 */
7487 hpsa_flush_cache(h);
7488 h->access.set_intr_mask(h, HPSA_INTR_OFF);
0097f0f4 7489 hpsa_free_irqs_and_disable_msix(h);
edd16368
SC
7490}
7491
6f039790 7492static void hpsa_free_device_info(struct ctlr_info *h)
55e14e76
SC
7493{
7494 int i;
7495
7496 for (i = 0; i < h->ndevices; i++)
7497 kfree(h->dev[i]);
7498}
7499
6f039790 7500static void hpsa_remove_one(struct pci_dev *pdev)
edd16368
SC
7501{
7502 struct ctlr_info *h;
8a98db73 7503 unsigned long flags;
edd16368
SC
7504
7505 if (pci_get_drvdata(pdev) == NULL) {
a0c12413 7506 dev_err(&pdev->dev, "unable to remove device\n");
edd16368
SC
7507 return;
7508 }
7509 h = pci_get_drvdata(pdev);
8a98db73
SC
7510
7511 /* Get rid of any controller monitoring work items */
7512 spin_lock_irqsave(&h->lock, flags);
7513 h->remove_in_progress = 1;
8a98db73 7514 spin_unlock_irqrestore(&h->lock, flags);
6636e7f4
DB
7515 cancel_delayed_work_sync(&h->monitor_ctlr_work);
7516 cancel_delayed_work_sync(&h->rescan_ctlr_work);
7517 destroy_workqueue(h->rescan_ctlr_wq);
7518 destroy_workqueue(h->resubmit_wq);
edd16368
SC
7519 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
7520 hpsa_shutdown(pdev);
7521 iounmap(h->vaddr);
204892e9
SC
7522 iounmap(h->transtable);
7523 iounmap(h->cfgtable);
55e14e76 7524 hpsa_free_device_info(h);
33a2ffce 7525 hpsa_free_sg_chain_blocks(h);
edd16368
SC
7526 pci_free_consistent(h->pdev,
7527 h->nr_cmds * sizeof(struct CommandList),
7528 h->cmd_pool, h->cmd_pool_dhandle);
7529 pci_free_consistent(h->pdev,
7530 h->nr_cmds * sizeof(struct ErrorInfo),
7531 h->errinfo_pool, h->errinfo_pool_dhandle);
072b0518 7532 hpsa_free_reply_queues(h);
edd16368 7533 kfree(h->cmd_pool_bits);
303932fd 7534 kfree(h->blockFetchTable);
e1f7de0c 7535 kfree(h->ioaccel1_blockFetchTable);
aca9012a 7536 kfree(h->ioaccel2_blockFetchTable);
339b2b14 7537 kfree(h->hba_inquiry_data);
f0bd0b68 7538 pci_disable_device(pdev);
edd16368 7539 pci_release_regions(pdev);
094963da 7540 free_percpu(h->lockup_detected);
edd16368
SC
7541 kfree(h);
7542}
7543
7544static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7545 __attribute__((unused)) pm_message_t state)
7546{
7547 return -ENOSYS;
7548}
7549
7550static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7551{
7552 return -ENOSYS;
7553}
7554
7555static struct pci_driver hpsa_pci_driver = {
f79cfec6 7556 .name = HPSA,
edd16368 7557 .probe = hpsa_init_one,
6f039790 7558 .remove = hpsa_remove_one,
edd16368
SC
7559 .id_table = hpsa_pci_device_id, /* id_table */
7560 .shutdown = hpsa_shutdown,
7561 .suspend = hpsa_suspend,
7562 .resume = hpsa_resume,
7563};
7564
303932fd
DB
7565/* Fill in bucket_map[], given nsgs (the max number of
7566 * scatter gather elements supported) and bucket[],
7567 * which is an array of 8 integers. The bucket[] array
7568 * contains 8 different DMA transfer sizes (in 16
7569 * byte increments) which the controller uses to fetch
7570 * commands. This function fills in bucket_map[], which
7571 * maps a given number of scatter gather elements to one of
7572 * the 8 DMA transfer sizes. The point of it is to allow the
7573 * controller to only do as much DMA as needed to fetch the
7574 * command, with the DMA transfer size encoded in the lower
7575 * bits of the command address.
7576 */
7577static void calc_bucket_map(int bucket[], int num_buckets,
2b08b3e9 7578 int nsgs, int min_blocks, u32 *bucket_map)
303932fd
DB
7579{
7580 int i, j, b, size;
7581
303932fd
DB
7582 /* Note, bucket_map must have nsgs+1 entries. */
7583 for (i = 0; i <= nsgs; i++) {
7584 /* Compute size of a command with i SG entries */
e1f7de0c 7585 size = i + min_blocks;
303932fd
DB
7586 b = num_buckets; /* Assume the biggest bucket */
7587 /* Find the bucket that is just big enough */
e1f7de0c 7588 for (j = 0; j < num_buckets; j++) {
303932fd
DB
7589 if (bucket[j] >= size) {
7590 b = j;
7591 break;
7592 }
7593 }
7594 /* for a command with i SG entries, use bucket b. */
7595 bucket_map[i] = b;
7596 }
7597}
7598
c706a795
RE
7599/* return -ENODEV or other reason on error, 0 on success */
7600static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
303932fd 7601{
6c311b57
SC
7602 int i;
7603 unsigned long register_value;
e1f7de0c
MG
7604 unsigned long transMethod = CFGTBL_Trans_Performant |
7605 (trans_support & CFGTBL_Trans_use_short_tags) |
b9af4937
SC
7606 CFGTBL_Trans_enable_directed_msix |
7607 (trans_support & (CFGTBL_Trans_io_accel1 |
7608 CFGTBL_Trans_io_accel2));
e1f7de0c 7609 struct access_method access = SA5_performant_access;
def342bd
SC
7610
7611 /* This is a bit complicated. There are 8 registers on
7612 * the controller which we write to to tell it 8 different
7613 * sizes of commands which there may be. It's a way of
7614 * reducing the DMA done to fetch each command. Encoded into
7615 * each command's tag are 3 bits which communicate to the controller
7616 * which of the eight sizes that command fits within. The size of
7617 * each command depends on how many scatter gather entries there are.
7618 * Each SG entry requires 16 bytes. The eight registers are programmed
7619 * with the number of 16-byte blocks a command of that size requires.
7620 * The smallest command possible requires 5 such 16 byte blocks.
d66ae08b 7621 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
def342bd
SC
7622 * blocks. Note, this only extends to the SG entries contained
7623 * within the command block, and does not extend to chained blocks
7624 * of SG elements. bft[] contains the eight values we write to
7625 * the registers. They are not evenly distributed, but have more
7626 * sizes for small commands, and fewer sizes for larger commands.
7627 */
d66ae08b 7628 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
b9af4937
SC
7629#define MIN_IOACCEL2_BFT_ENTRY 5
7630#define HPSA_IOACCEL2_HEADER_SZ 4
7631 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7632 13, 14, 15, 16, 17, 18, 19,
7633 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7634 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7635 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7636 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7637 16 * MIN_IOACCEL2_BFT_ENTRY);
7638 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
d66ae08b 7639 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
303932fd
DB
7640 /* 5 = 1 s/g entry or 4k
7641 * 6 = 2 s/g entry or 8k
7642 * 8 = 4 s/g entry or 16k
7643 * 10 = 6 s/g entry or 24k
7644 */
303932fd 7645
b3a52e79
SC
7646 /* If the controller supports either ioaccel method then
7647 * we can also use the RAID stack submit path that does not
7648 * perform the superfluous readl() after each command submission.
7649 */
7650 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7651 access = SA5_performant_access_no_read;
7652
303932fd 7653 /* Controller spec: zero out this buffer. */
072b0518
SC
7654 for (i = 0; i < h->nreply_queues; i++)
7655 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
303932fd 7656
d66ae08b
SC
7657 bft[7] = SG_ENTRIES_IN_CMD + 4;
7658 calc_bucket_map(bft, ARRAY_SIZE(bft),
e1f7de0c 7659 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
303932fd
DB
7660 for (i = 0; i < 8; i++)
7661 writel(bft[i], &h->transtable->BlockFetch[i]);
7662
7663 /* size of controller ring buffer */
7664 writel(h->max_commands, &h->transtable->RepQSize);
254f796b 7665 writel(h->nreply_queues, &h->transtable->RepQCount);
303932fd
DB
7666 writel(0, &h->transtable->RepQCtrAddrLow32);
7667 writel(0, &h->transtable->RepQCtrAddrHigh32);
254f796b
MG
7668
7669 for (i = 0; i < h->nreply_queues; i++) {
7670 writel(0, &h->transtable->RepQAddr[i].upper);
072b0518 7671 writel(h->reply_queue[i].busaddr,
254f796b
MG
7672 &h->transtable->RepQAddr[i].lower);
7673 }
7674
b9af4937 7675 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
e1f7de0c
MG
7676 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7677 /*
7678 * enable outbound interrupt coalescing in accelerator mode;
7679 */
7680 if (trans_support & CFGTBL_Trans_io_accel1) {
7681 access = SA5_ioaccel_mode1_access;
7682 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7683 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
c349775e
ST
7684 } else {
7685 if (trans_support & CFGTBL_Trans_io_accel2) {
7686 access = SA5_ioaccel_mode2_access;
7687 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7688 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7689 }
e1f7de0c 7690 }
303932fd 7691 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
c706a795
RE
7692 if (hpsa_wait_for_mode_change_ack(h)) {
7693 dev_err(&h->pdev->dev,
7694 "performant mode problem - doorbell timeout\n");
7695 return -ENODEV;
7696 }
303932fd
DB
7697 register_value = readl(&(h->cfgtable->TransportActive));
7698 if (!(register_value & CFGTBL_Trans_Performant)) {
050f7147
SC
7699 dev_err(&h->pdev->dev,
7700 "performant mode problem - transport not active\n");
c706a795 7701 return -ENODEV;
303932fd 7702 }
960a30e7 7703 /* Change the access methods to the performant access methods */
e1f7de0c
MG
7704 h->access = access;
7705 h->transMethod = transMethod;
7706
b9af4937
SC
7707 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7708 (trans_support & CFGTBL_Trans_io_accel2)))
c706a795 7709 return 0;
e1f7de0c 7710
b9af4937
SC
7711 if (trans_support & CFGTBL_Trans_io_accel1) {
7712 /* Set up I/O accelerator mode */
7713 for (i = 0; i < h->nreply_queues; i++) {
7714 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7715 h->reply_queue[i].current_entry =
7716 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7717 }
7718 bft[7] = h->ioaccel_maxsg + 8;
7719 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7720 h->ioaccel1_blockFetchTable);
e1f7de0c 7721
b9af4937 7722 /* initialize all reply queue entries to unused */
072b0518
SC
7723 for (i = 0; i < h->nreply_queues; i++)
7724 memset(h->reply_queue[i].head,
7725 (u8) IOACCEL_MODE1_REPLY_UNUSED,
7726 h->reply_queue_size);
e1f7de0c 7727
b9af4937
SC
7728 /* set all the constant fields in the accelerator command
7729 * frames once at init time to save CPU cycles later.
7730 */
7731 for (i = 0; i < h->nr_cmds; i++) {
7732 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7733
7734 cp->function = IOACCEL1_FUNCTION_SCSIIO;
7735 cp->err_info = (u32) (h->errinfo_pool_dhandle +
7736 (i * sizeof(struct ErrorInfo)));
7737 cp->err_info_len = sizeof(struct ErrorInfo);
7738 cp->sgl_offset = IOACCEL1_SGLOFFSET;
2b08b3e9
DB
7739 cp->host_context_flags =
7740 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
b9af4937
SC
7741 cp->timeout_sec = 0;
7742 cp->ReplyQueue = 0;
50a0decf 7743 cp->tag =
f2405db8 7744 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
50a0decf
SC
7745 cp->host_addr =
7746 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
b9af4937 7747 (i * sizeof(struct io_accel1_cmd)));
b9af4937
SC
7748 }
7749 } else if (trans_support & CFGTBL_Trans_io_accel2) {
7750 u64 cfg_offset, cfg_base_addr_index;
7751 u32 bft2_offset, cfg_base_addr;
7752 int rc;
7753
7754 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7755 &cfg_base_addr_index, &cfg_offset);
7756 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7757 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7758 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7759 4, h->ioaccel2_blockFetchTable);
7760 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7761 BUILD_BUG_ON(offsetof(struct CfgTable,
7762 io_accel_request_size_offset) != 0xb8);
7763 h->ioaccel2_bft2_regs =
7764 remap_pci_mem(pci_resource_start(h->pdev,
7765 cfg_base_addr_index) +
7766 cfg_offset + bft2_offset,
7767 ARRAY_SIZE(bft2) *
7768 sizeof(*h->ioaccel2_bft2_regs));
7769 for (i = 0; i < ARRAY_SIZE(bft2); i++)
7770 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
e1f7de0c 7771 }
b9af4937 7772 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
c706a795
RE
7773 if (hpsa_wait_for_mode_change_ack(h)) {
7774 dev_err(&h->pdev->dev,
7775 "performant mode problem - enabling ioaccel mode\n");
7776 return -ENODEV;
7777 }
7778 return 0;
e1f7de0c
MG
7779}
7780
d37ffbe4
RE
7781/* Allocate ioaccel1 mode command blocks and block fetch table */
7782static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
e1f7de0c 7783{
283b4a9b
SC
7784 h->ioaccel_maxsg =
7785 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7786 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7787 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7788
e1f7de0c
MG
7789 /* Command structures must be aligned on a 128-byte boundary
7790 * because the 7 lower bits of the address are used by the
7791 * hardware.
7792 */
e1f7de0c
MG
7793 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7794 IOACCEL1_COMMANDLIST_ALIGNMENT);
7795 h->ioaccel_cmd_pool =
7796 pci_alloc_consistent(h->pdev,
7797 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7798 &(h->ioaccel_cmd_pool_dhandle));
7799
7800 h->ioaccel1_blockFetchTable =
283b4a9b 7801 kmalloc(((h->ioaccel_maxsg + 1) *
e1f7de0c
MG
7802 sizeof(u32)), GFP_KERNEL);
7803
7804 if ((h->ioaccel_cmd_pool == NULL) ||
7805 (h->ioaccel1_blockFetchTable == NULL))
7806 goto clean_up;
7807
7808 memset(h->ioaccel_cmd_pool, 0,
7809 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7810 return 0;
7811
7812clean_up:
7813 if (h->ioaccel_cmd_pool)
7814 pci_free_consistent(h->pdev,
7815 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7816 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7817 kfree(h->ioaccel1_blockFetchTable);
7818 return 1;
6c311b57
SC
7819}
7820
d37ffbe4
RE
7821/* Allocate ioaccel2 mode command blocks and block fetch table */
7822static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
aca9012a
SC
7823{
7824 /* Allocate ioaccel2 mode command blocks and block fetch table */
7825
7826 h->ioaccel_maxsg =
7827 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7828 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7829 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7830
aca9012a
SC
7831 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7832 IOACCEL2_COMMANDLIST_ALIGNMENT);
7833 h->ioaccel2_cmd_pool =
7834 pci_alloc_consistent(h->pdev,
7835 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7836 &(h->ioaccel2_cmd_pool_dhandle));
7837
7838 h->ioaccel2_blockFetchTable =
7839 kmalloc(((h->ioaccel_maxsg + 1) *
7840 sizeof(u32)), GFP_KERNEL);
7841
7842 if ((h->ioaccel2_cmd_pool == NULL) ||
7843 (h->ioaccel2_blockFetchTable == NULL))
7844 goto clean_up;
7845
7846 memset(h->ioaccel2_cmd_pool, 0,
7847 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7848 return 0;
7849
7850clean_up:
7851 if (h->ioaccel2_cmd_pool)
7852 pci_free_consistent(h->pdev,
7853 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7854 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7855 kfree(h->ioaccel2_blockFetchTable);
7856 return 1;
7857}
7858
6f039790 7859static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
6c311b57
SC
7860{
7861 u32 trans_support;
e1f7de0c
MG
7862 unsigned long transMethod = CFGTBL_Trans_Performant |
7863 CFGTBL_Trans_use_short_tags;
254f796b 7864 int i;
6c311b57 7865
02ec19c8
SC
7866 if (hpsa_simple_mode)
7867 return;
7868
67c99a72 7869 trans_support = readl(&(h->cfgtable->TransportSupport));
7870 if (!(trans_support & PERFORMANT_MODE))
7871 return;
7872
e1f7de0c
MG
7873 /* Check for I/O accelerator mode support */
7874 if (trans_support & CFGTBL_Trans_io_accel1) {
7875 transMethod |= CFGTBL_Trans_io_accel1 |
7876 CFGTBL_Trans_enable_directed_msix;
d37ffbe4 7877 if (hpsa_alloc_ioaccel1_cmd_and_bft(h))
e1f7de0c 7878 goto clean_up;
aca9012a
SC
7879 } else {
7880 if (trans_support & CFGTBL_Trans_io_accel2) {
7881 transMethod |= CFGTBL_Trans_io_accel2 |
7882 CFGTBL_Trans_enable_directed_msix;
d37ffbe4 7883 if (hpsa_alloc_ioaccel2_cmd_and_bft(h))
aca9012a
SC
7884 goto clean_up;
7885 }
e1f7de0c
MG
7886 }
7887
eee0f03a 7888 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
cba3d38b 7889 hpsa_get_max_perf_mode_cmds(h);
6c311b57 7890 /* Performant mode ring buffer and supporting data structures */
072b0518 7891 h->reply_queue_size = h->max_commands * sizeof(u64);
6c311b57 7892
254f796b 7893 for (i = 0; i < h->nreply_queues; i++) {
072b0518
SC
7894 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7895 h->reply_queue_size,
7896 &(h->reply_queue[i].busaddr));
7897 if (!h->reply_queue[i].head)
7898 goto clean_up;
254f796b
MG
7899 h->reply_queue[i].size = h->max_commands;
7900 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
7901 h->reply_queue[i].current_entry = 0;
7902 }
7903
6c311b57 7904 /* Need a block fetch table for performant mode */
d66ae08b 7905 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
6c311b57 7906 sizeof(u32)), GFP_KERNEL);
072b0518 7907 if (!h->blockFetchTable)
6c311b57
SC
7908 goto clean_up;
7909
e1f7de0c 7910 hpsa_enter_performant_mode(h, trans_support);
303932fd
DB
7911 return;
7912
7913clean_up:
072b0518 7914 hpsa_free_reply_queues(h);
303932fd
DB
7915 kfree(h->blockFetchTable);
7916}
7917
23100dd9 7918static int is_accelerated_cmd(struct CommandList *c)
76438d08 7919{
23100dd9
SC
7920 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7921}
7922
7923static void hpsa_drain_accel_commands(struct ctlr_info *h)
7924{
7925 struct CommandList *c = NULL;
f2405db8 7926 int i, accel_cmds_out;
281a7fd0 7927 int refcount;
76438d08 7928
f2405db8 7929 do { /* wait for all outstanding ioaccel commands to drain out */
23100dd9 7930 accel_cmds_out = 0;
f2405db8 7931 for (i = 0; i < h->nr_cmds; i++) {
f2405db8 7932 c = h->cmd_pool + i;
281a7fd0
WS
7933 refcount = atomic_inc_return(&c->refcount);
7934 if (refcount > 1) /* Command is allocated */
7935 accel_cmds_out += is_accelerated_cmd(c);
7936 cmd_free(h, c);
f2405db8 7937 }
23100dd9 7938 if (accel_cmds_out <= 0)
281a7fd0 7939 break;
76438d08
SC
7940 msleep(100);
7941 } while (1);
7942}
7943
edd16368
SC
7944/*
7945 * This is it. Register the PCI driver information for the cards we control
7946 * the OS will call our registered routines when it finds one of our cards.
7947 */
7948static int __init hpsa_init(void)
7949{
31468401 7950 return pci_register_driver(&hpsa_pci_driver);
edd16368
SC
7951}
7952
7953static void __exit hpsa_cleanup(void)
7954{
7955 pci_unregister_driver(&hpsa_pci_driver);
edd16368
SC
7956}
7957
e1f7de0c
MG
7958static void __attribute__((unused)) verify_offsets(void)
7959{
dd0e19f3
ST
7960#define VERIFY_OFFSET(member, offset) \
7961 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7962
7963 VERIFY_OFFSET(structure_size, 0);
7964 VERIFY_OFFSET(volume_blk_size, 4);
7965 VERIFY_OFFSET(volume_blk_cnt, 8);
7966 VERIFY_OFFSET(phys_blk_shift, 16);
7967 VERIFY_OFFSET(parity_rotation_shift, 17);
7968 VERIFY_OFFSET(strip_size, 18);
7969 VERIFY_OFFSET(disk_starting_blk, 20);
7970 VERIFY_OFFSET(disk_blk_cnt, 28);
7971 VERIFY_OFFSET(data_disks_per_row, 36);
7972 VERIFY_OFFSET(metadata_disks_per_row, 38);
7973 VERIFY_OFFSET(row_cnt, 40);
7974 VERIFY_OFFSET(layout_map_count, 42);
7975 VERIFY_OFFSET(flags, 44);
7976 VERIFY_OFFSET(dekindex, 46);
7977 /* VERIFY_OFFSET(reserved, 48 */
7978 VERIFY_OFFSET(data, 64);
7979
7980#undef VERIFY_OFFSET
7981
b66cc250
MM
7982#define VERIFY_OFFSET(member, offset) \
7983 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7984
7985 VERIFY_OFFSET(IU_type, 0);
7986 VERIFY_OFFSET(direction, 1);
7987 VERIFY_OFFSET(reply_queue, 2);
7988 /* VERIFY_OFFSET(reserved1, 3); */
7989 VERIFY_OFFSET(scsi_nexus, 4);
7990 VERIFY_OFFSET(Tag, 8);
7991 VERIFY_OFFSET(cdb, 16);
7992 VERIFY_OFFSET(cciss_lun, 32);
7993 VERIFY_OFFSET(data_len, 40);
7994 VERIFY_OFFSET(cmd_priority_task_attr, 44);
7995 VERIFY_OFFSET(sg_count, 45);
7996 /* VERIFY_OFFSET(reserved3 */
7997 VERIFY_OFFSET(err_ptr, 48);
7998 VERIFY_OFFSET(err_len, 56);
7999 /* VERIFY_OFFSET(reserved4 */
8000 VERIFY_OFFSET(sg, 64);
8001
8002#undef VERIFY_OFFSET
8003
e1f7de0c
MG
8004#define VERIFY_OFFSET(member, offset) \
8005 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8006
8007 VERIFY_OFFSET(dev_handle, 0x00);
8008 VERIFY_OFFSET(reserved1, 0x02);
8009 VERIFY_OFFSET(function, 0x03);
8010 VERIFY_OFFSET(reserved2, 0x04);
8011 VERIFY_OFFSET(err_info, 0x0C);
8012 VERIFY_OFFSET(reserved3, 0x10);
8013 VERIFY_OFFSET(err_info_len, 0x12);
8014 VERIFY_OFFSET(reserved4, 0x13);
8015 VERIFY_OFFSET(sgl_offset, 0x14);
8016 VERIFY_OFFSET(reserved5, 0x15);
8017 VERIFY_OFFSET(transfer_len, 0x1C);
8018 VERIFY_OFFSET(reserved6, 0x20);
8019 VERIFY_OFFSET(io_flags, 0x24);
8020 VERIFY_OFFSET(reserved7, 0x26);
8021 VERIFY_OFFSET(LUN, 0x34);
8022 VERIFY_OFFSET(control, 0x3C);
8023 VERIFY_OFFSET(CDB, 0x40);
8024 VERIFY_OFFSET(reserved8, 0x50);
8025 VERIFY_OFFSET(host_context_flags, 0x60);
8026 VERIFY_OFFSET(timeout_sec, 0x62);
8027 VERIFY_OFFSET(ReplyQueue, 0x64);
8028 VERIFY_OFFSET(reserved9, 0x65);
50a0decf 8029 VERIFY_OFFSET(tag, 0x68);
e1f7de0c
MG
8030 VERIFY_OFFSET(host_addr, 0x70);
8031 VERIFY_OFFSET(CISS_LUN, 0x78);
8032 VERIFY_OFFSET(SG, 0x78 + 8);
8033#undef VERIFY_OFFSET
8034}
8035
edd16368
SC
8036module_init(hpsa_init);
8037module_exit(hpsa_cleanup);