]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/scsi/hpsa.c
hpsa: use helper routines for finishing commands
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / hpsa.c
CommitLineData
edd16368
SC
1/*
2 * Disk Array driver for HP Smart Array SAS controllers
51c35139 3 * Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
edd16368
SC
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 *
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
19 *
20 */
21
22#include <linux/module.h>
23#include <linux/interrupt.h>
24#include <linux/types.h>
25#include <linux/pci.h>
e5a44df8 26#include <linux/pci-aspm.h>
edd16368
SC
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/delay.h>
30#include <linux/fs.h>
31#include <linux/timer.h>
edd16368
SC
32#include <linux/init.h>
33#include <linux/spinlock.h>
edd16368
SC
34#include <linux/compat.h>
35#include <linux/blktrace_api.h>
36#include <linux/uaccess.h>
37#include <linux/io.h>
38#include <linux/dma-mapping.h>
39#include <linux/completion.h>
40#include <linux/moduleparam.h>
41#include <scsi/scsi.h>
42#include <scsi/scsi_cmnd.h>
43#include <scsi/scsi_device.h>
44#include <scsi/scsi_host.h>
667e23d4 45#include <scsi/scsi_tcq.h>
9437ac43 46#include <scsi/scsi_eh.h>
edd16368
SC
47#include <linux/cciss_ioctl.h>
48#include <linux/string.h>
49#include <linux/bitmap.h>
60063497 50#include <linux/atomic.h>
a0c12413 51#include <linux/jiffies.h>
42a91641 52#include <linux/percpu-defs.h>
094963da 53#include <linux/percpu.h>
2b08b3e9 54#include <asm/unaligned.h>
283b4a9b 55#include <asm/div64.h>
edd16368
SC
56#include "hpsa_cmd.h"
57#include "hpsa.h"
58
59/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
9a993302 60#define HPSA_DRIVER_VERSION "3.4.4-1"
edd16368 61#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
f79cfec6 62#define HPSA "hpsa"
edd16368 63
007e7aa9
RE
64/* How long to wait for CISS doorbell communication */
65#define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
66#define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
67#define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
68#define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
edd16368
SC
69#define MAX_IOCTL_CONFIG_WAIT 1000
70
71/*define how many times we will try a command because of bus resets */
72#define MAX_CMD_RETRIES 3
73
74/* Embedded module documentation macros - see modules.h */
75MODULE_AUTHOR("Hewlett-Packard Company");
76MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
77 HPSA_DRIVER_VERSION);
78MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
79MODULE_VERSION(HPSA_DRIVER_VERSION);
80MODULE_LICENSE("GPL");
81
82static int hpsa_allow_any;
83module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
84MODULE_PARM_DESC(hpsa_allow_any,
85 "Allow hpsa driver to access unknown HP Smart Array hardware");
02ec19c8
SC
86static int hpsa_simple_mode;
87module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88MODULE_PARM_DESC(hpsa_simple_mode,
89 "Use 'simple mode' rather than 'performant mode'");
edd16368
SC
90
91/* define the PCI info for the cards we can control */
92static const struct pci_device_id hpsa_pci_device_id[] = {
edd16368
SC
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
163dbcd8
MM
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
f8b01eb9 100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
9143a961 101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
fe0c9610
MM
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
fe0c9610
MM
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
97b9f53d
MM
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
3b7a45e5 124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
97b9f53d
MM
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
3b7a45e5
JH
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
8e616a5e
SC
133 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
134 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
135 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
136 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
137 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
7c03b870 138 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
6798cc0a 139 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
edd16368
SC
140 {0,}
141};
142
143MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
144
145/* board_id = Subsystem Device ID & Vendor ID
146 * product = Marketing Name for the board
147 * access = Address of the struct of function pointers
148 */
149static struct board_type products[] = {
edd16368
SC
150 {0x3241103C, "Smart Array P212", &SA5_access},
151 {0x3243103C, "Smart Array P410", &SA5_access},
152 {0x3245103C, "Smart Array P410i", &SA5_access},
153 {0x3247103C, "Smart Array P411", &SA5_access},
154 {0x3249103C, "Smart Array P812", &SA5_access},
163dbcd8
MM
155 {0x324A103C, "Smart Array P712m", &SA5_access},
156 {0x324B103C, "Smart Array P711m", &SA5_access},
7d2cce58 157 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
fe0c9610
MM
158 {0x3350103C, "Smart Array P222", &SA5_access},
159 {0x3351103C, "Smart Array P420", &SA5_access},
160 {0x3352103C, "Smart Array P421", &SA5_access},
161 {0x3353103C, "Smart Array P822", &SA5_access},
162 {0x3354103C, "Smart Array P420i", &SA5_access},
163 {0x3355103C, "Smart Array P220i", &SA5_access},
164 {0x3356103C, "Smart Array P721m", &SA5_access},
1fd6c8e3
MM
165 {0x1921103C, "Smart Array P830i", &SA5_access},
166 {0x1922103C, "Smart Array P430", &SA5_access},
167 {0x1923103C, "Smart Array P431", &SA5_access},
168 {0x1924103C, "Smart Array P830", &SA5_access},
169 {0x1926103C, "Smart Array P731m", &SA5_access},
170 {0x1928103C, "Smart Array P230i", &SA5_access},
171 {0x1929103C, "Smart Array P530", &SA5_access},
27fb8137
DB
172 {0x21BD103C, "Smart Array P244br", &SA5_access},
173 {0x21BE103C, "Smart Array P741m", &SA5_access},
174 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
175 {0x21C0103C, "Smart Array P440ar", &SA5_access},
c8ae0ab1 176 {0x21C1103C, "Smart Array P840ar", &SA5_access},
27fb8137
DB
177 {0x21C2103C, "Smart Array P440", &SA5_access},
178 {0x21C3103C, "Smart Array P441", &SA5_access},
97b9f53d 179 {0x21C4103C, "Smart Array", &SA5_access},
27fb8137
DB
180 {0x21C5103C, "Smart Array P841", &SA5_access},
181 {0x21C6103C, "Smart HBA H244br", &SA5_access},
182 {0x21C7103C, "Smart HBA H240", &SA5_access},
183 {0x21C8103C, "Smart HBA H241", &SA5_access},
97b9f53d 184 {0x21C9103C, "Smart Array", &SA5_access},
27fb8137
DB
185 {0x21CA103C, "Smart Array P246br", &SA5_access},
186 {0x21CB103C, "Smart Array P840", &SA5_access},
3b7a45e5
JH
187 {0x21CC103C, "Smart Array", &SA5_access},
188 {0x21CD103C, "Smart Array", &SA5_access},
27fb8137 189 {0x21CE103C, "Smart HBA", &SA5_access},
8e616a5e
SC
190 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
191 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
192 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
193 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
194 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
edd16368
SC
195 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
196};
197
198static int number_of_controllers;
199
10f66018
SC
200static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
201static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
42a91641 202static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
edd16368
SC
203
204#ifdef CONFIG_COMPAT
42a91641
DB
205static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
206 void __user *arg);
edd16368
SC
207#endif
208
209static void cmd_free(struct ctlr_info *h, struct CommandList *c);
edd16368 210static struct CommandList *cmd_alloc(struct ctlr_info *h);
a2dac136 211static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
b7bb24eb 212 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
edd16368 213 int cmd_type);
2c143342 214static void hpsa_free_cmd_pool(struct ctlr_info *h);
b7bb24eb 215#define VPD_PAGE (1 << 8)
edd16368 216
f281233d 217static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
a08a8471
SC
218static void hpsa_scan_start(struct Scsi_Host *);
219static int hpsa_scan_finished(struct Scsi_Host *sh,
220 unsigned long elapsed_time);
7c0a0229 221static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
edd16368
SC
222
223static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
75167d2c 224static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
edd16368 225static int hpsa_slave_alloc(struct scsi_device *sdev);
41ce4c35 226static int hpsa_slave_configure(struct scsi_device *sdev);
edd16368
SC
227static void hpsa_slave_destroy(struct scsi_device *sdev);
228
edd16368 229static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
edd16368
SC
230static int check_for_unit_attention(struct ctlr_info *h,
231 struct CommandList *c);
232static void check_ioctl_unit_attention(struct ctlr_info *h,
233 struct CommandList *c);
303932fd
DB
234/* performant mode helper functions */
235static void calc_bucket_map(int *bucket, int num_buckets,
2b08b3e9 236 int nsgs, int min_blocks, u32 *bucket_map);
105a3dbc
RE
237static void hpsa_free_performant_mode(struct ctlr_info *h);
238static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
254f796b 239static inline u32 next_command(struct ctlr_info *h, u8 q);
6f039790
GKH
240static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
241 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
242 u64 *cfg_offset);
243static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
244 unsigned long *memory_bar);
245static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
246static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
247 int wait_for_ready);
75167d2c 248static inline void finish_cmd(struct CommandList *c);
c706a795 249static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
fe5389c8
SC
250#define BOARD_NOT_READY 0
251#define BOARD_READY 1
23100dd9 252static void hpsa_drain_accel_commands(struct ctlr_info *h);
76438d08 253static void hpsa_flush_cache(struct ctlr_info *h);
c349775e
ST
254static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
255 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 256 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
080ef1cc 257static void hpsa_command_resubmit_worker(struct work_struct *work);
25163bd5
WS
258static u32 lockup_detected(struct ctlr_info *h);
259static int detect_controller_lockup(struct ctlr_info *h);
edd16368 260
edd16368
SC
261static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
262{
263 unsigned long *priv = shost_priv(sdev->host);
264 return (struct ctlr_info *) *priv;
265}
266
a23513e8
SC
267static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
268{
269 unsigned long *priv = shost_priv(sh);
270 return (struct ctlr_info *) *priv;
271}
272
9437ac43
SC
273/* extract sense key, asc, and ascq from sense data. -1 means invalid. */
274static void decode_sense_data(const u8 *sense_data, int sense_data_len,
275 u8 *sense_key, u8 *asc, u8 *ascq)
276{
277 struct scsi_sense_hdr sshdr;
278 bool rc;
279
280 *sense_key = -1;
281 *asc = -1;
282 *ascq = -1;
283
284 if (sense_data_len < 1)
285 return;
286
287 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
288 if (rc) {
289 *sense_key = sshdr.sense_key;
290 *asc = sshdr.asc;
291 *ascq = sshdr.ascq;
292 }
293}
294
edd16368
SC
295static int check_for_unit_attention(struct ctlr_info *h,
296 struct CommandList *c)
297{
9437ac43
SC
298 u8 sense_key, asc, ascq;
299 int sense_len;
300
301 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
302 sense_len = sizeof(c->err_info->SenseInfo);
303 else
304 sense_len = c->err_info->SenseLen;
305
306 decode_sense_data(c->err_info->SenseInfo, sense_len,
307 &sense_key, &asc, &ascq);
308 if (sense_key != UNIT_ATTENTION || asc == -1)
edd16368
SC
309 return 0;
310
9437ac43 311 switch (asc) {
edd16368 312 case STATE_CHANGED:
9437ac43
SC
313 dev_warn(&h->pdev->dev,
314 HPSA "%d: a state change detected, command retried\n",
315 h->ctlr);
edd16368
SC
316 break;
317 case LUN_FAILED:
7f73695a
SC
318 dev_warn(&h->pdev->dev,
319 HPSA "%d: LUN failure detected\n", h->ctlr);
edd16368
SC
320 break;
321 case REPORT_LUNS_CHANGED:
7f73695a
SC
322 dev_warn(&h->pdev->dev,
323 HPSA "%d: report LUN data changed\n", h->ctlr);
edd16368 324 /*
4f4eb9f1
ST
325 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
326 * target (array) devices.
edd16368
SC
327 */
328 break;
329 case POWER_OR_RESET:
f79cfec6 330 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
edd16368
SC
331 "or device reset detected\n", h->ctlr);
332 break;
333 case UNIT_ATTENTION_CLEARED:
f79cfec6 334 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
edd16368
SC
335 "cleared by another initiator\n", h->ctlr);
336 break;
337 default:
f79cfec6 338 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
edd16368
SC
339 "unit attention detected\n", h->ctlr);
340 break;
341 }
342 return 1;
343}
344
852af20a
MB
345static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
346{
347 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
348 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
349 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
350 return 0;
351 dev_warn(&h->pdev->dev, HPSA "device busy");
352 return 1;
353}
354
e985c58f
SC
355static u32 lockup_detected(struct ctlr_info *h);
356static ssize_t host_show_lockup_detected(struct device *dev,
357 struct device_attribute *attr, char *buf)
358{
359 int ld;
360 struct ctlr_info *h;
361 struct Scsi_Host *shost = class_to_shost(dev);
362
363 h = shost_to_hba(shost);
364 ld = lockup_detected(h);
365
366 return sprintf(buf, "ld=%d\n", ld);
367}
368
da0697bd
ST
369static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
370 struct device_attribute *attr,
371 const char *buf, size_t count)
372{
373 int status, len;
374 struct ctlr_info *h;
375 struct Scsi_Host *shost = class_to_shost(dev);
376 char tmpbuf[10];
377
378 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
379 return -EACCES;
380 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
381 strncpy(tmpbuf, buf, len);
382 tmpbuf[len] = '\0';
383 if (sscanf(tmpbuf, "%d", &status) != 1)
384 return -EINVAL;
385 h = shost_to_hba(shost);
386 h->acciopath_status = !!status;
387 dev_warn(&h->pdev->dev,
388 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
389 h->acciopath_status ? "enabled" : "disabled");
390 return count;
391}
392
2ba8bfc8
SC
393static ssize_t host_store_raid_offload_debug(struct device *dev,
394 struct device_attribute *attr,
395 const char *buf, size_t count)
396{
397 int debug_level, len;
398 struct ctlr_info *h;
399 struct Scsi_Host *shost = class_to_shost(dev);
400 char tmpbuf[10];
401
402 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
403 return -EACCES;
404 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
405 strncpy(tmpbuf, buf, len);
406 tmpbuf[len] = '\0';
407 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
408 return -EINVAL;
409 if (debug_level < 0)
410 debug_level = 0;
411 h = shost_to_hba(shost);
412 h->raid_offload_debug = debug_level;
413 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
414 h->raid_offload_debug);
415 return count;
416}
417
edd16368
SC
418static ssize_t host_store_rescan(struct device *dev,
419 struct device_attribute *attr,
420 const char *buf, size_t count)
421{
422 struct ctlr_info *h;
423 struct Scsi_Host *shost = class_to_shost(dev);
a23513e8 424 h = shost_to_hba(shost);
31468401 425 hpsa_scan_start(h->scsi_host);
edd16368
SC
426 return count;
427}
428
d28ce020
SC
429static ssize_t host_show_firmware_revision(struct device *dev,
430 struct device_attribute *attr, char *buf)
431{
432 struct ctlr_info *h;
433 struct Scsi_Host *shost = class_to_shost(dev);
434 unsigned char *fwrev;
435
436 h = shost_to_hba(shost);
437 if (!h->hba_inquiry_data)
438 return 0;
439 fwrev = &h->hba_inquiry_data[32];
440 return snprintf(buf, 20, "%c%c%c%c\n",
441 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
442}
443
94a13649
SC
444static ssize_t host_show_commands_outstanding(struct device *dev,
445 struct device_attribute *attr, char *buf)
446{
447 struct Scsi_Host *shost = class_to_shost(dev);
448 struct ctlr_info *h = shost_to_hba(shost);
449
0cbf768e
SC
450 return snprintf(buf, 20, "%d\n",
451 atomic_read(&h->commands_outstanding));
94a13649
SC
452}
453
745a7a25
SC
454static ssize_t host_show_transport_mode(struct device *dev,
455 struct device_attribute *attr, char *buf)
456{
457 struct ctlr_info *h;
458 struct Scsi_Host *shost = class_to_shost(dev);
459
460 h = shost_to_hba(shost);
461 return snprintf(buf, 20, "%s\n",
960a30e7 462 h->transMethod & CFGTBL_Trans_Performant ?
745a7a25
SC
463 "performant" : "simple");
464}
465
da0697bd
ST
466static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
467 struct device_attribute *attr, char *buf)
468{
469 struct ctlr_info *h;
470 struct Scsi_Host *shost = class_to_shost(dev);
471
472 h = shost_to_hba(shost);
473 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
474 (h->acciopath_status == 1) ? "enabled" : "disabled");
475}
476
46380786 477/* List of controllers which cannot be hard reset on kexec with reset_devices */
941b1cda
SC
478static u32 unresettable_controller[] = {
479 0x324a103C, /* Smart Array P712m */
9b5c48c2 480 0x324b103C, /* Smart Array P711m */
941b1cda
SC
481 0x3223103C, /* Smart Array P800 */
482 0x3234103C, /* Smart Array P400 */
483 0x3235103C, /* Smart Array P400i */
484 0x3211103C, /* Smart Array E200i */
485 0x3212103C, /* Smart Array E200 */
486 0x3213103C, /* Smart Array E200i */
487 0x3214103C, /* Smart Array E200i */
488 0x3215103C, /* Smart Array E200i */
489 0x3237103C, /* Smart Array E500 */
490 0x323D103C, /* Smart Array P700m */
7af0abbc 491 0x40800E11, /* Smart Array 5i */
941b1cda
SC
492 0x409C0E11, /* Smart Array 6400 */
493 0x409D0E11, /* Smart Array 6400 EM */
5a4f934e
TH
494 0x40700E11, /* Smart Array 5300 */
495 0x40820E11, /* Smart Array 532 */
496 0x40830E11, /* Smart Array 5312 */
497 0x409A0E11, /* Smart Array 641 */
498 0x409B0E11, /* Smart Array 642 */
499 0x40910E11, /* Smart Array 6i */
941b1cda
SC
500};
501
46380786
SC
502/* List of controllers which cannot even be soft reset */
503static u32 soft_unresettable_controller[] = {
7af0abbc 504 0x40800E11, /* Smart Array 5i */
5a4f934e
TH
505 0x40700E11, /* Smart Array 5300 */
506 0x40820E11, /* Smart Array 532 */
507 0x40830E11, /* Smart Array 5312 */
508 0x409A0E11, /* Smart Array 641 */
509 0x409B0E11, /* Smart Array 642 */
510 0x40910E11, /* Smart Array 6i */
46380786
SC
511 /* Exclude 640x boards. These are two pci devices in one slot
512 * which share a battery backed cache module. One controls the
513 * cache, the other accesses the cache through the one that controls
514 * it. If we reset the one controlling the cache, the other will
515 * likely not be happy. Just forbid resetting this conjoined mess.
516 * The 640x isn't really supported by hpsa anyway.
517 */
518 0x409C0E11, /* Smart Array 6400 */
519 0x409D0E11, /* Smart Array 6400 EM */
520};
521
9b5c48c2
SC
522static u32 needs_abort_tags_swizzled[] = {
523 0x323D103C, /* Smart Array P700m */
524 0x324a103C, /* Smart Array P712m */
525 0x324b103C, /* SmartArray P711m */
526};
527
528static int board_id_in_array(u32 a[], int nelems, u32 board_id)
941b1cda
SC
529{
530 int i;
531
9b5c48c2
SC
532 for (i = 0; i < nelems; i++)
533 if (a[i] == board_id)
534 return 1;
535 return 0;
46380786
SC
536}
537
9b5c48c2 538static int ctlr_is_hard_resettable(u32 board_id)
46380786 539{
9b5c48c2
SC
540 return !board_id_in_array(unresettable_controller,
541 ARRAY_SIZE(unresettable_controller), board_id);
542}
46380786 543
9b5c48c2
SC
544static int ctlr_is_soft_resettable(u32 board_id)
545{
546 return !board_id_in_array(soft_unresettable_controller,
547 ARRAY_SIZE(soft_unresettable_controller), board_id);
941b1cda
SC
548}
549
46380786
SC
550static int ctlr_is_resettable(u32 board_id)
551{
552 return ctlr_is_hard_resettable(board_id) ||
553 ctlr_is_soft_resettable(board_id);
554}
555
9b5c48c2
SC
556static int ctlr_needs_abort_tags_swizzled(u32 board_id)
557{
558 return board_id_in_array(needs_abort_tags_swizzled,
559 ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
560}
561
941b1cda
SC
562static ssize_t host_show_resettable(struct device *dev,
563 struct device_attribute *attr, char *buf)
564{
565 struct ctlr_info *h;
566 struct Scsi_Host *shost = class_to_shost(dev);
567
568 h = shost_to_hba(shost);
46380786 569 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
941b1cda
SC
570}
571
edd16368
SC
572static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
573{
574 return (scsi3addr[3] & 0xC0) == 0x40;
575}
576
f2ef0ce7
RE
577static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
578 "1(+0)ADM", "UNKNOWN"
edd16368 579};
6b80b18f
ST
580#define HPSA_RAID_0 0
581#define HPSA_RAID_4 1
582#define HPSA_RAID_1 2 /* also used for RAID 10 */
583#define HPSA_RAID_5 3 /* also used for RAID 50 */
584#define HPSA_RAID_51 4
585#define HPSA_RAID_6 5 /* also used for RAID 60 */
586#define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
edd16368
SC
587#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
588
589static ssize_t raid_level_show(struct device *dev,
590 struct device_attribute *attr, char *buf)
591{
592 ssize_t l = 0;
82a72c0a 593 unsigned char rlevel;
edd16368
SC
594 struct ctlr_info *h;
595 struct scsi_device *sdev;
596 struct hpsa_scsi_dev_t *hdev;
597 unsigned long flags;
598
599 sdev = to_scsi_device(dev);
600 h = sdev_to_hba(sdev);
601 spin_lock_irqsave(&h->lock, flags);
602 hdev = sdev->hostdata;
603 if (!hdev) {
604 spin_unlock_irqrestore(&h->lock, flags);
605 return -ENODEV;
606 }
607
608 /* Is this even a logical drive? */
609 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
610 spin_unlock_irqrestore(&h->lock, flags);
611 l = snprintf(buf, PAGE_SIZE, "N/A\n");
612 return l;
613 }
614
615 rlevel = hdev->raid_level;
616 spin_unlock_irqrestore(&h->lock, flags);
82a72c0a 617 if (rlevel > RAID_UNKNOWN)
edd16368
SC
618 rlevel = RAID_UNKNOWN;
619 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
620 return l;
621}
622
623static ssize_t lunid_show(struct device *dev,
624 struct device_attribute *attr, char *buf)
625{
626 struct ctlr_info *h;
627 struct scsi_device *sdev;
628 struct hpsa_scsi_dev_t *hdev;
629 unsigned long flags;
630 unsigned char lunid[8];
631
632 sdev = to_scsi_device(dev);
633 h = sdev_to_hba(sdev);
634 spin_lock_irqsave(&h->lock, flags);
635 hdev = sdev->hostdata;
636 if (!hdev) {
637 spin_unlock_irqrestore(&h->lock, flags);
638 return -ENODEV;
639 }
640 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
641 spin_unlock_irqrestore(&h->lock, flags);
642 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
643 lunid[0], lunid[1], lunid[2], lunid[3],
644 lunid[4], lunid[5], lunid[6], lunid[7]);
645}
646
647static ssize_t unique_id_show(struct device *dev,
648 struct device_attribute *attr, char *buf)
649{
650 struct ctlr_info *h;
651 struct scsi_device *sdev;
652 struct hpsa_scsi_dev_t *hdev;
653 unsigned long flags;
654 unsigned char sn[16];
655
656 sdev = to_scsi_device(dev);
657 h = sdev_to_hba(sdev);
658 spin_lock_irqsave(&h->lock, flags);
659 hdev = sdev->hostdata;
660 if (!hdev) {
661 spin_unlock_irqrestore(&h->lock, flags);
662 return -ENODEV;
663 }
664 memcpy(sn, hdev->device_id, sizeof(sn));
665 spin_unlock_irqrestore(&h->lock, flags);
666 return snprintf(buf, 16 * 2 + 2,
667 "%02X%02X%02X%02X%02X%02X%02X%02X"
668 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
669 sn[0], sn[1], sn[2], sn[3],
670 sn[4], sn[5], sn[6], sn[7],
671 sn[8], sn[9], sn[10], sn[11],
672 sn[12], sn[13], sn[14], sn[15]);
673}
674
c1988684
ST
675static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
676 struct device_attribute *attr, char *buf)
677{
678 struct ctlr_info *h;
679 struct scsi_device *sdev;
680 struct hpsa_scsi_dev_t *hdev;
681 unsigned long flags;
682 int offload_enabled;
683
684 sdev = to_scsi_device(dev);
685 h = sdev_to_hba(sdev);
686 spin_lock_irqsave(&h->lock, flags);
687 hdev = sdev->hostdata;
688 if (!hdev) {
689 spin_unlock_irqrestore(&h->lock, flags);
690 return -ENODEV;
691 }
692 offload_enabled = hdev->offload_enabled;
693 spin_unlock_irqrestore(&h->lock, flags);
694 return snprintf(buf, 20, "%d\n", offload_enabled);
695}
696
3f5eac3a
SC
697static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
698static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
699static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
700static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
c1988684
ST
701static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
702 host_show_hp_ssd_smart_path_enabled, NULL);
da0697bd
ST
703static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
704 host_show_hp_ssd_smart_path_status,
705 host_store_hp_ssd_smart_path_status);
2ba8bfc8
SC
706static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
707 host_store_raid_offload_debug);
3f5eac3a
SC
708static DEVICE_ATTR(firmware_revision, S_IRUGO,
709 host_show_firmware_revision, NULL);
710static DEVICE_ATTR(commands_outstanding, S_IRUGO,
711 host_show_commands_outstanding, NULL);
712static DEVICE_ATTR(transport_mode, S_IRUGO,
713 host_show_transport_mode, NULL);
941b1cda
SC
714static DEVICE_ATTR(resettable, S_IRUGO,
715 host_show_resettable, NULL);
e985c58f
SC
716static DEVICE_ATTR(lockup_detected, S_IRUGO,
717 host_show_lockup_detected, NULL);
3f5eac3a
SC
718
719static struct device_attribute *hpsa_sdev_attrs[] = {
720 &dev_attr_raid_level,
721 &dev_attr_lunid,
722 &dev_attr_unique_id,
c1988684 723 &dev_attr_hp_ssd_smart_path_enabled,
e985c58f 724 &dev_attr_lockup_detected,
3f5eac3a
SC
725 NULL,
726};
727
728static struct device_attribute *hpsa_shost_attrs[] = {
729 &dev_attr_rescan,
730 &dev_attr_firmware_revision,
731 &dev_attr_commands_outstanding,
732 &dev_attr_transport_mode,
941b1cda 733 &dev_attr_resettable,
da0697bd 734 &dev_attr_hp_ssd_smart_path_status,
2ba8bfc8 735 &dev_attr_raid_offload_debug,
3f5eac3a
SC
736 NULL,
737};
738
41ce4c35
SC
739#define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
740 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
741
3f5eac3a
SC
742static struct scsi_host_template hpsa_driver_template = {
743 .module = THIS_MODULE,
f79cfec6
SC
744 .name = HPSA,
745 .proc_name = HPSA,
3f5eac3a
SC
746 .queuecommand = hpsa_scsi_queue_command,
747 .scan_start = hpsa_scan_start,
748 .scan_finished = hpsa_scan_finished,
7c0a0229 749 .change_queue_depth = hpsa_change_queue_depth,
3f5eac3a
SC
750 .this_id = -1,
751 .use_clustering = ENABLE_CLUSTERING,
75167d2c 752 .eh_abort_handler = hpsa_eh_abort_handler,
3f5eac3a
SC
753 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
754 .ioctl = hpsa_ioctl,
755 .slave_alloc = hpsa_slave_alloc,
41ce4c35 756 .slave_configure = hpsa_slave_configure,
3f5eac3a
SC
757 .slave_destroy = hpsa_slave_destroy,
758#ifdef CONFIG_COMPAT
759 .compat_ioctl = hpsa_compat_ioctl,
760#endif
761 .sdev_attrs = hpsa_sdev_attrs,
762 .shost_attrs = hpsa_shost_attrs,
c0d6a4d1 763 .max_sectors = 8192,
54b2b50c 764 .no_write_same = 1,
3f5eac3a
SC
765};
766
254f796b 767static inline u32 next_command(struct ctlr_info *h, u8 q)
3f5eac3a
SC
768{
769 u32 a;
072b0518 770 struct reply_queue_buffer *rq = &h->reply_queue[q];
3f5eac3a 771
e1f7de0c
MG
772 if (h->transMethod & CFGTBL_Trans_io_accel1)
773 return h->access.command_completed(h, q);
774
3f5eac3a 775 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
254f796b 776 return h->access.command_completed(h, q);
3f5eac3a 777
254f796b
MG
778 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
779 a = rq->head[rq->current_entry];
780 rq->current_entry++;
0cbf768e 781 atomic_dec(&h->commands_outstanding);
3f5eac3a
SC
782 } else {
783 a = FIFO_EMPTY;
784 }
785 /* Check for wraparound */
254f796b
MG
786 if (rq->current_entry == h->max_commands) {
787 rq->current_entry = 0;
788 rq->wraparound ^= 1;
3f5eac3a
SC
789 }
790 return a;
791}
792
c349775e
ST
793/*
794 * There are some special bits in the bus address of the
795 * command that we have to set for the controller to know
796 * how to process the command:
797 *
798 * Normal performant mode:
799 * bit 0: 1 means performant mode, 0 means simple mode.
800 * bits 1-3 = block fetch table entry
801 * bits 4-6 = command type (== 0)
802 *
803 * ioaccel1 mode:
804 * bit 0 = "performant mode" bit.
805 * bits 1-3 = block fetch table entry
806 * bits 4-6 = command type (== 110)
807 * (command type is needed because ioaccel1 mode
808 * commands are submitted through the same register as normal
809 * mode commands, so this is how the controller knows whether
810 * the command is normal mode or ioaccel1 mode.)
811 *
812 * ioaccel2 mode:
813 * bit 0 = "performant mode" bit.
814 * bits 1-4 = block fetch table entry (note extra bit)
815 * bits 4-6 = not needed, because ioaccel2 mode has
816 * a separate special register for submitting commands.
817 */
818
25163bd5
WS
819/*
820 * set_performant_mode: Modify the tag for cciss performant
3f5eac3a
SC
821 * set bit 0 for pull model, bits 3-1 for block fetch
822 * register number
823 */
25163bd5
WS
824#define DEFAULT_REPLY_QUEUE (-1)
825static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
826 int reply_queue)
3f5eac3a 827{
254f796b 828 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
3f5eac3a 829 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
25163bd5
WS
830 if (unlikely(!h->msix_vector))
831 return;
832 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
254f796b 833 c->Header.ReplyQueue =
804a5cb5 834 raw_smp_processor_id() % h->nreply_queues;
25163bd5
WS
835 else
836 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
254f796b 837 }
3f5eac3a
SC
838}
839
c349775e 840static void set_ioaccel1_performant_mode(struct ctlr_info *h,
25163bd5
WS
841 struct CommandList *c,
842 int reply_queue)
c349775e
ST
843{
844 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
845
25163bd5
WS
846 /*
847 * Tell the controller to post the reply to the queue for this
c349775e
ST
848 * processor. This seems to give the best I/O throughput.
849 */
25163bd5
WS
850 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
851 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
852 else
853 cp->ReplyQueue = reply_queue % h->nreply_queues;
854 /*
855 * Set the bits in the address sent down to include:
c349775e
ST
856 * - performant mode bit (bit 0)
857 * - pull count (bits 1-3)
858 * - command type (bits 4-6)
859 */
860 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
861 IOACCEL1_BUSADDR_CMDTYPE;
862}
863
8be986cc
SC
864static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
865 struct CommandList *c,
866 int reply_queue)
867{
868 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
869 &h->ioaccel2_cmd_pool[c->cmdindex];
870
871 /* Tell the controller to post the reply to the queue for this
872 * processor. This seems to give the best I/O throughput.
873 */
874 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
875 cp->reply_queue = smp_processor_id() % h->nreply_queues;
876 else
877 cp->reply_queue = reply_queue % h->nreply_queues;
878 /* Set the bits in the address sent down to include:
879 * - performant mode bit not used in ioaccel mode 2
880 * - pull count (bits 0-3)
881 * - command type isn't needed for ioaccel2
882 */
883 c->busaddr |= h->ioaccel2_blockFetchTable[0];
884}
885
c349775e 886static void set_ioaccel2_performant_mode(struct ctlr_info *h,
25163bd5
WS
887 struct CommandList *c,
888 int reply_queue)
c349775e
ST
889{
890 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
891
25163bd5
WS
892 /*
893 * Tell the controller to post the reply to the queue for this
c349775e
ST
894 * processor. This seems to give the best I/O throughput.
895 */
25163bd5
WS
896 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
897 cp->reply_queue = smp_processor_id() % h->nreply_queues;
898 else
899 cp->reply_queue = reply_queue % h->nreply_queues;
900 /*
901 * Set the bits in the address sent down to include:
c349775e
ST
902 * - performant mode bit not used in ioaccel mode 2
903 * - pull count (bits 0-3)
904 * - command type isn't needed for ioaccel2
905 */
906 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
907}
908
e85c5974
SC
909static int is_firmware_flash_cmd(u8 *cdb)
910{
911 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
912}
913
914/*
915 * During firmware flash, the heartbeat register may not update as frequently
916 * as it should. So we dial down lockup detection during firmware flash. and
917 * dial it back up when firmware flash completes.
918 */
919#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
920#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
921static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
922 struct CommandList *c)
923{
924 if (!is_firmware_flash_cmd(c->Request.CDB))
925 return;
926 atomic_inc(&h->firmware_flash_in_progress);
927 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
928}
929
930static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
931 struct CommandList *c)
932{
933 if (is_firmware_flash_cmd(c->Request.CDB) &&
934 atomic_dec_and_test(&h->firmware_flash_in_progress))
935 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
936}
937
25163bd5
WS
938static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
939 struct CommandList *c, int reply_queue)
3f5eac3a 940{
c05e8866
SC
941 dial_down_lockup_detection_during_fw_flash(h, c);
942 atomic_inc(&h->commands_outstanding);
c349775e
ST
943 switch (c->cmd_type) {
944 case CMD_IOACCEL1:
25163bd5 945 set_ioaccel1_performant_mode(h, c, reply_queue);
c05e8866 946 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
c349775e
ST
947 break;
948 case CMD_IOACCEL2:
25163bd5 949 set_ioaccel2_performant_mode(h, c, reply_queue);
c05e8866 950 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
c349775e 951 break;
8be986cc
SC
952 case IOACCEL2_TMF:
953 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
954 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
955 break;
c349775e 956 default:
25163bd5 957 set_performant_mode(h, c, reply_queue);
c05e8866 958 h->access.submit_command(h, c);
c349775e 959 }
3f5eac3a
SC
960}
961
25163bd5
WS
962static void enqueue_cmd_and_start_io(struct ctlr_info *h,
963 struct CommandList *c)
964{
965 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
966}
967
3f5eac3a
SC
968static inline int is_hba_lunid(unsigned char scsi3addr[])
969{
970 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
971}
972
973static inline int is_scsi_rev_5(struct ctlr_info *h)
974{
975 if (!h->hba_inquiry_data)
976 return 0;
977 if ((h->hba_inquiry_data[2] & 0x07) == 5)
978 return 1;
979 return 0;
980}
981
edd16368
SC
982static int hpsa_find_target_lun(struct ctlr_info *h,
983 unsigned char scsi3addr[], int bus, int *target, int *lun)
984{
985 /* finds an unused bus, target, lun for a new physical device
986 * assumes h->devlock is held
987 */
988 int i, found = 0;
cfe5badc 989 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
edd16368 990
263d9401 991 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
edd16368
SC
992
993 for (i = 0; i < h->ndevices; i++) {
994 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
263d9401 995 __set_bit(h->dev[i]->target, lun_taken);
edd16368
SC
996 }
997
263d9401
AM
998 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
999 if (i < HPSA_MAX_DEVICES) {
1000 /* *bus = 1; */
1001 *target = i;
1002 *lun = 0;
1003 found = 1;
edd16368
SC
1004 }
1005 return !found;
1006}
1007
0d96ef5f
WS
1008static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1009 struct hpsa_scsi_dev_t *dev, char *description)
1010{
1011 dev_printk(level, &h->pdev->dev,
1012 "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1013 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1014 description,
1015 scsi_device_type(dev->devtype),
1016 dev->vendor,
1017 dev->model,
1018 dev->raid_level > RAID_UNKNOWN ?
1019 "RAID-?" : raid_label[dev->raid_level],
1020 dev->offload_config ? '+' : '-',
1021 dev->offload_enabled ? '+' : '-',
1022 dev->expose_state);
1023}
1024
edd16368
SC
1025/* Add an entry into h->dev[] array. */
1026static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
1027 struct hpsa_scsi_dev_t *device,
1028 struct hpsa_scsi_dev_t *added[], int *nadded)
1029{
1030 /* assumes h->devlock is held */
1031 int n = h->ndevices;
1032 int i;
1033 unsigned char addr1[8], addr2[8];
1034 struct hpsa_scsi_dev_t *sd;
1035
cfe5badc 1036 if (n >= HPSA_MAX_DEVICES) {
edd16368
SC
1037 dev_err(&h->pdev->dev, "too many devices, some will be "
1038 "inaccessible.\n");
1039 return -1;
1040 }
1041
1042 /* physical devices do not have lun or target assigned until now. */
1043 if (device->lun != -1)
1044 /* Logical device, lun is already assigned. */
1045 goto lun_assigned;
1046
1047 /* If this device a non-zero lun of a multi-lun device
1048 * byte 4 of the 8-byte LUN addr will contain the logical
2b08b3e9 1049 * unit no, zero otherwise.
edd16368
SC
1050 */
1051 if (device->scsi3addr[4] == 0) {
1052 /* This is not a non-zero lun of a multi-lun device */
1053 if (hpsa_find_target_lun(h, device->scsi3addr,
1054 device->bus, &device->target, &device->lun) != 0)
1055 return -1;
1056 goto lun_assigned;
1057 }
1058
1059 /* This is a non-zero lun of a multi-lun device.
1060 * Search through our list and find the device which
1061 * has the same 8 byte LUN address, excepting byte 4.
1062 * Assign the same bus and target for this new LUN.
1063 * Use the logical unit number from the firmware.
1064 */
1065 memcpy(addr1, device->scsi3addr, 8);
1066 addr1[4] = 0;
1067 for (i = 0; i < n; i++) {
1068 sd = h->dev[i];
1069 memcpy(addr2, sd->scsi3addr, 8);
1070 addr2[4] = 0;
1071 /* differ only in byte 4? */
1072 if (memcmp(addr1, addr2, 8) == 0) {
1073 device->bus = sd->bus;
1074 device->target = sd->target;
1075 device->lun = device->scsi3addr[4];
1076 break;
1077 }
1078 }
1079 if (device->lun == -1) {
1080 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1081 " suspect firmware bug or unsupported hardware "
1082 "configuration.\n");
1083 return -1;
1084 }
1085
1086lun_assigned:
1087
1088 h->dev[n] = device;
1089 h->ndevices++;
1090 added[*nadded] = device;
1091 (*nadded)++;
0d96ef5f
WS
1092 hpsa_show_dev_msg(KERN_INFO, h, device,
1093 device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
a473d86c
RE
1094 device->offload_to_be_enabled = device->offload_enabled;
1095 device->offload_enabled = 0;
edd16368
SC
1096 return 0;
1097}
1098
bd9244f7
ST
1099/* Update an entry in h->dev[] array. */
1100static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
1101 int entry, struct hpsa_scsi_dev_t *new_entry)
1102{
a473d86c 1103 int offload_enabled;
bd9244f7
ST
1104 /* assumes h->devlock is held */
1105 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1106
1107 /* Raid level changed. */
1108 h->dev[entry]->raid_level = new_entry->raid_level;
250fb125 1109
03383736
DB
1110 /* Raid offload parameters changed. Careful about the ordering. */
1111 if (new_entry->offload_config && new_entry->offload_enabled) {
1112 /*
1113 * if drive is newly offload_enabled, we want to copy the
1114 * raid map data first. If previously offload_enabled and
1115 * offload_config were set, raid map data had better be
1116 * the same as it was before. if raid map data is changed
1117 * then it had better be the case that
1118 * h->dev[entry]->offload_enabled is currently 0.
1119 */
1120 h->dev[entry]->raid_map = new_entry->raid_map;
1121 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
03383736 1122 }
a3144e0b
JH
1123 if (new_entry->hba_ioaccel_enabled) {
1124 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1125 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1126 }
1127 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
250fb125 1128 h->dev[entry]->offload_config = new_entry->offload_config;
9fb0de2d 1129 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
03383736 1130 h->dev[entry]->queue_depth = new_entry->queue_depth;
250fb125 1131
41ce4c35
SC
1132 /*
1133 * We can turn off ioaccel offload now, but need to delay turning
1134 * it on until we can update h->dev[entry]->phys_disk[], but we
1135 * can't do that until all the devices are updated.
1136 */
1137 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1138 if (!new_entry->offload_enabled)
1139 h->dev[entry]->offload_enabled = 0;
1140
a473d86c
RE
1141 offload_enabled = h->dev[entry]->offload_enabled;
1142 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
0d96ef5f 1143 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
a473d86c 1144 h->dev[entry]->offload_enabled = offload_enabled;
bd9244f7
ST
1145}
1146
2a8ccf31
SC
1147/* Replace an entry from h->dev[] array. */
1148static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1149 int entry, struct hpsa_scsi_dev_t *new_entry,
1150 struct hpsa_scsi_dev_t *added[], int *nadded,
1151 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1152{
1153 /* assumes h->devlock is held */
cfe5badc 1154 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
2a8ccf31
SC
1155 removed[*nremoved] = h->dev[entry];
1156 (*nremoved)++;
01350d05
SC
1157
1158 /*
1159 * New physical devices won't have target/lun assigned yet
1160 * so we need to preserve the values in the slot we are replacing.
1161 */
1162 if (new_entry->target == -1) {
1163 new_entry->target = h->dev[entry]->target;
1164 new_entry->lun = h->dev[entry]->lun;
1165 }
1166
2a8ccf31
SC
1167 h->dev[entry] = new_entry;
1168 added[*nadded] = new_entry;
1169 (*nadded)++;
0d96ef5f 1170 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
a473d86c
RE
1171 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1172 new_entry->offload_enabled = 0;
2a8ccf31
SC
1173}
1174
edd16368
SC
1175/* Remove an entry from h->dev[] array. */
1176static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1177 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1178{
1179 /* assumes h->devlock is held */
1180 int i;
1181 struct hpsa_scsi_dev_t *sd;
1182
cfe5badc 1183 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
edd16368
SC
1184
1185 sd = h->dev[entry];
1186 removed[*nremoved] = h->dev[entry];
1187 (*nremoved)++;
1188
1189 for (i = entry; i < h->ndevices-1; i++)
1190 h->dev[i] = h->dev[i+1];
1191 h->ndevices--;
0d96ef5f 1192 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
edd16368
SC
1193}
1194
1195#define SCSI3ADDR_EQ(a, b) ( \
1196 (a)[7] == (b)[7] && \
1197 (a)[6] == (b)[6] && \
1198 (a)[5] == (b)[5] && \
1199 (a)[4] == (b)[4] && \
1200 (a)[3] == (b)[3] && \
1201 (a)[2] == (b)[2] && \
1202 (a)[1] == (b)[1] && \
1203 (a)[0] == (b)[0])
1204
1205static void fixup_botched_add(struct ctlr_info *h,
1206 struct hpsa_scsi_dev_t *added)
1207{
1208 /* called when scsi_add_device fails in order to re-adjust
1209 * h->dev[] to match the mid layer's view.
1210 */
1211 unsigned long flags;
1212 int i, j;
1213
1214 spin_lock_irqsave(&h->lock, flags);
1215 for (i = 0; i < h->ndevices; i++) {
1216 if (h->dev[i] == added) {
1217 for (j = i; j < h->ndevices-1; j++)
1218 h->dev[j] = h->dev[j+1];
1219 h->ndevices--;
1220 break;
1221 }
1222 }
1223 spin_unlock_irqrestore(&h->lock, flags);
1224 kfree(added);
1225}
1226
1227static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1228 struct hpsa_scsi_dev_t *dev2)
1229{
edd16368
SC
1230 /* we compare everything except lun and target as these
1231 * are not yet assigned. Compare parts likely
1232 * to differ first
1233 */
1234 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1235 sizeof(dev1->scsi3addr)) != 0)
1236 return 0;
1237 if (memcmp(dev1->device_id, dev2->device_id,
1238 sizeof(dev1->device_id)) != 0)
1239 return 0;
1240 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1241 return 0;
1242 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1243 return 0;
edd16368
SC
1244 if (dev1->devtype != dev2->devtype)
1245 return 0;
edd16368
SC
1246 if (dev1->bus != dev2->bus)
1247 return 0;
1248 return 1;
1249}
1250
bd9244f7
ST
1251static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1252 struct hpsa_scsi_dev_t *dev2)
1253{
1254 /* Device attributes that can change, but don't mean
1255 * that the device is a different device, nor that the OS
1256 * needs to be told anything about the change.
1257 */
1258 if (dev1->raid_level != dev2->raid_level)
1259 return 1;
250fb125
SC
1260 if (dev1->offload_config != dev2->offload_config)
1261 return 1;
1262 if (dev1->offload_enabled != dev2->offload_enabled)
1263 return 1;
03383736
DB
1264 if (dev1->queue_depth != dev2->queue_depth)
1265 return 1;
bd9244f7
ST
1266 return 0;
1267}
1268
edd16368
SC
1269/* Find needle in haystack. If exact match found, return DEVICE_SAME,
1270 * and return needle location in *index. If scsi3addr matches, but not
1271 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
bd9244f7
ST
1272 * location in *index.
1273 * In the case of a minor device attribute change, such as RAID level, just
1274 * return DEVICE_UPDATED, along with the updated device's location in index.
1275 * If needle not found, return DEVICE_NOT_FOUND.
edd16368
SC
1276 */
1277static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1278 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1279 int *index)
1280{
1281 int i;
1282#define DEVICE_NOT_FOUND 0
1283#define DEVICE_CHANGED 1
1284#define DEVICE_SAME 2
bd9244f7 1285#define DEVICE_UPDATED 3
edd16368 1286 for (i = 0; i < haystack_size; i++) {
23231048
SC
1287 if (haystack[i] == NULL) /* previously removed. */
1288 continue;
edd16368
SC
1289 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1290 *index = i;
bd9244f7
ST
1291 if (device_is_the_same(needle, haystack[i])) {
1292 if (device_updated(needle, haystack[i]))
1293 return DEVICE_UPDATED;
edd16368 1294 return DEVICE_SAME;
bd9244f7 1295 } else {
9846590e
SC
1296 /* Keep offline devices offline */
1297 if (needle->volume_offline)
1298 return DEVICE_NOT_FOUND;
edd16368 1299 return DEVICE_CHANGED;
bd9244f7 1300 }
edd16368
SC
1301 }
1302 }
1303 *index = -1;
1304 return DEVICE_NOT_FOUND;
1305}
1306
9846590e
SC
1307static void hpsa_monitor_offline_device(struct ctlr_info *h,
1308 unsigned char scsi3addr[])
1309{
1310 struct offline_device_entry *device;
1311 unsigned long flags;
1312
1313 /* Check to see if device is already on the list */
1314 spin_lock_irqsave(&h->offline_device_lock, flags);
1315 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1316 if (memcmp(device->scsi3addr, scsi3addr,
1317 sizeof(device->scsi3addr)) == 0) {
1318 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1319 return;
1320 }
1321 }
1322 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1323
1324 /* Device is not on the list, add it. */
1325 device = kmalloc(sizeof(*device), GFP_KERNEL);
1326 if (!device) {
1327 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1328 return;
1329 }
1330 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1331 spin_lock_irqsave(&h->offline_device_lock, flags);
1332 list_add_tail(&device->offline_list, &h->offline_device_list);
1333 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1334}
1335
1336/* Print a message explaining various offline volume states */
1337static void hpsa_show_volume_status(struct ctlr_info *h,
1338 struct hpsa_scsi_dev_t *sd)
1339{
1340 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1341 dev_info(&h->pdev->dev,
1342 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1343 h->scsi_host->host_no,
1344 sd->bus, sd->target, sd->lun);
1345 switch (sd->volume_offline) {
1346 case HPSA_LV_OK:
1347 break;
1348 case HPSA_LV_UNDERGOING_ERASE:
1349 dev_info(&h->pdev->dev,
1350 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1351 h->scsi_host->host_no,
1352 sd->bus, sd->target, sd->lun);
1353 break;
1354 case HPSA_LV_UNDERGOING_RPI:
1355 dev_info(&h->pdev->dev,
1356 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1357 h->scsi_host->host_no,
1358 sd->bus, sd->target, sd->lun);
1359 break;
1360 case HPSA_LV_PENDING_RPI:
1361 dev_info(&h->pdev->dev,
1362 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1363 h->scsi_host->host_no,
1364 sd->bus, sd->target, sd->lun);
1365 break;
1366 case HPSA_LV_ENCRYPTED_NO_KEY:
1367 dev_info(&h->pdev->dev,
1368 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1369 h->scsi_host->host_no,
1370 sd->bus, sd->target, sd->lun);
1371 break;
1372 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1373 dev_info(&h->pdev->dev,
1374 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1375 h->scsi_host->host_no,
1376 sd->bus, sd->target, sd->lun);
1377 break;
1378 case HPSA_LV_UNDERGOING_ENCRYPTION:
1379 dev_info(&h->pdev->dev,
1380 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1381 h->scsi_host->host_no,
1382 sd->bus, sd->target, sd->lun);
1383 break;
1384 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1385 dev_info(&h->pdev->dev,
1386 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1387 h->scsi_host->host_no,
1388 sd->bus, sd->target, sd->lun);
1389 break;
1390 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1391 dev_info(&h->pdev->dev,
1392 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1393 h->scsi_host->host_no,
1394 sd->bus, sd->target, sd->lun);
1395 break;
1396 case HPSA_LV_PENDING_ENCRYPTION:
1397 dev_info(&h->pdev->dev,
1398 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1399 h->scsi_host->host_no,
1400 sd->bus, sd->target, sd->lun);
1401 break;
1402 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1403 dev_info(&h->pdev->dev,
1404 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1405 h->scsi_host->host_no,
1406 sd->bus, sd->target, sd->lun);
1407 break;
1408 }
1409}
1410
03383736
DB
1411/*
1412 * Figure the list of physical drive pointers for a logical drive with
1413 * raid offload configured.
1414 */
1415static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1416 struct hpsa_scsi_dev_t *dev[], int ndevices,
1417 struct hpsa_scsi_dev_t *logical_drive)
1418{
1419 struct raid_map_data *map = &logical_drive->raid_map;
1420 struct raid_map_disk_data *dd = &map->data[0];
1421 int i, j;
1422 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1423 le16_to_cpu(map->metadata_disks_per_row);
1424 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1425 le16_to_cpu(map->layout_map_count) *
1426 total_disks_per_row;
1427 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1428 total_disks_per_row;
1429 int qdepth;
1430
1431 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1432 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1433
1434 qdepth = 0;
1435 for (i = 0; i < nraid_map_entries; i++) {
1436 logical_drive->phys_disk[i] = NULL;
1437 if (!logical_drive->offload_config)
1438 continue;
1439 for (j = 0; j < ndevices; j++) {
1440 if (dev[j]->devtype != TYPE_DISK)
1441 continue;
1442 if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1443 continue;
1444 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1445 continue;
1446
1447 logical_drive->phys_disk[i] = dev[j];
1448 if (i < nphys_disk)
1449 qdepth = min(h->nr_cmds, qdepth +
1450 logical_drive->phys_disk[i]->queue_depth);
1451 break;
1452 }
1453
1454 /*
1455 * This can happen if a physical drive is removed and
1456 * the logical drive is degraded. In that case, the RAID
1457 * map data will refer to a physical disk which isn't actually
1458 * present. And in that case offload_enabled should already
1459 * be 0, but we'll turn it off here just in case
1460 */
1461 if (!logical_drive->phys_disk[i]) {
1462 logical_drive->offload_enabled = 0;
41ce4c35
SC
1463 logical_drive->offload_to_be_enabled = 0;
1464 logical_drive->queue_depth = 8;
03383736
DB
1465 }
1466 }
1467 if (nraid_map_entries)
1468 /*
1469 * This is correct for reads, too high for full stripe writes,
1470 * way too high for partial stripe writes
1471 */
1472 logical_drive->queue_depth = qdepth;
1473 else
1474 logical_drive->queue_depth = h->nr_cmds;
1475}
1476
1477static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1478 struct hpsa_scsi_dev_t *dev[], int ndevices)
1479{
1480 int i;
1481
1482 for (i = 0; i < ndevices; i++) {
1483 if (dev[i]->devtype != TYPE_DISK)
1484 continue;
1485 if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1486 continue;
41ce4c35
SC
1487
1488 /*
1489 * If offload is currently enabled, the RAID map and
1490 * phys_disk[] assignment *better* not be changing
1491 * and since it isn't changing, we do not need to
1492 * update it.
1493 */
1494 if (dev[i]->offload_enabled)
1495 continue;
1496
03383736
DB
1497 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1498 }
1499}
1500
4967bd3e 1501static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
edd16368
SC
1502 struct hpsa_scsi_dev_t *sd[], int nsds)
1503{
1504 /* sd contains scsi3 addresses and devtypes, and inquiry
1505 * data. This function takes what's in sd to be the current
1506 * reality and updates h->dev[] to reflect that reality.
1507 */
1508 int i, entry, device_change, changes = 0;
1509 struct hpsa_scsi_dev_t *csd;
1510 unsigned long flags;
1511 struct hpsa_scsi_dev_t **added, **removed;
1512 int nadded, nremoved;
1513 struct Scsi_Host *sh = NULL;
1514
cfe5badc
ST
1515 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1516 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
edd16368
SC
1517
1518 if (!added || !removed) {
1519 dev_warn(&h->pdev->dev, "out of memory in "
1520 "adjust_hpsa_scsi_table\n");
1521 goto free_and_out;
1522 }
1523
1524 spin_lock_irqsave(&h->devlock, flags);
1525
1526 /* find any devices in h->dev[] that are not in
1527 * sd[] and remove them from h->dev[], and for any
1528 * devices which have changed, remove the old device
1529 * info and add the new device info.
bd9244f7
ST
1530 * If minor device attributes change, just update
1531 * the existing device structure.
edd16368
SC
1532 */
1533 i = 0;
1534 nremoved = 0;
1535 nadded = 0;
1536 while (i < h->ndevices) {
1537 csd = h->dev[i];
1538 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1539 if (device_change == DEVICE_NOT_FOUND) {
1540 changes++;
1541 hpsa_scsi_remove_entry(h, hostno, i,
1542 removed, &nremoved);
1543 continue; /* remove ^^^, hence i not incremented */
1544 } else if (device_change == DEVICE_CHANGED) {
1545 changes++;
2a8ccf31
SC
1546 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1547 added, &nadded, removed, &nremoved);
c7f172dc
SC
1548 /* Set it to NULL to prevent it from being freed
1549 * at the bottom of hpsa_update_scsi_devices()
1550 */
1551 sd[entry] = NULL;
bd9244f7
ST
1552 } else if (device_change == DEVICE_UPDATED) {
1553 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
edd16368
SC
1554 }
1555 i++;
1556 }
1557
1558 /* Now, make sure every device listed in sd[] is also
1559 * listed in h->dev[], adding them if they aren't found
1560 */
1561
1562 for (i = 0; i < nsds; i++) {
1563 if (!sd[i]) /* if already added above. */
1564 continue;
9846590e
SC
1565
1566 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1567 * as the SCSI mid-layer does not handle such devices well.
1568 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1569 * at 160Hz, and prevents the system from coming up.
1570 */
1571 if (sd[i]->volume_offline) {
1572 hpsa_show_volume_status(h, sd[i]);
0d96ef5f 1573 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
9846590e
SC
1574 continue;
1575 }
1576
edd16368
SC
1577 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1578 h->ndevices, &entry);
1579 if (device_change == DEVICE_NOT_FOUND) {
1580 changes++;
1581 if (hpsa_scsi_add_entry(h, hostno, sd[i],
1582 added, &nadded) != 0)
1583 break;
1584 sd[i] = NULL; /* prevent from being freed later. */
1585 } else if (device_change == DEVICE_CHANGED) {
1586 /* should never happen... */
1587 changes++;
1588 dev_warn(&h->pdev->dev,
1589 "device unexpectedly changed.\n");
1590 /* but if it does happen, we just ignore that device */
1591 }
1592 }
41ce4c35
SC
1593 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1594
1595 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1596 * any logical drives that need it enabled.
1597 */
1598 for (i = 0; i < h->ndevices; i++)
1599 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1600
edd16368
SC
1601 spin_unlock_irqrestore(&h->devlock, flags);
1602
9846590e
SC
1603 /* Monitor devices which are in one of several NOT READY states to be
1604 * brought online later. This must be done without holding h->devlock,
1605 * so don't touch h->dev[]
1606 */
1607 for (i = 0; i < nsds; i++) {
1608 if (!sd[i]) /* if already added above. */
1609 continue;
1610 if (sd[i]->volume_offline)
1611 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1612 }
1613
edd16368
SC
1614 /* Don't notify scsi mid layer of any changes the first time through
1615 * (or if there are no changes) scsi_scan_host will do it later the
1616 * first time through.
1617 */
1618 if (hostno == -1 || !changes)
1619 goto free_and_out;
1620
1621 sh = h->scsi_host;
1622 /* Notify scsi mid layer of any removed devices */
1623 for (i = 0; i < nremoved; i++) {
41ce4c35
SC
1624 if (removed[i]->expose_state & HPSA_SCSI_ADD) {
1625 struct scsi_device *sdev =
1626 scsi_device_lookup(sh, removed[i]->bus,
1627 removed[i]->target, removed[i]->lun);
1628 if (sdev != NULL) {
1629 scsi_remove_device(sdev);
1630 scsi_device_put(sdev);
1631 } else {
1632 /*
1633 * We don't expect to get here.
1634 * future cmds to this device will get selection
1635 * timeout as if the device was gone.
1636 */
0d96ef5f
WS
1637 hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
1638 "didn't find device for removal.");
41ce4c35 1639 }
edd16368
SC
1640 }
1641 kfree(removed[i]);
1642 removed[i] = NULL;
1643 }
1644
1645 /* Notify scsi mid layer of any added devices */
1646 for (i = 0; i < nadded; i++) {
41ce4c35
SC
1647 if (!(added[i]->expose_state & HPSA_SCSI_ADD))
1648 continue;
edd16368
SC
1649 if (scsi_add_device(sh, added[i]->bus,
1650 added[i]->target, added[i]->lun) == 0)
1651 continue;
0d96ef5f
WS
1652 hpsa_show_dev_msg(KERN_WARNING, h, added[i],
1653 "addition failed, device not added.");
edd16368
SC
1654 /* now we have to remove it from h->dev,
1655 * since it didn't get added to scsi mid layer
1656 */
1657 fixup_botched_add(h, added[i]);
105a3dbc 1658 added[i] = NULL;
edd16368
SC
1659 }
1660
1661free_and_out:
1662 kfree(added);
1663 kfree(removed);
edd16368
SC
1664}
1665
1666/*
9e03aa2f 1667 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
edd16368
SC
1668 * Assume's h->devlock is held.
1669 */
1670static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1671 int bus, int target, int lun)
1672{
1673 int i;
1674 struct hpsa_scsi_dev_t *sd;
1675
1676 for (i = 0; i < h->ndevices; i++) {
1677 sd = h->dev[i];
1678 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1679 return sd;
1680 }
1681 return NULL;
1682}
1683
edd16368
SC
1684static int hpsa_slave_alloc(struct scsi_device *sdev)
1685{
1686 struct hpsa_scsi_dev_t *sd;
1687 unsigned long flags;
1688 struct ctlr_info *h;
1689
1690 h = sdev_to_hba(sdev);
1691 spin_lock_irqsave(&h->devlock, flags);
1692 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1693 sdev_id(sdev), sdev->lun);
41ce4c35 1694 if (likely(sd)) {
03383736 1695 atomic_set(&sd->ioaccel_cmds_out, 0);
41ce4c35
SC
1696 sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
1697 } else
1698 sdev->hostdata = NULL;
edd16368
SC
1699 spin_unlock_irqrestore(&h->devlock, flags);
1700 return 0;
1701}
1702
41ce4c35
SC
1703/* configure scsi device based on internal per-device structure */
1704static int hpsa_slave_configure(struct scsi_device *sdev)
1705{
1706 struct hpsa_scsi_dev_t *sd;
1707 int queue_depth;
1708
1709 sd = sdev->hostdata;
1710 sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);
1711
1712 if (sd)
1713 queue_depth = sd->queue_depth != 0 ?
1714 sd->queue_depth : sdev->host->can_queue;
1715 else
1716 queue_depth = sdev->host->can_queue;
1717
1718 scsi_change_queue_depth(sdev, queue_depth);
1719
1720 return 0;
1721}
1722
edd16368
SC
1723static void hpsa_slave_destroy(struct scsi_device *sdev)
1724{
bcc44255 1725 /* nothing to do. */
edd16368
SC
1726}
1727
d9a729f3
WS
1728static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1729{
1730 int i;
1731
1732 if (!h->ioaccel2_cmd_sg_list)
1733 return;
1734 for (i = 0; i < h->nr_cmds; i++) {
1735 kfree(h->ioaccel2_cmd_sg_list[i]);
1736 h->ioaccel2_cmd_sg_list[i] = NULL;
1737 }
1738 kfree(h->ioaccel2_cmd_sg_list);
1739 h->ioaccel2_cmd_sg_list = NULL;
1740}
1741
1742static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1743{
1744 int i;
1745
1746 if (h->chainsize <= 0)
1747 return 0;
1748
1749 h->ioaccel2_cmd_sg_list =
1750 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1751 GFP_KERNEL);
1752 if (!h->ioaccel2_cmd_sg_list)
1753 return -ENOMEM;
1754 for (i = 0; i < h->nr_cmds; i++) {
1755 h->ioaccel2_cmd_sg_list[i] =
1756 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1757 h->maxsgentries, GFP_KERNEL);
1758 if (!h->ioaccel2_cmd_sg_list[i])
1759 goto clean;
1760 }
1761 return 0;
1762
1763clean:
1764 hpsa_free_ioaccel2_sg_chain_blocks(h);
1765 return -ENOMEM;
1766}
1767
33a2ffce
SC
1768static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1769{
1770 int i;
1771
1772 if (!h->cmd_sg_list)
1773 return;
1774 for (i = 0; i < h->nr_cmds; i++) {
1775 kfree(h->cmd_sg_list[i]);
1776 h->cmd_sg_list[i] = NULL;
1777 }
1778 kfree(h->cmd_sg_list);
1779 h->cmd_sg_list = NULL;
1780}
1781
105a3dbc 1782static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
33a2ffce
SC
1783{
1784 int i;
1785
1786 if (h->chainsize <= 0)
1787 return 0;
1788
1789 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1790 GFP_KERNEL);
3d4e6af8
RE
1791 if (!h->cmd_sg_list) {
1792 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
33a2ffce 1793 return -ENOMEM;
3d4e6af8 1794 }
33a2ffce
SC
1795 for (i = 0; i < h->nr_cmds; i++) {
1796 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1797 h->chainsize, GFP_KERNEL);
3d4e6af8
RE
1798 if (!h->cmd_sg_list[i]) {
1799 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
33a2ffce 1800 goto clean;
3d4e6af8 1801 }
33a2ffce
SC
1802 }
1803 return 0;
1804
1805clean:
1806 hpsa_free_sg_chain_blocks(h);
1807 return -ENOMEM;
1808}
1809
d9a729f3
WS
1810static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
1811 struct io_accel2_cmd *cp, struct CommandList *c)
1812{
1813 struct ioaccel2_sg_element *chain_block;
1814 u64 temp64;
1815 u32 chain_size;
1816
1817 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
1818 chain_size = le32_to_cpu(cp->data_len);
1819 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
1820 PCI_DMA_TODEVICE);
1821 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1822 /* prevent subsequent unmapping */
1823 cp->sg->address = 0;
1824 return -1;
1825 }
1826 cp->sg->address = cpu_to_le64(temp64);
1827 return 0;
1828}
1829
1830static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
1831 struct io_accel2_cmd *cp)
1832{
1833 struct ioaccel2_sg_element *chain_sg;
1834 u64 temp64;
1835 u32 chain_size;
1836
1837 chain_sg = cp->sg;
1838 temp64 = le64_to_cpu(chain_sg->address);
1839 chain_size = le32_to_cpu(cp->data_len);
1840 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
1841}
1842
e2bea6df 1843static int hpsa_map_sg_chain_block(struct ctlr_info *h,
33a2ffce
SC
1844 struct CommandList *c)
1845{
1846 struct SGDescriptor *chain_sg, *chain_block;
1847 u64 temp64;
50a0decf 1848 u32 chain_len;
33a2ffce
SC
1849
1850 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1851 chain_block = h->cmd_sg_list[c->cmdindex];
50a0decf
SC
1852 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1853 chain_len = sizeof(*chain_sg) *
2b08b3e9 1854 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
50a0decf
SC
1855 chain_sg->Len = cpu_to_le32(chain_len);
1856 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
33a2ffce 1857 PCI_DMA_TODEVICE);
e2bea6df
SC
1858 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1859 /* prevent subsequent unmapping */
50a0decf 1860 chain_sg->Addr = cpu_to_le64(0);
e2bea6df
SC
1861 return -1;
1862 }
50a0decf 1863 chain_sg->Addr = cpu_to_le64(temp64);
e2bea6df 1864 return 0;
33a2ffce
SC
1865}
1866
1867static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1868 struct CommandList *c)
1869{
1870 struct SGDescriptor *chain_sg;
33a2ffce 1871
50a0decf 1872 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
33a2ffce
SC
1873 return;
1874
1875 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
50a0decf
SC
1876 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1877 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
33a2ffce
SC
1878}
1879
a09c1441
ST
1880
1881/* Decode the various types of errors on ioaccel2 path.
1882 * Return 1 for any error that should generate a RAID path retry.
1883 * Return 0 for errors that don't require a RAID path retry.
1884 */
1885static int handle_ioaccel_mode2_error(struct ctlr_info *h,
c349775e
ST
1886 struct CommandList *c,
1887 struct scsi_cmnd *cmd,
1888 struct io_accel2_cmd *c2)
1889{
1890 int data_len;
a09c1441 1891 int retry = 0;
c40820d5 1892 u32 ioaccel2_resid = 0;
c349775e
ST
1893
1894 switch (c2->error_data.serv_response) {
1895 case IOACCEL2_SERV_RESPONSE_COMPLETE:
1896 switch (c2->error_data.status) {
1897 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1898 break;
1899 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
ee6b1889 1900 cmd->result |= SAM_STAT_CHECK_CONDITION;
c349775e 1901 if (c2->error_data.data_present !=
ee6b1889
SC
1902 IOACCEL2_SENSE_DATA_PRESENT) {
1903 memset(cmd->sense_buffer, 0,
1904 SCSI_SENSE_BUFFERSIZE);
c349775e 1905 break;
ee6b1889 1906 }
c349775e
ST
1907 /* copy the sense data */
1908 data_len = c2->error_data.sense_data_len;
1909 if (data_len > SCSI_SENSE_BUFFERSIZE)
1910 data_len = SCSI_SENSE_BUFFERSIZE;
1911 if (data_len > sizeof(c2->error_data.sense_data_buff))
1912 data_len =
1913 sizeof(c2->error_data.sense_data_buff);
1914 memcpy(cmd->sense_buffer,
1915 c2->error_data.sense_data_buff, data_len);
a09c1441 1916 retry = 1;
c349775e
ST
1917 break;
1918 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
a09c1441 1919 retry = 1;
c349775e
ST
1920 break;
1921 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
a09c1441 1922 retry = 1;
c349775e
ST
1923 break;
1924 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
4a8da22b 1925 retry = 1;
c349775e
ST
1926 break;
1927 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
a09c1441 1928 retry = 1;
c349775e
ST
1929 break;
1930 default:
a09c1441 1931 retry = 1;
c349775e
ST
1932 break;
1933 }
1934 break;
1935 case IOACCEL2_SERV_RESPONSE_FAILURE:
c40820d5
JH
1936 switch (c2->error_data.status) {
1937 case IOACCEL2_STATUS_SR_IO_ERROR:
1938 case IOACCEL2_STATUS_SR_IO_ABORTED:
1939 case IOACCEL2_STATUS_SR_OVERRUN:
1940 retry = 1;
1941 break;
1942 case IOACCEL2_STATUS_SR_UNDERRUN:
1943 cmd->result = (DID_OK << 16); /* host byte */
1944 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1945 ioaccel2_resid = get_unaligned_le32(
1946 &c2->error_data.resid_cnt[0]);
1947 scsi_set_resid(cmd, ioaccel2_resid);
1948 break;
1949 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
1950 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
1951 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
1952 /* We will get an event from ctlr to trigger rescan */
1953 retry = 1;
1954 break;
1955 default:
1956 retry = 1;
c40820d5 1957 }
c349775e
ST
1958 break;
1959 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1960 break;
1961 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1962 break;
1963 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
a09c1441 1964 retry = 1;
c349775e
ST
1965 break;
1966 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
c349775e
ST
1967 break;
1968 default:
a09c1441 1969 retry = 1;
c349775e
ST
1970 break;
1971 }
a09c1441
ST
1972
1973 return retry; /* retry on raid path? */
c349775e
ST
1974}
1975
8a0ff92c
WS
1976static void hpsa_cmd_free_and_done(struct ctlr_info *h,
1977 struct CommandList *c, struct scsi_cmnd *cmd)
1978{
1979 cmd_free(h, c);
1980 cmd->scsi_done(cmd);
1981}
1982
1983static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
1984{
1985 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
1986 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
1987}
1988
c349775e
ST
1989static void process_ioaccel2_completion(struct ctlr_info *h,
1990 struct CommandList *c, struct scsi_cmnd *cmd,
1991 struct hpsa_scsi_dev_t *dev)
1992{
1993 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1994
1995 /* check for good status */
1996 if (likely(c2->error_data.serv_response == 0 &&
8a0ff92c
WS
1997 c2->error_data.status == 0))
1998 return hpsa_cmd_free_and_done(h, c, cmd);
c349775e 1999
8a0ff92c
WS
2000 /*
2001 * Any RAID offload error results in retry which will use
c349775e
ST
2002 * the normal I/O path so the controller can handle whatever's
2003 * wrong.
2004 */
2005 if (is_logical_dev_addr_mode(dev->scsi3addr) &&
2006 c2->error_data.serv_response ==
2007 IOACCEL2_SERV_RESPONSE_FAILURE) {
080ef1cc
DB
2008 if (c2->error_data.status ==
2009 IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2010 dev->offload_enabled = 0;
8a0ff92c
WS
2011
2012 return hpsa_retry_cmd(h, c);
a09c1441 2013 }
080ef1cc
DB
2014
2015 if (handle_ioaccel_mode2_error(h, c, cmd, c2))
8a0ff92c 2016 return hpsa_retry_cmd(h, c);
080ef1cc 2017
8a0ff92c 2018 return hpsa_cmd_free_and_done(h, c, cmd);
c349775e
ST
2019}
2020
9437ac43
SC
2021/* Returns 0 on success, < 0 otherwise. */
2022static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2023 struct CommandList *cp)
2024{
2025 u8 tmf_status = cp->err_info->ScsiStatus;
2026
2027 switch (tmf_status) {
2028 case CISS_TMF_COMPLETE:
2029 /*
2030 * CISS_TMF_COMPLETE never happens, instead,
2031 * ei->CommandStatus == 0 for this case.
2032 */
2033 case CISS_TMF_SUCCESS:
2034 return 0;
2035 case CISS_TMF_INVALID_FRAME:
2036 case CISS_TMF_NOT_SUPPORTED:
2037 case CISS_TMF_FAILED:
2038 case CISS_TMF_WRONG_LUN:
2039 case CISS_TMF_OVERLAPPED_TAG:
2040 break;
2041 default:
2042 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2043 tmf_status);
2044 break;
2045 }
2046 return -tmf_status;
2047}
2048
1fb011fb 2049static void complete_scsi_command(struct CommandList *cp)
edd16368
SC
2050{
2051 struct scsi_cmnd *cmd;
2052 struct ctlr_info *h;
2053 struct ErrorInfo *ei;
283b4a9b 2054 struct hpsa_scsi_dev_t *dev;
d9a729f3 2055 struct io_accel2_cmd *c2;
edd16368 2056
9437ac43
SC
2057 u8 sense_key;
2058 u8 asc; /* additional sense code */
2059 u8 ascq; /* additional sense code qualifier */
db111e18 2060 unsigned long sense_data_size;
edd16368
SC
2061
2062 ei = cp->err_info;
7fa3030c 2063 cmd = cp->scsi_cmd;
edd16368 2064 h = cp->h;
283b4a9b 2065 dev = cmd->device->hostdata;
d9a729f3 2066 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
edd16368
SC
2067
2068 scsi_dma_unmap(cmd); /* undo the DMA mappings */
e1f7de0c 2069 if ((cp->cmd_type == CMD_SCSI) &&
2b08b3e9 2070 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
33a2ffce 2071 hpsa_unmap_sg_chain_block(h, cp);
edd16368 2072
d9a729f3
WS
2073 if ((cp->cmd_type == CMD_IOACCEL2) &&
2074 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2075 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2076
edd16368
SC
2077 cmd->result = (DID_OK << 16); /* host byte */
2078 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
c349775e 2079
03383736
DB
2080 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2081 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2082
25163bd5
WS
2083 /*
2084 * We check for lockup status here as it may be set for
2085 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2086 * fail_all_oustanding_cmds()
2087 */
2088 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2089 /* DID_NO_CONNECT will prevent a retry */
2090 cmd->result = DID_NO_CONNECT << 16;
8a0ff92c 2091 return hpsa_cmd_free_and_done(h, cp, cmd);
25163bd5
WS
2092 }
2093
c349775e
ST
2094 if (cp->cmd_type == CMD_IOACCEL2)
2095 return process_ioaccel2_completion(h, cp, cmd, dev);
2096
6aa4c361 2097 scsi_set_resid(cmd, ei->ResidualCnt);
8a0ff92c
WS
2098 if (ei->CommandStatus == 0)
2099 return hpsa_cmd_free_and_done(h, cp, cmd);
6aa4c361 2100
e1f7de0c
MG
2101 /* For I/O accelerator commands, copy over some fields to the normal
2102 * CISS header used below for error handling.
2103 */
2104 if (cp->cmd_type == CMD_IOACCEL1) {
2105 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2b08b3e9
DB
2106 cp->Header.SGList = scsi_sg_count(cmd);
2107 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2108 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2109 IOACCEL1_IOFLAGS_CDBLEN_MASK;
50a0decf 2110 cp->Header.tag = c->tag;
e1f7de0c
MG
2111 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2112 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
283b4a9b
SC
2113
2114 /* Any RAID offload error results in retry which will use
2115 * the normal I/O path so the controller can handle whatever's
2116 * wrong.
2117 */
2118 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
2119 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2120 dev->offload_enabled = 0;
8a0ff92c 2121 return hpsa_retry_cmd(h, cp);
283b4a9b 2122 }
e1f7de0c
MG
2123 }
2124
edd16368
SC
2125 /* an error has occurred */
2126 switch (ei->CommandStatus) {
2127
2128 case CMD_TARGET_STATUS:
9437ac43
SC
2129 cmd->result |= ei->ScsiStatus;
2130 /* copy the sense data */
2131 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2132 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2133 else
2134 sense_data_size = sizeof(ei->SenseInfo);
2135 if (ei->SenseLen < sense_data_size)
2136 sense_data_size = ei->SenseLen;
2137 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2138 if (ei->ScsiStatus)
2139 decode_sense_data(ei->SenseInfo, sense_data_size,
2140 &sense_key, &asc, &ascq);
edd16368 2141 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1d3b3609 2142 if (sense_key == ABORTED_COMMAND) {
2e311fba 2143 cmd->result |= DID_SOFT_ERROR << 16;
1d3b3609
MG
2144 break;
2145 }
edd16368
SC
2146 break;
2147 }
edd16368
SC
2148 /* Problem was not a check condition
2149 * Pass it up to the upper layers...
2150 */
2151 if (ei->ScsiStatus) {
2152 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2153 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2154 "Returning result: 0x%x\n",
2155 cp, ei->ScsiStatus,
2156 sense_key, asc, ascq,
2157 cmd->result);
2158 } else { /* scsi status is zero??? How??? */
2159 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2160 "Returning no connection.\n", cp),
2161
2162 /* Ordinarily, this case should never happen,
2163 * but there is a bug in some released firmware
2164 * revisions that allows it to happen if, for
2165 * example, a 4100 backplane loses power and
2166 * the tape drive is in it. We assume that
2167 * it's a fatal error of some kind because we
2168 * can't show that it wasn't. We will make it
2169 * look like selection timeout since that is
2170 * the most common reason for this to occur,
2171 * and it's severe enough.
2172 */
2173
2174 cmd->result = DID_NO_CONNECT << 16;
2175 }
2176 break;
2177
2178 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2179 break;
2180 case CMD_DATA_OVERRUN:
f42e81e1
SC
2181 dev_warn(&h->pdev->dev,
2182 "CDB %16phN data overrun\n", cp->Request.CDB);
edd16368
SC
2183 break;
2184 case CMD_INVALID: {
2185 /* print_bytes(cp, sizeof(*cp), 1, 0);
2186 print_cmd(cp); */
2187 /* We get CMD_INVALID if you address a non-existent device
2188 * instead of a selection timeout (no response). You will
2189 * see this if you yank out a drive, then try to access it.
2190 * This is kind of a shame because it means that any other
2191 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2192 * missing target. */
2193 cmd->result = DID_NO_CONNECT << 16;
2194 }
2195 break;
2196 case CMD_PROTOCOL_ERR:
256d0eaa 2197 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2198 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2199 cp->Request.CDB);
edd16368
SC
2200 break;
2201 case CMD_HARDWARE_ERR:
2202 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2203 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2204 cp->Request.CDB);
edd16368
SC
2205 break;
2206 case CMD_CONNECTION_LOST:
2207 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2208 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2209 cp->Request.CDB);
edd16368
SC
2210 break;
2211 case CMD_ABORTED:
2212 cmd->result = DID_ABORT << 16;
f42e81e1
SC
2213 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2214 cp->Request.CDB, ei->ScsiStatus);
edd16368
SC
2215 break;
2216 case CMD_ABORT_FAILED:
2217 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2218 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2219 cp->Request.CDB);
edd16368
SC
2220 break;
2221 case CMD_UNSOLICITED_ABORT:
f6e76055 2222 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
f42e81e1
SC
2223 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2224 cp->Request.CDB);
edd16368
SC
2225 break;
2226 case CMD_TIMEOUT:
2227 cmd->result = DID_TIME_OUT << 16;
f42e81e1
SC
2228 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2229 cp->Request.CDB);
edd16368 2230 break;
1d5e2ed0
SC
2231 case CMD_UNABORTABLE:
2232 cmd->result = DID_ERROR << 16;
2233 dev_warn(&h->pdev->dev, "Command unabortable\n");
2234 break;
9437ac43
SC
2235 case CMD_TMF_STATUS:
2236 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2237 cmd->result = DID_ERROR << 16;
2238 break;
283b4a9b
SC
2239 case CMD_IOACCEL_DISABLED:
2240 /* This only handles the direct pass-through case since RAID
2241 * offload is handled above. Just attempt a retry.
2242 */
2243 cmd->result = DID_SOFT_ERROR << 16;
2244 dev_warn(&h->pdev->dev,
2245 "cp %p had HP SSD Smart Path error\n", cp);
2246 break;
edd16368
SC
2247 default:
2248 cmd->result = DID_ERROR << 16;
2249 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2250 cp, ei->CommandStatus);
2251 }
8a0ff92c
WS
2252
2253 return hpsa_cmd_free_and_done(h, cp, cmd);
edd16368
SC
2254}
2255
edd16368
SC
2256static void hpsa_pci_unmap(struct pci_dev *pdev,
2257 struct CommandList *c, int sg_used, int data_direction)
2258{
2259 int i;
edd16368 2260
50a0decf
SC
2261 for (i = 0; i < sg_used; i++)
2262 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2263 le32_to_cpu(c->SG[i].Len),
2264 data_direction);
edd16368
SC
2265}
2266
a2dac136 2267static int hpsa_map_one(struct pci_dev *pdev,
edd16368
SC
2268 struct CommandList *cp,
2269 unsigned char *buf,
2270 size_t buflen,
2271 int data_direction)
2272{
01a02ffc 2273 u64 addr64;
edd16368
SC
2274
2275 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2276 cp->Header.SGList = 0;
50a0decf 2277 cp->Header.SGTotal = cpu_to_le16(0);
a2dac136 2278 return 0;
edd16368
SC
2279 }
2280
50a0decf 2281 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
eceaae18 2282 if (dma_mapping_error(&pdev->dev, addr64)) {
a2dac136 2283 /* Prevent subsequent unmap of something never mapped */
eceaae18 2284 cp->Header.SGList = 0;
50a0decf 2285 cp->Header.SGTotal = cpu_to_le16(0);
a2dac136 2286 return -1;
eceaae18 2287 }
50a0decf
SC
2288 cp->SG[0].Addr = cpu_to_le64(addr64);
2289 cp->SG[0].Len = cpu_to_le32(buflen);
2290 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2291 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2292 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
a2dac136 2293 return 0;
edd16368
SC
2294}
2295
25163bd5
WS
2296#define NO_TIMEOUT ((unsigned long) -1)
2297#define DEFAULT_TIMEOUT 30000 /* milliseconds */
2298static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2299 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
edd16368
SC
2300{
2301 DECLARE_COMPLETION_ONSTACK(wait);
2302
2303 c->waiting = &wait;
25163bd5
WS
2304 __enqueue_cmd_and_start_io(h, c, reply_queue);
2305 if (timeout_msecs == NO_TIMEOUT) {
2306 /* TODO: get rid of this no-timeout thing */
2307 wait_for_completion_io(&wait);
2308 return IO_OK;
2309 }
2310 if (!wait_for_completion_io_timeout(&wait,
2311 msecs_to_jiffies(timeout_msecs))) {
2312 dev_warn(&h->pdev->dev, "Command timed out.\n");
2313 return -ETIMEDOUT;
2314 }
2315 return IO_OK;
2316}
2317
2318static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2319 int reply_queue, unsigned long timeout_msecs)
2320{
2321 if (unlikely(lockup_detected(h))) {
2322 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2323 return IO_OK;
2324 }
2325 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
edd16368
SC
2326}
2327
094963da
SC
2328static u32 lockup_detected(struct ctlr_info *h)
2329{
2330 int cpu;
2331 u32 rc, *lockup_detected;
2332
2333 cpu = get_cpu();
2334 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2335 rc = *lockup_detected;
2336 put_cpu();
2337 return rc;
2338}
2339
9c2fc160 2340#define MAX_DRIVER_CMD_RETRIES 25
25163bd5
WS
2341static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2342 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
edd16368 2343{
9c2fc160 2344 int backoff_time = 10, retry_count = 0;
25163bd5 2345 int rc;
edd16368
SC
2346
2347 do {
7630abd0 2348 memset(c->err_info, 0, sizeof(*c->err_info));
25163bd5
WS
2349 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2350 timeout_msecs);
2351 if (rc)
2352 break;
edd16368 2353 retry_count++;
9c2fc160
SC
2354 if (retry_count > 3) {
2355 msleep(backoff_time);
2356 if (backoff_time < 1000)
2357 backoff_time *= 2;
2358 }
852af20a 2359 } while ((check_for_unit_attention(h, c) ||
9c2fc160
SC
2360 check_for_busy(h, c)) &&
2361 retry_count <= MAX_DRIVER_CMD_RETRIES);
edd16368 2362 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
25163bd5
WS
2363 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2364 rc = -EIO;
2365 return rc;
edd16368
SC
2366}
2367
d1e8beac
SC
2368static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2369 struct CommandList *c)
edd16368 2370{
d1e8beac
SC
2371 const u8 *cdb = c->Request.CDB;
2372 const u8 *lun = c->Header.LUN.LunAddrBytes;
2373
2374 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2375 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2376 txt, lun[0], lun[1], lun[2], lun[3],
2377 lun[4], lun[5], lun[6], lun[7],
2378 cdb[0], cdb[1], cdb[2], cdb[3],
2379 cdb[4], cdb[5], cdb[6], cdb[7],
2380 cdb[8], cdb[9], cdb[10], cdb[11],
2381 cdb[12], cdb[13], cdb[14], cdb[15]);
2382}
2383
2384static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2385 struct CommandList *cp)
2386{
2387 const struct ErrorInfo *ei = cp->err_info;
edd16368 2388 struct device *d = &cp->h->pdev->dev;
9437ac43
SC
2389 u8 sense_key, asc, ascq;
2390 int sense_len;
edd16368 2391
edd16368
SC
2392 switch (ei->CommandStatus) {
2393 case CMD_TARGET_STATUS:
9437ac43
SC
2394 if (ei->SenseLen > sizeof(ei->SenseInfo))
2395 sense_len = sizeof(ei->SenseInfo);
2396 else
2397 sense_len = ei->SenseLen;
2398 decode_sense_data(ei->SenseInfo, sense_len,
2399 &sense_key, &asc, &ascq);
d1e8beac
SC
2400 hpsa_print_cmd(h, "SCSI status", cp);
2401 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
9437ac43
SC
2402 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2403 sense_key, asc, ascq);
d1e8beac 2404 else
9437ac43 2405 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
edd16368
SC
2406 if (ei->ScsiStatus == 0)
2407 dev_warn(d, "SCSI status is abnormally zero. "
2408 "(probably indicates selection timeout "
2409 "reported incorrectly due to a known "
2410 "firmware bug, circa July, 2001.)\n");
2411 break;
2412 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
edd16368
SC
2413 break;
2414 case CMD_DATA_OVERRUN:
d1e8beac 2415 hpsa_print_cmd(h, "overrun condition", cp);
edd16368
SC
2416 break;
2417 case CMD_INVALID: {
2418 /* controller unfortunately reports SCSI passthru's
2419 * to non-existent targets as invalid commands.
2420 */
d1e8beac
SC
2421 hpsa_print_cmd(h, "invalid command", cp);
2422 dev_warn(d, "probably means device no longer present\n");
edd16368
SC
2423 }
2424 break;
2425 case CMD_PROTOCOL_ERR:
d1e8beac 2426 hpsa_print_cmd(h, "protocol error", cp);
edd16368
SC
2427 break;
2428 case CMD_HARDWARE_ERR:
d1e8beac 2429 hpsa_print_cmd(h, "hardware error", cp);
edd16368
SC
2430 break;
2431 case CMD_CONNECTION_LOST:
d1e8beac 2432 hpsa_print_cmd(h, "connection lost", cp);
edd16368
SC
2433 break;
2434 case CMD_ABORTED:
d1e8beac 2435 hpsa_print_cmd(h, "aborted", cp);
edd16368
SC
2436 break;
2437 case CMD_ABORT_FAILED:
d1e8beac 2438 hpsa_print_cmd(h, "abort failed", cp);
edd16368
SC
2439 break;
2440 case CMD_UNSOLICITED_ABORT:
d1e8beac 2441 hpsa_print_cmd(h, "unsolicited abort", cp);
edd16368
SC
2442 break;
2443 case CMD_TIMEOUT:
d1e8beac 2444 hpsa_print_cmd(h, "timed out", cp);
edd16368 2445 break;
1d5e2ed0 2446 case CMD_UNABORTABLE:
d1e8beac 2447 hpsa_print_cmd(h, "unabortable", cp);
1d5e2ed0 2448 break;
25163bd5
WS
2449 case CMD_CTLR_LOCKUP:
2450 hpsa_print_cmd(h, "controller lockup detected", cp);
2451 break;
edd16368 2452 default:
d1e8beac
SC
2453 hpsa_print_cmd(h, "unknown status", cp);
2454 dev_warn(d, "Unknown command status %x\n",
edd16368
SC
2455 ei->CommandStatus);
2456 }
2457}
2458
2459static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
b7bb24eb 2460 u16 page, unsigned char *buf,
edd16368
SC
2461 unsigned char bufsize)
2462{
2463 int rc = IO_OK;
2464 struct CommandList *c;
2465 struct ErrorInfo *ei;
2466
45fcb86e 2467 c = cmd_alloc(h);
edd16368 2468
a2dac136
SC
2469 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2470 page, scsi3addr, TYPE_CMD)) {
2471 rc = -1;
2472 goto out;
2473 }
25163bd5
WS
2474 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2475 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2476 if (rc)
2477 goto out;
edd16368
SC
2478 ei = c->err_info;
2479 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 2480 hpsa_scsi_interpret_error(h, c);
edd16368
SC
2481 rc = -1;
2482 }
a2dac136 2483out:
45fcb86e 2484 cmd_free(h, c);
edd16368
SC
2485 return rc;
2486}
2487
316b221a
SC
2488static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2489 unsigned char *scsi3addr, unsigned char page,
2490 struct bmic_controller_parameters *buf, size_t bufsize)
2491{
2492 int rc = IO_OK;
2493 struct CommandList *c;
2494 struct ErrorInfo *ei;
2495
45fcb86e 2496 c = cmd_alloc(h);
316b221a
SC
2497 if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2498 page, scsi3addr, TYPE_CMD)) {
2499 rc = -1;
2500 goto out;
2501 }
25163bd5
WS
2502 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2503 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2504 if (rc)
2505 goto out;
316b221a
SC
2506 ei = c->err_info;
2507 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2508 hpsa_scsi_interpret_error(h, c);
2509 rc = -1;
2510 }
2511out:
45fcb86e 2512 cmd_free(h, c);
316b221a 2513 return rc;
bf43caf3 2514}
316b221a 2515
bf711ac6 2516static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
25163bd5 2517 u8 reset_type, int reply_queue)
edd16368
SC
2518{
2519 int rc = IO_OK;
2520 struct CommandList *c;
2521 struct ErrorInfo *ei;
2522
45fcb86e 2523 c = cmd_alloc(h);
edd16368 2524
edd16368 2525
a2dac136 2526 /* fill_cmd can't fail here, no data buffer to map. */
bf711ac6
ST
2527 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2528 scsi3addr, TYPE_MSG);
2529 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
25163bd5
WS
2530 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2531 if (rc) {
2532 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2533 goto out;
2534 }
edd16368
SC
2535 /* no unmap needed here because no data xfer. */
2536
2537 ei = c->err_info;
2538 if (ei->CommandStatus != 0) {
d1e8beac 2539 hpsa_scsi_interpret_error(h, c);
edd16368
SC
2540 rc = -1;
2541 }
25163bd5 2542out:
45fcb86e 2543 cmd_free(h, c);
edd16368
SC
2544 return rc;
2545}
2546
2547static void hpsa_get_raid_level(struct ctlr_info *h,
2548 unsigned char *scsi3addr, unsigned char *raid_level)
2549{
2550 int rc;
2551 unsigned char *buf;
2552
2553 *raid_level = RAID_UNKNOWN;
2554 buf = kzalloc(64, GFP_KERNEL);
2555 if (!buf)
2556 return;
b7bb24eb 2557 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
edd16368
SC
2558 if (rc == 0)
2559 *raid_level = buf[8];
2560 if (*raid_level > RAID_UNKNOWN)
2561 *raid_level = RAID_UNKNOWN;
2562 kfree(buf);
2563 return;
2564}
2565
283b4a9b
SC
2566#define HPSA_MAP_DEBUG
2567#ifdef HPSA_MAP_DEBUG
2568static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2569 struct raid_map_data *map_buff)
2570{
2571 struct raid_map_disk_data *dd = &map_buff->data[0];
2572 int map, row, col;
2573 u16 map_cnt, row_cnt, disks_per_row;
2574
2575 if (rc != 0)
2576 return;
2577
2ba8bfc8
SC
2578 /* Show details only if debugging has been activated. */
2579 if (h->raid_offload_debug < 2)
2580 return;
2581
283b4a9b
SC
2582 dev_info(&h->pdev->dev, "structure_size = %u\n",
2583 le32_to_cpu(map_buff->structure_size));
2584 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2585 le32_to_cpu(map_buff->volume_blk_size));
2586 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2587 le64_to_cpu(map_buff->volume_blk_cnt));
2588 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2589 map_buff->phys_blk_shift);
2590 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2591 map_buff->parity_rotation_shift);
2592 dev_info(&h->pdev->dev, "strip_size = %u\n",
2593 le16_to_cpu(map_buff->strip_size));
2594 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2595 le64_to_cpu(map_buff->disk_starting_blk));
2596 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2597 le64_to_cpu(map_buff->disk_blk_cnt));
2598 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2599 le16_to_cpu(map_buff->data_disks_per_row));
2600 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2601 le16_to_cpu(map_buff->metadata_disks_per_row));
2602 dev_info(&h->pdev->dev, "row_cnt = %u\n",
2603 le16_to_cpu(map_buff->row_cnt));
2604 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2605 le16_to_cpu(map_buff->layout_map_count));
2b08b3e9 2606 dev_info(&h->pdev->dev, "flags = 0x%x\n",
dd0e19f3 2607 le16_to_cpu(map_buff->flags));
2b08b3e9
DB
2608 dev_info(&h->pdev->dev, "encrypytion = %s\n",
2609 le16_to_cpu(map_buff->flags) &
2610 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
dd0e19f3
ST
2611 dev_info(&h->pdev->dev, "dekindex = %u\n",
2612 le16_to_cpu(map_buff->dekindex));
283b4a9b
SC
2613 map_cnt = le16_to_cpu(map_buff->layout_map_count);
2614 for (map = 0; map < map_cnt; map++) {
2615 dev_info(&h->pdev->dev, "Map%u:\n", map);
2616 row_cnt = le16_to_cpu(map_buff->row_cnt);
2617 for (row = 0; row < row_cnt; row++) {
2618 dev_info(&h->pdev->dev, " Row%u:\n", row);
2619 disks_per_row =
2620 le16_to_cpu(map_buff->data_disks_per_row);
2621 for (col = 0; col < disks_per_row; col++, dd++)
2622 dev_info(&h->pdev->dev,
2623 " D%02u: h=0x%04x xor=%u,%u\n",
2624 col, dd->ioaccel_handle,
2625 dd->xor_mult[0], dd->xor_mult[1]);
2626 disks_per_row =
2627 le16_to_cpu(map_buff->metadata_disks_per_row);
2628 for (col = 0; col < disks_per_row; col++, dd++)
2629 dev_info(&h->pdev->dev,
2630 " M%02u: h=0x%04x xor=%u,%u\n",
2631 col, dd->ioaccel_handle,
2632 dd->xor_mult[0], dd->xor_mult[1]);
2633 }
2634 }
2635}
2636#else
2637static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2638 __attribute__((unused)) int rc,
2639 __attribute__((unused)) struct raid_map_data *map_buff)
2640{
2641}
2642#endif
2643
2644static int hpsa_get_raid_map(struct ctlr_info *h,
2645 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2646{
2647 int rc = 0;
2648 struct CommandList *c;
2649 struct ErrorInfo *ei;
2650
45fcb86e 2651 c = cmd_alloc(h);
bf43caf3 2652
283b4a9b
SC
2653 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2654 sizeof(this_device->raid_map), 0,
2655 scsi3addr, TYPE_CMD)) {
2dd02d74
RE
2656 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
2657 cmd_free(h, c);
2658 return -1;
283b4a9b 2659 }
25163bd5
WS
2660 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2661 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2662 if (rc)
2663 goto out;
283b4a9b
SC
2664 ei = c->err_info;
2665 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 2666 hpsa_scsi_interpret_error(h, c);
25163bd5
WS
2667 rc = -1;
2668 goto out;
283b4a9b 2669 }
45fcb86e 2670 cmd_free(h, c);
283b4a9b
SC
2671
2672 /* @todo in the future, dynamically allocate RAID map memory */
2673 if (le32_to_cpu(this_device->raid_map.structure_size) >
2674 sizeof(this_device->raid_map)) {
2675 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2676 rc = -1;
2677 }
2678 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2679 return rc;
25163bd5
WS
2680out:
2681 cmd_free(h, c);
2682 return rc;
283b4a9b
SC
2683}
2684
03383736
DB
2685static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
2686 unsigned char scsi3addr[], u16 bmic_device_index,
2687 struct bmic_identify_physical_device *buf, size_t bufsize)
2688{
2689 int rc = IO_OK;
2690 struct CommandList *c;
2691 struct ErrorInfo *ei;
2692
2693 c = cmd_alloc(h);
2694 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
2695 0, RAID_CTLR_LUNID, TYPE_CMD);
2696 if (rc)
2697 goto out;
2698
2699 c->Request.CDB[2] = bmic_device_index & 0xff;
2700 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
2701
25163bd5
WS
2702 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
2703 NO_TIMEOUT);
03383736
DB
2704 ei = c->err_info;
2705 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2706 hpsa_scsi_interpret_error(h, c);
2707 rc = -1;
2708 }
2709out:
2710 cmd_free(h, c);
2711 return rc;
2712}
2713
1b70150a
SC
2714static int hpsa_vpd_page_supported(struct ctlr_info *h,
2715 unsigned char scsi3addr[], u8 page)
2716{
2717 int rc;
2718 int i;
2719 int pages;
2720 unsigned char *buf, bufsize;
2721
2722 buf = kzalloc(256, GFP_KERNEL);
2723 if (!buf)
2724 return 0;
2725
2726 /* Get the size of the page list first */
2727 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2728 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2729 buf, HPSA_VPD_HEADER_SZ);
2730 if (rc != 0)
2731 goto exit_unsupported;
2732 pages = buf[3];
2733 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2734 bufsize = pages + HPSA_VPD_HEADER_SZ;
2735 else
2736 bufsize = 255;
2737
2738 /* Get the whole VPD page list */
2739 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2740 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2741 buf, bufsize);
2742 if (rc != 0)
2743 goto exit_unsupported;
2744
2745 pages = buf[3];
2746 for (i = 1; i <= pages; i++)
2747 if (buf[3 + i] == page)
2748 goto exit_supported;
2749exit_unsupported:
2750 kfree(buf);
2751 return 0;
2752exit_supported:
2753 kfree(buf);
2754 return 1;
2755}
2756
283b4a9b
SC
2757static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2758 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2759{
2760 int rc;
2761 unsigned char *buf;
2762 u8 ioaccel_status;
2763
2764 this_device->offload_config = 0;
2765 this_device->offload_enabled = 0;
41ce4c35 2766 this_device->offload_to_be_enabled = 0;
283b4a9b
SC
2767
2768 buf = kzalloc(64, GFP_KERNEL);
2769 if (!buf)
2770 return;
1b70150a
SC
2771 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2772 goto out;
283b4a9b 2773 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
b7bb24eb 2774 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
283b4a9b
SC
2775 if (rc != 0)
2776 goto out;
2777
2778#define IOACCEL_STATUS_BYTE 4
2779#define OFFLOAD_CONFIGURED_BIT 0x01
2780#define OFFLOAD_ENABLED_BIT 0x02
2781 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2782 this_device->offload_config =
2783 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2784 if (this_device->offload_config) {
2785 this_device->offload_enabled =
2786 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2787 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2788 this_device->offload_enabled = 0;
2789 }
41ce4c35 2790 this_device->offload_to_be_enabled = this_device->offload_enabled;
283b4a9b
SC
2791out:
2792 kfree(buf);
2793 return;
2794}
2795
edd16368
SC
2796/* Get the device id from inquiry page 0x83 */
2797static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2798 unsigned char *device_id, int buflen)
2799{
2800 int rc;
2801 unsigned char *buf;
2802
2803 if (buflen > 16)
2804 buflen = 16;
2805 buf = kzalloc(64, GFP_KERNEL);
2806 if (!buf)
a84d794d 2807 return -ENOMEM;
b7bb24eb 2808 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
edd16368
SC
2809 if (rc == 0)
2810 memcpy(device_id, &buf[8], buflen);
2811 kfree(buf);
2812 return rc != 0;
2813}
2814
2815static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
03383736 2816 void *buf, int bufsize,
edd16368
SC
2817 int extended_response)
2818{
2819 int rc = IO_OK;
2820 struct CommandList *c;
2821 unsigned char scsi3addr[8];
2822 struct ErrorInfo *ei;
2823
45fcb86e 2824 c = cmd_alloc(h);
bf43caf3 2825
e89c0ae7
SC
2826 /* address the controller */
2827 memset(scsi3addr, 0, sizeof(scsi3addr));
a2dac136
SC
2828 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2829 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2830 rc = -1;
2831 goto out;
2832 }
edd16368
SC
2833 if (extended_response)
2834 c->Request.CDB[1] = extended_response;
25163bd5
WS
2835 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2836 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2837 if (rc)
2838 goto out;
edd16368
SC
2839 ei = c->err_info;
2840 if (ei->CommandStatus != 0 &&
2841 ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 2842 hpsa_scsi_interpret_error(h, c);
edd16368 2843 rc = -1;
283b4a9b 2844 } else {
03383736
DB
2845 struct ReportLUNdata *rld = buf;
2846
2847 if (rld->extended_response_flag != extended_response) {
283b4a9b
SC
2848 dev_err(&h->pdev->dev,
2849 "report luns requested format %u, got %u\n",
2850 extended_response,
03383736 2851 rld->extended_response_flag);
283b4a9b
SC
2852 rc = -1;
2853 }
edd16368 2854 }
a2dac136 2855out:
45fcb86e 2856 cmd_free(h, c);
edd16368
SC
2857 return rc;
2858}
2859
2860static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
03383736 2861 struct ReportExtendedLUNdata *buf, int bufsize)
edd16368 2862{
03383736
DB
2863 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
2864 HPSA_REPORT_PHYS_EXTENDED);
edd16368
SC
2865}
2866
2867static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2868 struct ReportLUNdata *buf, int bufsize)
2869{
2870 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2871}
2872
2873static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2874 int bus, int target, int lun)
2875{
2876 device->bus = bus;
2877 device->target = target;
2878 device->lun = lun;
2879}
2880
9846590e
SC
2881/* Use VPD inquiry to get details of volume status */
2882static int hpsa_get_volume_status(struct ctlr_info *h,
2883 unsigned char scsi3addr[])
2884{
2885 int rc;
2886 int status;
2887 int size;
2888 unsigned char *buf;
2889
2890 buf = kzalloc(64, GFP_KERNEL);
2891 if (!buf)
2892 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2893
2894 /* Does controller have VPD for logical volume status? */
24a4b078 2895 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
9846590e 2896 goto exit_failed;
9846590e
SC
2897
2898 /* Get the size of the VPD return buffer */
2899 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2900 buf, HPSA_VPD_HEADER_SZ);
24a4b078 2901 if (rc != 0)
9846590e 2902 goto exit_failed;
9846590e
SC
2903 size = buf[3];
2904
2905 /* Now get the whole VPD buffer */
2906 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2907 buf, size + HPSA_VPD_HEADER_SZ);
24a4b078 2908 if (rc != 0)
9846590e 2909 goto exit_failed;
9846590e
SC
2910 status = buf[4]; /* status byte */
2911
2912 kfree(buf);
2913 return status;
2914exit_failed:
2915 kfree(buf);
2916 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2917}
2918
2919/* Determine offline status of a volume.
2920 * Return either:
2921 * 0 (not offline)
67955ba3 2922 * 0xff (offline for unknown reasons)
9846590e
SC
2923 * # (integer code indicating one of several NOT READY states
2924 * describing why a volume is to be kept offline)
2925 */
67955ba3 2926static int hpsa_volume_offline(struct ctlr_info *h,
9846590e
SC
2927 unsigned char scsi3addr[])
2928{
2929 struct CommandList *c;
9437ac43
SC
2930 unsigned char *sense;
2931 u8 sense_key, asc, ascq;
2932 int sense_len;
25163bd5 2933 int rc, ldstat = 0;
9846590e
SC
2934 u16 cmd_status;
2935 u8 scsi_status;
2936#define ASC_LUN_NOT_READY 0x04
2937#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2938#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2939
2940 c = cmd_alloc(h);
bf43caf3 2941
9846590e 2942 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
25163bd5
WS
2943 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
2944 if (rc) {
2945 cmd_free(h, c);
2946 return 0;
2947 }
9846590e 2948 sense = c->err_info->SenseInfo;
9437ac43
SC
2949 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
2950 sense_len = sizeof(c->err_info->SenseInfo);
2951 else
2952 sense_len = c->err_info->SenseLen;
2953 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
9846590e
SC
2954 cmd_status = c->err_info->CommandStatus;
2955 scsi_status = c->err_info->ScsiStatus;
2956 cmd_free(h, c);
2957 /* Is the volume 'not ready'? */
2958 if (cmd_status != CMD_TARGET_STATUS ||
2959 scsi_status != SAM_STAT_CHECK_CONDITION ||
2960 sense_key != NOT_READY ||
2961 asc != ASC_LUN_NOT_READY) {
2962 return 0;
2963 }
2964
2965 /* Determine the reason for not ready state */
2966 ldstat = hpsa_get_volume_status(h, scsi3addr);
2967
2968 /* Keep volume offline in certain cases: */
2969 switch (ldstat) {
2970 case HPSA_LV_UNDERGOING_ERASE:
2971 case HPSA_LV_UNDERGOING_RPI:
2972 case HPSA_LV_PENDING_RPI:
2973 case HPSA_LV_ENCRYPTED_NO_KEY:
2974 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2975 case HPSA_LV_UNDERGOING_ENCRYPTION:
2976 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2977 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2978 return ldstat;
2979 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2980 /* If VPD status page isn't available,
2981 * use ASC/ASCQ to determine state
2982 */
2983 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2984 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2985 return ldstat;
2986 break;
2987 default:
2988 break;
2989 }
2990 return 0;
2991}
2992
9b5c48c2
SC
2993/*
2994 * Find out if a logical device supports aborts by simply trying one.
2995 * Smart Array may claim not to support aborts on logical drives, but
2996 * if a MSA2000 * is connected, the drives on that will be presented
2997 * by the Smart Array as logical drives, and aborts may be sent to
2998 * those devices successfully. So the simplest way to find out is
2999 * to simply try an abort and see how the device responds.
3000 */
3001static int hpsa_device_supports_aborts(struct ctlr_info *h,
3002 unsigned char *scsi3addr)
3003{
3004 struct CommandList *c;
3005 struct ErrorInfo *ei;
3006 int rc = 0;
3007
3008 u64 tag = (u64) -1; /* bogus tag */
3009
3010 /* Assume that physical devices support aborts */
3011 if (!is_logical_dev_addr_mode(scsi3addr))
3012 return 1;
3013
3014 c = cmd_alloc(h);
bf43caf3 3015
9b5c48c2
SC
3016 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3017 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3018 /* no unmap needed here because no data xfer. */
3019 ei = c->err_info;
3020 switch (ei->CommandStatus) {
3021 case CMD_INVALID:
3022 rc = 0;
3023 break;
3024 case CMD_UNABORTABLE:
3025 case CMD_ABORT_FAILED:
3026 rc = 1;
3027 break;
9437ac43
SC
3028 case CMD_TMF_STATUS:
3029 rc = hpsa_evaluate_tmf_status(h, c);
3030 break;
9b5c48c2
SC
3031 default:
3032 rc = 0;
3033 break;
3034 }
3035 cmd_free(h, c);
3036 return rc;
3037}
3038
edd16368 3039static int hpsa_update_device_info(struct ctlr_info *h,
0b0e1d6c
SC
3040 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3041 unsigned char *is_OBDR_device)
edd16368 3042{
0b0e1d6c
SC
3043
3044#define OBDR_SIG_OFFSET 43
3045#define OBDR_TAPE_SIG "$DR-10"
3046#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3047#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3048
ea6d3bc3 3049 unsigned char *inq_buff;
0b0e1d6c 3050 unsigned char *obdr_sig;
edd16368 3051
ea6d3bc3 3052 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
edd16368
SC
3053 if (!inq_buff)
3054 goto bail_out;
3055
edd16368
SC
3056 /* Do an inquiry to the device to see what it is. */
3057 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3058 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3059 /* Inquiry failed (msg printed already) */
3060 dev_err(&h->pdev->dev,
3061 "hpsa_update_device_info: inquiry failed\n");
3062 goto bail_out;
3063 }
3064
edd16368
SC
3065 this_device->devtype = (inq_buff[0] & 0x1f);
3066 memcpy(this_device->scsi3addr, scsi3addr, 8);
3067 memcpy(this_device->vendor, &inq_buff[8],
3068 sizeof(this_device->vendor));
3069 memcpy(this_device->model, &inq_buff[16],
3070 sizeof(this_device->model));
edd16368
SC
3071 memset(this_device->device_id, 0,
3072 sizeof(this_device->device_id));
3073 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
3074 sizeof(this_device->device_id));
3075
3076 if (this_device->devtype == TYPE_DISK &&
283b4a9b 3077 is_logical_dev_addr_mode(scsi3addr)) {
67955ba3
SC
3078 int volume_offline;
3079
edd16368 3080 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
283b4a9b
SC
3081 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3082 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
67955ba3
SC
3083 volume_offline = hpsa_volume_offline(h, scsi3addr);
3084 if (volume_offline < 0 || volume_offline > 0xff)
3085 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3086 this_device->volume_offline = volume_offline & 0xff;
283b4a9b 3087 } else {
edd16368 3088 this_device->raid_level = RAID_UNKNOWN;
283b4a9b
SC
3089 this_device->offload_config = 0;
3090 this_device->offload_enabled = 0;
41ce4c35 3091 this_device->offload_to_be_enabled = 0;
a3144e0b 3092 this_device->hba_ioaccel_enabled = 0;
9846590e 3093 this_device->volume_offline = 0;
03383736 3094 this_device->queue_depth = h->nr_cmds;
283b4a9b 3095 }
edd16368 3096
0b0e1d6c
SC
3097 if (is_OBDR_device) {
3098 /* See if this is a One-Button-Disaster-Recovery device
3099 * by looking for "$DR-10" at offset 43 in inquiry data.
3100 */
3101 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3102 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3103 strncmp(obdr_sig, OBDR_TAPE_SIG,
3104 OBDR_SIG_LEN) == 0);
3105 }
edd16368
SC
3106 kfree(inq_buff);
3107 return 0;
3108
3109bail_out:
3110 kfree(inq_buff);
3111 return 1;
3112}
3113
9b5c48c2
SC
3114static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3115 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3116{
3117 unsigned long flags;
3118 int rc, entry;
3119 /*
3120 * See if this device supports aborts. If we already know
3121 * the device, we already know if it supports aborts, otherwise
3122 * we have to find out if it supports aborts by trying one.
3123 */
3124 spin_lock_irqsave(&h->devlock, flags);
3125 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3126 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3127 entry >= 0 && entry < h->ndevices) {
3128 dev->supports_aborts = h->dev[entry]->supports_aborts;
3129 spin_unlock_irqrestore(&h->devlock, flags);
3130 } else {
3131 spin_unlock_irqrestore(&h->devlock, flags);
3132 dev->supports_aborts =
3133 hpsa_device_supports_aborts(h, scsi3addr);
3134 if (dev->supports_aborts < 0)
3135 dev->supports_aborts = 0;
3136 }
3137}
3138
4f4eb9f1 3139static unsigned char *ext_target_model[] = {
edd16368
SC
3140 "MSA2012",
3141 "MSA2024",
3142 "MSA2312",
3143 "MSA2324",
fda38518 3144 "P2000 G3 SAS",
e06c8e5c 3145 "MSA 2040 SAS",
edd16368
SC
3146 NULL,
3147};
3148
4f4eb9f1 3149static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
edd16368
SC
3150{
3151 int i;
3152
4f4eb9f1
ST
3153 for (i = 0; ext_target_model[i]; i++)
3154 if (strncmp(device->model, ext_target_model[i],
3155 strlen(ext_target_model[i])) == 0)
edd16368
SC
3156 return 1;
3157 return 0;
3158}
3159
3160/* Helper function to assign bus, target, lun mapping of devices.
4f4eb9f1 3161 * Puts non-external target logical volumes on bus 0, external target logical
edd16368
SC
3162 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
3163 * Logical drive target and lun are assigned at this time, but
3164 * physical device lun and target assignment are deferred (assigned
3165 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3166 */
3167static void figure_bus_target_lun(struct ctlr_info *h,
1f310bde 3168 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
edd16368 3169{
1f310bde
SC
3170 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
3171
3172 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3173 /* physical device, target and lun filled in later */
edd16368 3174 if (is_hba_lunid(lunaddrbytes))
1f310bde 3175 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
edd16368 3176 else
1f310bde
SC
3177 /* defer target, lun assignment for physical devices */
3178 hpsa_set_bus_target_lun(device, 2, -1, -1);
3179 return;
3180 }
3181 /* It's a logical device */
4f4eb9f1
ST
3182 if (is_ext_target(h, device)) {
3183 /* external target way, put logicals on bus 1
1f310bde
SC
3184 * and match target/lun numbers box
3185 * reports, other smart array, bus 0, target 0, match lunid
3186 */
3187 hpsa_set_bus_target_lun(device,
3188 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
3189 return;
edd16368 3190 }
1f310bde 3191 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
edd16368
SC
3192}
3193
3194/*
3195 * If there is no lun 0 on a target, linux won't find any devices.
4f4eb9f1 3196 * For the external targets (arrays), we have to manually detect the enclosure
edd16368
SC
3197 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3198 * it for some reason. *tmpdevice is the target we're adding,
3199 * this_device is a pointer into the current element of currentsd[]
3200 * that we're building up in update_scsi_devices(), below.
3201 * lunzerobits is a bitmap that tracks which targets already have a
3202 * lun 0 assigned.
3203 * Returns 1 if an enclosure was added, 0 if not.
3204 */
4f4eb9f1 3205static int add_ext_target_dev(struct ctlr_info *h,
edd16368 3206 struct hpsa_scsi_dev_t *tmpdevice,
01a02ffc 3207 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
4f4eb9f1 3208 unsigned long lunzerobits[], int *n_ext_target_devs)
edd16368
SC
3209{
3210 unsigned char scsi3addr[8];
3211
1f310bde 3212 if (test_bit(tmpdevice->target, lunzerobits))
edd16368
SC
3213 return 0; /* There is already a lun 0 on this target. */
3214
3215 if (!is_logical_dev_addr_mode(lunaddrbytes))
3216 return 0; /* It's the logical targets that may lack lun 0. */
3217
4f4eb9f1
ST
3218 if (!is_ext_target(h, tmpdevice))
3219 return 0; /* Only external target devices have this problem. */
edd16368 3220
1f310bde 3221 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
edd16368
SC
3222 return 0;
3223
c4f8a299 3224 memset(scsi3addr, 0, 8);
1f310bde 3225 scsi3addr[3] = tmpdevice->target;
edd16368
SC
3226 if (is_hba_lunid(scsi3addr))
3227 return 0; /* Don't add the RAID controller here. */
3228
339b2b14
SC
3229 if (is_scsi_rev_5(h))
3230 return 0; /* p1210m doesn't need to do this. */
3231
4f4eb9f1 3232 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
aca4a520
ST
3233 dev_warn(&h->pdev->dev, "Maximum number of external "
3234 "target devices exceeded. Check your hardware "
edd16368
SC
3235 "configuration.");
3236 return 0;
3237 }
3238
0b0e1d6c 3239 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
edd16368 3240 return 0;
4f4eb9f1 3241 (*n_ext_target_devs)++;
1f310bde
SC
3242 hpsa_set_bus_target_lun(this_device,
3243 tmpdevice->bus, tmpdevice->target, 0);
9b5c48c2 3244 hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
1f310bde 3245 set_bit(tmpdevice->target, lunzerobits);
edd16368
SC
3246 return 1;
3247}
3248
54b6e9e9
ST
3249/*
3250 * Get address of physical disk used for an ioaccel2 mode command:
3251 * 1. Extract ioaccel2 handle from the command.
3252 * 2. Find a matching ioaccel2 handle from list of physical disks.
3253 * 3. Return:
3254 * 1 and set scsi3addr to address of matching physical
3255 * 0 if no matching physical disk was found.
3256 */
3257static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3258 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3259{
41ce4c35
SC
3260 struct io_accel2_cmd *c2 =
3261 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3262 unsigned long flags;
54b6e9e9 3263 int i;
54b6e9e9 3264
41ce4c35
SC
3265 spin_lock_irqsave(&h->devlock, flags);
3266 for (i = 0; i < h->ndevices; i++)
3267 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3268 memcpy(scsi3addr, h->dev[i]->scsi3addr,
3269 sizeof(h->dev[i]->scsi3addr));
3270 spin_unlock_irqrestore(&h->devlock, flags);
3271 return 1;
3272 }
3273 spin_unlock_irqrestore(&h->devlock, flags);
3274 return 0;
54b6e9e9 3275}
41ce4c35 3276
edd16368
SC
3277/*
3278 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3279 * logdev. The number of luns in physdev and logdev are returned in
3280 * *nphysicals and *nlogicals, respectively.
3281 * Returns 0 on success, -1 otherwise.
3282 */
3283static int hpsa_gather_lun_info(struct ctlr_info *h,
03383736 3284 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
01a02ffc 3285 struct ReportLUNdata *logdev, u32 *nlogicals)
edd16368 3286{
03383736 3287 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
edd16368
SC
3288 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3289 return -1;
3290 }
03383736 3291 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
edd16368 3292 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
03383736
DB
3293 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3294 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
edd16368
SC
3295 *nphysicals = HPSA_MAX_PHYS_LUN;
3296 }
03383736 3297 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
edd16368
SC
3298 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3299 return -1;
3300 }
6df1e954 3301 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
edd16368
SC
3302 /* Reject Logicals in excess of our max capability. */
3303 if (*nlogicals > HPSA_MAX_LUN) {
3304 dev_warn(&h->pdev->dev,
3305 "maximum logical LUNs (%d) exceeded. "
3306 "%d LUNs ignored.\n", HPSA_MAX_LUN,
3307 *nlogicals - HPSA_MAX_LUN);
3308 *nlogicals = HPSA_MAX_LUN;
3309 }
3310 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3311 dev_warn(&h->pdev->dev,
3312 "maximum logical + physical LUNs (%d) exceeded. "
3313 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3314 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3315 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3316 }
3317 return 0;
3318}
3319
42a91641
DB
3320static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3321 int i, int nphysicals, int nlogicals,
a93aa1fe 3322 struct ReportExtendedLUNdata *physdev_list,
339b2b14
SC
3323 struct ReportLUNdata *logdev_list)
3324{
3325 /* Helper function, figure out where the LUN ID info is coming from
3326 * given index i, lists of physical and logical devices, where in
3327 * the list the raid controller is supposed to appear (first or last)
3328 */
3329
3330 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3331 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3332
3333 if (i == raid_ctlr_position)
3334 return RAID_CTLR_LUNID;
3335
3336 if (i < logicals_start)
d5b5d964
SC
3337 return &physdev_list->LUN[i -
3338 (raid_ctlr_position == 0)].lunid[0];
339b2b14
SC
3339
3340 if (i < last_device)
3341 return &logdev_list->LUN[i - nphysicals -
3342 (raid_ctlr_position == 0)][0];
3343 BUG();
3344 return NULL;
3345}
3346
316b221a
SC
3347static int hpsa_hba_mode_enabled(struct ctlr_info *h)
3348{
3349 int rc;
6e8e8088 3350 int hba_mode_enabled;
316b221a
SC
3351 struct bmic_controller_parameters *ctlr_params;
3352 ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
3353 GFP_KERNEL);
3354
3355 if (!ctlr_params)
96444fbb 3356 return -ENOMEM;
316b221a
SC
3357 rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
3358 sizeof(struct bmic_controller_parameters));
96444fbb 3359 if (rc) {
316b221a 3360 kfree(ctlr_params);
96444fbb 3361 return rc;
316b221a 3362 }
6e8e8088
JH
3363
3364 hba_mode_enabled =
3365 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
3366 kfree(ctlr_params);
3367 return hba_mode_enabled;
316b221a
SC
3368}
3369
03383736
DB
3370/* get physical drive ioaccel handle and queue depth */
3371static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3372 struct hpsa_scsi_dev_t *dev,
3373 u8 *lunaddrbytes,
3374 struct bmic_identify_physical_device *id_phys)
3375{
3376 int rc;
3377 struct ext_report_lun_entry *rle =
3378 (struct ext_report_lun_entry *) lunaddrbytes;
3379
3380 dev->ioaccel_handle = rle->ioaccel_handle;
a3144e0b
JH
3381 if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle)
3382 dev->hba_ioaccel_enabled = 1;
03383736
DB
3383 memset(id_phys, 0, sizeof(*id_phys));
3384 rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3385 GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3386 sizeof(*id_phys));
3387 if (!rc)
3388 /* Reserve space for FW operations */
3389#define DRIVE_CMDS_RESERVED_FOR_FW 2
3390#define DRIVE_QUEUE_DEPTH 7
3391 dev->queue_depth =
3392 le16_to_cpu(id_phys->current_queue_depth_limit) -
3393 DRIVE_CMDS_RESERVED_FOR_FW;
3394 else
3395 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3396 atomic_set(&dev->ioaccel_cmds_out, 0);
3397}
3398
edd16368
SC
3399static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3400{
3401 /* the idea here is we could get notified
3402 * that some devices have changed, so we do a report
3403 * physical luns and report logical luns cmd, and adjust
3404 * our list of devices accordingly.
3405 *
3406 * The scsi3addr's of devices won't change so long as the
3407 * adapter is not reset. That means we can rescan and
3408 * tell which devices we already know about, vs. new
3409 * devices, vs. disappearing devices.
3410 */
a93aa1fe 3411 struct ReportExtendedLUNdata *physdev_list = NULL;
edd16368 3412 struct ReportLUNdata *logdev_list = NULL;
03383736 3413 struct bmic_identify_physical_device *id_phys = NULL;
01a02ffc
SC
3414 u32 nphysicals = 0;
3415 u32 nlogicals = 0;
3416 u32 ndev_allocated = 0;
edd16368
SC
3417 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3418 int ncurrent = 0;
4f4eb9f1 3419 int i, n_ext_target_devs, ndevs_to_allocate;
339b2b14 3420 int raid_ctlr_position;
2bbf5c7f 3421 int rescan_hba_mode;
aca4a520 3422 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
edd16368 3423
cfe5badc 3424 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
92084715
SC
3425 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3426 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
edd16368 3427 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
03383736 3428 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
edd16368 3429
03383736
DB
3430 if (!currentsd || !physdev_list || !logdev_list ||
3431 !tmpdevice || !id_phys) {
edd16368
SC
3432 dev_err(&h->pdev->dev, "out of memory\n");
3433 goto out;
3434 }
3435 memset(lunzerobits, 0, sizeof(lunzerobits));
3436
316b221a 3437 rescan_hba_mode = hpsa_hba_mode_enabled(h);
96444fbb
JH
3438 if (rescan_hba_mode < 0)
3439 goto out;
316b221a
SC
3440
3441 if (!h->hba_mode_enabled && rescan_hba_mode)
3442 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3443 else if (h->hba_mode_enabled && !rescan_hba_mode)
3444 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3445
3446 h->hba_mode_enabled = rescan_hba_mode;
3447
03383736
DB
3448 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3449 logdev_list, &nlogicals))
edd16368
SC
3450 goto out;
3451
aca4a520
ST
3452 /* We might see up to the maximum number of logical and physical disks
3453 * plus external target devices, and a device for the local RAID
3454 * controller.
edd16368 3455 */
aca4a520 3456 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
edd16368
SC
3457
3458 /* Allocate the per device structures */
3459 for (i = 0; i < ndevs_to_allocate; i++) {
b7ec021f
ST
3460 if (i >= HPSA_MAX_DEVICES) {
3461 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3462 " %d devices ignored.\n", HPSA_MAX_DEVICES,
3463 ndevs_to_allocate - HPSA_MAX_DEVICES);
3464 break;
3465 }
3466
edd16368
SC
3467 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3468 if (!currentsd[i]) {
3469 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3470 __FILE__, __LINE__);
3471 goto out;
3472 }
3473 ndev_allocated++;
3474 }
3475
8645291b 3476 if (is_scsi_rev_5(h))
339b2b14
SC
3477 raid_ctlr_position = 0;
3478 else
3479 raid_ctlr_position = nphysicals + nlogicals;
3480
edd16368 3481 /* adjust our table of devices */
4f4eb9f1 3482 n_ext_target_devs = 0;
edd16368 3483 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
0b0e1d6c 3484 u8 *lunaddrbytes, is_OBDR = 0;
edd16368
SC
3485
3486 /* Figure out where the LUN ID info is coming from */
339b2b14
SC
3487 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3488 i, nphysicals, nlogicals, physdev_list, logdev_list);
41ce4c35
SC
3489
3490 /* skip masked non-disk devices */
3491 if (MASKED_DEVICE(lunaddrbytes))
3492 if (i < nphysicals + (raid_ctlr_position == 0) &&
3493 NON_DISK_PHYS_DEV(lunaddrbytes))
3494 continue;
edd16368
SC
3495
3496 /* Get device type, vendor, model, device id */
0b0e1d6c
SC
3497 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3498 &is_OBDR))
edd16368 3499 continue; /* skip it if we can't talk to it. */
1f310bde 3500 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
9b5c48c2 3501 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
edd16368
SC
3502 this_device = currentsd[ncurrent];
3503
3504 /*
4f4eb9f1 3505 * For external target devices, we have to insert a LUN 0 which
edd16368
SC
3506 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3507 * is nonetheless an enclosure device there. We have to
3508 * present that otherwise linux won't find anything if
3509 * there is no lun 0.
3510 */
4f4eb9f1 3511 if (add_ext_target_dev(h, tmpdevice, this_device,
1f310bde 3512 lunaddrbytes, lunzerobits,
4f4eb9f1 3513 &n_ext_target_devs)) {
edd16368
SC
3514 ncurrent++;
3515 this_device = currentsd[ncurrent];
3516 }
3517
3518 *this_device = *tmpdevice;
edd16368 3519
41ce4c35
SC
3520 /* do not expose masked devices */
3521 if (MASKED_DEVICE(lunaddrbytes) &&
3522 i < nphysicals + (raid_ctlr_position == 0)) {
3523 if (h->hba_mode_enabled)
3524 dev_warn(&h->pdev->dev,
3525 "Masked physical device detected\n");
3526 this_device->expose_state = HPSA_DO_NOT_EXPOSE;
3527 } else {
3528 this_device->expose_state =
3529 HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
3530 }
3531
edd16368 3532 switch (this_device->devtype) {
0b0e1d6c 3533 case TYPE_ROM:
edd16368
SC
3534 /* We don't *really* support actual CD-ROM devices,
3535 * just "One Button Disaster Recovery" tape drive
3536 * which temporarily pretends to be a CD-ROM drive.
3537 * So we check that the device is really an OBDR tape
3538 * device by checking for "$DR-10" in bytes 43-48 of
3539 * the inquiry data.
3540 */
0b0e1d6c
SC
3541 if (is_OBDR)
3542 ncurrent++;
edd16368
SC
3543 break;
3544 case TYPE_DISK:
ecf418d1 3545 if (i >= nphysicals) {
316b221a
SC
3546 ncurrent++;
3547 break;
283b4a9b 3548 }
ecf418d1
JH
3549
3550 if (h->hba_mode_enabled)
3551 /* never use raid mapper in HBA mode */
3552 this_device->offload_enabled = 0;
3553 else if (!(h->transMethod & CFGTBL_Trans_io_accel1 ||
3554 h->transMethod & CFGTBL_Trans_io_accel2))
3555 break;
3556
3557 hpsa_get_ioaccel_drive_info(h, this_device,
3558 lunaddrbytes, id_phys);
3559 atomic_set(&this_device->ioaccel_cmds_out, 0);
3560 ncurrent++;
edd16368
SC
3561 break;
3562 case TYPE_TAPE:
3563 case TYPE_MEDIUM_CHANGER:
3564 ncurrent++;
3565 break;
41ce4c35
SC
3566 case TYPE_ENCLOSURE:
3567 if (h->hba_mode_enabled)
3568 ncurrent++;
3569 break;
edd16368
SC
3570 case TYPE_RAID:
3571 /* Only present the Smartarray HBA as a RAID controller.
3572 * If it's a RAID controller other than the HBA itself
3573 * (an external RAID controller, MSA500 or similar)
3574 * don't present it.
3575 */
3576 if (!is_hba_lunid(lunaddrbytes))
3577 break;
3578 ncurrent++;
3579 break;
3580 default:
3581 break;
3582 }
cfe5badc 3583 if (ncurrent >= HPSA_MAX_DEVICES)
edd16368
SC
3584 break;
3585 }
3586 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3587out:
3588 kfree(tmpdevice);
3589 for (i = 0; i < ndev_allocated; i++)
3590 kfree(currentsd[i]);
3591 kfree(currentsd);
edd16368
SC
3592 kfree(physdev_list);
3593 kfree(logdev_list);
03383736 3594 kfree(id_phys);
edd16368
SC
3595}
3596
ec5cbf04
WS
3597static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3598 struct scatterlist *sg)
3599{
3600 u64 addr64 = (u64) sg_dma_address(sg);
3601 unsigned int len = sg_dma_len(sg);
3602
3603 desc->Addr = cpu_to_le64(addr64);
3604 desc->Len = cpu_to_le32(len);
3605 desc->Ext = 0;
3606}
3607
c7ee65b3
WS
3608/*
3609 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
edd16368
SC
3610 * dma mapping and fills in the scatter gather entries of the
3611 * hpsa command, cp.
3612 */
33a2ffce 3613static int hpsa_scatter_gather(struct ctlr_info *h,
edd16368
SC
3614 struct CommandList *cp,
3615 struct scsi_cmnd *cmd)
3616{
edd16368 3617 struct scatterlist *sg;
33a2ffce
SC
3618 int use_sg, i, sg_index, chained;
3619 struct SGDescriptor *curr_sg;
edd16368 3620
33a2ffce 3621 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
edd16368
SC
3622
3623 use_sg = scsi_dma_map(cmd);
3624 if (use_sg < 0)
3625 return use_sg;
3626
3627 if (!use_sg)
3628 goto sglist_finished;
3629
33a2ffce
SC
3630 curr_sg = cp->SG;
3631 chained = 0;
3632 sg_index = 0;
edd16368 3633 scsi_for_each_sg(cmd, sg, use_sg, i) {
33a2ffce
SC
3634 if (i == h->max_cmd_sg_entries - 1 &&
3635 use_sg > h->max_cmd_sg_entries) {
3636 chained = 1;
3637 curr_sg = h->cmd_sg_list[cp->cmdindex];
3638 sg_index = 0;
3639 }
ec5cbf04 3640 hpsa_set_sg_descriptor(curr_sg, sg);
33a2ffce
SC
3641 curr_sg++;
3642 }
ec5cbf04
WS
3643
3644 /* Back the pointer up to the last entry and mark it as "last". */
50a0decf 3645 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
33a2ffce
SC
3646
3647 if (use_sg + chained > h->maxSG)
3648 h->maxSG = use_sg + chained;
3649
3650 if (chained) {
3651 cp->Header.SGList = h->max_cmd_sg_entries;
50a0decf 3652 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
e2bea6df
SC
3653 if (hpsa_map_sg_chain_block(h, cp)) {
3654 scsi_dma_unmap(cmd);
3655 return -1;
3656 }
33a2ffce 3657 return 0;
edd16368
SC
3658 }
3659
3660sglist_finished:
3661
01a02ffc 3662 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
c7ee65b3 3663 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
edd16368
SC
3664 return 0;
3665}
3666
283b4a9b
SC
3667#define IO_ACCEL_INELIGIBLE (1)
3668static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3669{
3670 int is_write = 0;
3671 u32 block;
3672 u32 block_cnt;
3673
3674 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3675 switch (cdb[0]) {
3676 case WRITE_6:
3677 case WRITE_12:
3678 is_write = 1;
3679 case READ_6:
3680 case READ_12:
3681 if (*cdb_len == 6) {
3682 block = (((u32) cdb[2]) << 8) | cdb[3];
3683 block_cnt = cdb[4];
3684 } else {
3685 BUG_ON(*cdb_len != 12);
3686 block = (((u32) cdb[2]) << 24) |
3687 (((u32) cdb[3]) << 16) |
3688 (((u32) cdb[4]) << 8) |
3689 cdb[5];
3690 block_cnt =
3691 (((u32) cdb[6]) << 24) |
3692 (((u32) cdb[7]) << 16) |
3693 (((u32) cdb[8]) << 8) |
3694 cdb[9];
3695 }
3696 if (block_cnt > 0xffff)
3697 return IO_ACCEL_INELIGIBLE;
3698
3699 cdb[0] = is_write ? WRITE_10 : READ_10;
3700 cdb[1] = 0;
3701 cdb[2] = (u8) (block >> 24);
3702 cdb[3] = (u8) (block >> 16);
3703 cdb[4] = (u8) (block >> 8);
3704 cdb[5] = (u8) (block);
3705 cdb[6] = 0;
3706 cdb[7] = (u8) (block_cnt >> 8);
3707 cdb[8] = (u8) (block_cnt);
3708 cdb[9] = 0;
3709 *cdb_len = 10;
3710 break;
3711 }
3712 return 0;
3713}
3714
c349775e 3715static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
283b4a9b 3716 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 3717 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
e1f7de0c
MG
3718{
3719 struct scsi_cmnd *cmd = c->scsi_cmd;
e1f7de0c
MG
3720 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3721 unsigned int len;
3722 unsigned int total_len = 0;
3723 struct scatterlist *sg;
3724 u64 addr64;
3725 int use_sg, i;
3726 struct SGDescriptor *curr_sg;
3727 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3728
283b4a9b 3729 /* TODO: implement chaining support */
03383736
DB
3730 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3731 atomic_dec(&phys_disk->ioaccel_cmds_out);
283b4a9b 3732 return IO_ACCEL_INELIGIBLE;
03383736 3733 }
283b4a9b 3734
e1f7de0c
MG
3735 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3736
03383736
DB
3737 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3738 atomic_dec(&phys_disk->ioaccel_cmds_out);
283b4a9b 3739 return IO_ACCEL_INELIGIBLE;
03383736 3740 }
283b4a9b 3741
e1f7de0c
MG
3742 c->cmd_type = CMD_IOACCEL1;
3743
3744 /* Adjust the DMA address to point to the accelerated command buffer */
3745 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3746 (c->cmdindex * sizeof(*cp));
3747 BUG_ON(c->busaddr & 0x0000007F);
3748
3749 use_sg = scsi_dma_map(cmd);
03383736
DB
3750 if (use_sg < 0) {
3751 atomic_dec(&phys_disk->ioaccel_cmds_out);
e1f7de0c 3752 return use_sg;
03383736 3753 }
e1f7de0c
MG
3754
3755 if (use_sg) {
3756 curr_sg = cp->SG;
3757 scsi_for_each_sg(cmd, sg, use_sg, i) {
3758 addr64 = (u64) sg_dma_address(sg);
3759 len = sg_dma_len(sg);
3760 total_len += len;
50a0decf
SC
3761 curr_sg->Addr = cpu_to_le64(addr64);
3762 curr_sg->Len = cpu_to_le32(len);
3763 curr_sg->Ext = cpu_to_le32(0);
e1f7de0c
MG
3764 curr_sg++;
3765 }
50a0decf 3766 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
e1f7de0c
MG
3767
3768 switch (cmd->sc_data_direction) {
3769 case DMA_TO_DEVICE:
3770 control |= IOACCEL1_CONTROL_DATA_OUT;
3771 break;
3772 case DMA_FROM_DEVICE:
3773 control |= IOACCEL1_CONTROL_DATA_IN;
3774 break;
3775 case DMA_NONE:
3776 control |= IOACCEL1_CONTROL_NODATAXFER;
3777 break;
3778 default:
3779 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3780 cmd->sc_data_direction);
3781 BUG();
3782 break;
3783 }
3784 } else {
3785 control |= IOACCEL1_CONTROL_NODATAXFER;
3786 }
3787
c349775e 3788 c->Header.SGList = use_sg;
e1f7de0c 3789 /* Fill out the command structure to submit */
2b08b3e9
DB
3790 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
3791 cp->transfer_len = cpu_to_le32(total_len);
3792 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
3793 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
3794 cp->control = cpu_to_le32(control);
283b4a9b
SC
3795 memcpy(cp->CDB, cdb, cdb_len);
3796 memcpy(cp->CISS_LUN, scsi3addr, 8);
c349775e 3797 /* Tag was already set at init time. */
283b4a9b 3798 enqueue_cmd_and_start_io(h, c);
e1f7de0c
MG
3799 return 0;
3800}
edd16368 3801
283b4a9b
SC
3802/*
3803 * Queue a command directly to a device behind the controller using the
3804 * I/O accelerator path.
3805 */
3806static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3807 struct CommandList *c)
3808{
3809 struct scsi_cmnd *cmd = c->scsi_cmd;
3810 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3811
03383736
DB
3812 c->phys_disk = dev;
3813
283b4a9b 3814 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
03383736 3815 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
283b4a9b
SC
3816}
3817
dd0e19f3
ST
3818/*
3819 * Set encryption parameters for the ioaccel2 request
3820 */
3821static void set_encrypt_ioaccel2(struct ctlr_info *h,
3822 struct CommandList *c, struct io_accel2_cmd *cp)
3823{
3824 struct scsi_cmnd *cmd = c->scsi_cmd;
3825 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3826 struct raid_map_data *map = &dev->raid_map;
3827 u64 first_block;
3828
dd0e19f3 3829 /* Are we doing encryption on this device */
2b08b3e9 3830 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
dd0e19f3
ST
3831 return;
3832 /* Set the data encryption key index. */
3833 cp->dekindex = map->dekindex;
3834
3835 /* Set the encryption enable flag, encoded into direction field. */
3836 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3837
3838 /* Set encryption tweak values based on logical block address
3839 * If block size is 512, tweak value is LBA.
3840 * For other block sizes, tweak is (LBA * block size)/ 512)
3841 */
3842 switch (cmd->cmnd[0]) {
3843 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3844 case WRITE_6:
3845 case READ_6:
2b08b3e9 3846 first_block = get_unaligned_be16(&cmd->cmnd[2]);
dd0e19f3
ST
3847 break;
3848 case WRITE_10:
3849 case READ_10:
dd0e19f3
ST
3850 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3851 case WRITE_12:
3852 case READ_12:
2b08b3e9 3853 first_block = get_unaligned_be32(&cmd->cmnd[2]);
dd0e19f3
ST
3854 break;
3855 case WRITE_16:
3856 case READ_16:
2b08b3e9 3857 first_block = get_unaligned_be64(&cmd->cmnd[2]);
dd0e19f3
ST
3858 break;
3859 default:
3860 dev_err(&h->pdev->dev,
2b08b3e9
DB
3861 "ERROR: %s: size (0x%x) not supported for encryption\n",
3862 __func__, cmd->cmnd[0]);
dd0e19f3
ST
3863 BUG();
3864 break;
3865 }
2b08b3e9
DB
3866
3867 if (le32_to_cpu(map->volume_blk_size) != 512)
3868 first_block = first_block *
3869 le32_to_cpu(map->volume_blk_size)/512;
3870
3871 cp->tweak_lower = cpu_to_le32(first_block);
3872 cp->tweak_upper = cpu_to_le32(first_block >> 32);
dd0e19f3
ST
3873}
3874
c349775e
ST
3875static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3876 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 3877 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
c349775e
ST
3878{
3879 struct scsi_cmnd *cmd = c->scsi_cmd;
3880 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3881 struct ioaccel2_sg_element *curr_sg;
3882 int use_sg, i;
3883 struct scatterlist *sg;
3884 u64 addr64;
3885 u32 len;
3886 u32 total_len = 0;
3887
d9a729f3 3888 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
c349775e 3889
03383736
DB
3890 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3891 atomic_dec(&phys_disk->ioaccel_cmds_out);
c349775e 3892 return IO_ACCEL_INELIGIBLE;
03383736
DB
3893 }
3894
c349775e
ST
3895 c->cmd_type = CMD_IOACCEL2;
3896 /* Adjust the DMA address to point to the accelerated command buffer */
3897 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3898 (c->cmdindex * sizeof(*cp));
3899 BUG_ON(c->busaddr & 0x0000007F);
3900
3901 memset(cp, 0, sizeof(*cp));
3902 cp->IU_type = IOACCEL2_IU_TYPE;
3903
3904 use_sg = scsi_dma_map(cmd);
03383736
DB
3905 if (use_sg < 0) {
3906 atomic_dec(&phys_disk->ioaccel_cmds_out);
c349775e 3907 return use_sg;
03383736 3908 }
c349775e
ST
3909
3910 if (use_sg) {
c349775e 3911 curr_sg = cp->sg;
d9a729f3
WS
3912 if (use_sg > h->ioaccel_maxsg) {
3913 addr64 = le64_to_cpu(
3914 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
3915 curr_sg->address = cpu_to_le64(addr64);
3916 curr_sg->length = 0;
3917 curr_sg->reserved[0] = 0;
3918 curr_sg->reserved[1] = 0;
3919 curr_sg->reserved[2] = 0;
3920 curr_sg->chain_indicator = 0x80;
3921
3922 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
3923 }
c349775e
ST
3924 scsi_for_each_sg(cmd, sg, use_sg, i) {
3925 addr64 = (u64) sg_dma_address(sg);
3926 len = sg_dma_len(sg);
3927 total_len += len;
3928 curr_sg->address = cpu_to_le64(addr64);
3929 curr_sg->length = cpu_to_le32(len);
3930 curr_sg->reserved[0] = 0;
3931 curr_sg->reserved[1] = 0;
3932 curr_sg->reserved[2] = 0;
3933 curr_sg->chain_indicator = 0;
3934 curr_sg++;
3935 }
3936
3937 switch (cmd->sc_data_direction) {
3938 case DMA_TO_DEVICE:
dd0e19f3
ST
3939 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3940 cp->direction |= IOACCEL2_DIR_DATA_OUT;
c349775e
ST
3941 break;
3942 case DMA_FROM_DEVICE:
dd0e19f3
ST
3943 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3944 cp->direction |= IOACCEL2_DIR_DATA_IN;
c349775e
ST
3945 break;
3946 case DMA_NONE:
dd0e19f3
ST
3947 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3948 cp->direction |= IOACCEL2_DIR_NO_DATA;
c349775e
ST
3949 break;
3950 default:
3951 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3952 cmd->sc_data_direction);
3953 BUG();
3954 break;
3955 }
3956 } else {
dd0e19f3
ST
3957 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3958 cp->direction |= IOACCEL2_DIR_NO_DATA;
c349775e 3959 }
dd0e19f3
ST
3960
3961 /* Set encryption parameters, if necessary */
3962 set_encrypt_ioaccel2(h, c, cp);
3963
2b08b3e9 3964 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
f2405db8 3965 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
c349775e 3966 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
c349775e 3967
c349775e
ST
3968 cp->data_len = cpu_to_le32(total_len);
3969 cp->err_ptr = cpu_to_le64(c->busaddr +
3970 offsetof(struct io_accel2_cmd, error_data));
50a0decf 3971 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
c349775e 3972
d9a729f3
WS
3973 /* fill in sg elements */
3974 if (use_sg > h->ioaccel_maxsg) {
3975 cp->sg_count = 1;
3976 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
3977 atomic_dec(&phys_disk->ioaccel_cmds_out);
3978 scsi_dma_unmap(cmd);
3979 return -1;
3980 }
3981 } else
3982 cp->sg_count = (u8) use_sg;
3983
c349775e
ST
3984 enqueue_cmd_and_start_io(h, c);
3985 return 0;
3986}
3987
3988/*
3989 * Queue a command to the correct I/O accelerator path.
3990 */
3991static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3992 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 3993 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
c349775e 3994{
03383736
DB
3995 /* Try to honor the device's queue depth */
3996 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
3997 phys_disk->queue_depth) {
3998 atomic_dec(&phys_disk->ioaccel_cmds_out);
3999 return IO_ACCEL_INELIGIBLE;
4000 }
c349775e
ST
4001 if (h->transMethod & CFGTBL_Trans_io_accel1)
4002 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
03383736
DB
4003 cdb, cdb_len, scsi3addr,
4004 phys_disk);
c349775e
ST
4005 else
4006 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
03383736
DB
4007 cdb, cdb_len, scsi3addr,
4008 phys_disk);
c349775e
ST
4009}
4010
6b80b18f
ST
4011static void raid_map_helper(struct raid_map_data *map,
4012 int offload_to_mirror, u32 *map_index, u32 *current_group)
4013{
4014 if (offload_to_mirror == 0) {
4015 /* use physical disk in the first mirrored group. */
2b08b3e9 4016 *map_index %= le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
4017 return;
4018 }
4019 do {
4020 /* determine mirror group that *map_index indicates */
2b08b3e9
DB
4021 *current_group = *map_index /
4022 le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
4023 if (offload_to_mirror == *current_group)
4024 continue;
2b08b3e9 4025 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
6b80b18f 4026 /* select map index from next group */
2b08b3e9 4027 *map_index += le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
4028 (*current_group)++;
4029 } else {
4030 /* select map index from first group */
2b08b3e9 4031 *map_index %= le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
4032 *current_group = 0;
4033 }
4034 } while (offload_to_mirror != *current_group);
4035}
4036
283b4a9b
SC
4037/*
4038 * Attempt to perform offload RAID mapping for a logical volume I/O.
4039 */
4040static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4041 struct CommandList *c)
4042{
4043 struct scsi_cmnd *cmd = c->scsi_cmd;
4044 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4045 struct raid_map_data *map = &dev->raid_map;
4046 struct raid_map_disk_data *dd = &map->data[0];
4047 int is_write = 0;
4048 u32 map_index;
4049 u64 first_block, last_block;
4050 u32 block_cnt;
4051 u32 blocks_per_row;
4052 u64 first_row, last_row;
4053 u32 first_row_offset, last_row_offset;
4054 u32 first_column, last_column;
6b80b18f
ST
4055 u64 r0_first_row, r0_last_row;
4056 u32 r5or6_blocks_per_row;
4057 u64 r5or6_first_row, r5or6_last_row;
4058 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4059 u32 r5or6_first_column, r5or6_last_column;
4060 u32 total_disks_per_row;
4061 u32 stripesize;
4062 u32 first_group, last_group, current_group;
283b4a9b
SC
4063 u32 map_row;
4064 u32 disk_handle;
4065 u64 disk_block;
4066 u32 disk_block_cnt;
4067 u8 cdb[16];
4068 u8 cdb_len;
2b08b3e9 4069 u16 strip_size;
283b4a9b
SC
4070#if BITS_PER_LONG == 32
4071 u64 tmpdiv;
4072#endif
6b80b18f 4073 int offload_to_mirror;
283b4a9b 4074
283b4a9b
SC
4075 /* check for valid opcode, get LBA and block count */
4076 switch (cmd->cmnd[0]) {
4077 case WRITE_6:
4078 is_write = 1;
4079 case READ_6:
4080 first_block =
4081 (((u64) cmd->cmnd[2]) << 8) |
4082 cmd->cmnd[3];
4083 block_cnt = cmd->cmnd[4];
3fa89a04
SC
4084 if (block_cnt == 0)
4085 block_cnt = 256;
283b4a9b
SC
4086 break;
4087 case WRITE_10:
4088 is_write = 1;
4089 case READ_10:
4090 first_block =
4091 (((u64) cmd->cmnd[2]) << 24) |
4092 (((u64) cmd->cmnd[3]) << 16) |
4093 (((u64) cmd->cmnd[4]) << 8) |
4094 cmd->cmnd[5];
4095 block_cnt =
4096 (((u32) cmd->cmnd[7]) << 8) |
4097 cmd->cmnd[8];
4098 break;
4099 case WRITE_12:
4100 is_write = 1;
4101 case READ_12:
4102 first_block =
4103 (((u64) cmd->cmnd[2]) << 24) |
4104 (((u64) cmd->cmnd[3]) << 16) |
4105 (((u64) cmd->cmnd[4]) << 8) |
4106 cmd->cmnd[5];
4107 block_cnt =
4108 (((u32) cmd->cmnd[6]) << 24) |
4109 (((u32) cmd->cmnd[7]) << 16) |
4110 (((u32) cmd->cmnd[8]) << 8) |
4111 cmd->cmnd[9];
4112 break;
4113 case WRITE_16:
4114 is_write = 1;
4115 case READ_16:
4116 first_block =
4117 (((u64) cmd->cmnd[2]) << 56) |
4118 (((u64) cmd->cmnd[3]) << 48) |
4119 (((u64) cmd->cmnd[4]) << 40) |
4120 (((u64) cmd->cmnd[5]) << 32) |
4121 (((u64) cmd->cmnd[6]) << 24) |
4122 (((u64) cmd->cmnd[7]) << 16) |
4123 (((u64) cmd->cmnd[8]) << 8) |
4124 cmd->cmnd[9];
4125 block_cnt =
4126 (((u32) cmd->cmnd[10]) << 24) |
4127 (((u32) cmd->cmnd[11]) << 16) |
4128 (((u32) cmd->cmnd[12]) << 8) |
4129 cmd->cmnd[13];
4130 break;
4131 default:
4132 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4133 }
283b4a9b
SC
4134 last_block = first_block + block_cnt - 1;
4135
4136 /* check for write to non-RAID-0 */
4137 if (is_write && dev->raid_level != 0)
4138 return IO_ACCEL_INELIGIBLE;
4139
4140 /* check for invalid block or wraparound */
2b08b3e9
DB
4141 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4142 last_block < first_block)
283b4a9b
SC
4143 return IO_ACCEL_INELIGIBLE;
4144
4145 /* calculate stripe information for the request */
2b08b3e9
DB
4146 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4147 le16_to_cpu(map->strip_size);
4148 strip_size = le16_to_cpu(map->strip_size);
283b4a9b
SC
4149#if BITS_PER_LONG == 32
4150 tmpdiv = first_block;
4151 (void) do_div(tmpdiv, blocks_per_row);
4152 first_row = tmpdiv;
4153 tmpdiv = last_block;
4154 (void) do_div(tmpdiv, blocks_per_row);
4155 last_row = tmpdiv;
4156 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4157 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4158 tmpdiv = first_row_offset;
2b08b3e9 4159 (void) do_div(tmpdiv, strip_size);
283b4a9b
SC
4160 first_column = tmpdiv;
4161 tmpdiv = last_row_offset;
2b08b3e9 4162 (void) do_div(tmpdiv, strip_size);
283b4a9b
SC
4163 last_column = tmpdiv;
4164#else
4165 first_row = first_block / blocks_per_row;
4166 last_row = last_block / blocks_per_row;
4167 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4168 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
2b08b3e9
DB
4169 first_column = first_row_offset / strip_size;
4170 last_column = last_row_offset / strip_size;
283b4a9b
SC
4171#endif
4172
4173 /* if this isn't a single row/column then give to the controller */
4174 if ((first_row != last_row) || (first_column != last_column))
4175 return IO_ACCEL_INELIGIBLE;
4176
4177 /* proceeding with driver mapping */
2b08b3e9
DB
4178 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4179 le16_to_cpu(map->metadata_disks_per_row);
283b4a9b 4180 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
2b08b3e9 4181 le16_to_cpu(map->row_cnt);
6b80b18f
ST
4182 map_index = (map_row * total_disks_per_row) + first_column;
4183
4184 switch (dev->raid_level) {
4185 case HPSA_RAID_0:
4186 break; /* nothing special to do */
4187 case HPSA_RAID_1:
4188 /* Handles load balance across RAID 1 members.
4189 * (2-drive R1 and R10 with even # of drives.)
4190 * Appropriate for SSDs, not optimal for HDDs
283b4a9b 4191 */
2b08b3e9 4192 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
283b4a9b 4193 if (dev->offload_to_mirror)
2b08b3e9 4194 map_index += le16_to_cpu(map->data_disks_per_row);
283b4a9b 4195 dev->offload_to_mirror = !dev->offload_to_mirror;
6b80b18f
ST
4196 break;
4197 case HPSA_RAID_ADM:
4198 /* Handles N-way mirrors (R1-ADM)
4199 * and R10 with # of drives divisible by 3.)
4200 */
2b08b3e9 4201 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
6b80b18f
ST
4202
4203 offload_to_mirror = dev->offload_to_mirror;
4204 raid_map_helper(map, offload_to_mirror,
4205 &map_index, &current_group);
4206 /* set mirror group to use next time */
4207 offload_to_mirror =
2b08b3e9
DB
4208 (offload_to_mirror >=
4209 le16_to_cpu(map->layout_map_count) - 1)
6b80b18f 4210 ? 0 : offload_to_mirror + 1;
6b80b18f
ST
4211 dev->offload_to_mirror = offload_to_mirror;
4212 /* Avoid direct use of dev->offload_to_mirror within this
4213 * function since multiple threads might simultaneously
4214 * increment it beyond the range of dev->layout_map_count -1.
4215 */
4216 break;
4217 case HPSA_RAID_5:
4218 case HPSA_RAID_6:
2b08b3e9 4219 if (le16_to_cpu(map->layout_map_count) <= 1)
6b80b18f
ST
4220 break;
4221
4222 /* Verify first and last block are in same RAID group */
4223 r5or6_blocks_per_row =
2b08b3e9
DB
4224 le16_to_cpu(map->strip_size) *
4225 le16_to_cpu(map->data_disks_per_row);
6b80b18f 4226 BUG_ON(r5or6_blocks_per_row == 0);
2b08b3e9
DB
4227 stripesize = r5or6_blocks_per_row *
4228 le16_to_cpu(map->layout_map_count);
6b80b18f
ST
4229#if BITS_PER_LONG == 32
4230 tmpdiv = first_block;
4231 first_group = do_div(tmpdiv, stripesize);
4232 tmpdiv = first_group;
4233 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4234 first_group = tmpdiv;
4235 tmpdiv = last_block;
4236 last_group = do_div(tmpdiv, stripesize);
4237 tmpdiv = last_group;
4238 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4239 last_group = tmpdiv;
4240#else
4241 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4242 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
6b80b18f 4243#endif
000ff7c2 4244 if (first_group != last_group)
6b80b18f
ST
4245 return IO_ACCEL_INELIGIBLE;
4246
4247 /* Verify request is in a single row of RAID 5/6 */
4248#if BITS_PER_LONG == 32
4249 tmpdiv = first_block;
4250 (void) do_div(tmpdiv, stripesize);
4251 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4252 tmpdiv = last_block;
4253 (void) do_div(tmpdiv, stripesize);
4254 r5or6_last_row = r0_last_row = tmpdiv;
4255#else
4256 first_row = r5or6_first_row = r0_first_row =
4257 first_block / stripesize;
4258 r5or6_last_row = r0_last_row = last_block / stripesize;
4259#endif
4260 if (r5or6_first_row != r5or6_last_row)
4261 return IO_ACCEL_INELIGIBLE;
4262
4263
4264 /* Verify request is in a single column */
4265#if BITS_PER_LONG == 32
4266 tmpdiv = first_block;
4267 first_row_offset = do_div(tmpdiv, stripesize);
4268 tmpdiv = first_row_offset;
4269 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4270 r5or6_first_row_offset = first_row_offset;
4271 tmpdiv = last_block;
4272 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4273 tmpdiv = r5or6_last_row_offset;
4274 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4275 tmpdiv = r5or6_first_row_offset;
4276 (void) do_div(tmpdiv, map->strip_size);
4277 first_column = r5or6_first_column = tmpdiv;
4278 tmpdiv = r5or6_last_row_offset;
4279 (void) do_div(tmpdiv, map->strip_size);
4280 r5or6_last_column = tmpdiv;
4281#else
4282 first_row_offset = r5or6_first_row_offset =
4283 (u32)((first_block % stripesize) %
4284 r5or6_blocks_per_row);
4285
4286 r5or6_last_row_offset =
4287 (u32)((last_block % stripesize) %
4288 r5or6_blocks_per_row);
4289
4290 first_column = r5or6_first_column =
2b08b3e9 4291 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
6b80b18f 4292 r5or6_last_column =
2b08b3e9 4293 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
6b80b18f
ST
4294#endif
4295 if (r5or6_first_column != r5or6_last_column)
4296 return IO_ACCEL_INELIGIBLE;
4297
4298 /* Request is eligible */
4299 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
2b08b3e9 4300 le16_to_cpu(map->row_cnt);
6b80b18f
ST
4301
4302 map_index = (first_group *
2b08b3e9 4303 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
6b80b18f
ST
4304 (map_row * total_disks_per_row) + first_column;
4305 break;
4306 default:
4307 return IO_ACCEL_INELIGIBLE;
283b4a9b 4308 }
6b80b18f 4309
07543e0c
SC
4310 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4311 return IO_ACCEL_INELIGIBLE;
4312
03383736
DB
4313 c->phys_disk = dev->phys_disk[map_index];
4314
283b4a9b 4315 disk_handle = dd[map_index].ioaccel_handle;
2b08b3e9
DB
4316 disk_block = le64_to_cpu(map->disk_starting_blk) +
4317 first_row * le16_to_cpu(map->strip_size) +
4318 (first_row_offset - first_column *
4319 le16_to_cpu(map->strip_size));
283b4a9b
SC
4320 disk_block_cnt = block_cnt;
4321
4322 /* handle differing logical/physical block sizes */
4323 if (map->phys_blk_shift) {
4324 disk_block <<= map->phys_blk_shift;
4325 disk_block_cnt <<= map->phys_blk_shift;
4326 }
4327 BUG_ON(disk_block_cnt > 0xffff);
4328
4329 /* build the new CDB for the physical disk I/O */
4330 if (disk_block > 0xffffffff) {
4331 cdb[0] = is_write ? WRITE_16 : READ_16;
4332 cdb[1] = 0;
4333 cdb[2] = (u8) (disk_block >> 56);
4334 cdb[3] = (u8) (disk_block >> 48);
4335 cdb[4] = (u8) (disk_block >> 40);
4336 cdb[5] = (u8) (disk_block >> 32);
4337 cdb[6] = (u8) (disk_block >> 24);
4338 cdb[7] = (u8) (disk_block >> 16);
4339 cdb[8] = (u8) (disk_block >> 8);
4340 cdb[9] = (u8) (disk_block);
4341 cdb[10] = (u8) (disk_block_cnt >> 24);
4342 cdb[11] = (u8) (disk_block_cnt >> 16);
4343 cdb[12] = (u8) (disk_block_cnt >> 8);
4344 cdb[13] = (u8) (disk_block_cnt);
4345 cdb[14] = 0;
4346 cdb[15] = 0;
4347 cdb_len = 16;
4348 } else {
4349 cdb[0] = is_write ? WRITE_10 : READ_10;
4350 cdb[1] = 0;
4351 cdb[2] = (u8) (disk_block >> 24);
4352 cdb[3] = (u8) (disk_block >> 16);
4353 cdb[4] = (u8) (disk_block >> 8);
4354 cdb[5] = (u8) (disk_block);
4355 cdb[6] = 0;
4356 cdb[7] = (u8) (disk_block_cnt >> 8);
4357 cdb[8] = (u8) (disk_block_cnt);
4358 cdb[9] = 0;
4359 cdb_len = 10;
4360 }
4361 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
03383736
DB
4362 dev->scsi3addr,
4363 dev->phys_disk[map_index]);
283b4a9b
SC
4364}
4365
25163bd5
WS
4366/*
4367 * Submit commands down the "normal" RAID stack path
4368 * All callers to hpsa_ciss_submit must check lockup_detected
4369 * beforehand, before (opt.) and after calling cmd_alloc
4370 */
574f05d3
SC
4371static int hpsa_ciss_submit(struct ctlr_info *h,
4372 struct CommandList *c, struct scsi_cmnd *cmd,
4373 unsigned char scsi3addr[])
edd16368 4374{
edd16368 4375 cmd->host_scribble = (unsigned char *) c;
edd16368
SC
4376 c->cmd_type = CMD_SCSI;
4377 c->scsi_cmd = cmd;
4378 c->Header.ReplyQueue = 0; /* unused in simple mode */
4379 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
f2405db8 4380 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
edd16368
SC
4381
4382 /* Fill in the request block... */
4383
4384 c->Request.Timeout = 0;
edd16368
SC
4385 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4386 c->Request.CDBLen = cmd->cmd_len;
4387 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
edd16368
SC
4388 switch (cmd->sc_data_direction) {
4389 case DMA_TO_DEVICE:
a505b86f
SC
4390 c->Request.type_attr_dir =
4391 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
edd16368
SC
4392 break;
4393 case DMA_FROM_DEVICE:
a505b86f
SC
4394 c->Request.type_attr_dir =
4395 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
edd16368
SC
4396 break;
4397 case DMA_NONE:
a505b86f
SC
4398 c->Request.type_attr_dir =
4399 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
edd16368
SC
4400 break;
4401 case DMA_BIDIRECTIONAL:
4402 /* This can happen if a buggy application does a scsi passthru
4403 * and sets both inlen and outlen to non-zero. ( see
4404 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4405 */
4406
a505b86f
SC
4407 c->Request.type_attr_dir =
4408 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
edd16368
SC
4409 /* This is technically wrong, and hpsa controllers should
4410 * reject it with CMD_INVALID, which is the most correct
4411 * response, but non-fibre backends appear to let it
4412 * slide by, and give the same results as if this field
4413 * were set correctly. Either way is acceptable for
4414 * our purposes here.
4415 */
4416
4417 break;
4418
4419 default:
4420 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4421 cmd->sc_data_direction);
4422 BUG();
4423 break;
4424 }
4425
33a2ffce 4426 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
edd16368
SC
4427 cmd_free(h, c);
4428 return SCSI_MLQUEUE_HOST_BUSY;
4429 }
4430 enqueue_cmd_and_start_io(h, c);
4431 /* the cmd'll come back via intr handler in complete_scsi_command() */
4432 return 0;
4433}
4434
360c73bd
SC
4435static void hpsa_cmd_init(struct ctlr_info *h, int index,
4436 struct CommandList *c)
4437{
4438 dma_addr_t cmd_dma_handle, err_dma_handle;
4439
4440 /* Zero out all of commandlist except the last field, refcount */
4441 memset(c, 0, offsetof(struct CommandList, refcount));
4442 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4443 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4444 c->err_info = h->errinfo_pool + index;
4445 memset(c->err_info, 0, sizeof(*c->err_info));
4446 err_dma_handle = h->errinfo_pool_dhandle
4447 + index * sizeof(*c->err_info);
4448 c->cmdindex = index;
4449 c->busaddr = (u32) cmd_dma_handle;
4450 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4451 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4452 c->h = h;
4453}
4454
4455static void hpsa_preinitialize_commands(struct ctlr_info *h)
4456{
4457 int i;
4458
4459 for (i = 0; i < h->nr_cmds; i++) {
4460 struct CommandList *c = h->cmd_pool + i;
4461
4462 hpsa_cmd_init(h, i, c);
4463 atomic_set(&c->refcount, 0);
4464 }
4465}
4466
4467static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4468 struct CommandList *c)
4469{
4470 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4471
4472 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4473 memset(c->err_info, 0, sizeof(*c->err_info));
4474 c->busaddr = (u32) cmd_dma_handle;
4475}
4476
592a0ad5
WS
4477static int hpsa_ioaccel_submit(struct ctlr_info *h,
4478 struct CommandList *c, struct scsi_cmnd *cmd,
4479 unsigned char *scsi3addr)
4480{
4481 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4482 int rc = IO_ACCEL_INELIGIBLE;
4483
4484 cmd->host_scribble = (unsigned char *) c;
4485
4486 if (dev->offload_enabled) {
4487 hpsa_cmd_init(h, c->cmdindex, c);
4488 c->cmd_type = CMD_SCSI;
4489 c->scsi_cmd = cmd;
4490 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4491 if (rc < 0) /* scsi_dma_map failed. */
4492 rc = SCSI_MLQUEUE_HOST_BUSY;
a3144e0b 4493 } else if (dev->hba_ioaccel_enabled) {
592a0ad5
WS
4494 hpsa_cmd_init(h, c->cmdindex, c);
4495 c->cmd_type = CMD_SCSI;
4496 c->scsi_cmd = cmd;
4497 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4498 if (rc < 0) /* scsi_dma_map failed. */
4499 rc = SCSI_MLQUEUE_HOST_BUSY;
4500 }
4501 return rc;
4502}
4503
080ef1cc
DB
4504static void hpsa_command_resubmit_worker(struct work_struct *work)
4505{
4506 struct scsi_cmnd *cmd;
4507 struct hpsa_scsi_dev_t *dev;
8a0ff92c 4508 struct CommandList *c = container_of(work, struct CommandList, work);
080ef1cc
DB
4509
4510 cmd = c->scsi_cmd;
4511 dev = cmd->device->hostdata;
4512 if (!dev) {
4513 cmd->result = DID_NO_CONNECT << 16;
8a0ff92c 4514 return hpsa_cmd_free_and_done(c->h, c, cmd);
080ef1cc 4515 }
592a0ad5
WS
4516 if (c->cmd_type == CMD_IOACCEL2) {
4517 struct ctlr_info *h = c->h;
4518 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4519 int rc;
4520
4521 if (c2->error_data.serv_response ==
4522 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4523 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4524 if (rc == 0)
4525 return;
4526 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4527 /*
4528 * If we get here, it means dma mapping failed.
4529 * Try again via scsi mid layer, which will
4530 * then get SCSI_MLQUEUE_HOST_BUSY.
4531 */
4532 cmd->result = DID_IMM_RETRY << 16;
8a0ff92c 4533 return hpsa_cmd_free_and_done(h, c, cmd);
592a0ad5
WS
4534 }
4535 /* else, fall thru and resubmit down CISS path */
4536 }
4537 }
360c73bd 4538 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
080ef1cc
DB
4539 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4540 /*
4541 * If we get here, it means dma mapping failed. Try
4542 * again via scsi mid layer, which will then get
4543 * SCSI_MLQUEUE_HOST_BUSY.
592a0ad5
WS
4544 *
4545 * hpsa_ciss_submit will have already freed c
4546 * if it encountered a dma mapping failure.
080ef1cc
DB
4547 */
4548 cmd->result = DID_IMM_RETRY << 16;
4549 cmd->scsi_done(cmd);
4550 }
4551}
4552
574f05d3
SC
4553/* Running in struct Scsi_Host->host_lock less mode */
4554static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4555{
4556 struct ctlr_info *h;
4557 struct hpsa_scsi_dev_t *dev;
4558 unsigned char scsi3addr[8];
4559 struct CommandList *c;
4560 int rc = 0;
4561
4562 /* Get the ptr to our adapter structure out of cmd->host. */
4563 h = sdev_to_hba(cmd->device);
4564 dev = cmd->device->hostdata;
4565 if (!dev) {
4566 cmd->result = DID_NO_CONNECT << 16;
4567 cmd->scsi_done(cmd);
4568 return 0;
4569 }
4570 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4571
4572 if (unlikely(lockup_detected(h))) {
25163bd5 4573 cmd->result = DID_NO_CONNECT << 16;
574f05d3
SC
4574 cmd->scsi_done(cmd);
4575 return 0;
4576 }
4577 c = cmd_alloc(h);
bf43caf3 4578
407863cb 4579 if (unlikely(lockup_detected(h))) {
25163bd5 4580 cmd->result = DID_NO_CONNECT << 16;
407863cb
SC
4581 cmd_free(h, c);
4582 cmd->scsi_done(cmd);
4583 return 0;
4584 }
574f05d3 4585
407863cb
SC
4586 /*
4587 * Call alternate submit routine for I/O accelerated commands.
574f05d3
SC
4588 * Retries always go down the normal I/O path.
4589 */
4590 if (likely(cmd->retries == 0 &&
4591 cmd->request->cmd_type == REQ_TYPE_FS &&
4592 h->acciopath_status)) {
592a0ad5
WS
4593 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
4594 if (rc == 0)
4595 return 0;
4596 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
8a0ff92c 4597 cmd_free(h, c);
592a0ad5 4598 return SCSI_MLQUEUE_HOST_BUSY;
574f05d3
SC
4599 }
4600 }
4601 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4602}
4603
8ebc9248 4604static void hpsa_scan_complete(struct ctlr_info *h)
5f389360
SC
4605{
4606 unsigned long flags;
4607
8ebc9248
WS
4608 spin_lock_irqsave(&h->scan_lock, flags);
4609 h->scan_finished = 1;
4610 wake_up_all(&h->scan_wait_queue);
4611 spin_unlock_irqrestore(&h->scan_lock, flags);
5f389360
SC
4612}
4613
a08a8471
SC
4614static void hpsa_scan_start(struct Scsi_Host *sh)
4615{
4616 struct ctlr_info *h = shost_to_hba(sh);
4617 unsigned long flags;
4618
8ebc9248
WS
4619 /*
4620 * Don't let rescans be initiated on a controller known to be locked
4621 * up. If the controller locks up *during* a rescan, that thread is
4622 * probably hosed, but at least we can prevent new rescan threads from
4623 * piling up on a locked up controller.
4624 */
4625 if (unlikely(lockup_detected(h)))
4626 return hpsa_scan_complete(h);
5f389360 4627
a08a8471
SC
4628 /* wait until any scan already in progress is finished. */
4629 while (1) {
4630 spin_lock_irqsave(&h->scan_lock, flags);
4631 if (h->scan_finished)
4632 break;
4633 spin_unlock_irqrestore(&h->scan_lock, flags);
4634 wait_event(h->scan_wait_queue, h->scan_finished);
4635 /* Note: We don't need to worry about a race between this
4636 * thread and driver unload because the midlayer will
4637 * have incremented the reference count, so unload won't
4638 * happen if we're in here.
4639 */
4640 }
4641 h->scan_finished = 0; /* mark scan as in progress */
4642 spin_unlock_irqrestore(&h->scan_lock, flags);
4643
8ebc9248
WS
4644 if (unlikely(lockup_detected(h)))
4645 return hpsa_scan_complete(h);
5f389360 4646
a08a8471
SC
4647 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4648
8ebc9248 4649 hpsa_scan_complete(h);
a08a8471
SC
4650}
4651
7c0a0229
DB
4652static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4653{
03383736
DB
4654 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4655
4656 if (!logical_drive)
4657 return -ENODEV;
7c0a0229
DB
4658
4659 if (qdepth < 1)
4660 qdepth = 1;
03383736
DB
4661 else if (qdepth > logical_drive->queue_depth)
4662 qdepth = logical_drive->queue_depth;
4663
4664 return scsi_change_queue_depth(sdev, qdepth);
7c0a0229
DB
4665}
4666
a08a8471
SC
4667static int hpsa_scan_finished(struct Scsi_Host *sh,
4668 unsigned long elapsed_time)
4669{
4670 struct ctlr_info *h = shost_to_hba(sh);
4671 unsigned long flags;
4672 int finished;
4673
4674 spin_lock_irqsave(&h->scan_lock, flags);
4675 finished = h->scan_finished;
4676 spin_unlock_irqrestore(&h->scan_lock, flags);
4677 return finished;
4678}
4679
edd16368
SC
4680static void hpsa_unregister_scsi(struct ctlr_info *h)
4681{
4682 /* we are being forcibly unloaded, and may not refuse. */
4683 scsi_remove_host(h->scsi_host);
4684 scsi_host_put(h->scsi_host);
4685 h->scsi_host = NULL;
4686}
4687
4688static int hpsa_register_scsi(struct ctlr_info *h)
4689{
b705690d
SC
4690 struct Scsi_Host *sh;
4691 int error;
edd16368 4692
b705690d
SC
4693 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4694 if (sh == NULL)
4695 goto fail;
4696
4697 sh->io_port = 0;
4698 sh->n_io_port = 0;
4699 sh->this_id = -1;
4700 sh->max_channel = 3;
4701 sh->max_cmd_len = MAX_COMMAND_SIZE;
4702 sh->max_lun = HPSA_MAX_LUN;
4703 sh->max_id = HPSA_MAX_LUN;
41ce4c35 4704 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
03383736 4705 sh->cmd_per_lun = sh->can_queue;
b705690d
SC
4706 sh->sg_tablesize = h->maxsgentries;
4707 h->scsi_host = sh;
4708 sh->hostdata[0] = (unsigned long) h;
4709 sh->irq = h->intr[h->intr_mode];
4710 sh->unique_id = sh->irq;
4711 error = scsi_add_host(sh, &h->pdev->dev);
4712 if (error)
4713 goto fail_host_put;
4714 scsi_scan_host(sh);
4715 return 0;
4716
4717 fail_host_put:
4718 dev_err(&h->pdev->dev, "%s: scsi_add_host"
4719 " failed for controller %d\n", __func__, h->ctlr);
4720 scsi_host_put(sh);
4721 return error;
4722 fail:
4723 dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4724 " failed for controller %d\n", __func__, h->ctlr);
4725 return -ENOMEM;
edd16368
SC
4726}
4727
4728static int wait_for_device_to_become_ready(struct ctlr_info *h,
4729 unsigned char lunaddr[])
4730{
8919358e 4731 int rc;
edd16368
SC
4732 int count = 0;
4733 int waittime = 1; /* seconds */
4734 struct CommandList *c;
4735
45fcb86e 4736 c = cmd_alloc(h);
edd16368
SC
4737
4738 /* Send test unit ready until device ready, or give up. */
4739 while (count < HPSA_TUR_RETRY_LIMIT) {
4740
4741 /* Wait for a bit. do this first, because if we send
4742 * the TUR right away, the reset will just abort it.
4743 */
4744 msleep(1000 * waittime);
4745 count++;
8919358e 4746 rc = 0; /* Device ready. */
edd16368
SC
4747
4748 /* Increase wait time with each try, up to a point. */
4749 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4750 waittime = waittime * 2;
4751
a2dac136
SC
4752 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4753 (void) fill_cmd(c, TEST_UNIT_READY, h,
4754 NULL, 0, 0, lunaddr, TYPE_CMD);
25163bd5
WS
4755 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
4756 NO_TIMEOUT);
4757 if (rc)
4758 goto do_it_again;
edd16368
SC
4759 /* no unmap needed here because no data xfer. */
4760
4761 if (c->err_info->CommandStatus == CMD_SUCCESS)
4762 break;
4763
4764 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4765 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4766 (c->err_info->SenseInfo[2] == NO_SENSE ||
4767 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4768 break;
25163bd5 4769do_it_again:
edd16368
SC
4770 dev_warn(&h->pdev->dev, "waiting %d secs "
4771 "for device to become ready.\n", waittime);
4772 rc = 1; /* device not ready. */
4773 }
4774
4775 if (rc)
4776 dev_warn(&h->pdev->dev, "giving up on device.\n");
4777 else
4778 dev_warn(&h->pdev->dev, "device is ready.\n");
4779
45fcb86e 4780 cmd_free(h, c);
edd16368
SC
4781 return rc;
4782}
4783
4784/* Need at least one of these error handlers to keep ../scsi/hosts.c from
4785 * complaining. Doing a host- or bus-reset can't do anything good here.
4786 */
4787static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4788{
4789 int rc;
4790 struct ctlr_info *h;
4791 struct hpsa_scsi_dev_t *dev;
4792
4793 /* find the controller to which the command to be aborted was sent */
4794 h = sdev_to_hba(scsicmd->device);
4795 if (h == NULL) /* paranoia */
4796 return FAILED;
e345893b
DB
4797
4798 if (lockup_detected(h))
4799 return FAILED;
4800
edd16368
SC
4801 dev = scsicmd->device->hostdata;
4802 if (!dev) {
4803 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4804 "device lookup failed.\n");
4805 return FAILED;
4806 }
25163bd5
WS
4807
4808 /* if controller locked up, we can guarantee command won't complete */
4809 if (lockup_detected(h)) {
4810 dev_warn(&h->pdev->dev,
4811 "scsi %d:%d:%d:%d RESET FAILED, lockup detected\n",
4812 h->scsi_host->host_no, dev->bus, dev->target,
4813 dev->lun);
4814 return FAILED;
4815 }
4816
4817 /* this reset request might be the result of a lockup; check */
4818 if (detect_controller_lockup(h)) {
4819 dev_warn(&h->pdev->dev,
4820 "scsi %d:%d:%d:%d RESET FAILED, new lockup detected\n",
4821 h->scsi_host->host_no, dev->bus, dev->target,
4822 dev->lun);
4823 return FAILED;
4824 }
4825
4826 hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");
4827
edd16368 4828 /* send a reset to the SCSI LUN which the command was sent to */
25163bd5
WS
4829 rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
4830 DEFAULT_REPLY_QUEUE);
edd16368
SC
4831 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4832 return SUCCESS;
4833
25163bd5
WS
4834 dev_warn(&h->pdev->dev,
4835 "scsi %d:%d:%d:%d reset failed\n",
4836 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
edd16368
SC
4837 return FAILED;
4838}
4839
6cba3f19
SC
4840static void swizzle_abort_tag(u8 *tag)
4841{
4842 u8 original_tag[8];
4843
4844 memcpy(original_tag, tag, 8);
4845 tag[0] = original_tag[3];
4846 tag[1] = original_tag[2];
4847 tag[2] = original_tag[1];
4848 tag[3] = original_tag[0];
4849 tag[4] = original_tag[7];
4850 tag[5] = original_tag[6];
4851 tag[6] = original_tag[5];
4852 tag[7] = original_tag[4];
4853}
4854
17eb87d2 4855static void hpsa_get_tag(struct ctlr_info *h,
2b08b3e9 4856 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
17eb87d2 4857{
2b08b3e9 4858 u64 tag;
17eb87d2
ST
4859 if (c->cmd_type == CMD_IOACCEL1) {
4860 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4861 &h->ioaccel_cmd_pool[c->cmdindex];
2b08b3e9
DB
4862 tag = le64_to_cpu(cm1->tag);
4863 *tagupper = cpu_to_le32(tag >> 32);
4864 *taglower = cpu_to_le32(tag);
54b6e9e9
ST
4865 return;
4866 }
4867 if (c->cmd_type == CMD_IOACCEL2) {
4868 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4869 &h->ioaccel2_cmd_pool[c->cmdindex];
dd0e19f3
ST
4870 /* upper tag not used in ioaccel2 mode */
4871 memset(tagupper, 0, sizeof(*tagupper));
4872 *taglower = cm2->Tag;
54b6e9e9 4873 return;
17eb87d2 4874 }
2b08b3e9
DB
4875 tag = le64_to_cpu(c->Header.tag);
4876 *tagupper = cpu_to_le32(tag >> 32);
4877 *taglower = cpu_to_le32(tag);
17eb87d2
ST
4878}
4879
75167d2c 4880static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
9b5c48c2 4881 struct CommandList *abort, int reply_queue)
75167d2c
SC
4882{
4883 int rc = IO_OK;
4884 struct CommandList *c;
4885 struct ErrorInfo *ei;
2b08b3e9 4886 __le32 tagupper, taglower;
75167d2c 4887
45fcb86e 4888 c = cmd_alloc(h);
75167d2c 4889
a2dac136 4890 /* fill_cmd can't fail here, no buffer to map */
9b5c48c2 4891 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
a2dac136 4892 0, 0, scsi3addr, TYPE_MSG);
9b5c48c2 4893 if (h->needs_abort_tags_swizzled)
6cba3f19 4894 swizzle_abort_tag(&c->Request.CDB[4]);
25163bd5 4895 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
17eb87d2 4896 hpsa_get_tag(h, abort, &taglower, &tagupper);
25163bd5 4897 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
17eb87d2 4898 __func__, tagupper, taglower);
75167d2c
SC
4899 /* no unmap needed here because no data xfer. */
4900
4901 ei = c->err_info;
4902 switch (ei->CommandStatus) {
4903 case CMD_SUCCESS:
4904 break;
9437ac43
SC
4905 case CMD_TMF_STATUS:
4906 rc = hpsa_evaluate_tmf_status(h, c);
4907 break;
75167d2c
SC
4908 case CMD_UNABORTABLE: /* Very common, don't make noise. */
4909 rc = -1;
4910 break;
4911 default:
4912 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
17eb87d2 4913 __func__, tagupper, taglower);
d1e8beac 4914 hpsa_scsi_interpret_error(h, c);
75167d2c
SC
4915 rc = -1;
4916 break;
4917 }
45fcb86e 4918 cmd_free(h, c);
dd0e19f3
ST
4919 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4920 __func__, tagupper, taglower);
75167d2c
SC
4921 return rc;
4922}
4923
8be986cc
SC
4924static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
4925 struct CommandList *command_to_abort, int reply_queue)
4926{
4927 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4928 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
4929 struct io_accel2_cmd *c2a =
4930 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
4931 struct scsi_cmnd *scmd =
4932 (struct scsi_cmnd *) command_to_abort->scsi_cmd;
4933 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
4934
4935 /*
4936 * We're overlaying struct hpsa_tmf_struct on top of something which
4937 * was allocated as a struct io_accel2_cmd, so we better be sure it
4938 * actually fits, and doesn't overrun the error info space.
4939 */
4940 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
4941 sizeof(struct io_accel2_cmd));
4942 BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
4943 offsetof(struct hpsa_tmf_struct, error_len) +
4944 sizeof(ac->error_len));
4945
4946 c->cmd_type = IOACCEL2_TMF;
4947 /* Adjust the DMA address to point to the accelerated command buffer */
4948 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4949 (c->cmdindex * sizeof(struct io_accel2_cmd));
4950 BUG_ON(c->busaddr & 0x0000007F);
4951
4952 memset(ac, 0, sizeof(*c2)); /* yes this is correct */
4953 ac->iu_type = IOACCEL2_IU_TMF_TYPE;
4954 ac->reply_queue = reply_queue;
4955 ac->tmf = IOACCEL2_TMF_ABORT;
4956 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
4957 memset(ac->lun_id, 0, sizeof(ac->lun_id));
4958 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4959 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
4960 ac->error_ptr = cpu_to_le64(c->busaddr +
4961 offsetof(struct io_accel2_cmd, error_data));
4962 ac->error_len = cpu_to_le32(sizeof(c2->error_data));
4963}
4964
54b6e9e9
ST
4965/* ioaccel2 path firmware cannot handle abort task requests.
4966 * Change abort requests to physical target reset, and send to the
4967 * address of the physical disk used for the ioaccel 2 command.
4968 * Return 0 on success (IO_OK)
4969 * -1 on failure
4970 */
4971
4972static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
25163bd5 4973 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
54b6e9e9
ST
4974{
4975 int rc = IO_OK;
4976 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4977 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4978 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4979 unsigned char *psa = &phys_scsi3addr[0];
4980
4981 /* Get a pointer to the hpsa logical device. */
7fa3030c 4982 scmd = abort->scsi_cmd;
54b6e9e9
ST
4983 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4984 if (dev == NULL) {
4985 dev_warn(&h->pdev->dev,
4986 "Cannot abort: no device pointer for command.\n");
4987 return -1; /* not abortable */
4988 }
4989
2ba8bfc8
SC
4990 if (h->raid_offload_debug > 0)
4991 dev_info(&h->pdev->dev,
0d96ef5f 4992 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2ba8bfc8 4993 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
0d96ef5f 4994 "Reset as abort",
2ba8bfc8
SC
4995 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4996 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4997
54b6e9e9
ST
4998 if (!dev->offload_enabled) {
4999 dev_warn(&h->pdev->dev,
5000 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5001 return -1; /* not abortable */
5002 }
5003
5004 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5005 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5006 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5007 return -1; /* not abortable */
5008 }
5009
5010 /* send the reset */
2ba8bfc8
SC
5011 if (h->raid_offload_debug > 0)
5012 dev_info(&h->pdev->dev,
5013 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5014 psa[0], psa[1], psa[2], psa[3],
5015 psa[4], psa[5], psa[6], psa[7]);
25163bd5 5016 rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
54b6e9e9
ST
5017 if (rc != 0) {
5018 dev_warn(&h->pdev->dev,
5019 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5020 psa[0], psa[1], psa[2], psa[3],
5021 psa[4], psa[5], psa[6], psa[7]);
5022 return rc; /* failed to reset */
5023 }
5024
5025 /* wait for device to recover */
5026 if (wait_for_device_to_become_ready(h, psa) != 0) {
5027 dev_warn(&h->pdev->dev,
5028 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5029 psa[0], psa[1], psa[2], psa[3],
5030 psa[4], psa[5], psa[6], psa[7]);
5031 return -1; /* failed to recover */
5032 }
5033
5034 /* device recovered */
5035 dev_info(&h->pdev->dev,
5036 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5037 psa[0], psa[1], psa[2], psa[3],
5038 psa[4], psa[5], psa[6], psa[7]);
5039
5040 return rc; /* success */
5041}
5042
8be986cc
SC
5043static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5044 struct CommandList *abort, int reply_queue)
5045{
5046 int rc = IO_OK;
5047 struct CommandList *c;
5048 __le32 taglower, tagupper;
5049 struct hpsa_scsi_dev_t *dev;
5050 struct io_accel2_cmd *c2;
5051
5052 dev = abort->scsi_cmd->device->hostdata;
5053 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5054 return -1;
5055
5056 c = cmd_alloc(h);
5057 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5058 c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5059 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5060 hpsa_get_tag(h, abort, &taglower, &tagupper);
5061 dev_dbg(&h->pdev->dev,
5062 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5063 __func__, tagupper, taglower);
5064 /* no unmap needed here because no data xfer. */
5065
5066 dev_dbg(&h->pdev->dev,
5067 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5068 __func__, tagupper, taglower, c2->error_data.serv_response);
5069 switch (c2->error_data.serv_response) {
5070 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5071 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5072 rc = 0;
5073 break;
5074 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5075 case IOACCEL2_SERV_RESPONSE_FAILURE:
5076 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5077 rc = -1;
5078 break;
5079 default:
5080 dev_warn(&h->pdev->dev,
5081 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5082 __func__, tagupper, taglower,
5083 c2->error_data.serv_response);
5084 rc = -1;
5085 }
5086 cmd_free(h, c);
5087 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5088 tagupper, taglower);
5089 return rc;
5090}
5091
6cba3f19 5092static int hpsa_send_abort_both_ways(struct ctlr_info *h,
25163bd5 5093 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
6cba3f19 5094{
8be986cc
SC
5095 /*
5096 * ioccelerator mode 2 commands should be aborted via the
54b6e9e9 5097 * accelerated path, since RAID path is unaware of these commands,
8be986cc
SC
5098 * but not all underlying firmware can handle abort TMF.
5099 * Change abort to physical device reset when abort TMF is unsupported.
54b6e9e9 5100 */
8be986cc
SC
5101 if (abort->cmd_type == CMD_IOACCEL2) {
5102 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5103 return hpsa_send_abort_ioaccel2(h, abort,
5104 reply_queue);
5105 else
5106 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
25163bd5 5107 abort, reply_queue);
8be986cc 5108 }
9b5c48c2 5109 return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
25163bd5 5110}
54b6e9e9 5111
25163bd5
WS
5112/* Find out which reply queue a command was meant to return on */
5113static int hpsa_extract_reply_queue(struct ctlr_info *h,
5114 struct CommandList *c)
5115{
5116 if (c->cmd_type == CMD_IOACCEL2)
5117 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5118 return c->Header.ReplyQueue;
6cba3f19
SC
5119}
5120
9b5c48c2
SC
5121/*
5122 * Limit concurrency of abort commands to prevent
5123 * over-subscription of commands
5124 */
5125static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5126{
5127#define ABORT_CMD_WAIT_MSECS 5000
5128 return !wait_event_timeout(h->abort_cmd_wait_queue,
5129 atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5130 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5131}
5132
75167d2c
SC
5133/* Send an abort for the specified command.
5134 * If the device and controller support it,
5135 * send a task abort request.
5136 */
5137static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5138{
5139
5140 int i, rc;
5141 struct ctlr_info *h;
5142 struct hpsa_scsi_dev_t *dev;
5143 struct CommandList *abort; /* pointer to command to be aborted */
75167d2c
SC
5144 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
5145 char msg[256]; /* For debug messaging. */
5146 int ml = 0;
2b08b3e9 5147 __le32 tagupper, taglower;
25163bd5
WS
5148 int refcount, reply_queue;
5149
5150 if (sc == NULL)
5151 return FAILED;
75167d2c 5152
9b5c48c2
SC
5153 if (sc->device == NULL)
5154 return FAILED;
5155
75167d2c
SC
5156 /* Find the controller of the command to be aborted */
5157 h = sdev_to_hba(sc->device);
9b5c48c2 5158 if (h == NULL)
75167d2c
SC
5159 return FAILED;
5160
25163bd5
WS
5161 /* Find the device of the command to be aborted */
5162 dev = sc->device->hostdata;
5163 if (!dev) {
5164 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5165 msg);
e345893b 5166 return FAILED;
25163bd5
WS
5167 }
5168
5169 /* If controller locked up, we can guarantee command won't complete */
5170 if (lockup_detected(h)) {
5171 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5172 "ABORT FAILED, lockup detected");
5173 return FAILED;
5174 }
5175
5176 /* This is a good time to check if controller lockup has occurred */
5177 if (detect_controller_lockup(h)) {
5178 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5179 "ABORT FAILED, new lockup detected");
5180 return FAILED;
5181 }
e345893b 5182
75167d2c
SC
5183 /* Check that controller supports some kind of task abort */
5184 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5185 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5186 return FAILED;
5187
5188 memset(msg, 0, sizeof(msg));
4b761557 5189 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
75167d2c 5190 h->scsi_host->host_no, sc->device->channel,
0d96ef5f 5191 sc->device->id, sc->device->lun,
4b761557 5192 "Aborting command", sc);
75167d2c 5193
75167d2c
SC
5194 /* Get SCSI command to be aborted */
5195 abort = (struct CommandList *) sc->host_scribble;
5196 if (abort == NULL) {
281a7fd0
WS
5197 /* This can happen if the command already completed. */
5198 return SUCCESS;
5199 }
5200 refcount = atomic_inc_return(&abort->refcount);
5201 if (refcount == 1) { /* Command is done already. */
5202 cmd_free(h, abort);
5203 return SUCCESS;
75167d2c 5204 }
9b5c48c2
SC
5205
5206 /* Don't bother trying the abort if we know it won't work. */
5207 if (abort->cmd_type != CMD_IOACCEL2 &&
5208 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5209 cmd_free(h, abort);
5210 return FAILED;
5211 }
5212
17eb87d2 5213 hpsa_get_tag(h, abort, &taglower, &tagupper);
25163bd5 5214 reply_queue = hpsa_extract_reply_queue(h, abort);
17eb87d2 5215 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
7fa3030c 5216 as = abort->scsi_cmd;
75167d2c 5217 if (as != NULL)
4b761557
RE
5218 ml += sprintf(msg+ml,
5219 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5220 as->cmd_len, as->cmnd[0], as->cmnd[1],
5221 as->serial_number);
5222 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
0d96ef5f 5223 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
4b761557 5224
75167d2c
SC
5225 /*
5226 * Command is in flight, or possibly already completed
5227 * by the firmware (but not to the scsi mid layer) but we can't
5228 * distinguish which. Send the abort down.
5229 */
9b5c48c2
SC
5230 if (wait_for_available_abort_cmd(h)) {
5231 dev_warn(&h->pdev->dev,
4b761557
RE
5232 "%s FAILED, timeout waiting for an abort command to become available.\n",
5233 msg);
9b5c48c2
SC
5234 cmd_free(h, abort);
5235 return FAILED;
5236 }
25163bd5 5237 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
9b5c48c2
SC
5238 atomic_inc(&h->abort_cmds_available);
5239 wake_up_all(&h->abort_cmd_wait_queue);
75167d2c 5240 if (rc != 0) {
4b761557 5241 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
0d96ef5f 5242 hpsa_show_dev_msg(KERN_WARNING, h, dev,
4b761557 5243 "FAILED to abort command");
281a7fd0 5244 cmd_free(h, abort);
75167d2c
SC
5245 return FAILED;
5246 }
4b761557 5247 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
75167d2c 5248
4b761557
RE
5249 /*
5250 * If the abort(s) above completed and actually aborted the
75167d2c
SC
5251 * command, then the command to be aborted should already be
5252 * completed. If not, wait around a bit more to see if they
5253 * manage to complete normally.
5254 */
5255#define ABORT_COMPLETE_WAIT_SECS 30
5256 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
281a7fd0
WS
5257 refcount = atomic_read(&abort->refcount);
5258 if (refcount < 2) {
5259 cmd_free(h, abort);
75167d2c 5260 return SUCCESS;
281a7fd0
WS
5261 } else {
5262 msleep(100);
5263 }
75167d2c
SC
5264 }
5265 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
5266 msg, ABORT_COMPLETE_WAIT_SECS);
281a7fd0 5267 cmd_free(h, abort);
75167d2c
SC
5268 return FAILED;
5269}
5270
edd16368
SC
5271/*
5272 * For operations that cannot sleep, a command block is allocated at init,
5273 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5274 * which ones are free or in use. Lock must be held when calling this.
5275 * cmd_free() is the complement.
bf43caf3
RE
5276 * This function never gives up and returns NULL. If it hangs,
5277 * another thread must call cmd_free() to free some tags.
edd16368 5278 */
281a7fd0 5279
edd16368
SC
5280static struct CommandList *cmd_alloc(struct ctlr_info *h)
5281{
5282 struct CommandList *c;
360c73bd 5283 int refcount, i;
33811026 5284 unsigned long offset;
4c413128 5285
33811026
RE
5286 /*
5287 * There is some *extremely* small but non-zero chance that that
4c413128
SC
5288 * multiple threads could get in here, and one thread could
5289 * be scanning through the list of bits looking for a free
5290 * one, but the free ones are always behind him, and other
5291 * threads sneak in behind him and eat them before he can
5292 * get to them, so that while there is always a free one, a
5293 * very unlucky thread might be starved anyway, never able to
5294 * beat the other threads. In reality, this happens so
5295 * infrequently as to be indistinguishable from never.
5296 */
edd16368 5297
33811026 5298 offset = h->last_allocation; /* benignly racy */
281a7fd0
WS
5299 for (;;) {
5300 i = find_next_zero_bit(h->cmd_pool_bits, h->nr_cmds, offset);
5301 if (unlikely(i == h->nr_cmds)) {
5302 offset = 0;
5303 continue;
5304 }
5305 c = h->cmd_pool + i;
5306 refcount = atomic_inc_return(&c->refcount);
5307 if (unlikely(refcount > 1)) {
5308 cmd_free(h, c); /* already in use */
5309 offset = (i + 1) % h->nr_cmds;
5310 continue;
5311 }
5312 set_bit(i & (BITS_PER_LONG - 1),
5313 h->cmd_pool_bits + (i / BITS_PER_LONG));
5314 break; /* it's ours now. */
5315 }
33811026 5316 h->last_allocation = i; /* benignly racy */
360c73bd 5317 hpsa_cmd_partial_init(h, i, c);
edd16368
SC
5318 return c;
5319}
5320
edd16368
SC
5321static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5322{
281a7fd0
WS
5323 if (atomic_dec_and_test(&c->refcount)) {
5324 int i;
edd16368 5325
281a7fd0
WS
5326 i = c - h->cmd_pool;
5327 clear_bit(i & (BITS_PER_LONG - 1),
5328 h->cmd_pool_bits + (i / BITS_PER_LONG));
5329 }
edd16368
SC
5330}
5331
edd16368
SC
5332#ifdef CONFIG_COMPAT
5333
42a91641
DB
5334static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5335 void __user *arg)
edd16368
SC
5336{
5337 IOCTL32_Command_struct __user *arg32 =
5338 (IOCTL32_Command_struct __user *) arg;
5339 IOCTL_Command_struct arg64;
5340 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5341 int err;
5342 u32 cp;
5343
938abd84 5344 memset(&arg64, 0, sizeof(arg64));
edd16368
SC
5345 err = 0;
5346 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5347 sizeof(arg64.LUN_info));
5348 err |= copy_from_user(&arg64.Request, &arg32->Request,
5349 sizeof(arg64.Request));
5350 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5351 sizeof(arg64.error_info));
5352 err |= get_user(arg64.buf_size, &arg32->buf_size);
5353 err |= get_user(cp, &arg32->buf);
5354 arg64.buf = compat_ptr(cp);
5355 err |= copy_to_user(p, &arg64, sizeof(arg64));
5356
5357 if (err)
5358 return -EFAULT;
5359
42a91641 5360 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
edd16368
SC
5361 if (err)
5362 return err;
5363 err |= copy_in_user(&arg32->error_info, &p->error_info,
5364 sizeof(arg32->error_info));
5365 if (err)
5366 return -EFAULT;
5367 return err;
5368}
5369
5370static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
42a91641 5371 int cmd, void __user *arg)
edd16368
SC
5372{
5373 BIG_IOCTL32_Command_struct __user *arg32 =
5374 (BIG_IOCTL32_Command_struct __user *) arg;
5375 BIG_IOCTL_Command_struct arg64;
5376 BIG_IOCTL_Command_struct __user *p =
5377 compat_alloc_user_space(sizeof(arg64));
5378 int err;
5379 u32 cp;
5380
938abd84 5381 memset(&arg64, 0, sizeof(arg64));
edd16368
SC
5382 err = 0;
5383 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5384 sizeof(arg64.LUN_info));
5385 err |= copy_from_user(&arg64.Request, &arg32->Request,
5386 sizeof(arg64.Request));
5387 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5388 sizeof(arg64.error_info));
5389 err |= get_user(arg64.buf_size, &arg32->buf_size);
5390 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5391 err |= get_user(cp, &arg32->buf);
5392 arg64.buf = compat_ptr(cp);
5393 err |= copy_to_user(p, &arg64, sizeof(arg64));
5394
5395 if (err)
5396 return -EFAULT;
5397
42a91641 5398 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
edd16368
SC
5399 if (err)
5400 return err;
5401 err |= copy_in_user(&arg32->error_info, &p->error_info,
5402 sizeof(arg32->error_info));
5403 if (err)
5404 return -EFAULT;
5405 return err;
5406}
71fe75a7 5407
42a91641 5408static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
71fe75a7
SC
5409{
5410 switch (cmd) {
5411 case CCISS_GETPCIINFO:
5412 case CCISS_GETINTINFO:
5413 case CCISS_SETINTINFO:
5414 case CCISS_GETNODENAME:
5415 case CCISS_SETNODENAME:
5416 case CCISS_GETHEARTBEAT:
5417 case CCISS_GETBUSTYPES:
5418 case CCISS_GETFIRMVER:
5419 case CCISS_GETDRIVVER:
5420 case CCISS_REVALIDVOLS:
5421 case CCISS_DEREGDISK:
5422 case CCISS_REGNEWDISK:
5423 case CCISS_REGNEWD:
5424 case CCISS_RESCANDISK:
5425 case CCISS_GETLUNINFO:
5426 return hpsa_ioctl(dev, cmd, arg);
5427
5428 case CCISS_PASSTHRU32:
5429 return hpsa_ioctl32_passthru(dev, cmd, arg);
5430 case CCISS_BIG_PASSTHRU32:
5431 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5432
5433 default:
5434 return -ENOIOCTLCMD;
5435 }
5436}
edd16368
SC
5437#endif
5438
5439static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5440{
5441 struct hpsa_pci_info pciinfo;
5442
5443 if (!argp)
5444 return -EINVAL;
5445 pciinfo.domain = pci_domain_nr(h->pdev->bus);
5446 pciinfo.bus = h->pdev->bus->number;
5447 pciinfo.dev_fn = h->pdev->devfn;
5448 pciinfo.board_id = h->board_id;
5449 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5450 return -EFAULT;
5451 return 0;
5452}
5453
5454static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5455{
5456 DriverVer_type DriverVer;
5457 unsigned char vmaj, vmin, vsubmin;
5458 int rc;
5459
5460 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5461 &vmaj, &vmin, &vsubmin);
5462 if (rc != 3) {
5463 dev_info(&h->pdev->dev, "driver version string '%s' "
5464 "unrecognized.", HPSA_DRIVER_VERSION);
5465 vmaj = 0;
5466 vmin = 0;
5467 vsubmin = 0;
5468 }
5469 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
5470 if (!argp)
5471 return -EINVAL;
5472 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
5473 return -EFAULT;
5474 return 0;
5475}
5476
5477static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5478{
5479 IOCTL_Command_struct iocommand;
5480 struct CommandList *c;
5481 char *buff = NULL;
50a0decf 5482 u64 temp64;
c1f63c8f 5483 int rc = 0;
edd16368
SC
5484
5485 if (!argp)
5486 return -EINVAL;
5487 if (!capable(CAP_SYS_RAWIO))
5488 return -EPERM;
5489 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
5490 return -EFAULT;
5491 if ((iocommand.buf_size < 1) &&
5492 (iocommand.Request.Type.Direction != XFER_NONE)) {
5493 return -EINVAL;
5494 }
5495 if (iocommand.buf_size > 0) {
5496 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
5497 if (buff == NULL)
2dd02d74 5498 return -ENOMEM;
9233fb10 5499 if (iocommand.Request.Type.Direction & XFER_WRITE) {
b03a7771
SC
5500 /* Copy the data into the buffer we created */
5501 if (copy_from_user(buff, iocommand.buf,
5502 iocommand.buf_size)) {
c1f63c8f
SC
5503 rc = -EFAULT;
5504 goto out_kfree;
b03a7771
SC
5505 }
5506 } else {
5507 memset(buff, 0, iocommand.buf_size);
edd16368 5508 }
b03a7771 5509 }
45fcb86e 5510 c = cmd_alloc(h);
bf43caf3 5511
edd16368
SC
5512 /* Fill in the command type */
5513 c->cmd_type = CMD_IOCTL_PEND;
5514 /* Fill in Command Header */
5515 c->Header.ReplyQueue = 0; /* unused in simple mode */
5516 if (iocommand.buf_size > 0) { /* buffer to fill */
5517 c->Header.SGList = 1;
50a0decf 5518 c->Header.SGTotal = cpu_to_le16(1);
edd16368
SC
5519 } else { /* no buffers to fill */
5520 c->Header.SGList = 0;
50a0decf 5521 c->Header.SGTotal = cpu_to_le16(0);
edd16368
SC
5522 }
5523 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
edd16368
SC
5524
5525 /* Fill in Request block */
5526 memcpy(&c->Request, &iocommand.Request,
5527 sizeof(c->Request));
5528
5529 /* Fill in the scatter gather information */
5530 if (iocommand.buf_size > 0) {
50a0decf 5531 temp64 = pci_map_single(h->pdev, buff,
edd16368 5532 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
50a0decf
SC
5533 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
5534 c->SG[0].Addr = cpu_to_le64(0);
5535 c->SG[0].Len = cpu_to_le32(0);
bcc48ffa
SC
5536 rc = -ENOMEM;
5537 goto out;
5538 }
50a0decf
SC
5539 c->SG[0].Addr = cpu_to_le64(temp64);
5540 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
5541 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
edd16368 5542 }
25163bd5 5543 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
c2dd32e0
SC
5544 if (iocommand.buf_size > 0)
5545 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
edd16368 5546 check_ioctl_unit_attention(h, c);
25163bd5
WS
5547 if (rc) {
5548 rc = -EIO;
5549 goto out;
5550 }
edd16368
SC
5551
5552 /* Copy the error information out */
5553 memcpy(&iocommand.error_info, c->err_info,
5554 sizeof(iocommand.error_info));
5555 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
c1f63c8f
SC
5556 rc = -EFAULT;
5557 goto out;
edd16368 5558 }
9233fb10 5559 if ((iocommand.Request.Type.Direction & XFER_READ) &&
b03a7771 5560 iocommand.buf_size > 0) {
edd16368
SC
5561 /* Copy the data out of the buffer we created */
5562 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
c1f63c8f
SC
5563 rc = -EFAULT;
5564 goto out;
edd16368
SC
5565 }
5566 }
c1f63c8f 5567out:
45fcb86e 5568 cmd_free(h, c);
c1f63c8f
SC
5569out_kfree:
5570 kfree(buff);
5571 return rc;
edd16368
SC
5572}
5573
5574static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5575{
5576 BIG_IOCTL_Command_struct *ioc;
5577 struct CommandList *c;
5578 unsigned char **buff = NULL;
5579 int *buff_size = NULL;
50a0decf 5580 u64 temp64;
edd16368
SC
5581 BYTE sg_used = 0;
5582 int status = 0;
01a02ffc
SC
5583 u32 left;
5584 u32 sz;
edd16368
SC
5585 BYTE __user *data_ptr;
5586
5587 if (!argp)
5588 return -EINVAL;
5589 if (!capable(CAP_SYS_RAWIO))
5590 return -EPERM;
5591 ioc = (BIG_IOCTL_Command_struct *)
5592 kmalloc(sizeof(*ioc), GFP_KERNEL);
5593 if (!ioc) {
5594 status = -ENOMEM;
5595 goto cleanup1;
5596 }
5597 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5598 status = -EFAULT;
5599 goto cleanup1;
5600 }
5601 if ((ioc->buf_size < 1) &&
5602 (ioc->Request.Type.Direction != XFER_NONE)) {
5603 status = -EINVAL;
5604 goto cleanup1;
5605 }
5606 /* Check kmalloc limits using all SGs */
5607 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5608 status = -EINVAL;
5609 goto cleanup1;
5610 }
d66ae08b 5611 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
edd16368
SC
5612 status = -EINVAL;
5613 goto cleanup1;
5614 }
d66ae08b 5615 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
edd16368
SC
5616 if (!buff) {
5617 status = -ENOMEM;
5618 goto cleanup1;
5619 }
d66ae08b 5620 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
edd16368
SC
5621 if (!buff_size) {
5622 status = -ENOMEM;
5623 goto cleanup1;
5624 }
5625 left = ioc->buf_size;
5626 data_ptr = ioc->buf;
5627 while (left) {
5628 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
5629 buff_size[sg_used] = sz;
5630 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
5631 if (buff[sg_used] == NULL) {
5632 status = -ENOMEM;
5633 goto cleanup1;
5634 }
9233fb10 5635 if (ioc->Request.Type.Direction & XFER_WRITE) {
edd16368 5636 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
0758f4f7 5637 status = -EFAULT;
edd16368
SC
5638 goto cleanup1;
5639 }
5640 } else
5641 memset(buff[sg_used], 0, sz);
5642 left -= sz;
5643 data_ptr += sz;
5644 sg_used++;
5645 }
45fcb86e 5646 c = cmd_alloc(h);
bf43caf3 5647
edd16368
SC
5648 c->cmd_type = CMD_IOCTL_PEND;
5649 c->Header.ReplyQueue = 0;
50a0decf
SC
5650 c->Header.SGList = (u8) sg_used;
5651 c->Header.SGTotal = cpu_to_le16(sg_used);
edd16368 5652 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
edd16368
SC
5653 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5654 if (ioc->buf_size > 0) {
5655 int i;
5656 for (i = 0; i < sg_used; i++) {
50a0decf 5657 temp64 = pci_map_single(h->pdev, buff[i],
edd16368 5658 buff_size[i], PCI_DMA_BIDIRECTIONAL);
50a0decf
SC
5659 if (dma_mapping_error(&h->pdev->dev,
5660 (dma_addr_t) temp64)) {
5661 c->SG[i].Addr = cpu_to_le64(0);
5662 c->SG[i].Len = cpu_to_le32(0);
bcc48ffa
SC
5663 hpsa_pci_unmap(h->pdev, c, i,
5664 PCI_DMA_BIDIRECTIONAL);
5665 status = -ENOMEM;
e2d4a1f6 5666 goto cleanup0;
bcc48ffa 5667 }
50a0decf
SC
5668 c->SG[i].Addr = cpu_to_le64(temp64);
5669 c->SG[i].Len = cpu_to_le32(buff_size[i]);
5670 c->SG[i].Ext = cpu_to_le32(0);
edd16368 5671 }
50a0decf 5672 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
edd16368 5673 }
25163bd5 5674 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
b03a7771
SC
5675 if (sg_used)
5676 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
edd16368 5677 check_ioctl_unit_attention(h, c);
25163bd5
WS
5678 if (status) {
5679 status = -EIO;
5680 goto cleanup0;
5681 }
5682
edd16368
SC
5683 /* Copy the error information out */
5684 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5685 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
edd16368 5686 status = -EFAULT;
e2d4a1f6 5687 goto cleanup0;
edd16368 5688 }
9233fb10 5689 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
2b08b3e9
DB
5690 int i;
5691
edd16368
SC
5692 /* Copy the data out of the buffer we created */
5693 BYTE __user *ptr = ioc->buf;
5694 for (i = 0; i < sg_used; i++) {
5695 if (copy_to_user(ptr, buff[i], buff_size[i])) {
edd16368 5696 status = -EFAULT;
e2d4a1f6 5697 goto cleanup0;
edd16368
SC
5698 }
5699 ptr += buff_size[i];
5700 }
5701 }
edd16368 5702 status = 0;
e2d4a1f6 5703cleanup0:
45fcb86e 5704 cmd_free(h, c);
edd16368
SC
5705cleanup1:
5706 if (buff) {
2b08b3e9
DB
5707 int i;
5708
edd16368
SC
5709 for (i = 0; i < sg_used; i++)
5710 kfree(buff[i]);
5711 kfree(buff);
5712 }
5713 kfree(buff_size);
5714 kfree(ioc);
5715 return status;
5716}
5717
5718static void check_ioctl_unit_attention(struct ctlr_info *h,
5719 struct CommandList *c)
5720{
5721 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5722 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5723 (void) check_for_unit_attention(h, c);
5724}
0390f0c0 5725
edd16368
SC
5726/*
5727 * ioctl
5728 */
42a91641 5729static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
edd16368
SC
5730{
5731 struct ctlr_info *h;
5732 void __user *argp = (void __user *)arg;
0390f0c0 5733 int rc;
edd16368
SC
5734
5735 h = sdev_to_hba(dev);
5736
5737 switch (cmd) {
5738 case CCISS_DEREGDISK:
5739 case CCISS_REGNEWDISK:
5740 case CCISS_REGNEWD:
a08a8471 5741 hpsa_scan_start(h->scsi_host);
edd16368
SC
5742 return 0;
5743 case CCISS_GETPCIINFO:
5744 return hpsa_getpciinfo_ioctl(h, argp);
5745 case CCISS_GETDRIVVER:
5746 return hpsa_getdrivver_ioctl(h, argp);
5747 case CCISS_PASSTHRU:
34f0c627 5748 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
0390f0c0
SC
5749 return -EAGAIN;
5750 rc = hpsa_passthru_ioctl(h, argp);
34f0c627 5751 atomic_inc(&h->passthru_cmds_avail);
0390f0c0 5752 return rc;
edd16368 5753 case CCISS_BIG_PASSTHRU:
34f0c627 5754 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
0390f0c0
SC
5755 return -EAGAIN;
5756 rc = hpsa_big_passthru_ioctl(h, argp);
34f0c627 5757 atomic_inc(&h->passthru_cmds_avail);
0390f0c0 5758 return rc;
edd16368
SC
5759 default:
5760 return -ENOTTY;
5761 }
5762}
5763
bf43caf3 5764static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6f039790 5765 u8 reset_type)
64670ac8
SC
5766{
5767 struct CommandList *c;
5768
5769 c = cmd_alloc(h);
bf43caf3 5770
a2dac136
SC
5771 /* fill_cmd can't fail here, no data buffer to map */
5772 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
64670ac8
SC
5773 RAID_CTLR_LUNID, TYPE_MSG);
5774 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5775 c->waiting = NULL;
5776 enqueue_cmd_and_start_io(h, c);
5777 /* Don't wait for completion, the reset won't complete. Don't free
5778 * the command either. This is the last command we will send before
5779 * re-initializing everything, so it doesn't matter and won't leak.
5780 */
bf43caf3 5781 return;
64670ac8
SC
5782}
5783
a2dac136 5784static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
b7bb24eb 5785 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
edd16368
SC
5786 int cmd_type)
5787{
5788 int pci_dir = XFER_NONE;
9b5c48c2 5789 u64 tag; /* for commands to be aborted */
edd16368
SC
5790
5791 c->cmd_type = CMD_IOCTL_PEND;
5792 c->Header.ReplyQueue = 0;
5793 if (buff != NULL && size > 0) {
5794 c->Header.SGList = 1;
50a0decf 5795 c->Header.SGTotal = cpu_to_le16(1);
edd16368
SC
5796 } else {
5797 c->Header.SGList = 0;
50a0decf 5798 c->Header.SGTotal = cpu_to_le16(0);
edd16368 5799 }
edd16368
SC
5800 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5801
edd16368
SC
5802 if (cmd_type == TYPE_CMD) {
5803 switch (cmd) {
5804 case HPSA_INQUIRY:
5805 /* are we trying to read a vital product page */
b7bb24eb 5806 if (page_code & VPD_PAGE) {
edd16368 5807 c->Request.CDB[1] = 0x01;
b7bb24eb 5808 c->Request.CDB[2] = (page_code & 0xff);
edd16368
SC
5809 }
5810 c->Request.CDBLen = 6;
a505b86f
SC
5811 c->Request.type_attr_dir =
5812 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
edd16368
SC
5813 c->Request.Timeout = 0;
5814 c->Request.CDB[0] = HPSA_INQUIRY;
5815 c->Request.CDB[4] = size & 0xFF;
5816 break;
5817 case HPSA_REPORT_LOG:
5818 case HPSA_REPORT_PHYS:
5819 /* Talking to controller so It's a physical command
5820 mode = 00 target = 0. Nothing to write.
5821 */
5822 c->Request.CDBLen = 12;
a505b86f
SC
5823 c->Request.type_attr_dir =
5824 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
edd16368
SC
5825 c->Request.Timeout = 0;
5826 c->Request.CDB[0] = cmd;
5827 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5828 c->Request.CDB[7] = (size >> 16) & 0xFF;
5829 c->Request.CDB[8] = (size >> 8) & 0xFF;
5830 c->Request.CDB[9] = size & 0xFF;
5831 break;
edd16368
SC
5832 case HPSA_CACHE_FLUSH:
5833 c->Request.CDBLen = 12;
a505b86f
SC
5834 c->Request.type_attr_dir =
5835 TYPE_ATTR_DIR(cmd_type,
5836 ATTR_SIMPLE, XFER_WRITE);
edd16368
SC
5837 c->Request.Timeout = 0;
5838 c->Request.CDB[0] = BMIC_WRITE;
5839 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
bb158eab
SC
5840 c->Request.CDB[7] = (size >> 8) & 0xFF;
5841 c->Request.CDB[8] = size & 0xFF;
edd16368
SC
5842 break;
5843 case TEST_UNIT_READY:
5844 c->Request.CDBLen = 6;
a505b86f
SC
5845 c->Request.type_attr_dir =
5846 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
edd16368
SC
5847 c->Request.Timeout = 0;
5848 break;
283b4a9b
SC
5849 case HPSA_GET_RAID_MAP:
5850 c->Request.CDBLen = 12;
a505b86f
SC
5851 c->Request.type_attr_dir =
5852 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
283b4a9b
SC
5853 c->Request.Timeout = 0;
5854 c->Request.CDB[0] = HPSA_CISS_READ;
5855 c->Request.CDB[1] = cmd;
5856 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5857 c->Request.CDB[7] = (size >> 16) & 0xFF;
5858 c->Request.CDB[8] = (size >> 8) & 0xFF;
5859 c->Request.CDB[9] = size & 0xFF;
5860 break;
316b221a
SC
5861 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5862 c->Request.CDBLen = 10;
a505b86f
SC
5863 c->Request.type_attr_dir =
5864 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
316b221a
SC
5865 c->Request.Timeout = 0;
5866 c->Request.CDB[0] = BMIC_READ;
5867 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5868 c->Request.CDB[7] = (size >> 16) & 0xFF;
5869 c->Request.CDB[8] = (size >> 8) & 0xFF;
5870 break;
03383736
DB
5871 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
5872 c->Request.CDBLen = 10;
5873 c->Request.type_attr_dir =
5874 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5875 c->Request.Timeout = 0;
5876 c->Request.CDB[0] = BMIC_READ;
5877 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
5878 c->Request.CDB[7] = (size >> 16) & 0xFF;
5879 c->Request.CDB[8] = (size >> 8) & 0XFF;
5880 break;
edd16368
SC
5881 default:
5882 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5883 BUG();
a2dac136 5884 return -1;
edd16368
SC
5885 }
5886 } else if (cmd_type == TYPE_MSG) {
5887 switch (cmd) {
5888
5889 case HPSA_DEVICE_RESET_MSG:
5890 c->Request.CDBLen = 16;
a505b86f
SC
5891 c->Request.type_attr_dir =
5892 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
edd16368 5893 c->Request.Timeout = 0; /* Don't time out */
64670ac8
SC
5894 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5895 c->Request.CDB[0] = cmd;
21e89afd 5896 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
edd16368
SC
5897 /* If bytes 4-7 are zero, it means reset the */
5898 /* LunID device */
5899 c->Request.CDB[4] = 0x00;
5900 c->Request.CDB[5] = 0x00;
5901 c->Request.CDB[6] = 0x00;
5902 c->Request.CDB[7] = 0x00;
75167d2c
SC
5903 break;
5904 case HPSA_ABORT_MSG:
9b5c48c2 5905 memcpy(&tag, buff, sizeof(tag));
2b08b3e9 5906 dev_dbg(&h->pdev->dev,
9b5c48c2
SC
5907 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
5908 tag, c->Header.tag);
75167d2c 5909 c->Request.CDBLen = 16;
a505b86f
SC
5910 c->Request.type_attr_dir =
5911 TYPE_ATTR_DIR(cmd_type,
5912 ATTR_SIMPLE, XFER_WRITE);
75167d2c
SC
5913 c->Request.Timeout = 0; /* Don't time out */
5914 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5915 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5916 c->Request.CDB[2] = 0x00; /* reserved */
5917 c->Request.CDB[3] = 0x00; /* reserved */
5918 /* Tag to abort goes in CDB[4]-CDB[11] */
9b5c48c2 5919 memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
75167d2c
SC
5920 c->Request.CDB[12] = 0x00; /* reserved */
5921 c->Request.CDB[13] = 0x00; /* reserved */
5922 c->Request.CDB[14] = 0x00; /* reserved */
5923 c->Request.CDB[15] = 0x00; /* reserved */
edd16368 5924 break;
edd16368
SC
5925 default:
5926 dev_warn(&h->pdev->dev, "unknown message type %d\n",
5927 cmd);
5928 BUG();
5929 }
5930 } else {
5931 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5932 BUG();
5933 }
5934
a505b86f 5935 switch (GET_DIR(c->Request.type_attr_dir)) {
edd16368
SC
5936 case XFER_READ:
5937 pci_dir = PCI_DMA_FROMDEVICE;
5938 break;
5939 case XFER_WRITE:
5940 pci_dir = PCI_DMA_TODEVICE;
5941 break;
5942 case XFER_NONE:
5943 pci_dir = PCI_DMA_NONE;
5944 break;
5945 default:
5946 pci_dir = PCI_DMA_BIDIRECTIONAL;
5947 }
a2dac136
SC
5948 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5949 return -1;
5950 return 0;
edd16368
SC
5951}
5952
5953/*
5954 * Map (physical) PCI mem into (virtual) kernel space
5955 */
5956static void __iomem *remap_pci_mem(ulong base, ulong size)
5957{
5958 ulong page_base = ((ulong) base) & PAGE_MASK;
5959 ulong page_offs = ((ulong) base) - page_base;
088ba34c
SC
5960 void __iomem *page_remapped = ioremap_nocache(page_base,
5961 page_offs + size);
edd16368
SC
5962
5963 return page_remapped ? (page_remapped + page_offs) : NULL;
5964}
5965
254f796b 5966static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
edd16368 5967{
254f796b 5968 return h->access.command_completed(h, q);
edd16368
SC
5969}
5970
900c5440 5971static inline bool interrupt_pending(struct ctlr_info *h)
edd16368
SC
5972{
5973 return h->access.intr_pending(h);
5974}
5975
5976static inline long interrupt_not_for_us(struct ctlr_info *h)
5977{
10f66018
SC
5978 return (h->access.intr_pending(h) == 0) ||
5979 (h->interrupts_enabled == 0);
edd16368
SC
5980}
5981
01a02ffc
SC
5982static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5983 u32 raw_tag)
edd16368
SC
5984{
5985 if (unlikely(tag_index >= h->nr_cmds)) {
5986 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5987 return 1;
5988 }
5989 return 0;
5990}
5991
5a3d16f5 5992static inline void finish_cmd(struct CommandList *c)
edd16368 5993{
e85c5974 5994 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
c349775e
ST
5995 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5996 || c->cmd_type == CMD_IOACCEL2))
1fb011fb 5997 complete_scsi_command(c);
8be986cc 5998 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
edd16368 5999 complete(c->waiting);
a104c99f
SC
6000}
6001
a9a3a273
SC
6002
6003static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
a104c99f 6004{
a9a3a273
SC
6005#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
6006#define HPSA_SIMPLE_ERROR_BITS 0x03
960a30e7 6007 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
a9a3a273
SC
6008 return tag & ~HPSA_SIMPLE_ERROR_BITS;
6009 return tag & ~HPSA_PERF_ERROR_BITS;
a104c99f
SC
6010}
6011
303932fd 6012/* process completion of an indexed ("direct lookup") command */
1d94f94d 6013static inline void process_indexed_cmd(struct ctlr_info *h,
303932fd
DB
6014 u32 raw_tag)
6015{
6016 u32 tag_index;
6017 struct CommandList *c;
6018
f2405db8 6019 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
1d94f94d
SC
6020 if (!bad_tag(h, tag_index, raw_tag)) {
6021 c = h->cmd_pool + tag_index;
6022 finish_cmd(c);
6023 }
303932fd
DB
6024}
6025
64670ac8
SC
6026/* Some controllers, like p400, will give us one interrupt
6027 * after a soft reset, even if we turned interrupts off.
6028 * Only need to check for this in the hpsa_xxx_discard_completions
6029 * functions.
6030 */
6031static int ignore_bogus_interrupt(struct ctlr_info *h)
6032{
6033 if (likely(!reset_devices))
6034 return 0;
6035
6036 if (likely(h->interrupts_enabled))
6037 return 0;
6038
6039 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6040 "(known firmware bug.) Ignoring.\n");
6041
6042 return 1;
6043}
6044
254f796b
MG
6045/*
6046 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6047 * Relies on (h-q[x] == x) being true for x such that
6048 * 0 <= x < MAX_REPLY_QUEUES.
6049 */
6050static struct ctlr_info *queue_to_hba(u8 *queue)
64670ac8 6051{
254f796b
MG
6052 return container_of((queue - *queue), struct ctlr_info, q[0]);
6053}
6054
6055static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6056{
6057 struct ctlr_info *h = queue_to_hba(queue);
6058 u8 q = *(u8 *) queue;
64670ac8
SC
6059 u32 raw_tag;
6060
6061 if (ignore_bogus_interrupt(h))
6062 return IRQ_NONE;
6063
6064 if (interrupt_not_for_us(h))
6065 return IRQ_NONE;
a0c12413 6066 h->last_intr_timestamp = get_jiffies_64();
64670ac8 6067 while (interrupt_pending(h)) {
254f796b 6068 raw_tag = get_next_completion(h, q);
64670ac8 6069 while (raw_tag != FIFO_EMPTY)
254f796b 6070 raw_tag = next_command(h, q);
64670ac8 6071 }
64670ac8
SC
6072 return IRQ_HANDLED;
6073}
6074
254f796b 6075static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
64670ac8 6076{
254f796b 6077 struct ctlr_info *h = queue_to_hba(queue);
64670ac8 6078 u32 raw_tag;
254f796b 6079 u8 q = *(u8 *) queue;
64670ac8
SC
6080
6081 if (ignore_bogus_interrupt(h))
6082 return IRQ_NONE;
6083
a0c12413 6084 h->last_intr_timestamp = get_jiffies_64();
254f796b 6085 raw_tag = get_next_completion(h, q);
64670ac8 6086 while (raw_tag != FIFO_EMPTY)
254f796b 6087 raw_tag = next_command(h, q);
64670ac8
SC
6088 return IRQ_HANDLED;
6089}
6090
254f796b 6091static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
edd16368 6092{
254f796b 6093 struct ctlr_info *h = queue_to_hba((u8 *) queue);
303932fd 6094 u32 raw_tag;
254f796b 6095 u8 q = *(u8 *) queue;
edd16368
SC
6096
6097 if (interrupt_not_for_us(h))
6098 return IRQ_NONE;
a0c12413 6099 h->last_intr_timestamp = get_jiffies_64();
10f66018 6100 while (interrupt_pending(h)) {
254f796b 6101 raw_tag = get_next_completion(h, q);
10f66018 6102 while (raw_tag != FIFO_EMPTY) {
f2405db8 6103 process_indexed_cmd(h, raw_tag);
254f796b 6104 raw_tag = next_command(h, q);
10f66018
SC
6105 }
6106 }
10f66018
SC
6107 return IRQ_HANDLED;
6108}
6109
254f796b 6110static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
10f66018 6111{
254f796b 6112 struct ctlr_info *h = queue_to_hba(queue);
10f66018 6113 u32 raw_tag;
254f796b 6114 u8 q = *(u8 *) queue;
10f66018 6115
a0c12413 6116 h->last_intr_timestamp = get_jiffies_64();
254f796b 6117 raw_tag = get_next_completion(h, q);
303932fd 6118 while (raw_tag != FIFO_EMPTY) {
f2405db8 6119 process_indexed_cmd(h, raw_tag);
254f796b 6120 raw_tag = next_command(h, q);
edd16368 6121 }
edd16368
SC
6122 return IRQ_HANDLED;
6123}
6124
a9a3a273
SC
6125/* Send a message CDB to the firmware. Careful, this only works
6126 * in simple mode, not performant mode due to the tag lookup.
6127 * We only ever use this immediately after a controller reset.
6128 */
6f039790
GKH
6129static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6130 unsigned char type)
edd16368
SC
6131{
6132 struct Command {
6133 struct CommandListHeader CommandHeader;
6134 struct RequestBlock Request;
6135 struct ErrDescriptor ErrorDescriptor;
6136 };
6137 struct Command *cmd;
6138 static const size_t cmd_sz = sizeof(*cmd) +
6139 sizeof(cmd->ErrorDescriptor);
6140 dma_addr_t paddr64;
2b08b3e9
DB
6141 __le32 paddr32;
6142 u32 tag;
edd16368
SC
6143 void __iomem *vaddr;
6144 int i, err;
6145
6146 vaddr = pci_ioremap_bar(pdev, 0);
6147 if (vaddr == NULL)
6148 return -ENOMEM;
6149
6150 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6151 * CCISS commands, so they must be allocated from the lower 4GiB of
6152 * memory.
6153 */
6154 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6155 if (err) {
6156 iounmap(vaddr);
1eaec8f3 6157 return err;
edd16368
SC
6158 }
6159
6160 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6161 if (cmd == NULL) {
6162 iounmap(vaddr);
6163 return -ENOMEM;
6164 }
6165
6166 /* This must fit, because of the 32-bit consistent DMA mask. Also,
6167 * although there's no guarantee, we assume that the address is at
6168 * least 4-byte aligned (most likely, it's page-aligned).
6169 */
2b08b3e9 6170 paddr32 = cpu_to_le32(paddr64);
edd16368
SC
6171
6172 cmd->CommandHeader.ReplyQueue = 0;
6173 cmd->CommandHeader.SGList = 0;
50a0decf 6174 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
2b08b3e9 6175 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
edd16368
SC
6176 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6177
6178 cmd->Request.CDBLen = 16;
a505b86f
SC
6179 cmd->Request.type_attr_dir =
6180 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
edd16368
SC
6181 cmd->Request.Timeout = 0; /* Don't time out */
6182 cmd->Request.CDB[0] = opcode;
6183 cmd->Request.CDB[1] = type;
6184 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
50a0decf 6185 cmd->ErrorDescriptor.Addr =
2b08b3e9 6186 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
50a0decf 6187 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
edd16368 6188
2b08b3e9 6189 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
edd16368
SC
6190
6191 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6192 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
2b08b3e9 6193 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
edd16368
SC
6194 break;
6195 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6196 }
6197
6198 iounmap(vaddr);
6199
6200 /* we leak the DMA buffer here ... no choice since the controller could
6201 * still complete the command.
6202 */
6203 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6204 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6205 opcode, type);
6206 return -ETIMEDOUT;
6207 }
6208
6209 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6210
6211 if (tag & HPSA_ERROR_BIT) {
6212 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6213 opcode, type);
6214 return -EIO;
6215 }
6216
6217 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6218 opcode, type);
6219 return 0;
6220}
6221
edd16368
SC
6222#define hpsa_noop(p) hpsa_message(p, 3, 0)
6223
1df8552a 6224static int hpsa_controller_hard_reset(struct pci_dev *pdev,
42a91641 6225 void __iomem *vaddr, u32 use_doorbell)
1df8552a 6226{
1df8552a
SC
6227
6228 if (use_doorbell) {
6229 /* For everything after the P600, the PCI power state method
6230 * of resetting the controller doesn't work, so we have this
6231 * other way using the doorbell register.
6232 */
6233 dev_info(&pdev->dev, "using doorbell to reset controller\n");
cf0b08d0 6234 writel(use_doorbell, vaddr + SA5_DOORBELL);
85009239 6235
00701a96 6236 /* PMC hardware guys tell us we need a 10 second delay after
85009239
SC
6237 * doorbell reset and before any attempt to talk to the board
6238 * at all to ensure that this actually works and doesn't fall
6239 * over in some weird corner cases.
6240 */
00701a96 6241 msleep(10000);
1df8552a
SC
6242 } else { /* Try to do it the PCI power state way */
6243
6244 /* Quoting from the Open CISS Specification: "The Power
6245 * Management Control/Status Register (CSR) controls the power
6246 * state of the device. The normal operating state is D0,
6247 * CSR=00h. The software off state is D3, CSR=03h. To reset
6248 * the controller, place the interface device in D3 then to D0,
6249 * this causes a secondary PCI reset which will reset the
6250 * controller." */
2662cab8
DB
6251
6252 int rc = 0;
6253
1df8552a 6254 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
2662cab8 6255
1df8552a 6256 /* enter the D3hot power management state */
2662cab8
DB
6257 rc = pci_set_power_state(pdev, PCI_D3hot);
6258 if (rc)
6259 return rc;
1df8552a
SC
6260
6261 msleep(500);
6262
6263 /* enter the D0 power management state */
2662cab8
DB
6264 rc = pci_set_power_state(pdev, PCI_D0);
6265 if (rc)
6266 return rc;
c4853efe
MM
6267
6268 /*
6269 * The P600 requires a small delay when changing states.
6270 * Otherwise we may think the board did not reset and we bail.
6271 * This for kdump only and is particular to the P600.
6272 */
6273 msleep(500);
1df8552a
SC
6274 }
6275 return 0;
6276}
6277
6f039790 6278static void init_driver_version(char *driver_version, int len)
580ada3c
SC
6279{
6280 memset(driver_version, 0, len);
f79cfec6 6281 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
580ada3c
SC
6282}
6283
6f039790 6284static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
580ada3c
SC
6285{
6286 char *driver_version;
6287 int i, size = sizeof(cfgtable->driver_version);
6288
6289 driver_version = kmalloc(size, GFP_KERNEL);
6290 if (!driver_version)
6291 return -ENOMEM;
6292
6293 init_driver_version(driver_version, size);
6294 for (i = 0; i < size; i++)
6295 writeb(driver_version[i], &cfgtable->driver_version[i]);
6296 kfree(driver_version);
6297 return 0;
6298}
6299
6f039790
GKH
6300static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6301 unsigned char *driver_ver)
580ada3c
SC
6302{
6303 int i;
6304
6305 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6306 driver_ver[i] = readb(&cfgtable->driver_version[i]);
6307}
6308
6f039790 6309static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
580ada3c
SC
6310{
6311
6312 char *driver_ver, *old_driver_ver;
6313 int rc, size = sizeof(cfgtable->driver_version);
6314
6315 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6316 if (!old_driver_ver)
6317 return -ENOMEM;
6318 driver_ver = old_driver_ver + size;
6319
6320 /* After a reset, the 32 bytes of "driver version" in the cfgtable
6321 * should have been changed, otherwise we know the reset failed.
6322 */
6323 init_driver_version(old_driver_ver, size);
6324 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6325 rc = !memcmp(driver_ver, old_driver_ver, size);
6326 kfree(old_driver_ver);
6327 return rc;
6328}
edd16368 6329/* This does a hard reset of the controller using PCI power management
1df8552a 6330 * states or the using the doorbell register.
edd16368 6331 */
6b6c1cd7 6332static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
edd16368 6333{
1df8552a
SC
6334 u64 cfg_offset;
6335 u32 cfg_base_addr;
6336 u64 cfg_base_addr_index;
6337 void __iomem *vaddr;
6338 unsigned long paddr;
580ada3c 6339 u32 misc_fw_support;
270d05de 6340 int rc;
1df8552a 6341 struct CfgTable __iomem *cfgtable;
cf0b08d0 6342 u32 use_doorbell;
270d05de 6343 u16 command_register;
edd16368 6344
1df8552a
SC
6345 /* For controllers as old as the P600, this is very nearly
6346 * the same thing as
edd16368
SC
6347 *
6348 * pci_save_state(pci_dev);
6349 * pci_set_power_state(pci_dev, PCI_D3hot);
6350 * pci_set_power_state(pci_dev, PCI_D0);
6351 * pci_restore_state(pci_dev);
6352 *
1df8552a
SC
6353 * For controllers newer than the P600, the pci power state
6354 * method of resetting doesn't work so we have another way
6355 * using the doorbell register.
edd16368 6356 */
18867659 6357
60f923b9
RE
6358 if (!ctlr_is_resettable(board_id)) {
6359 dev_warn(&pdev->dev, "Controller not resettable\n");
25c1e56a
SC
6360 return -ENODEV;
6361 }
46380786
SC
6362
6363 /* if controller is soft- but not hard resettable... */
6364 if (!ctlr_is_hard_resettable(board_id))
6365 return -ENOTSUPP; /* try soft reset later. */
18867659 6366
270d05de
SC
6367 /* Save the PCI command register */
6368 pci_read_config_word(pdev, 4, &command_register);
270d05de 6369 pci_save_state(pdev);
edd16368 6370
1df8552a
SC
6371 /* find the first memory BAR, so we can find the cfg table */
6372 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6373 if (rc)
6374 return rc;
6375 vaddr = remap_pci_mem(paddr, 0x250);
6376 if (!vaddr)
6377 return -ENOMEM;
edd16368 6378
1df8552a
SC
6379 /* find cfgtable in order to check if reset via doorbell is supported */
6380 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6381 &cfg_base_addr_index, &cfg_offset);
6382 if (rc)
6383 goto unmap_vaddr;
6384 cfgtable = remap_pci_mem(pci_resource_start(pdev,
6385 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6386 if (!cfgtable) {
6387 rc = -ENOMEM;
6388 goto unmap_vaddr;
6389 }
580ada3c
SC
6390 rc = write_driver_ver_to_cfgtable(cfgtable);
6391 if (rc)
03741d95 6392 goto unmap_cfgtable;
edd16368 6393
cf0b08d0
SC
6394 /* If reset via doorbell register is supported, use that.
6395 * There are two such methods. Favor the newest method.
6396 */
1df8552a 6397 misc_fw_support = readl(&cfgtable->misc_fw_support);
cf0b08d0
SC
6398 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6399 if (use_doorbell) {
6400 use_doorbell = DOORBELL_CTLR_RESET2;
6401 } else {
6402 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6403 if (use_doorbell) {
050f7147
SC
6404 dev_warn(&pdev->dev,
6405 "Soft reset not supported. Firmware update is required.\n");
64670ac8 6406 rc = -ENOTSUPP; /* try soft reset */
cf0b08d0
SC
6407 goto unmap_cfgtable;
6408 }
6409 }
edd16368 6410
1df8552a
SC
6411 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6412 if (rc)
6413 goto unmap_cfgtable;
edd16368 6414
270d05de 6415 pci_restore_state(pdev);
270d05de 6416 pci_write_config_word(pdev, 4, command_register);
edd16368 6417
1df8552a
SC
6418 /* Some devices (notably the HP Smart Array 5i Controller)
6419 need a little pause here */
6420 msleep(HPSA_POST_RESET_PAUSE_MSECS);
6421
fe5389c8
SC
6422 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6423 if (rc) {
6424 dev_warn(&pdev->dev,
050f7147 6425 "Failed waiting for board to become ready after hard reset\n");
fe5389c8
SC
6426 goto unmap_cfgtable;
6427 }
fe5389c8 6428
580ada3c
SC
6429 rc = controller_reset_failed(vaddr);
6430 if (rc < 0)
6431 goto unmap_cfgtable;
6432 if (rc) {
64670ac8
SC
6433 dev_warn(&pdev->dev, "Unable to successfully reset "
6434 "controller. Will try soft reset.\n");
6435 rc = -ENOTSUPP;
580ada3c 6436 } else {
64670ac8 6437 dev_info(&pdev->dev, "board ready after hard reset.\n");
1df8552a
SC
6438 }
6439
6440unmap_cfgtable:
6441 iounmap(cfgtable);
6442
6443unmap_vaddr:
6444 iounmap(vaddr);
6445 return rc;
edd16368
SC
6446}
6447
6448/*
6449 * We cannot read the structure directly, for portability we must use
6450 * the io functions.
6451 * This is for debug only.
6452 */
42a91641 6453static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
edd16368 6454{
58f8665c 6455#ifdef HPSA_DEBUG
edd16368
SC
6456 int i;
6457 char temp_name[17];
6458
6459 dev_info(dev, "Controller Configuration information\n");
6460 dev_info(dev, "------------------------------------\n");
6461 for (i = 0; i < 4; i++)
6462 temp_name[i] = readb(&(tb->Signature[i]));
6463 temp_name[4] = '\0';
6464 dev_info(dev, " Signature = %s\n", temp_name);
6465 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
6466 dev_info(dev, " Transport methods supported = 0x%x\n",
6467 readl(&(tb->TransportSupport)));
6468 dev_info(dev, " Transport methods active = 0x%x\n",
6469 readl(&(tb->TransportActive)));
6470 dev_info(dev, " Requested transport Method = 0x%x\n",
6471 readl(&(tb->HostWrite.TransportRequest)));
6472 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
6473 readl(&(tb->HostWrite.CoalIntDelay)));
6474 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
6475 readl(&(tb->HostWrite.CoalIntCount)));
69d6e33d 6476 dev_info(dev, " Max outstanding commands = %d\n",
edd16368
SC
6477 readl(&(tb->CmdsOutMax)));
6478 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6479 for (i = 0; i < 16; i++)
6480 temp_name[i] = readb(&(tb->ServerName[i]));
6481 temp_name[16] = '\0';
6482 dev_info(dev, " Server Name = %s\n", temp_name);
6483 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
6484 readl(&(tb->HeartBeat)));
edd16368 6485#endif /* HPSA_DEBUG */
58f8665c 6486}
edd16368
SC
6487
6488static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6489{
6490 int i, offset, mem_type, bar_type;
6491
6492 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
6493 return 0;
6494 offset = 0;
6495 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6496 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6497 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6498 offset += 4;
6499 else {
6500 mem_type = pci_resource_flags(pdev, i) &
6501 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6502 switch (mem_type) {
6503 case PCI_BASE_ADDRESS_MEM_TYPE_32:
6504 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6505 offset += 4; /* 32 bit */
6506 break;
6507 case PCI_BASE_ADDRESS_MEM_TYPE_64:
6508 offset += 8;
6509 break;
6510 default: /* reserved in PCI 2.2 */
6511 dev_warn(&pdev->dev,
6512 "base address is invalid\n");
6513 return -1;
6514 break;
6515 }
6516 }
6517 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6518 return i + 1;
6519 }
6520 return -1;
6521}
6522
cc64c817
RE
6523static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
6524{
6525 if (h->msix_vector) {
6526 if (h->pdev->msix_enabled)
6527 pci_disable_msix(h->pdev);
105a3dbc 6528 h->msix_vector = 0;
cc64c817
RE
6529 } else if (h->msi_vector) {
6530 if (h->pdev->msi_enabled)
6531 pci_disable_msi(h->pdev);
105a3dbc 6532 h->msi_vector = 0;
cc64c817
RE
6533 }
6534}
6535
edd16368 6536/* If MSI/MSI-X is supported by the kernel we will try to enable it on
050f7147 6537 * controllers that are capable. If not, we use legacy INTx mode.
edd16368 6538 */
6f039790 6539static void hpsa_interrupt_mode(struct ctlr_info *h)
edd16368
SC
6540{
6541#ifdef CONFIG_PCI_MSI
254f796b
MG
6542 int err, i;
6543 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6544
6545 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6546 hpsa_msix_entries[i].vector = 0;
6547 hpsa_msix_entries[i].entry = i;
6548 }
edd16368
SC
6549
6550 /* Some boards advertise MSI but don't really support it */
6b3f4c52
SC
6551 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6552 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
edd16368 6553 goto default_int_mode;
55c06c71 6554 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
050f7147 6555 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
eee0f03a 6556 h->msix_vector = MAX_REPLY_QUEUES;
f89439bc
SC
6557 if (h->msix_vector > num_online_cpus())
6558 h->msix_vector = num_online_cpus();
18fce3c4
AG
6559 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6560 1, h->msix_vector);
6561 if (err < 0) {
6562 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6563 h->msix_vector = 0;
6564 goto single_msi_mode;
6565 } else if (err < h->msix_vector) {
55c06c71 6566 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
edd16368 6567 "available\n", err);
edd16368 6568 }
18fce3c4
AG
6569 h->msix_vector = err;
6570 for (i = 0; i < h->msix_vector; i++)
6571 h->intr[i] = hpsa_msix_entries[i].vector;
6572 return;
edd16368 6573 }
18fce3c4 6574single_msi_mode:
55c06c71 6575 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
050f7147 6576 dev_info(&h->pdev->dev, "MSI capable controller\n");
55c06c71 6577 if (!pci_enable_msi(h->pdev))
edd16368
SC
6578 h->msi_vector = 1;
6579 else
55c06c71 6580 dev_warn(&h->pdev->dev, "MSI init failed\n");
edd16368
SC
6581 }
6582default_int_mode:
6583#endif /* CONFIG_PCI_MSI */
6584 /* if we get here we're going to use the default interrupt mode */
a9a3a273 6585 h->intr[h->intr_mode] = h->pdev->irq;
edd16368
SC
6586}
6587
6f039790 6588static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
e5c880d1
SC
6589{
6590 int i;
6591 u32 subsystem_vendor_id, subsystem_device_id;
6592
6593 subsystem_vendor_id = pdev->subsystem_vendor;
6594 subsystem_device_id = pdev->subsystem_device;
6595 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6596 subsystem_vendor_id;
6597
6598 for (i = 0; i < ARRAY_SIZE(products); i++)
6599 if (*board_id == products[i].board_id)
6600 return i;
6601
6798cc0a
SC
6602 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6603 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6604 !hpsa_allow_any) {
e5c880d1
SC
6605 dev_warn(&pdev->dev, "unrecognized board ID: "
6606 "0x%08x, ignoring.\n", *board_id);
6607 return -ENODEV;
6608 }
6609 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6610}
6611
6f039790
GKH
6612static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6613 unsigned long *memory_bar)
3a7774ce
SC
6614{
6615 int i;
6616
6617 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
12d2cd47 6618 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3a7774ce 6619 /* addressing mode bits already removed */
12d2cd47
SC
6620 *memory_bar = pci_resource_start(pdev, i);
6621 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3a7774ce
SC
6622 *memory_bar);
6623 return 0;
6624 }
12d2cd47 6625 dev_warn(&pdev->dev, "no memory BAR found\n");
3a7774ce
SC
6626 return -ENODEV;
6627}
6628
6f039790
GKH
6629static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6630 int wait_for_ready)
2c4c8c8b 6631{
fe5389c8 6632 int i, iterations;
2c4c8c8b 6633 u32 scratchpad;
fe5389c8
SC
6634 if (wait_for_ready)
6635 iterations = HPSA_BOARD_READY_ITERATIONS;
6636 else
6637 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
2c4c8c8b 6638
fe5389c8
SC
6639 for (i = 0; i < iterations; i++) {
6640 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6641 if (wait_for_ready) {
6642 if (scratchpad == HPSA_FIRMWARE_READY)
6643 return 0;
6644 } else {
6645 if (scratchpad != HPSA_FIRMWARE_READY)
6646 return 0;
6647 }
2c4c8c8b
SC
6648 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6649 }
fe5389c8 6650 dev_warn(&pdev->dev, "board not ready, timed out.\n");
2c4c8c8b
SC
6651 return -ENODEV;
6652}
6653
6f039790
GKH
6654static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6655 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6656 u64 *cfg_offset)
a51fd47f
SC
6657{
6658 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6659 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6660 *cfg_base_addr &= (u32) 0x0000ffff;
6661 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6662 if (*cfg_base_addr_index == -1) {
6663 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6664 return -ENODEV;
6665 }
6666 return 0;
6667}
6668
195f2c65
RE
6669static void hpsa_free_cfgtables(struct ctlr_info *h)
6670{
105a3dbc 6671 if (h->transtable) {
195f2c65 6672 iounmap(h->transtable);
105a3dbc
RE
6673 h->transtable = NULL;
6674 }
6675 if (h->cfgtable) {
195f2c65 6676 iounmap(h->cfgtable);
105a3dbc
RE
6677 h->cfgtable = NULL;
6678 }
195f2c65
RE
6679}
6680
6681/* Find and map CISS config table and transfer table
6682+ * several items must be unmapped (freed) later
6683+ * */
6f039790 6684static int hpsa_find_cfgtables(struct ctlr_info *h)
edd16368 6685{
01a02ffc
SC
6686 u64 cfg_offset;
6687 u32 cfg_base_addr;
6688 u64 cfg_base_addr_index;
303932fd 6689 u32 trans_offset;
a51fd47f 6690 int rc;
77c4495c 6691
a51fd47f
SC
6692 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6693 &cfg_base_addr_index, &cfg_offset);
6694 if (rc)
6695 return rc;
77c4495c 6696 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
a51fd47f 6697 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
cd3c81c4
RE
6698 if (!h->cfgtable) {
6699 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
77c4495c 6700 return -ENOMEM;
cd3c81c4 6701 }
580ada3c
SC
6702 rc = write_driver_ver_to_cfgtable(h->cfgtable);
6703 if (rc)
6704 return rc;
77c4495c 6705 /* Find performant mode table. */
a51fd47f 6706 trans_offset = readl(&h->cfgtable->TransMethodOffset);
77c4495c
SC
6707 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6708 cfg_base_addr_index)+cfg_offset+trans_offset,
6709 sizeof(*h->transtable));
195f2c65
RE
6710 if (!h->transtable) {
6711 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
6712 hpsa_free_cfgtables(h);
77c4495c 6713 return -ENOMEM;
195f2c65 6714 }
77c4495c
SC
6715 return 0;
6716}
6717
6f039790 6718static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
cba3d38b 6719{
41ce4c35
SC
6720#define MIN_MAX_COMMANDS 16
6721 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
6722
6723 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
72ceeaec
SC
6724
6725 /* Limit commands in memory limited kdump scenario. */
6726 if (reset_devices && h->max_commands > 32)
6727 h->max_commands = 32;
6728
41ce4c35
SC
6729 if (h->max_commands < MIN_MAX_COMMANDS) {
6730 dev_warn(&h->pdev->dev,
6731 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
6732 h->max_commands,
6733 MIN_MAX_COMMANDS);
6734 h->max_commands = MIN_MAX_COMMANDS;
cba3d38b
SC
6735 }
6736}
6737
c7ee65b3
WS
6738/* If the controller reports that the total max sg entries is greater than 512,
6739 * then we know that chained SG blocks work. (Original smart arrays did not
6740 * support chained SG blocks and would return zero for max sg entries.)
6741 */
6742static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
6743{
6744 return h->maxsgentries > 512;
6745}
6746
b93d7536
SC
6747/* Interrogate the hardware for some limits:
6748 * max commands, max SG elements without chaining, and with chaining,
6749 * SG chain block size, etc.
6750 */
6f039790 6751static void hpsa_find_board_params(struct ctlr_info *h)
b93d7536 6752{
cba3d38b 6753 hpsa_get_max_perf_mode_cmds(h);
45fcb86e 6754 h->nr_cmds = h->max_commands;
b93d7536 6755 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
283b4a9b 6756 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
c7ee65b3
WS
6757 if (hpsa_supports_chained_sg_blocks(h)) {
6758 /* Limit in-command s/g elements to 32 save dma'able memory. */
b93d7536 6759 h->max_cmd_sg_entries = 32;
1a63ea6f 6760 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
b93d7536
SC
6761 h->maxsgentries--; /* save one for chain pointer */
6762 } else {
c7ee65b3
WS
6763 /*
6764 * Original smart arrays supported at most 31 s/g entries
6765 * embedded inline in the command (trying to use more
6766 * would lock up the controller)
6767 */
6768 h->max_cmd_sg_entries = 31;
1a63ea6f 6769 h->maxsgentries = 31; /* default to traditional values */
c7ee65b3 6770 h->chainsize = 0;
b93d7536 6771 }
75167d2c
SC
6772
6773 /* Find out what task management functions are supported and cache */
6774 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
0e7a7fce
ST
6775 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6776 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6777 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6778 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
8be986cc
SC
6779 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
6780 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
b93d7536
SC
6781}
6782
76c46e49
SC
6783static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6784{
0fc9fd40 6785 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
050f7147 6786 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
76c46e49
SC
6787 return false;
6788 }
6789 return true;
6790}
6791
97a5e98c 6792static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
f7c39101 6793{
97a5e98c 6794 u32 driver_support;
f7c39101 6795
97a5e98c 6796 driver_support = readl(&(h->cfgtable->driver_support));
0b9e7b74
AB
6797 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6798#ifdef CONFIG_X86
97a5e98c 6799 driver_support |= ENABLE_SCSI_PREFETCH;
f7c39101 6800#endif
28e13446
SC
6801 driver_support |= ENABLE_UNIT_ATTN;
6802 writel(driver_support, &(h->cfgtable->driver_support));
f7c39101
SC
6803}
6804
3d0eab67
SC
6805/* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
6806 * in a prefetch beyond physical memory.
6807 */
6808static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6809{
6810 u32 dma_prefetch;
6811
6812 if (h->board_id != 0x3225103C)
6813 return;
6814 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6815 dma_prefetch |= 0x8000;
6816 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6817}
6818
c706a795 6819static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
76438d08
SC
6820{
6821 int i;
6822 u32 doorbell_value;
6823 unsigned long flags;
6824 /* wait until the clear_event_notify bit 6 is cleared by controller. */
007e7aa9 6825 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
76438d08
SC
6826 spin_lock_irqsave(&h->lock, flags);
6827 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6828 spin_unlock_irqrestore(&h->lock, flags);
6829 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
c706a795 6830 goto done;
76438d08 6831 /* delay and try again */
007e7aa9 6832 msleep(CLEAR_EVENT_WAIT_INTERVAL);
76438d08 6833 }
c706a795
RE
6834 return -ENODEV;
6835done:
6836 return 0;
76438d08
SC
6837}
6838
c706a795 6839static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
eb6b2ae9
SC
6840{
6841 int i;
6eaf46fd
SC
6842 u32 doorbell_value;
6843 unsigned long flags;
eb6b2ae9
SC
6844
6845 /* under certain very rare conditions, this can take awhile.
6846 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6847 * as we enter this code.)
6848 */
007e7aa9 6849 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
25163bd5
WS
6850 if (h->remove_in_progress)
6851 goto done;
6eaf46fd
SC
6852 spin_lock_irqsave(&h->lock, flags);
6853 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6854 spin_unlock_irqrestore(&h->lock, flags);
382be668 6855 if (!(doorbell_value & CFGTBL_ChangeReq))
c706a795 6856 goto done;
eb6b2ae9 6857 /* delay and try again */
007e7aa9 6858 msleep(MODE_CHANGE_WAIT_INTERVAL);
eb6b2ae9 6859 }
c706a795
RE
6860 return -ENODEV;
6861done:
6862 return 0;
3f4336f3
SC
6863}
6864
c706a795 6865/* return -ENODEV or other reason on error, 0 on success */
6f039790 6866static int hpsa_enter_simple_mode(struct ctlr_info *h)
3f4336f3
SC
6867{
6868 u32 trans_support;
6869
6870 trans_support = readl(&(h->cfgtable->TransportSupport));
6871 if (!(trans_support & SIMPLE_MODE))
6872 return -ENOTSUPP;
6873
6874 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
283b4a9b 6875
3f4336f3
SC
6876 /* Update the field, and then ring the doorbell */
6877 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
b9af4937 6878 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
3f4336f3 6879 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
c706a795
RE
6880 if (hpsa_wait_for_mode_change_ack(h))
6881 goto error;
eb6b2ae9 6882 print_cfg_table(&h->pdev->dev, h->cfgtable);
283b4a9b
SC
6883 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6884 goto error;
960a30e7 6885 h->transMethod = CFGTBL_Trans_Simple;
eb6b2ae9 6886 return 0;
283b4a9b 6887error:
050f7147 6888 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
283b4a9b 6889 return -ENODEV;
eb6b2ae9
SC
6890}
6891
195f2c65
RE
6892/* free items allocated or mapped by hpsa_pci_init */
6893static void hpsa_free_pci_init(struct ctlr_info *h)
6894{
6895 hpsa_free_cfgtables(h); /* pci_init 4 */
6896 iounmap(h->vaddr); /* pci_init 3 */
105a3dbc 6897 h->vaddr = NULL;
195f2c65
RE
6898 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
6899 pci_release_regions(h->pdev); /* pci_init 2 */
6900 pci_disable_device(h->pdev); /* pci_init 1 */
6901}
6902
6903/* several items must be freed later */
6f039790 6904static int hpsa_pci_init(struct ctlr_info *h)
77c4495c 6905{
eb6b2ae9 6906 int prod_index, err;
edd16368 6907
e5c880d1
SC
6908 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6909 if (prod_index < 0)
60f923b9 6910 return prod_index;
e5c880d1
SC
6911 h->product_name = products[prod_index].product_name;
6912 h->access = *(products[prod_index].access);
edd16368 6913
9b5c48c2
SC
6914 h->needs_abort_tags_swizzled =
6915 ctlr_needs_abort_tags_swizzled(h->board_id);
6916
e5a44df8
MG
6917 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6918 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6919
55c06c71 6920 err = pci_enable_device(h->pdev);
edd16368 6921 if (err) {
195f2c65 6922 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
edd16368
SC
6923 return err;
6924 }
6925
f79cfec6 6926 err = pci_request_regions(h->pdev, HPSA);
edd16368 6927 if (err) {
55c06c71 6928 dev_err(&h->pdev->dev,
195f2c65
RE
6929 "failed to obtain PCI resources\n");
6930 goto clean1; /* pci */
edd16368 6931 }
4fa604e1
RE
6932
6933 pci_set_master(h->pdev);
6934
6b3f4c52 6935 hpsa_interrupt_mode(h);
12d2cd47 6936 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3a7774ce 6937 if (err)
195f2c65 6938 goto clean2; /* intmode+region, pci */
edd16368 6939 h->vaddr = remap_pci_mem(h->paddr, 0x250);
204892e9 6940 if (!h->vaddr) {
195f2c65 6941 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
204892e9 6942 err = -ENOMEM;
195f2c65 6943 goto clean2; /* intmode+region, pci */
204892e9 6944 }
fe5389c8 6945 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
2c4c8c8b 6946 if (err)
195f2c65 6947 goto clean3; /* vaddr, intmode+region, pci */
77c4495c
SC
6948 err = hpsa_find_cfgtables(h);
6949 if (err)
195f2c65 6950 goto clean3; /* vaddr, intmode+region, pci */
b93d7536 6951 hpsa_find_board_params(h);
edd16368 6952
76c46e49 6953 if (!hpsa_CISS_signature_present(h)) {
edd16368 6954 err = -ENODEV;
195f2c65 6955 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
edd16368 6956 }
97a5e98c 6957 hpsa_set_driver_support_bits(h);
3d0eab67 6958 hpsa_p600_dma_prefetch_quirk(h);
eb6b2ae9
SC
6959 err = hpsa_enter_simple_mode(h);
6960 if (err)
195f2c65 6961 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
edd16368
SC
6962 return 0;
6963
195f2c65
RE
6964clean4: /* cfgtables, vaddr, intmode+region, pci */
6965 hpsa_free_cfgtables(h);
6966clean3: /* vaddr, intmode+region, pci */
6967 iounmap(h->vaddr);
105a3dbc 6968 h->vaddr = NULL;
195f2c65
RE
6969clean2: /* intmode+region, pci */
6970 hpsa_disable_interrupt_mode(h);
55c06c71 6971 pci_release_regions(h->pdev);
195f2c65
RE
6972clean1: /* pci */
6973 pci_disable_device(h->pdev);
edd16368
SC
6974 return err;
6975}
6976
6f039790 6977static void hpsa_hba_inquiry(struct ctlr_info *h)
339b2b14
SC
6978{
6979 int rc;
6980
6981#define HBA_INQUIRY_BYTE_COUNT 64
6982 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6983 if (!h->hba_inquiry_data)
6984 return;
6985 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6986 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6987 if (rc != 0) {
6988 kfree(h->hba_inquiry_data);
6989 h->hba_inquiry_data = NULL;
6990 }
6991}
6992
6b6c1cd7 6993static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
4c2a8c40 6994{
1df8552a 6995 int rc, i;
3b747298 6996 void __iomem *vaddr;
4c2a8c40
SC
6997
6998 if (!reset_devices)
6999 return 0;
7000
132aa220
TH
7001 /* kdump kernel is loading, we don't know in which state is
7002 * the pci interface. The dev->enable_cnt is equal zero
7003 * so we call enable+disable, wait a while and switch it on.
7004 */
7005 rc = pci_enable_device(pdev);
7006 if (rc) {
7007 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7008 return -ENODEV;
7009 }
7010 pci_disable_device(pdev);
7011 msleep(260); /* a randomly chosen number */
7012 rc = pci_enable_device(pdev);
7013 if (rc) {
7014 dev_warn(&pdev->dev, "failed to enable device.\n");
7015 return -ENODEV;
7016 }
4fa604e1 7017
859c75ab 7018 pci_set_master(pdev);
4fa604e1 7019
3b747298
TH
7020 vaddr = pci_ioremap_bar(pdev, 0);
7021 if (vaddr == NULL) {
7022 rc = -ENOMEM;
7023 goto out_disable;
7024 }
7025 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7026 iounmap(vaddr);
7027
1df8552a 7028 /* Reset the controller with a PCI power-cycle or via doorbell */
6b6c1cd7 7029 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
4c2a8c40 7030
1df8552a
SC
7031 /* -ENOTSUPP here means we cannot reset the controller
7032 * but it's already (and still) up and running in
18867659
SC
7033 * "performant mode". Or, it might be 640x, which can't reset
7034 * due to concerns about shared bbwc between 6402/6404 pair.
1df8552a 7035 */
adf1b3a3 7036 if (rc)
132aa220 7037 goto out_disable;
4c2a8c40
SC
7038
7039 /* Now try to get the controller to respond to a no-op */
1ba66c9c 7040 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
4c2a8c40
SC
7041 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7042 if (hpsa_noop(pdev) == 0)
7043 break;
7044 else
7045 dev_warn(&pdev->dev, "no-op failed%s\n",
7046 (i < 11 ? "; re-trying" : ""));
7047 }
132aa220
TH
7048
7049out_disable:
7050
7051 pci_disable_device(pdev);
7052 return rc;
4c2a8c40
SC
7053}
7054
1fb7c98a
RE
7055static void hpsa_free_cmd_pool(struct ctlr_info *h)
7056{
7057 kfree(h->cmd_pool_bits);
105a3dbc
RE
7058 h->cmd_pool_bits = NULL;
7059 if (h->cmd_pool) {
1fb7c98a
RE
7060 pci_free_consistent(h->pdev,
7061 h->nr_cmds * sizeof(struct CommandList),
7062 h->cmd_pool,
7063 h->cmd_pool_dhandle);
105a3dbc
RE
7064 h->cmd_pool = NULL;
7065 h->cmd_pool_dhandle = 0;
7066 }
7067 if (h->errinfo_pool) {
1fb7c98a
RE
7068 pci_free_consistent(h->pdev,
7069 h->nr_cmds * sizeof(struct ErrorInfo),
7070 h->errinfo_pool,
7071 h->errinfo_pool_dhandle);
105a3dbc
RE
7072 h->errinfo_pool = NULL;
7073 h->errinfo_pool_dhandle = 0;
7074 }
1fb7c98a
RE
7075}
7076
d37ffbe4 7077static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
2e9d1b36
SC
7078{
7079 h->cmd_pool_bits = kzalloc(
7080 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7081 sizeof(unsigned long), GFP_KERNEL);
7082 h->cmd_pool = pci_alloc_consistent(h->pdev,
7083 h->nr_cmds * sizeof(*h->cmd_pool),
7084 &(h->cmd_pool_dhandle));
7085 h->errinfo_pool = pci_alloc_consistent(h->pdev,
7086 h->nr_cmds * sizeof(*h->errinfo_pool),
7087 &(h->errinfo_pool_dhandle));
7088 if ((h->cmd_pool_bits == NULL)
7089 || (h->cmd_pool == NULL)
7090 || (h->errinfo_pool == NULL)) {
7091 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
2c143342 7092 goto clean_up;
2e9d1b36 7093 }
360c73bd 7094 hpsa_preinitialize_commands(h);
2e9d1b36 7095 return 0;
2c143342
RE
7096clean_up:
7097 hpsa_free_cmd_pool(h);
7098 return -ENOMEM;
2e9d1b36
SC
7099}
7100
41b3cf08
SC
7101static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7102{
ec429952 7103 int i, cpu;
41b3cf08
SC
7104
7105 cpu = cpumask_first(cpu_online_mask);
7106 for (i = 0; i < h->msix_vector; i++) {
ec429952 7107 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
41b3cf08
SC
7108 cpu = cpumask_next(cpu, cpu_online_mask);
7109 }
7110}
7111
ec501a18
RE
7112/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7113static void hpsa_free_irqs(struct ctlr_info *h)
7114{
7115 int i;
7116
7117 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7118 /* Single reply queue, only one irq to free */
7119 i = h->intr_mode;
7120 irq_set_affinity_hint(h->intr[i], NULL);
7121 free_irq(h->intr[i], &h->q[i]);
105a3dbc 7122 h->q[i] = 0;
ec501a18
RE
7123 return;
7124 }
7125
7126 for (i = 0; i < h->msix_vector; i++) {
7127 irq_set_affinity_hint(h->intr[i], NULL);
7128 free_irq(h->intr[i], &h->q[i]);
105a3dbc 7129 h->q[i] = 0;
ec501a18 7130 }
a4e17fc1
RE
7131 for (; i < MAX_REPLY_QUEUES; i++)
7132 h->q[i] = 0;
ec501a18
RE
7133}
7134
9ee61794
RE
7135/* returns 0 on success; cleans up and returns -Enn on error */
7136static int hpsa_request_irqs(struct ctlr_info *h,
0ae01a32
SC
7137 irqreturn_t (*msixhandler)(int, void *),
7138 irqreturn_t (*intxhandler)(int, void *))
7139{
254f796b 7140 int rc, i;
0ae01a32 7141
254f796b
MG
7142 /*
7143 * initialize h->q[x] = x so that interrupt handlers know which
7144 * queue to process.
7145 */
7146 for (i = 0; i < MAX_REPLY_QUEUES; i++)
7147 h->q[i] = (u8) i;
7148
eee0f03a 7149 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
254f796b 7150 /* If performant mode and MSI-X, use multiple reply queues */
a4e17fc1 7151 for (i = 0; i < h->msix_vector; i++) {
254f796b
MG
7152 rc = request_irq(h->intr[i], msixhandler,
7153 0, h->devname,
7154 &h->q[i]);
a4e17fc1
RE
7155 if (rc) {
7156 int j;
7157
7158 dev_err(&h->pdev->dev,
7159 "failed to get irq %d for %s\n",
7160 h->intr[i], h->devname);
7161 for (j = 0; j < i; j++) {
7162 free_irq(h->intr[j], &h->q[j]);
7163 h->q[j] = 0;
7164 }
7165 for (; j < MAX_REPLY_QUEUES; j++)
7166 h->q[j] = 0;
7167 return rc;
7168 }
7169 }
41b3cf08 7170 hpsa_irq_affinity_hints(h);
254f796b
MG
7171 } else {
7172 /* Use single reply pool */
eee0f03a 7173 if (h->msix_vector > 0 || h->msi_vector) {
254f796b
MG
7174 rc = request_irq(h->intr[h->intr_mode],
7175 msixhandler, 0, h->devname,
7176 &h->q[h->intr_mode]);
7177 } else {
7178 rc = request_irq(h->intr[h->intr_mode],
7179 intxhandler, IRQF_SHARED, h->devname,
7180 &h->q[h->intr_mode]);
7181 }
105a3dbc 7182 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
254f796b 7183 }
0ae01a32 7184 if (rc) {
195f2c65 7185 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
0ae01a32 7186 h->intr[h->intr_mode], h->devname);
195f2c65 7187 hpsa_free_irqs(h);
0ae01a32
SC
7188 return -ENODEV;
7189 }
7190 return 0;
7191}
7192
6f039790 7193static int hpsa_kdump_soft_reset(struct ctlr_info *h)
64670ac8 7194{
bf43caf3 7195 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
64670ac8
SC
7196
7197 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7198 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
7199 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7200 return -1;
7201 }
7202
7203 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7204 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
7205 dev_warn(&h->pdev->dev, "Board failed to become ready "
7206 "after soft reset.\n");
7207 return -1;
7208 }
7209
7210 return 0;
7211}
7212
072b0518
SC
7213static void hpsa_free_reply_queues(struct ctlr_info *h)
7214{
7215 int i;
7216
7217 for (i = 0; i < h->nreply_queues; i++) {
7218 if (!h->reply_queue[i].head)
7219 continue;
1fb7c98a
RE
7220 pci_free_consistent(h->pdev,
7221 h->reply_queue_size,
7222 h->reply_queue[i].head,
7223 h->reply_queue[i].busaddr);
072b0518
SC
7224 h->reply_queue[i].head = NULL;
7225 h->reply_queue[i].busaddr = 0;
7226 }
105a3dbc 7227 h->reply_queue_size = 0;
072b0518
SC
7228}
7229
0097f0f4
SC
7230static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7231{
105a3dbc
RE
7232 hpsa_free_performant_mode(h); /* init_one 7 */
7233 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
7234 hpsa_free_cmd_pool(h); /* init_one 5 */
7235 hpsa_free_irqs(h); /* init_one 4 */
7236 hpsa_free_pci_init(h); /* init_one 3 */
7237 kfree(h); /* init_one 1 */
64670ac8
SC
7238}
7239
a0c12413 7240/* Called when controller lockup detected. */
f2405db8 7241static void fail_all_outstanding_cmds(struct ctlr_info *h)
a0c12413 7242{
281a7fd0
WS
7243 int i, refcount;
7244 struct CommandList *c;
25163bd5 7245 int failcount = 0;
a0c12413 7246
080ef1cc 7247 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
f2405db8 7248 for (i = 0; i < h->nr_cmds; i++) {
f2405db8 7249 c = h->cmd_pool + i;
281a7fd0
WS
7250 refcount = atomic_inc_return(&c->refcount);
7251 if (refcount > 1) {
25163bd5 7252 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
281a7fd0 7253 finish_cmd(c);
433b5f4d 7254 atomic_dec(&h->commands_outstanding);
25163bd5 7255 failcount++;
281a7fd0
WS
7256 }
7257 cmd_free(h, c);
a0c12413 7258 }
25163bd5
WS
7259 dev_warn(&h->pdev->dev,
7260 "failed %d commands in fail_all\n", failcount);
a0c12413
SC
7261}
7262
094963da
SC
7263static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7264{
c8ed0010 7265 int cpu;
094963da 7266
c8ed0010 7267 for_each_online_cpu(cpu) {
094963da
SC
7268 u32 *lockup_detected;
7269 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7270 *lockup_detected = value;
094963da
SC
7271 }
7272 wmb(); /* be sure the per-cpu variables are out to memory */
7273}
7274
a0c12413
SC
7275static void controller_lockup_detected(struct ctlr_info *h)
7276{
7277 unsigned long flags;
094963da 7278 u32 lockup_detected;
a0c12413 7279
a0c12413
SC
7280 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7281 spin_lock_irqsave(&h->lock, flags);
094963da
SC
7282 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7283 if (!lockup_detected) {
7284 /* no heartbeat, but controller gave us a zero. */
7285 dev_warn(&h->pdev->dev,
25163bd5
WS
7286 "lockup detected after %d but scratchpad register is zero\n",
7287 h->heartbeat_sample_interval / HZ);
094963da
SC
7288 lockup_detected = 0xffffffff;
7289 }
7290 set_lockup_detected_for_all_cpus(h, lockup_detected);
a0c12413 7291 spin_unlock_irqrestore(&h->lock, flags);
25163bd5
WS
7292 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7293 lockup_detected, h->heartbeat_sample_interval / HZ);
a0c12413 7294 pci_disable_device(h->pdev);
f2405db8 7295 fail_all_outstanding_cmds(h);
a0c12413
SC
7296}
7297
25163bd5 7298static int detect_controller_lockup(struct ctlr_info *h)
a0c12413
SC
7299{
7300 u64 now;
7301 u32 heartbeat;
7302 unsigned long flags;
7303
a0c12413
SC
7304 now = get_jiffies_64();
7305 /* If we've received an interrupt recently, we're ok. */
7306 if (time_after64(h->last_intr_timestamp +
e85c5974 7307 (h->heartbeat_sample_interval), now))
25163bd5 7308 return false;
a0c12413
SC
7309
7310 /*
7311 * If we've already checked the heartbeat recently, we're ok.
7312 * This could happen if someone sends us a signal. We
7313 * otherwise don't care about signals in this thread.
7314 */
7315 if (time_after64(h->last_heartbeat_timestamp +
e85c5974 7316 (h->heartbeat_sample_interval), now))
25163bd5 7317 return false;
a0c12413
SC
7318
7319 /* If heartbeat has not changed since we last looked, we're not ok. */
7320 spin_lock_irqsave(&h->lock, flags);
7321 heartbeat = readl(&h->cfgtable->HeartBeat);
7322 spin_unlock_irqrestore(&h->lock, flags);
7323 if (h->last_heartbeat == heartbeat) {
7324 controller_lockup_detected(h);
25163bd5 7325 return true;
a0c12413
SC
7326 }
7327
7328 /* We're ok. */
7329 h->last_heartbeat = heartbeat;
7330 h->last_heartbeat_timestamp = now;
25163bd5 7331 return false;
a0c12413
SC
7332}
7333
9846590e 7334static void hpsa_ack_ctlr_events(struct ctlr_info *h)
76438d08
SC
7335{
7336 int i;
7337 char *event_type;
7338
e4aa3e6a
SC
7339 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7340 return;
7341
76438d08 7342 /* Ask the controller to clear the events we're handling. */
1f7cee8c
SC
7343 if ((h->transMethod & (CFGTBL_Trans_io_accel1
7344 | CFGTBL_Trans_io_accel2)) &&
76438d08
SC
7345 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
7346 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
7347
7348 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
7349 event_type = "state change";
7350 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
7351 event_type = "configuration change";
7352 /* Stop sending new RAID offload reqs via the IO accelerator */
7353 scsi_block_requests(h->scsi_host);
7354 for (i = 0; i < h->ndevices; i++)
7355 h->dev[i]->offload_enabled = 0;
23100dd9 7356 hpsa_drain_accel_commands(h);
76438d08
SC
7357 /* Set 'accelerator path config change' bit */
7358 dev_warn(&h->pdev->dev,
7359 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7360 h->events, event_type);
7361 writel(h->events, &(h->cfgtable->clear_event_notify));
7362 /* Set the "clear event notify field update" bit 6 */
7363 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7364 /* Wait until ctlr clears 'clear event notify field', bit 6 */
7365 hpsa_wait_for_clear_event_notify_ack(h);
7366 scsi_unblock_requests(h->scsi_host);
7367 } else {
7368 /* Acknowledge controller notification events. */
7369 writel(h->events, &(h->cfgtable->clear_event_notify));
7370 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7371 hpsa_wait_for_clear_event_notify_ack(h);
7372#if 0
7373 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7374 hpsa_wait_for_mode_change_ack(h);
7375#endif
7376 }
9846590e 7377 return;
76438d08
SC
7378}
7379
7380/* Check a register on the controller to see if there are configuration
7381 * changes (added/changed/removed logical drives, etc.) which mean that
e863d68e
ST
7382 * we should rescan the controller for devices.
7383 * Also check flag for driver-initiated rescan.
76438d08 7384 */
9846590e 7385static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
76438d08
SC
7386{
7387 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
9846590e 7388 return 0;
76438d08
SC
7389
7390 h->events = readl(&(h->cfgtable->event_notify));
9846590e
SC
7391 return h->events & RESCAN_REQUIRED_EVENT_BITS;
7392}
76438d08 7393
9846590e
SC
7394/*
7395 * Check if any of the offline devices have become ready
7396 */
7397static int hpsa_offline_devices_ready(struct ctlr_info *h)
7398{
7399 unsigned long flags;
7400 struct offline_device_entry *d;
7401 struct list_head *this, *tmp;
7402
7403 spin_lock_irqsave(&h->offline_device_lock, flags);
7404 list_for_each_safe(this, tmp, &h->offline_device_list) {
7405 d = list_entry(this, struct offline_device_entry,
7406 offline_list);
7407 spin_unlock_irqrestore(&h->offline_device_lock, flags);
d1fea47c
SC
7408 if (!hpsa_volume_offline(h, d->scsi3addr)) {
7409 spin_lock_irqsave(&h->offline_device_lock, flags);
7410 list_del(&d->offline_list);
7411 spin_unlock_irqrestore(&h->offline_device_lock, flags);
9846590e 7412 return 1;
d1fea47c 7413 }
9846590e
SC
7414 spin_lock_irqsave(&h->offline_device_lock, flags);
7415 }
7416 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7417 return 0;
76438d08
SC
7418}
7419
6636e7f4 7420static void hpsa_rescan_ctlr_worker(struct work_struct *work)
a0c12413
SC
7421{
7422 unsigned long flags;
8a98db73 7423 struct ctlr_info *h = container_of(to_delayed_work(work),
6636e7f4
DB
7424 struct ctlr_info, rescan_ctlr_work);
7425
7426
7427 if (h->remove_in_progress)
8a98db73 7428 return;
9846590e
SC
7429
7430 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
7431 scsi_host_get(h->scsi_host);
9846590e
SC
7432 hpsa_ack_ctlr_events(h);
7433 hpsa_scan_start(h->scsi_host);
7434 scsi_host_put(h->scsi_host);
7435 }
8a98db73 7436 spin_lock_irqsave(&h->lock, flags);
6636e7f4
DB
7437 if (!h->remove_in_progress)
7438 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7439 h->heartbeat_sample_interval);
7440 spin_unlock_irqrestore(&h->lock, flags);
7441}
7442
7443static void hpsa_monitor_ctlr_worker(struct work_struct *work)
7444{
7445 unsigned long flags;
7446 struct ctlr_info *h = container_of(to_delayed_work(work),
7447 struct ctlr_info, monitor_ctlr_work);
7448
7449 detect_controller_lockup(h);
7450 if (lockup_detected(h))
a0c12413 7451 return;
6636e7f4
DB
7452
7453 spin_lock_irqsave(&h->lock, flags);
7454 if (!h->remove_in_progress)
7455 schedule_delayed_work(&h->monitor_ctlr_work,
8a98db73
SC
7456 h->heartbeat_sample_interval);
7457 spin_unlock_irqrestore(&h->lock, flags);
a0c12413
SC
7458}
7459
6636e7f4
DB
7460static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
7461 char *name)
7462{
7463 struct workqueue_struct *wq = NULL;
6636e7f4 7464
397ea9cb 7465 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
6636e7f4
DB
7466 if (!wq)
7467 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
7468
7469 return wq;
7470}
7471
6f039790 7472static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
edd16368 7473{
4c2a8c40 7474 int dac, rc;
edd16368 7475 struct ctlr_info *h;
64670ac8
SC
7476 int try_soft_reset = 0;
7477 unsigned long flags;
6b6c1cd7 7478 u32 board_id;
edd16368
SC
7479
7480 if (number_of_controllers == 0)
7481 printk(KERN_INFO DRIVER_NAME "\n");
edd16368 7482
6b6c1cd7
TH
7483 rc = hpsa_lookup_board_id(pdev, &board_id);
7484 if (rc < 0) {
7485 dev_warn(&pdev->dev, "Board ID not found\n");
7486 return rc;
7487 }
7488
7489 rc = hpsa_init_reset_devices(pdev, board_id);
64670ac8
SC
7490 if (rc) {
7491 if (rc != -ENOTSUPP)
7492 return rc;
7493 /* If the reset fails in a particular way (it has no way to do
7494 * a proper hard reset, so returns -ENOTSUPP) we can try to do
7495 * a soft reset once we get the controller configured up to the
7496 * point that it can accept a command.
7497 */
7498 try_soft_reset = 1;
7499 rc = 0;
7500 }
7501
7502reinit_after_soft_reset:
edd16368 7503
303932fd
DB
7504 /* Command structures must be aligned on a 32-byte boundary because
7505 * the 5 lower bits of the address are used by the hardware. and by
7506 * the driver. See comments in hpsa.h for more info.
7507 */
303932fd 7508 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
edd16368 7509 h = kzalloc(sizeof(*h), GFP_KERNEL);
105a3dbc
RE
7510 if (!h) {
7511 dev_err(&pdev->dev, "Failed to allocate controller head\n");
ecd9aad4 7512 return -ENOMEM;
105a3dbc 7513 }
edd16368 7514
55c06c71 7515 h->pdev = pdev;
105a3dbc 7516
a9a3a273 7517 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
9846590e 7518 INIT_LIST_HEAD(&h->offline_device_list);
6eaf46fd 7519 spin_lock_init(&h->lock);
9846590e 7520 spin_lock_init(&h->offline_device_lock);
6eaf46fd 7521 spin_lock_init(&h->scan_lock);
34f0c627 7522 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
9b5c48c2 7523 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
094963da 7524
6636e7f4
DB
7525 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
7526 if (!h->rescan_ctlr_wq) {
7527 rc = -ENOMEM;
7528 goto clean1;
7529 }
7530
7531 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
080ef1cc 7532 if (!h->resubmit_wq) {
080ef1cc 7533 rc = -ENOMEM;
105a3dbc 7534 goto clean1; /* aer/h */
080ef1cc 7535 }
6636e7f4 7536
094963da
SC
7537 /* Allocate and clear per-cpu variable lockup_detected */
7538 h->lockup_detected = alloc_percpu(u32);
2a5ac326 7539 if (!h->lockup_detected) {
105a3dbc 7540 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
2a5ac326 7541 rc = -ENOMEM;
105a3dbc 7542 goto clean1; /* wq/aer/h */
2a5ac326 7543 }
094963da
SC
7544 set_lockup_detected_for_all_cpus(h, 0);
7545
55c06c71 7546 rc = hpsa_pci_init(h);
105a3dbc
RE
7547 if (rc)
7548 goto clean2; /* lockup, wq/aer/h */
edd16368 7549
f79cfec6 7550 sprintf(h->devname, HPSA "%d", number_of_controllers);
edd16368
SC
7551 h->ctlr = number_of_controllers;
7552 number_of_controllers++;
edd16368
SC
7553
7554 /* configure PCI DMA stuff */
ecd9aad4
SC
7555 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
7556 if (rc == 0) {
edd16368 7557 dac = 1;
ecd9aad4
SC
7558 } else {
7559 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
7560 if (rc == 0) {
7561 dac = 0;
7562 } else {
7563 dev_err(&pdev->dev, "no suitable DMA available\n");
105a3dbc 7564 goto clean3; /* pci, lockup, wq/aer/h */
ecd9aad4 7565 }
edd16368
SC
7566 }
7567
7568 /* make sure the board interrupts are off */
7569 h->access.set_intr_mask(h, HPSA_INTR_OFF);
10f66018 7570
105a3dbc
RE
7571 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
7572 if (rc)
7573 goto clean3; /* pci, lockup, wq/aer/h */
303932fd
DB
7574 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
7575 h->devname, pdev->device,
a9a3a273 7576 h->intr[h->intr_mode], dac ? "" : " not");
d37ffbe4 7577 rc = hpsa_alloc_cmd_pool(h);
8947fd10 7578 if (rc)
105a3dbc
RE
7579 goto clean4; /* irq, pci, lockup, wq/aer/h */
7580 rc = hpsa_alloc_sg_chain_blocks(h);
7581 if (rc)
7582 goto clean5; /* cmd, irq, pci, lockup, wq/aer/h */
a08a8471 7583 init_waitqueue_head(&h->scan_wait_queue);
9b5c48c2 7584 init_waitqueue_head(&h->abort_cmd_wait_queue);
a08a8471 7585 h->scan_finished = 1; /* no scan currently in progress */
edd16368
SC
7586
7587 pci_set_drvdata(pdev, h);
9a41338e 7588 h->ndevices = 0;
316b221a 7589 h->hba_mode_enabled = 0;
9a41338e
SC
7590 h->scsi_host = NULL;
7591 spin_lock_init(&h->devlock);
105a3dbc
RE
7592 rc = hpsa_put_ctlr_into_performant_mode(h);
7593 if (rc)
7594 goto clean6; /* sg, cmd, irq, pci, lockup, wq/aer/h */
64670ac8 7595
105a3dbc
RE
7596 /*
7597 * At this point, the controller is ready to take commands.
64670ac8
SC
7598 * Now, if reset_devices and the hard reset didn't work, try
7599 * the soft reset and see if that works.
7600 */
7601 if (try_soft_reset) {
7602
7603 /* This is kind of gross. We may or may not get a completion
7604 * from the soft reset command, and if we do, then the value
7605 * from the fifo may or may not be valid. So, we wait 10 secs
7606 * after the reset throwing away any completions we get during
7607 * that time. Unregister the interrupt handler and register
7608 * fake ones to scoop up any residual completions.
7609 */
7610 spin_lock_irqsave(&h->lock, flags);
7611 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7612 spin_unlock_irqrestore(&h->lock, flags);
ec501a18 7613 hpsa_free_irqs(h);
9ee61794 7614 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
64670ac8
SC
7615 hpsa_intx_discard_completions);
7616 if (rc) {
9ee61794
RE
7617 dev_warn(&h->pdev->dev,
7618 "Failed to request_irq after soft reset.\n");
64670ac8
SC
7619 goto clean4;
7620 }
7621
7622 rc = hpsa_kdump_soft_reset(h);
7623 if (rc)
7624 /* Neither hard nor soft reset worked, we're hosed. */
7625 goto clean4;
7626
7627 dev_info(&h->pdev->dev, "Board READY.\n");
7628 dev_info(&h->pdev->dev,
7629 "Waiting for stale completions to drain.\n");
7630 h->access.set_intr_mask(h, HPSA_INTR_ON);
7631 msleep(10000);
7632 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7633
7634 rc = controller_reset_failed(h->cfgtable);
7635 if (rc)
7636 dev_info(&h->pdev->dev,
7637 "Soft reset appears to have failed.\n");
7638
7639 /* since the controller's reset, we have to go back and re-init
7640 * everything. Easiest to just forget what we've done and do it
7641 * all over again.
7642 */
7643 hpsa_undo_allocations_after_kdump_soft_reset(h);
7644 try_soft_reset = 0;
7645 if (rc)
7646 /* don't go to clean4, we already unallocated */
7647 return -ENODEV;
7648
7649 goto reinit_after_soft_reset;
7650 }
edd16368 7651
105a3dbc
RE
7652 /* Enable Accelerated IO path at driver layer */
7653 h->acciopath_status = 1;
da0697bd 7654
e863d68e 7655
edd16368
SC
7656 /* Turn the interrupts on so we can service requests */
7657 h->access.set_intr_mask(h, HPSA_INTR_ON);
7658
339b2b14 7659 hpsa_hba_inquiry(h);
105a3dbc 7660 rc = hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
4a4384ce 7661 if (rc)
105a3dbc 7662 goto clean7;
8a98db73
SC
7663
7664 /* Monitor the controller for firmware lockups */
7665 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7666 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7667 schedule_delayed_work(&h->monitor_ctlr_work,
7668 h->heartbeat_sample_interval);
6636e7f4
DB
7669 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
7670 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7671 h->heartbeat_sample_interval);
88bf6d62 7672 return 0;
edd16368 7673
105a3dbc
RE
7674clean7: /* perf, sg, cmd, irq, pci, lockup, wq/aer/h */
7675 kfree(h->hba_inquiry_data);
7676 hpsa_free_performant_mode(h);
7677 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7678clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
33a2ffce 7679 hpsa_free_sg_chain_blocks(h);
105a3dbc 7680clean5: /* cmd, irq, pci, lockup, wq/aer/h */
2e9d1b36 7681 hpsa_free_cmd_pool(h);
105a3dbc 7682clean4: /* irq, pci, lockup, wq/aer/h */
ec501a18 7683 hpsa_free_irqs(h);
105a3dbc 7684clean3: /* pci, lockup, wq/aer/h */
195f2c65 7685 hpsa_free_pci_init(h);
105a3dbc
RE
7686clean2: /* lockup, wq/aer/h */
7687 if (h->lockup_detected) {
7688 free_percpu(h->lockup_detected);
7689 h->lockup_detected = NULL;
7690 }
7691clean1: /* wq/aer/h */
7692 if (h->resubmit_wq) {
080ef1cc 7693 destroy_workqueue(h->resubmit_wq);
105a3dbc
RE
7694 h->resubmit_wq = NULL;
7695 }
7696 if (h->rescan_ctlr_wq) {
6636e7f4 7697 destroy_workqueue(h->rescan_ctlr_wq);
105a3dbc
RE
7698 h->rescan_ctlr_wq = NULL;
7699 }
edd16368 7700 kfree(h);
ecd9aad4 7701 return rc;
edd16368
SC
7702}
7703
7704static void hpsa_flush_cache(struct ctlr_info *h)
7705{
7706 char *flush_buf;
7707 struct CommandList *c;
25163bd5 7708 int rc;
702890e3 7709
094963da 7710 if (unlikely(lockup_detected(h)))
702890e3 7711 return;
edd16368
SC
7712 flush_buf = kzalloc(4, GFP_KERNEL);
7713 if (!flush_buf)
7714 return;
7715
45fcb86e 7716 c = cmd_alloc(h);
bf43caf3 7717
a2dac136
SC
7718 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7719 RAID_CTLR_LUNID, TYPE_CMD)) {
7720 goto out;
7721 }
25163bd5
WS
7722 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
7723 PCI_DMA_TODEVICE, NO_TIMEOUT);
7724 if (rc)
7725 goto out;
edd16368 7726 if (c->err_info->CommandStatus != 0)
a2dac136 7727out:
edd16368
SC
7728 dev_warn(&h->pdev->dev,
7729 "error flushing cache on controller\n");
45fcb86e 7730 cmd_free(h, c);
edd16368
SC
7731 kfree(flush_buf);
7732}
7733
7734static void hpsa_shutdown(struct pci_dev *pdev)
7735{
7736 struct ctlr_info *h;
7737
7738 h = pci_get_drvdata(pdev);
7739 /* Turn board interrupts off and send the flush cache command
7740 * sendcmd will turn off interrupt, and send the flush...
7741 * To write all data in the battery backed cache to disks
7742 */
7743 hpsa_flush_cache(h);
7744 h->access.set_intr_mask(h, HPSA_INTR_OFF);
105a3dbc 7745 hpsa_free_irqs(h); /* init_one 4 */
cc64c817 7746 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
edd16368
SC
7747}
7748
6f039790 7749static void hpsa_free_device_info(struct ctlr_info *h)
55e14e76
SC
7750{
7751 int i;
7752
105a3dbc 7753 for (i = 0; i < h->ndevices; i++) {
55e14e76 7754 kfree(h->dev[i]);
105a3dbc
RE
7755 h->dev[i] = NULL;
7756 }
55e14e76
SC
7757}
7758
6f039790 7759static void hpsa_remove_one(struct pci_dev *pdev)
edd16368
SC
7760{
7761 struct ctlr_info *h;
8a98db73 7762 unsigned long flags;
edd16368
SC
7763
7764 if (pci_get_drvdata(pdev) == NULL) {
a0c12413 7765 dev_err(&pdev->dev, "unable to remove device\n");
edd16368
SC
7766 return;
7767 }
7768 h = pci_get_drvdata(pdev);
8a98db73
SC
7769
7770 /* Get rid of any controller monitoring work items */
7771 spin_lock_irqsave(&h->lock, flags);
7772 h->remove_in_progress = 1;
8a98db73 7773 spin_unlock_irqrestore(&h->lock, flags);
6636e7f4
DB
7774 cancel_delayed_work_sync(&h->monitor_ctlr_work);
7775 cancel_delayed_work_sync(&h->rescan_ctlr_work);
7776 destroy_workqueue(h->rescan_ctlr_wq);
7777 destroy_workqueue(h->resubmit_wq);
cc64c817 7778
105a3dbc 7779 /* includes hpsa_free_irqs - init_one 4 */
195f2c65 7780 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
edd16368 7781 hpsa_shutdown(pdev);
cc64c817 7782
105a3dbc
RE
7783 hpsa_free_device_info(h); /* scan */
7784
7785 hpsa_unregister_scsi(h); /* init_one "8" */
7786 kfree(h->hba_inquiry_data); /* init_one "8" */
7787 h->hba_inquiry_data = NULL; /* init_one "8" */
7788 hpsa_free_performant_mode(h); /* init_one 7 */
7789 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
7790 hpsa_free_cmd_pool(h); /* init_one 5 */
7791
7792 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
195f2c65
RE
7793
7794 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
105a3dbc 7795 hpsa_free_pci_init(h); /* init_one 3 */
195f2c65 7796
105a3dbc
RE
7797 free_percpu(h->lockup_detected); /* init_one 2 */
7798 h->lockup_detected = NULL; /* init_one 2 */
7799 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
7800 kfree(h); /* init_one 1 */
edd16368
SC
7801}
7802
7803static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7804 __attribute__((unused)) pm_message_t state)
7805{
7806 return -ENOSYS;
7807}
7808
7809static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7810{
7811 return -ENOSYS;
7812}
7813
7814static struct pci_driver hpsa_pci_driver = {
f79cfec6 7815 .name = HPSA,
edd16368 7816 .probe = hpsa_init_one,
6f039790 7817 .remove = hpsa_remove_one,
edd16368
SC
7818 .id_table = hpsa_pci_device_id, /* id_table */
7819 .shutdown = hpsa_shutdown,
7820 .suspend = hpsa_suspend,
7821 .resume = hpsa_resume,
7822};
7823
303932fd
DB
7824/* Fill in bucket_map[], given nsgs (the max number of
7825 * scatter gather elements supported) and bucket[],
7826 * which is an array of 8 integers. The bucket[] array
7827 * contains 8 different DMA transfer sizes (in 16
7828 * byte increments) which the controller uses to fetch
7829 * commands. This function fills in bucket_map[], which
7830 * maps a given number of scatter gather elements to one of
7831 * the 8 DMA transfer sizes. The point of it is to allow the
7832 * controller to only do as much DMA as needed to fetch the
7833 * command, with the DMA transfer size encoded in the lower
7834 * bits of the command address.
7835 */
7836static void calc_bucket_map(int bucket[], int num_buckets,
2b08b3e9 7837 int nsgs, int min_blocks, u32 *bucket_map)
303932fd
DB
7838{
7839 int i, j, b, size;
7840
303932fd
DB
7841 /* Note, bucket_map must have nsgs+1 entries. */
7842 for (i = 0; i <= nsgs; i++) {
7843 /* Compute size of a command with i SG entries */
e1f7de0c 7844 size = i + min_blocks;
303932fd
DB
7845 b = num_buckets; /* Assume the biggest bucket */
7846 /* Find the bucket that is just big enough */
e1f7de0c 7847 for (j = 0; j < num_buckets; j++) {
303932fd
DB
7848 if (bucket[j] >= size) {
7849 b = j;
7850 break;
7851 }
7852 }
7853 /* for a command with i SG entries, use bucket b. */
7854 bucket_map[i] = b;
7855 }
7856}
7857
105a3dbc
RE
7858/*
7859 * return -ENODEV on err, 0 on success (or no action)
7860 * allocates numerous items that must be freed later
7861 */
c706a795 7862static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
303932fd 7863{
6c311b57
SC
7864 int i;
7865 unsigned long register_value;
e1f7de0c
MG
7866 unsigned long transMethod = CFGTBL_Trans_Performant |
7867 (trans_support & CFGTBL_Trans_use_short_tags) |
b9af4937
SC
7868 CFGTBL_Trans_enable_directed_msix |
7869 (trans_support & (CFGTBL_Trans_io_accel1 |
7870 CFGTBL_Trans_io_accel2));
e1f7de0c 7871 struct access_method access = SA5_performant_access;
def342bd
SC
7872
7873 /* This is a bit complicated. There are 8 registers on
7874 * the controller which we write to to tell it 8 different
7875 * sizes of commands which there may be. It's a way of
7876 * reducing the DMA done to fetch each command. Encoded into
7877 * each command's tag are 3 bits which communicate to the controller
7878 * which of the eight sizes that command fits within. The size of
7879 * each command depends on how many scatter gather entries there are.
7880 * Each SG entry requires 16 bytes. The eight registers are programmed
7881 * with the number of 16-byte blocks a command of that size requires.
7882 * The smallest command possible requires 5 such 16 byte blocks.
d66ae08b 7883 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
def342bd
SC
7884 * blocks. Note, this only extends to the SG entries contained
7885 * within the command block, and does not extend to chained blocks
7886 * of SG elements. bft[] contains the eight values we write to
7887 * the registers. They are not evenly distributed, but have more
7888 * sizes for small commands, and fewer sizes for larger commands.
7889 */
d66ae08b 7890 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
b9af4937
SC
7891#define MIN_IOACCEL2_BFT_ENTRY 5
7892#define HPSA_IOACCEL2_HEADER_SZ 4
7893 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7894 13, 14, 15, 16, 17, 18, 19,
7895 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7896 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7897 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7898 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7899 16 * MIN_IOACCEL2_BFT_ENTRY);
7900 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
d66ae08b 7901 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
303932fd
DB
7902 /* 5 = 1 s/g entry or 4k
7903 * 6 = 2 s/g entry or 8k
7904 * 8 = 4 s/g entry or 16k
7905 * 10 = 6 s/g entry or 24k
7906 */
303932fd 7907
b3a52e79
SC
7908 /* If the controller supports either ioaccel method then
7909 * we can also use the RAID stack submit path that does not
7910 * perform the superfluous readl() after each command submission.
7911 */
7912 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7913 access = SA5_performant_access_no_read;
7914
303932fd 7915 /* Controller spec: zero out this buffer. */
072b0518
SC
7916 for (i = 0; i < h->nreply_queues; i++)
7917 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
303932fd 7918
d66ae08b
SC
7919 bft[7] = SG_ENTRIES_IN_CMD + 4;
7920 calc_bucket_map(bft, ARRAY_SIZE(bft),
e1f7de0c 7921 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
303932fd
DB
7922 for (i = 0; i < 8; i++)
7923 writel(bft[i], &h->transtable->BlockFetch[i]);
7924
7925 /* size of controller ring buffer */
7926 writel(h->max_commands, &h->transtable->RepQSize);
254f796b 7927 writel(h->nreply_queues, &h->transtable->RepQCount);
303932fd
DB
7928 writel(0, &h->transtable->RepQCtrAddrLow32);
7929 writel(0, &h->transtable->RepQCtrAddrHigh32);
254f796b
MG
7930
7931 for (i = 0; i < h->nreply_queues; i++) {
7932 writel(0, &h->transtable->RepQAddr[i].upper);
072b0518 7933 writel(h->reply_queue[i].busaddr,
254f796b
MG
7934 &h->transtable->RepQAddr[i].lower);
7935 }
7936
b9af4937 7937 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
e1f7de0c
MG
7938 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7939 /*
7940 * enable outbound interrupt coalescing in accelerator mode;
7941 */
7942 if (trans_support & CFGTBL_Trans_io_accel1) {
7943 access = SA5_ioaccel_mode1_access;
7944 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7945 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
c349775e
ST
7946 } else {
7947 if (trans_support & CFGTBL_Trans_io_accel2) {
7948 access = SA5_ioaccel_mode2_access;
7949 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7950 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7951 }
e1f7de0c 7952 }
303932fd 7953 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
c706a795
RE
7954 if (hpsa_wait_for_mode_change_ack(h)) {
7955 dev_err(&h->pdev->dev,
7956 "performant mode problem - doorbell timeout\n");
7957 return -ENODEV;
7958 }
303932fd
DB
7959 register_value = readl(&(h->cfgtable->TransportActive));
7960 if (!(register_value & CFGTBL_Trans_Performant)) {
050f7147
SC
7961 dev_err(&h->pdev->dev,
7962 "performant mode problem - transport not active\n");
c706a795 7963 return -ENODEV;
303932fd 7964 }
960a30e7 7965 /* Change the access methods to the performant access methods */
e1f7de0c
MG
7966 h->access = access;
7967 h->transMethod = transMethod;
7968
b9af4937
SC
7969 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7970 (trans_support & CFGTBL_Trans_io_accel2)))
c706a795 7971 return 0;
e1f7de0c 7972
b9af4937
SC
7973 if (trans_support & CFGTBL_Trans_io_accel1) {
7974 /* Set up I/O accelerator mode */
7975 for (i = 0; i < h->nreply_queues; i++) {
7976 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7977 h->reply_queue[i].current_entry =
7978 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7979 }
7980 bft[7] = h->ioaccel_maxsg + 8;
7981 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7982 h->ioaccel1_blockFetchTable);
e1f7de0c 7983
b9af4937 7984 /* initialize all reply queue entries to unused */
072b0518
SC
7985 for (i = 0; i < h->nreply_queues; i++)
7986 memset(h->reply_queue[i].head,
7987 (u8) IOACCEL_MODE1_REPLY_UNUSED,
7988 h->reply_queue_size);
e1f7de0c 7989
b9af4937
SC
7990 /* set all the constant fields in the accelerator command
7991 * frames once at init time to save CPU cycles later.
7992 */
7993 for (i = 0; i < h->nr_cmds; i++) {
7994 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7995
7996 cp->function = IOACCEL1_FUNCTION_SCSIIO;
7997 cp->err_info = (u32) (h->errinfo_pool_dhandle +
7998 (i * sizeof(struct ErrorInfo)));
7999 cp->err_info_len = sizeof(struct ErrorInfo);
8000 cp->sgl_offset = IOACCEL1_SGLOFFSET;
2b08b3e9
DB
8001 cp->host_context_flags =
8002 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
b9af4937
SC
8003 cp->timeout_sec = 0;
8004 cp->ReplyQueue = 0;
50a0decf 8005 cp->tag =
f2405db8 8006 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
50a0decf
SC
8007 cp->host_addr =
8008 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
b9af4937 8009 (i * sizeof(struct io_accel1_cmd)));
b9af4937
SC
8010 }
8011 } else if (trans_support & CFGTBL_Trans_io_accel2) {
8012 u64 cfg_offset, cfg_base_addr_index;
8013 u32 bft2_offset, cfg_base_addr;
8014 int rc;
8015
8016 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8017 &cfg_base_addr_index, &cfg_offset);
8018 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8019 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8020 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8021 4, h->ioaccel2_blockFetchTable);
8022 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8023 BUILD_BUG_ON(offsetof(struct CfgTable,
8024 io_accel_request_size_offset) != 0xb8);
8025 h->ioaccel2_bft2_regs =
8026 remap_pci_mem(pci_resource_start(h->pdev,
8027 cfg_base_addr_index) +
8028 cfg_offset + bft2_offset,
8029 ARRAY_SIZE(bft2) *
8030 sizeof(*h->ioaccel2_bft2_regs));
8031 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8032 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
e1f7de0c 8033 }
b9af4937 8034 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
c706a795
RE
8035 if (hpsa_wait_for_mode_change_ack(h)) {
8036 dev_err(&h->pdev->dev,
8037 "performant mode problem - enabling ioaccel mode\n");
8038 return -ENODEV;
8039 }
8040 return 0;
e1f7de0c
MG
8041}
8042
1fb7c98a
RE
8043/* Free ioaccel1 mode command blocks and block fetch table */
8044static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8045{
105a3dbc 8046 if (h->ioaccel_cmd_pool) {
1fb7c98a
RE
8047 pci_free_consistent(h->pdev,
8048 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8049 h->ioaccel_cmd_pool,
8050 h->ioaccel_cmd_pool_dhandle);
105a3dbc
RE
8051 h->ioaccel_cmd_pool = NULL;
8052 h->ioaccel_cmd_pool_dhandle = 0;
8053 }
1fb7c98a 8054 kfree(h->ioaccel1_blockFetchTable);
105a3dbc 8055 h->ioaccel1_blockFetchTable = NULL;
1fb7c98a
RE
8056}
8057
d37ffbe4
RE
8058/* Allocate ioaccel1 mode command blocks and block fetch table */
8059static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
e1f7de0c 8060{
283b4a9b
SC
8061 h->ioaccel_maxsg =
8062 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8063 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8064 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8065
e1f7de0c
MG
8066 /* Command structures must be aligned on a 128-byte boundary
8067 * because the 7 lower bits of the address are used by the
8068 * hardware.
8069 */
e1f7de0c
MG
8070 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8071 IOACCEL1_COMMANDLIST_ALIGNMENT);
8072 h->ioaccel_cmd_pool =
8073 pci_alloc_consistent(h->pdev,
8074 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8075 &(h->ioaccel_cmd_pool_dhandle));
8076
8077 h->ioaccel1_blockFetchTable =
283b4a9b 8078 kmalloc(((h->ioaccel_maxsg + 1) *
e1f7de0c
MG
8079 sizeof(u32)), GFP_KERNEL);
8080
8081 if ((h->ioaccel_cmd_pool == NULL) ||
8082 (h->ioaccel1_blockFetchTable == NULL))
8083 goto clean_up;
8084
8085 memset(h->ioaccel_cmd_pool, 0,
8086 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8087 return 0;
8088
8089clean_up:
1fb7c98a 8090 hpsa_free_ioaccel1_cmd_and_bft(h);
2dd02d74 8091 return -ENOMEM;
6c311b57
SC
8092}
8093
1fb7c98a
RE
8094/* Free ioaccel2 mode command blocks and block fetch table */
8095static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8096{
d9a729f3
WS
8097 hpsa_free_ioaccel2_sg_chain_blocks(h);
8098
105a3dbc 8099 if (h->ioaccel2_cmd_pool) {
1fb7c98a
RE
8100 pci_free_consistent(h->pdev,
8101 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8102 h->ioaccel2_cmd_pool,
8103 h->ioaccel2_cmd_pool_dhandle);
105a3dbc
RE
8104 h->ioaccel2_cmd_pool = NULL;
8105 h->ioaccel2_cmd_pool_dhandle = 0;
8106 }
1fb7c98a 8107 kfree(h->ioaccel2_blockFetchTable);
105a3dbc 8108 h->ioaccel2_blockFetchTable = NULL;
1fb7c98a
RE
8109}
8110
d37ffbe4
RE
8111/* Allocate ioaccel2 mode command blocks and block fetch table */
8112static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
aca9012a 8113{
d9a729f3
WS
8114 int rc;
8115
aca9012a
SC
8116 /* Allocate ioaccel2 mode command blocks and block fetch table */
8117
8118 h->ioaccel_maxsg =
8119 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8120 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8121 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8122
aca9012a
SC
8123 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8124 IOACCEL2_COMMANDLIST_ALIGNMENT);
8125 h->ioaccel2_cmd_pool =
8126 pci_alloc_consistent(h->pdev,
8127 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8128 &(h->ioaccel2_cmd_pool_dhandle));
8129
8130 h->ioaccel2_blockFetchTable =
8131 kmalloc(((h->ioaccel_maxsg + 1) *
8132 sizeof(u32)), GFP_KERNEL);
8133
8134 if ((h->ioaccel2_cmd_pool == NULL) ||
d9a729f3
WS
8135 (h->ioaccel2_blockFetchTable == NULL)) {
8136 rc = -ENOMEM;
8137 goto clean_up;
8138 }
8139
8140 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
8141 if (rc)
aca9012a
SC
8142 goto clean_up;
8143
8144 memset(h->ioaccel2_cmd_pool, 0,
8145 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
8146 return 0;
8147
8148clean_up:
1fb7c98a 8149 hpsa_free_ioaccel2_cmd_and_bft(h);
d9a729f3 8150 return rc;
aca9012a
SC
8151}
8152
105a3dbc
RE
8153/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8154static void hpsa_free_performant_mode(struct ctlr_info *h)
8155{
8156 kfree(h->blockFetchTable);
8157 h->blockFetchTable = NULL;
8158 hpsa_free_reply_queues(h);
8159 hpsa_free_ioaccel1_cmd_and_bft(h);
8160 hpsa_free_ioaccel2_cmd_and_bft(h);
8161}
8162
8163/* return -ENODEV on error, 0 on success (or no action)
8164 * allocates numerous items that must be freed later
8165 */
8166static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
6c311b57
SC
8167{
8168 u32 trans_support;
e1f7de0c
MG
8169 unsigned long transMethod = CFGTBL_Trans_Performant |
8170 CFGTBL_Trans_use_short_tags;
105a3dbc 8171 int i, rc;
6c311b57 8172
02ec19c8 8173 if (hpsa_simple_mode)
105a3dbc 8174 return 0;
02ec19c8 8175
67c99a72 8176 trans_support = readl(&(h->cfgtable->TransportSupport));
8177 if (!(trans_support & PERFORMANT_MODE))
105a3dbc 8178 return 0;
67c99a72 8179
e1f7de0c
MG
8180 /* Check for I/O accelerator mode support */
8181 if (trans_support & CFGTBL_Trans_io_accel1) {
8182 transMethod |= CFGTBL_Trans_io_accel1 |
8183 CFGTBL_Trans_enable_directed_msix;
105a3dbc
RE
8184 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
8185 if (rc)
8186 return rc;
8187 } else if (trans_support & CFGTBL_Trans_io_accel2) {
8188 transMethod |= CFGTBL_Trans_io_accel2 |
aca9012a 8189 CFGTBL_Trans_enable_directed_msix;
105a3dbc
RE
8190 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
8191 if (rc)
8192 return rc;
e1f7de0c
MG
8193 }
8194
eee0f03a 8195 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
cba3d38b 8196 hpsa_get_max_perf_mode_cmds(h);
6c311b57 8197 /* Performant mode ring buffer and supporting data structures */
072b0518 8198 h->reply_queue_size = h->max_commands * sizeof(u64);
6c311b57 8199
254f796b 8200 for (i = 0; i < h->nreply_queues; i++) {
072b0518
SC
8201 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
8202 h->reply_queue_size,
8203 &(h->reply_queue[i].busaddr));
105a3dbc
RE
8204 if (!h->reply_queue[i].head) {
8205 rc = -ENOMEM;
8206 goto clean1; /* rq, ioaccel */
8207 }
254f796b
MG
8208 h->reply_queue[i].size = h->max_commands;
8209 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
8210 h->reply_queue[i].current_entry = 0;
8211 }
8212
6c311b57 8213 /* Need a block fetch table for performant mode */
d66ae08b 8214 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
6c311b57 8215 sizeof(u32)), GFP_KERNEL);
105a3dbc
RE
8216 if (!h->blockFetchTable) {
8217 rc = -ENOMEM;
8218 goto clean1; /* rq, ioaccel */
8219 }
6c311b57 8220
105a3dbc
RE
8221 rc = hpsa_enter_performant_mode(h, trans_support);
8222 if (rc)
8223 goto clean2; /* bft, rq, ioaccel */
8224 return 0;
303932fd 8225
105a3dbc 8226clean2: /* bft, rq, ioaccel */
303932fd 8227 kfree(h->blockFetchTable);
105a3dbc
RE
8228 h->blockFetchTable = NULL;
8229clean1: /* rq, ioaccel */
8230 hpsa_free_reply_queues(h);
8231 hpsa_free_ioaccel1_cmd_and_bft(h);
8232 hpsa_free_ioaccel2_cmd_and_bft(h);
8233 return rc;
303932fd
DB
8234}
8235
23100dd9 8236static int is_accelerated_cmd(struct CommandList *c)
76438d08 8237{
23100dd9
SC
8238 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
8239}
8240
8241static void hpsa_drain_accel_commands(struct ctlr_info *h)
8242{
8243 struct CommandList *c = NULL;
f2405db8 8244 int i, accel_cmds_out;
281a7fd0 8245 int refcount;
76438d08 8246
f2405db8 8247 do { /* wait for all outstanding ioaccel commands to drain out */
23100dd9 8248 accel_cmds_out = 0;
f2405db8 8249 for (i = 0; i < h->nr_cmds; i++) {
f2405db8 8250 c = h->cmd_pool + i;
281a7fd0
WS
8251 refcount = atomic_inc_return(&c->refcount);
8252 if (refcount > 1) /* Command is allocated */
8253 accel_cmds_out += is_accelerated_cmd(c);
8254 cmd_free(h, c);
f2405db8 8255 }
23100dd9 8256 if (accel_cmds_out <= 0)
281a7fd0 8257 break;
76438d08
SC
8258 msleep(100);
8259 } while (1);
8260}
8261
edd16368
SC
8262/*
8263 * This is it. Register the PCI driver information for the cards we control
8264 * the OS will call our registered routines when it finds one of our cards.
8265 */
8266static int __init hpsa_init(void)
8267{
31468401 8268 return pci_register_driver(&hpsa_pci_driver);
edd16368
SC
8269}
8270
8271static void __exit hpsa_cleanup(void)
8272{
8273 pci_unregister_driver(&hpsa_pci_driver);
edd16368
SC
8274}
8275
e1f7de0c
MG
8276static void __attribute__((unused)) verify_offsets(void)
8277{
dd0e19f3
ST
8278#define VERIFY_OFFSET(member, offset) \
8279 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8280
8281 VERIFY_OFFSET(structure_size, 0);
8282 VERIFY_OFFSET(volume_blk_size, 4);
8283 VERIFY_OFFSET(volume_blk_cnt, 8);
8284 VERIFY_OFFSET(phys_blk_shift, 16);
8285 VERIFY_OFFSET(parity_rotation_shift, 17);
8286 VERIFY_OFFSET(strip_size, 18);
8287 VERIFY_OFFSET(disk_starting_blk, 20);
8288 VERIFY_OFFSET(disk_blk_cnt, 28);
8289 VERIFY_OFFSET(data_disks_per_row, 36);
8290 VERIFY_OFFSET(metadata_disks_per_row, 38);
8291 VERIFY_OFFSET(row_cnt, 40);
8292 VERIFY_OFFSET(layout_map_count, 42);
8293 VERIFY_OFFSET(flags, 44);
8294 VERIFY_OFFSET(dekindex, 46);
8295 /* VERIFY_OFFSET(reserved, 48 */
8296 VERIFY_OFFSET(data, 64);
8297
8298#undef VERIFY_OFFSET
8299
b66cc250
MM
8300#define VERIFY_OFFSET(member, offset) \
8301 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8302
8303 VERIFY_OFFSET(IU_type, 0);
8304 VERIFY_OFFSET(direction, 1);
8305 VERIFY_OFFSET(reply_queue, 2);
8306 /* VERIFY_OFFSET(reserved1, 3); */
8307 VERIFY_OFFSET(scsi_nexus, 4);
8308 VERIFY_OFFSET(Tag, 8);
8309 VERIFY_OFFSET(cdb, 16);
8310 VERIFY_OFFSET(cciss_lun, 32);
8311 VERIFY_OFFSET(data_len, 40);
8312 VERIFY_OFFSET(cmd_priority_task_attr, 44);
8313 VERIFY_OFFSET(sg_count, 45);
8314 /* VERIFY_OFFSET(reserved3 */
8315 VERIFY_OFFSET(err_ptr, 48);
8316 VERIFY_OFFSET(err_len, 56);
8317 /* VERIFY_OFFSET(reserved4 */
8318 VERIFY_OFFSET(sg, 64);
8319
8320#undef VERIFY_OFFSET
8321
e1f7de0c
MG
8322#define VERIFY_OFFSET(member, offset) \
8323 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8324
8325 VERIFY_OFFSET(dev_handle, 0x00);
8326 VERIFY_OFFSET(reserved1, 0x02);
8327 VERIFY_OFFSET(function, 0x03);
8328 VERIFY_OFFSET(reserved2, 0x04);
8329 VERIFY_OFFSET(err_info, 0x0C);
8330 VERIFY_OFFSET(reserved3, 0x10);
8331 VERIFY_OFFSET(err_info_len, 0x12);
8332 VERIFY_OFFSET(reserved4, 0x13);
8333 VERIFY_OFFSET(sgl_offset, 0x14);
8334 VERIFY_OFFSET(reserved5, 0x15);
8335 VERIFY_OFFSET(transfer_len, 0x1C);
8336 VERIFY_OFFSET(reserved6, 0x20);
8337 VERIFY_OFFSET(io_flags, 0x24);
8338 VERIFY_OFFSET(reserved7, 0x26);
8339 VERIFY_OFFSET(LUN, 0x34);
8340 VERIFY_OFFSET(control, 0x3C);
8341 VERIFY_OFFSET(CDB, 0x40);
8342 VERIFY_OFFSET(reserved8, 0x50);
8343 VERIFY_OFFSET(host_context_flags, 0x60);
8344 VERIFY_OFFSET(timeout_sec, 0x62);
8345 VERIFY_OFFSET(ReplyQueue, 0x64);
8346 VERIFY_OFFSET(reserved9, 0x65);
50a0decf 8347 VERIFY_OFFSET(tag, 0x68);
e1f7de0c
MG
8348 VERIFY_OFFSET(host_addr, 0x70);
8349 VERIFY_OFFSET(CISS_LUN, 0x78);
8350 VERIFY_OFFSET(SG, 0x78 + 8);
8351#undef VERIFY_OFFSET
8352}
8353
edd16368
SC
8354module_init(hpsa_init);
8355module_exit(hpsa_cleanup);