]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/scsi/hpsa.c
scsi: hpsa: correct resets on retried commands
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / hpsa.c
CommitLineData
edd16368
SC
1/*
2 * Disk Array driver for HP Smart Array SAS controllers
94c7bc31 3 * Copyright 2016 Microsemi Corporation
1358f6dc
DB
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
edd16368
SC
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 *
94c7bc31 16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
edd16368
SC
17 *
18 */
19
20#include <linux/module.h>
21#include <linux/interrupt.h>
22#include <linux/types.h>
23#include <linux/pci.h>
e5a44df8 24#include <linux/pci-aspm.h>
edd16368
SC
25#include <linux/kernel.h>
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/fs.h>
29#include <linux/timer.h>
edd16368
SC
30#include <linux/init.h>
31#include <linux/spinlock.h>
edd16368
SC
32#include <linux/compat.h>
33#include <linux/blktrace_api.h>
34#include <linux/uaccess.h>
35#include <linux/io.h>
36#include <linux/dma-mapping.h>
37#include <linux/completion.h>
38#include <linux/moduleparam.h>
39#include <scsi/scsi.h>
40#include <scsi/scsi_cmnd.h>
41#include <scsi/scsi_device.h>
42#include <scsi/scsi_host.h>
667e23d4 43#include <scsi/scsi_tcq.h>
9437ac43 44#include <scsi/scsi_eh.h>
d04e62b9 45#include <scsi/scsi_transport_sas.h>
73153fe5 46#include <scsi/scsi_dbg.h>
edd16368
SC
47#include <linux/cciss_ioctl.h>
48#include <linux/string.h>
49#include <linux/bitmap.h>
60063497 50#include <linux/atomic.h>
a0c12413 51#include <linux/jiffies.h>
42a91641 52#include <linux/percpu-defs.h>
094963da 53#include <linux/percpu.h>
2b08b3e9 54#include <asm/unaligned.h>
283b4a9b 55#include <asm/div64.h>
edd16368
SC
56#include "hpsa_cmd.h"
57#include "hpsa.h"
58
ec2c3aa9
DB
59/*
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
62 */
5765d180 63#define HPSA_DRIVER_VERSION "3.4.18-0"
edd16368 64#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
f79cfec6 65#define HPSA "hpsa"
edd16368 66
007e7aa9
RE
67/* How long to wait for CISS doorbell communication */
68#define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69#define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70#define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71#define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
edd16368
SC
72#define MAX_IOCTL_CONFIG_WAIT 1000
73
74/*define how many times we will try a command because of bus resets */
75#define MAX_CMD_RETRIES 3
76
77/* Embedded module documentation macros - see modules.h */
78MODULE_AUTHOR("Hewlett-Packard Company");
79MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 HPSA_DRIVER_VERSION);
81MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82MODULE_VERSION(HPSA_DRIVER_VERSION);
83MODULE_LICENSE("GPL");
84
85static int hpsa_allow_any;
86module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87MODULE_PARM_DESC(hpsa_allow_any,
88 "Allow hpsa driver to access unknown HP Smart Array hardware");
02ec19c8
SC
89static int hpsa_simple_mode;
90module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91MODULE_PARM_DESC(hpsa_simple_mode,
92 "Use 'simple mode' rather than 'performant mode'");
edd16368
SC
93
94/* define the PCI info for the cards we can control */
95static const struct pci_device_id hpsa_pci_device_id[] = {
edd16368
SC
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
163dbcd8
MM
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
f8b01eb9 103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
9143a961 104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
7f1974a7 111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920},
fe0c9610
MM
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
7f1974a7 116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925},
fe0c9610
MM
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
97b9f53d
MM
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
3b7a45e5 129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
97b9f53d
MM
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
3b7a45e5
JH
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
136 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
137 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
fdfa4b6d 138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
cbb47dcb
DB
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
142 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
143 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
8e616a5e
SC
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
146 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
147 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
148 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
7c03b870 149 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
6798cc0a 150 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
edd16368
SC
151 {0,}
152};
153
154MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155
156/* board_id = Subsystem Device ID & Vendor ID
157 * product = Marketing Name for the board
158 * access = Address of the struct of function pointers
159 */
160static struct board_type products[] = {
edd16368
SC
161 {0x3241103C, "Smart Array P212", &SA5_access},
162 {0x3243103C, "Smart Array P410", &SA5_access},
163 {0x3245103C, "Smart Array P410i", &SA5_access},
164 {0x3247103C, "Smart Array P411", &SA5_access},
165 {0x3249103C, "Smart Array P812", &SA5_access},
163dbcd8
MM
166 {0x324A103C, "Smart Array P712m", &SA5_access},
167 {0x324B103C, "Smart Array P711m", &SA5_access},
7d2cce58 168 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
fe0c9610
MM
169 {0x3350103C, "Smart Array P222", &SA5_access},
170 {0x3351103C, "Smart Array P420", &SA5_access},
171 {0x3352103C, "Smart Array P421", &SA5_access},
172 {0x3353103C, "Smart Array P822", &SA5_access},
173 {0x3354103C, "Smart Array P420i", &SA5_access},
174 {0x3355103C, "Smart Array P220i", &SA5_access},
175 {0x3356103C, "Smart Array P721m", &SA5_access},
7f1974a7 176 {0x1920103C, "Smart Array P430i", &SA5_access},
1fd6c8e3
MM
177 {0x1921103C, "Smart Array P830i", &SA5_access},
178 {0x1922103C, "Smart Array P430", &SA5_access},
179 {0x1923103C, "Smart Array P431", &SA5_access},
180 {0x1924103C, "Smart Array P830", &SA5_access},
7f1974a7 181 {0x1925103C, "Smart Array P831", &SA5_access},
1fd6c8e3
MM
182 {0x1926103C, "Smart Array P731m", &SA5_access},
183 {0x1928103C, "Smart Array P230i", &SA5_access},
184 {0x1929103C, "Smart Array P530", &SA5_access},
27fb8137
DB
185 {0x21BD103C, "Smart Array P244br", &SA5_access},
186 {0x21BE103C, "Smart Array P741m", &SA5_access},
187 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
188 {0x21C0103C, "Smart Array P440ar", &SA5_access},
c8ae0ab1 189 {0x21C1103C, "Smart Array P840ar", &SA5_access},
27fb8137
DB
190 {0x21C2103C, "Smart Array P440", &SA5_access},
191 {0x21C3103C, "Smart Array P441", &SA5_access},
97b9f53d 192 {0x21C4103C, "Smart Array", &SA5_access},
27fb8137
DB
193 {0x21C5103C, "Smart Array P841", &SA5_access},
194 {0x21C6103C, "Smart HBA H244br", &SA5_access},
195 {0x21C7103C, "Smart HBA H240", &SA5_access},
196 {0x21C8103C, "Smart HBA H241", &SA5_access},
97b9f53d 197 {0x21C9103C, "Smart Array", &SA5_access},
27fb8137
DB
198 {0x21CA103C, "Smart Array P246br", &SA5_access},
199 {0x21CB103C, "Smart Array P840", &SA5_access},
3b7a45e5
JH
200 {0x21CC103C, "Smart Array", &SA5_access},
201 {0x21CD103C, "Smart Array", &SA5_access},
27fb8137 202 {0x21CE103C, "Smart HBA", &SA5_access},
fdfa4b6d 203 {0x05809005, "SmartHBA-SA", &SA5_access},
cbb47dcb
DB
204 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
205 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
206 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
207 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
208 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
8e616a5e
SC
209 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
210 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
211 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
212 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
213 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
edd16368
SC
214 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
215};
216
d04e62b9
KB
217static struct scsi_transport_template *hpsa_sas_transport_template;
218static int hpsa_add_sas_host(struct ctlr_info *h);
219static void hpsa_delete_sas_host(struct ctlr_info *h);
220static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
221 struct hpsa_scsi_dev_t *device);
222static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
223static struct hpsa_scsi_dev_t
224 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
225 struct sas_rphy *rphy);
226
a58e7e53
WS
227#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
228static const struct scsi_cmnd hpsa_cmd_busy;
229#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
230static const struct scsi_cmnd hpsa_cmd_idle;
edd16368
SC
231static int number_of_controllers;
232
10f66018
SC
233static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
234static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
42a91641 235static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
edd16368
SC
236
237#ifdef CONFIG_COMPAT
42a91641
DB
238static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
239 void __user *arg);
edd16368
SC
240#endif
241
242static void cmd_free(struct ctlr_info *h, struct CommandList *c);
edd16368 243static struct CommandList *cmd_alloc(struct ctlr_info *h);
73153fe5
WS
244static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
245static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
246 struct scsi_cmnd *scmd);
a2dac136 247static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
b7bb24eb 248 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
edd16368 249 int cmd_type);
2c143342 250static void hpsa_free_cmd_pool(struct ctlr_info *h);
b7bb24eb 251#define VPD_PAGE (1 << 8)
b48d9804 252#define HPSA_SIMPLE_ERROR_BITS 0x03
edd16368 253
f281233d 254static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
a08a8471
SC
255static void hpsa_scan_start(struct Scsi_Host *);
256static int hpsa_scan_finished(struct Scsi_Host *sh,
257 unsigned long elapsed_time);
7c0a0229 258static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
edd16368
SC
259
260static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
75167d2c 261static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
edd16368 262static int hpsa_slave_alloc(struct scsi_device *sdev);
41ce4c35 263static int hpsa_slave_configure(struct scsi_device *sdev);
edd16368
SC
264static void hpsa_slave_destroy(struct scsi_device *sdev);
265
8aa60681 266static void hpsa_update_scsi_devices(struct ctlr_info *h);
edd16368
SC
267static int check_for_unit_attention(struct ctlr_info *h,
268 struct CommandList *c);
269static void check_ioctl_unit_attention(struct ctlr_info *h,
270 struct CommandList *c);
303932fd
DB
271/* performant mode helper functions */
272static void calc_bucket_map(int *bucket, int num_buckets,
2b08b3e9 273 int nsgs, int min_blocks, u32 *bucket_map);
105a3dbc
RE
274static void hpsa_free_performant_mode(struct ctlr_info *h);
275static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
254f796b 276static inline u32 next_command(struct ctlr_info *h, u8 q);
6f039790
GKH
277static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
278 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
279 u64 *cfg_offset);
280static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
281 unsigned long *memory_bar);
282static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
bfd7546c
DB
283static int wait_for_device_to_become_ready(struct ctlr_info *h,
284 unsigned char lunaddr[],
285 int reply_queue);
6f039790
GKH
286static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
287 int wait_for_ready);
75167d2c 288static inline void finish_cmd(struct CommandList *c);
c706a795 289static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
fe5389c8
SC
290#define BOARD_NOT_READY 0
291#define BOARD_READY 1
23100dd9 292static void hpsa_drain_accel_commands(struct ctlr_info *h);
76438d08 293static void hpsa_flush_cache(struct ctlr_info *h);
c349775e
ST
294static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
295 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 296 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
080ef1cc 297static void hpsa_command_resubmit_worker(struct work_struct *work);
25163bd5
WS
298static u32 lockup_detected(struct ctlr_info *h);
299static int detect_controller_lockup(struct ctlr_info *h);
c2adae44 300static void hpsa_disable_rld_caching(struct ctlr_info *h);
d04e62b9
KB
301static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
302 struct ReportExtendedLUNdata *buf, int bufsize);
8383278d
ST
303static bool hpsa_vpd_page_supported(struct ctlr_info *h,
304 unsigned char scsi3addr[], u8 page);
34592254 305static int hpsa_luns_changed(struct ctlr_info *h);
ba74fdc4
DB
306static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
307 struct hpsa_scsi_dev_t *dev,
308 unsigned char *scsi3addr);
edd16368 309
edd16368
SC
310static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
311{
312 unsigned long *priv = shost_priv(sdev->host);
313 return (struct ctlr_info *) *priv;
314}
315
a23513e8
SC
316static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
317{
318 unsigned long *priv = shost_priv(sh);
319 return (struct ctlr_info *) *priv;
320}
321
a58e7e53
WS
322static inline bool hpsa_is_cmd_idle(struct CommandList *c)
323{
324 return c->scsi_cmd == SCSI_CMD_IDLE;
325}
326
d604f533
WS
327static inline bool hpsa_is_pending_event(struct CommandList *c)
328{
329 return c->abort_pending || c->reset_pending;
330}
331
9437ac43
SC
332/* extract sense key, asc, and ascq from sense data. -1 means invalid. */
333static void decode_sense_data(const u8 *sense_data, int sense_data_len,
334 u8 *sense_key, u8 *asc, u8 *ascq)
335{
336 struct scsi_sense_hdr sshdr;
337 bool rc;
338
339 *sense_key = -1;
340 *asc = -1;
341 *ascq = -1;
342
343 if (sense_data_len < 1)
344 return;
345
346 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
347 if (rc) {
348 *sense_key = sshdr.sense_key;
349 *asc = sshdr.asc;
350 *ascq = sshdr.ascq;
351 }
352}
353
edd16368
SC
354static int check_for_unit_attention(struct ctlr_info *h,
355 struct CommandList *c)
356{
9437ac43
SC
357 u8 sense_key, asc, ascq;
358 int sense_len;
359
360 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
361 sense_len = sizeof(c->err_info->SenseInfo);
362 else
363 sense_len = c->err_info->SenseLen;
364
365 decode_sense_data(c->err_info->SenseInfo, sense_len,
366 &sense_key, &asc, &ascq);
81c27557 367 if (sense_key != UNIT_ATTENTION || asc == 0xff)
edd16368
SC
368 return 0;
369
9437ac43 370 switch (asc) {
edd16368 371 case STATE_CHANGED:
9437ac43 372 dev_warn(&h->pdev->dev,
2946e82b
RE
373 "%s: a state change detected, command retried\n",
374 h->devname);
edd16368
SC
375 break;
376 case LUN_FAILED:
7f73695a 377 dev_warn(&h->pdev->dev,
2946e82b 378 "%s: LUN failure detected\n", h->devname);
edd16368
SC
379 break;
380 case REPORT_LUNS_CHANGED:
7f73695a 381 dev_warn(&h->pdev->dev,
2946e82b 382 "%s: report LUN data changed\n", h->devname);
edd16368 383 /*
4f4eb9f1
ST
384 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
385 * target (array) devices.
edd16368
SC
386 */
387 break;
388 case POWER_OR_RESET:
2946e82b
RE
389 dev_warn(&h->pdev->dev,
390 "%s: a power on or device reset detected\n",
391 h->devname);
edd16368
SC
392 break;
393 case UNIT_ATTENTION_CLEARED:
2946e82b
RE
394 dev_warn(&h->pdev->dev,
395 "%s: unit attention cleared by another initiator\n",
396 h->devname);
edd16368
SC
397 break;
398 default:
2946e82b
RE
399 dev_warn(&h->pdev->dev,
400 "%s: unknown unit attention detected\n",
401 h->devname);
edd16368
SC
402 break;
403 }
404 return 1;
405}
406
852af20a
MB
407static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
408{
409 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
410 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
411 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
412 return 0;
413 dev_warn(&h->pdev->dev, HPSA "device busy");
414 return 1;
415}
416
e985c58f
SC
417static u32 lockup_detected(struct ctlr_info *h);
418static ssize_t host_show_lockup_detected(struct device *dev,
419 struct device_attribute *attr, char *buf)
420{
421 int ld;
422 struct ctlr_info *h;
423 struct Scsi_Host *shost = class_to_shost(dev);
424
425 h = shost_to_hba(shost);
426 ld = lockup_detected(h);
427
428 return sprintf(buf, "ld=%d\n", ld);
429}
430
da0697bd
ST
431static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
432 struct device_attribute *attr,
433 const char *buf, size_t count)
434{
435 int status, len;
436 struct ctlr_info *h;
437 struct Scsi_Host *shost = class_to_shost(dev);
438 char tmpbuf[10];
439
440 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
441 return -EACCES;
442 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
443 strncpy(tmpbuf, buf, len);
444 tmpbuf[len] = '\0';
445 if (sscanf(tmpbuf, "%d", &status) != 1)
446 return -EINVAL;
447 h = shost_to_hba(shost);
448 h->acciopath_status = !!status;
449 dev_warn(&h->pdev->dev,
450 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
451 h->acciopath_status ? "enabled" : "disabled");
452 return count;
453}
454
2ba8bfc8
SC
455static ssize_t host_store_raid_offload_debug(struct device *dev,
456 struct device_attribute *attr,
457 const char *buf, size_t count)
458{
459 int debug_level, len;
460 struct ctlr_info *h;
461 struct Scsi_Host *shost = class_to_shost(dev);
462 char tmpbuf[10];
463
464 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
465 return -EACCES;
466 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
467 strncpy(tmpbuf, buf, len);
468 tmpbuf[len] = '\0';
469 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
470 return -EINVAL;
471 if (debug_level < 0)
472 debug_level = 0;
473 h = shost_to_hba(shost);
474 h->raid_offload_debug = debug_level;
475 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
476 h->raid_offload_debug);
477 return count;
478}
479
edd16368
SC
480static ssize_t host_store_rescan(struct device *dev,
481 struct device_attribute *attr,
482 const char *buf, size_t count)
483{
484 struct ctlr_info *h;
485 struct Scsi_Host *shost = class_to_shost(dev);
a23513e8 486 h = shost_to_hba(shost);
31468401 487 hpsa_scan_start(h->scsi_host);
edd16368
SC
488 return count;
489}
490
d28ce020
SC
491static ssize_t host_show_firmware_revision(struct device *dev,
492 struct device_attribute *attr, char *buf)
493{
494 struct ctlr_info *h;
495 struct Scsi_Host *shost = class_to_shost(dev);
496 unsigned char *fwrev;
497
498 h = shost_to_hba(shost);
499 if (!h->hba_inquiry_data)
500 return 0;
501 fwrev = &h->hba_inquiry_data[32];
502 return snprintf(buf, 20, "%c%c%c%c\n",
503 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
504}
505
94a13649
SC
506static ssize_t host_show_commands_outstanding(struct device *dev,
507 struct device_attribute *attr, char *buf)
508{
509 struct Scsi_Host *shost = class_to_shost(dev);
510 struct ctlr_info *h = shost_to_hba(shost);
511
0cbf768e
SC
512 return snprintf(buf, 20, "%d\n",
513 atomic_read(&h->commands_outstanding));
94a13649
SC
514}
515
745a7a25
SC
516static ssize_t host_show_transport_mode(struct device *dev,
517 struct device_attribute *attr, char *buf)
518{
519 struct ctlr_info *h;
520 struct Scsi_Host *shost = class_to_shost(dev);
521
522 h = shost_to_hba(shost);
523 return snprintf(buf, 20, "%s\n",
960a30e7 524 h->transMethod & CFGTBL_Trans_Performant ?
745a7a25
SC
525 "performant" : "simple");
526}
527
da0697bd
ST
528static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
529 struct device_attribute *attr, char *buf)
530{
531 struct ctlr_info *h;
532 struct Scsi_Host *shost = class_to_shost(dev);
533
534 h = shost_to_hba(shost);
535 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
536 (h->acciopath_status == 1) ? "enabled" : "disabled");
537}
538
46380786 539/* List of controllers which cannot be hard reset on kexec with reset_devices */
941b1cda
SC
540static u32 unresettable_controller[] = {
541 0x324a103C, /* Smart Array P712m */
9b5c48c2 542 0x324b103C, /* Smart Array P711m */
941b1cda
SC
543 0x3223103C, /* Smart Array P800 */
544 0x3234103C, /* Smart Array P400 */
545 0x3235103C, /* Smart Array P400i */
546 0x3211103C, /* Smart Array E200i */
547 0x3212103C, /* Smart Array E200 */
548 0x3213103C, /* Smart Array E200i */
549 0x3214103C, /* Smart Array E200i */
550 0x3215103C, /* Smart Array E200i */
551 0x3237103C, /* Smart Array E500 */
552 0x323D103C, /* Smart Array P700m */
7af0abbc 553 0x40800E11, /* Smart Array 5i */
941b1cda
SC
554 0x409C0E11, /* Smart Array 6400 */
555 0x409D0E11, /* Smart Array 6400 EM */
5a4f934e
TH
556 0x40700E11, /* Smart Array 5300 */
557 0x40820E11, /* Smart Array 532 */
558 0x40830E11, /* Smart Array 5312 */
559 0x409A0E11, /* Smart Array 641 */
560 0x409B0E11, /* Smart Array 642 */
561 0x40910E11, /* Smart Array 6i */
941b1cda
SC
562};
563
46380786
SC
564/* List of controllers which cannot even be soft reset */
565static u32 soft_unresettable_controller[] = {
7af0abbc 566 0x40800E11, /* Smart Array 5i */
5a4f934e
TH
567 0x40700E11, /* Smart Array 5300 */
568 0x40820E11, /* Smart Array 532 */
569 0x40830E11, /* Smart Array 5312 */
570 0x409A0E11, /* Smart Array 641 */
571 0x409B0E11, /* Smart Array 642 */
572 0x40910E11, /* Smart Array 6i */
46380786
SC
573 /* Exclude 640x boards. These are two pci devices in one slot
574 * which share a battery backed cache module. One controls the
575 * cache, the other accesses the cache through the one that controls
576 * it. If we reset the one controlling the cache, the other will
577 * likely not be happy. Just forbid resetting this conjoined mess.
578 * The 640x isn't really supported by hpsa anyway.
579 */
580 0x409C0E11, /* Smart Array 6400 */
581 0x409D0E11, /* Smart Array 6400 EM */
582};
583
9b5c48c2
SC
584static u32 needs_abort_tags_swizzled[] = {
585 0x323D103C, /* Smart Array P700m */
586 0x324a103C, /* Smart Array P712m */
587 0x324b103C, /* SmartArray P711m */
588};
589
590static int board_id_in_array(u32 a[], int nelems, u32 board_id)
941b1cda
SC
591{
592 int i;
593
9b5c48c2
SC
594 for (i = 0; i < nelems; i++)
595 if (a[i] == board_id)
596 return 1;
597 return 0;
46380786
SC
598}
599
9b5c48c2 600static int ctlr_is_hard_resettable(u32 board_id)
46380786 601{
9b5c48c2
SC
602 return !board_id_in_array(unresettable_controller,
603 ARRAY_SIZE(unresettable_controller), board_id);
604}
46380786 605
9b5c48c2
SC
606static int ctlr_is_soft_resettable(u32 board_id)
607{
608 return !board_id_in_array(soft_unresettable_controller,
609 ARRAY_SIZE(soft_unresettable_controller), board_id);
941b1cda
SC
610}
611
46380786
SC
612static int ctlr_is_resettable(u32 board_id)
613{
614 return ctlr_is_hard_resettable(board_id) ||
615 ctlr_is_soft_resettable(board_id);
616}
617
9b5c48c2
SC
618static int ctlr_needs_abort_tags_swizzled(u32 board_id)
619{
620 return board_id_in_array(needs_abort_tags_swizzled,
621 ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
622}
623
941b1cda
SC
624static ssize_t host_show_resettable(struct device *dev,
625 struct device_attribute *attr, char *buf)
626{
627 struct ctlr_info *h;
628 struct Scsi_Host *shost = class_to_shost(dev);
629
630 h = shost_to_hba(shost);
46380786 631 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
941b1cda
SC
632}
633
edd16368
SC
634static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
635{
636 return (scsi3addr[3] & 0xC0) == 0x40;
637}
638
f2ef0ce7 639static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
7c59a0d4 640 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
edd16368 641};
6b80b18f
ST
642#define HPSA_RAID_0 0
643#define HPSA_RAID_4 1
644#define HPSA_RAID_1 2 /* also used for RAID 10 */
645#define HPSA_RAID_5 3 /* also used for RAID 50 */
646#define HPSA_RAID_51 4
647#define HPSA_RAID_6 5 /* also used for RAID 60 */
648#define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
7c59a0d4
DB
649#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
650#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
edd16368 651
f3f01730
KB
652static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
653{
654 return !device->physical_device;
655}
edd16368
SC
656
657static ssize_t raid_level_show(struct device *dev,
658 struct device_attribute *attr, char *buf)
659{
660 ssize_t l = 0;
82a72c0a 661 unsigned char rlevel;
edd16368
SC
662 struct ctlr_info *h;
663 struct scsi_device *sdev;
664 struct hpsa_scsi_dev_t *hdev;
665 unsigned long flags;
666
667 sdev = to_scsi_device(dev);
668 h = sdev_to_hba(sdev);
669 spin_lock_irqsave(&h->lock, flags);
670 hdev = sdev->hostdata;
671 if (!hdev) {
672 spin_unlock_irqrestore(&h->lock, flags);
673 return -ENODEV;
674 }
675
676 /* Is this even a logical drive? */
f3f01730 677 if (!is_logical_device(hdev)) {
edd16368
SC
678 spin_unlock_irqrestore(&h->lock, flags);
679 l = snprintf(buf, PAGE_SIZE, "N/A\n");
680 return l;
681 }
682
683 rlevel = hdev->raid_level;
684 spin_unlock_irqrestore(&h->lock, flags);
82a72c0a 685 if (rlevel > RAID_UNKNOWN)
edd16368
SC
686 rlevel = RAID_UNKNOWN;
687 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
688 return l;
689}
690
691static ssize_t lunid_show(struct device *dev,
692 struct device_attribute *attr, char *buf)
693{
694 struct ctlr_info *h;
695 struct scsi_device *sdev;
696 struct hpsa_scsi_dev_t *hdev;
697 unsigned long flags;
698 unsigned char lunid[8];
699
700 sdev = to_scsi_device(dev);
701 h = sdev_to_hba(sdev);
702 spin_lock_irqsave(&h->lock, flags);
703 hdev = sdev->hostdata;
704 if (!hdev) {
705 spin_unlock_irqrestore(&h->lock, flags);
706 return -ENODEV;
707 }
708 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
709 spin_unlock_irqrestore(&h->lock, flags);
609a70df 710 return snprintf(buf, 20, "0x%8phN\n", lunid);
edd16368
SC
711}
712
713static ssize_t unique_id_show(struct device *dev,
714 struct device_attribute *attr, char *buf)
715{
716 struct ctlr_info *h;
717 struct scsi_device *sdev;
718 struct hpsa_scsi_dev_t *hdev;
719 unsigned long flags;
720 unsigned char sn[16];
721
722 sdev = to_scsi_device(dev);
723 h = sdev_to_hba(sdev);
724 spin_lock_irqsave(&h->lock, flags);
725 hdev = sdev->hostdata;
726 if (!hdev) {
727 spin_unlock_irqrestore(&h->lock, flags);
728 return -ENODEV;
729 }
730 memcpy(sn, hdev->device_id, sizeof(sn));
731 spin_unlock_irqrestore(&h->lock, flags);
732 return snprintf(buf, 16 * 2 + 2,
733 "%02X%02X%02X%02X%02X%02X%02X%02X"
734 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
735 sn[0], sn[1], sn[2], sn[3],
736 sn[4], sn[5], sn[6], sn[7],
737 sn[8], sn[9], sn[10], sn[11],
738 sn[12], sn[13], sn[14], sn[15]);
739}
740
ded1be4a
JH
741static ssize_t sas_address_show(struct device *dev,
742 struct device_attribute *attr, char *buf)
743{
744 struct ctlr_info *h;
745 struct scsi_device *sdev;
746 struct hpsa_scsi_dev_t *hdev;
747 unsigned long flags;
748 u64 sas_address;
749
750 sdev = to_scsi_device(dev);
751 h = sdev_to_hba(sdev);
752 spin_lock_irqsave(&h->lock, flags);
753 hdev = sdev->hostdata;
754 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
755 spin_unlock_irqrestore(&h->lock, flags);
756 return -ENODEV;
757 }
758 sas_address = hdev->sas_address;
759 spin_unlock_irqrestore(&h->lock, flags);
760
761 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
762}
763
c1988684
ST
764static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
765 struct device_attribute *attr, char *buf)
766{
767 struct ctlr_info *h;
768 struct scsi_device *sdev;
769 struct hpsa_scsi_dev_t *hdev;
770 unsigned long flags;
771 int offload_enabled;
772
773 sdev = to_scsi_device(dev);
774 h = sdev_to_hba(sdev);
775 spin_lock_irqsave(&h->lock, flags);
776 hdev = sdev->hostdata;
777 if (!hdev) {
778 spin_unlock_irqrestore(&h->lock, flags);
779 return -ENODEV;
780 }
781 offload_enabled = hdev->offload_enabled;
782 spin_unlock_irqrestore(&h->lock, flags);
783 return snprintf(buf, 20, "%d\n", offload_enabled);
784}
785
8270b862 786#define MAX_PATHS 8
8270b862
JH
787static ssize_t path_info_show(struct device *dev,
788 struct device_attribute *attr, char *buf)
789{
790 struct ctlr_info *h;
791 struct scsi_device *sdev;
792 struct hpsa_scsi_dev_t *hdev;
793 unsigned long flags;
794 int i;
795 int output_len = 0;
796 u8 box;
797 u8 bay;
798 u8 path_map_index = 0;
799 char *active;
800 unsigned char phys_connector[2];
8270b862 801
8270b862
JH
802 sdev = to_scsi_device(dev);
803 h = sdev_to_hba(sdev);
804 spin_lock_irqsave(&h->devlock, flags);
805 hdev = sdev->hostdata;
806 if (!hdev) {
807 spin_unlock_irqrestore(&h->devlock, flags);
808 return -ENODEV;
809 }
810
811 bay = hdev->bay;
812 for (i = 0; i < MAX_PATHS; i++) {
813 path_map_index = 1<<i;
814 if (i == hdev->active_path_index)
815 active = "Active";
816 else if (hdev->path_map & path_map_index)
817 active = "Inactive";
818 else
819 continue;
820
1faf072c
RV
821 output_len += scnprintf(buf + output_len,
822 PAGE_SIZE - output_len,
823 "[%d:%d:%d:%d] %20.20s ",
8270b862
JH
824 h->scsi_host->host_no,
825 hdev->bus, hdev->target, hdev->lun,
826 scsi_device_type(hdev->devtype));
827
cca8f13b 828 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
2708f295 829 output_len += scnprintf(buf + output_len,
1faf072c
RV
830 PAGE_SIZE - output_len,
831 "%s\n", active);
8270b862
JH
832 continue;
833 }
834
835 box = hdev->box[i];
836 memcpy(&phys_connector, &hdev->phys_connector[i],
837 sizeof(phys_connector));
838 if (phys_connector[0] < '0')
839 phys_connector[0] = '0';
840 if (phys_connector[1] < '0')
841 phys_connector[1] = '0';
cca8f13b 842 output_len += scnprintf(buf + output_len,
1faf072c 843 PAGE_SIZE - output_len,
8270b862
JH
844 "PORT: %.2s ",
845 phys_connector);
af15ed36
DB
846 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
847 hdev->expose_device) {
8270b862 848 if (box == 0 || box == 0xFF) {
2708f295 849 output_len += scnprintf(buf + output_len,
1faf072c 850 PAGE_SIZE - output_len,
8270b862
JH
851 "BAY: %hhu %s\n",
852 bay, active);
853 } else {
2708f295 854 output_len += scnprintf(buf + output_len,
1faf072c 855 PAGE_SIZE - output_len,
8270b862
JH
856 "BOX: %hhu BAY: %hhu %s\n",
857 box, bay, active);
858 }
859 } else if (box != 0 && box != 0xFF) {
2708f295 860 output_len += scnprintf(buf + output_len,
1faf072c 861 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
8270b862
JH
862 box, active);
863 } else
2708f295 864 output_len += scnprintf(buf + output_len,
1faf072c 865 PAGE_SIZE - output_len, "%s\n", active);
8270b862
JH
866 }
867
868 spin_unlock_irqrestore(&h->devlock, flags);
1faf072c 869 return output_len;
8270b862
JH
870}
871
16961204
HR
872static ssize_t host_show_ctlr_num(struct device *dev,
873 struct device_attribute *attr, char *buf)
874{
875 struct ctlr_info *h;
876 struct Scsi_Host *shost = class_to_shost(dev);
877
878 h = shost_to_hba(shost);
879 return snprintf(buf, 20, "%d\n", h->ctlr);
880}
881
3f5eac3a
SC
882static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
883static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
884static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
885static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
ded1be4a 886static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
c1988684
ST
887static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
888 host_show_hp_ssd_smart_path_enabled, NULL);
8270b862 889static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
da0697bd
ST
890static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
891 host_show_hp_ssd_smart_path_status,
892 host_store_hp_ssd_smart_path_status);
2ba8bfc8
SC
893static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
894 host_store_raid_offload_debug);
3f5eac3a
SC
895static DEVICE_ATTR(firmware_revision, S_IRUGO,
896 host_show_firmware_revision, NULL);
897static DEVICE_ATTR(commands_outstanding, S_IRUGO,
898 host_show_commands_outstanding, NULL);
899static DEVICE_ATTR(transport_mode, S_IRUGO,
900 host_show_transport_mode, NULL);
941b1cda
SC
901static DEVICE_ATTR(resettable, S_IRUGO,
902 host_show_resettable, NULL);
e985c58f
SC
903static DEVICE_ATTR(lockup_detected, S_IRUGO,
904 host_show_lockup_detected, NULL);
16961204
HR
905static DEVICE_ATTR(ctlr_num, S_IRUGO,
906 host_show_ctlr_num, NULL);
3f5eac3a
SC
907
908static struct device_attribute *hpsa_sdev_attrs[] = {
909 &dev_attr_raid_level,
910 &dev_attr_lunid,
911 &dev_attr_unique_id,
c1988684 912 &dev_attr_hp_ssd_smart_path_enabled,
8270b862 913 &dev_attr_path_info,
ded1be4a 914 &dev_attr_sas_address,
3f5eac3a
SC
915 NULL,
916};
917
918static struct device_attribute *hpsa_shost_attrs[] = {
919 &dev_attr_rescan,
920 &dev_attr_firmware_revision,
921 &dev_attr_commands_outstanding,
922 &dev_attr_transport_mode,
941b1cda 923 &dev_attr_resettable,
da0697bd 924 &dev_attr_hp_ssd_smart_path_status,
2ba8bfc8 925 &dev_attr_raid_offload_debug,
fb53c439 926 &dev_attr_lockup_detected,
16961204 927 &dev_attr_ctlr_num,
3f5eac3a
SC
928 NULL,
929};
930
41ce4c35
SC
931#define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
932 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
933
3f5eac3a
SC
934static struct scsi_host_template hpsa_driver_template = {
935 .module = THIS_MODULE,
f79cfec6
SC
936 .name = HPSA,
937 .proc_name = HPSA,
3f5eac3a
SC
938 .queuecommand = hpsa_scsi_queue_command,
939 .scan_start = hpsa_scan_start,
940 .scan_finished = hpsa_scan_finished,
7c0a0229 941 .change_queue_depth = hpsa_change_queue_depth,
3f5eac3a
SC
942 .this_id = -1,
943 .use_clustering = ENABLE_CLUSTERING,
75167d2c 944 .eh_abort_handler = hpsa_eh_abort_handler,
3f5eac3a
SC
945 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
946 .ioctl = hpsa_ioctl,
947 .slave_alloc = hpsa_slave_alloc,
41ce4c35 948 .slave_configure = hpsa_slave_configure,
3f5eac3a
SC
949 .slave_destroy = hpsa_slave_destroy,
950#ifdef CONFIG_COMPAT
951 .compat_ioctl = hpsa_compat_ioctl,
952#endif
953 .sdev_attrs = hpsa_sdev_attrs,
954 .shost_attrs = hpsa_shost_attrs,
c0d6a4d1 955 .max_sectors = 8192,
54b2b50c 956 .no_write_same = 1,
3f5eac3a
SC
957};
958
254f796b 959static inline u32 next_command(struct ctlr_info *h, u8 q)
3f5eac3a
SC
960{
961 u32 a;
072b0518 962 struct reply_queue_buffer *rq = &h->reply_queue[q];
3f5eac3a 963
e1f7de0c
MG
964 if (h->transMethod & CFGTBL_Trans_io_accel1)
965 return h->access.command_completed(h, q);
966
3f5eac3a 967 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
254f796b 968 return h->access.command_completed(h, q);
3f5eac3a 969
254f796b
MG
970 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
971 a = rq->head[rq->current_entry];
972 rq->current_entry++;
0cbf768e 973 atomic_dec(&h->commands_outstanding);
3f5eac3a
SC
974 } else {
975 a = FIFO_EMPTY;
976 }
977 /* Check for wraparound */
254f796b
MG
978 if (rq->current_entry == h->max_commands) {
979 rq->current_entry = 0;
980 rq->wraparound ^= 1;
3f5eac3a
SC
981 }
982 return a;
983}
984
c349775e
ST
985/*
986 * There are some special bits in the bus address of the
987 * command that we have to set for the controller to know
988 * how to process the command:
989 *
990 * Normal performant mode:
991 * bit 0: 1 means performant mode, 0 means simple mode.
992 * bits 1-3 = block fetch table entry
993 * bits 4-6 = command type (== 0)
994 *
995 * ioaccel1 mode:
996 * bit 0 = "performant mode" bit.
997 * bits 1-3 = block fetch table entry
998 * bits 4-6 = command type (== 110)
999 * (command type is needed because ioaccel1 mode
1000 * commands are submitted through the same register as normal
1001 * mode commands, so this is how the controller knows whether
1002 * the command is normal mode or ioaccel1 mode.)
1003 *
1004 * ioaccel2 mode:
1005 * bit 0 = "performant mode" bit.
1006 * bits 1-4 = block fetch table entry (note extra bit)
1007 * bits 4-6 = not needed, because ioaccel2 mode has
1008 * a separate special register for submitting commands.
1009 */
1010
25163bd5
WS
1011/*
1012 * set_performant_mode: Modify the tag for cciss performant
3f5eac3a
SC
1013 * set bit 0 for pull model, bits 3-1 for block fetch
1014 * register number
1015 */
25163bd5
WS
1016#define DEFAULT_REPLY_QUEUE (-1)
1017static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1018 int reply_queue)
3f5eac3a 1019{
254f796b 1020 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
3f5eac3a 1021 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
bc2bb154 1022 if (unlikely(!h->msix_vectors))
25163bd5
WS
1023 return;
1024 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
254f796b 1025 c->Header.ReplyQueue =
804a5cb5 1026 raw_smp_processor_id() % h->nreply_queues;
25163bd5
WS
1027 else
1028 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
254f796b 1029 }
3f5eac3a
SC
1030}
1031
c349775e 1032static void set_ioaccel1_performant_mode(struct ctlr_info *h,
25163bd5
WS
1033 struct CommandList *c,
1034 int reply_queue)
c349775e
ST
1035{
1036 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1037
25163bd5
WS
1038 /*
1039 * Tell the controller to post the reply to the queue for this
c349775e
ST
1040 * processor. This seems to give the best I/O throughput.
1041 */
25163bd5
WS
1042 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1043 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1044 else
1045 cp->ReplyQueue = reply_queue % h->nreply_queues;
1046 /*
1047 * Set the bits in the address sent down to include:
c349775e
ST
1048 * - performant mode bit (bit 0)
1049 * - pull count (bits 1-3)
1050 * - command type (bits 4-6)
1051 */
1052 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1053 IOACCEL1_BUSADDR_CMDTYPE;
1054}
1055
8be986cc
SC
1056static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1057 struct CommandList *c,
1058 int reply_queue)
1059{
1060 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1061 &h->ioaccel2_cmd_pool[c->cmdindex];
1062
1063 /* Tell the controller to post the reply to the queue for this
1064 * processor. This seems to give the best I/O throughput.
1065 */
1066 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1067 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1068 else
1069 cp->reply_queue = reply_queue % h->nreply_queues;
1070 /* Set the bits in the address sent down to include:
1071 * - performant mode bit not used in ioaccel mode 2
1072 * - pull count (bits 0-3)
1073 * - command type isn't needed for ioaccel2
1074 */
1075 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1076}
1077
c349775e 1078static void set_ioaccel2_performant_mode(struct ctlr_info *h,
25163bd5
WS
1079 struct CommandList *c,
1080 int reply_queue)
c349775e
ST
1081{
1082 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1083
25163bd5
WS
1084 /*
1085 * Tell the controller to post the reply to the queue for this
c349775e
ST
1086 * processor. This seems to give the best I/O throughput.
1087 */
25163bd5
WS
1088 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1089 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1090 else
1091 cp->reply_queue = reply_queue % h->nreply_queues;
1092 /*
1093 * Set the bits in the address sent down to include:
c349775e
ST
1094 * - performant mode bit not used in ioaccel mode 2
1095 * - pull count (bits 0-3)
1096 * - command type isn't needed for ioaccel2
1097 */
1098 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1099}
1100
e85c5974
SC
1101static int is_firmware_flash_cmd(u8 *cdb)
1102{
1103 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1104}
1105
1106/*
1107 * During firmware flash, the heartbeat register may not update as frequently
1108 * as it should. So we dial down lockup detection during firmware flash. and
1109 * dial it back up when firmware flash completes.
1110 */
1111#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1112#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1113static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1114 struct CommandList *c)
1115{
1116 if (!is_firmware_flash_cmd(c->Request.CDB))
1117 return;
1118 atomic_inc(&h->firmware_flash_in_progress);
1119 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1120}
1121
1122static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1123 struct CommandList *c)
1124{
1125 if (is_firmware_flash_cmd(c->Request.CDB) &&
1126 atomic_dec_and_test(&h->firmware_flash_in_progress))
1127 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1128}
1129
25163bd5
WS
1130static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1131 struct CommandList *c, int reply_queue)
3f5eac3a 1132{
c05e8866
SC
1133 dial_down_lockup_detection_during_fw_flash(h, c);
1134 atomic_inc(&h->commands_outstanding);
c349775e
ST
1135 switch (c->cmd_type) {
1136 case CMD_IOACCEL1:
25163bd5 1137 set_ioaccel1_performant_mode(h, c, reply_queue);
c05e8866 1138 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
c349775e
ST
1139 break;
1140 case CMD_IOACCEL2:
25163bd5 1141 set_ioaccel2_performant_mode(h, c, reply_queue);
c05e8866 1142 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
c349775e 1143 break;
8be986cc
SC
1144 case IOACCEL2_TMF:
1145 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1146 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1147 break;
c349775e 1148 default:
25163bd5 1149 set_performant_mode(h, c, reply_queue);
c05e8866 1150 h->access.submit_command(h, c);
c349775e 1151 }
3f5eac3a
SC
1152}
1153
a58e7e53 1154static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
25163bd5 1155{
d604f533 1156 if (unlikely(hpsa_is_pending_event(c)))
a58e7e53
WS
1157 return finish_cmd(c);
1158
25163bd5
WS
1159 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1160}
1161
3f5eac3a
SC
1162static inline int is_hba_lunid(unsigned char scsi3addr[])
1163{
1164 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1165}
1166
1167static inline int is_scsi_rev_5(struct ctlr_info *h)
1168{
1169 if (!h->hba_inquiry_data)
1170 return 0;
1171 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1172 return 1;
1173 return 0;
1174}
1175
edd16368
SC
1176static int hpsa_find_target_lun(struct ctlr_info *h,
1177 unsigned char scsi3addr[], int bus, int *target, int *lun)
1178{
1179 /* finds an unused bus, target, lun for a new physical device
1180 * assumes h->devlock is held
1181 */
1182 int i, found = 0;
cfe5badc 1183 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
edd16368 1184
263d9401 1185 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
edd16368
SC
1186
1187 for (i = 0; i < h->ndevices; i++) {
1188 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
263d9401 1189 __set_bit(h->dev[i]->target, lun_taken);
edd16368
SC
1190 }
1191
263d9401
AM
1192 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1193 if (i < HPSA_MAX_DEVICES) {
1194 /* *bus = 1; */
1195 *target = i;
1196 *lun = 0;
1197 found = 1;
edd16368
SC
1198 }
1199 return !found;
1200}
1201
1d33d85d 1202static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
0d96ef5f
WS
1203 struct hpsa_scsi_dev_t *dev, char *description)
1204{
7c59a0d4
DB
1205#define LABEL_SIZE 25
1206 char label[LABEL_SIZE];
1207
9975ec9d
DB
1208 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1209 return;
1210
7c59a0d4
DB
1211 switch (dev->devtype) {
1212 case TYPE_RAID:
1213 snprintf(label, LABEL_SIZE, "controller");
1214 break;
1215 case TYPE_ENCLOSURE:
1216 snprintf(label, LABEL_SIZE, "enclosure");
1217 break;
1218 case TYPE_DISK:
af15ed36 1219 case TYPE_ZBC:
7c59a0d4
DB
1220 if (dev->external)
1221 snprintf(label, LABEL_SIZE, "external");
1222 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1223 snprintf(label, LABEL_SIZE, "%s",
1224 raid_label[PHYSICAL_DRIVE]);
1225 else
1226 snprintf(label, LABEL_SIZE, "RAID-%s",
1227 dev->raid_level > RAID_UNKNOWN ? "?" :
1228 raid_label[dev->raid_level]);
1229 break;
1230 case TYPE_ROM:
1231 snprintf(label, LABEL_SIZE, "rom");
1232 break;
1233 case TYPE_TAPE:
1234 snprintf(label, LABEL_SIZE, "tape");
1235 break;
1236 case TYPE_MEDIUM_CHANGER:
1237 snprintf(label, LABEL_SIZE, "changer");
1238 break;
1239 default:
1240 snprintf(label, LABEL_SIZE, "UNKNOWN");
1241 break;
1242 }
1243
0d96ef5f 1244 dev_printk(level, &h->pdev->dev,
7c59a0d4 1245 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
0d96ef5f
WS
1246 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1247 description,
1248 scsi_device_type(dev->devtype),
1249 dev->vendor,
1250 dev->model,
7c59a0d4 1251 label,
0d96ef5f
WS
1252 dev->offload_config ? '+' : '-',
1253 dev->offload_enabled ? '+' : '-',
2a168208 1254 dev->expose_device);
0d96ef5f
WS
1255}
1256
edd16368 1257/* Add an entry into h->dev[] array. */
8aa60681 1258static int hpsa_scsi_add_entry(struct ctlr_info *h,
edd16368
SC
1259 struct hpsa_scsi_dev_t *device,
1260 struct hpsa_scsi_dev_t *added[], int *nadded)
1261{
1262 /* assumes h->devlock is held */
1263 int n = h->ndevices;
1264 int i;
1265 unsigned char addr1[8], addr2[8];
1266 struct hpsa_scsi_dev_t *sd;
1267
cfe5badc 1268 if (n >= HPSA_MAX_DEVICES) {
edd16368
SC
1269 dev_err(&h->pdev->dev, "too many devices, some will be "
1270 "inaccessible.\n");
1271 return -1;
1272 }
1273
1274 /* physical devices do not have lun or target assigned until now. */
1275 if (device->lun != -1)
1276 /* Logical device, lun is already assigned. */
1277 goto lun_assigned;
1278
1279 /* If this device a non-zero lun of a multi-lun device
1280 * byte 4 of the 8-byte LUN addr will contain the logical
2b08b3e9 1281 * unit no, zero otherwise.
edd16368
SC
1282 */
1283 if (device->scsi3addr[4] == 0) {
1284 /* This is not a non-zero lun of a multi-lun device */
1285 if (hpsa_find_target_lun(h, device->scsi3addr,
1286 device->bus, &device->target, &device->lun) != 0)
1287 return -1;
1288 goto lun_assigned;
1289 }
1290
1291 /* This is a non-zero lun of a multi-lun device.
1292 * Search through our list and find the device which
9a4178b7 1293 * has the same 8 byte LUN address, excepting byte 4 and 5.
edd16368
SC
1294 * Assign the same bus and target for this new LUN.
1295 * Use the logical unit number from the firmware.
1296 */
1297 memcpy(addr1, device->scsi3addr, 8);
1298 addr1[4] = 0;
9a4178b7 1299 addr1[5] = 0;
edd16368
SC
1300 for (i = 0; i < n; i++) {
1301 sd = h->dev[i];
1302 memcpy(addr2, sd->scsi3addr, 8);
1303 addr2[4] = 0;
9a4178b7 1304 addr2[5] = 0;
1305 /* differ only in byte 4 and 5? */
edd16368
SC
1306 if (memcmp(addr1, addr2, 8) == 0) {
1307 device->bus = sd->bus;
1308 device->target = sd->target;
1309 device->lun = device->scsi3addr[4];
1310 break;
1311 }
1312 }
1313 if (device->lun == -1) {
1314 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1315 " suspect firmware bug or unsupported hardware "
1316 "configuration.\n");
1317 return -1;
1318 }
1319
1320lun_assigned:
1321
1322 h->dev[n] = device;
1323 h->ndevices++;
1324 added[*nadded] = device;
1325 (*nadded)++;
0d96ef5f 1326 hpsa_show_dev_msg(KERN_INFO, h, device,
2a168208 1327 device->expose_device ? "added" : "masked");
a473d86c
RE
1328 device->offload_to_be_enabled = device->offload_enabled;
1329 device->offload_enabled = 0;
edd16368
SC
1330 return 0;
1331}
1332
bd9244f7 1333/* Update an entry in h->dev[] array. */
8aa60681 1334static void hpsa_scsi_update_entry(struct ctlr_info *h,
bd9244f7
ST
1335 int entry, struct hpsa_scsi_dev_t *new_entry)
1336{
a473d86c 1337 int offload_enabled;
bd9244f7
ST
1338 /* assumes h->devlock is held */
1339 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1340
1341 /* Raid level changed. */
1342 h->dev[entry]->raid_level = new_entry->raid_level;
250fb125 1343
03383736
DB
1344 /* Raid offload parameters changed. Careful about the ordering. */
1345 if (new_entry->offload_config && new_entry->offload_enabled) {
1346 /*
1347 * if drive is newly offload_enabled, we want to copy the
1348 * raid map data first. If previously offload_enabled and
1349 * offload_config were set, raid map data had better be
1350 * the same as it was before. if raid map data is changed
1351 * then it had better be the case that
1352 * h->dev[entry]->offload_enabled is currently 0.
1353 */
1354 h->dev[entry]->raid_map = new_entry->raid_map;
1355 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
03383736 1356 }
a3144e0b
JH
1357 if (new_entry->hba_ioaccel_enabled) {
1358 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1359 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1360 }
1361 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
250fb125 1362 h->dev[entry]->offload_config = new_entry->offload_config;
9fb0de2d 1363 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
03383736 1364 h->dev[entry]->queue_depth = new_entry->queue_depth;
250fb125 1365
41ce4c35
SC
1366 /*
1367 * We can turn off ioaccel offload now, but need to delay turning
1368 * it on until we can update h->dev[entry]->phys_disk[], but we
1369 * can't do that until all the devices are updated.
1370 */
1371 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1372 if (!new_entry->offload_enabled)
1373 h->dev[entry]->offload_enabled = 0;
1374
a473d86c
RE
1375 offload_enabled = h->dev[entry]->offload_enabled;
1376 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
0d96ef5f 1377 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
a473d86c 1378 h->dev[entry]->offload_enabled = offload_enabled;
bd9244f7
ST
1379}
1380
2a8ccf31 1381/* Replace an entry from h->dev[] array. */
8aa60681 1382static void hpsa_scsi_replace_entry(struct ctlr_info *h,
2a8ccf31
SC
1383 int entry, struct hpsa_scsi_dev_t *new_entry,
1384 struct hpsa_scsi_dev_t *added[], int *nadded,
1385 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1386{
1387 /* assumes h->devlock is held */
cfe5badc 1388 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
2a8ccf31
SC
1389 removed[*nremoved] = h->dev[entry];
1390 (*nremoved)++;
01350d05
SC
1391
1392 /*
1393 * New physical devices won't have target/lun assigned yet
1394 * so we need to preserve the values in the slot we are replacing.
1395 */
1396 if (new_entry->target == -1) {
1397 new_entry->target = h->dev[entry]->target;
1398 new_entry->lun = h->dev[entry]->lun;
1399 }
1400
2a8ccf31
SC
1401 h->dev[entry] = new_entry;
1402 added[*nadded] = new_entry;
1403 (*nadded)++;
0d96ef5f 1404 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
a473d86c
RE
1405 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1406 new_entry->offload_enabled = 0;
2a8ccf31
SC
1407}
1408
edd16368 1409/* Remove an entry from h->dev[] array. */
8aa60681 1410static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
edd16368
SC
1411 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1412{
1413 /* assumes h->devlock is held */
1414 int i;
1415 struct hpsa_scsi_dev_t *sd;
1416
cfe5badc 1417 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
edd16368
SC
1418
1419 sd = h->dev[entry];
1420 removed[*nremoved] = h->dev[entry];
1421 (*nremoved)++;
1422
1423 for (i = entry; i < h->ndevices-1; i++)
1424 h->dev[i] = h->dev[i+1];
1425 h->ndevices--;
0d96ef5f 1426 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
edd16368
SC
1427}
1428
1429#define SCSI3ADDR_EQ(a, b) ( \
1430 (a)[7] == (b)[7] && \
1431 (a)[6] == (b)[6] && \
1432 (a)[5] == (b)[5] && \
1433 (a)[4] == (b)[4] && \
1434 (a)[3] == (b)[3] && \
1435 (a)[2] == (b)[2] && \
1436 (a)[1] == (b)[1] && \
1437 (a)[0] == (b)[0])
1438
1439static void fixup_botched_add(struct ctlr_info *h,
1440 struct hpsa_scsi_dev_t *added)
1441{
1442 /* called when scsi_add_device fails in order to re-adjust
1443 * h->dev[] to match the mid layer's view.
1444 */
1445 unsigned long flags;
1446 int i, j;
1447
1448 spin_lock_irqsave(&h->lock, flags);
1449 for (i = 0; i < h->ndevices; i++) {
1450 if (h->dev[i] == added) {
1451 for (j = i; j < h->ndevices-1; j++)
1452 h->dev[j] = h->dev[j+1];
1453 h->ndevices--;
1454 break;
1455 }
1456 }
1457 spin_unlock_irqrestore(&h->lock, flags);
1458 kfree(added);
1459}
1460
1461static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1462 struct hpsa_scsi_dev_t *dev2)
1463{
edd16368
SC
1464 /* we compare everything except lun and target as these
1465 * are not yet assigned. Compare parts likely
1466 * to differ first
1467 */
1468 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1469 sizeof(dev1->scsi3addr)) != 0)
1470 return 0;
1471 if (memcmp(dev1->device_id, dev2->device_id,
1472 sizeof(dev1->device_id)) != 0)
1473 return 0;
1474 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1475 return 0;
1476 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1477 return 0;
edd16368
SC
1478 if (dev1->devtype != dev2->devtype)
1479 return 0;
edd16368
SC
1480 if (dev1->bus != dev2->bus)
1481 return 0;
1482 return 1;
1483}
1484
bd9244f7
ST
1485static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1486 struct hpsa_scsi_dev_t *dev2)
1487{
1488 /* Device attributes that can change, but don't mean
1489 * that the device is a different device, nor that the OS
1490 * needs to be told anything about the change.
1491 */
1492 if (dev1->raid_level != dev2->raid_level)
1493 return 1;
250fb125
SC
1494 if (dev1->offload_config != dev2->offload_config)
1495 return 1;
1496 if (dev1->offload_enabled != dev2->offload_enabled)
1497 return 1;
93849508
DB
1498 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1499 if (dev1->queue_depth != dev2->queue_depth)
1500 return 1;
bd9244f7
ST
1501 return 0;
1502}
1503
edd16368
SC
1504/* Find needle in haystack. If exact match found, return DEVICE_SAME,
1505 * and return needle location in *index. If scsi3addr matches, but not
1506 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
bd9244f7
ST
1507 * location in *index.
1508 * In the case of a minor device attribute change, such as RAID level, just
1509 * return DEVICE_UPDATED, along with the updated device's location in index.
1510 * If needle not found, return DEVICE_NOT_FOUND.
edd16368
SC
1511 */
1512static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1513 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1514 int *index)
1515{
1516 int i;
1517#define DEVICE_NOT_FOUND 0
1518#define DEVICE_CHANGED 1
1519#define DEVICE_SAME 2
bd9244f7 1520#define DEVICE_UPDATED 3
1d33d85d
DB
1521 if (needle == NULL)
1522 return DEVICE_NOT_FOUND;
1523
edd16368 1524 for (i = 0; i < haystack_size; i++) {
23231048
SC
1525 if (haystack[i] == NULL) /* previously removed. */
1526 continue;
edd16368
SC
1527 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1528 *index = i;
bd9244f7
ST
1529 if (device_is_the_same(needle, haystack[i])) {
1530 if (device_updated(needle, haystack[i]))
1531 return DEVICE_UPDATED;
edd16368 1532 return DEVICE_SAME;
bd9244f7 1533 } else {
9846590e
SC
1534 /* Keep offline devices offline */
1535 if (needle->volume_offline)
1536 return DEVICE_NOT_FOUND;
edd16368 1537 return DEVICE_CHANGED;
bd9244f7 1538 }
edd16368
SC
1539 }
1540 }
1541 *index = -1;
1542 return DEVICE_NOT_FOUND;
1543}
1544
9846590e
SC
1545static void hpsa_monitor_offline_device(struct ctlr_info *h,
1546 unsigned char scsi3addr[])
1547{
1548 struct offline_device_entry *device;
1549 unsigned long flags;
1550
1551 /* Check to see if device is already on the list */
1552 spin_lock_irqsave(&h->offline_device_lock, flags);
1553 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1554 if (memcmp(device->scsi3addr, scsi3addr,
1555 sizeof(device->scsi3addr)) == 0) {
1556 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1557 return;
1558 }
1559 }
1560 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1561
1562 /* Device is not on the list, add it. */
1563 device = kmalloc(sizeof(*device), GFP_KERNEL);
7e8a9486 1564 if (!device)
9846590e 1565 return;
7e8a9486 1566
9846590e
SC
1567 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1568 spin_lock_irqsave(&h->offline_device_lock, flags);
1569 list_add_tail(&device->offline_list, &h->offline_device_list);
1570 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1571}
1572
1573/* Print a message explaining various offline volume states */
1574static void hpsa_show_volume_status(struct ctlr_info *h,
1575 struct hpsa_scsi_dev_t *sd)
1576{
1577 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1578 dev_info(&h->pdev->dev,
1579 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1580 h->scsi_host->host_no,
1581 sd->bus, sd->target, sd->lun);
1582 switch (sd->volume_offline) {
1583 case HPSA_LV_OK:
1584 break;
1585 case HPSA_LV_UNDERGOING_ERASE:
1586 dev_info(&h->pdev->dev,
1587 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1588 h->scsi_host->host_no,
1589 sd->bus, sd->target, sd->lun);
1590 break;
5ca01204
SB
1591 case HPSA_LV_NOT_AVAILABLE:
1592 dev_info(&h->pdev->dev,
1593 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1594 h->scsi_host->host_no,
1595 sd->bus, sd->target, sd->lun);
1596 break;
9846590e
SC
1597 case HPSA_LV_UNDERGOING_RPI:
1598 dev_info(&h->pdev->dev,
5ca01204 1599 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
9846590e
SC
1600 h->scsi_host->host_no,
1601 sd->bus, sd->target, sd->lun);
1602 break;
1603 case HPSA_LV_PENDING_RPI:
1604 dev_info(&h->pdev->dev,
5ca01204
SB
1605 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1606 h->scsi_host->host_no,
1607 sd->bus, sd->target, sd->lun);
9846590e
SC
1608 break;
1609 case HPSA_LV_ENCRYPTED_NO_KEY:
1610 dev_info(&h->pdev->dev,
1611 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1612 h->scsi_host->host_no,
1613 sd->bus, sd->target, sd->lun);
1614 break;
1615 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1616 dev_info(&h->pdev->dev,
1617 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1618 h->scsi_host->host_no,
1619 sd->bus, sd->target, sd->lun);
1620 break;
1621 case HPSA_LV_UNDERGOING_ENCRYPTION:
1622 dev_info(&h->pdev->dev,
1623 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1624 h->scsi_host->host_no,
1625 sd->bus, sd->target, sd->lun);
1626 break;
1627 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1628 dev_info(&h->pdev->dev,
1629 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1630 h->scsi_host->host_no,
1631 sd->bus, sd->target, sd->lun);
1632 break;
1633 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1634 dev_info(&h->pdev->dev,
1635 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1636 h->scsi_host->host_no,
1637 sd->bus, sd->target, sd->lun);
1638 break;
1639 case HPSA_LV_PENDING_ENCRYPTION:
1640 dev_info(&h->pdev->dev,
1641 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1642 h->scsi_host->host_no,
1643 sd->bus, sd->target, sd->lun);
1644 break;
1645 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1646 dev_info(&h->pdev->dev,
1647 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1648 h->scsi_host->host_no,
1649 sd->bus, sd->target, sd->lun);
1650 break;
1651 }
1652}
1653
03383736
DB
1654/*
1655 * Figure the list of physical drive pointers for a logical drive with
1656 * raid offload configured.
1657 */
1658static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1659 struct hpsa_scsi_dev_t *dev[], int ndevices,
1660 struct hpsa_scsi_dev_t *logical_drive)
1661{
1662 struct raid_map_data *map = &logical_drive->raid_map;
1663 struct raid_map_disk_data *dd = &map->data[0];
1664 int i, j;
1665 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1666 le16_to_cpu(map->metadata_disks_per_row);
1667 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1668 le16_to_cpu(map->layout_map_count) *
1669 total_disks_per_row;
1670 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1671 total_disks_per_row;
1672 int qdepth;
1673
1674 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1675 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1676
d604f533
WS
1677 logical_drive->nphysical_disks = nraid_map_entries;
1678
03383736
DB
1679 qdepth = 0;
1680 for (i = 0; i < nraid_map_entries; i++) {
1681 logical_drive->phys_disk[i] = NULL;
1682 if (!logical_drive->offload_config)
1683 continue;
1684 for (j = 0; j < ndevices; j++) {
1d33d85d
DB
1685 if (dev[j] == NULL)
1686 continue;
ff615f06
PK
1687 if (dev[j]->devtype != TYPE_DISK &&
1688 dev[j]->devtype != TYPE_ZBC)
af15ed36 1689 continue;
f3f01730 1690 if (is_logical_device(dev[j]))
03383736
DB
1691 continue;
1692 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1693 continue;
1694
1695 logical_drive->phys_disk[i] = dev[j];
1696 if (i < nphys_disk)
1697 qdepth = min(h->nr_cmds, qdepth +
1698 logical_drive->phys_disk[i]->queue_depth);
1699 break;
1700 }
1701
1702 /*
1703 * This can happen if a physical drive is removed and
1704 * the logical drive is degraded. In that case, the RAID
1705 * map data will refer to a physical disk which isn't actually
1706 * present. And in that case offload_enabled should already
1707 * be 0, but we'll turn it off here just in case
1708 */
1709 if (!logical_drive->phys_disk[i]) {
1710 logical_drive->offload_enabled = 0;
41ce4c35
SC
1711 logical_drive->offload_to_be_enabled = 0;
1712 logical_drive->queue_depth = 8;
03383736
DB
1713 }
1714 }
1715 if (nraid_map_entries)
1716 /*
1717 * This is correct for reads, too high for full stripe writes,
1718 * way too high for partial stripe writes
1719 */
1720 logical_drive->queue_depth = qdepth;
1721 else
1722 logical_drive->queue_depth = h->nr_cmds;
1723}
1724
1725static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1726 struct hpsa_scsi_dev_t *dev[], int ndevices)
1727{
1728 int i;
1729
1730 for (i = 0; i < ndevices; i++) {
1d33d85d
DB
1731 if (dev[i] == NULL)
1732 continue;
ff615f06
PK
1733 if (dev[i]->devtype != TYPE_DISK &&
1734 dev[i]->devtype != TYPE_ZBC)
af15ed36 1735 continue;
f3f01730 1736 if (!is_logical_device(dev[i]))
03383736 1737 continue;
41ce4c35
SC
1738
1739 /*
1740 * If offload is currently enabled, the RAID map and
1741 * phys_disk[] assignment *better* not be changing
1742 * and since it isn't changing, we do not need to
1743 * update it.
1744 */
1745 if (dev[i]->offload_enabled)
1746 continue;
1747
03383736
DB
1748 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1749 }
1750}
1751
096ccff4
KB
1752static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1753{
1754 int rc = 0;
1755
1756 if (!h->scsi_host)
1757 return 1;
1758
d04e62b9
KB
1759 if (is_logical_device(device)) /* RAID */
1760 rc = scsi_add_device(h->scsi_host, device->bus,
096ccff4 1761 device->target, device->lun);
d04e62b9
KB
1762 else /* HBA */
1763 rc = hpsa_add_sas_device(h->sas_host, device);
1764
096ccff4
KB
1765 return rc;
1766}
1767
ba74fdc4
DB
1768static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1769 struct hpsa_scsi_dev_t *dev)
1770{
1771 int i;
1772 int count = 0;
1773
1774 for (i = 0; i < h->nr_cmds; i++) {
1775 struct CommandList *c = h->cmd_pool + i;
1776 int refcount = atomic_inc_return(&c->refcount);
1777
1778 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1779 dev->scsi3addr)) {
1780 unsigned long flags;
1781
1782 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1783 if (!hpsa_is_cmd_idle(c))
1784 ++count;
1785 spin_unlock_irqrestore(&h->lock, flags);
1786 }
1787
1788 cmd_free(h, c);
1789 }
1790
1791 return count;
1792}
1793
1794static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1795 struct hpsa_scsi_dev_t *device)
1796{
1797 int cmds = 0;
1798 int waits = 0;
1799
1800 while (1) {
1801 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1802 if (cmds == 0)
1803 break;
1804 if (++waits > 20)
1805 break;
1806 dev_warn(&h->pdev->dev,
1807 "%s: removing device with %d outstanding commands!\n",
1808 __func__, cmds);
1809 msleep(1000);
1810 }
1811}
1812
096ccff4
KB
1813static void hpsa_remove_device(struct ctlr_info *h,
1814 struct hpsa_scsi_dev_t *device)
1815{
1816 struct scsi_device *sdev = NULL;
1817
1818 if (!h->scsi_host)
1819 return;
1820
d04e62b9
KB
1821 if (is_logical_device(device)) { /* RAID */
1822 sdev = scsi_device_lookup(h->scsi_host, device->bus,
096ccff4 1823 device->target, device->lun);
d04e62b9
KB
1824 if (sdev) {
1825 scsi_remove_device(sdev);
1826 scsi_device_put(sdev);
1827 } else {
1828 /*
1829 * We don't expect to get here. Future commands
1830 * to this device will get a selection timeout as
1831 * if the device were gone.
1832 */
1833 hpsa_show_dev_msg(KERN_WARNING, h, device,
096ccff4 1834 "didn't find device for removal.");
d04e62b9 1835 }
ba74fdc4
DB
1836 } else { /* HBA */
1837
1838 device->removed = 1;
1839 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1840
d04e62b9 1841 hpsa_remove_sas_device(device);
ba74fdc4 1842 }
096ccff4
KB
1843}
1844
8aa60681 1845static void adjust_hpsa_scsi_table(struct ctlr_info *h,
edd16368
SC
1846 struct hpsa_scsi_dev_t *sd[], int nsds)
1847{
1848 /* sd contains scsi3 addresses and devtypes, and inquiry
1849 * data. This function takes what's in sd to be the current
1850 * reality and updates h->dev[] to reflect that reality.
1851 */
1852 int i, entry, device_change, changes = 0;
1853 struct hpsa_scsi_dev_t *csd;
1854 unsigned long flags;
1855 struct hpsa_scsi_dev_t **added, **removed;
1856 int nadded, nremoved;
edd16368 1857
da03ded0
DB
1858 /*
1859 * A reset can cause a device status to change
1860 * re-schedule the scan to see what happened.
1861 */
1862 if (h->reset_in_progress) {
1863 h->drv_req_rescan = 1;
1864 return;
1865 }
edd16368 1866
cfe5badc
ST
1867 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1868 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
edd16368
SC
1869
1870 if (!added || !removed) {
1871 dev_warn(&h->pdev->dev, "out of memory in "
1872 "adjust_hpsa_scsi_table\n");
1873 goto free_and_out;
1874 }
1875
1876 spin_lock_irqsave(&h->devlock, flags);
1877
1878 /* find any devices in h->dev[] that are not in
1879 * sd[] and remove them from h->dev[], and for any
1880 * devices which have changed, remove the old device
1881 * info and add the new device info.
bd9244f7
ST
1882 * If minor device attributes change, just update
1883 * the existing device structure.
edd16368
SC
1884 */
1885 i = 0;
1886 nremoved = 0;
1887 nadded = 0;
1888 while (i < h->ndevices) {
1889 csd = h->dev[i];
1890 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1891 if (device_change == DEVICE_NOT_FOUND) {
1892 changes++;
8aa60681 1893 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
edd16368
SC
1894 continue; /* remove ^^^, hence i not incremented */
1895 } else if (device_change == DEVICE_CHANGED) {
1896 changes++;
8aa60681 1897 hpsa_scsi_replace_entry(h, i, sd[entry],
2a8ccf31 1898 added, &nadded, removed, &nremoved);
c7f172dc
SC
1899 /* Set it to NULL to prevent it from being freed
1900 * at the bottom of hpsa_update_scsi_devices()
1901 */
1902 sd[entry] = NULL;
bd9244f7 1903 } else if (device_change == DEVICE_UPDATED) {
8aa60681 1904 hpsa_scsi_update_entry(h, i, sd[entry]);
edd16368
SC
1905 }
1906 i++;
1907 }
1908
1909 /* Now, make sure every device listed in sd[] is also
1910 * listed in h->dev[], adding them if they aren't found
1911 */
1912
1913 for (i = 0; i < nsds; i++) {
1914 if (!sd[i]) /* if already added above. */
1915 continue;
9846590e
SC
1916
1917 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1918 * as the SCSI mid-layer does not handle such devices well.
1919 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1920 * at 160Hz, and prevents the system from coming up.
1921 */
1922 if (sd[i]->volume_offline) {
1923 hpsa_show_volume_status(h, sd[i]);
0d96ef5f 1924 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
9846590e
SC
1925 continue;
1926 }
1927
edd16368
SC
1928 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1929 h->ndevices, &entry);
1930 if (device_change == DEVICE_NOT_FOUND) {
1931 changes++;
8aa60681 1932 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
edd16368
SC
1933 break;
1934 sd[i] = NULL; /* prevent from being freed later. */
1935 } else if (device_change == DEVICE_CHANGED) {
1936 /* should never happen... */
1937 changes++;
1938 dev_warn(&h->pdev->dev,
1939 "device unexpectedly changed.\n");
1940 /* but if it does happen, we just ignore that device */
1941 }
1942 }
41ce4c35
SC
1943 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1944
1945 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1946 * any logical drives that need it enabled.
1947 */
1d33d85d
DB
1948 for (i = 0; i < h->ndevices; i++) {
1949 if (h->dev[i] == NULL)
1950 continue;
41ce4c35 1951 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1d33d85d 1952 }
41ce4c35 1953
edd16368
SC
1954 spin_unlock_irqrestore(&h->devlock, flags);
1955
9846590e
SC
1956 /* Monitor devices which are in one of several NOT READY states to be
1957 * brought online later. This must be done without holding h->devlock,
1958 * so don't touch h->dev[]
1959 */
1960 for (i = 0; i < nsds; i++) {
1961 if (!sd[i]) /* if already added above. */
1962 continue;
1963 if (sd[i]->volume_offline)
1964 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1965 }
1966
edd16368
SC
1967 /* Don't notify scsi mid layer of any changes the first time through
1968 * (or if there are no changes) scsi_scan_host will do it later the
1969 * first time through.
1970 */
8aa60681 1971 if (!changes)
edd16368
SC
1972 goto free_and_out;
1973
edd16368
SC
1974 /* Notify scsi mid layer of any removed devices */
1975 for (i = 0; i < nremoved; i++) {
1d33d85d
DB
1976 if (removed[i] == NULL)
1977 continue;
096ccff4
KB
1978 if (removed[i]->expose_device)
1979 hpsa_remove_device(h, removed[i]);
edd16368
SC
1980 kfree(removed[i]);
1981 removed[i] = NULL;
1982 }
1983
1984 /* Notify scsi mid layer of any added devices */
1985 for (i = 0; i < nadded; i++) {
096ccff4
KB
1986 int rc = 0;
1987
1d33d85d
DB
1988 if (added[i] == NULL)
1989 continue;
2a168208 1990 if (!(added[i]->expose_device))
41ce4c35 1991 continue;
096ccff4
KB
1992 rc = hpsa_add_device(h, added[i]);
1993 if (!rc)
edd16368 1994 continue;
096ccff4
KB
1995 dev_warn(&h->pdev->dev,
1996 "addition failed %d, device not added.", rc);
edd16368
SC
1997 /* now we have to remove it from h->dev,
1998 * since it didn't get added to scsi mid layer
1999 */
2000 fixup_botched_add(h, added[i]);
853633e8 2001 h->drv_req_rescan = 1;
edd16368
SC
2002 }
2003
2004free_and_out:
2005 kfree(added);
2006 kfree(removed);
edd16368
SC
2007}
2008
2009/*
9e03aa2f 2010 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
edd16368
SC
2011 * Assume's h->devlock is held.
2012 */
2013static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2014 int bus, int target, int lun)
2015{
2016 int i;
2017 struct hpsa_scsi_dev_t *sd;
2018
2019 for (i = 0; i < h->ndevices; i++) {
2020 sd = h->dev[i];
2021 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2022 return sd;
2023 }
2024 return NULL;
2025}
2026
edd16368
SC
2027static int hpsa_slave_alloc(struct scsi_device *sdev)
2028{
7630b3a5 2029 struct hpsa_scsi_dev_t *sd = NULL;
edd16368
SC
2030 unsigned long flags;
2031 struct ctlr_info *h;
2032
2033 h = sdev_to_hba(sdev);
2034 spin_lock_irqsave(&h->devlock, flags);
d04e62b9
KB
2035 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2036 struct scsi_target *starget;
2037 struct sas_rphy *rphy;
2038
2039 starget = scsi_target(sdev);
2040 rphy = target_to_rphy(starget);
2041 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2042 if (sd) {
2043 sd->target = sdev_id(sdev);
2044 sd->lun = sdev->lun;
2045 }
7630b3a5
HR
2046 }
2047 if (!sd)
d04e62b9
KB
2048 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2049 sdev_id(sdev), sdev->lun);
2050
2051 if (sd && sd->expose_device) {
03383736 2052 atomic_set(&sd->ioaccel_cmds_out, 0);
d04e62b9 2053 sdev->hostdata = sd;
41ce4c35
SC
2054 } else
2055 sdev->hostdata = NULL;
edd16368
SC
2056 spin_unlock_irqrestore(&h->devlock, flags);
2057 return 0;
2058}
2059
41ce4c35
SC
2060/* configure scsi device based on internal per-device structure */
2061static int hpsa_slave_configure(struct scsi_device *sdev)
2062{
2063 struct hpsa_scsi_dev_t *sd;
2064 int queue_depth;
2065
2066 sd = sdev->hostdata;
2a168208 2067 sdev->no_uld_attach = !sd || !sd->expose_device;
41ce4c35
SC
2068
2069 if (sd)
2070 queue_depth = sd->queue_depth != 0 ?
2071 sd->queue_depth : sdev->host->can_queue;
2072 else
2073 queue_depth = sdev->host->can_queue;
2074
2075 scsi_change_queue_depth(sdev, queue_depth);
2076
2077 return 0;
2078}
2079
edd16368
SC
2080static void hpsa_slave_destroy(struct scsi_device *sdev)
2081{
bcc44255 2082 /* nothing to do. */
edd16368
SC
2083}
2084
d9a729f3
WS
2085static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2086{
2087 int i;
2088
2089 if (!h->ioaccel2_cmd_sg_list)
2090 return;
2091 for (i = 0; i < h->nr_cmds; i++) {
2092 kfree(h->ioaccel2_cmd_sg_list[i]);
2093 h->ioaccel2_cmd_sg_list[i] = NULL;
2094 }
2095 kfree(h->ioaccel2_cmd_sg_list);
2096 h->ioaccel2_cmd_sg_list = NULL;
2097}
2098
2099static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2100{
2101 int i;
2102
2103 if (h->chainsize <= 0)
2104 return 0;
2105
2106 h->ioaccel2_cmd_sg_list =
2107 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2108 GFP_KERNEL);
2109 if (!h->ioaccel2_cmd_sg_list)
2110 return -ENOMEM;
2111 for (i = 0; i < h->nr_cmds; i++) {
2112 h->ioaccel2_cmd_sg_list[i] =
2113 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2114 h->maxsgentries, GFP_KERNEL);
2115 if (!h->ioaccel2_cmd_sg_list[i])
2116 goto clean;
2117 }
2118 return 0;
2119
2120clean:
2121 hpsa_free_ioaccel2_sg_chain_blocks(h);
2122 return -ENOMEM;
2123}
2124
33a2ffce
SC
2125static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2126{
2127 int i;
2128
2129 if (!h->cmd_sg_list)
2130 return;
2131 for (i = 0; i < h->nr_cmds; i++) {
2132 kfree(h->cmd_sg_list[i]);
2133 h->cmd_sg_list[i] = NULL;
2134 }
2135 kfree(h->cmd_sg_list);
2136 h->cmd_sg_list = NULL;
2137}
2138
105a3dbc 2139static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
33a2ffce
SC
2140{
2141 int i;
2142
2143 if (h->chainsize <= 0)
2144 return 0;
2145
2146 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2147 GFP_KERNEL);
7e8a9486 2148 if (!h->cmd_sg_list)
33a2ffce 2149 return -ENOMEM;
7e8a9486 2150
33a2ffce
SC
2151 for (i = 0; i < h->nr_cmds; i++) {
2152 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2153 h->chainsize, GFP_KERNEL);
7e8a9486 2154 if (!h->cmd_sg_list[i])
33a2ffce 2155 goto clean;
7e8a9486 2156
33a2ffce
SC
2157 }
2158 return 0;
2159
2160clean:
2161 hpsa_free_sg_chain_blocks(h);
2162 return -ENOMEM;
2163}
2164
d9a729f3
WS
2165static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2166 struct io_accel2_cmd *cp, struct CommandList *c)
2167{
2168 struct ioaccel2_sg_element *chain_block;
2169 u64 temp64;
2170 u32 chain_size;
2171
2172 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
a736e9b6 2173 chain_size = le32_to_cpu(cp->sg[0].length);
d9a729f3
WS
2174 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2175 PCI_DMA_TODEVICE);
2176 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2177 /* prevent subsequent unmapping */
2178 cp->sg->address = 0;
2179 return -1;
2180 }
2181 cp->sg->address = cpu_to_le64(temp64);
2182 return 0;
2183}
2184
2185static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2186 struct io_accel2_cmd *cp)
2187{
2188 struct ioaccel2_sg_element *chain_sg;
2189 u64 temp64;
2190 u32 chain_size;
2191
2192 chain_sg = cp->sg;
2193 temp64 = le64_to_cpu(chain_sg->address);
a736e9b6 2194 chain_size = le32_to_cpu(cp->sg[0].length);
d9a729f3
WS
2195 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2196}
2197
e2bea6df 2198static int hpsa_map_sg_chain_block(struct ctlr_info *h,
33a2ffce
SC
2199 struct CommandList *c)
2200{
2201 struct SGDescriptor *chain_sg, *chain_block;
2202 u64 temp64;
50a0decf 2203 u32 chain_len;
33a2ffce
SC
2204
2205 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2206 chain_block = h->cmd_sg_list[c->cmdindex];
50a0decf
SC
2207 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2208 chain_len = sizeof(*chain_sg) *
2b08b3e9 2209 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
50a0decf
SC
2210 chain_sg->Len = cpu_to_le32(chain_len);
2211 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
33a2ffce 2212 PCI_DMA_TODEVICE);
e2bea6df
SC
2213 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2214 /* prevent subsequent unmapping */
50a0decf 2215 chain_sg->Addr = cpu_to_le64(0);
e2bea6df
SC
2216 return -1;
2217 }
50a0decf 2218 chain_sg->Addr = cpu_to_le64(temp64);
e2bea6df 2219 return 0;
33a2ffce
SC
2220}
2221
2222static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2223 struct CommandList *c)
2224{
2225 struct SGDescriptor *chain_sg;
33a2ffce 2226
50a0decf 2227 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
33a2ffce
SC
2228 return;
2229
2230 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
50a0decf
SC
2231 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2232 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
33a2ffce
SC
2233}
2234
a09c1441
ST
2235
2236/* Decode the various types of errors on ioaccel2 path.
2237 * Return 1 for any error that should generate a RAID path retry.
2238 * Return 0 for errors that don't require a RAID path retry.
2239 */
2240static int handle_ioaccel_mode2_error(struct ctlr_info *h,
c349775e
ST
2241 struct CommandList *c,
2242 struct scsi_cmnd *cmd,
ba74fdc4
DB
2243 struct io_accel2_cmd *c2,
2244 struct hpsa_scsi_dev_t *dev)
c349775e
ST
2245{
2246 int data_len;
a09c1441 2247 int retry = 0;
c40820d5 2248 u32 ioaccel2_resid = 0;
c349775e
ST
2249
2250 switch (c2->error_data.serv_response) {
2251 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2252 switch (c2->error_data.status) {
2253 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2254 break;
2255 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
ee6b1889 2256 cmd->result |= SAM_STAT_CHECK_CONDITION;
c349775e 2257 if (c2->error_data.data_present !=
ee6b1889
SC
2258 IOACCEL2_SENSE_DATA_PRESENT) {
2259 memset(cmd->sense_buffer, 0,
2260 SCSI_SENSE_BUFFERSIZE);
c349775e 2261 break;
ee6b1889 2262 }
c349775e
ST
2263 /* copy the sense data */
2264 data_len = c2->error_data.sense_data_len;
2265 if (data_len > SCSI_SENSE_BUFFERSIZE)
2266 data_len = SCSI_SENSE_BUFFERSIZE;
2267 if (data_len > sizeof(c2->error_data.sense_data_buff))
2268 data_len =
2269 sizeof(c2->error_data.sense_data_buff);
2270 memcpy(cmd->sense_buffer,
2271 c2->error_data.sense_data_buff, data_len);
a09c1441 2272 retry = 1;
c349775e
ST
2273 break;
2274 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
a09c1441 2275 retry = 1;
c349775e
ST
2276 break;
2277 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
a09c1441 2278 retry = 1;
c349775e
ST
2279 break;
2280 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
4a8da22b 2281 retry = 1;
c349775e
ST
2282 break;
2283 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
a09c1441 2284 retry = 1;
c349775e
ST
2285 break;
2286 default:
a09c1441 2287 retry = 1;
c349775e
ST
2288 break;
2289 }
2290 break;
2291 case IOACCEL2_SERV_RESPONSE_FAILURE:
c40820d5
JH
2292 switch (c2->error_data.status) {
2293 case IOACCEL2_STATUS_SR_IO_ERROR:
2294 case IOACCEL2_STATUS_SR_IO_ABORTED:
2295 case IOACCEL2_STATUS_SR_OVERRUN:
2296 retry = 1;
2297 break;
2298 case IOACCEL2_STATUS_SR_UNDERRUN:
2299 cmd->result = (DID_OK << 16); /* host byte */
2300 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2301 ioaccel2_resid = get_unaligned_le32(
2302 &c2->error_data.resid_cnt[0]);
2303 scsi_set_resid(cmd, ioaccel2_resid);
2304 break;
2305 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2306 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2307 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
ba74fdc4
DB
2308 /*
2309 * Did an HBA disk disappear? We will eventually
2310 * get a state change event from the controller but
2311 * in the meantime, we need to tell the OS that the
2312 * HBA disk is no longer there and stop I/O
2313 * from going down. This allows the potential re-insert
2314 * of the disk to get the same device node.
2315 */
2316 if (dev->physical_device && dev->expose_device) {
2317 cmd->result = DID_NO_CONNECT << 16;
2318 dev->removed = 1;
2319 h->drv_req_rescan = 1;
2320 dev_warn(&h->pdev->dev,
2321 "%s: device is gone!\n", __func__);
2322 } else
2323 /*
2324 * Retry by sending down the RAID path.
2325 * We will get an event from ctlr to
2326 * trigger rescan regardless.
2327 */
2328 retry = 1;
c40820d5
JH
2329 break;
2330 default:
2331 retry = 1;
c40820d5 2332 }
c349775e
ST
2333 break;
2334 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2335 break;
2336 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2337 break;
2338 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
a09c1441 2339 retry = 1;
c349775e
ST
2340 break;
2341 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
c349775e
ST
2342 break;
2343 default:
a09c1441 2344 retry = 1;
c349775e
ST
2345 break;
2346 }
a09c1441
ST
2347
2348 return retry; /* retry on raid path? */
c349775e
ST
2349}
2350
a58e7e53
WS
2351static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2352 struct CommandList *c)
2353{
d604f533
WS
2354 bool do_wake = false;
2355
a58e7e53
WS
2356 /*
2357 * Prevent the following race in the abort handler:
2358 *
2359 * 1. LLD is requested to abort a SCSI command
2360 * 2. The SCSI command completes
2361 * 3. The struct CommandList associated with step 2 is made available
2362 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2363 * 5. Abort handler follows scsi_cmnd->host_scribble and
2364 * finds struct CommandList and tries to aborts it
2365 * Now we have aborted the wrong command.
2366 *
d604f533
WS
2367 * Reset c->scsi_cmd here so that the abort or reset handler will know
2368 * this command has completed. Then, check to see if the handler is
a58e7e53
WS
2369 * waiting for this command, and, if so, wake it.
2370 */
2371 c->scsi_cmd = SCSI_CMD_IDLE;
d604f533 2372 mb(); /* Declare command idle before checking for pending events. */
a58e7e53 2373 if (c->abort_pending) {
d604f533 2374 do_wake = true;
a58e7e53 2375 c->abort_pending = false;
a58e7e53 2376 }
d604f533
WS
2377 if (c->reset_pending) {
2378 unsigned long flags;
2379 struct hpsa_scsi_dev_t *dev;
2380
2381 /*
2382 * There appears to be a reset pending; lock the lock and
2383 * reconfirm. If so, then decrement the count of outstanding
2384 * commands and wake the reset command if this is the last one.
2385 */
2386 spin_lock_irqsave(&h->lock, flags);
2387 dev = c->reset_pending; /* Re-fetch under the lock. */
2388 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2389 do_wake = true;
2390 c->reset_pending = NULL;
2391 spin_unlock_irqrestore(&h->lock, flags);
2392 }
2393
2394 if (do_wake)
2395 wake_up_all(&h->event_sync_wait_queue);
a58e7e53
WS
2396}
2397
73153fe5
WS
2398static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2399 struct CommandList *c)
2400{
2401 hpsa_cmd_resolve_events(h, c);
2402 cmd_tagged_free(h, c);
2403}
2404
8a0ff92c
WS
2405static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2406 struct CommandList *c, struct scsi_cmnd *cmd)
2407{
73153fe5 2408 hpsa_cmd_resolve_and_free(h, c);
d49c2077
DB
2409 if (cmd && cmd->scsi_done)
2410 cmd->scsi_done(cmd);
8a0ff92c
WS
2411}
2412
2413static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2414{
2415 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2416 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2417}
2418
a58e7e53
WS
2419static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2420{
2421 cmd->result = DID_ABORT << 16;
2422}
2423
2424static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2425 struct scsi_cmnd *cmd)
2426{
2427 hpsa_set_scsi_cmd_aborted(cmd);
2428 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2429 c->Request.CDB, c->err_info->ScsiStatus);
73153fe5 2430 hpsa_cmd_resolve_and_free(h, c);
a58e7e53
WS
2431}
2432
c349775e
ST
2433static void process_ioaccel2_completion(struct ctlr_info *h,
2434 struct CommandList *c, struct scsi_cmnd *cmd,
2435 struct hpsa_scsi_dev_t *dev)
2436{
2437 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2438
2439 /* check for good status */
2440 if (likely(c2->error_data.serv_response == 0 &&
8a0ff92c
WS
2441 c2->error_data.status == 0))
2442 return hpsa_cmd_free_and_done(h, c, cmd);
c349775e 2443
8a0ff92c
WS
2444 /*
2445 * Any RAID offload error results in retry which will use
c349775e
ST
2446 * the normal I/O path so the controller can handle whatever's
2447 * wrong.
2448 */
f3f01730 2449 if (is_logical_device(dev) &&
c349775e
ST
2450 c2->error_data.serv_response ==
2451 IOACCEL2_SERV_RESPONSE_FAILURE) {
080ef1cc 2452 if (c2->error_data.status ==
064d1b1d 2453 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
080ef1cc 2454 dev->offload_enabled = 0;
064d1b1d
DB
2455 dev->offload_to_be_enabled = 0;
2456 }
8a0ff92c
WS
2457
2458 return hpsa_retry_cmd(h, c);
a09c1441 2459 }
080ef1cc 2460
ba74fdc4 2461 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
8a0ff92c 2462 return hpsa_retry_cmd(h, c);
080ef1cc 2463
8a0ff92c 2464 return hpsa_cmd_free_and_done(h, c, cmd);
c349775e
ST
2465}
2466
9437ac43
SC
2467/* Returns 0 on success, < 0 otherwise. */
2468static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2469 struct CommandList *cp)
2470{
2471 u8 tmf_status = cp->err_info->ScsiStatus;
2472
2473 switch (tmf_status) {
2474 case CISS_TMF_COMPLETE:
2475 /*
2476 * CISS_TMF_COMPLETE never happens, instead,
2477 * ei->CommandStatus == 0 for this case.
2478 */
2479 case CISS_TMF_SUCCESS:
2480 return 0;
2481 case CISS_TMF_INVALID_FRAME:
2482 case CISS_TMF_NOT_SUPPORTED:
2483 case CISS_TMF_FAILED:
2484 case CISS_TMF_WRONG_LUN:
2485 case CISS_TMF_OVERLAPPED_TAG:
2486 break;
2487 default:
2488 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2489 tmf_status);
2490 break;
2491 }
2492 return -tmf_status;
2493}
2494
1fb011fb 2495static void complete_scsi_command(struct CommandList *cp)
edd16368
SC
2496{
2497 struct scsi_cmnd *cmd;
2498 struct ctlr_info *h;
2499 struct ErrorInfo *ei;
283b4a9b 2500 struct hpsa_scsi_dev_t *dev;
d9a729f3 2501 struct io_accel2_cmd *c2;
edd16368 2502
9437ac43
SC
2503 u8 sense_key;
2504 u8 asc; /* additional sense code */
2505 u8 ascq; /* additional sense code qualifier */
db111e18 2506 unsigned long sense_data_size;
edd16368
SC
2507
2508 ei = cp->err_info;
7fa3030c 2509 cmd = cp->scsi_cmd;
edd16368 2510 h = cp->h;
d49c2077
DB
2511
2512 if (!cmd->device) {
2513 cmd->result = DID_NO_CONNECT << 16;
2514 return hpsa_cmd_free_and_done(h, cp, cmd);
2515 }
2516
283b4a9b 2517 dev = cmd->device->hostdata;
45e596cd
DB
2518 if (!dev) {
2519 cmd->result = DID_NO_CONNECT << 16;
2520 return hpsa_cmd_free_and_done(h, cp, cmd);
2521 }
d9a729f3 2522 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
edd16368
SC
2523
2524 scsi_dma_unmap(cmd); /* undo the DMA mappings */
e1f7de0c 2525 if ((cp->cmd_type == CMD_SCSI) &&
2b08b3e9 2526 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
33a2ffce 2527 hpsa_unmap_sg_chain_block(h, cp);
edd16368 2528
d9a729f3
WS
2529 if ((cp->cmd_type == CMD_IOACCEL2) &&
2530 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2531 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2532
edd16368
SC
2533 cmd->result = (DID_OK << 16); /* host byte */
2534 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
c349775e 2535
d49c2077
DB
2536 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2537 if (dev->physical_device && dev->expose_device &&
2538 dev->removed) {
2539 cmd->result = DID_NO_CONNECT << 16;
2540 return hpsa_cmd_free_and_done(h, cp, cmd);
2541 }
2542 if (likely(cp->phys_disk != NULL))
2543 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2544 }
03383736 2545
25163bd5
WS
2546 /*
2547 * We check for lockup status here as it may be set for
2548 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2549 * fail_all_oustanding_cmds()
2550 */
2551 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2552 /* DID_NO_CONNECT will prevent a retry */
2553 cmd->result = DID_NO_CONNECT << 16;
8a0ff92c 2554 return hpsa_cmd_free_and_done(h, cp, cmd);
25163bd5
WS
2555 }
2556
d604f533
WS
2557 if ((unlikely(hpsa_is_pending_event(cp)))) {
2558 if (cp->reset_pending)
bfd7546c 2559 return hpsa_cmd_free_and_done(h, cp, cmd);
d604f533
WS
2560 if (cp->abort_pending)
2561 return hpsa_cmd_abort_and_free(h, cp, cmd);
2562 }
2563
c349775e
ST
2564 if (cp->cmd_type == CMD_IOACCEL2)
2565 return process_ioaccel2_completion(h, cp, cmd, dev);
2566
6aa4c361 2567 scsi_set_resid(cmd, ei->ResidualCnt);
8a0ff92c
WS
2568 if (ei->CommandStatus == 0)
2569 return hpsa_cmd_free_and_done(h, cp, cmd);
6aa4c361 2570
e1f7de0c
MG
2571 /* For I/O accelerator commands, copy over some fields to the normal
2572 * CISS header used below for error handling.
2573 */
2574 if (cp->cmd_type == CMD_IOACCEL1) {
2575 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2b08b3e9
DB
2576 cp->Header.SGList = scsi_sg_count(cmd);
2577 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2578 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2579 IOACCEL1_IOFLAGS_CDBLEN_MASK;
50a0decf 2580 cp->Header.tag = c->tag;
e1f7de0c
MG
2581 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2582 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
283b4a9b
SC
2583
2584 /* Any RAID offload error results in retry which will use
2585 * the normal I/O path so the controller can handle whatever's
2586 * wrong.
2587 */
f3f01730 2588 if (is_logical_device(dev)) {
283b4a9b
SC
2589 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2590 dev->offload_enabled = 0;
d604f533 2591 return hpsa_retry_cmd(h, cp);
283b4a9b 2592 }
e1f7de0c
MG
2593 }
2594
edd16368
SC
2595 /* an error has occurred */
2596 switch (ei->CommandStatus) {
2597
2598 case CMD_TARGET_STATUS:
9437ac43
SC
2599 cmd->result |= ei->ScsiStatus;
2600 /* copy the sense data */
2601 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2602 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2603 else
2604 sense_data_size = sizeof(ei->SenseInfo);
2605 if (ei->SenseLen < sense_data_size)
2606 sense_data_size = ei->SenseLen;
2607 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2608 if (ei->ScsiStatus)
2609 decode_sense_data(ei->SenseInfo, sense_data_size,
2610 &sense_key, &asc, &ascq);
edd16368 2611 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1d3b3609 2612 if (sense_key == ABORTED_COMMAND) {
2e311fba 2613 cmd->result |= DID_SOFT_ERROR << 16;
1d3b3609
MG
2614 break;
2615 }
edd16368
SC
2616 break;
2617 }
edd16368
SC
2618 /* Problem was not a check condition
2619 * Pass it up to the upper layers...
2620 */
2621 if (ei->ScsiStatus) {
2622 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2623 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2624 "Returning result: 0x%x\n",
2625 cp, ei->ScsiStatus,
2626 sense_key, asc, ascq,
2627 cmd->result);
2628 } else { /* scsi status is zero??? How??? */
2629 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2630 "Returning no connection.\n", cp),
2631
2632 /* Ordinarily, this case should never happen,
2633 * but there is a bug in some released firmware
2634 * revisions that allows it to happen if, for
2635 * example, a 4100 backplane loses power and
2636 * the tape drive is in it. We assume that
2637 * it's a fatal error of some kind because we
2638 * can't show that it wasn't. We will make it
2639 * look like selection timeout since that is
2640 * the most common reason for this to occur,
2641 * and it's severe enough.
2642 */
2643
2644 cmd->result = DID_NO_CONNECT << 16;
2645 }
2646 break;
2647
2648 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2649 break;
2650 case CMD_DATA_OVERRUN:
f42e81e1
SC
2651 dev_warn(&h->pdev->dev,
2652 "CDB %16phN data overrun\n", cp->Request.CDB);
edd16368
SC
2653 break;
2654 case CMD_INVALID: {
2655 /* print_bytes(cp, sizeof(*cp), 1, 0);
2656 print_cmd(cp); */
2657 /* We get CMD_INVALID if you address a non-existent device
2658 * instead of a selection timeout (no response). You will
2659 * see this if you yank out a drive, then try to access it.
2660 * This is kind of a shame because it means that any other
2661 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2662 * missing target. */
2663 cmd->result = DID_NO_CONNECT << 16;
2664 }
2665 break;
2666 case CMD_PROTOCOL_ERR:
256d0eaa 2667 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2668 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2669 cp->Request.CDB);
edd16368
SC
2670 break;
2671 case CMD_HARDWARE_ERR:
2672 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2673 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2674 cp->Request.CDB);
edd16368
SC
2675 break;
2676 case CMD_CONNECTION_LOST:
2677 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2678 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2679 cp->Request.CDB);
edd16368
SC
2680 break;
2681 case CMD_ABORTED:
a58e7e53
WS
2682 /* Return now to avoid calling scsi_done(). */
2683 return hpsa_cmd_abort_and_free(h, cp, cmd);
edd16368
SC
2684 case CMD_ABORT_FAILED:
2685 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2686 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2687 cp->Request.CDB);
edd16368
SC
2688 break;
2689 case CMD_UNSOLICITED_ABORT:
f6e76055 2690 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
f42e81e1
SC
2691 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2692 cp->Request.CDB);
edd16368
SC
2693 break;
2694 case CMD_TIMEOUT:
2695 cmd->result = DID_TIME_OUT << 16;
f42e81e1
SC
2696 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2697 cp->Request.CDB);
edd16368 2698 break;
1d5e2ed0
SC
2699 case CMD_UNABORTABLE:
2700 cmd->result = DID_ERROR << 16;
2701 dev_warn(&h->pdev->dev, "Command unabortable\n");
2702 break;
9437ac43
SC
2703 case CMD_TMF_STATUS:
2704 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2705 cmd->result = DID_ERROR << 16;
2706 break;
283b4a9b
SC
2707 case CMD_IOACCEL_DISABLED:
2708 /* This only handles the direct pass-through case since RAID
2709 * offload is handled above. Just attempt a retry.
2710 */
2711 cmd->result = DID_SOFT_ERROR << 16;
2712 dev_warn(&h->pdev->dev,
2713 "cp %p had HP SSD Smart Path error\n", cp);
2714 break;
edd16368
SC
2715 default:
2716 cmd->result = DID_ERROR << 16;
2717 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2718 cp, ei->CommandStatus);
2719 }
8a0ff92c
WS
2720
2721 return hpsa_cmd_free_and_done(h, cp, cmd);
edd16368
SC
2722}
2723
edd16368
SC
2724static void hpsa_pci_unmap(struct pci_dev *pdev,
2725 struct CommandList *c, int sg_used, int data_direction)
2726{
2727 int i;
edd16368 2728
50a0decf
SC
2729 for (i = 0; i < sg_used; i++)
2730 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2731 le32_to_cpu(c->SG[i].Len),
2732 data_direction);
edd16368
SC
2733}
2734
a2dac136 2735static int hpsa_map_one(struct pci_dev *pdev,
edd16368
SC
2736 struct CommandList *cp,
2737 unsigned char *buf,
2738 size_t buflen,
2739 int data_direction)
2740{
01a02ffc 2741 u64 addr64;
edd16368
SC
2742
2743 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2744 cp->Header.SGList = 0;
50a0decf 2745 cp->Header.SGTotal = cpu_to_le16(0);
a2dac136 2746 return 0;
edd16368
SC
2747 }
2748
50a0decf 2749 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
eceaae18 2750 if (dma_mapping_error(&pdev->dev, addr64)) {
a2dac136 2751 /* Prevent subsequent unmap of something never mapped */
eceaae18 2752 cp->Header.SGList = 0;
50a0decf 2753 cp->Header.SGTotal = cpu_to_le16(0);
a2dac136 2754 return -1;
eceaae18 2755 }
50a0decf
SC
2756 cp->SG[0].Addr = cpu_to_le64(addr64);
2757 cp->SG[0].Len = cpu_to_le32(buflen);
2758 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2759 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2760 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
a2dac136 2761 return 0;
edd16368
SC
2762}
2763
25163bd5
WS
2764#define NO_TIMEOUT ((unsigned long) -1)
2765#define DEFAULT_TIMEOUT 30000 /* milliseconds */
2766static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2767 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
edd16368
SC
2768{
2769 DECLARE_COMPLETION_ONSTACK(wait);
2770
2771 c->waiting = &wait;
25163bd5
WS
2772 __enqueue_cmd_and_start_io(h, c, reply_queue);
2773 if (timeout_msecs == NO_TIMEOUT) {
2774 /* TODO: get rid of this no-timeout thing */
2775 wait_for_completion_io(&wait);
2776 return IO_OK;
2777 }
2778 if (!wait_for_completion_io_timeout(&wait,
2779 msecs_to_jiffies(timeout_msecs))) {
2780 dev_warn(&h->pdev->dev, "Command timed out.\n");
2781 return -ETIMEDOUT;
2782 }
2783 return IO_OK;
2784}
2785
2786static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2787 int reply_queue, unsigned long timeout_msecs)
2788{
2789 if (unlikely(lockup_detected(h))) {
2790 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2791 return IO_OK;
2792 }
2793 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
edd16368
SC
2794}
2795
094963da
SC
2796static u32 lockup_detected(struct ctlr_info *h)
2797{
2798 int cpu;
2799 u32 rc, *lockup_detected;
2800
2801 cpu = get_cpu();
2802 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2803 rc = *lockup_detected;
2804 put_cpu();
2805 return rc;
2806}
2807
9c2fc160 2808#define MAX_DRIVER_CMD_RETRIES 25
25163bd5
WS
2809static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2810 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
edd16368 2811{
9c2fc160 2812 int backoff_time = 10, retry_count = 0;
25163bd5 2813 int rc;
edd16368
SC
2814
2815 do {
7630abd0 2816 memset(c->err_info, 0, sizeof(*c->err_info));
25163bd5
WS
2817 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2818 timeout_msecs);
2819 if (rc)
2820 break;
edd16368 2821 retry_count++;
9c2fc160
SC
2822 if (retry_count > 3) {
2823 msleep(backoff_time);
2824 if (backoff_time < 1000)
2825 backoff_time *= 2;
2826 }
852af20a 2827 } while ((check_for_unit_attention(h, c) ||
9c2fc160
SC
2828 check_for_busy(h, c)) &&
2829 retry_count <= MAX_DRIVER_CMD_RETRIES);
edd16368 2830 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
25163bd5
WS
2831 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2832 rc = -EIO;
2833 return rc;
edd16368
SC
2834}
2835
d1e8beac
SC
2836static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2837 struct CommandList *c)
edd16368 2838{
d1e8beac
SC
2839 const u8 *cdb = c->Request.CDB;
2840 const u8 *lun = c->Header.LUN.LunAddrBytes;
2841
609a70df
RV
2842 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2843 txt, lun, cdb);
d1e8beac
SC
2844}
2845
2846static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2847 struct CommandList *cp)
2848{
2849 const struct ErrorInfo *ei = cp->err_info;
edd16368 2850 struct device *d = &cp->h->pdev->dev;
9437ac43
SC
2851 u8 sense_key, asc, ascq;
2852 int sense_len;
edd16368 2853
edd16368
SC
2854 switch (ei->CommandStatus) {
2855 case CMD_TARGET_STATUS:
9437ac43
SC
2856 if (ei->SenseLen > sizeof(ei->SenseInfo))
2857 sense_len = sizeof(ei->SenseInfo);
2858 else
2859 sense_len = ei->SenseLen;
2860 decode_sense_data(ei->SenseInfo, sense_len,
2861 &sense_key, &asc, &ascq);
d1e8beac
SC
2862 hpsa_print_cmd(h, "SCSI status", cp);
2863 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
9437ac43
SC
2864 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2865 sense_key, asc, ascq);
d1e8beac 2866 else
9437ac43 2867 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
edd16368
SC
2868 if (ei->ScsiStatus == 0)
2869 dev_warn(d, "SCSI status is abnormally zero. "
2870 "(probably indicates selection timeout "
2871 "reported incorrectly due to a known "
2872 "firmware bug, circa July, 2001.)\n");
2873 break;
2874 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
edd16368
SC
2875 break;
2876 case CMD_DATA_OVERRUN:
d1e8beac 2877 hpsa_print_cmd(h, "overrun condition", cp);
edd16368
SC
2878 break;
2879 case CMD_INVALID: {
2880 /* controller unfortunately reports SCSI passthru's
2881 * to non-existent targets as invalid commands.
2882 */
d1e8beac
SC
2883 hpsa_print_cmd(h, "invalid command", cp);
2884 dev_warn(d, "probably means device no longer present\n");
edd16368
SC
2885 }
2886 break;
2887 case CMD_PROTOCOL_ERR:
d1e8beac 2888 hpsa_print_cmd(h, "protocol error", cp);
edd16368
SC
2889 break;
2890 case CMD_HARDWARE_ERR:
d1e8beac 2891 hpsa_print_cmd(h, "hardware error", cp);
edd16368
SC
2892 break;
2893 case CMD_CONNECTION_LOST:
d1e8beac 2894 hpsa_print_cmd(h, "connection lost", cp);
edd16368
SC
2895 break;
2896 case CMD_ABORTED:
d1e8beac 2897 hpsa_print_cmd(h, "aborted", cp);
edd16368
SC
2898 break;
2899 case CMD_ABORT_FAILED:
d1e8beac 2900 hpsa_print_cmd(h, "abort failed", cp);
edd16368
SC
2901 break;
2902 case CMD_UNSOLICITED_ABORT:
d1e8beac 2903 hpsa_print_cmd(h, "unsolicited abort", cp);
edd16368
SC
2904 break;
2905 case CMD_TIMEOUT:
d1e8beac 2906 hpsa_print_cmd(h, "timed out", cp);
edd16368 2907 break;
1d5e2ed0 2908 case CMD_UNABORTABLE:
d1e8beac 2909 hpsa_print_cmd(h, "unabortable", cp);
1d5e2ed0 2910 break;
25163bd5
WS
2911 case CMD_CTLR_LOCKUP:
2912 hpsa_print_cmd(h, "controller lockup detected", cp);
2913 break;
edd16368 2914 default:
d1e8beac
SC
2915 hpsa_print_cmd(h, "unknown status", cp);
2916 dev_warn(d, "Unknown command status %x\n",
edd16368
SC
2917 ei->CommandStatus);
2918 }
2919}
2920
2921static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
b7bb24eb 2922 u16 page, unsigned char *buf,
edd16368
SC
2923 unsigned char bufsize)
2924{
2925 int rc = IO_OK;
2926 struct CommandList *c;
2927 struct ErrorInfo *ei;
2928
45fcb86e 2929 c = cmd_alloc(h);
edd16368 2930
a2dac136
SC
2931 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2932 page, scsi3addr, TYPE_CMD)) {
2933 rc = -1;
2934 goto out;
2935 }
25163bd5 2936 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
c448ecfa 2937 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
25163bd5
WS
2938 if (rc)
2939 goto out;
edd16368
SC
2940 ei = c->err_info;
2941 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 2942 hpsa_scsi_interpret_error(h, c);
edd16368
SC
2943 rc = -1;
2944 }
a2dac136 2945out:
45fcb86e 2946 cmd_free(h, c);
edd16368
SC
2947 return rc;
2948}
2949
bf711ac6 2950static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
25163bd5 2951 u8 reset_type, int reply_queue)
edd16368
SC
2952{
2953 int rc = IO_OK;
2954 struct CommandList *c;
2955 struct ErrorInfo *ei;
2956
45fcb86e 2957 c = cmd_alloc(h);
edd16368 2958
edd16368 2959
a2dac136 2960 /* fill_cmd can't fail here, no data buffer to map. */
0b9b7b6e 2961 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
bf711ac6 2962 scsi3addr, TYPE_MSG);
2ef28849 2963 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
25163bd5
WS
2964 if (rc) {
2965 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2966 goto out;
2967 }
edd16368
SC
2968 /* no unmap needed here because no data xfer. */
2969
2970 ei = c->err_info;
2971 if (ei->CommandStatus != 0) {
d1e8beac 2972 hpsa_scsi_interpret_error(h, c);
edd16368
SC
2973 rc = -1;
2974 }
25163bd5 2975out:
45fcb86e 2976 cmd_free(h, c);
edd16368
SC
2977 return rc;
2978}
2979
d604f533
WS
2980static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2981 struct hpsa_scsi_dev_t *dev,
2982 unsigned char *scsi3addr)
2983{
2984 int i;
2985 bool match = false;
2986 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2987 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2988
2989 if (hpsa_is_cmd_idle(c))
2990 return false;
2991
2992 switch (c->cmd_type) {
2993 case CMD_SCSI:
2994 case CMD_IOCTL_PEND:
2995 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2996 sizeof(c->Header.LUN.LunAddrBytes));
2997 break;
2998
2999 case CMD_IOACCEL1:
3000 case CMD_IOACCEL2:
3001 if (c->phys_disk == dev) {
3002 /* HBA mode match */
3003 match = true;
3004 } else {
3005 /* Possible RAID mode -- check each phys dev. */
3006 /* FIXME: Do we need to take out a lock here? If
3007 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3008 * instead. */
3009 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3010 /* FIXME: an alternate test might be
3011 *
3012 * match = dev->phys_disk[i]->ioaccel_handle
3013 * == c2->scsi_nexus; */
3014 match = dev->phys_disk[i] == c->phys_disk;
3015 }
3016 }
3017 break;
3018
3019 case IOACCEL2_TMF:
3020 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3021 match = dev->phys_disk[i]->ioaccel_handle ==
3022 le32_to_cpu(ac->it_nexus);
3023 }
3024 break;
3025
3026 case 0: /* The command is in the middle of being initialized. */
3027 match = false;
3028 break;
3029
3030 default:
3031 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3032 c->cmd_type);
3033 BUG();
3034 }
3035
3036 return match;
3037}
3038
3039static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3040 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3041{
3042 int i;
3043 int rc = 0;
3044
3045 /* We can really only handle one reset at a time */
3046 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3047 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3048 return -EINTR;
3049 }
3050
3051 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3052
3053 for (i = 0; i < h->nr_cmds; i++) {
3054 struct CommandList *c = h->cmd_pool + i;
3055 int refcount = atomic_inc_return(&c->refcount);
3056
3057 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3058 unsigned long flags;
3059
3060 /*
3061 * Mark the target command as having a reset pending,
3062 * then lock a lock so that the command cannot complete
3063 * while we're considering it. If the command is not
3064 * idle then count it; otherwise revoke the event.
3065 */
3066 c->reset_pending = dev;
3067 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
3068 if (!hpsa_is_cmd_idle(c))
3069 atomic_inc(&dev->reset_cmds_out);
3070 else
3071 c->reset_pending = NULL;
3072 spin_unlock_irqrestore(&h->lock, flags);
3073 }
3074
3075 cmd_free(h, c);
3076 }
3077
3078 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3079 if (!rc)
3080 wait_event(h->event_sync_wait_queue,
3081 atomic_read(&dev->reset_cmds_out) == 0 ||
3082 lockup_detected(h));
3083
3084 if (unlikely(lockup_detected(h))) {
77678d3a
DB
3085 dev_warn(&h->pdev->dev,
3086 "Controller lockup detected during reset wait\n");
3087 rc = -ENODEV;
3088 }
d604f533
WS
3089
3090 if (unlikely(rc))
3091 atomic_set(&dev->reset_cmds_out, 0);
bfd7546c 3092 else
8516a2db 3093 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
d604f533
WS
3094
3095 mutex_unlock(&h->reset_mutex);
3096 return rc;
3097}
3098
edd16368
SC
3099static void hpsa_get_raid_level(struct ctlr_info *h,
3100 unsigned char *scsi3addr, unsigned char *raid_level)
3101{
3102 int rc;
3103 unsigned char *buf;
3104
3105 *raid_level = RAID_UNKNOWN;
3106 buf = kzalloc(64, GFP_KERNEL);
3107 if (!buf)
3108 return;
8383278d
ST
3109
3110 if (!hpsa_vpd_page_supported(h, scsi3addr,
3111 HPSA_VPD_LV_DEVICE_GEOMETRY))
3112 goto exit;
3113
3114 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3115 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3116
edd16368
SC
3117 if (rc == 0)
3118 *raid_level = buf[8];
3119 if (*raid_level > RAID_UNKNOWN)
3120 *raid_level = RAID_UNKNOWN;
8383278d 3121exit:
edd16368
SC
3122 kfree(buf);
3123 return;
3124}
3125
283b4a9b
SC
3126#define HPSA_MAP_DEBUG
3127#ifdef HPSA_MAP_DEBUG
3128static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3129 struct raid_map_data *map_buff)
3130{
3131 struct raid_map_disk_data *dd = &map_buff->data[0];
3132 int map, row, col;
3133 u16 map_cnt, row_cnt, disks_per_row;
3134
3135 if (rc != 0)
3136 return;
3137
2ba8bfc8
SC
3138 /* Show details only if debugging has been activated. */
3139 if (h->raid_offload_debug < 2)
3140 return;
3141
283b4a9b
SC
3142 dev_info(&h->pdev->dev, "structure_size = %u\n",
3143 le32_to_cpu(map_buff->structure_size));
3144 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3145 le32_to_cpu(map_buff->volume_blk_size));
3146 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3147 le64_to_cpu(map_buff->volume_blk_cnt));
3148 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3149 map_buff->phys_blk_shift);
3150 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3151 map_buff->parity_rotation_shift);
3152 dev_info(&h->pdev->dev, "strip_size = %u\n",
3153 le16_to_cpu(map_buff->strip_size));
3154 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3155 le64_to_cpu(map_buff->disk_starting_blk));
3156 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3157 le64_to_cpu(map_buff->disk_blk_cnt));
3158 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3159 le16_to_cpu(map_buff->data_disks_per_row));
3160 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3161 le16_to_cpu(map_buff->metadata_disks_per_row));
3162 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3163 le16_to_cpu(map_buff->row_cnt));
3164 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3165 le16_to_cpu(map_buff->layout_map_count));
2b08b3e9 3166 dev_info(&h->pdev->dev, "flags = 0x%x\n",
dd0e19f3 3167 le16_to_cpu(map_buff->flags));
2b08b3e9
DB
3168 dev_info(&h->pdev->dev, "encrypytion = %s\n",
3169 le16_to_cpu(map_buff->flags) &
3170 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
dd0e19f3
ST
3171 dev_info(&h->pdev->dev, "dekindex = %u\n",
3172 le16_to_cpu(map_buff->dekindex));
283b4a9b
SC
3173 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3174 for (map = 0; map < map_cnt; map++) {
3175 dev_info(&h->pdev->dev, "Map%u:\n", map);
3176 row_cnt = le16_to_cpu(map_buff->row_cnt);
3177 for (row = 0; row < row_cnt; row++) {
3178 dev_info(&h->pdev->dev, " Row%u:\n", row);
3179 disks_per_row =
3180 le16_to_cpu(map_buff->data_disks_per_row);
3181 for (col = 0; col < disks_per_row; col++, dd++)
3182 dev_info(&h->pdev->dev,
3183 " D%02u: h=0x%04x xor=%u,%u\n",
3184 col, dd->ioaccel_handle,
3185 dd->xor_mult[0], dd->xor_mult[1]);
3186 disks_per_row =
3187 le16_to_cpu(map_buff->metadata_disks_per_row);
3188 for (col = 0; col < disks_per_row; col++, dd++)
3189 dev_info(&h->pdev->dev,
3190 " M%02u: h=0x%04x xor=%u,%u\n",
3191 col, dd->ioaccel_handle,
3192 dd->xor_mult[0], dd->xor_mult[1]);
3193 }
3194 }
3195}
3196#else
3197static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3198 __attribute__((unused)) int rc,
3199 __attribute__((unused)) struct raid_map_data *map_buff)
3200{
3201}
3202#endif
3203
3204static int hpsa_get_raid_map(struct ctlr_info *h,
3205 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3206{
3207 int rc = 0;
3208 struct CommandList *c;
3209 struct ErrorInfo *ei;
3210
45fcb86e 3211 c = cmd_alloc(h);
bf43caf3 3212
283b4a9b
SC
3213 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3214 sizeof(this_device->raid_map), 0,
3215 scsi3addr, TYPE_CMD)) {
2dd02d74
RE
3216 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3217 cmd_free(h, c);
3218 return -1;
283b4a9b 3219 }
25163bd5 3220 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
c448ecfa 3221 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
25163bd5
WS
3222 if (rc)
3223 goto out;
283b4a9b
SC
3224 ei = c->err_info;
3225 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 3226 hpsa_scsi_interpret_error(h, c);
25163bd5
WS
3227 rc = -1;
3228 goto out;
283b4a9b 3229 }
45fcb86e 3230 cmd_free(h, c);
283b4a9b
SC
3231
3232 /* @todo in the future, dynamically allocate RAID map memory */
3233 if (le32_to_cpu(this_device->raid_map.structure_size) >
3234 sizeof(this_device->raid_map)) {
3235 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3236 rc = -1;
3237 }
3238 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3239 return rc;
25163bd5
WS
3240out:
3241 cmd_free(h, c);
3242 return rc;
283b4a9b
SC
3243}
3244
d04e62b9
KB
3245static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3246 unsigned char scsi3addr[], u16 bmic_device_index,
3247 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3248{
3249 int rc = IO_OK;
3250 struct CommandList *c;
3251 struct ErrorInfo *ei;
3252
3253 c = cmd_alloc(h);
3254
3255 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3256 0, RAID_CTLR_LUNID, TYPE_CMD);
3257 if (rc)
3258 goto out;
3259
3260 c->Request.CDB[2] = bmic_device_index & 0xff;
3261 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3262
3263 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
c448ecfa 3264 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
d04e62b9
KB
3265 if (rc)
3266 goto out;
3267 ei = c->err_info;
3268 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3269 hpsa_scsi_interpret_error(h, c);
3270 rc = -1;
3271 }
3272out:
3273 cmd_free(h, c);
3274 return rc;
3275}
3276
66749d0d
ST
3277static int hpsa_bmic_id_controller(struct ctlr_info *h,
3278 struct bmic_identify_controller *buf, size_t bufsize)
3279{
3280 int rc = IO_OK;
3281 struct CommandList *c;
3282 struct ErrorInfo *ei;
3283
3284 c = cmd_alloc(h);
3285
3286 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3287 0, RAID_CTLR_LUNID, TYPE_CMD);
3288 if (rc)
3289 goto out;
3290
3291 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
c448ecfa 3292 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
66749d0d
ST
3293 if (rc)
3294 goto out;
3295 ei = c->err_info;
3296 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3297 hpsa_scsi_interpret_error(h, c);
3298 rc = -1;
3299 }
3300out:
3301 cmd_free(h, c);
3302 return rc;
3303}
3304
03383736
DB
3305static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3306 unsigned char scsi3addr[], u16 bmic_device_index,
3307 struct bmic_identify_physical_device *buf, size_t bufsize)
3308{
3309 int rc = IO_OK;
3310 struct CommandList *c;
3311 struct ErrorInfo *ei;
3312
3313 c = cmd_alloc(h);
3314 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3315 0, RAID_CTLR_LUNID, TYPE_CMD);
3316 if (rc)
3317 goto out;
3318
3319 c->Request.CDB[2] = bmic_device_index & 0xff;
3320 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3321
25163bd5 3322 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
c448ecfa 3323 DEFAULT_TIMEOUT);
03383736
DB
3324 ei = c->err_info;
3325 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3326 hpsa_scsi_interpret_error(h, c);
3327 rc = -1;
3328 }
3329out:
3330 cmd_free(h, c);
d04e62b9 3331
03383736
DB
3332 return rc;
3333}
3334
cca8f13b
DB
3335/*
3336 * get enclosure information
3337 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3338 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3339 * Uses id_physical_device to determine the box_index.
3340 */
3341static void hpsa_get_enclosure_info(struct ctlr_info *h,
3342 unsigned char *scsi3addr,
3343 struct ReportExtendedLUNdata *rlep, int rle_index,
3344 struct hpsa_scsi_dev_t *encl_dev)
3345{
3346 int rc = -1;
3347 struct CommandList *c = NULL;
3348 struct ErrorInfo *ei = NULL;
3349 struct bmic_sense_storage_box_params *bssbp = NULL;
3350 struct bmic_identify_physical_device *id_phys = NULL;
3351 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3352 u16 bmic_device_index = 0;
3353
3354 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3355
5ac517b8
DB
3356 if (encl_dev->target == -1 || encl_dev->lun == -1) {
3357 rc = IO_OK;
3358 goto out;
3359 }
3360
17a9e54a
DB
3361 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3362 rc = IO_OK;
cca8f13b 3363 goto out;
17a9e54a 3364 }
cca8f13b
DB
3365
3366 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3367 if (!bssbp)
3368 goto out;
3369
3370 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3371 if (!id_phys)
3372 goto out;
3373
3374 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3375 id_phys, sizeof(*id_phys));
3376 if (rc) {
3377 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3378 __func__, encl_dev->external, bmic_device_index);
3379 goto out;
3380 }
3381
3382 c = cmd_alloc(h);
3383
3384 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3385 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3386
3387 if (rc)
3388 goto out;
3389
3390 if (id_phys->phys_connector[1] == 'E')
3391 c->Request.CDB[5] = id_phys->box_index;
3392 else
3393 c->Request.CDB[5] = 0;
3394
3395 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
c448ecfa 3396 DEFAULT_TIMEOUT);
cca8f13b
DB
3397 if (rc)
3398 goto out;
3399
3400 ei = c->err_info;
3401 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3402 rc = -1;
3403 goto out;
3404 }
3405
3406 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3407 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3408 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3409
3410 rc = IO_OK;
3411out:
3412 kfree(bssbp);
3413 kfree(id_phys);
3414
3415 if (c)
3416 cmd_free(h, c);
3417
3418 if (rc != IO_OK)
3419 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3420 "Error, could not get enclosure information\n");
3421}
3422
d04e62b9
KB
3423static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3424 unsigned char *scsi3addr)
3425{
3426 struct ReportExtendedLUNdata *physdev;
3427 u32 nphysicals;
3428 u64 sa = 0;
3429 int i;
3430
3431 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3432 if (!physdev)
3433 return 0;
3434
3435 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3436 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3437 kfree(physdev);
3438 return 0;
3439 }
3440 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3441
3442 for (i = 0; i < nphysicals; i++)
3443 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3444 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3445 break;
3446 }
3447
3448 kfree(physdev);
3449
3450 return sa;
3451}
3452
3453static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3454 struct hpsa_scsi_dev_t *dev)
3455{
3456 int rc;
3457 u64 sa = 0;
3458
3459 if (is_hba_lunid(scsi3addr)) {
3460 struct bmic_sense_subsystem_info *ssi;
3461
3462 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
7e8a9486 3463 if (!ssi)
d04e62b9 3464 return;
d04e62b9
KB
3465
3466 rc = hpsa_bmic_sense_subsystem_information(h,
3467 scsi3addr, 0, ssi, sizeof(*ssi));
3468 if (rc == 0) {
3469 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3470 h->sas_address = sa;
3471 }
3472
3473 kfree(ssi);
3474 } else
3475 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3476
3477 dev->sas_address = sa;
3478}
3479
3480/* Get a device id from inquiry page 0x83 */
8383278d 3481static bool hpsa_vpd_page_supported(struct ctlr_info *h,
1b70150a
SC
3482 unsigned char scsi3addr[], u8 page)
3483{
3484 int rc;
3485 int i;
3486 int pages;
3487 unsigned char *buf, bufsize;
3488
3489 buf = kzalloc(256, GFP_KERNEL);
3490 if (!buf)
8383278d 3491 return false;
1b70150a
SC
3492
3493 /* Get the size of the page list first */
3494 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3495 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3496 buf, HPSA_VPD_HEADER_SZ);
3497 if (rc != 0)
3498 goto exit_unsupported;
3499 pages = buf[3];
3500 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3501 bufsize = pages + HPSA_VPD_HEADER_SZ;
3502 else
3503 bufsize = 255;
3504
3505 /* Get the whole VPD page list */
3506 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3507 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3508 buf, bufsize);
3509 if (rc != 0)
3510 goto exit_unsupported;
3511
3512 pages = buf[3];
3513 for (i = 1; i <= pages; i++)
3514 if (buf[3 + i] == page)
3515 goto exit_supported;
3516exit_unsupported:
3517 kfree(buf);
8383278d 3518 return false;
1b70150a
SC
3519exit_supported:
3520 kfree(buf);
8383278d 3521 return true;
1b70150a
SC
3522}
3523
283b4a9b
SC
3524static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3525 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3526{
3527 int rc;
3528 unsigned char *buf;
3529 u8 ioaccel_status;
3530
3531 this_device->offload_config = 0;
3532 this_device->offload_enabled = 0;
41ce4c35 3533 this_device->offload_to_be_enabled = 0;
283b4a9b
SC
3534
3535 buf = kzalloc(64, GFP_KERNEL);
3536 if (!buf)
3537 return;
1b70150a
SC
3538 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3539 goto out;
283b4a9b 3540 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
b7bb24eb 3541 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
283b4a9b
SC
3542 if (rc != 0)
3543 goto out;
3544
3545#define IOACCEL_STATUS_BYTE 4
3546#define OFFLOAD_CONFIGURED_BIT 0x01
3547#define OFFLOAD_ENABLED_BIT 0x02
3548 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3549 this_device->offload_config =
3550 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3551 if (this_device->offload_config) {
3552 this_device->offload_enabled =
3553 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3554 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3555 this_device->offload_enabled = 0;
3556 }
41ce4c35 3557 this_device->offload_to_be_enabled = this_device->offload_enabled;
283b4a9b
SC
3558out:
3559 kfree(buf);
3560 return;
3561}
3562
edd16368
SC
3563/* Get the device id from inquiry page 0x83 */
3564static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
75d23d89 3565 unsigned char *device_id, int index, int buflen)
edd16368
SC
3566{
3567 int rc;
3568 unsigned char *buf;
3569
8383278d
ST
3570 /* Does controller have VPD for device id? */
3571 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3572 return 1; /* not supported */
3573
edd16368
SC
3574 buf = kzalloc(64, GFP_KERNEL);
3575 if (!buf)
a84d794d 3576 return -ENOMEM;
8383278d
ST
3577
3578 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3579 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3580 if (rc == 0) {
3581 if (buflen > 16)
3582 buflen = 16;
3583 memcpy(device_id, &buf[8], buflen);
3584 }
75d23d89 3585
edd16368 3586 kfree(buf);
75d23d89 3587
8383278d 3588 return rc; /*0 - got id, otherwise, didn't */
edd16368
SC
3589}
3590
3591static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
03383736 3592 void *buf, int bufsize,
edd16368
SC
3593 int extended_response)
3594{
3595 int rc = IO_OK;
3596 struct CommandList *c;
3597 unsigned char scsi3addr[8];
3598 struct ErrorInfo *ei;
3599
45fcb86e 3600 c = cmd_alloc(h);
bf43caf3 3601
e89c0ae7
SC
3602 /* address the controller */
3603 memset(scsi3addr, 0, sizeof(scsi3addr));
a2dac136
SC
3604 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3605 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3606 rc = -1;
3607 goto out;
3608 }
edd16368
SC
3609 if (extended_response)
3610 c->Request.CDB[1] = extended_response;
25163bd5 3611 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
c448ecfa 3612 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
25163bd5
WS
3613 if (rc)
3614 goto out;
edd16368
SC
3615 ei = c->err_info;
3616 if (ei->CommandStatus != 0 &&
3617 ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 3618 hpsa_scsi_interpret_error(h, c);
edd16368 3619 rc = -1;
283b4a9b 3620 } else {
03383736
DB
3621 struct ReportLUNdata *rld = buf;
3622
3623 if (rld->extended_response_flag != extended_response) {
283b4a9b
SC
3624 dev_err(&h->pdev->dev,
3625 "report luns requested format %u, got %u\n",
3626 extended_response,
03383736 3627 rld->extended_response_flag);
283b4a9b
SC
3628 rc = -1;
3629 }
edd16368 3630 }
a2dac136 3631out:
45fcb86e 3632 cmd_free(h, c);
edd16368
SC
3633 return rc;
3634}
3635
3636static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
03383736 3637 struct ReportExtendedLUNdata *buf, int bufsize)
edd16368 3638{
2a80d545
HR
3639 int rc;
3640 struct ReportLUNdata *lbuf;
3641
3642 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3643 HPSA_REPORT_PHYS_EXTENDED);
3644 if (!rc || !hpsa_allow_any)
3645 return rc;
3646
3647 /* REPORT PHYS EXTENDED is not supported */
3648 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3649 if (!lbuf)
3650 return -ENOMEM;
3651
3652 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3653 if (!rc) {
3654 int i;
3655 u32 nphys;
3656
3657 /* Copy ReportLUNdata header */
3658 memcpy(buf, lbuf, 8);
3659 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3660 for (i = 0; i < nphys; i++)
3661 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3662 }
3663 kfree(lbuf);
3664 return rc;
edd16368
SC
3665}
3666
3667static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3668 struct ReportLUNdata *buf, int bufsize)
3669{
3670 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3671}
3672
3673static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3674 int bus, int target, int lun)
3675{
3676 device->bus = bus;
3677 device->target = target;
3678 device->lun = lun;
3679}
3680
9846590e
SC
3681/* Use VPD inquiry to get details of volume status */
3682static int hpsa_get_volume_status(struct ctlr_info *h,
3683 unsigned char scsi3addr[])
3684{
3685 int rc;
3686 int status;
3687 int size;
3688 unsigned char *buf;
3689
3690 buf = kzalloc(64, GFP_KERNEL);
3691 if (!buf)
3692 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3693
3694 /* Does controller have VPD for logical volume status? */
24a4b078 3695 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
9846590e 3696 goto exit_failed;
9846590e
SC
3697
3698 /* Get the size of the VPD return buffer */
3699 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3700 buf, HPSA_VPD_HEADER_SZ);
24a4b078 3701 if (rc != 0)
9846590e 3702 goto exit_failed;
9846590e
SC
3703 size = buf[3];
3704
3705 /* Now get the whole VPD buffer */
3706 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3707 buf, size + HPSA_VPD_HEADER_SZ);
24a4b078 3708 if (rc != 0)
9846590e 3709 goto exit_failed;
9846590e
SC
3710 status = buf[4]; /* status byte */
3711
3712 kfree(buf);
3713 return status;
3714exit_failed:
3715 kfree(buf);
3716 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3717}
3718
3719/* Determine offline status of a volume.
3720 * Return either:
3721 * 0 (not offline)
67955ba3 3722 * 0xff (offline for unknown reasons)
9846590e
SC
3723 * # (integer code indicating one of several NOT READY states
3724 * describing why a volume is to be kept offline)
3725 */
85b29008 3726static unsigned char hpsa_volume_offline(struct ctlr_info *h,
9846590e
SC
3727 unsigned char scsi3addr[])
3728{
3729 struct CommandList *c;
9437ac43
SC
3730 unsigned char *sense;
3731 u8 sense_key, asc, ascq;
3732 int sense_len;
25163bd5 3733 int rc, ldstat = 0;
9846590e
SC
3734 u16 cmd_status;
3735 u8 scsi_status;
3736#define ASC_LUN_NOT_READY 0x04
3737#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3738#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3739
3740 c = cmd_alloc(h);
bf43caf3 3741
9846590e 3742 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
c448ecfa
DB
3743 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3744 DEFAULT_TIMEOUT);
25163bd5
WS
3745 if (rc) {
3746 cmd_free(h, c);
85b29008 3747 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
25163bd5 3748 }
9846590e 3749 sense = c->err_info->SenseInfo;
9437ac43
SC
3750 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3751 sense_len = sizeof(c->err_info->SenseInfo);
3752 else
3753 sense_len = c->err_info->SenseLen;
3754 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
9846590e
SC
3755 cmd_status = c->err_info->CommandStatus;
3756 scsi_status = c->err_info->ScsiStatus;
3757 cmd_free(h, c);
9846590e
SC
3758
3759 /* Determine the reason for not ready state */
3760 ldstat = hpsa_get_volume_status(h, scsi3addr);
3761
3762 /* Keep volume offline in certain cases: */
3763 switch (ldstat) {
85b29008 3764 case HPSA_LV_FAILED:
9846590e 3765 case HPSA_LV_UNDERGOING_ERASE:
5ca01204 3766 case HPSA_LV_NOT_AVAILABLE:
9846590e
SC
3767 case HPSA_LV_UNDERGOING_RPI:
3768 case HPSA_LV_PENDING_RPI:
3769 case HPSA_LV_ENCRYPTED_NO_KEY:
3770 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3771 case HPSA_LV_UNDERGOING_ENCRYPTION:
3772 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3773 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3774 return ldstat;
3775 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3776 /* If VPD status page isn't available,
3777 * use ASC/ASCQ to determine state
3778 */
3779 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3780 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3781 return ldstat;
3782 break;
3783 default:
3784 break;
3785 }
85b29008 3786 return HPSA_LV_OK;
9846590e
SC
3787}
3788
9b5c48c2
SC
3789/*
3790 * Find out if a logical device supports aborts by simply trying one.
3791 * Smart Array may claim not to support aborts on logical drives, but
3792 * if a MSA2000 * is connected, the drives on that will be presented
3793 * by the Smart Array as logical drives, and aborts may be sent to
3794 * those devices successfully. So the simplest way to find out is
3795 * to simply try an abort and see how the device responds.
3796 */
3797static int hpsa_device_supports_aborts(struct ctlr_info *h,
3798 unsigned char *scsi3addr)
3799{
3800 struct CommandList *c;
3801 struct ErrorInfo *ei;
3802 int rc = 0;
3803
3804 u64 tag = (u64) -1; /* bogus tag */
3805
3806 /* Assume that physical devices support aborts */
3807 if (!is_logical_dev_addr_mode(scsi3addr))
3808 return 1;
3809
3810 c = cmd_alloc(h);
bf43caf3 3811
9b5c48c2 3812 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
c448ecfa
DB
3813 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3814 DEFAULT_TIMEOUT);
9b5c48c2
SC
3815 /* no unmap needed here because no data xfer. */
3816 ei = c->err_info;
3817 switch (ei->CommandStatus) {
3818 case CMD_INVALID:
3819 rc = 0;
3820 break;
3821 case CMD_UNABORTABLE:
3822 case CMD_ABORT_FAILED:
3823 rc = 1;
3824 break;
9437ac43
SC
3825 case CMD_TMF_STATUS:
3826 rc = hpsa_evaluate_tmf_status(h, c);
3827 break;
9b5c48c2
SC
3828 default:
3829 rc = 0;
3830 break;
3831 }
3832 cmd_free(h, c);
3833 return rc;
3834}
3835
edd16368 3836static int hpsa_update_device_info(struct ctlr_info *h,
0b0e1d6c
SC
3837 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3838 unsigned char *is_OBDR_device)
edd16368 3839{
0b0e1d6c
SC
3840
3841#define OBDR_SIG_OFFSET 43
3842#define OBDR_TAPE_SIG "$DR-10"
3843#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3844#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3845
ea6d3bc3 3846 unsigned char *inq_buff;
0b0e1d6c 3847 unsigned char *obdr_sig;
683fc444 3848 int rc = 0;
edd16368 3849
ea6d3bc3 3850 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
683fc444
DB
3851 if (!inq_buff) {
3852 rc = -ENOMEM;
edd16368 3853 goto bail_out;
683fc444 3854 }
edd16368 3855
edd16368
SC
3856 /* Do an inquiry to the device to see what it is. */
3857 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3858 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
edd16368 3859 dev_err(&h->pdev->dev,
85b29008
DB
3860 "%s: inquiry failed, device will be skipped.\n",
3861 __func__);
3862 rc = HPSA_INQUIRY_FAILED;
edd16368
SC
3863 goto bail_out;
3864 }
3865
4af61e4f
DB
3866 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3867 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
75d23d89 3868
edd16368
SC
3869 this_device->devtype = (inq_buff[0] & 0x1f);
3870 memcpy(this_device->scsi3addr, scsi3addr, 8);
3871 memcpy(this_device->vendor, &inq_buff[8],
3872 sizeof(this_device->vendor));
3873 memcpy(this_device->model, &inq_buff[16],
3874 sizeof(this_device->model));
7630b3a5 3875 this_device->rev = inq_buff[2];
edd16368
SC
3876 memset(this_device->device_id, 0,
3877 sizeof(this_device->device_id));
8383278d
ST
3878 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3879 sizeof(this_device->device_id)))
3880 dev_err(&h->pdev->dev,
3881 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3882 h->ctlr, __func__,
3883 h->scsi_host->host_no,
3884 this_device->target, this_device->lun,
3885 scsi_device_type(this_device->devtype),
3886 this_device->model);
edd16368 3887
af15ed36
DB
3888 if ((this_device->devtype == TYPE_DISK ||
3889 this_device->devtype == TYPE_ZBC) &&
283b4a9b 3890 is_logical_dev_addr_mode(scsi3addr)) {
85b29008 3891 unsigned char volume_offline;
67955ba3 3892
edd16368 3893 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
283b4a9b
SC
3894 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3895 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
67955ba3 3896 volume_offline = hpsa_volume_offline(h, scsi3addr);
eb94588d 3897 this_device->volume_offline = volume_offline;
85b29008
DB
3898 if (volume_offline == HPSA_LV_FAILED) {
3899 rc = HPSA_LV_FAILED;
3900 dev_err(&h->pdev->dev,
3901 "%s: LV failed, device will be skipped.\n",
3902 __func__);
3903 goto bail_out;
3904 }
283b4a9b 3905 } else {
edd16368 3906 this_device->raid_level = RAID_UNKNOWN;
283b4a9b
SC
3907 this_device->offload_config = 0;
3908 this_device->offload_enabled = 0;
41ce4c35 3909 this_device->offload_to_be_enabled = 0;
a3144e0b 3910 this_device->hba_ioaccel_enabled = 0;
9846590e 3911 this_device->volume_offline = 0;
03383736 3912 this_device->queue_depth = h->nr_cmds;
283b4a9b 3913 }
edd16368 3914
0b0e1d6c
SC
3915 if (is_OBDR_device) {
3916 /* See if this is a One-Button-Disaster-Recovery device
3917 * by looking for "$DR-10" at offset 43 in inquiry data.
3918 */
3919 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3920 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3921 strncmp(obdr_sig, OBDR_TAPE_SIG,
3922 OBDR_SIG_LEN) == 0);
3923 }
edd16368
SC
3924 kfree(inq_buff);
3925 return 0;
3926
3927bail_out:
3928 kfree(inq_buff);
683fc444 3929 return rc;
edd16368
SC
3930}
3931
9b5c48c2
SC
3932static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3933 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3934{
3935 unsigned long flags;
3936 int rc, entry;
3937 /*
3938 * See if this device supports aborts. If we already know
3939 * the device, we already know if it supports aborts, otherwise
3940 * we have to find out if it supports aborts by trying one.
3941 */
3942 spin_lock_irqsave(&h->devlock, flags);
3943 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3944 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3945 entry >= 0 && entry < h->ndevices) {
3946 dev->supports_aborts = h->dev[entry]->supports_aborts;
3947 spin_unlock_irqrestore(&h->devlock, flags);
3948 } else {
3949 spin_unlock_irqrestore(&h->devlock, flags);
3950 dev->supports_aborts =
3951 hpsa_device_supports_aborts(h, scsi3addr);
3952 if (dev->supports_aborts < 0)
3953 dev->supports_aborts = 0;
3954 }
3955}
3956
c795505a
KB
3957/*
3958 * Helper function to assign bus, target, lun mapping of devices.
edd16368
SC
3959 * Logical drive target and lun are assigned at this time, but
3960 * physical device lun and target assignment are deferred (assigned
3961 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
c795505a 3962*/
edd16368 3963static void figure_bus_target_lun(struct ctlr_info *h,
1f310bde 3964 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
edd16368 3965{
c795505a 3966 u32 lunid = get_unaligned_le32(lunaddrbytes);
1f310bde
SC
3967
3968 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3969 /* physical device, target and lun filled in later */
7630b3a5
HR
3970 if (is_hba_lunid(lunaddrbytes)) {
3971 int bus = HPSA_HBA_BUS;
3972
3973 if (!device->rev)
3974 bus = HPSA_LEGACY_HBA_BUS;
c795505a 3975 hpsa_set_bus_target_lun(device,
7630b3a5
HR
3976 bus, 0, lunid & 0x3fff);
3977 } else
1f310bde 3978 /* defer target, lun assignment for physical devices */
c795505a
KB
3979 hpsa_set_bus_target_lun(device,
3980 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
1f310bde
SC
3981 return;
3982 }
3983 /* It's a logical device */
66749d0d 3984 if (device->external) {
1f310bde 3985 hpsa_set_bus_target_lun(device,
c795505a
KB
3986 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3987 lunid & 0x00ff);
1f310bde 3988 return;
edd16368 3989 }
c795505a
KB
3990 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3991 0, lunid & 0x3fff);
edd16368
SC
3992}
3993
edd16368 3994
54b6e9e9
ST
3995/*
3996 * Get address of physical disk used for an ioaccel2 mode command:
3997 * 1. Extract ioaccel2 handle from the command.
3998 * 2. Find a matching ioaccel2 handle from list of physical disks.
3999 * 3. Return:
4000 * 1 and set scsi3addr to address of matching physical
4001 * 0 if no matching physical disk was found.
4002 */
4003static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
4004 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
4005{
41ce4c35
SC
4006 struct io_accel2_cmd *c2 =
4007 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
4008 unsigned long flags;
54b6e9e9 4009 int i;
54b6e9e9 4010
41ce4c35
SC
4011 spin_lock_irqsave(&h->devlock, flags);
4012 for (i = 0; i < h->ndevices; i++)
4013 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
4014 memcpy(scsi3addr, h->dev[i]->scsi3addr,
4015 sizeof(h->dev[i]->scsi3addr));
4016 spin_unlock_irqrestore(&h->devlock, flags);
4017 return 1;
4018 }
4019 spin_unlock_irqrestore(&h->devlock, flags);
4020 return 0;
54b6e9e9 4021}
41ce4c35 4022
66749d0d
ST
4023static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4024 int i, int nphysicals, int nlocal_logicals)
4025{
4026 /* In report logicals, local logicals are listed first,
4027 * then any externals.
4028 */
4029 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4030
4031 if (i == raid_ctlr_position)
4032 return 0;
4033
4034 if (i < logicals_start)
4035 return 0;
4036
4037 /* i is in logicals range, but still within local logicals */
4038 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4039 return 0;
4040
4041 return 1; /* it's an external lun */
4042}
4043
edd16368
SC
4044/*
4045 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4046 * logdev. The number of luns in physdev and logdev are returned in
4047 * *nphysicals and *nlogicals, respectively.
4048 * Returns 0 on success, -1 otherwise.
4049 */
4050static int hpsa_gather_lun_info(struct ctlr_info *h,
03383736 4051 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
01a02ffc 4052 struct ReportLUNdata *logdev, u32 *nlogicals)
edd16368 4053{
03383736 4054 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
edd16368
SC
4055 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4056 return -1;
4057 }
03383736 4058 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
edd16368 4059 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
03383736
DB
4060 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4061 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
edd16368
SC
4062 *nphysicals = HPSA_MAX_PHYS_LUN;
4063 }
03383736 4064 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
edd16368
SC
4065 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4066 return -1;
4067 }
6df1e954 4068 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
edd16368
SC
4069 /* Reject Logicals in excess of our max capability. */
4070 if (*nlogicals > HPSA_MAX_LUN) {
4071 dev_warn(&h->pdev->dev,
4072 "maximum logical LUNs (%d) exceeded. "
4073 "%d LUNs ignored.\n", HPSA_MAX_LUN,
4074 *nlogicals - HPSA_MAX_LUN);
4075 *nlogicals = HPSA_MAX_LUN;
4076 }
4077 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4078 dev_warn(&h->pdev->dev,
4079 "maximum logical + physical LUNs (%d) exceeded. "
4080 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4081 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4082 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4083 }
4084 return 0;
4085}
4086
42a91641
DB
4087static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4088 int i, int nphysicals, int nlogicals,
a93aa1fe 4089 struct ReportExtendedLUNdata *physdev_list,
339b2b14
SC
4090 struct ReportLUNdata *logdev_list)
4091{
4092 /* Helper function, figure out where the LUN ID info is coming from
4093 * given index i, lists of physical and logical devices, where in
4094 * the list the raid controller is supposed to appear (first or last)
4095 */
4096
4097 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4098 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4099
4100 if (i == raid_ctlr_position)
4101 return RAID_CTLR_LUNID;
4102
4103 if (i < logicals_start)
d5b5d964
SC
4104 return &physdev_list->LUN[i -
4105 (raid_ctlr_position == 0)].lunid[0];
339b2b14
SC
4106
4107 if (i < last_device)
4108 return &logdev_list->LUN[i - nphysicals -
4109 (raid_ctlr_position == 0)][0];
4110 BUG();
4111 return NULL;
4112}
4113
03383736
DB
4114/* get physical drive ioaccel handle and queue depth */
4115static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4116 struct hpsa_scsi_dev_t *dev,
f2039b03 4117 struct ReportExtendedLUNdata *rlep, int rle_index,
03383736
DB
4118 struct bmic_identify_physical_device *id_phys)
4119{
4120 int rc;
4b6e5597
ST
4121 struct ext_report_lun_entry *rle;
4122
4123 /*
4124 * external targets don't support BMIC
4125 */
4126 if (dev->external) {
4127 dev->queue_depth = 7;
4128 return;
4129 }
4130
4131 rle = &rlep->LUN[rle_index];
03383736
DB
4132
4133 dev->ioaccel_handle = rle->ioaccel_handle;
f2039b03 4134 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
a3144e0b 4135 dev->hba_ioaccel_enabled = 1;
03383736 4136 memset(id_phys, 0, sizeof(*id_phys));
f2039b03
DB
4137 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4138 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
03383736
DB
4139 sizeof(*id_phys));
4140 if (!rc)
4141 /* Reserve space for FW operations */
4142#define DRIVE_CMDS_RESERVED_FOR_FW 2
4143#define DRIVE_QUEUE_DEPTH 7
4144 dev->queue_depth =
4145 le16_to_cpu(id_phys->current_queue_depth_limit) -
4146 DRIVE_CMDS_RESERVED_FOR_FW;
4147 else
4148 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
03383736
DB
4149}
4150
8270b862 4151static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
f2039b03 4152 struct ReportExtendedLUNdata *rlep, int rle_index,
8270b862
JH
4153 struct bmic_identify_physical_device *id_phys)
4154{
f2039b03
DB
4155 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4156
4157 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
8270b862
JH
4158 this_device->hba_ioaccel_enabled = 1;
4159
4160 memcpy(&this_device->active_path_index,
4161 &id_phys->active_path_number,
4162 sizeof(this_device->active_path_index));
4163 memcpy(&this_device->path_map,
4164 &id_phys->redundant_path_present_map,
4165 sizeof(this_device->path_map));
4166 memcpy(&this_device->box,
4167 &id_phys->alternate_paths_phys_box_on_port,
4168 sizeof(this_device->box));
4169 memcpy(&this_device->phys_connector,
4170 &id_phys->alternate_paths_phys_connector,
4171 sizeof(this_device->phys_connector));
4172 memcpy(&this_device->bay,
4173 &id_phys->phys_bay_in_box,
4174 sizeof(this_device->bay));
4175}
4176
66749d0d
ST
4177/* get number of local logical disks. */
4178static int hpsa_set_local_logical_count(struct ctlr_info *h,
4179 struct bmic_identify_controller *id_ctlr,
4180 u32 *nlocals)
4181{
4182 int rc;
4183
4184 if (!id_ctlr) {
4185 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4186 __func__);
4187 return -ENOMEM;
4188 }
4189 memset(id_ctlr, 0, sizeof(*id_ctlr));
4190 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4191 if (!rc)
4192 if (id_ctlr->configured_logical_drive_count < 256)
4193 *nlocals = id_ctlr->configured_logical_drive_count;
4194 else
4195 *nlocals = le16_to_cpu(
4196 id_ctlr->extended_logical_unit_count);
4197 else
4198 *nlocals = -1;
4199 return rc;
4200}
4201
64ce60ca
DB
4202static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4203{
4204 struct bmic_identify_physical_device *id_phys;
4205 bool is_spare = false;
4206 int rc;
4207
4208 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4209 if (!id_phys)
4210 return false;
4211
4212 rc = hpsa_bmic_id_physical_device(h,
4213 lunaddrbytes,
4214 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4215 id_phys, sizeof(*id_phys));
4216 if (rc == 0)
4217 is_spare = (id_phys->more_flags >> 6) & 0x01;
4218
4219 kfree(id_phys);
4220 return is_spare;
4221}
4222
4223#define RPL_DEV_FLAG_NON_DISK 0x1
4224#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4225#define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4226
4227#define BMIC_DEVICE_TYPE_ENCLOSURE 6
4228
4229static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4230 struct ext_report_lun_entry *rle)
4231{
4232 u8 device_flags;
4233 u8 device_type;
4234
4235 if (!MASKED_DEVICE(lunaddrbytes))
4236 return false;
4237
4238 device_flags = rle->device_flags;
4239 device_type = rle->device_type;
4240
4241 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4242 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4243 return false;
4244 return true;
4245 }
4246
4247 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4248 return false;
4249
4250 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4251 return false;
4252
4253 /*
4254 * Spares may be spun down, we do not want to
4255 * do an Inquiry to a RAID set spare drive as
4256 * that would have them spun up, that is a
4257 * performance hit because I/O to the RAID device
4258 * stops while the spin up occurs which can take
4259 * over 50 seconds.
4260 */
4261 if (hpsa_is_disk_spare(h, lunaddrbytes))
4262 return true;
4263
4264 return false;
4265}
66749d0d 4266
8aa60681 4267static void hpsa_update_scsi_devices(struct ctlr_info *h)
edd16368
SC
4268{
4269 /* the idea here is we could get notified
4270 * that some devices have changed, so we do a report
4271 * physical luns and report logical luns cmd, and adjust
4272 * our list of devices accordingly.
4273 *
4274 * The scsi3addr's of devices won't change so long as the
4275 * adapter is not reset. That means we can rescan and
4276 * tell which devices we already know about, vs. new
4277 * devices, vs. disappearing devices.
4278 */
a93aa1fe 4279 struct ReportExtendedLUNdata *physdev_list = NULL;
edd16368 4280 struct ReportLUNdata *logdev_list = NULL;
03383736 4281 struct bmic_identify_physical_device *id_phys = NULL;
66749d0d 4282 struct bmic_identify_controller *id_ctlr = NULL;
01a02ffc
SC
4283 u32 nphysicals = 0;
4284 u32 nlogicals = 0;
66749d0d 4285 u32 nlocal_logicals = 0;
01a02ffc 4286 u32 ndev_allocated = 0;
edd16368
SC
4287 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4288 int ncurrent = 0;
4f4eb9f1 4289 int i, n_ext_target_devs, ndevs_to_allocate;
339b2b14 4290 int raid_ctlr_position;
04fa2f44 4291 bool physical_device;
aca4a520 4292 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
edd16368 4293
cfe5badc 4294 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
92084715
SC
4295 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4296 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
edd16368 4297 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
03383736 4298 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
66749d0d 4299 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
edd16368 4300
03383736 4301 if (!currentsd || !physdev_list || !logdev_list ||
66749d0d 4302 !tmpdevice || !id_phys || !id_ctlr) {
edd16368
SC
4303 dev_err(&h->pdev->dev, "out of memory\n");
4304 goto out;
4305 }
4306 memset(lunzerobits, 0, sizeof(lunzerobits));
4307
853633e8
DB
4308 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4309
03383736 4310 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
853633e8
DB
4311 logdev_list, &nlogicals)) {
4312 h->drv_req_rescan = 1;
edd16368 4313 goto out;
853633e8 4314 }
edd16368 4315
66749d0d
ST
4316 /* Set number of local logicals (non PTRAID) */
4317 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4318 dev_warn(&h->pdev->dev,
4319 "%s: Can't determine number of local logical devices.\n",
4320 __func__);
4321 }
edd16368 4322
aca4a520
ST
4323 /* We might see up to the maximum number of logical and physical disks
4324 * plus external target devices, and a device for the local RAID
4325 * controller.
edd16368 4326 */
aca4a520 4327 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
edd16368
SC
4328
4329 /* Allocate the per device structures */
4330 for (i = 0; i < ndevs_to_allocate; i++) {
b7ec021f
ST
4331 if (i >= HPSA_MAX_DEVICES) {
4332 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4333 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4334 ndevs_to_allocate - HPSA_MAX_DEVICES);
4335 break;
4336 }
4337
edd16368
SC
4338 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4339 if (!currentsd[i]) {
853633e8 4340 h->drv_req_rescan = 1;
edd16368
SC
4341 goto out;
4342 }
4343 ndev_allocated++;
4344 }
4345
8645291b 4346 if (is_scsi_rev_5(h))
339b2b14
SC
4347 raid_ctlr_position = 0;
4348 else
4349 raid_ctlr_position = nphysicals + nlogicals;
4350
edd16368 4351 /* adjust our table of devices */
4f4eb9f1 4352 n_ext_target_devs = 0;
edd16368 4353 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
0b0e1d6c 4354 u8 *lunaddrbytes, is_OBDR = 0;
683fc444 4355 int rc = 0;
f2039b03 4356 int phys_dev_index = i - (raid_ctlr_position == 0);
64ce60ca 4357 bool skip_device = false;
edd16368 4358
04fa2f44 4359 physical_device = i < nphysicals + (raid_ctlr_position == 0);
edd16368
SC
4360
4361 /* Figure out where the LUN ID info is coming from */
339b2b14
SC
4362 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4363 i, nphysicals, nlogicals, physdev_list, logdev_list);
41ce4c35 4364
86cf7130
DB
4365 /* Determine if this is a lun from an external target array */
4366 tmpdevice->external =
4367 figure_external_status(h, raid_ctlr_position, i,
4368 nphysicals, nlocal_logicals);
4369
64ce60ca
DB
4370 /*
4371 * Skip over some devices such as a spare.
4372 */
4373 if (!tmpdevice->external && physical_device) {
4374 skip_device = hpsa_skip_device(h, lunaddrbytes,
4375 &physdev_list->LUN[phys_dev_index]);
4376 if (skip_device)
4377 continue;
4378 }
edd16368
SC
4379
4380 /* Get device type, vendor, model, device id */
683fc444
DB
4381 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4382 &is_OBDR);
4383 if (rc == -ENOMEM) {
4384 dev_warn(&h->pdev->dev,
4385 "Out of memory, rescan deferred.\n");
853633e8 4386 h->drv_req_rescan = 1;
683fc444 4387 goto out;
853633e8 4388 }
683fc444 4389 if (rc) {
85b29008 4390 h->drv_req_rescan = 1;
683fc444
DB
4391 continue;
4392 }
4393
1f310bde 4394 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
9b5c48c2 4395 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
edd16368
SC
4396 this_device = currentsd[ncurrent];
4397
34592254
ST
4398 /* Turn on discovery_polling if there are ext target devices.
4399 * Event-based change notification is unreliable for those.
edd16368 4400 */
34592254
ST
4401 if (!h->discovery_polling) {
4402 if (tmpdevice->external) {
4403 h->discovery_polling = 1;
4404 dev_info(&h->pdev->dev,
4405 "External target, activate discovery polling.\n");
4406 }
edd16368
SC
4407 }
4408
34592254 4409
edd16368 4410 *this_device = *tmpdevice;
04fa2f44 4411 this_device->physical_device = physical_device;
edd16368 4412
04fa2f44
KB
4413 /*
4414 * Expose all devices except for physical devices that
4415 * are masked.
4416 */
4417 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
2a168208
KB
4418 this_device->expose_device = 0;
4419 else
4420 this_device->expose_device = 1;
41ce4c35 4421
d04e62b9
KB
4422
4423 /*
4424 * Get the SAS address for physical devices that are exposed.
4425 */
4426 if (this_device->physical_device && this_device->expose_device)
4427 hpsa_get_sas_address(h, lunaddrbytes, this_device);
41ce4c35 4428
edd16368 4429 switch (this_device->devtype) {
0b0e1d6c 4430 case TYPE_ROM:
edd16368
SC
4431 /* We don't *really* support actual CD-ROM devices,
4432 * just "One Button Disaster Recovery" tape drive
4433 * which temporarily pretends to be a CD-ROM drive.
4434 * So we check that the device is really an OBDR tape
4435 * device by checking for "$DR-10" in bytes 43-48 of
4436 * the inquiry data.
4437 */
0b0e1d6c
SC
4438 if (is_OBDR)
4439 ncurrent++;
edd16368
SC
4440 break;
4441 case TYPE_DISK:
af15ed36 4442 case TYPE_ZBC:
04fa2f44 4443 if (this_device->physical_device) {
b9092b79
KB
4444 /* The disk is in HBA mode. */
4445 /* Never use RAID mapper in HBA mode. */
ecf418d1 4446 this_device->offload_enabled = 0;
b9092b79 4447 hpsa_get_ioaccel_drive_info(h, this_device,
f2039b03
DB
4448 physdev_list, phys_dev_index, id_phys);
4449 hpsa_get_path_info(this_device,
4450 physdev_list, phys_dev_index, id_phys);
b9092b79 4451 }
ecf418d1 4452 ncurrent++;
edd16368
SC
4453 break;
4454 case TYPE_TAPE:
4455 case TYPE_MEDIUM_CHANGER:
cca8f13b
DB
4456 ncurrent++;
4457 break;
41ce4c35 4458 case TYPE_ENCLOSURE:
17a9e54a
DB
4459 if (!this_device->external)
4460 hpsa_get_enclosure_info(h, lunaddrbytes,
cca8f13b
DB
4461 physdev_list, phys_dev_index,
4462 this_device);
b9092b79 4463 ncurrent++;
41ce4c35 4464 break;
edd16368
SC
4465 case TYPE_RAID:
4466 /* Only present the Smartarray HBA as a RAID controller.
4467 * If it's a RAID controller other than the HBA itself
4468 * (an external RAID controller, MSA500 or similar)
4469 * don't present it.
4470 */
4471 if (!is_hba_lunid(lunaddrbytes))
4472 break;
4473 ncurrent++;
4474 break;
4475 default:
4476 break;
4477 }
cfe5badc 4478 if (ncurrent >= HPSA_MAX_DEVICES)
edd16368
SC
4479 break;
4480 }
d04e62b9
KB
4481
4482 if (h->sas_host == NULL) {
4483 int rc = 0;
4484
4485 rc = hpsa_add_sas_host(h);
4486 if (rc) {
4487 dev_warn(&h->pdev->dev,
4488 "Could not add sas host %d\n", rc);
4489 goto out;
4490 }
4491 }
4492
8aa60681 4493 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
edd16368
SC
4494out:
4495 kfree(tmpdevice);
4496 for (i = 0; i < ndev_allocated; i++)
4497 kfree(currentsd[i]);
4498 kfree(currentsd);
edd16368
SC
4499 kfree(physdev_list);
4500 kfree(logdev_list);
66749d0d 4501 kfree(id_ctlr);
03383736 4502 kfree(id_phys);
edd16368
SC
4503}
4504
ec5cbf04
WS
4505static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4506 struct scatterlist *sg)
4507{
4508 u64 addr64 = (u64) sg_dma_address(sg);
4509 unsigned int len = sg_dma_len(sg);
4510
4511 desc->Addr = cpu_to_le64(addr64);
4512 desc->Len = cpu_to_le32(len);
4513 desc->Ext = 0;
4514}
4515
c7ee65b3
WS
4516/*
4517 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
edd16368
SC
4518 * dma mapping and fills in the scatter gather entries of the
4519 * hpsa command, cp.
4520 */
33a2ffce 4521static int hpsa_scatter_gather(struct ctlr_info *h,
edd16368
SC
4522 struct CommandList *cp,
4523 struct scsi_cmnd *cmd)
4524{
edd16368 4525 struct scatterlist *sg;
b3a7ba7c 4526 int use_sg, i, sg_limit, chained, last_sg;
33a2ffce 4527 struct SGDescriptor *curr_sg;
edd16368 4528
33a2ffce 4529 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
edd16368
SC
4530
4531 use_sg = scsi_dma_map(cmd);
4532 if (use_sg < 0)
4533 return use_sg;
4534
4535 if (!use_sg)
4536 goto sglist_finished;
4537
b3a7ba7c
WS
4538 /*
4539 * If the number of entries is greater than the max for a single list,
4540 * then we have a chained list; we will set up all but one entry in the
4541 * first list (the last entry is saved for link information);
4542 * otherwise, we don't have a chained list and we'll set up at each of
4543 * the entries in the one list.
4544 */
33a2ffce 4545 curr_sg = cp->SG;
b3a7ba7c
WS
4546 chained = use_sg > h->max_cmd_sg_entries;
4547 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4548 last_sg = scsi_sg_count(cmd) - 1;
4549 scsi_for_each_sg(cmd, sg, sg_limit, i) {
ec5cbf04 4550 hpsa_set_sg_descriptor(curr_sg, sg);
33a2ffce
SC
4551 curr_sg++;
4552 }
ec5cbf04 4553
b3a7ba7c
WS
4554 if (chained) {
4555 /*
4556 * Continue with the chained list. Set curr_sg to the chained
4557 * list. Modify the limit to the total count less the entries
4558 * we've already set up. Resume the scan at the list entry
4559 * where the previous loop left off.
4560 */
4561 curr_sg = h->cmd_sg_list[cp->cmdindex];
4562 sg_limit = use_sg - sg_limit;
4563 for_each_sg(sg, sg, sg_limit, i) {
4564 hpsa_set_sg_descriptor(curr_sg, sg);
4565 curr_sg++;
4566 }
4567 }
4568
ec5cbf04 4569 /* Back the pointer up to the last entry and mark it as "last". */
b3a7ba7c 4570 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
33a2ffce
SC
4571
4572 if (use_sg + chained > h->maxSG)
4573 h->maxSG = use_sg + chained;
4574
4575 if (chained) {
4576 cp->Header.SGList = h->max_cmd_sg_entries;
50a0decf 4577 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
e2bea6df
SC
4578 if (hpsa_map_sg_chain_block(h, cp)) {
4579 scsi_dma_unmap(cmd);
4580 return -1;
4581 }
33a2ffce 4582 return 0;
edd16368
SC
4583 }
4584
4585sglist_finished:
4586
01a02ffc 4587 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
c7ee65b3 4588 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
edd16368
SC
4589 return 0;
4590}
4591
283b4a9b
SC
4592#define IO_ACCEL_INELIGIBLE (1)
4593static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4594{
4595 int is_write = 0;
4596 u32 block;
4597 u32 block_cnt;
4598
4599 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4600 switch (cdb[0]) {
4601 case WRITE_6:
4602 case WRITE_12:
4603 is_write = 1;
4604 case READ_6:
4605 case READ_12:
4606 if (*cdb_len == 6) {
abbada71
MR
4607 block = (((cdb[1] & 0x1F) << 16) |
4608 (cdb[2] << 8) |
4609 cdb[3]);
283b4a9b 4610 block_cnt = cdb[4];
c8a6c9a6
DB
4611 if (block_cnt == 0)
4612 block_cnt = 256;
283b4a9b
SC
4613 } else {
4614 BUG_ON(*cdb_len != 12);
c8a6c9a6
DB
4615 block = get_unaligned_be32(&cdb[2]);
4616 block_cnt = get_unaligned_be32(&cdb[6]);
283b4a9b
SC
4617 }
4618 if (block_cnt > 0xffff)
4619 return IO_ACCEL_INELIGIBLE;
4620
4621 cdb[0] = is_write ? WRITE_10 : READ_10;
4622 cdb[1] = 0;
4623 cdb[2] = (u8) (block >> 24);
4624 cdb[3] = (u8) (block >> 16);
4625 cdb[4] = (u8) (block >> 8);
4626 cdb[5] = (u8) (block);
4627 cdb[6] = 0;
4628 cdb[7] = (u8) (block_cnt >> 8);
4629 cdb[8] = (u8) (block_cnt);
4630 cdb[9] = 0;
4631 *cdb_len = 10;
4632 break;
4633 }
4634 return 0;
4635}
4636
c349775e 4637static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
283b4a9b 4638 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 4639 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
e1f7de0c
MG
4640{
4641 struct scsi_cmnd *cmd = c->scsi_cmd;
e1f7de0c
MG
4642 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4643 unsigned int len;
4644 unsigned int total_len = 0;
4645 struct scatterlist *sg;
4646 u64 addr64;
4647 int use_sg, i;
4648 struct SGDescriptor *curr_sg;
4649 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4650
283b4a9b 4651 /* TODO: implement chaining support */
03383736
DB
4652 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4653 atomic_dec(&phys_disk->ioaccel_cmds_out);
283b4a9b 4654 return IO_ACCEL_INELIGIBLE;
03383736 4655 }
283b4a9b 4656
e1f7de0c
MG
4657 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4658
03383736
DB
4659 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4660 atomic_dec(&phys_disk->ioaccel_cmds_out);
283b4a9b 4661 return IO_ACCEL_INELIGIBLE;
03383736 4662 }
283b4a9b 4663
e1f7de0c
MG
4664 c->cmd_type = CMD_IOACCEL1;
4665
4666 /* Adjust the DMA address to point to the accelerated command buffer */
4667 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4668 (c->cmdindex * sizeof(*cp));
4669 BUG_ON(c->busaddr & 0x0000007F);
4670
4671 use_sg = scsi_dma_map(cmd);
03383736
DB
4672 if (use_sg < 0) {
4673 atomic_dec(&phys_disk->ioaccel_cmds_out);
e1f7de0c 4674 return use_sg;
03383736 4675 }
e1f7de0c
MG
4676
4677 if (use_sg) {
4678 curr_sg = cp->SG;
4679 scsi_for_each_sg(cmd, sg, use_sg, i) {
4680 addr64 = (u64) sg_dma_address(sg);
4681 len = sg_dma_len(sg);
4682 total_len += len;
50a0decf
SC
4683 curr_sg->Addr = cpu_to_le64(addr64);
4684 curr_sg->Len = cpu_to_le32(len);
4685 curr_sg->Ext = cpu_to_le32(0);
e1f7de0c
MG
4686 curr_sg++;
4687 }
50a0decf 4688 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
e1f7de0c
MG
4689
4690 switch (cmd->sc_data_direction) {
4691 case DMA_TO_DEVICE:
4692 control |= IOACCEL1_CONTROL_DATA_OUT;
4693 break;
4694 case DMA_FROM_DEVICE:
4695 control |= IOACCEL1_CONTROL_DATA_IN;
4696 break;
4697 case DMA_NONE:
4698 control |= IOACCEL1_CONTROL_NODATAXFER;
4699 break;
4700 default:
4701 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4702 cmd->sc_data_direction);
4703 BUG();
4704 break;
4705 }
4706 } else {
4707 control |= IOACCEL1_CONTROL_NODATAXFER;
4708 }
4709
c349775e 4710 c->Header.SGList = use_sg;
e1f7de0c 4711 /* Fill out the command structure to submit */
2b08b3e9
DB
4712 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4713 cp->transfer_len = cpu_to_le32(total_len);
4714 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4715 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4716 cp->control = cpu_to_le32(control);
283b4a9b
SC
4717 memcpy(cp->CDB, cdb, cdb_len);
4718 memcpy(cp->CISS_LUN, scsi3addr, 8);
c349775e 4719 /* Tag was already set at init time. */
283b4a9b 4720 enqueue_cmd_and_start_io(h, c);
e1f7de0c
MG
4721 return 0;
4722}
edd16368 4723
283b4a9b
SC
4724/*
4725 * Queue a command directly to a device behind the controller using the
4726 * I/O accelerator path.
4727 */
4728static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4729 struct CommandList *c)
4730{
4731 struct scsi_cmnd *cmd = c->scsi_cmd;
4732 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4733
45e596cd
DB
4734 if (!dev)
4735 return -1;
4736
03383736
DB
4737 c->phys_disk = dev;
4738
283b4a9b 4739 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
03383736 4740 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
283b4a9b
SC
4741}
4742
dd0e19f3
ST
4743/*
4744 * Set encryption parameters for the ioaccel2 request
4745 */
4746static void set_encrypt_ioaccel2(struct ctlr_info *h,
4747 struct CommandList *c, struct io_accel2_cmd *cp)
4748{
4749 struct scsi_cmnd *cmd = c->scsi_cmd;
4750 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4751 struct raid_map_data *map = &dev->raid_map;
4752 u64 first_block;
4753
dd0e19f3 4754 /* Are we doing encryption on this device */
2b08b3e9 4755 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
dd0e19f3
ST
4756 return;
4757 /* Set the data encryption key index. */
4758 cp->dekindex = map->dekindex;
4759
4760 /* Set the encryption enable flag, encoded into direction field. */
4761 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4762
4763 /* Set encryption tweak values based on logical block address
4764 * If block size is 512, tweak value is LBA.
4765 * For other block sizes, tweak is (LBA * block size)/ 512)
4766 */
4767 switch (cmd->cmnd[0]) {
4768 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
dd0e19f3 4769 case READ_6:
abbada71
MR
4770 case WRITE_6:
4771 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4772 (cmd->cmnd[2] << 8) |
4773 cmd->cmnd[3]);
dd0e19f3
ST
4774 break;
4775 case WRITE_10:
4776 case READ_10:
dd0e19f3
ST
4777 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4778 case WRITE_12:
4779 case READ_12:
2b08b3e9 4780 first_block = get_unaligned_be32(&cmd->cmnd[2]);
dd0e19f3
ST
4781 break;
4782 case WRITE_16:
4783 case READ_16:
2b08b3e9 4784 first_block = get_unaligned_be64(&cmd->cmnd[2]);
dd0e19f3
ST
4785 break;
4786 default:
4787 dev_err(&h->pdev->dev,
2b08b3e9
DB
4788 "ERROR: %s: size (0x%x) not supported for encryption\n",
4789 __func__, cmd->cmnd[0]);
dd0e19f3
ST
4790 BUG();
4791 break;
4792 }
2b08b3e9
DB
4793
4794 if (le32_to_cpu(map->volume_blk_size) != 512)
4795 first_block = first_block *
4796 le32_to_cpu(map->volume_blk_size)/512;
4797
4798 cp->tweak_lower = cpu_to_le32(first_block);
4799 cp->tweak_upper = cpu_to_le32(first_block >> 32);
dd0e19f3
ST
4800}
4801
c349775e
ST
4802static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4803 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 4804 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
c349775e
ST
4805{
4806 struct scsi_cmnd *cmd = c->scsi_cmd;
4807 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4808 struct ioaccel2_sg_element *curr_sg;
4809 int use_sg, i;
4810 struct scatterlist *sg;
4811 u64 addr64;
4812 u32 len;
4813 u32 total_len = 0;
4814
45e596cd
DB
4815 if (!cmd->device)
4816 return -1;
4817
4818 if (!cmd->device->hostdata)
4819 return -1;
4820
d9a729f3 4821 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
c349775e 4822
03383736
DB
4823 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4824 atomic_dec(&phys_disk->ioaccel_cmds_out);
c349775e 4825 return IO_ACCEL_INELIGIBLE;
03383736
DB
4826 }
4827
c349775e
ST
4828 c->cmd_type = CMD_IOACCEL2;
4829 /* Adjust the DMA address to point to the accelerated command buffer */
4830 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4831 (c->cmdindex * sizeof(*cp));
4832 BUG_ON(c->busaddr & 0x0000007F);
4833
4834 memset(cp, 0, sizeof(*cp));
4835 cp->IU_type = IOACCEL2_IU_TYPE;
4836
4837 use_sg = scsi_dma_map(cmd);
03383736
DB
4838 if (use_sg < 0) {
4839 atomic_dec(&phys_disk->ioaccel_cmds_out);
c349775e 4840 return use_sg;
03383736 4841 }
c349775e
ST
4842
4843 if (use_sg) {
c349775e 4844 curr_sg = cp->sg;
d9a729f3
WS
4845 if (use_sg > h->ioaccel_maxsg) {
4846 addr64 = le64_to_cpu(
4847 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4848 curr_sg->address = cpu_to_le64(addr64);
4849 curr_sg->length = 0;
4850 curr_sg->reserved[0] = 0;
4851 curr_sg->reserved[1] = 0;
4852 curr_sg->reserved[2] = 0;
4853 curr_sg->chain_indicator = 0x80;
4854
4855 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4856 }
c349775e
ST
4857 scsi_for_each_sg(cmd, sg, use_sg, i) {
4858 addr64 = (u64) sg_dma_address(sg);
4859 len = sg_dma_len(sg);
4860 total_len += len;
4861 curr_sg->address = cpu_to_le64(addr64);
4862 curr_sg->length = cpu_to_le32(len);
4863 curr_sg->reserved[0] = 0;
4864 curr_sg->reserved[1] = 0;
4865 curr_sg->reserved[2] = 0;
4866 curr_sg->chain_indicator = 0;
4867 curr_sg++;
4868 }
4869
4870 switch (cmd->sc_data_direction) {
4871 case DMA_TO_DEVICE:
dd0e19f3
ST
4872 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4873 cp->direction |= IOACCEL2_DIR_DATA_OUT;
c349775e
ST
4874 break;
4875 case DMA_FROM_DEVICE:
dd0e19f3
ST
4876 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4877 cp->direction |= IOACCEL2_DIR_DATA_IN;
c349775e
ST
4878 break;
4879 case DMA_NONE:
dd0e19f3
ST
4880 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4881 cp->direction |= IOACCEL2_DIR_NO_DATA;
c349775e
ST
4882 break;
4883 default:
4884 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4885 cmd->sc_data_direction);
4886 BUG();
4887 break;
4888 }
4889 } else {
dd0e19f3
ST
4890 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4891 cp->direction |= IOACCEL2_DIR_NO_DATA;
c349775e 4892 }
dd0e19f3
ST
4893
4894 /* Set encryption parameters, if necessary */
4895 set_encrypt_ioaccel2(h, c, cp);
4896
2b08b3e9 4897 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
f2405db8 4898 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
c349775e 4899 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
c349775e 4900
c349775e
ST
4901 cp->data_len = cpu_to_le32(total_len);
4902 cp->err_ptr = cpu_to_le64(c->busaddr +
4903 offsetof(struct io_accel2_cmd, error_data));
50a0decf 4904 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
c349775e 4905
d9a729f3
WS
4906 /* fill in sg elements */
4907 if (use_sg > h->ioaccel_maxsg) {
4908 cp->sg_count = 1;
a736e9b6 4909 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
d9a729f3
WS
4910 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4911 atomic_dec(&phys_disk->ioaccel_cmds_out);
4912 scsi_dma_unmap(cmd);
4913 return -1;
4914 }
4915 } else
4916 cp->sg_count = (u8) use_sg;
4917
c349775e
ST
4918 enqueue_cmd_and_start_io(h, c);
4919 return 0;
4920}
4921
4922/*
4923 * Queue a command to the correct I/O accelerator path.
4924 */
4925static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4926 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 4927 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
c349775e 4928{
45e596cd
DB
4929 if (!c->scsi_cmd->device)
4930 return -1;
4931
4932 if (!c->scsi_cmd->device->hostdata)
4933 return -1;
4934
03383736
DB
4935 /* Try to honor the device's queue depth */
4936 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4937 phys_disk->queue_depth) {
4938 atomic_dec(&phys_disk->ioaccel_cmds_out);
4939 return IO_ACCEL_INELIGIBLE;
4940 }
c349775e
ST
4941 if (h->transMethod & CFGTBL_Trans_io_accel1)
4942 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
03383736
DB
4943 cdb, cdb_len, scsi3addr,
4944 phys_disk);
c349775e
ST
4945 else
4946 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
03383736
DB
4947 cdb, cdb_len, scsi3addr,
4948 phys_disk);
c349775e
ST
4949}
4950
6b80b18f
ST
4951static void raid_map_helper(struct raid_map_data *map,
4952 int offload_to_mirror, u32 *map_index, u32 *current_group)
4953{
4954 if (offload_to_mirror == 0) {
4955 /* use physical disk in the first mirrored group. */
2b08b3e9 4956 *map_index %= le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
4957 return;
4958 }
4959 do {
4960 /* determine mirror group that *map_index indicates */
2b08b3e9
DB
4961 *current_group = *map_index /
4962 le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
4963 if (offload_to_mirror == *current_group)
4964 continue;
2b08b3e9 4965 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
6b80b18f 4966 /* select map index from next group */
2b08b3e9 4967 *map_index += le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
4968 (*current_group)++;
4969 } else {
4970 /* select map index from first group */
2b08b3e9 4971 *map_index %= le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
4972 *current_group = 0;
4973 }
4974 } while (offload_to_mirror != *current_group);
4975}
4976
283b4a9b
SC
4977/*
4978 * Attempt to perform offload RAID mapping for a logical volume I/O.
4979 */
4980static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4981 struct CommandList *c)
4982{
4983 struct scsi_cmnd *cmd = c->scsi_cmd;
4984 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4985 struct raid_map_data *map = &dev->raid_map;
4986 struct raid_map_disk_data *dd = &map->data[0];
4987 int is_write = 0;
4988 u32 map_index;
4989 u64 first_block, last_block;
4990 u32 block_cnt;
4991 u32 blocks_per_row;
4992 u64 first_row, last_row;
4993 u32 first_row_offset, last_row_offset;
4994 u32 first_column, last_column;
6b80b18f
ST
4995 u64 r0_first_row, r0_last_row;
4996 u32 r5or6_blocks_per_row;
4997 u64 r5or6_first_row, r5or6_last_row;
4998 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4999 u32 r5or6_first_column, r5or6_last_column;
5000 u32 total_disks_per_row;
5001 u32 stripesize;
5002 u32 first_group, last_group, current_group;
283b4a9b
SC
5003 u32 map_row;
5004 u32 disk_handle;
5005 u64 disk_block;
5006 u32 disk_block_cnt;
5007 u8 cdb[16];
5008 u8 cdb_len;
2b08b3e9 5009 u16 strip_size;
283b4a9b
SC
5010#if BITS_PER_LONG == 32
5011 u64 tmpdiv;
5012#endif
6b80b18f 5013 int offload_to_mirror;
283b4a9b 5014
45e596cd
DB
5015 if (!dev)
5016 return -1;
5017
283b4a9b
SC
5018 /* check for valid opcode, get LBA and block count */
5019 switch (cmd->cmnd[0]) {
5020 case WRITE_6:
5021 is_write = 1;
5022 case READ_6:
abbada71
MR
5023 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5024 (cmd->cmnd[2] << 8) |
5025 cmd->cmnd[3]);
283b4a9b 5026 block_cnt = cmd->cmnd[4];
3fa89a04
SC
5027 if (block_cnt == 0)
5028 block_cnt = 256;
283b4a9b
SC
5029 break;
5030 case WRITE_10:
5031 is_write = 1;
5032 case READ_10:
5033 first_block =
5034 (((u64) cmd->cmnd[2]) << 24) |
5035 (((u64) cmd->cmnd[3]) << 16) |
5036 (((u64) cmd->cmnd[4]) << 8) |
5037 cmd->cmnd[5];
5038 block_cnt =
5039 (((u32) cmd->cmnd[7]) << 8) |
5040 cmd->cmnd[8];
5041 break;
5042 case WRITE_12:
5043 is_write = 1;
5044 case READ_12:
5045 first_block =
5046 (((u64) cmd->cmnd[2]) << 24) |
5047 (((u64) cmd->cmnd[3]) << 16) |
5048 (((u64) cmd->cmnd[4]) << 8) |
5049 cmd->cmnd[5];
5050 block_cnt =
5051 (((u32) cmd->cmnd[6]) << 24) |
5052 (((u32) cmd->cmnd[7]) << 16) |
5053 (((u32) cmd->cmnd[8]) << 8) |
5054 cmd->cmnd[9];
5055 break;
5056 case WRITE_16:
5057 is_write = 1;
5058 case READ_16:
5059 first_block =
5060 (((u64) cmd->cmnd[2]) << 56) |
5061 (((u64) cmd->cmnd[3]) << 48) |
5062 (((u64) cmd->cmnd[4]) << 40) |
5063 (((u64) cmd->cmnd[5]) << 32) |
5064 (((u64) cmd->cmnd[6]) << 24) |
5065 (((u64) cmd->cmnd[7]) << 16) |
5066 (((u64) cmd->cmnd[8]) << 8) |
5067 cmd->cmnd[9];
5068 block_cnt =
5069 (((u32) cmd->cmnd[10]) << 24) |
5070 (((u32) cmd->cmnd[11]) << 16) |
5071 (((u32) cmd->cmnd[12]) << 8) |
5072 cmd->cmnd[13];
5073 break;
5074 default:
5075 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5076 }
283b4a9b
SC
5077 last_block = first_block + block_cnt - 1;
5078
5079 /* check for write to non-RAID-0 */
5080 if (is_write && dev->raid_level != 0)
5081 return IO_ACCEL_INELIGIBLE;
5082
5083 /* check for invalid block or wraparound */
2b08b3e9
DB
5084 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5085 last_block < first_block)
283b4a9b
SC
5086 return IO_ACCEL_INELIGIBLE;
5087
5088 /* calculate stripe information for the request */
2b08b3e9
DB
5089 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5090 le16_to_cpu(map->strip_size);
5091 strip_size = le16_to_cpu(map->strip_size);
283b4a9b
SC
5092#if BITS_PER_LONG == 32
5093 tmpdiv = first_block;
5094 (void) do_div(tmpdiv, blocks_per_row);
5095 first_row = tmpdiv;
5096 tmpdiv = last_block;
5097 (void) do_div(tmpdiv, blocks_per_row);
5098 last_row = tmpdiv;
5099 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5100 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5101 tmpdiv = first_row_offset;
2b08b3e9 5102 (void) do_div(tmpdiv, strip_size);
283b4a9b
SC
5103 first_column = tmpdiv;
5104 tmpdiv = last_row_offset;
2b08b3e9 5105 (void) do_div(tmpdiv, strip_size);
283b4a9b
SC
5106 last_column = tmpdiv;
5107#else
5108 first_row = first_block / blocks_per_row;
5109 last_row = last_block / blocks_per_row;
5110 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5111 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
2b08b3e9
DB
5112 first_column = first_row_offset / strip_size;
5113 last_column = last_row_offset / strip_size;
283b4a9b
SC
5114#endif
5115
5116 /* if this isn't a single row/column then give to the controller */
5117 if ((first_row != last_row) || (first_column != last_column))
5118 return IO_ACCEL_INELIGIBLE;
5119
5120 /* proceeding with driver mapping */
2b08b3e9
DB
5121 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5122 le16_to_cpu(map->metadata_disks_per_row);
283b4a9b 5123 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
2b08b3e9 5124 le16_to_cpu(map->row_cnt);
6b80b18f
ST
5125 map_index = (map_row * total_disks_per_row) + first_column;
5126
5127 switch (dev->raid_level) {
5128 case HPSA_RAID_0:
5129 break; /* nothing special to do */
5130 case HPSA_RAID_1:
5131 /* Handles load balance across RAID 1 members.
5132 * (2-drive R1 and R10 with even # of drives.)
5133 * Appropriate for SSDs, not optimal for HDDs
283b4a9b 5134 */
2b08b3e9 5135 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
283b4a9b 5136 if (dev->offload_to_mirror)
2b08b3e9 5137 map_index += le16_to_cpu(map->data_disks_per_row);
283b4a9b 5138 dev->offload_to_mirror = !dev->offload_to_mirror;
6b80b18f
ST
5139 break;
5140 case HPSA_RAID_ADM:
5141 /* Handles N-way mirrors (R1-ADM)
5142 * and R10 with # of drives divisible by 3.)
5143 */
2b08b3e9 5144 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
6b80b18f
ST
5145
5146 offload_to_mirror = dev->offload_to_mirror;
5147 raid_map_helper(map, offload_to_mirror,
5148 &map_index, &current_group);
5149 /* set mirror group to use next time */
5150 offload_to_mirror =
2b08b3e9
DB
5151 (offload_to_mirror >=
5152 le16_to_cpu(map->layout_map_count) - 1)
6b80b18f 5153 ? 0 : offload_to_mirror + 1;
6b80b18f
ST
5154 dev->offload_to_mirror = offload_to_mirror;
5155 /* Avoid direct use of dev->offload_to_mirror within this
5156 * function since multiple threads might simultaneously
5157 * increment it beyond the range of dev->layout_map_count -1.
5158 */
5159 break;
5160 case HPSA_RAID_5:
5161 case HPSA_RAID_6:
2b08b3e9 5162 if (le16_to_cpu(map->layout_map_count) <= 1)
6b80b18f
ST
5163 break;
5164
5165 /* Verify first and last block are in same RAID group */
5166 r5or6_blocks_per_row =
2b08b3e9
DB
5167 le16_to_cpu(map->strip_size) *
5168 le16_to_cpu(map->data_disks_per_row);
6b80b18f 5169 BUG_ON(r5or6_blocks_per_row == 0);
2b08b3e9
DB
5170 stripesize = r5or6_blocks_per_row *
5171 le16_to_cpu(map->layout_map_count);
6b80b18f
ST
5172#if BITS_PER_LONG == 32
5173 tmpdiv = first_block;
5174 first_group = do_div(tmpdiv, stripesize);
5175 tmpdiv = first_group;
5176 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5177 first_group = tmpdiv;
5178 tmpdiv = last_block;
5179 last_group = do_div(tmpdiv, stripesize);
5180 tmpdiv = last_group;
5181 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5182 last_group = tmpdiv;
5183#else
5184 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5185 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
6b80b18f 5186#endif
000ff7c2 5187 if (first_group != last_group)
6b80b18f
ST
5188 return IO_ACCEL_INELIGIBLE;
5189
5190 /* Verify request is in a single row of RAID 5/6 */
5191#if BITS_PER_LONG == 32
5192 tmpdiv = first_block;
5193 (void) do_div(tmpdiv, stripesize);
5194 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5195 tmpdiv = last_block;
5196 (void) do_div(tmpdiv, stripesize);
5197 r5or6_last_row = r0_last_row = tmpdiv;
5198#else
5199 first_row = r5or6_first_row = r0_first_row =
5200 first_block / stripesize;
5201 r5or6_last_row = r0_last_row = last_block / stripesize;
5202#endif
5203 if (r5or6_first_row != r5or6_last_row)
5204 return IO_ACCEL_INELIGIBLE;
5205
5206
5207 /* Verify request is in a single column */
5208#if BITS_PER_LONG == 32
5209 tmpdiv = first_block;
5210 first_row_offset = do_div(tmpdiv, stripesize);
5211 tmpdiv = first_row_offset;
5212 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5213 r5or6_first_row_offset = first_row_offset;
5214 tmpdiv = last_block;
5215 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5216 tmpdiv = r5or6_last_row_offset;
5217 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5218 tmpdiv = r5or6_first_row_offset;
5219 (void) do_div(tmpdiv, map->strip_size);
5220 first_column = r5or6_first_column = tmpdiv;
5221 tmpdiv = r5or6_last_row_offset;
5222 (void) do_div(tmpdiv, map->strip_size);
5223 r5or6_last_column = tmpdiv;
5224#else
5225 first_row_offset = r5or6_first_row_offset =
5226 (u32)((first_block % stripesize) %
5227 r5or6_blocks_per_row);
5228
5229 r5or6_last_row_offset =
5230 (u32)((last_block % stripesize) %
5231 r5or6_blocks_per_row);
5232
5233 first_column = r5or6_first_column =
2b08b3e9 5234 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
6b80b18f 5235 r5or6_last_column =
2b08b3e9 5236 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
6b80b18f
ST
5237#endif
5238 if (r5or6_first_column != r5or6_last_column)
5239 return IO_ACCEL_INELIGIBLE;
5240
5241 /* Request is eligible */
5242 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
2b08b3e9 5243 le16_to_cpu(map->row_cnt);
6b80b18f
ST
5244
5245 map_index = (first_group *
2b08b3e9 5246 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
6b80b18f
ST
5247 (map_row * total_disks_per_row) + first_column;
5248 break;
5249 default:
5250 return IO_ACCEL_INELIGIBLE;
283b4a9b 5251 }
6b80b18f 5252
07543e0c
SC
5253 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5254 return IO_ACCEL_INELIGIBLE;
5255
03383736 5256 c->phys_disk = dev->phys_disk[map_index];
c3390df4
DB
5257 if (!c->phys_disk)
5258 return IO_ACCEL_INELIGIBLE;
03383736 5259
283b4a9b 5260 disk_handle = dd[map_index].ioaccel_handle;
2b08b3e9
DB
5261 disk_block = le64_to_cpu(map->disk_starting_blk) +
5262 first_row * le16_to_cpu(map->strip_size) +
5263 (first_row_offset - first_column *
5264 le16_to_cpu(map->strip_size));
283b4a9b
SC
5265 disk_block_cnt = block_cnt;
5266
5267 /* handle differing logical/physical block sizes */
5268 if (map->phys_blk_shift) {
5269 disk_block <<= map->phys_blk_shift;
5270 disk_block_cnt <<= map->phys_blk_shift;
5271 }
5272 BUG_ON(disk_block_cnt > 0xffff);
5273
5274 /* build the new CDB for the physical disk I/O */
5275 if (disk_block > 0xffffffff) {
5276 cdb[0] = is_write ? WRITE_16 : READ_16;
5277 cdb[1] = 0;
5278 cdb[2] = (u8) (disk_block >> 56);
5279 cdb[3] = (u8) (disk_block >> 48);
5280 cdb[4] = (u8) (disk_block >> 40);
5281 cdb[5] = (u8) (disk_block >> 32);
5282 cdb[6] = (u8) (disk_block >> 24);
5283 cdb[7] = (u8) (disk_block >> 16);
5284 cdb[8] = (u8) (disk_block >> 8);
5285 cdb[9] = (u8) (disk_block);
5286 cdb[10] = (u8) (disk_block_cnt >> 24);
5287 cdb[11] = (u8) (disk_block_cnt >> 16);
5288 cdb[12] = (u8) (disk_block_cnt >> 8);
5289 cdb[13] = (u8) (disk_block_cnt);
5290 cdb[14] = 0;
5291 cdb[15] = 0;
5292 cdb_len = 16;
5293 } else {
5294 cdb[0] = is_write ? WRITE_10 : READ_10;
5295 cdb[1] = 0;
5296 cdb[2] = (u8) (disk_block >> 24);
5297 cdb[3] = (u8) (disk_block >> 16);
5298 cdb[4] = (u8) (disk_block >> 8);
5299 cdb[5] = (u8) (disk_block);
5300 cdb[6] = 0;
5301 cdb[7] = (u8) (disk_block_cnt >> 8);
5302 cdb[8] = (u8) (disk_block_cnt);
5303 cdb[9] = 0;
5304 cdb_len = 10;
5305 }
5306 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
03383736
DB
5307 dev->scsi3addr,
5308 dev->phys_disk[map_index]);
283b4a9b
SC
5309}
5310
25163bd5
WS
5311/*
5312 * Submit commands down the "normal" RAID stack path
5313 * All callers to hpsa_ciss_submit must check lockup_detected
5314 * beforehand, before (opt.) and after calling cmd_alloc
5315 */
574f05d3
SC
5316static int hpsa_ciss_submit(struct ctlr_info *h,
5317 struct CommandList *c, struct scsi_cmnd *cmd,
5318 unsigned char scsi3addr[])
edd16368 5319{
edd16368 5320 cmd->host_scribble = (unsigned char *) c;
edd16368
SC
5321 c->cmd_type = CMD_SCSI;
5322 c->scsi_cmd = cmd;
5323 c->Header.ReplyQueue = 0; /* unused in simple mode */
5324 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
f2405db8 5325 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
edd16368
SC
5326
5327 /* Fill in the request block... */
5328
5329 c->Request.Timeout = 0;
edd16368
SC
5330 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5331 c->Request.CDBLen = cmd->cmd_len;
5332 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
edd16368
SC
5333 switch (cmd->sc_data_direction) {
5334 case DMA_TO_DEVICE:
a505b86f
SC
5335 c->Request.type_attr_dir =
5336 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
edd16368
SC
5337 break;
5338 case DMA_FROM_DEVICE:
a505b86f
SC
5339 c->Request.type_attr_dir =
5340 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
edd16368
SC
5341 break;
5342 case DMA_NONE:
a505b86f
SC
5343 c->Request.type_attr_dir =
5344 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
edd16368
SC
5345 break;
5346 case DMA_BIDIRECTIONAL:
5347 /* This can happen if a buggy application does a scsi passthru
5348 * and sets both inlen and outlen to non-zero. ( see
5349 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5350 */
5351
a505b86f
SC
5352 c->Request.type_attr_dir =
5353 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
edd16368
SC
5354 /* This is technically wrong, and hpsa controllers should
5355 * reject it with CMD_INVALID, which is the most correct
5356 * response, but non-fibre backends appear to let it
5357 * slide by, and give the same results as if this field
5358 * were set correctly. Either way is acceptable for
5359 * our purposes here.
5360 */
5361
5362 break;
5363
5364 default:
5365 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5366 cmd->sc_data_direction);
5367 BUG();
5368 break;
5369 }
5370
33a2ffce 5371 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
73153fe5 5372 hpsa_cmd_resolve_and_free(h, c);
edd16368
SC
5373 return SCSI_MLQUEUE_HOST_BUSY;
5374 }
5375 enqueue_cmd_and_start_io(h, c);
5376 /* the cmd'll come back via intr handler in complete_scsi_command() */
5377 return 0;
5378}
5379
360c73bd
SC
5380static void hpsa_cmd_init(struct ctlr_info *h, int index,
5381 struct CommandList *c)
5382{
5383 dma_addr_t cmd_dma_handle, err_dma_handle;
5384
5385 /* Zero out all of commandlist except the last field, refcount */
5386 memset(c, 0, offsetof(struct CommandList, refcount));
5387 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5388 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5389 c->err_info = h->errinfo_pool + index;
5390 memset(c->err_info, 0, sizeof(*c->err_info));
5391 err_dma_handle = h->errinfo_pool_dhandle
5392 + index * sizeof(*c->err_info);
5393 c->cmdindex = index;
5394 c->busaddr = (u32) cmd_dma_handle;
5395 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5396 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5397 c->h = h;
a58e7e53 5398 c->scsi_cmd = SCSI_CMD_IDLE;
360c73bd
SC
5399}
5400
5401static void hpsa_preinitialize_commands(struct ctlr_info *h)
5402{
5403 int i;
5404
5405 for (i = 0; i < h->nr_cmds; i++) {
5406 struct CommandList *c = h->cmd_pool + i;
5407
5408 hpsa_cmd_init(h, i, c);
5409 atomic_set(&c->refcount, 0);
5410 }
5411}
5412
5413static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5414 struct CommandList *c)
5415{
5416 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5417
73153fe5
WS
5418 BUG_ON(c->cmdindex != index);
5419
360c73bd
SC
5420 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5421 memset(c->err_info, 0, sizeof(*c->err_info));
5422 c->busaddr = (u32) cmd_dma_handle;
5423}
5424
592a0ad5
WS
5425static int hpsa_ioaccel_submit(struct ctlr_info *h,
5426 struct CommandList *c, struct scsi_cmnd *cmd,
5427 unsigned char *scsi3addr)
5428{
5429 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5430 int rc = IO_ACCEL_INELIGIBLE;
5431
45e596cd
DB
5432 if (!dev)
5433 return SCSI_MLQUEUE_HOST_BUSY;
5434
592a0ad5
WS
5435 cmd->host_scribble = (unsigned char *) c;
5436
5437 if (dev->offload_enabled) {
5438 hpsa_cmd_init(h, c->cmdindex, c);
5439 c->cmd_type = CMD_SCSI;
5440 c->scsi_cmd = cmd;
5441 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5442 if (rc < 0) /* scsi_dma_map failed. */
5443 rc = SCSI_MLQUEUE_HOST_BUSY;
a3144e0b 5444 } else if (dev->hba_ioaccel_enabled) {
592a0ad5
WS
5445 hpsa_cmd_init(h, c->cmdindex, c);
5446 c->cmd_type = CMD_SCSI;
5447 c->scsi_cmd = cmd;
5448 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5449 if (rc < 0) /* scsi_dma_map failed. */
5450 rc = SCSI_MLQUEUE_HOST_BUSY;
5451 }
5452 return rc;
5453}
5454
080ef1cc
DB
5455static void hpsa_command_resubmit_worker(struct work_struct *work)
5456{
5457 struct scsi_cmnd *cmd;
5458 struct hpsa_scsi_dev_t *dev;
8a0ff92c 5459 struct CommandList *c = container_of(work, struct CommandList, work);
080ef1cc
DB
5460
5461 cmd = c->scsi_cmd;
5462 dev = cmd->device->hostdata;
5463 if (!dev) {
5464 cmd->result = DID_NO_CONNECT << 16;
8a0ff92c 5465 return hpsa_cmd_free_and_done(c->h, c, cmd);
080ef1cc 5466 }
d604f533 5467 if (c->reset_pending)
d2315ce6 5468 return hpsa_cmd_free_and_done(c->h, c, cmd);
a58e7e53
WS
5469 if (c->abort_pending)
5470 return hpsa_cmd_abort_and_free(c->h, c, cmd);
592a0ad5
WS
5471 if (c->cmd_type == CMD_IOACCEL2) {
5472 struct ctlr_info *h = c->h;
5473 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5474 int rc;
5475
5476 if (c2->error_data.serv_response ==
5477 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5478 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5479 if (rc == 0)
5480 return;
5481 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5482 /*
5483 * If we get here, it means dma mapping failed.
5484 * Try again via scsi mid layer, which will
5485 * then get SCSI_MLQUEUE_HOST_BUSY.
5486 */
5487 cmd->result = DID_IMM_RETRY << 16;
8a0ff92c 5488 return hpsa_cmd_free_and_done(h, c, cmd);
592a0ad5
WS
5489 }
5490 /* else, fall thru and resubmit down CISS path */
5491 }
5492 }
360c73bd 5493 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
080ef1cc
DB
5494 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5495 /*
5496 * If we get here, it means dma mapping failed. Try
5497 * again via scsi mid layer, which will then get
5498 * SCSI_MLQUEUE_HOST_BUSY.
592a0ad5
WS
5499 *
5500 * hpsa_ciss_submit will have already freed c
5501 * if it encountered a dma mapping failure.
080ef1cc
DB
5502 */
5503 cmd->result = DID_IMM_RETRY << 16;
5504 cmd->scsi_done(cmd);
5505 }
5506}
5507
574f05d3
SC
5508/* Running in struct Scsi_Host->host_lock less mode */
5509static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5510{
5511 struct ctlr_info *h;
5512 struct hpsa_scsi_dev_t *dev;
5513 unsigned char scsi3addr[8];
5514 struct CommandList *c;
5515 int rc = 0;
5516
5517 /* Get the ptr to our adapter structure out of cmd->host. */
5518 h = sdev_to_hba(cmd->device);
73153fe5
WS
5519
5520 BUG_ON(cmd->request->tag < 0);
5521
574f05d3
SC
5522 dev = cmd->device->hostdata;
5523 if (!dev) {
1ccde700 5524 cmd->result = DID_NO_CONNECT << 16;
ba74fdc4
DB
5525 cmd->scsi_done(cmd);
5526 return 0;
5527 }
5528
5529 if (dev->removed) {
574f05d3
SC
5530 cmd->result = DID_NO_CONNECT << 16;
5531 cmd->scsi_done(cmd);
5532 return 0;
5533 }
574f05d3 5534
73153fe5 5535 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
bf43caf3 5536
407863cb 5537 if (unlikely(lockup_detected(h))) {
25163bd5 5538 cmd->result = DID_NO_CONNECT << 16;
407863cb
SC
5539 cmd->scsi_done(cmd);
5540 return 0;
5541 }
73153fe5 5542 c = cmd_tagged_alloc(h, cmd);
574f05d3 5543
407863cb
SC
5544 /*
5545 * Call alternate submit routine for I/O accelerated commands.
574f05d3
SC
5546 * Retries always go down the normal I/O path.
5547 */
5548 if (likely(cmd->retries == 0 &&
57292b58
CH
5549 !blk_rq_is_passthrough(cmd->request) &&
5550 h->acciopath_status)) {
592a0ad5
WS
5551 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5552 if (rc == 0)
5553 return 0;
5554 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
73153fe5 5555 hpsa_cmd_resolve_and_free(h, c);
592a0ad5 5556 return SCSI_MLQUEUE_HOST_BUSY;
574f05d3
SC
5557 }
5558 }
5559 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5560}
5561
8ebc9248 5562static void hpsa_scan_complete(struct ctlr_info *h)
5f389360
SC
5563{
5564 unsigned long flags;
5565
8ebc9248
WS
5566 spin_lock_irqsave(&h->scan_lock, flags);
5567 h->scan_finished = 1;
87b9e6aa 5568 wake_up(&h->scan_wait_queue);
8ebc9248 5569 spin_unlock_irqrestore(&h->scan_lock, flags);
5f389360
SC
5570}
5571
a08a8471
SC
5572static void hpsa_scan_start(struct Scsi_Host *sh)
5573{
5574 struct ctlr_info *h = shost_to_hba(sh);
5575 unsigned long flags;
5576
8ebc9248
WS
5577 /*
5578 * Don't let rescans be initiated on a controller known to be locked
5579 * up. If the controller locks up *during* a rescan, that thread is
5580 * probably hosed, but at least we can prevent new rescan threads from
5581 * piling up on a locked up controller.
5582 */
5583 if (unlikely(lockup_detected(h)))
5584 return hpsa_scan_complete(h);
5f389360 5585
87b9e6aa
DB
5586 /*
5587 * If a scan is already waiting to run, no need to add another
5588 */
5589 spin_lock_irqsave(&h->scan_lock, flags);
5590 if (h->scan_waiting) {
5591 spin_unlock_irqrestore(&h->scan_lock, flags);
5592 return;
5593 }
5594
5595 spin_unlock_irqrestore(&h->scan_lock, flags);
5596
a08a8471
SC
5597 /* wait until any scan already in progress is finished. */
5598 while (1) {
5599 spin_lock_irqsave(&h->scan_lock, flags);
5600 if (h->scan_finished)
5601 break;
87b9e6aa 5602 h->scan_waiting = 1;
a08a8471
SC
5603 spin_unlock_irqrestore(&h->scan_lock, flags);
5604 wait_event(h->scan_wait_queue, h->scan_finished);
5605 /* Note: We don't need to worry about a race between this
5606 * thread and driver unload because the midlayer will
5607 * have incremented the reference count, so unload won't
5608 * happen if we're in here.
5609 */
5610 }
5611 h->scan_finished = 0; /* mark scan as in progress */
87b9e6aa 5612 h->scan_waiting = 0;
a08a8471
SC
5613 spin_unlock_irqrestore(&h->scan_lock, flags);
5614
8ebc9248
WS
5615 if (unlikely(lockup_detected(h)))
5616 return hpsa_scan_complete(h);
5f389360 5617
bfd7546c
DB
5618 /*
5619 * Do the scan after a reset completion
5620 */
5621 if (h->reset_in_progress) {
5622 h->drv_req_rescan = 1;
3b476aa2 5623 hpsa_scan_complete(h);
bfd7546c
DB
5624 return;
5625 }
5626
8aa60681 5627 hpsa_update_scsi_devices(h);
a08a8471 5628
8ebc9248 5629 hpsa_scan_complete(h);
a08a8471
SC
5630}
5631
7c0a0229
DB
5632static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5633{
03383736
DB
5634 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5635
5636 if (!logical_drive)
5637 return -ENODEV;
7c0a0229
DB
5638
5639 if (qdepth < 1)
5640 qdepth = 1;
03383736
DB
5641 else if (qdepth > logical_drive->queue_depth)
5642 qdepth = logical_drive->queue_depth;
5643
5644 return scsi_change_queue_depth(sdev, qdepth);
7c0a0229
DB
5645}
5646
a08a8471
SC
5647static int hpsa_scan_finished(struct Scsi_Host *sh,
5648 unsigned long elapsed_time)
5649{
5650 struct ctlr_info *h = shost_to_hba(sh);
5651 unsigned long flags;
5652 int finished;
5653
5654 spin_lock_irqsave(&h->scan_lock, flags);
5655 finished = h->scan_finished;
5656 spin_unlock_irqrestore(&h->scan_lock, flags);
5657 return finished;
5658}
5659
2946e82b 5660static int hpsa_scsi_host_alloc(struct ctlr_info *h)
edd16368 5661{
b705690d 5662 struct Scsi_Host *sh;
edd16368 5663
b705690d 5664 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2946e82b
RE
5665 if (sh == NULL) {
5666 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5667 return -ENOMEM;
5668 }
b705690d
SC
5669
5670 sh->io_port = 0;
5671 sh->n_io_port = 0;
5672 sh->this_id = -1;
5673 sh->max_channel = 3;
5674 sh->max_cmd_len = MAX_COMMAND_SIZE;
5675 sh->max_lun = HPSA_MAX_LUN;
5676 sh->max_id = HPSA_MAX_LUN;
41ce4c35 5677 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
03383736 5678 sh->cmd_per_lun = sh->can_queue;
b705690d 5679 sh->sg_tablesize = h->maxsgentries;
d04e62b9 5680 sh->transportt = hpsa_sas_transport_template;
b705690d 5681 sh->hostdata[0] = (unsigned long) h;
bc2bb154 5682 sh->irq = pci_irq_vector(h->pdev, 0);
b705690d 5683 sh->unique_id = sh->irq;
64d513ac 5684
2946e82b 5685 h->scsi_host = sh;
b705690d 5686 return 0;
2946e82b 5687}
b705690d 5688
2946e82b
RE
5689static int hpsa_scsi_add_host(struct ctlr_info *h)
5690{
5691 int rv;
5692
5693 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5694 if (rv) {
5695 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5696 return rv;
5697 }
5698 scsi_scan_host(h->scsi_host);
5699 return 0;
edd16368
SC
5700}
5701
73153fe5
WS
5702/*
5703 * The block layer has already gone to the trouble of picking out a unique,
5704 * small-integer tag for this request. We use an offset from that value as
5705 * an index to select our command block. (The offset allows us to reserve the
5706 * low-numbered entries for our own uses.)
5707 */
5708static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5709{
5710 int idx = scmd->request->tag;
5711
5712 if (idx < 0)
5713 return idx;
5714
5715 /* Offset to leave space for internal cmds. */
5716 return idx += HPSA_NRESERVED_CMDS;
5717}
5718
b69324ff
WS
5719/*
5720 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5721 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5722 */
5723static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5724 struct CommandList *c, unsigned char lunaddr[],
5725 int reply_queue)
5726{
5727 int rc;
5728
5729 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5730 (void) fill_cmd(c, TEST_UNIT_READY, h,
5731 NULL, 0, 0, lunaddr, TYPE_CMD);
c448ecfa 5732 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
b69324ff
WS
5733 if (rc)
5734 return rc;
5735 /* no unmap needed here because no data xfer. */
5736
5737 /* Check if the unit is already ready. */
5738 if (c->err_info->CommandStatus == CMD_SUCCESS)
5739 return 0;
5740
5741 /*
5742 * The first command sent after reset will receive "unit attention" to
5743 * indicate that the LUN has been reset...this is actually what we're
5744 * looking for (but, success is good too).
5745 */
5746 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5747 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5748 (c->err_info->SenseInfo[2] == NO_SENSE ||
5749 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5750 return 0;
5751
5752 return 1;
5753}
5754
5755/*
5756 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5757 * returns zero when the unit is ready, and non-zero when giving up.
5758 */
5759static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5760 struct CommandList *c,
5761 unsigned char lunaddr[], int reply_queue)
edd16368 5762{
8919358e 5763 int rc;
edd16368
SC
5764 int count = 0;
5765 int waittime = 1; /* seconds */
edd16368
SC
5766
5767 /* Send test unit ready until device ready, or give up. */
b69324ff 5768 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
edd16368 5769
b69324ff
WS
5770 /*
5771 * Wait for a bit. do this first, because if we send
edd16368
SC
5772 * the TUR right away, the reset will just abort it.
5773 */
5774 msleep(1000 * waittime);
b69324ff
WS
5775
5776 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5777 if (!rc)
5778 break;
edd16368
SC
5779
5780 /* Increase wait time with each try, up to a point. */
5781 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
b69324ff 5782 waittime *= 2;
edd16368 5783
b69324ff
WS
5784 dev_warn(&h->pdev->dev,
5785 "waiting %d secs for device to become ready.\n",
5786 waittime);
5787 }
edd16368 5788
b69324ff
WS
5789 return rc;
5790}
edd16368 5791
b69324ff
WS
5792static int wait_for_device_to_become_ready(struct ctlr_info *h,
5793 unsigned char lunaddr[],
5794 int reply_queue)
5795{
5796 int first_queue;
5797 int last_queue;
5798 int rq;
5799 int rc = 0;
5800 struct CommandList *c;
5801
5802 c = cmd_alloc(h);
5803
5804 /*
5805 * If no specific reply queue was requested, then send the TUR
5806 * repeatedly, requesting a reply on each reply queue; otherwise execute
5807 * the loop exactly once using only the specified queue.
5808 */
5809 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5810 first_queue = 0;
5811 last_queue = h->nreply_queues - 1;
5812 } else {
5813 first_queue = reply_queue;
5814 last_queue = reply_queue;
5815 }
5816
5817 for (rq = first_queue; rq <= last_queue; rq++) {
5818 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5819 if (rc)
edd16368 5820 break;
edd16368
SC
5821 }
5822
5823 if (rc)
5824 dev_warn(&h->pdev->dev, "giving up on device.\n");
5825 else
5826 dev_warn(&h->pdev->dev, "device is ready.\n");
5827
45fcb86e 5828 cmd_free(h, c);
edd16368
SC
5829 return rc;
5830}
5831
5832/* Need at least one of these error handlers to keep ../scsi/hosts.c from
5833 * complaining. Doing a host- or bus-reset can't do anything good here.
5834 */
5835static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5836{
5837 int rc;
5838 struct ctlr_info *h;
5839 struct hpsa_scsi_dev_t *dev;
0b9b7b6e 5840 u8 reset_type;
2dc127bb 5841 char msg[48];
edd16368
SC
5842
5843 /* find the controller to which the command to be aborted was sent */
5844 h = sdev_to_hba(scsicmd->device);
5845 if (h == NULL) /* paranoia */
5846 return FAILED;
e345893b
DB
5847
5848 if (lockup_detected(h))
5849 return FAILED;
5850
edd16368
SC
5851 dev = scsicmd->device->hostdata;
5852 if (!dev) {
d604f533 5853 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
edd16368
SC
5854 return FAILED;
5855 }
25163bd5 5856
ef8a5203
DB
5857 if (dev->devtype == TYPE_ENCLOSURE)
5858 return SUCCESS;
5859
25163bd5
WS
5860 /* if controller locked up, we can guarantee command won't complete */
5861 if (lockup_detected(h)) {
2dc127bb
DC
5862 snprintf(msg, sizeof(msg),
5863 "cmd %d RESET FAILED, lockup detected",
5864 hpsa_get_cmd_index(scsicmd));
73153fe5 5865 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
25163bd5
WS
5866 return FAILED;
5867 }
5868
5869 /* this reset request might be the result of a lockup; check */
5870 if (detect_controller_lockup(h)) {
2dc127bb
DC
5871 snprintf(msg, sizeof(msg),
5872 "cmd %d RESET FAILED, new lockup detected",
5873 hpsa_get_cmd_index(scsicmd));
73153fe5 5874 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
25163bd5
WS
5875 return FAILED;
5876 }
5877
d604f533
WS
5878 /* Do not attempt on controller */
5879 if (is_hba_lunid(dev->scsi3addr))
5880 return SUCCESS;
5881
0b9b7b6e
ST
5882 if (is_logical_dev_addr_mode(dev->scsi3addr))
5883 reset_type = HPSA_DEVICE_RESET_MSG;
5884 else
5885 reset_type = HPSA_PHYS_TARGET_RESET;
5886
5887 sprintf(msg, "resetting %s",
5888 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5889 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
25163bd5 5890
da03ded0 5891 h->reset_in_progress = 1;
25163bd5 5892
edd16368 5893 /* send a reset to the SCSI LUN which the command was sent to */
0b9b7b6e 5894 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
d604f533 5895 DEFAULT_REPLY_QUEUE);
0b9b7b6e
ST
5896 sprintf(msg, "reset %s %s",
5897 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5898 rc == 0 ? "completed successfully" : "failed");
d604f533 5899 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
da03ded0 5900 h->reset_in_progress = 0;
d604f533 5901 return rc == 0 ? SUCCESS : FAILED;
edd16368
SC
5902}
5903
6cba3f19
SC
5904static void swizzle_abort_tag(u8 *tag)
5905{
5906 u8 original_tag[8];
5907
5908 memcpy(original_tag, tag, 8);
5909 tag[0] = original_tag[3];
5910 tag[1] = original_tag[2];
5911 tag[2] = original_tag[1];
5912 tag[3] = original_tag[0];
5913 tag[4] = original_tag[7];
5914 tag[5] = original_tag[6];
5915 tag[6] = original_tag[5];
5916 tag[7] = original_tag[4];
5917}
5918
17eb87d2 5919static void hpsa_get_tag(struct ctlr_info *h,
2b08b3e9 5920 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
17eb87d2 5921{
2b08b3e9 5922 u64 tag;
17eb87d2
ST
5923 if (c->cmd_type == CMD_IOACCEL1) {
5924 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5925 &h->ioaccel_cmd_pool[c->cmdindex];
2b08b3e9
DB
5926 tag = le64_to_cpu(cm1->tag);
5927 *tagupper = cpu_to_le32(tag >> 32);
5928 *taglower = cpu_to_le32(tag);
54b6e9e9
ST
5929 return;
5930 }
5931 if (c->cmd_type == CMD_IOACCEL2) {
5932 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5933 &h->ioaccel2_cmd_pool[c->cmdindex];
dd0e19f3
ST
5934 /* upper tag not used in ioaccel2 mode */
5935 memset(tagupper, 0, sizeof(*tagupper));
5936 *taglower = cm2->Tag;
54b6e9e9 5937 return;
17eb87d2 5938 }
2b08b3e9
DB
5939 tag = le64_to_cpu(c->Header.tag);
5940 *tagupper = cpu_to_le32(tag >> 32);
5941 *taglower = cpu_to_le32(tag);
17eb87d2
ST
5942}
5943
75167d2c 5944static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
9b5c48c2 5945 struct CommandList *abort, int reply_queue)
75167d2c
SC
5946{
5947 int rc = IO_OK;
5948 struct CommandList *c;
5949 struct ErrorInfo *ei;
2b08b3e9 5950 __le32 tagupper, taglower;
75167d2c 5951
45fcb86e 5952 c = cmd_alloc(h);
75167d2c 5953
a2dac136 5954 /* fill_cmd can't fail here, no buffer to map */
9b5c48c2 5955 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
a2dac136 5956 0, 0, scsi3addr, TYPE_MSG);
9b5c48c2 5957 if (h->needs_abort_tags_swizzled)
6cba3f19 5958 swizzle_abort_tag(&c->Request.CDB[4]);
c448ecfa 5959 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
17eb87d2 5960 hpsa_get_tag(h, abort, &taglower, &tagupper);
25163bd5 5961 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
17eb87d2 5962 __func__, tagupper, taglower);
75167d2c
SC
5963 /* no unmap needed here because no data xfer. */
5964
5965 ei = c->err_info;
5966 switch (ei->CommandStatus) {
5967 case CMD_SUCCESS:
5968 break;
9437ac43
SC
5969 case CMD_TMF_STATUS:
5970 rc = hpsa_evaluate_tmf_status(h, c);
5971 break;
75167d2c
SC
5972 case CMD_UNABORTABLE: /* Very common, don't make noise. */
5973 rc = -1;
5974 break;
5975 default:
5976 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
17eb87d2 5977 __func__, tagupper, taglower);
d1e8beac 5978 hpsa_scsi_interpret_error(h, c);
75167d2c
SC
5979 rc = -1;
5980 break;
5981 }
45fcb86e 5982 cmd_free(h, c);
dd0e19f3
ST
5983 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5984 __func__, tagupper, taglower);
75167d2c
SC
5985 return rc;
5986}
5987
8be986cc
SC
5988static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5989 struct CommandList *command_to_abort, int reply_queue)
5990{
5991 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5992 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5993 struct io_accel2_cmd *c2a =
5994 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
a58e7e53 5995 struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
8be986cc
SC
5996 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5997
45e596cd
DB
5998 if (!dev)
5999 return;
6000
8be986cc
SC
6001 /*
6002 * We're overlaying struct hpsa_tmf_struct on top of something which
6003 * was allocated as a struct io_accel2_cmd, so we better be sure it
6004 * actually fits, and doesn't overrun the error info space.
6005 */
6006 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
6007 sizeof(struct io_accel2_cmd));
6008 BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
6009 offsetof(struct hpsa_tmf_struct, error_len) +
6010 sizeof(ac->error_len));
6011
6012 c->cmd_type = IOACCEL2_TMF;
a58e7e53
WS
6013 c->scsi_cmd = SCSI_CMD_BUSY;
6014
8be986cc
SC
6015 /* Adjust the DMA address to point to the accelerated command buffer */
6016 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
6017 (c->cmdindex * sizeof(struct io_accel2_cmd));
6018 BUG_ON(c->busaddr & 0x0000007F);
6019
6020 memset(ac, 0, sizeof(*c2)); /* yes this is correct */
6021 ac->iu_type = IOACCEL2_IU_TMF_TYPE;
6022 ac->reply_queue = reply_queue;
6023 ac->tmf = IOACCEL2_TMF_ABORT;
6024 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
6025 memset(ac->lun_id, 0, sizeof(ac->lun_id));
6026 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
6027 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
6028 ac->error_ptr = cpu_to_le64(c->busaddr +
6029 offsetof(struct io_accel2_cmd, error_data));
6030 ac->error_len = cpu_to_le32(sizeof(c2->error_data));
6031}
6032
54b6e9e9
ST
6033/* ioaccel2 path firmware cannot handle abort task requests.
6034 * Change abort requests to physical target reset, and send to the
6035 * address of the physical disk used for the ioaccel 2 command.
6036 * Return 0 on success (IO_OK)
6037 * -1 on failure
6038 */
6039
6040static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
25163bd5 6041 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
54b6e9e9
ST
6042{
6043 int rc = IO_OK;
6044 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
6045 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
6046 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
6047 unsigned char *psa = &phys_scsi3addr[0];
6048
6049 /* Get a pointer to the hpsa logical device. */
7fa3030c 6050 scmd = abort->scsi_cmd;
54b6e9e9
ST
6051 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
6052 if (dev == NULL) {
6053 dev_warn(&h->pdev->dev,
6054 "Cannot abort: no device pointer for command.\n");
6055 return -1; /* not abortable */
6056 }
6057
2ba8bfc8
SC
6058 if (h->raid_offload_debug > 0)
6059 dev_info(&h->pdev->dev,
609a70df 6060 "scsi %d:%d:%d:%d %s scsi3addr 0x%8phN\n",
2ba8bfc8 6061 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
609a70df 6062 "Reset as abort", scsi3addr);
2ba8bfc8 6063
54b6e9e9
ST
6064 if (!dev->offload_enabled) {
6065 dev_warn(&h->pdev->dev,
6066 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6067 return -1; /* not abortable */
6068 }
6069
6070 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
6071 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6072 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6073 return -1; /* not abortable */
6074 }
6075
6076 /* send the reset */
2ba8bfc8
SC
6077 if (h->raid_offload_debug > 0)
6078 dev_info(&h->pdev->dev,
609a70df
RV
6079 "Reset as abort: Resetting physical device at scsi3addr 0x%8phN\n",
6080 psa);
b32ece0f 6081 rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
54b6e9e9
ST
6082 if (rc != 0) {
6083 dev_warn(&h->pdev->dev,
609a70df
RV
6084 "Reset as abort: Failed on physical device at scsi3addr 0x%8phN\n",
6085 psa);
54b6e9e9
ST
6086 return rc; /* failed to reset */
6087 }
6088
6089 /* wait for device to recover */
b69324ff 6090 if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
54b6e9e9 6091 dev_warn(&h->pdev->dev,
609a70df
RV
6092 "Reset as abort: Failed: Device never recovered from reset: 0x%8phN\n",
6093 psa);
54b6e9e9
ST
6094 return -1; /* failed to recover */
6095 }
6096
6097 /* device recovered */
6098 dev_info(&h->pdev->dev,
609a70df
RV
6099 "Reset as abort: Device recovered from reset: scsi3addr 0x%8phN\n",
6100 psa);
54b6e9e9
ST
6101
6102 return rc; /* success */
6103}
6104
8be986cc
SC
6105static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6106 struct CommandList *abort, int reply_queue)
6107{
6108 int rc = IO_OK;
6109 struct CommandList *c;
6110 __le32 taglower, tagupper;
6111 struct hpsa_scsi_dev_t *dev;
6112 struct io_accel2_cmd *c2;
6113
6114 dev = abort->scsi_cmd->device->hostdata;
45e596cd
DB
6115 if (!dev)
6116 return -1;
6117
8be986cc
SC
6118 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6119 return -1;
6120
6121 c = cmd_alloc(h);
6122 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6123 c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
c448ecfa 6124 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
8be986cc
SC
6125 hpsa_get_tag(h, abort, &taglower, &tagupper);
6126 dev_dbg(&h->pdev->dev,
6127 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6128 __func__, tagupper, taglower);
6129 /* no unmap needed here because no data xfer. */
6130
6131 dev_dbg(&h->pdev->dev,
6132 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6133 __func__, tagupper, taglower, c2->error_data.serv_response);
6134 switch (c2->error_data.serv_response) {
6135 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6136 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6137 rc = 0;
6138 break;
6139 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6140 case IOACCEL2_SERV_RESPONSE_FAILURE:
6141 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6142 rc = -1;
6143 break;
6144 default:
6145 dev_warn(&h->pdev->dev,
6146 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6147 __func__, tagupper, taglower,
6148 c2->error_data.serv_response);
6149 rc = -1;
6150 }
6151 cmd_free(h, c);
6152 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6153 tagupper, taglower);
6154 return rc;
6155}
6156
6cba3f19 6157static int hpsa_send_abort_both_ways(struct ctlr_info *h,
39f3deb2 6158 struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6cba3f19 6159{
8be986cc
SC
6160 /*
6161 * ioccelerator mode 2 commands should be aborted via the
54b6e9e9 6162 * accelerated path, since RAID path is unaware of these commands,
8be986cc
SC
6163 * but not all underlying firmware can handle abort TMF.
6164 * Change abort to physical device reset when abort TMF is unsupported.
54b6e9e9 6165 */
8be986cc 6166 if (abort->cmd_type == CMD_IOACCEL2) {
39f3deb2
DB
6167 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6168 dev->physical_device)
8be986cc
SC
6169 return hpsa_send_abort_ioaccel2(h, abort,
6170 reply_queue);
6171 else
39f3deb2
DB
6172 return hpsa_send_reset_as_abort_ioaccel2(h,
6173 dev->scsi3addr,
25163bd5 6174 abort, reply_queue);
8be986cc 6175 }
39f3deb2 6176 return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
25163bd5 6177}
54b6e9e9 6178
25163bd5
WS
6179/* Find out which reply queue a command was meant to return on */
6180static int hpsa_extract_reply_queue(struct ctlr_info *h,
6181 struct CommandList *c)
6182{
6183 if (c->cmd_type == CMD_IOACCEL2)
6184 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6185 return c->Header.ReplyQueue;
6cba3f19
SC
6186}
6187
9b5c48c2
SC
6188/*
6189 * Limit concurrency of abort commands to prevent
6190 * over-subscription of commands
6191 */
6192static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6193{
6194#define ABORT_CMD_WAIT_MSECS 5000
6195 return !wait_event_timeout(h->abort_cmd_wait_queue,
6196 atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6197 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6198}
6199
75167d2c
SC
6200/* Send an abort for the specified command.
6201 * If the device and controller support it,
6202 * send a task abort request.
6203 */
6204static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6205{
6206
a58e7e53 6207 int rc;
75167d2c
SC
6208 struct ctlr_info *h;
6209 struct hpsa_scsi_dev_t *dev;
6210 struct CommandList *abort; /* pointer to command to be aborted */
75167d2c
SC
6211 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
6212 char msg[256]; /* For debug messaging. */
6213 int ml = 0;
2b08b3e9 6214 __le32 tagupper, taglower;
25163bd5
WS
6215 int refcount, reply_queue;
6216
6217 if (sc == NULL)
6218 return FAILED;
75167d2c 6219
9b5c48c2
SC
6220 if (sc->device == NULL)
6221 return FAILED;
6222
75167d2c
SC
6223 /* Find the controller of the command to be aborted */
6224 h = sdev_to_hba(sc->device);
9b5c48c2 6225 if (h == NULL)
75167d2c
SC
6226 return FAILED;
6227
25163bd5
WS
6228 /* Find the device of the command to be aborted */
6229 dev = sc->device->hostdata;
6230 if (!dev) {
6231 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6232 msg);
e345893b 6233 return FAILED;
25163bd5
WS
6234 }
6235
6236 /* If controller locked up, we can guarantee command won't complete */
6237 if (lockup_detected(h)) {
6238 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6239 "ABORT FAILED, lockup detected");
6240 return FAILED;
6241 }
6242
6243 /* This is a good time to check if controller lockup has occurred */
6244 if (detect_controller_lockup(h)) {
6245 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6246 "ABORT FAILED, new lockup detected");
6247 return FAILED;
6248 }
e345893b 6249
75167d2c
SC
6250 /* Check that controller supports some kind of task abort */
6251 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6252 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6253 return FAILED;
6254
6255 memset(msg, 0, sizeof(msg));
4b761557 6256 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
75167d2c 6257 h->scsi_host->host_no, sc->device->channel,
0d96ef5f 6258 sc->device->id, sc->device->lun,
4b761557 6259 "Aborting command", sc);
75167d2c 6260
75167d2c
SC
6261 /* Get SCSI command to be aborted */
6262 abort = (struct CommandList *) sc->host_scribble;
6263 if (abort == NULL) {
281a7fd0
WS
6264 /* This can happen if the command already completed. */
6265 return SUCCESS;
6266 }
6267 refcount = atomic_inc_return(&abort->refcount);
6268 if (refcount == 1) { /* Command is done already. */
6269 cmd_free(h, abort);
6270 return SUCCESS;
75167d2c 6271 }
9b5c48c2
SC
6272
6273 /* Don't bother trying the abort if we know it won't work. */
6274 if (abort->cmd_type != CMD_IOACCEL2 &&
6275 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6276 cmd_free(h, abort);
6277 return FAILED;
6278 }
6279
a58e7e53
WS
6280 /*
6281 * Check that we're aborting the right command.
6282 * It's possible the CommandList already completed and got re-used.
6283 */
6284 if (abort->scsi_cmd != sc) {
6285 cmd_free(h, abort);
6286 return SUCCESS;
6287 }
6288
6289 abort->abort_pending = true;
17eb87d2 6290 hpsa_get_tag(h, abort, &taglower, &tagupper);
25163bd5 6291 reply_queue = hpsa_extract_reply_queue(h, abort);
17eb87d2 6292 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
7fa3030c 6293 as = abort->scsi_cmd;
75167d2c 6294 if (as != NULL)
4b761557
RE
6295 ml += sprintf(msg+ml,
6296 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6297 as->cmd_len, as->cmnd[0], as->cmnd[1],
6298 as->serial_number);
6299 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
0d96ef5f 6300 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
4b761557 6301
75167d2c
SC
6302 /*
6303 * Command is in flight, or possibly already completed
6304 * by the firmware (but not to the scsi mid layer) but we can't
6305 * distinguish which. Send the abort down.
6306 */
9b5c48c2
SC
6307 if (wait_for_available_abort_cmd(h)) {
6308 dev_warn(&h->pdev->dev,
4b761557
RE
6309 "%s FAILED, timeout waiting for an abort command to become available.\n",
6310 msg);
9b5c48c2
SC
6311 cmd_free(h, abort);
6312 return FAILED;
6313 }
39f3deb2 6314 rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
9b5c48c2
SC
6315 atomic_inc(&h->abort_cmds_available);
6316 wake_up_all(&h->abort_cmd_wait_queue);
75167d2c 6317 if (rc != 0) {
4b761557 6318 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
0d96ef5f 6319 hpsa_show_dev_msg(KERN_WARNING, h, dev,
4b761557 6320 "FAILED to abort command");
281a7fd0 6321 cmd_free(h, abort);
75167d2c
SC
6322 return FAILED;
6323 }
4b761557 6324 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
d604f533 6325 wait_event(h->event_sync_wait_queue,
a58e7e53 6326 abort->scsi_cmd != sc || lockup_detected(h));
281a7fd0 6327 cmd_free(h, abort);
a58e7e53 6328 return !lockup_detected(h) ? SUCCESS : FAILED;
75167d2c
SC
6329}
6330
73153fe5
WS
6331/*
6332 * For operations with an associated SCSI command, a command block is allocated
6333 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6334 * block request tag as an index into a table of entries. cmd_tagged_free() is
6335 * the complement, although cmd_free() may be called instead.
6336 */
6337static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6338 struct scsi_cmnd *scmd)
6339{
6340 int idx = hpsa_get_cmd_index(scmd);
6341 struct CommandList *c = h->cmd_pool + idx;
6342
6343 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6344 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6345 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6346 /* The index value comes from the block layer, so if it's out of
6347 * bounds, it's probably not our bug.
6348 */
6349 BUG();
6350 }
6351
6352 atomic_inc(&c->refcount);
6353 if (unlikely(!hpsa_is_cmd_idle(c))) {
6354 /*
6355 * We expect that the SCSI layer will hand us a unique tag
6356 * value. Thus, there should never be a collision here between
6357 * two requests...because if the selected command isn't idle
6358 * then someone is going to be very disappointed.
6359 */
6360 dev_err(&h->pdev->dev,
6361 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6362 idx);
6363 if (c->scsi_cmd != NULL)
6364 scsi_print_command(c->scsi_cmd);
6365 scsi_print_command(scmd);
6366 }
6367
6368 hpsa_cmd_partial_init(h, idx, c);
6369 return c;
6370}
6371
6372static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6373{
6374 /*
6375 * Release our reference to the block. We don't need to do anything
6376 * else to free it, because it is accessed by index. (There's no point
6377 * in checking the result of the decrement, since we cannot guarantee
6378 * that there isn't a concurrent abort which is also accessing it.)
6379 */
6380 (void)atomic_dec(&c->refcount);
6381}
6382
edd16368
SC
6383/*
6384 * For operations that cannot sleep, a command block is allocated at init,
6385 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6386 * which ones are free or in use. Lock must be held when calling this.
6387 * cmd_free() is the complement.
bf43caf3
RE
6388 * This function never gives up and returns NULL. If it hangs,
6389 * another thread must call cmd_free() to free some tags.
edd16368 6390 */
281a7fd0 6391
edd16368
SC
6392static struct CommandList *cmd_alloc(struct ctlr_info *h)
6393{
6394 struct CommandList *c;
360c73bd 6395 int refcount, i;
73153fe5 6396 int offset = 0;
4c413128 6397
33811026
RE
6398 /*
6399 * There is some *extremely* small but non-zero chance that that
4c413128
SC
6400 * multiple threads could get in here, and one thread could
6401 * be scanning through the list of bits looking for a free
6402 * one, but the free ones are always behind him, and other
6403 * threads sneak in behind him and eat them before he can
6404 * get to them, so that while there is always a free one, a
6405 * very unlucky thread might be starved anyway, never able to
6406 * beat the other threads. In reality, this happens so
6407 * infrequently as to be indistinguishable from never.
73153fe5
WS
6408 *
6409 * Note that we start allocating commands before the SCSI host structure
6410 * is initialized. Since the search starts at bit zero, this
6411 * all works, since we have at least one command structure available;
6412 * however, it means that the structures with the low indexes have to be
6413 * reserved for driver-initiated requests, while requests from the block
6414 * layer will use the higher indexes.
4c413128 6415 */
edd16368 6416
281a7fd0 6417 for (;;) {
73153fe5
WS
6418 i = find_next_zero_bit(h->cmd_pool_bits,
6419 HPSA_NRESERVED_CMDS,
6420 offset);
6421 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
281a7fd0
WS
6422 offset = 0;
6423 continue;
6424 }
6425 c = h->cmd_pool + i;
6426 refcount = atomic_inc_return(&c->refcount);
6427 if (unlikely(refcount > 1)) {
6428 cmd_free(h, c); /* already in use */
73153fe5 6429 offset = (i + 1) % HPSA_NRESERVED_CMDS;
281a7fd0
WS
6430 continue;
6431 }
6432 set_bit(i & (BITS_PER_LONG - 1),
6433 h->cmd_pool_bits + (i / BITS_PER_LONG));
6434 break; /* it's ours now. */
6435 }
360c73bd 6436 hpsa_cmd_partial_init(h, i, c);
edd16368
SC
6437 return c;
6438}
6439
73153fe5
WS
6440/*
6441 * This is the complementary operation to cmd_alloc(). Note, however, in some
6442 * corner cases it may also be used to free blocks allocated by
6443 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6444 * the clear-bit is harmless.
6445 */
edd16368
SC
6446static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6447{
281a7fd0
WS
6448 if (atomic_dec_and_test(&c->refcount)) {
6449 int i;
edd16368 6450
281a7fd0
WS
6451 i = c - h->cmd_pool;
6452 clear_bit(i & (BITS_PER_LONG - 1),
6453 h->cmd_pool_bits + (i / BITS_PER_LONG));
6454 }
edd16368
SC
6455}
6456
edd16368
SC
6457#ifdef CONFIG_COMPAT
6458
42a91641
DB
6459static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6460 void __user *arg)
edd16368
SC
6461{
6462 IOCTL32_Command_struct __user *arg32 =
6463 (IOCTL32_Command_struct __user *) arg;
6464 IOCTL_Command_struct arg64;
6465 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6466 int err;
6467 u32 cp;
6468
938abd84 6469 memset(&arg64, 0, sizeof(arg64));
edd16368
SC
6470 err = 0;
6471 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6472 sizeof(arg64.LUN_info));
6473 err |= copy_from_user(&arg64.Request, &arg32->Request,
6474 sizeof(arg64.Request));
6475 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6476 sizeof(arg64.error_info));
6477 err |= get_user(arg64.buf_size, &arg32->buf_size);
6478 err |= get_user(cp, &arg32->buf);
6479 arg64.buf = compat_ptr(cp);
6480 err |= copy_to_user(p, &arg64, sizeof(arg64));
6481
6482 if (err)
6483 return -EFAULT;
6484
42a91641 6485 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
edd16368
SC
6486 if (err)
6487 return err;
6488 err |= copy_in_user(&arg32->error_info, &p->error_info,
6489 sizeof(arg32->error_info));
6490 if (err)
6491 return -EFAULT;
6492 return err;
6493}
6494
6495static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
42a91641 6496 int cmd, void __user *arg)
edd16368
SC
6497{
6498 BIG_IOCTL32_Command_struct __user *arg32 =
6499 (BIG_IOCTL32_Command_struct __user *) arg;
6500 BIG_IOCTL_Command_struct arg64;
6501 BIG_IOCTL_Command_struct __user *p =
6502 compat_alloc_user_space(sizeof(arg64));
6503 int err;
6504 u32 cp;
6505
938abd84 6506 memset(&arg64, 0, sizeof(arg64));
edd16368
SC
6507 err = 0;
6508 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6509 sizeof(arg64.LUN_info));
6510 err |= copy_from_user(&arg64.Request, &arg32->Request,
6511 sizeof(arg64.Request));
6512 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6513 sizeof(arg64.error_info));
6514 err |= get_user(arg64.buf_size, &arg32->buf_size);
6515 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6516 err |= get_user(cp, &arg32->buf);
6517 arg64.buf = compat_ptr(cp);
6518 err |= copy_to_user(p, &arg64, sizeof(arg64));
6519
6520 if (err)
6521 return -EFAULT;
6522
42a91641 6523 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
edd16368
SC
6524 if (err)
6525 return err;
6526 err |= copy_in_user(&arg32->error_info, &p->error_info,
6527 sizeof(arg32->error_info));
6528 if (err)
6529 return -EFAULT;
6530 return err;
6531}
71fe75a7 6532
42a91641 6533static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
71fe75a7
SC
6534{
6535 switch (cmd) {
6536 case CCISS_GETPCIINFO:
6537 case CCISS_GETINTINFO:
6538 case CCISS_SETINTINFO:
6539 case CCISS_GETNODENAME:
6540 case CCISS_SETNODENAME:
6541 case CCISS_GETHEARTBEAT:
6542 case CCISS_GETBUSTYPES:
6543 case CCISS_GETFIRMVER:
6544 case CCISS_GETDRIVVER:
6545 case CCISS_REVALIDVOLS:
6546 case CCISS_DEREGDISK:
6547 case CCISS_REGNEWDISK:
6548 case CCISS_REGNEWD:
6549 case CCISS_RESCANDISK:
6550 case CCISS_GETLUNINFO:
6551 return hpsa_ioctl(dev, cmd, arg);
6552
6553 case CCISS_PASSTHRU32:
6554 return hpsa_ioctl32_passthru(dev, cmd, arg);
6555 case CCISS_BIG_PASSTHRU32:
6556 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6557
6558 default:
6559 return -ENOIOCTLCMD;
6560 }
6561}
edd16368
SC
6562#endif
6563
6564static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6565{
6566 struct hpsa_pci_info pciinfo;
6567
6568 if (!argp)
6569 return -EINVAL;
6570 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6571 pciinfo.bus = h->pdev->bus->number;
6572 pciinfo.dev_fn = h->pdev->devfn;
6573 pciinfo.board_id = h->board_id;
6574 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6575 return -EFAULT;
6576 return 0;
6577}
6578
6579static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6580{
6581 DriverVer_type DriverVer;
6582 unsigned char vmaj, vmin, vsubmin;
6583 int rc;
6584
6585 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6586 &vmaj, &vmin, &vsubmin);
6587 if (rc != 3) {
6588 dev_info(&h->pdev->dev, "driver version string '%s' "
6589 "unrecognized.", HPSA_DRIVER_VERSION);
6590 vmaj = 0;
6591 vmin = 0;
6592 vsubmin = 0;
6593 }
6594 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6595 if (!argp)
6596 return -EINVAL;
6597 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6598 return -EFAULT;
6599 return 0;
6600}
6601
6602static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6603{
6604 IOCTL_Command_struct iocommand;
6605 struct CommandList *c;
6606 char *buff = NULL;
50a0decf 6607 u64 temp64;
c1f63c8f 6608 int rc = 0;
edd16368
SC
6609
6610 if (!argp)
6611 return -EINVAL;
6612 if (!capable(CAP_SYS_RAWIO))
6613 return -EPERM;
6614 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6615 return -EFAULT;
6616 if ((iocommand.buf_size < 1) &&
6617 (iocommand.Request.Type.Direction != XFER_NONE)) {
6618 return -EINVAL;
6619 }
6620 if (iocommand.buf_size > 0) {
6621 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6622 if (buff == NULL)
2dd02d74 6623 return -ENOMEM;
9233fb10 6624 if (iocommand.Request.Type.Direction & XFER_WRITE) {
b03a7771
SC
6625 /* Copy the data into the buffer we created */
6626 if (copy_from_user(buff, iocommand.buf,
6627 iocommand.buf_size)) {
c1f63c8f
SC
6628 rc = -EFAULT;
6629 goto out_kfree;
b03a7771
SC
6630 }
6631 } else {
6632 memset(buff, 0, iocommand.buf_size);
edd16368 6633 }
b03a7771 6634 }
45fcb86e 6635 c = cmd_alloc(h);
bf43caf3 6636
edd16368
SC
6637 /* Fill in the command type */
6638 c->cmd_type = CMD_IOCTL_PEND;
a58e7e53 6639 c->scsi_cmd = SCSI_CMD_BUSY;
edd16368
SC
6640 /* Fill in Command Header */
6641 c->Header.ReplyQueue = 0; /* unused in simple mode */
6642 if (iocommand.buf_size > 0) { /* buffer to fill */
6643 c->Header.SGList = 1;
50a0decf 6644 c->Header.SGTotal = cpu_to_le16(1);
edd16368
SC
6645 } else { /* no buffers to fill */
6646 c->Header.SGList = 0;
50a0decf 6647 c->Header.SGTotal = cpu_to_le16(0);
edd16368
SC
6648 }
6649 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
edd16368
SC
6650
6651 /* Fill in Request block */
6652 memcpy(&c->Request, &iocommand.Request,
6653 sizeof(c->Request));
6654
6655 /* Fill in the scatter gather information */
6656 if (iocommand.buf_size > 0) {
50a0decf 6657 temp64 = pci_map_single(h->pdev, buff,
edd16368 6658 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
50a0decf
SC
6659 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6660 c->SG[0].Addr = cpu_to_le64(0);
6661 c->SG[0].Len = cpu_to_le32(0);
bcc48ffa
SC
6662 rc = -ENOMEM;
6663 goto out;
6664 }
50a0decf
SC
6665 c->SG[0].Addr = cpu_to_le64(temp64);
6666 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6667 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
edd16368 6668 }
c448ecfa 6669 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3fb134cb 6670 NO_TIMEOUT);
c2dd32e0
SC
6671 if (iocommand.buf_size > 0)
6672 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
edd16368 6673 check_ioctl_unit_attention(h, c);
25163bd5
WS
6674 if (rc) {
6675 rc = -EIO;
6676 goto out;
6677 }
edd16368
SC
6678
6679 /* Copy the error information out */
6680 memcpy(&iocommand.error_info, c->err_info,
6681 sizeof(iocommand.error_info));
6682 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
c1f63c8f
SC
6683 rc = -EFAULT;
6684 goto out;
edd16368 6685 }
9233fb10 6686 if ((iocommand.Request.Type.Direction & XFER_READ) &&
b03a7771 6687 iocommand.buf_size > 0) {
edd16368
SC
6688 /* Copy the data out of the buffer we created */
6689 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
c1f63c8f
SC
6690 rc = -EFAULT;
6691 goto out;
edd16368
SC
6692 }
6693 }
c1f63c8f 6694out:
45fcb86e 6695 cmd_free(h, c);
c1f63c8f
SC
6696out_kfree:
6697 kfree(buff);
6698 return rc;
edd16368
SC
6699}
6700
6701static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6702{
6703 BIG_IOCTL_Command_struct *ioc;
6704 struct CommandList *c;
6705 unsigned char **buff = NULL;
6706 int *buff_size = NULL;
50a0decf 6707 u64 temp64;
edd16368
SC
6708 BYTE sg_used = 0;
6709 int status = 0;
01a02ffc
SC
6710 u32 left;
6711 u32 sz;
edd16368
SC
6712 BYTE __user *data_ptr;
6713
6714 if (!argp)
6715 return -EINVAL;
6716 if (!capable(CAP_SYS_RAWIO))
6717 return -EPERM;
19be606b 6718 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
edd16368
SC
6719 if (!ioc) {
6720 status = -ENOMEM;
6721 goto cleanup1;
6722 }
6723 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6724 status = -EFAULT;
6725 goto cleanup1;
6726 }
6727 if ((ioc->buf_size < 1) &&
6728 (ioc->Request.Type.Direction != XFER_NONE)) {
6729 status = -EINVAL;
6730 goto cleanup1;
6731 }
6732 /* Check kmalloc limits using all SGs */
6733 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6734 status = -EINVAL;
6735 goto cleanup1;
6736 }
d66ae08b 6737 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
edd16368
SC
6738 status = -EINVAL;
6739 goto cleanup1;
6740 }
d66ae08b 6741 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
edd16368
SC
6742 if (!buff) {
6743 status = -ENOMEM;
6744 goto cleanup1;
6745 }
d66ae08b 6746 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
edd16368
SC
6747 if (!buff_size) {
6748 status = -ENOMEM;
6749 goto cleanup1;
6750 }
6751 left = ioc->buf_size;
6752 data_ptr = ioc->buf;
6753 while (left) {
6754 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6755 buff_size[sg_used] = sz;
6756 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6757 if (buff[sg_used] == NULL) {
6758 status = -ENOMEM;
6759 goto cleanup1;
6760 }
9233fb10 6761 if (ioc->Request.Type.Direction & XFER_WRITE) {
edd16368 6762 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
0758f4f7 6763 status = -EFAULT;
edd16368
SC
6764 goto cleanup1;
6765 }
6766 } else
6767 memset(buff[sg_used], 0, sz);
6768 left -= sz;
6769 data_ptr += sz;
6770 sg_used++;
6771 }
45fcb86e 6772 c = cmd_alloc(h);
bf43caf3 6773
edd16368 6774 c->cmd_type = CMD_IOCTL_PEND;
a58e7e53 6775 c->scsi_cmd = SCSI_CMD_BUSY;
edd16368 6776 c->Header.ReplyQueue = 0;
50a0decf
SC
6777 c->Header.SGList = (u8) sg_used;
6778 c->Header.SGTotal = cpu_to_le16(sg_used);
edd16368 6779 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
edd16368
SC
6780 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6781 if (ioc->buf_size > 0) {
6782 int i;
6783 for (i = 0; i < sg_used; i++) {
50a0decf 6784 temp64 = pci_map_single(h->pdev, buff[i],
edd16368 6785 buff_size[i], PCI_DMA_BIDIRECTIONAL);
50a0decf
SC
6786 if (dma_mapping_error(&h->pdev->dev,
6787 (dma_addr_t) temp64)) {
6788 c->SG[i].Addr = cpu_to_le64(0);
6789 c->SG[i].Len = cpu_to_le32(0);
bcc48ffa
SC
6790 hpsa_pci_unmap(h->pdev, c, i,
6791 PCI_DMA_BIDIRECTIONAL);
6792 status = -ENOMEM;
e2d4a1f6 6793 goto cleanup0;
bcc48ffa 6794 }
50a0decf
SC
6795 c->SG[i].Addr = cpu_to_le64(temp64);
6796 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6797 c->SG[i].Ext = cpu_to_le32(0);
edd16368 6798 }
50a0decf 6799 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
edd16368 6800 }
c448ecfa 6801 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3fb134cb 6802 NO_TIMEOUT);
b03a7771
SC
6803 if (sg_used)
6804 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
edd16368 6805 check_ioctl_unit_attention(h, c);
25163bd5
WS
6806 if (status) {
6807 status = -EIO;
6808 goto cleanup0;
6809 }
6810
edd16368
SC
6811 /* Copy the error information out */
6812 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6813 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
edd16368 6814 status = -EFAULT;
e2d4a1f6 6815 goto cleanup0;
edd16368 6816 }
9233fb10 6817 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
2b08b3e9
DB
6818 int i;
6819
edd16368
SC
6820 /* Copy the data out of the buffer we created */
6821 BYTE __user *ptr = ioc->buf;
6822 for (i = 0; i < sg_used; i++) {
6823 if (copy_to_user(ptr, buff[i], buff_size[i])) {
edd16368 6824 status = -EFAULT;
e2d4a1f6 6825 goto cleanup0;
edd16368
SC
6826 }
6827 ptr += buff_size[i];
6828 }
6829 }
edd16368 6830 status = 0;
e2d4a1f6 6831cleanup0:
45fcb86e 6832 cmd_free(h, c);
edd16368
SC
6833cleanup1:
6834 if (buff) {
2b08b3e9
DB
6835 int i;
6836
edd16368
SC
6837 for (i = 0; i < sg_used; i++)
6838 kfree(buff[i]);
6839 kfree(buff);
6840 }
6841 kfree(buff_size);
6842 kfree(ioc);
6843 return status;
6844}
6845
6846static void check_ioctl_unit_attention(struct ctlr_info *h,
6847 struct CommandList *c)
6848{
6849 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6850 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6851 (void) check_for_unit_attention(h, c);
6852}
0390f0c0 6853
edd16368
SC
6854/*
6855 * ioctl
6856 */
42a91641 6857static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
edd16368
SC
6858{
6859 struct ctlr_info *h;
6860 void __user *argp = (void __user *)arg;
0390f0c0 6861 int rc;
edd16368
SC
6862
6863 h = sdev_to_hba(dev);
6864
6865 switch (cmd) {
6866 case CCISS_DEREGDISK:
6867 case CCISS_REGNEWDISK:
6868 case CCISS_REGNEWD:
a08a8471 6869 hpsa_scan_start(h->scsi_host);
edd16368
SC
6870 return 0;
6871 case CCISS_GETPCIINFO:
6872 return hpsa_getpciinfo_ioctl(h, argp);
6873 case CCISS_GETDRIVVER:
6874 return hpsa_getdrivver_ioctl(h, argp);
6875 case CCISS_PASSTHRU:
34f0c627 6876 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
0390f0c0
SC
6877 return -EAGAIN;
6878 rc = hpsa_passthru_ioctl(h, argp);
34f0c627 6879 atomic_inc(&h->passthru_cmds_avail);
0390f0c0 6880 return rc;
edd16368 6881 case CCISS_BIG_PASSTHRU:
34f0c627 6882 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
0390f0c0
SC
6883 return -EAGAIN;
6884 rc = hpsa_big_passthru_ioctl(h, argp);
34f0c627 6885 atomic_inc(&h->passthru_cmds_avail);
0390f0c0 6886 return rc;
edd16368
SC
6887 default:
6888 return -ENOTTY;
6889 }
6890}
6891
bf43caf3 6892static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6f039790 6893 u8 reset_type)
64670ac8
SC
6894{
6895 struct CommandList *c;
6896
6897 c = cmd_alloc(h);
bf43caf3 6898
a2dac136
SC
6899 /* fill_cmd can't fail here, no data buffer to map */
6900 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
64670ac8
SC
6901 RAID_CTLR_LUNID, TYPE_MSG);
6902 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6903 c->waiting = NULL;
6904 enqueue_cmd_and_start_io(h, c);
6905 /* Don't wait for completion, the reset won't complete. Don't free
6906 * the command either. This is the last command we will send before
6907 * re-initializing everything, so it doesn't matter and won't leak.
6908 */
bf43caf3 6909 return;
64670ac8
SC
6910}
6911
a2dac136 6912static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
b7bb24eb 6913 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
edd16368
SC
6914 int cmd_type)
6915{
6916 int pci_dir = XFER_NONE;
9b5c48c2 6917 u64 tag; /* for commands to be aborted */
edd16368
SC
6918
6919 c->cmd_type = CMD_IOCTL_PEND;
a58e7e53 6920 c->scsi_cmd = SCSI_CMD_BUSY;
edd16368
SC
6921 c->Header.ReplyQueue = 0;
6922 if (buff != NULL && size > 0) {
6923 c->Header.SGList = 1;
50a0decf 6924 c->Header.SGTotal = cpu_to_le16(1);
edd16368
SC
6925 } else {
6926 c->Header.SGList = 0;
50a0decf 6927 c->Header.SGTotal = cpu_to_le16(0);
edd16368 6928 }
edd16368
SC
6929 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6930
edd16368
SC
6931 if (cmd_type == TYPE_CMD) {
6932 switch (cmd) {
6933 case HPSA_INQUIRY:
6934 /* are we trying to read a vital product page */
b7bb24eb 6935 if (page_code & VPD_PAGE) {
edd16368 6936 c->Request.CDB[1] = 0x01;
b7bb24eb 6937 c->Request.CDB[2] = (page_code & 0xff);
edd16368
SC
6938 }
6939 c->Request.CDBLen = 6;
a505b86f
SC
6940 c->Request.type_attr_dir =
6941 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
edd16368
SC
6942 c->Request.Timeout = 0;
6943 c->Request.CDB[0] = HPSA_INQUIRY;
6944 c->Request.CDB[4] = size & 0xFF;
6945 break;
6946 case HPSA_REPORT_LOG:
6947 case HPSA_REPORT_PHYS:
6948 /* Talking to controller so It's a physical command
6949 mode = 00 target = 0. Nothing to write.
6950 */
6951 c->Request.CDBLen = 12;
a505b86f
SC
6952 c->Request.type_attr_dir =
6953 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
edd16368
SC
6954 c->Request.Timeout = 0;
6955 c->Request.CDB[0] = cmd;
6956 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6957 c->Request.CDB[7] = (size >> 16) & 0xFF;
6958 c->Request.CDB[8] = (size >> 8) & 0xFF;
6959 c->Request.CDB[9] = size & 0xFF;
6960 break;
c2adae44
ST
6961 case BMIC_SENSE_DIAG_OPTIONS:
6962 c->Request.CDBLen = 16;
6963 c->Request.type_attr_dir =
6964 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6965 c->Request.Timeout = 0;
6966 /* Spec says this should be BMIC_WRITE */
6967 c->Request.CDB[0] = BMIC_READ;
6968 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6969 break;
6970 case BMIC_SET_DIAG_OPTIONS:
6971 c->Request.CDBLen = 16;
6972 c->Request.type_attr_dir =
6973 TYPE_ATTR_DIR(cmd_type,
6974 ATTR_SIMPLE, XFER_WRITE);
6975 c->Request.Timeout = 0;
6976 c->Request.CDB[0] = BMIC_WRITE;
6977 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6978 break;
edd16368
SC
6979 case HPSA_CACHE_FLUSH:
6980 c->Request.CDBLen = 12;
a505b86f
SC
6981 c->Request.type_attr_dir =
6982 TYPE_ATTR_DIR(cmd_type,
6983 ATTR_SIMPLE, XFER_WRITE);
edd16368
SC
6984 c->Request.Timeout = 0;
6985 c->Request.CDB[0] = BMIC_WRITE;
6986 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
bb158eab
SC
6987 c->Request.CDB[7] = (size >> 8) & 0xFF;
6988 c->Request.CDB[8] = size & 0xFF;
edd16368
SC
6989 break;
6990 case TEST_UNIT_READY:
6991 c->Request.CDBLen = 6;
a505b86f
SC
6992 c->Request.type_attr_dir =
6993 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
edd16368
SC
6994 c->Request.Timeout = 0;
6995 break;
283b4a9b
SC
6996 case HPSA_GET_RAID_MAP:
6997 c->Request.CDBLen = 12;
a505b86f
SC
6998 c->Request.type_attr_dir =
6999 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
283b4a9b
SC
7000 c->Request.Timeout = 0;
7001 c->Request.CDB[0] = HPSA_CISS_READ;
7002 c->Request.CDB[1] = cmd;
7003 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
7004 c->Request.CDB[7] = (size >> 16) & 0xFF;
7005 c->Request.CDB[8] = (size >> 8) & 0xFF;
7006 c->Request.CDB[9] = size & 0xFF;
7007 break;
316b221a
SC
7008 case BMIC_SENSE_CONTROLLER_PARAMETERS:
7009 c->Request.CDBLen = 10;
a505b86f
SC
7010 c->Request.type_attr_dir =
7011 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
316b221a
SC
7012 c->Request.Timeout = 0;
7013 c->Request.CDB[0] = BMIC_READ;
7014 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
7015 c->Request.CDB[7] = (size >> 16) & 0xFF;
7016 c->Request.CDB[8] = (size >> 8) & 0xFF;
7017 break;
03383736
DB
7018 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
7019 c->Request.CDBLen = 10;
7020 c->Request.type_attr_dir =
7021 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7022 c->Request.Timeout = 0;
7023 c->Request.CDB[0] = BMIC_READ;
7024 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
7025 c->Request.CDB[7] = (size >> 16) & 0xFF;
7026 c->Request.CDB[8] = (size >> 8) & 0XFF;
7027 break;
d04e62b9
KB
7028 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
7029 c->Request.CDBLen = 10;
7030 c->Request.type_attr_dir =
7031 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7032 c->Request.Timeout = 0;
7033 c->Request.CDB[0] = BMIC_READ;
7034 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
7035 c->Request.CDB[7] = (size >> 16) & 0xFF;
7036 c->Request.CDB[8] = (size >> 8) & 0XFF;
7037 break;
cca8f13b
DB
7038 case BMIC_SENSE_STORAGE_BOX_PARAMS:
7039 c->Request.CDBLen = 10;
7040 c->Request.type_attr_dir =
7041 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7042 c->Request.Timeout = 0;
7043 c->Request.CDB[0] = BMIC_READ;
7044 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
7045 c->Request.CDB[7] = (size >> 16) & 0xFF;
7046 c->Request.CDB[8] = (size >> 8) & 0XFF;
7047 break;
66749d0d
ST
7048 case BMIC_IDENTIFY_CONTROLLER:
7049 c->Request.CDBLen = 10;
7050 c->Request.type_attr_dir =
7051 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7052 c->Request.Timeout = 0;
7053 c->Request.CDB[0] = BMIC_READ;
7054 c->Request.CDB[1] = 0;
7055 c->Request.CDB[2] = 0;
7056 c->Request.CDB[3] = 0;
7057 c->Request.CDB[4] = 0;
7058 c->Request.CDB[5] = 0;
7059 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7060 c->Request.CDB[7] = (size >> 16) & 0xFF;
7061 c->Request.CDB[8] = (size >> 8) & 0XFF;
7062 c->Request.CDB[9] = 0;
7063 break;
edd16368
SC
7064 default:
7065 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7066 BUG();
a2dac136 7067 return -1;
edd16368
SC
7068 }
7069 } else if (cmd_type == TYPE_MSG) {
7070 switch (cmd) {
7071
0b9b7b6e
ST
7072 case HPSA_PHYS_TARGET_RESET:
7073 c->Request.CDBLen = 16;
7074 c->Request.type_attr_dir =
7075 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7076 c->Request.Timeout = 0; /* Don't time out */
7077 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7078 c->Request.CDB[0] = HPSA_RESET;
7079 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7080 /* Physical target reset needs no control bytes 4-7*/
7081 c->Request.CDB[4] = 0x00;
7082 c->Request.CDB[5] = 0x00;
7083 c->Request.CDB[6] = 0x00;
7084 c->Request.CDB[7] = 0x00;
7085 break;
edd16368
SC
7086 case HPSA_DEVICE_RESET_MSG:
7087 c->Request.CDBLen = 16;
a505b86f
SC
7088 c->Request.type_attr_dir =
7089 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
edd16368 7090 c->Request.Timeout = 0; /* Don't time out */
64670ac8
SC
7091 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7092 c->Request.CDB[0] = cmd;
21e89afd 7093 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
edd16368
SC
7094 /* If bytes 4-7 are zero, it means reset the */
7095 /* LunID device */
7096 c->Request.CDB[4] = 0x00;
7097 c->Request.CDB[5] = 0x00;
7098 c->Request.CDB[6] = 0x00;
7099 c->Request.CDB[7] = 0x00;
75167d2c
SC
7100 break;
7101 case HPSA_ABORT_MSG:
9b5c48c2 7102 memcpy(&tag, buff, sizeof(tag));
2b08b3e9 7103 dev_dbg(&h->pdev->dev,
9b5c48c2
SC
7104 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7105 tag, c->Header.tag);
75167d2c 7106 c->Request.CDBLen = 16;
a505b86f
SC
7107 c->Request.type_attr_dir =
7108 TYPE_ATTR_DIR(cmd_type,
7109 ATTR_SIMPLE, XFER_WRITE);
75167d2c
SC
7110 c->Request.Timeout = 0; /* Don't time out */
7111 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7112 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7113 c->Request.CDB[2] = 0x00; /* reserved */
7114 c->Request.CDB[3] = 0x00; /* reserved */
7115 /* Tag to abort goes in CDB[4]-CDB[11] */
9b5c48c2 7116 memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
75167d2c
SC
7117 c->Request.CDB[12] = 0x00; /* reserved */
7118 c->Request.CDB[13] = 0x00; /* reserved */
7119 c->Request.CDB[14] = 0x00; /* reserved */
7120 c->Request.CDB[15] = 0x00; /* reserved */
edd16368 7121 break;
edd16368
SC
7122 default:
7123 dev_warn(&h->pdev->dev, "unknown message type %d\n",
7124 cmd);
7125 BUG();
7126 }
7127 } else {
7128 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7129 BUG();
7130 }
7131
a505b86f 7132 switch (GET_DIR(c->Request.type_attr_dir)) {
edd16368
SC
7133 case XFER_READ:
7134 pci_dir = PCI_DMA_FROMDEVICE;
7135 break;
7136 case XFER_WRITE:
7137 pci_dir = PCI_DMA_TODEVICE;
7138 break;
7139 case XFER_NONE:
7140 pci_dir = PCI_DMA_NONE;
7141 break;
7142 default:
7143 pci_dir = PCI_DMA_BIDIRECTIONAL;
7144 }
a2dac136
SC
7145 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7146 return -1;
7147 return 0;
edd16368
SC
7148}
7149
7150/*
7151 * Map (physical) PCI mem into (virtual) kernel space
7152 */
7153static void __iomem *remap_pci_mem(ulong base, ulong size)
7154{
7155 ulong page_base = ((ulong) base) & PAGE_MASK;
7156 ulong page_offs = ((ulong) base) - page_base;
088ba34c
SC
7157 void __iomem *page_remapped = ioremap_nocache(page_base,
7158 page_offs + size);
edd16368
SC
7159
7160 return page_remapped ? (page_remapped + page_offs) : NULL;
7161}
7162
254f796b 7163static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
edd16368 7164{
254f796b 7165 return h->access.command_completed(h, q);
edd16368
SC
7166}
7167
900c5440 7168static inline bool interrupt_pending(struct ctlr_info *h)
edd16368
SC
7169{
7170 return h->access.intr_pending(h);
7171}
7172
7173static inline long interrupt_not_for_us(struct ctlr_info *h)
7174{
10f66018
SC
7175 return (h->access.intr_pending(h) == 0) ||
7176 (h->interrupts_enabled == 0);
edd16368
SC
7177}
7178
01a02ffc
SC
7179static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7180 u32 raw_tag)
edd16368
SC
7181{
7182 if (unlikely(tag_index >= h->nr_cmds)) {
7183 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7184 return 1;
7185 }
7186 return 0;
7187}
7188
5a3d16f5 7189static inline void finish_cmd(struct CommandList *c)
edd16368 7190{
e85c5974 7191 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
c349775e
ST
7192 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7193 || c->cmd_type == CMD_IOACCEL2))
1fb011fb 7194 complete_scsi_command(c);
8be986cc 7195 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
edd16368 7196 complete(c->waiting);
a104c99f
SC
7197}
7198
303932fd 7199/* process completion of an indexed ("direct lookup") command */
1d94f94d 7200static inline void process_indexed_cmd(struct ctlr_info *h,
303932fd
DB
7201 u32 raw_tag)
7202{
7203 u32 tag_index;
7204 struct CommandList *c;
7205
f2405db8 7206 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
1d94f94d
SC
7207 if (!bad_tag(h, tag_index, raw_tag)) {
7208 c = h->cmd_pool + tag_index;
7209 finish_cmd(c);
7210 }
303932fd
DB
7211}
7212
64670ac8
SC
7213/* Some controllers, like p400, will give us one interrupt
7214 * after a soft reset, even if we turned interrupts off.
7215 * Only need to check for this in the hpsa_xxx_discard_completions
7216 * functions.
7217 */
7218static int ignore_bogus_interrupt(struct ctlr_info *h)
7219{
7220 if (likely(!reset_devices))
7221 return 0;
7222
7223 if (likely(h->interrupts_enabled))
7224 return 0;
7225
7226 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7227 "(known firmware bug.) Ignoring.\n");
7228
7229 return 1;
7230}
7231
254f796b
MG
7232/*
7233 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7234 * Relies on (h-q[x] == x) being true for x such that
7235 * 0 <= x < MAX_REPLY_QUEUES.
7236 */
7237static struct ctlr_info *queue_to_hba(u8 *queue)
64670ac8 7238{
254f796b
MG
7239 return container_of((queue - *queue), struct ctlr_info, q[0]);
7240}
7241
7242static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7243{
7244 struct ctlr_info *h = queue_to_hba(queue);
7245 u8 q = *(u8 *) queue;
64670ac8
SC
7246 u32 raw_tag;
7247
7248 if (ignore_bogus_interrupt(h))
7249 return IRQ_NONE;
7250
7251 if (interrupt_not_for_us(h))
7252 return IRQ_NONE;
a0c12413 7253 h->last_intr_timestamp = get_jiffies_64();
64670ac8 7254 while (interrupt_pending(h)) {
254f796b 7255 raw_tag = get_next_completion(h, q);
64670ac8 7256 while (raw_tag != FIFO_EMPTY)
254f796b 7257 raw_tag = next_command(h, q);
64670ac8 7258 }
64670ac8
SC
7259 return IRQ_HANDLED;
7260}
7261
254f796b 7262static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
64670ac8 7263{
254f796b 7264 struct ctlr_info *h = queue_to_hba(queue);
64670ac8 7265 u32 raw_tag;
254f796b 7266 u8 q = *(u8 *) queue;
64670ac8
SC
7267
7268 if (ignore_bogus_interrupt(h))
7269 return IRQ_NONE;
7270
a0c12413 7271 h->last_intr_timestamp = get_jiffies_64();
254f796b 7272 raw_tag = get_next_completion(h, q);
64670ac8 7273 while (raw_tag != FIFO_EMPTY)
254f796b 7274 raw_tag = next_command(h, q);
64670ac8
SC
7275 return IRQ_HANDLED;
7276}
7277
254f796b 7278static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
edd16368 7279{
254f796b 7280 struct ctlr_info *h = queue_to_hba((u8 *) queue);
303932fd 7281 u32 raw_tag;
254f796b 7282 u8 q = *(u8 *) queue;
edd16368
SC
7283
7284 if (interrupt_not_for_us(h))
7285 return IRQ_NONE;
a0c12413 7286 h->last_intr_timestamp = get_jiffies_64();
10f66018 7287 while (interrupt_pending(h)) {
254f796b 7288 raw_tag = get_next_completion(h, q);
10f66018 7289 while (raw_tag != FIFO_EMPTY) {
f2405db8 7290 process_indexed_cmd(h, raw_tag);
254f796b 7291 raw_tag = next_command(h, q);
10f66018
SC
7292 }
7293 }
10f66018
SC
7294 return IRQ_HANDLED;
7295}
7296
254f796b 7297static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
10f66018 7298{
254f796b 7299 struct ctlr_info *h = queue_to_hba(queue);
10f66018 7300 u32 raw_tag;
254f796b 7301 u8 q = *(u8 *) queue;
10f66018 7302
a0c12413 7303 h->last_intr_timestamp = get_jiffies_64();
254f796b 7304 raw_tag = get_next_completion(h, q);
303932fd 7305 while (raw_tag != FIFO_EMPTY) {
f2405db8 7306 process_indexed_cmd(h, raw_tag);
254f796b 7307 raw_tag = next_command(h, q);
edd16368 7308 }
edd16368
SC
7309 return IRQ_HANDLED;
7310}
7311
a9a3a273
SC
7312/* Send a message CDB to the firmware. Careful, this only works
7313 * in simple mode, not performant mode due to the tag lookup.
7314 * We only ever use this immediately after a controller reset.
7315 */
6f039790
GKH
7316static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7317 unsigned char type)
edd16368
SC
7318{
7319 struct Command {
7320 struct CommandListHeader CommandHeader;
7321 struct RequestBlock Request;
7322 struct ErrDescriptor ErrorDescriptor;
7323 };
7324 struct Command *cmd;
7325 static const size_t cmd_sz = sizeof(*cmd) +
7326 sizeof(cmd->ErrorDescriptor);
7327 dma_addr_t paddr64;
2b08b3e9
DB
7328 __le32 paddr32;
7329 u32 tag;
edd16368
SC
7330 void __iomem *vaddr;
7331 int i, err;
7332
7333 vaddr = pci_ioremap_bar(pdev, 0);
7334 if (vaddr == NULL)
7335 return -ENOMEM;
7336
7337 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7338 * CCISS commands, so they must be allocated from the lower 4GiB of
7339 * memory.
7340 */
7341 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7342 if (err) {
7343 iounmap(vaddr);
1eaec8f3 7344 return err;
edd16368
SC
7345 }
7346
7347 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7348 if (cmd == NULL) {
7349 iounmap(vaddr);
7350 return -ENOMEM;
7351 }
7352
7353 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7354 * although there's no guarantee, we assume that the address is at
7355 * least 4-byte aligned (most likely, it's page-aligned).
7356 */
2b08b3e9 7357 paddr32 = cpu_to_le32(paddr64);
edd16368
SC
7358
7359 cmd->CommandHeader.ReplyQueue = 0;
7360 cmd->CommandHeader.SGList = 0;
50a0decf 7361 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
2b08b3e9 7362 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
edd16368
SC
7363 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7364
7365 cmd->Request.CDBLen = 16;
a505b86f
SC
7366 cmd->Request.type_attr_dir =
7367 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
edd16368
SC
7368 cmd->Request.Timeout = 0; /* Don't time out */
7369 cmd->Request.CDB[0] = opcode;
7370 cmd->Request.CDB[1] = type;
7371 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
50a0decf 7372 cmd->ErrorDescriptor.Addr =
2b08b3e9 7373 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
50a0decf 7374 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
edd16368 7375
2b08b3e9 7376 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
edd16368
SC
7377
7378 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7379 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
2b08b3e9 7380 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
edd16368
SC
7381 break;
7382 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7383 }
7384
7385 iounmap(vaddr);
7386
7387 /* we leak the DMA buffer here ... no choice since the controller could
7388 * still complete the command.
7389 */
7390 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7391 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7392 opcode, type);
7393 return -ETIMEDOUT;
7394 }
7395
7396 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7397
7398 if (tag & HPSA_ERROR_BIT) {
7399 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7400 opcode, type);
7401 return -EIO;
7402 }
7403
7404 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7405 opcode, type);
7406 return 0;
7407}
7408
edd16368
SC
7409#define hpsa_noop(p) hpsa_message(p, 3, 0)
7410
1df8552a 7411static int hpsa_controller_hard_reset(struct pci_dev *pdev,
42a91641 7412 void __iomem *vaddr, u32 use_doorbell)
1df8552a 7413{
1df8552a
SC
7414
7415 if (use_doorbell) {
7416 /* For everything after the P600, the PCI power state method
7417 * of resetting the controller doesn't work, so we have this
7418 * other way using the doorbell register.
7419 */
7420 dev_info(&pdev->dev, "using doorbell to reset controller\n");
cf0b08d0 7421 writel(use_doorbell, vaddr + SA5_DOORBELL);
85009239 7422
00701a96 7423 /* PMC hardware guys tell us we need a 10 second delay after
85009239
SC
7424 * doorbell reset and before any attempt to talk to the board
7425 * at all to ensure that this actually works and doesn't fall
7426 * over in some weird corner cases.
7427 */
00701a96 7428 msleep(10000);
1df8552a
SC
7429 } else { /* Try to do it the PCI power state way */
7430
7431 /* Quoting from the Open CISS Specification: "The Power
7432 * Management Control/Status Register (CSR) controls the power
7433 * state of the device. The normal operating state is D0,
7434 * CSR=00h. The software off state is D3, CSR=03h. To reset
7435 * the controller, place the interface device in D3 then to D0,
7436 * this causes a secondary PCI reset which will reset the
7437 * controller." */
2662cab8
DB
7438
7439 int rc = 0;
7440
1df8552a 7441 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
2662cab8 7442
1df8552a 7443 /* enter the D3hot power management state */
2662cab8
DB
7444 rc = pci_set_power_state(pdev, PCI_D3hot);
7445 if (rc)
7446 return rc;
1df8552a
SC
7447
7448 msleep(500);
7449
7450 /* enter the D0 power management state */
2662cab8
DB
7451 rc = pci_set_power_state(pdev, PCI_D0);
7452 if (rc)
7453 return rc;
c4853efe
MM
7454
7455 /*
7456 * The P600 requires a small delay when changing states.
7457 * Otherwise we may think the board did not reset and we bail.
7458 * This for kdump only and is particular to the P600.
7459 */
7460 msleep(500);
1df8552a
SC
7461 }
7462 return 0;
7463}
7464
6f039790 7465static void init_driver_version(char *driver_version, int len)
580ada3c
SC
7466{
7467 memset(driver_version, 0, len);
f79cfec6 7468 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
580ada3c
SC
7469}
7470
6f039790 7471static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
580ada3c
SC
7472{
7473 char *driver_version;
7474 int i, size = sizeof(cfgtable->driver_version);
7475
7476 driver_version = kmalloc(size, GFP_KERNEL);
7477 if (!driver_version)
7478 return -ENOMEM;
7479
7480 init_driver_version(driver_version, size);
7481 for (i = 0; i < size; i++)
7482 writeb(driver_version[i], &cfgtable->driver_version[i]);
7483 kfree(driver_version);
7484 return 0;
7485}
7486
6f039790
GKH
7487static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7488 unsigned char *driver_ver)
580ada3c
SC
7489{
7490 int i;
7491
7492 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7493 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7494}
7495
6f039790 7496static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
580ada3c
SC
7497{
7498
7499 char *driver_ver, *old_driver_ver;
7500 int rc, size = sizeof(cfgtable->driver_version);
7501
7502 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7503 if (!old_driver_ver)
7504 return -ENOMEM;
7505 driver_ver = old_driver_ver + size;
7506
7507 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7508 * should have been changed, otherwise we know the reset failed.
7509 */
7510 init_driver_version(old_driver_ver, size);
7511 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7512 rc = !memcmp(driver_ver, old_driver_ver, size);
7513 kfree(old_driver_ver);
7514 return rc;
7515}
edd16368 7516/* This does a hard reset of the controller using PCI power management
1df8552a 7517 * states or the using the doorbell register.
edd16368 7518 */
6b6c1cd7 7519static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
edd16368 7520{
1df8552a
SC
7521 u64 cfg_offset;
7522 u32 cfg_base_addr;
7523 u64 cfg_base_addr_index;
7524 void __iomem *vaddr;
7525 unsigned long paddr;
580ada3c 7526 u32 misc_fw_support;
270d05de 7527 int rc;
1df8552a 7528 struct CfgTable __iomem *cfgtable;
cf0b08d0 7529 u32 use_doorbell;
270d05de 7530 u16 command_register;
edd16368 7531
1df8552a
SC
7532 /* For controllers as old as the P600, this is very nearly
7533 * the same thing as
edd16368
SC
7534 *
7535 * pci_save_state(pci_dev);
7536 * pci_set_power_state(pci_dev, PCI_D3hot);
7537 * pci_set_power_state(pci_dev, PCI_D0);
7538 * pci_restore_state(pci_dev);
7539 *
1df8552a
SC
7540 * For controllers newer than the P600, the pci power state
7541 * method of resetting doesn't work so we have another way
7542 * using the doorbell register.
edd16368 7543 */
18867659 7544
60f923b9
RE
7545 if (!ctlr_is_resettable(board_id)) {
7546 dev_warn(&pdev->dev, "Controller not resettable\n");
25c1e56a
SC
7547 return -ENODEV;
7548 }
46380786
SC
7549
7550 /* if controller is soft- but not hard resettable... */
7551 if (!ctlr_is_hard_resettable(board_id))
7552 return -ENOTSUPP; /* try soft reset later. */
18867659 7553
270d05de
SC
7554 /* Save the PCI command register */
7555 pci_read_config_word(pdev, 4, &command_register);
270d05de 7556 pci_save_state(pdev);
edd16368 7557
1df8552a
SC
7558 /* find the first memory BAR, so we can find the cfg table */
7559 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7560 if (rc)
7561 return rc;
7562 vaddr = remap_pci_mem(paddr, 0x250);
7563 if (!vaddr)
7564 return -ENOMEM;
edd16368 7565
1df8552a
SC
7566 /* find cfgtable in order to check if reset via doorbell is supported */
7567 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7568 &cfg_base_addr_index, &cfg_offset);
7569 if (rc)
7570 goto unmap_vaddr;
7571 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7572 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7573 if (!cfgtable) {
7574 rc = -ENOMEM;
7575 goto unmap_vaddr;
7576 }
580ada3c
SC
7577 rc = write_driver_ver_to_cfgtable(cfgtable);
7578 if (rc)
03741d95 7579 goto unmap_cfgtable;
edd16368 7580
cf0b08d0
SC
7581 /* If reset via doorbell register is supported, use that.
7582 * There are two such methods. Favor the newest method.
7583 */
1df8552a 7584 misc_fw_support = readl(&cfgtable->misc_fw_support);
cf0b08d0
SC
7585 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7586 if (use_doorbell) {
7587 use_doorbell = DOORBELL_CTLR_RESET2;
7588 } else {
7589 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7590 if (use_doorbell) {
050f7147
SC
7591 dev_warn(&pdev->dev,
7592 "Soft reset not supported. Firmware update is required.\n");
64670ac8 7593 rc = -ENOTSUPP; /* try soft reset */
cf0b08d0
SC
7594 goto unmap_cfgtable;
7595 }
7596 }
edd16368 7597
1df8552a
SC
7598 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7599 if (rc)
7600 goto unmap_cfgtable;
edd16368 7601
270d05de 7602 pci_restore_state(pdev);
270d05de 7603 pci_write_config_word(pdev, 4, command_register);
edd16368 7604
1df8552a
SC
7605 /* Some devices (notably the HP Smart Array 5i Controller)
7606 need a little pause here */
7607 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7608
fe5389c8
SC
7609 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7610 if (rc) {
7611 dev_warn(&pdev->dev,
050f7147 7612 "Failed waiting for board to become ready after hard reset\n");
fe5389c8
SC
7613 goto unmap_cfgtable;
7614 }
fe5389c8 7615
580ada3c
SC
7616 rc = controller_reset_failed(vaddr);
7617 if (rc < 0)
7618 goto unmap_cfgtable;
7619 if (rc) {
64670ac8
SC
7620 dev_warn(&pdev->dev, "Unable to successfully reset "
7621 "controller. Will try soft reset.\n");
7622 rc = -ENOTSUPP;
580ada3c 7623 } else {
64670ac8 7624 dev_info(&pdev->dev, "board ready after hard reset.\n");
1df8552a
SC
7625 }
7626
7627unmap_cfgtable:
7628 iounmap(cfgtable);
7629
7630unmap_vaddr:
7631 iounmap(vaddr);
7632 return rc;
edd16368
SC
7633}
7634
7635/*
7636 * We cannot read the structure directly, for portability we must use
7637 * the io functions.
7638 * This is for debug only.
7639 */
42a91641 7640static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
edd16368 7641{
58f8665c 7642#ifdef HPSA_DEBUG
edd16368
SC
7643 int i;
7644 char temp_name[17];
7645
7646 dev_info(dev, "Controller Configuration information\n");
7647 dev_info(dev, "------------------------------------\n");
7648 for (i = 0; i < 4; i++)
7649 temp_name[i] = readb(&(tb->Signature[i]));
7650 temp_name[4] = '\0';
7651 dev_info(dev, " Signature = %s\n", temp_name);
7652 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7653 dev_info(dev, " Transport methods supported = 0x%x\n",
7654 readl(&(tb->TransportSupport)));
7655 dev_info(dev, " Transport methods active = 0x%x\n",
7656 readl(&(tb->TransportActive)));
7657 dev_info(dev, " Requested transport Method = 0x%x\n",
7658 readl(&(tb->HostWrite.TransportRequest)));
7659 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7660 readl(&(tb->HostWrite.CoalIntDelay)));
7661 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7662 readl(&(tb->HostWrite.CoalIntCount)));
69d6e33d 7663 dev_info(dev, " Max outstanding commands = %d\n",
edd16368
SC
7664 readl(&(tb->CmdsOutMax)));
7665 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7666 for (i = 0; i < 16; i++)
7667 temp_name[i] = readb(&(tb->ServerName[i]));
7668 temp_name[16] = '\0';
7669 dev_info(dev, " Server Name = %s\n", temp_name);
7670 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7671 readl(&(tb->HeartBeat)));
edd16368 7672#endif /* HPSA_DEBUG */
58f8665c 7673}
edd16368
SC
7674
7675static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7676{
7677 int i, offset, mem_type, bar_type;
7678
7679 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7680 return 0;
7681 offset = 0;
7682 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7683 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7684 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7685 offset += 4;
7686 else {
7687 mem_type = pci_resource_flags(pdev, i) &
7688 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7689 switch (mem_type) {
7690 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7691 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7692 offset += 4; /* 32 bit */
7693 break;
7694 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7695 offset += 8;
7696 break;
7697 default: /* reserved in PCI 2.2 */
7698 dev_warn(&pdev->dev,
7699 "base address is invalid\n");
7700 return -1;
7701 break;
7702 }
7703 }
7704 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7705 return i + 1;
7706 }
7707 return -1;
7708}
7709
cc64c817
RE
7710static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7711{
bc2bb154
CH
7712 pci_free_irq_vectors(h->pdev);
7713 h->msix_vectors = 0;
cc64c817
RE
7714}
7715
edd16368 7716/* If MSI/MSI-X is supported by the kernel we will try to enable it on
050f7147 7717 * controllers that are capable. If not, we use legacy INTx mode.
edd16368 7718 */
bc2bb154 7719static int hpsa_interrupt_mode(struct ctlr_info *h)
edd16368 7720{
bc2bb154
CH
7721 unsigned int flags = PCI_IRQ_LEGACY;
7722 int ret;
edd16368
SC
7723
7724 /* Some boards advertise MSI but don't really support it */
bc2bb154
CH
7725 switch (h->board_id) {
7726 case 0x40700E11:
7727 case 0x40800E11:
7728 case 0x40820E11:
7729 case 0x40830E11:
7730 break;
7731 default:
7732 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7733 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7734 if (ret > 0) {
7735 h->msix_vectors = ret;
7736 return 0;
edd16368 7737 }
bc2bb154
CH
7738
7739 flags |= PCI_IRQ_MSI;
7740 break;
edd16368 7741 }
bc2bb154
CH
7742
7743 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7744 if (ret < 0)
7745 return ret;
7746 return 0;
edd16368
SC
7747}
7748
6f039790 7749static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
e5c880d1
SC
7750{
7751 int i;
7752 u32 subsystem_vendor_id, subsystem_device_id;
7753
7754 subsystem_vendor_id = pdev->subsystem_vendor;
7755 subsystem_device_id = pdev->subsystem_device;
7756 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7757 subsystem_vendor_id;
7758
7759 for (i = 0; i < ARRAY_SIZE(products); i++)
7760 if (*board_id == products[i].board_id)
7761 return i;
7762
6798cc0a
SC
7763 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7764 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7765 !hpsa_allow_any) {
e5c880d1
SC
7766 dev_warn(&pdev->dev, "unrecognized board ID: "
7767 "0x%08x, ignoring.\n", *board_id);
7768 return -ENODEV;
7769 }
7770 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7771}
7772
6f039790
GKH
7773static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7774 unsigned long *memory_bar)
3a7774ce
SC
7775{
7776 int i;
7777
7778 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
12d2cd47 7779 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3a7774ce 7780 /* addressing mode bits already removed */
12d2cd47
SC
7781 *memory_bar = pci_resource_start(pdev, i);
7782 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3a7774ce
SC
7783 *memory_bar);
7784 return 0;
7785 }
12d2cd47 7786 dev_warn(&pdev->dev, "no memory BAR found\n");
3a7774ce
SC
7787 return -ENODEV;
7788}
7789
6f039790
GKH
7790static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7791 int wait_for_ready)
2c4c8c8b 7792{
fe5389c8 7793 int i, iterations;
2c4c8c8b 7794 u32 scratchpad;
fe5389c8
SC
7795 if (wait_for_ready)
7796 iterations = HPSA_BOARD_READY_ITERATIONS;
7797 else
7798 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
2c4c8c8b 7799
fe5389c8
SC
7800 for (i = 0; i < iterations; i++) {
7801 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7802 if (wait_for_ready) {
7803 if (scratchpad == HPSA_FIRMWARE_READY)
7804 return 0;
7805 } else {
7806 if (scratchpad != HPSA_FIRMWARE_READY)
7807 return 0;
7808 }
2c4c8c8b
SC
7809 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7810 }
fe5389c8 7811 dev_warn(&pdev->dev, "board not ready, timed out.\n");
2c4c8c8b
SC
7812 return -ENODEV;
7813}
7814
6f039790
GKH
7815static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7816 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7817 u64 *cfg_offset)
a51fd47f
SC
7818{
7819 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7820 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7821 *cfg_base_addr &= (u32) 0x0000ffff;
7822 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7823 if (*cfg_base_addr_index == -1) {
7824 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7825 return -ENODEV;
7826 }
7827 return 0;
7828}
7829
195f2c65
RE
7830static void hpsa_free_cfgtables(struct ctlr_info *h)
7831{
105a3dbc 7832 if (h->transtable) {
195f2c65 7833 iounmap(h->transtable);
105a3dbc
RE
7834 h->transtable = NULL;
7835 }
7836 if (h->cfgtable) {
195f2c65 7837 iounmap(h->cfgtable);
105a3dbc
RE
7838 h->cfgtable = NULL;
7839 }
195f2c65
RE
7840}
7841
7842/* Find and map CISS config table and transfer table
7843+ * several items must be unmapped (freed) later
7844+ * */
6f039790 7845static int hpsa_find_cfgtables(struct ctlr_info *h)
edd16368 7846{
01a02ffc
SC
7847 u64 cfg_offset;
7848 u32 cfg_base_addr;
7849 u64 cfg_base_addr_index;
303932fd 7850 u32 trans_offset;
a51fd47f 7851 int rc;
77c4495c 7852
a51fd47f
SC
7853 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7854 &cfg_base_addr_index, &cfg_offset);
7855 if (rc)
7856 return rc;
77c4495c 7857 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
a51fd47f 7858 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
cd3c81c4
RE
7859 if (!h->cfgtable) {
7860 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
77c4495c 7861 return -ENOMEM;
cd3c81c4 7862 }
580ada3c
SC
7863 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7864 if (rc)
7865 return rc;
77c4495c 7866 /* Find performant mode table. */
a51fd47f 7867 trans_offset = readl(&h->cfgtable->TransMethodOffset);
77c4495c
SC
7868 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7869 cfg_base_addr_index)+cfg_offset+trans_offset,
7870 sizeof(*h->transtable));
195f2c65
RE
7871 if (!h->transtable) {
7872 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7873 hpsa_free_cfgtables(h);
77c4495c 7874 return -ENOMEM;
195f2c65 7875 }
77c4495c
SC
7876 return 0;
7877}
7878
6f039790 7879static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
cba3d38b 7880{
41ce4c35
SC
7881#define MIN_MAX_COMMANDS 16
7882 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7883
7884 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
72ceeaec
SC
7885
7886 /* Limit commands in memory limited kdump scenario. */
7887 if (reset_devices && h->max_commands > 32)
7888 h->max_commands = 32;
7889
41ce4c35
SC
7890 if (h->max_commands < MIN_MAX_COMMANDS) {
7891 dev_warn(&h->pdev->dev,
7892 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7893 h->max_commands,
7894 MIN_MAX_COMMANDS);
7895 h->max_commands = MIN_MAX_COMMANDS;
cba3d38b
SC
7896 }
7897}
7898
c7ee65b3
WS
7899/* If the controller reports that the total max sg entries is greater than 512,
7900 * then we know that chained SG blocks work. (Original smart arrays did not
7901 * support chained SG blocks and would return zero for max sg entries.)
7902 */
7903static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7904{
7905 return h->maxsgentries > 512;
7906}
7907
b93d7536
SC
7908/* Interrogate the hardware for some limits:
7909 * max commands, max SG elements without chaining, and with chaining,
7910 * SG chain block size, etc.
7911 */
6f039790 7912static void hpsa_find_board_params(struct ctlr_info *h)
b93d7536 7913{
cba3d38b 7914 hpsa_get_max_perf_mode_cmds(h);
45fcb86e 7915 h->nr_cmds = h->max_commands;
b93d7536 7916 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
283b4a9b 7917 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
c7ee65b3
WS
7918 if (hpsa_supports_chained_sg_blocks(h)) {
7919 /* Limit in-command s/g elements to 32 save dma'able memory. */
b93d7536 7920 h->max_cmd_sg_entries = 32;
1a63ea6f 7921 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
b93d7536
SC
7922 h->maxsgentries--; /* save one for chain pointer */
7923 } else {
c7ee65b3
WS
7924 /*
7925 * Original smart arrays supported at most 31 s/g entries
7926 * embedded inline in the command (trying to use more
7927 * would lock up the controller)
7928 */
7929 h->max_cmd_sg_entries = 31;
1a63ea6f 7930 h->maxsgentries = 31; /* default to traditional values */
c7ee65b3 7931 h->chainsize = 0;
b93d7536 7932 }
75167d2c
SC
7933
7934 /* Find out what task management functions are supported and cache */
7935 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
0e7a7fce
ST
7936 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7937 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7938 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7939 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
8be986cc
SC
7940 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7941 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
b93d7536
SC
7942}
7943
76c46e49
SC
7944static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7945{
0fc9fd40 7946 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
050f7147 7947 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
76c46e49
SC
7948 return false;
7949 }
7950 return true;
7951}
7952
97a5e98c 7953static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
f7c39101 7954{
97a5e98c 7955 u32 driver_support;
f7c39101 7956
97a5e98c 7957 driver_support = readl(&(h->cfgtable->driver_support));
0b9e7b74
AB
7958 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7959#ifdef CONFIG_X86
97a5e98c 7960 driver_support |= ENABLE_SCSI_PREFETCH;
f7c39101 7961#endif
28e13446
SC
7962 driver_support |= ENABLE_UNIT_ATTN;
7963 writel(driver_support, &(h->cfgtable->driver_support));
f7c39101
SC
7964}
7965
3d0eab67
SC
7966/* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7967 * in a prefetch beyond physical memory.
7968 */
7969static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7970{
7971 u32 dma_prefetch;
7972
7973 if (h->board_id != 0x3225103C)
7974 return;
7975 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7976 dma_prefetch |= 0x8000;
7977 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7978}
7979
c706a795 7980static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
76438d08
SC
7981{
7982 int i;
7983 u32 doorbell_value;
7984 unsigned long flags;
7985 /* wait until the clear_event_notify bit 6 is cleared by controller. */
007e7aa9 7986 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
76438d08
SC
7987 spin_lock_irqsave(&h->lock, flags);
7988 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7989 spin_unlock_irqrestore(&h->lock, flags);
7990 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
c706a795 7991 goto done;
76438d08 7992 /* delay and try again */
007e7aa9 7993 msleep(CLEAR_EVENT_WAIT_INTERVAL);
76438d08 7994 }
c706a795
RE
7995 return -ENODEV;
7996done:
7997 return 0;
76438d08
SC
7998}
7999
c706a795 8000static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
eb6b2ae9
SC
8001{
8002 int i;
6eaf46fd
SC
8003 u32 doorbell_value;
8004 unsigned long flags;
eb6b2ae9
SC
8005
8006 /* under certain very rare conditions, this can take awhile.
8007 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
8008 * as we enter this code.)
8009 */
007e7aa9 8010 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
25163bd5
WS
8011 if (h->remove_in_progress)
8012 goto done;
6eaf46fd
SC
8013 spin_lock_irqsave(&h->lock, flags);
8014 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
8015 spin_unlock_irqrestore(&h->lock, flags);
382be668 8016 if (!(doorbell_value & CFGTBL_ChangeReq))
c706a795 8017 goto done;
eb6b2ae9 8018 /* delay and try again */
007e7aa9 8019 msleep(MODE_CHANGE_WAIT_INTERVAL);
eb6b2ae9 8020 }
c706a795
RE
8021 return -ENODEV;
8022done:
8023 return 0;
3f4336f3
SC
8024}
8025
c706a795 8026/* return -ENODEV or other reason on error, 0 on success */
6f039790 8027static int hpsa_enter_simple_mode(struct ctlr_info *h)
3f4336f3
SC
8028{
8029 u32 trans_support;
8030
8031 trans_support = readl(&(h->cfgtable->TransportSupport));
8032 if (!(trans_support & SIMPLE_MODE))
8033 return -ENOTSUPP;
8034
8035 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
283b4a9b 8036
3f4336f3
SC
8037 /* Update the field, and then ring the doorbell */
8038 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
b9af4937 8039 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
3f4336f3 8040 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
c706a795
RE
8041 if (hpsa_wait_for_mode_change_ack(h))
8042 goto error;
eb6b2ae9 8043 print_cfg_table(&h->pdev->dev, h->cfgtable);
283b4a9b
SC
8044 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8045 goto error;
960a30e7 8046 h->transMethod = CFGTBL_Trans_Simple;
eb6b2ae9 8047 return 0;
283b4a9b 8048error:
050f7147 8049 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
283b4a9b 8050 return -ENODEV;
eb6b2ae9
SC
8051}
8052
195f2c65
RE
8053/* free items allocated or mapped by hpsa_pci_init */
8054static void hpsa_free_pci_init(struct ctlr_info *h)
8055{
8056 hpsa_free_cfgtables(h); /* pci_init 4 */
8057 iounmap(h->vaddr); /* pci_init 3 */
105a3dbc 8058 h->vaddr = NULL;
195f2c65 8059 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
943a7021
RE
8060 /*
8061 * call pci_disable_device before pci_release_regions per
8062 * Documentation/PCI/pci.txt
8063 */
195f2c65 8064 pci_disable_device(h->pdev); /* pci_init 1 */
943a7021 8065 pci_release_regions(h->pdev); /* pci_init 2 */
195f2c65
RE
8066}
8067
8068/* several items must be freed later */
6f039790 8069static int hpsa_pci_init(struct ctlr_info *h)
77c4495c 8070{
eb6b2ae9 8071 int prod_index, err;
edd16368 8072
e5c880d1
SC
8073 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8074 if (prod_index < 0)
60f923b9 8075 return prod_index;
e5c880d1
SC
8076 h->product_name = products[prod_index].product_name;
8077 h->access = *(products[prod_index].access);
edd16368 8078
9b5c48c2
SC
8079 h->needs_abort_tags_swizzled =
8080 ctlr_needs_abort_tags_swizzled(h->board_id);
8081
e5a44df8
MG
8082 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8083 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8084
55c06c71 8085 err = pci_enable_device(h->pdev);
edd16368 8086 if (err) {
195f2c65 8087 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
943a7021 8088 pci_disable_device(h->pdev);
edd16368
SC
8089 return err;
8090 }
8091
f79cfec6 8092 err = pci_request_regions(h->pdev, HPSA);
edd16368 8093 if (err) {
55c06c71 8094 dev_err(&h->pdev->dev,
195f2c65 8095 "failed to obtain PCI resources\n");
943a7021
RE
8096 pci_disable_device(h->pdev);
8097 return err;
edd16368 8098 }
4fa604e1
RE
8099
8100 pci_set_master(h->pdev);
8101
bc2bb154
CH
8102 err = hpsa_interrupt_mode(h);
8103 if (err)
8104 goto clean1;
12d2cd47 8105 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3a7774ce 8106 if (err)
195f2c65 8107 goto clean2; /* intmode+region, pci */
edd16368 8108 h->vaddr = remap_pci_mem(h->paddr, 0x250);
204892e9 8109 if (!h->vaddr) {
195f2c65 8110 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
204892e9 8111 err = -ENOMEM;
195f2c65 8112 goto clean2; /* intmode+region, pci */
204892e9 8113 }
fe5389c8 8114 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
2c4c8c8b 8115 if (err)
195f2c65 8116 goto clean3; /* vaddr, intmode+region, pci */
77c4495c
SC
8117 err = hpsa_find_cfgtables(h);
8118 if (err)
195f2c65 8119 goto clean3; /* vaddr, intmode+region, pci */
b93d7536 8120 hpsa_find_board_params(h);
edd16368 8121
76c46e49 8122 if (!hpsa_CISS_signature_present(h)) {
edd16368 8123 err = -ENODEV;
195f2c65 8124 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
edd16368 8125 }
97a5e98c 8126 hpsa_set_driver_support_bits(h);
3d0eab67 8127 hpsa_p600_dma_prefetch_quirk(h);
eb6b2ae9
SC
8128 err = hpsa_enter_simple_mode(h);
8129 if (err)
195f2c65 8130 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
edd16368
SC
8131 return 0;
8132
195f2c65
RE
8133clean4: /* cfgtables, vaddr, intmode+region, pci */
8134 hpsa_free_cfgtables(h);
8135clean3: /* vaddr, intmode+region, pci */
8136 iounmap(h->vaddr);
105a3dbc 8137 h->vaddr = NULL;
195f2c65
RE
8138clean2: /* intmode+region, pci */
8139 hpsa_disable_interrupt_mode(h);
bc2bb154 8140clean1:
943a7021
RE
8141 /*
8142 * call pci_disable_device before pci_release_regions per
8143 * Documentation/PCI/pci.txt
8144 */
195f2c65 8145 pci_disable_device(h->pdev);
943a7021 8146 pci_release_regions(h->pdev);
edd16368
SC
8147 return err;
8148}
8149
6f039790 8150static void hpsa_hba_inquiry(struct ctlr_info *h)
339b2b14
SC
8151{
8152 int rc;
8153
8154#define HBA_INQUIRY_BYTE_COUNT 64
8155 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8156 if (!h->hba_inquiry_data)
8157 return;
8158 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8159 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8160 if (rc != 0) {
8161 kfree(h->hba_inquiry_data);
8162 h->hba_inquiry_data = NULL;
8163 }
8164}
8165
6b6c1cd7 8166static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
4c2a8c40 8167{
1df8552a 8168 int rc, i;
3b747298 8169 void __iomem *vaddr;
4c2a8c40
SC
8170
8171 if (!reset_devices)
8172 return 0;
8173
132aa220
TH
8174 /* kdump kernel is loading, we don't know in which state is
8175 * the pci interface. The dev->enable_cnt is equal zero
8176 * so we call enable+disable, wait a while and switch it on.
8177 */
8178 rc = pci_enable_device(pdev);
8179 if (rc) {
8180 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8181 return -ENODEV;
8182 }
8183 pci_disable_device(pdev);
8184 msleep(260); /* a randomly chosen number */
8185 rc = pci_enable_device(pdev);
8186 if (rc) {
8187 dev_warn(&pdev->dev, "failed to enable device.\n");
8188 return -ENODEV;
8189 }
4fa604e1 8190
859c75ab 8191 pci_set_master(pdev);
4fa604e1 8192
3b747298
TH
8193 vaddr = pci_ioremap_bar(pdev, 0);
8194 if (vaddr == NULL) {
8195 rc = -ENOMEM;
8196 goto out_disable;
8197 }
8198 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8199 iounmap(vaddr);
8200
1df8552a 8201 /* Reset the controller with a PCI power-cycle or via doorbell */
6b6c1cd7 8202 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
4c2a8c40 8203
1df8552a
SC
8204 /* -ENOTSUPP here means we cannot reset the controller
8205 * but it's already (and still) up and running in
18867659
SC
8206 * "performant mode". Or, it might be 640x, which can't reset
8207 * due to concerns about shared bbwc between 6402/6404 pair.
1df8552a 8208 */
adf1b3a3 8209 if (rc)
132aa220 8210 goto out_disable;
4c2a8c40
SC
8211
8212 /* Now try to get the controller to respond to a no-op */
1ba66c9c 8213 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
4c2a8c40
SC
8214 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8215 if (hpsa_noop(pdev) == 0)
8216 break;
8217 else
8218 dev_warn(&pdev->dev, "no-op failed%s\n",
8219 (i < 11 ? "; re-trying" : ""));
8220 }
132aa220
TH
8221
8222out_disable:
8223
8224 pci_disable_device(pdev);
8225 return rc;
4c2a8c40
SC
8226}
8227
1fb7c98a
RE
8228static void hpsa_free_cmd_pool(struct ctlr_info *h)
8229{
8230 kfree(h->cmd_pool_bits);
105a3dbc
RE
8231 h->cmd_pool_bits = NULL;
8232 if (h->cmd_pool) {
1fb7c98a
RE
8233 pci_free_consistent(h->pdev,
8234 h->nr_cmds * sizeof(struct CommandList),
8235 h->cmd_pool,
8236 h->cmd_pool_dhandle);
105a3dbc
RE
8237 h->cmd_pool = NULL;
8238 h->cmd_pool_dhandle = 0;
8239 }
8240 if (h->errinfo_pool) {
1fb7c98a
RE
8241 pci_free_consistent(h->pdev,
8242 h->nr_cmds * sizeof(struct ErrorInfo),
8243 h->errinfo_pool,
8244 h->errinfo_pool_dhandle);
105a3dbc
RE
8245 h->errinfo_pool = NULL;
8246 h->errinfo_pool_dhandle = 0;
8247 }
1fb7c98a
RE
8248}
8249
d37ffbe4 8250static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
2e9d1b36
SC
8251{
8252 h->cmd_pool_bits = kzalloc(
8253 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8254 sizeof(unsigned long), GFP_KERNEL);
8255 h->cmd_pool = pci_alloc_consistent(h->pdev,
8256 h->nr_cmds * sizeof(*h->cmd_pool),
8257 &(h->cmd_pool_dhandle));
8258 h->errinfo_pool = pci_alloc_consistent(h->pdev,
8259 h->nr_cmds * sizeof(*h->errinfo_pool),
8260 &(h->errinfo_pool_dhandle));
8261 if ((h->cmd_pool_bits == NULL)
8262 || (h->cmd_pool == NULL)
8263 || (h->errinfo_pool == NULL)) {
8264 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
2c143342 8265 goto clean_up;
2e9d1b36 8266 }
360c73bd 8267 hpsa_preinitialize_commands(h);
2e9d1b36 8268 return 0;
2c143342
RE
8269clean_up:
8270 hpsa_free_cmd_pool(h);
8271 return -ENOMEM;
2e9d1b36
SC
8272}
8273
ec501a18
RE
8274/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8275static void hpsa_free_irqs(struct ctlr_info *h)
8276{
8277 int i;
8278
bc2bb154 8279 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
ec501a18 8280 /* Single reply queue, only one irq to free */
7dc62d93 8281 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
bc2bb154 8282 h->q[h->intr_mode] = 0;
ec501a18
RE
8283 return;
8284 }
8285
bc2bb154
CH
8286 for (i = 0; i < h->msix_vectors; i++) {
8287 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
105a3dbc 8288 h->q[i] = 0;
ec501a18 8289 }
a4e17fc1
RE
8290 for (; i < MAX_REPLY_QUEUES; i++)
8291 h->q[i] = 0;
ec501a18
RE
8292}
8293
9ee61794
RE
8294/* returns 0 on success; cleans up and returns -Enn on error */
8295static int hpsa_request_irqs(struct ctlr_info *h,
0ae01a32
SC
8296 irqreturn_t (*msixhandler)(int, void *),
8297 irqreturn_t (*intxhandler)(int, void *))
8298{
254f796b 8299 int rc, i;
0ae01a32 8300
254f796b
MG
8301 /*
8302 * initialize h->q[x] = x so that interrupt handlers know which
8303 * queue to process.
8304 */
8305 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8306 h->q[i] = (u8) i;
8307
bc2bb154 8308 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
254f796b 8309 /* If performant mode and MSI-X, use multiple reply queues */
bc2bb154 8310 for (i = 0; i < h->msix_vectors; i++) {
8b47004a 8311 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
bc2bb154 8312 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8b47004a 8313 0, h->intrname[i],
254f796b 8314 &h->q[i]);
a4e17fc1
RE
8315 if (rc) {
8316 int j;
8317
8318 dev_err(&h->pdev->dev,
8319 "failed to get irq %d for %s\n",
bc2bb154 8320 pci_irq_vector(h->pdev, i), h->devname);
a4e17fc1 8321 for (j = 0; j < i; j++) {
bc2bb154 8322 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
a4e17fc1
RE
8323 h->q[j] = 0;
8324 }
8325 for (; j < MAX_REPLY_QUEUES; j++)
8326 h->q[j] = 0;
8327 return rc;
8328 }
8329 }
254f796b
MG
8330 } else {
8331 /* Use single reply pool */
bc2bb154
CH
8332 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8333 sprintf(h->intrname[0], "%s-msi%s", h->devname,
8334 h->msix_vectors ? "x" : "");
8335 rc = request_irq(pci_irq_vector(h->pdev, 0),
8b47004a 8336 msixhandler, 0,
bc2bb154 8337 h->intrname[0],
254f796b
MG
8338 &h->q[h->intr_mode]);
8339 } else {
8b47004a
RE
8340 sprintf(h->intrname[h->intr_mode],
8341 "%s-intx", h->devname);
bc2bb154 8342 rc = request_irq(pci_irq_vector(h->pdev, 0),
8b47004a 8343 intxhandler, IRQF_SHARED,
bc2bb154 8344 h->intrname[0],
254f796b
MG
8345 &h->q[h->intr_mode]);
8346 }
8347 }
0ae01a32 8348 if (rc) {
195f2c65 8349 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
bc2bb154 8350 pci_irq_vector(h->pdev, 0), h->devname);
195f2c65 8351 hpsa_free_irqs(h);
0ae01a32
SC
8352 return -ENODEV;
8353 }
8354 return 0;
8355}
8356
6f039790 8357static int hpsa_kdump_soft_reset(struct ctlr_info *h)
64670ac8 8358{
39c53f55 8359 int rc;
bf43caf3 8360 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
64670ac8
SC
8361
8362 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
39c53f55
RE
8363 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8364 if (rc) {
64670ac8 8365 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
39c53f55 8366 return rc;
64670ac8
SC
8367 }
8368
8369 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
39c53f55
RE
8370 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8371 if (rc) {
64670ac8
SC
8372 dev_warn(&h->pdev->dev, "Board failed to become ready "
8373 "after soft reset.\n");
39c53f55 8374 return rc;
64670ac8
SC
8375 }
8376
8377 return 0;
8378}
8379
072b0518
SC
8380static void hpsa_free_reply_queues(struct ctlr_info *h)
8381{
8382 int i;
8383
8384 for (i = 0; i < h->nreply_queues; i++) {
8385 if (!h->reply_queue[i].head)
8386 continue;
1fb7c98a
RE
8387 pci_free_consistent(h->pdev,
8388 h->reply_queue_size,
8389 h->reply_queue[i].head,
8390 h->reply_queue[i].busaddr);
072b0518
SC
8391 h->reply_queue[i].head = NULL;
8392 h->reply_queue[i].busaddr = 0;
8393 }
105a3dbc 8394 h->reply_queue_size = 0;
072b0518
SC
8395}
8396
0097f0f4
SC
8397static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8398{
105a3dbc
RE
8399 hpsa_free_performant_mode(h); /* init_one 7 */
8400 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8401 hpsa_free_cmd_pool(h); /* init_one 5 */
8402 hpsa_free_irqs(h); /* init_one 4 */
2946e82b
RE
8403 scsi_host_put(h->scsi_host); /* init_one 3 */
8404 h->scsi_host = NULL; /* init_one 3 */
8405 hpsa_free_pci_init(h); /* init_one 2_5 */
9ecd953a
RE
8406 free_percpu(h->lockup_detected); /* init_one 2 */
8407 h->lockup_detected = NULL; /* init_one 2 */
8408 if (h->resubmit_wq) {
8409 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8410 h->resubmit_wq = NULL;
8411 }
8412 if (h->rescan_ctlr_wq) {
8413 destroy_workqueue(h->rescan_ctlr_wq);
8414 h->rescan_ctlr_wq = NULL;
8415 }
105a3dbc 8416 kfree(h); /* init_one 1 */
64670ac8
SC
8417}
8418
a0c12413 8419/* Called when controller lockup detected. */
f2405db8 8420static void fail_all_outstanding_cmds(struct ctlr_info *h)
a0c12413 8421{
281a7fd0
WS
8422 int i, refcount;
8423 struct CommandList *c;
25163bd5 8424 int failcount = 0;
a0c12413 8425
080ef1cc 8426 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
f2405db8 8427 for (i = 0; i < h->nr_cmds; i++) {
f2405db8 8428 c = h->cmd_pool + i;
281a7fd0
WS
8429 refcount = atomic_inc_return(&c->refcount);
8430 if (refcount > 1) {
25163bd5 8431 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
281a7fd0 8432 finish_cmd(c);
433b5f4d 8433 atomic_dec(&h->commands_outstanding);
25163bd5 8434 failcount++;
281a7fd0
WS
8435 }
8436 cmd_free(h, c);
a0c12413 8437 }
25163bd5
WS
8438 dev_warn(&h->pdev->dev,
8439 "failed %d commands in fail_all\n", failcount);
a0c12413
SC
8440}
8441
094963da
SC
8442static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8443{
c8ed0010 8444 int cpu;
094963da 8445
c8ed0010 8446 for_each_online_cpu(cpu) {
094963da
SC
8447 u32 *lockup_detected;
8448 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8449 *lockup_detected = value;
094963da
SC
8450 }
8451 wmb(); /* be sure the per-cpu variables are out to memory */
8452}
8453
a0c12413
SC
8454static void controller_lockup_detected(struct ctlr_info *h)
8455{
8456 unsigned long flags;
094963da 8457 u32 lockup_detected;
a0c12413 8458
a0c12413
SC
8459 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8460 spin_lock_irqsave(&h->lock, flags);
094963da
SC
8461 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8462 if (!lockup_detected) {
8463 /* no heartbeat, but controller gave us a zero. */
8464 dev_warn(&h->pdev->dev,
25163bd5
WS
8465 "lockup detected after %d but scratchpad register is zero\n",
8466 h->heartbeat_sample_interval / HZ);
094963da
SC
8467 lockup_detected = 0xffffffff;
8468 }
8469 set_lockup_detected_for_all_cpus(h, lockup_detected);
a0c12413 8470 spin_unlock_irqrestore(&h->lock, flags);
25163bd5
WS
8471 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8472 lockup_detected, h->heartbeat_sample_interval / HZ);
a0c12413 8473 pci_disable_device(h->pdev);
f2405db8 8474 fail_all_outstanding_cmds(h);
a0c12413
SC
8475}
8476
25163bd5 8477static int detect_controller_lockup(struct ctlr_info *h)
a0c12413
SC
8478{
8479 u64 now;
8480 u32 heartbeat;
8481 unsigned long flags;
8482
a0c12413
SC
8483 now = get_jiffies_64();
8484 /* If we've received an interrupt recently, we're ok. */
8485 if (time_after64(h->last_intr_timestamp +
e85c5974 8486 (h->heartbeat_sample_interval), now))
25163bd5 8487 return false;
a0c12413
SC
8488
8489 /*
8490 * If we've already checked the heartbeat recently, we're ok.
8491 * This could happen if someone sends us a signal. We
8492 * otherwise don't care about signals in this thread.
8493 */
8494 if (time_after64(h->last_heartbeat_timestamp +
e85c5974 8495 (h->heartbeat_sample_interval), now))
25163bd5 8496 return false;
a0c12413
SC
8497
8498 /* If heartbeat has not changed since we last looked, we're not ok. */
8499 spin_lock_irqsave(&h->lock, flags);
8500 heartbeat = readl(&h->cfgtable->HeartBeat);
8501 spin_unlock_irqrestore(&h->lock, flags);
8502 if (h->last_heartbeat == heartbeat) {
8503 controller_lockup_detected(h);
25163bd5 8504 return true;
a0c12413
SC
8505 }
8506
8507 /* We're ok. */
8508 h->last_heartbeat = heartbeat;
8509 h->last_heartbeat_timestamp = now;
25163bd5 8510 return false;
a0c12413
SC
8511}
8512
9846590e 8513static void hpsa_ack_ctlr_events(struct ctlr_info *h)
76438d08
SC
8514{
8515 int i;
8516 char *event_type;
8517
e4aa3e6a
SC
8518 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8519 return;
8520
76438d08 8521 /* Ask the controller to clear the events we're handling. */
1f7cee8c
SC
8522 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8523 | CFGTBL_Trans_io_accel2)) &&
76438d08
SC
8524 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8525 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8526
8527 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8528 event_type = "state change";
8529 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8530 event_type = "configuration change";
8531 /* Stop sending new RAID offload reqs via the IO accelerator */
8532 scsi_block_requests(h->scsi_host);
5323ed74 8533 for (i = 0; i < h->ndevices; i++) {
76438d08 8534 h->dev[i]->offload_enabled = 0;
5323ed74
DB
8535 h->dev[i]->offload_to_be_enabled = 0;
8536 }
23100dd9 8537 hpsa_drain_accel_commands(h);
76438d08
SC
8538 /* Set 'accelerator path config change' bit */
8539 dev_warn(&h->pdev->dev,
8540 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8541 h->events, event_type);
8542 writel(h->events, &(h->cfgtable->clear_event_notify));
8543 /* Set the "clear event notify field update" bit 6 */
8544 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8545 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8546 hpsa_wait_for_clear_event_notify_ack(h);
8547 scsi_unblock_requests(h->scsi_host);
8548 } else {
8549 /* Acknowledge controller notification events. */
8550 writel(h->events, &(h->cfgtable->clear_event_notify));
8551 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8552 hpsa_wait_for_clear_event_notify_ack(h);
8553#if 0
8554 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8555 hpsa_wait_for_mode_change_ack(h);
8556#endif
8557 }
9846590e 8558 return;
76438d08
SC
8559}
8560
8561/* Check a register on the controller to see if there are configuration
8562 * changes (added/changed/removed logical drives, etc.) which mean that
e863d68e
ST
8563 * we should rescan the controller for devices.
8564 * Also check flag for driver-initiated rescan.
76438d08 8565 */
9846590e 8566static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
76438d08 8567{
853633e8
DB
8568 if (h->drv_req_rescan) {
8569 h->drv_req_rescan = 0;
8570 return 1;
8571 }
8572
76438d08 8573 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
9846590e 8574 return 0;
76438d08
SC
8575
8576 h->events = readl(&(h->cfgtable->event_notify));
9846590e
SC
8577 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8578}
76438d08 8579
9846590e
SC
8580/*
8581 * Check if any of the offline devices have become ready
8582 */
8583static int hpsa_offline_devices_ready(struct ctlr_info *h)
8584{
8585 unsigned long flags;
8586 struct offline_device_entry *d;
8587 struct list_head *this, *tmp;
8588
8589 spin_lock_irqsave(&h->offline_device_lock, flags);
8590 list_for_each_safe(this, tmp, &h->offline_device_list) {
8591 d = list_entry(this, struct offline_device_entry,
8592 offline_list);
8593 spin_unlock_irqrestore(&h->offline_device_lock, flags);
d1fea47c
SC
8594 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8595 spin_lock_irqsave(&h->offline_device_lock, flags);
8596 list_del(&d->offline_list);
8597 spin_unlock_irqrestore(&h->offline_device_lock, flags);
9846590e 8598 return 1;
d1fea47c 8599 }
9846590e
SC
8600 spin_lock_irqsave(&h->offline_device_lock, flags);
8601 }
8602 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8603 return 0;
76438d08
SC
8604}
8605
34592254
ST
8606static int hpsa_luns_changed(struct ctlr_info *h)
8607{
8608 int rc = 1; /* assume there are changes */
8609 struct ReportLUNdata *logdev = NULL;
8610
8611 /* if we can't find out if lun data has changed,
8612 * assume that it has.
8613 */
8614
8615 if (!h->lastlogicals)
7e8a9486 8616 return rc;
34592254
ST
8617
8618 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
7e8a9486
AK
8619 if (!logdev)
8620 return rc;
8621
34592254
ST
8622 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8623 dev_warn(&h->pdev->dev,
8624 "report luns failed, can't track lun changes.\n");
8625 goto out;
8626 }
8627 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8628 dev_info(&h->pdev->dev,
8629 "Lun changes detected.\n");
8630 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8631 goto out;
8632 } else
8633 rc = 0; /* no changes detected. */
8634out:
8635 kfree(logdev);
8636 return rc;
8637}
8638
6636e7f4 8639static void hpsa_rescan_ctlr_worker(struct work_struct *work)
a0c12413
SC
8640{
8641 unsigned long flags;
8a98db73 8642 struct ctlr_info *h = container_of(to_delayed_work(work),
6636e7f4
DB
8643 struct ctlr_info, rescan_ctlr_work);
8644
8645
8646 if (h->remove_in_progress)
8a98db73 8647 return;
9846590e 8648
bfd7546c
DB
8649 /*
8650 * Do the scan after the reset
8651 */
8652 if (h->reset_in_progress) {
8653 h->drv_req_rescan = 1;
8654 return;
8655 }
8656
9846590e
SC
8657 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8658 scsi_host_get(h->scsi_host);
9846590e
SC
8659 hpsa_ack_ctlr_events(h);
8660 hpsa_scan_start(h->scsi_host);
8661 scsi_host_put(h->scsi_host);
34592254 8662 } else if (h->discovery_polling) {
c2adae44 8663 hpsa_disable_rld_caching(h);
34592254
ST
8664 if (hpsa_luns_changed(h)) {
8665 struct Scsi_Host *sh = NULL;
8666
8667 dev_info(&h->pdev->dev,
8668 "driver discovery polling rescan.\n");
8669 sh = scsi_host_get(h->scsi_host);
8670 if (sh != NULL) {
8671 hpsa_scan_start(sh);
8672 scsi_host_put(sh);
8673 }
8674 }
9846590e 8675 }
8a98db73 8676 spin_lock_irqsave(&h->lock, flags);
6636e7f4
DB
8677 if (!h->remove_in_progress)
8678 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8679 h->heartbeat_sample_interval);
8680 spin_unlock_irqrestore(&h->lock, flags);
8681}
8682
8683static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8684{
8685 unsigned long flags;
8686 struct ctlr_info *h = container_of(to_delayed_work(work),
8687 struct ctlr_info, monitor_ctlr_work);
8688
8689 detect_controller_lockup(h);
8690 if (lockup_detected(h))
a0c12413 8691 return;
6636e7f4
DB
8692
8693 spin_lock_irqsave(&h->lock, flags);
8694 if (!h->remove_in_progress)
8695 schedule_delayed_work(&h->monitor_ctlr_work,
8a98db73
SC
8696 h->heartbeat_sample_interval);
8697 spin_unlock_irqrestore(&h->lock, flags);
a0c12413
SC
8698}
8699
6636e7f4
DB
8700static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8701 char *name)
8702{
8703 struct workqueue_struct *wq = NULL;
6636e7f4 8704
397ea9cb 8705 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
6636e7f4
DB
8706 if (!wq)
8707 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8708
8709 return wq;
8710}
8711
6f039790 8712static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
edd16368 8713{
4c2a8c40 8714 int dac, rc;
edd16368 8715 struct ctlr_info *h;
64670ac8
SC
8716 int try_soft_reset = 0;
8717 unsigned long flags;
6b6c1cd7 8718 u32 board_id;
edd16368
SC
8719
8720 if (number_of_controllers == 0)
8721 printk(KERN_INFO DRIVER_NAME "\n");
edd16368 8722
6b6c1cd7
TH
8723 rc = hpsa_lookup_board_id(pdev, &board_id);
8724 if (rc < 0) {
8725 dev_warn(&pdev->dev, "Board ID not found\n");
8726 return rc;
8727 }
8728
8729 rc = hpsa_init_reset_devices(pdev, board_id);
64670ac8
SC
8730 if (rc) {
8731 if (rc != -ENOTSUPP)
8732 return rc;
8733 /* If the reset fails in a particular way (it has no way to do
8734 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8735 * a soft reset once we get the controller configured up to the
8736 * point that it can accept a command.
8737 */
8738 try_soft_reset = 1;
8739 rc = 0;
8740 }
8741
8742reinit_after_soft_reset:
edd16368 8743
303932fd
DB
8744 /* Command structures must be aligned on a 32-byte boundary because
8745 * the 5 lower bits of the address are used by the hardware. and by
8746 * the driver. See comments in hpsa.h for more info.
8747 */
303932fd 8748 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
edd16368 8749 h = kzalloc(sizeof(*h), GFP_KERNEL);
105a3dbc
RE
8750 if (!h) {
8751 dev_err(&pdev->dev, "Failed to allocate controller head\n");
ecd9aad4 8752 return -ENOMEM;
105a3dbc 8753 }
edd16368 8754
55c06c71 8755 h->pdev = pdev;
105a3dbc 8756
a9a3a273 8757 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
9846590e 8758 INIT_LIST_HEAD(&h->offline_device_list);
6eaf46fd 8759 spin_lock_init(&h->lock);
9846590e 8760 spin_lock_init(&h->offline_device_lock);
6eaf46fd 8761 spin_lock_init(&h->scan_lock);
34f0c627 8762 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
9b5c48c2 8763 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
094963da
SC
8764
8765 /* Allocate and clear per-cpu variable lockup_detected */
8766 h->lockup_detected = alloc_percpu(u32);
2a5ac326 8767 if (!h->lockup_detected) {
105a3dbc 8768 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
2a5ac326 8769 rc = -ENOMEM;
2efa5929 8770 goto clean1; /* aer/h */
2a5ac326 8771 }
094963da
SC
8772 set_lockup_detected_for_all_cpus(h, 0);
8773
55c06c71 8774 rc = hpsa_pci_init(h);
105a3dbc 8775 if (rc)
2946e82b
RE
8776 goto clean2; /* lu, aer/h */
8777
8778 /* relies on h-> settings made by hpsa_pci_init, including
8779 * interrupt_mode h->intr */
8780 rc = hpsa_scsi_host_alloc(h);
8781 if (rc)
8782 goto clean2_5; /* pci, lu, aer/h */
edd16368 8783
2946e82b 8784 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
edd16368
SC
8785 h->ctlr = number_of_controllers;
8786 number_of_controllers++;
edd16368
SC
8787
8788 /* configure PCI DMA stuff */
ecd9aad4
SC
8789 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8790 if (rc == 0) {
edd16368 8791 dac = 1;
ecd9aad4
SC
8792 } else {
8793 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8794 if (rc == 0) {
8795 dac = 0;
8796 } else {
8797 dev_err(&pdev->dev, "no suitable DMA available\n");
2946e82b 8798 goto clean3; /* shost, pci, lu, aer/h */
ecd9aad4 8799 }
edd16368
SC
8800 }
8801
8802 /* make sure the board interrupts are off */
8803 h->access.set_intr_mask(h, HPSA_INTR_OFF);
10f66018 8804
105a3dbc
RE
8805 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8806 if (rc)
2946e82b 8807 goto clean3; /* shost, pci, lu, aer/h */
d37ffbe4 8808 rc = hpsa_alloc_cmd_pool(h);
8947fd10 8809 if (rc)
2946e82b 8810 goto clean4; /* irq, shost, pci, lu, aer/h */
105a3dbc
RE
8811 rc = hpsa_alloc_sg_chain_blocks(h);
8812 if (rc)
2946e82b 8813 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
a08a8471 8814 init_waitqueue_head(&h->scan_wait_queue);
9b5c48c2 8815 init_waitqueue_head(&h->abort_cmd_wait_queue);
d604f533
WS
8816 init_waitqueue_head(&h->event_sync_wait_queue);
8817 mutex_init(&h->reset_mutex);
a08a8471 8818 h->scan_finished = 1; /* no scan currently in progress */
87b9e6aa 8819 h->scan_waiting = 0;
edd16368
SC
8820
8821 pci_set_drvdata(pdev, h);
9a41338e 8822 h->ndevices = 0;
2946e82b 8823
9a41338e 8824 spin_lock_init(&h->devlock);
105a3dbc
RE
8825 rc = hpsa_put_ctlr_into_performant_mode(h);
8826 if (rc)
2946e82b
RE
8827 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8828
2efa5929
RE
8829 /* create the resubmit workqueue */
8830 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8831 if (!h->rescan_ctlr_wq) {
8832 rc = -ENOMEM;
8833 goto clean7;
8834 }
8835
8836 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8837 if (!h->resubmit_wq) {
8838 rc = -ENOMEM;
8839 goto clean7; /* aer/h */
8840 }
64670ac8 8841
105a3dbc
RE
8842 /*
8843 * At this point, the controller is ready to take commands.
64670ac8
SC
8844 * Now, if reset_devices and the hard reset didn't work, try
8845 * the soft reset and see if that works.
8846 */
8847 if (try_soft_reset) {
8848
8849 /* This is kind of gross. We may or may not get a completion
8850 * from the soft reset command, and if we do, then the value
8851 * from the fifo may or may not be valid. So, we wait 10 secs
8852 * after the reset throwing away any completions we get during
8853 * that time. Unregister the interrupt handler and register
8854 * fake ones to scoop up any residual completions.
8855 */
8856 spin_lock_irqsave(&h->lock, flags);
8857 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8858 spin_unlock_irqrestore(&h->lock, flags);
ec501a18 8859 hpsa_free_irqs(h);
9ee61794 8860 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
64670ac8
SC
8861 hpsa_intx_discard_completions);
8862 if (rc) {
9ee61794
RE
8863 dev_warn(&h->pdev->dev,
8864 "Failed to request_irq after soft reset.\n");
d498757c 8865 /*
b2ef480c
RE
8866 * cannot goto clean7 or free_irqs will be called
8867 * again. Instead, do its work
8868 */
8869 hpsa_free_performant_mode(h); /* clean7 */
8870 hpsa_free_sg_chain_blocks(h); /* clean6 */
8871 hpsa_free_cmd_pool(h); /* clean5 */
8872 /*
8873 * skip hpsa_free_irqs(h) clean4 since that
8874 * was just called before request_irqs failed
d498757c
RE
8875 */
8876 goto clean3;
64670ac8
SC
8877 }
8878
8879 rc = hpsa_kdump_soft_reset(h);
8880 if (rc)
8881 /* Neither hard nor soft reset worked, we're hosed. */
7ef7323f 8882 goto clean7;
64670ac8
SC
8883
8884 dev_info(&h->pdev->dev, "Board READY.\n");
8885 dev_info(&h->pdev->dev,
8886 "Waiting for stale completions to drain.\n");
8887 h->access.set_intr_mask(h, HPSA_INTR_ON);
8888 msleep(10000);
8889 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8890
8891 rc = controller_reset_failed(h->cfgtable);
8892 if (rc)
8893 dev_info(&h->pdev->dev,
8894 "Soft reset appears to have failed.\n");
8895
8896 /* since the controller's reset, we have to go back and re-init
8897 * everything. Easiest to just forget what we've done and do it
8898 * all over again.
8899 */
8900 hpsa_undo_allocations_after_kdump_soft_reset(h);
8901 try_soft_reset = 0;
8902 if (rc)
b2ef480c 8903 /* don't goto clean, we already unallocated */
64670ac8
SC
8904 return -ENODEV;
8905
8906 goto reinit_after_soft_reset;
8907 }
edd16368 8908
105a3dbc
RE
8909 /* Enable Accelerated IO path at driver layer */
8910 h->acciopath_status = 1;
34592254
ST
8911 /* Disable discovery polling.*/
8912 h->discovery_polling = 0;
da0697bd 8913
e863d68e 8914
edd16368
SC
8915 /* Turn the interrupts on so we can service requests */
8916 h->access.set_intr_mask(h, HPSA_INTR_ON);
8917
339b2b14 8918 hpsa_hba_inquiry(h);
8a98db73 8919
34592254
ST
8920 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8921 if (!h->lastlogicals)
8922 dev_info(&h->pdev->dev,
8923 "Can't track change to report lun data\n");
8924
cf477237
DB
8925 /* hook into SCSI subsystem */
8926 rc = hpsa_scsi_add_host(h);
8927 if (rc)
8928 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8929
8a98db73
SC
8930 /* Monitor the controller for firmware lockups */
8931 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8932 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8933 schedule_delayed_work(&h->monitor_ctlr_work,
8934 h->heartbeat_sample_interval);
6636e7f4
DB
8935 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8936 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8937 h->heartbeat_sample_interval);
88bf6d62 8938 return 0;
edd16368 8939
2946e82b 8940clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
105a3dbc
RE
8941 hpsa_free_performant_mode(h);
8942 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8943clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
33a2ffce 8944 hpsa_free_sg_chain_blocks(h);
2946e82b 8945clean5: /* cmd, irq, shost, pci, lu, aer/h */
2e9d1b36 8946 hpsa_free_cmd_pool(h);
2946e82b 8947clean4: /* irq, shost, pci, lu, aer/h */
ec501a18 8948 hpsa_free_irqs(h);
2946e82b
RE
8949clean3: /* shost, pci, lu, aer/h */
8950 scsi_host_put(h->scsi_host);
8951 h->scsi_host = NULL;
8952clean2_5: /* pci, lu, aer/h */
195f2c65 8953 hpsa_free_pci_init(h);
2946e82b 8954clean2: /* lu, aer/h */
105a3dbc
RE
8955 if (h->lockup_detected) {
8956 free_percpu(h->lockup_detected);
8957 h->lockup_detected = NULL;
8958 }
8959clean1: /* wq/aer/h */
8960 if (h->resubmit_wq) {
080ef1cc 8961 destroy_workqueue(h->resubmit_wq);
105a3dbc
RE
8962 h->resubmit_wq = NULL;
8963 }
8964 if (h->rescan_ctlr_wq) {
6636e7f4 8965 destroy_workqueue(h->rescan_ctlr_wq);
105a3dbc
RE
8966 h->rescan_ctlr_wq = NULL;
8967 }
edd16368 8968 kfree(h);
ecd9aad4 8969 return rc;
edd16368
SC
8970}
8971
8972static void hpsa_flush_cache(struct ctlr_info *h)
8973{
8974 char *flush_buf;
8975 struct CommandList *c;
25163bd5 8976 int rc;
702890e3 8977
094963da 8978 if (unlikely(lockup_detected(h)))
702890e3 8979 return;
edd16368
SC
8980 flush_buf = kzalloc(4, GFP_KERNEL);
8981 if (!flush_buf)
8982 return;
8983
45fcb86e 8984 c = cmd_alloc(h);
bf43caf3 8985
a2dac136
SC
8986 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8987 RAID_CTLR_LUNID, TYPE_CMD)) {
8988 goto out;
8989 }
25163bd5 8990 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
c448ecfa 8991 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
25163bd5
WS
8992 if (rc)
8993 goto out;
edd16368 8994 if (c->err_info->CommandStatus != 0)
a2dac136 8995out:
edd16368
SC
8996 dev_warn(&h->pdev->dev,
8997 "error flushing cache on controller\n");
45fcb86e 8998 cmd_free(h, c);
edd16368
SC
8999 kfree(flush_buf);
9000}
9001
c2adae44
ST
9002/* Make controller gather fresh report lun data each time we
9003 * send down a report luns request
9004 */
9005static void hpsa_disable_rld_caching(struct ctlr_info *h)
9006{
9007 u32 *options;
9008 struct CommandList *c;
9009 int rc;
9010
9011 /* Don't bother trying to set diag options if locked up */
9012 if (unlikely(h->lockup_detected))
9013 return;
9014
9015 options = kzalloc(sizeof(*options), GFP_KERNEL);
7e8a9486 9016 if (!options)
c2adae44 9017 return;
c2adae44
ST
9018
9019 c = cmd_alloc(h);
9020
9021 /* first, get the current diag options settings */
9022 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9023 RAID_CTLR_LUNID, TYPE_CMD))
9024 goto errout;
9025
9026 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
c448ecfa 9027 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
c2adae44
ST
9028 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9029 goto errout;
9030
9031 /* Now, set the bit for disabling the RLD caching */
9032 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9033
9034 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9035 RAID_CTLR_LUNID, TYPE_CMD))
9036 goto errout;
9037
9038 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
c448ecfa 9039 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
c2adae44
ST
9040 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9041 goto errout;
9042
9043 /* Now verify that it got set: */
9044 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9045 RAID_CTLR_LUNID, TYPE_CMD))
9046 goto errout;
9047
9048 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
c448ecfa 9049 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
c2adae44
ST
9050 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9051 goto errout;
9052
d8a080c3 9053 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
c2adae44
ST
9054 goto out;
9055
9056errout:
9057 dev_err(&h->pdev->dev,
9058 "Error: failed to disable report lun data caching.\n");
9059out:
9060 cmd_free(h, c);
9061 kfree(options);
9062}
9063
edd16368
SC
9064static void hpsa_shutdown(struct pci_dev *pdev)
9065{
9066 struct ctlr_info *h;
9067
9068 h = pci_get_drvdata(pdev);
9069 /* Turn board interrupts off and send the flush cache command
9070 * sendcmd will turn off interrupt, and send the flush...
9071 * To write all data in the battery backed cache to disks
9072 */
9073 hpsa_flush_cache(h);
9074 h->access.set_intr_mask(h, HPSA_INTR_OFF);
105a3dbc 9075 hpsa_free_irqs(h); /* init_one 4 */
cc64c817 9076 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
edd16368
SC
9077}
9078
6f039790 9079static void hpsa_free_device_info(struct ctlr_info *h)
55e14e76
SC
9080{
9081 int i;
9082
105a3dbc 9083 for (i = 0; i < h->ndevices; i++) {
55e14e76 9084 kfree(h->dev[i]);
105a3dbc
RE
9085 h->dev[i] = NULL;
9086 }
55e14e76
SC
9087}
9088
6f039790 9089static void hpsa_remove_one(struct pci_dev *pdev)
edd16368
SC
9090{
9091 struct ctlr_info *h;
8a98db73 9092 unsigned long flags;
edd16368
SC
9093
9094 if (pci_get_drvdata(pdev) == NULL) {
a0c12413 9095 dev_err(&pdev->dev, "unable to remove device\n");
edd16368
SC
9096 return;
9097 }
9098 h = pci_get_drvdata(pdev);
8a98db73
SC
9099
9100 /* Get rid of any controller monitoring work items */
9101 spin_lock_irqsave(&h->lock, flags);
9102 h->remove_in_progress = 1;
8a98db73 9103 spin_unlock_irqrestore(&h->lock, flags);
6636e7f4
DB
9104 cancel_delayed_work_sync(&h->monitor_ctlr_work);
9105 cancel_delayed_work_sync(&h->rescan_ctlr_work);
9106 destroy_workqueue(h->rescan_ctlr_wq);
9107 destroy_workqueue(h->resubmit_wq);
cc64c817 9108
2d041306
DB
9109 /*
9110 * Call before disabling interrupts.
9111 * scsi_remove_host can trigger I/O operations especially
9112 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9113 * operations which cannot complete and will hang the system.
9114 */
9115 if (h->scsi_host)
9116 scsi_remove_host(h->scsi_host); /* init_one 8 */
105a3dbc 9117 /* includes hpsa_free_irqs - init_one 4 */
195f2c65 9118 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
edd16368 9119 hpsa_shutdown(pdev);
cc64c817 9120
105a3dbc
RE
9121 hpsa_free_device_info(h); /* scan */
9122
2946e82b
RE
9123 kfree(h->hba_inquiry_data); /* init_one 10 */
9124 h->hba_inquiry_data = NULL; /* init_one 10 */
2946e82b 9125 hpsa_free_ioaccel2_sg_chain_blocks(h);
105a3dbc
RE
9126 hpsa_free_performant_mode(h); /* init_one 7 */
9127 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
9128 hpsa_free_cmd_pool(h); /* init_one 5 */
34592254 9129 kfree(h->lastlogicals);
105a3dbc
RE
9130
9131 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
195f2c65 9132
2946e82b
RE
9133 scsi_host_put(h->scsi_host); /* init_one 3 */
9134 h->scsi_host = NULL; /* init_one 3 */
9135
195f2c65 9136 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
2946e82b 9137 hpsa_free_pci_init(h); /* init_one 2.5 */
195f2c65 9138
105a3dbc
RE
9139 free_percpu(h->lockup_detected); /* init_one 2 */
9140 h->lockup_detected = NULL; /* init_one 2 */
9141 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
d04e62b9
KB
9142
9143 hpsa_delete_sas_host(h);
9144
105a3dbc 9145 kfree(h); /* init_one 1 */
edd16368
SC
9146}
9147
9148static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9149 __attribute__((unused)) pm_message_t state)
9150{
9151 return -ENOSYS;
9152}
9153
9154static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9155{
9156 return -ENOSYS;
9157}
9158
9159static struct pci_driver hpsa_pci_driver = {
f79cfec6 9160 .name = HPSA,
edd16368 9161 .probe = hpsa_init_one,
6f039790 9162 .remove = hpsa_remove_one,
edd16368
SC
9163 .id_table = hpsa_pci_device_id, /* id_table */
9164 .shutdown = hpsa_shutdown,
9165 .suspend = hpsa_suspend,
9166 .resume = hpsa_resume,
9167};
9168
303932fd
DB
9169/* Fill in bucket_map[], given nsgs (the max number of
9170 * scatter gather elements supported) and bucket[],
9171 * which is an array of 8 integers. The bucket[] array
9172 * contains 8 different DMA transfer sizes (in 16
9173 * byte increments) which the controller uses to fetch
9174 * commands. This function fills in bucket_map[], which
9175 * maps a given number of scatter gather elements to one of
9176 * the 8 DMA transfer sizes. The point of it is to allow the
9177 * controller to only do as much DMA as needed to fetch the
9178 * command, with the DMA transfer size encoded in the lower
9179 * bits of the command address.
9180 */
9181static void calc_bucket_map(int bucket[], int num_buckets,
2b08b3e9 9182 int nsgs, int min_blocks, u32 *bucket_map)
303932fd
DB
9183{
9184 int i, j, b, size;
9185
303932fd
DB
9186 /* Note, bucket_map must have nsgs+1 entries. */
9187 for (i = 0; i <= nsgs; i++) {
9188 /* Compute size of a command with i SG entries */
e1f7de0c 9189 size = i + min_blocks;
303932fd
DB
9190 b = num_buckets; /* Assume the biggest bucket */
9191 /* Find the bucket that is just big enough */
e1f7de0c 9192 for (j = 0; j < num_buckets; j++) {
303932fd
DB
9193 if (bucket[j] >= size) {
9194 b = j;
9195 break;
9196 }
9197 }
9198 /* for a command with i SG entries, use bucket b. */
9199 bucket_map[i] = b;
9200 }
9201}
9202
105a3dbc
RE
9203/*
9204 * return -ENODEV on err, 0 on success (or no action)
9205 * allocates numerous items that must be freed later
9206 */
c706a795 9207static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
303932fd 9208{
6c311b57
SC
9209 int i;
9210 unsigned long register_value;
e1f7de0c
MG
9211 unsigned long transMethod = CFGTBL_Trans_Performant |
9212 (trans_support & CFGTBL_Trans_use_short_tags) |
b9af4937
SC
9213 CFGTBL_Trans_enable_directed_msix |
9214 (trans_support & (CFGTBL_Trans_io_accel1 |
9215 CFGTBL_Trans_io_accel2));
e1f7de0c 9216 struct access_method access = SA5_performant_access;
def342bd
SC
9217
9218 /* This is a bit complicated. There are 8 registers on
9219 * the controller which we write to to tell it 8 different
9220 * sizes of commands which there may be. It's a way of
9221 * reducing the DMA done to fetch each command. Encoded into
9222 * each command's tag are 3 bits which communicate to the controller
9223 * which of the eight sizes that command fits within. The size of
9224 * each command depends on how many scatter gather entries there are.
9225 * Each SG entry requires 16 bytes. The eight registers are programmed
9226 * with the number of 16-byte blocks a command of that size requires.
9227 * The smallest command possible requires 5 such 16 byte blocks.
d66ae08b 9228 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
def342bd
SC
9229 * blocks. Note, this only extends to the SG entries contained
9230 * within the command block, and does not extend to chained blocks
9231 * of SG elements. bft[] contains the eight values we write to
9232 * the registers. They are not evenly distributed, but have more
9233 * sizes for small commands, and fewer sizes for larger commands.
9234 */
d66ae08b 9235 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
b9af4937
SC
9236#define MIN_IOACCEL2_BFT_ENTRY 5
9237#define HPSA_IOACCEL2_HEADER_SZ 4
9238 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9239 13, 14, 15, 16, 17, 18, 19,
9240 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9241 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9242 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9243 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9244 16 * MIN_IOACCEL2_BFT_ENTRY);
9245 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
d66ae08b 9246 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
303932fd
DB
9247 /* 5 = 1 s/g entry or 4k
9248 * 6 = 2 s/g entry or 8k
9249 * 8 = 4 s/g entry or 16k
9250 * 10 = 6 s/g entry or 24k
9251 */
303932fd 9252
b3a52e79
SC
9253 /* If the controller supports either ioaccel method then
9254 * we can also use the RAID stack submit path that does not
9255 * perform the superfluous readl() after each command submission.
9256 */
9257 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9258 access = SA5_performant_access_no_read;
9259
303932fd 9260 /* Controller spec: zero out this buffer. */
072b0518
SC
9261 for (i = 0; i < h->nreply_queues; i++)
9262 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
303932fd 9263
d66ae08b
SC
9264 bft[7] = SG_ENTRIES_IN_CMD + 4;
9265 calc_bucket_map(bft, ARRAY_SIZE(bft),
e1f7de0c 9266 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
303932fd
DB
9267 for (i = 0; i < 8; i++)
9268 writel(bft[i], &h->transtable->BlockFetch[i]);
9269
9270 /* size of controller ring buffer */
9271 writel(h->max_commands, &h->transtable->RepQSize);
254f796b 9272 writel(h->nreply_queues, &h->transtable->RepQCount);
303932fd
DB
9273 writel(0, &h->transtable->RepQCtrAddrLow32);
9274 writel(0, &h->transtable->RepQCtrAddrHigh32);
254f796b
MG
9275
9276 for (i = 0; i < h->nreply_queues; i++) {
9277 writel(0, &h->transtable->RepQAddr[i].upper);
072b0518 9278 writel(h->reply_queue[i].busaddr,
254f796b
MG
9279 &h->transtable->RepQAddr[i].lower);
9280 }
9281
b9af4937 9282 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
e1f7de0c
MG
9283 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9284 /*
9285 * enable outbound interrupt coalescing in accelerator mode;
9286 */
9287 if (trans_support & CFGTBL_Trans_io_accel1) {
9288 access = SA5_ioaccel_mode1_access;
9289 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9290 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
96b6ce4e
DB
9291 } else
9292 if (trans_support & CFGTBL_Trans_io_accel2)
c349775e 9293 access = SA5_ioaccel_mode2_access;
303932fd 9294 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
c706a795
RE
9295 if (hpsa_wait_for_mode_change_ack(h)) {
9296 dev_err(&h->pdev->dev,
9297 "performant mode problem - doorbell timeout\n");
9298 return -ENODEV;
9299 }
303932fd
DB
9300 register_value = readl(&(h->cfgtable->TransportActive));
9301 if (!(register_value & CFGTBL_Trans_Performant)) {
050f7147
SC
9302 dev_err(&h->pdev->dev,
9303 "performant mode problem - transport not active\n");
c706a795 9304 return -ENODEV;
303932fd 9305 }
960a30e7 9306 /* Change the access methods to the performant access methods */
e1f7de0c
MG
9307 h->access = access;
9308 h->transMethod = transMethod;
9309
b9af4937
SC
9310 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9311 (trans_support & CFGTBL_Trans_io_accel2)))
c706a795 9312 return 0;
e1f7de0c 9313
b9af4937
SC
9314 if (trans_support & CFGTBL_Trans_io_accel1) {
9315 /* Set up I/O accelerator mode */
9316 for (i = 0; i < h->nreply_queues; i++) {
9317 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9318 h->reply_queue[i].current_entry =
9319 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9320 }
9321 bft[7] = h->ioaccel_maxsg + 8;
9322 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9323 h->ioaccel1_blockFetchTable);
e1f7de0c 9324
b9af4937 9325 /* initialize all reply queue entries to unused */
072b0518
SC
9326 for (i = 0; i < h->nreply_queues; i++)
9327 memset(h->reply_queue[i].head,
9328 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9329 h->reply_queue_size);
e1f7de0c 9330
b9af4937
SC
9331 /* set all the constant fields in the accelerator command
9332 * frames once at init time to save CPU cycles later.
9333 */
9334 for (i = 0; i < h->nr_cmds; i++) {
9335 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9336
9337 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9338 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9339 (i * sizeof(struct ErrorInfo)));
9340 cp->err_info_len = sizeof(struct ErrorInfo);
9341 cp->sgl_offset = IOACCEL1_SGLOFFSET;
2b08b3e9
DB
9342 cp->host_context_flags =
9343 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
b9af4937
SC
9344 cp->timeout_sec = 0;
9345 cp->ReplyQueue = 0;
50a0decf 9346 cp->tag =
f2405db8 9347 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
50a0decf
SC
9348 cp->host_addr =
9349 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
b9af4937 9350 (i * sizeof(struct io_accel1_cmd)));
b9af4937
SC
9351 }
9352 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9353 u64 cfg_offset, cfg_base_addr_index;
9354 u32 bft2_offset, cfg_base_addr;
9355 int rc;
9356
9357 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9358 &cfg_base_addr_index, &cfg_offset);
9359 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9360 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9361 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9362 4, h->ioaccel2_blockFetchTable);
9363 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9364 BUILD_BUG_ON(offsetof(struct CfgTable,
9365 io_accel_request_size_offset) != 0xb8);
9366 h->ioaccel2_bft2_regs =
9367 remap_pci_mem(pci_resource_start(h->pdev,
9368 cfg_base_addr_index) +
9369 cfg_offset + bft2_offset,
9370 ARRAY_SIZE(bft2) *
9371 sizeof(*h->ioaccel2_bft2_regs));
9372 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9373 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
e1f7de0c 9374 }
b9af4937 9375 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
c706a795
RE
9376 if (hpsa_wait_for_mode_change_ack(h)) {
9377 dev_err(&h->pdev->dev,
9378 "performant mode problem - enabling ioaccel mode\n");
9379 return -ENODEV;
9380 }
9381 return 0;
e1f7de0c
MG
9382}
9383
1fb7c98a
RE
9384/* Free ioaccel1 mode command blocks and block fetch table */
9385static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9386{
105a3dbc 9387 if (h->ioaccel_cmd_pool) {
1fb7c98a
RE
9388 pci_free_consistent(h->pdev,
9389 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9390 h->ioaccel_cmd_pool,
9391 h->ioaccel_cmd_pool_dhandle);
105a3dbc
RE
9392 h->ioaccel_cmd_pool = NULL;
9393 h->ioaccel_cmd_pool_dhandle = 0;
9394 }
1fb7c98a 9395 kfree(h->ioaccel1_blockFetchTable);
105a3dbc 9396 h->ioaccel1_blockFetchTable = NULL;
1fb7c98a
RE
9397}
9398
d37ffbe4
RE
9399/* Allocate ioaccel1 mode command blocks and block fetch table */
9400static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
e1f7de0c 9401{
283b4a9b
SC
9402 h->ioaccel_maxsg =
9403 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9404 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9405 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9406
e1f7de0c
MG
9407 /* Command structures must be aligned on a 128-byte boundary
9408 * because the 7 lower bits of the address are used by the
9409 * hardware.
9410 */
e1f7de0c
MG
9411 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9412 IOACCEL1_COMMANDLIST_ALIGNMENT);
9413 h->ioaccel_cmd_pool =
9414 pci_alloc_consistent(h->pdev,
9415 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9416 &(h->ioaccel_cmd_pool_dhandle));
9417
9418 h->ioaccel1_blockFetchTable =
283b4a9b 9419 kmalloc(((h->ioaccel_maxsg + 1) *
e1f7de0c
MG
9420 sizeof(u32)), GFP_KERNEL);
9421
9422 if ((h->ioaccel_cmd_pool == NULL) ||
9423 (h->ioaccel1_blockFetchTable == NULL))
9424 goto clean_up;
9425
9426 memset(h->ioaccel_cmd_pool, 0,
9427 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9428 return 0;
9429
9430clean_up:
1fb7c98a 9431 hpsa_free_ioaccel1_cmd_and_bft(h);
2dd02d74 9432 return -ENOMEM;
6c311b57
SC
9433}
9434
1fb7c98a
RE
9435/* Free ioaccel2 mode command blocks and block fetch table */
9436static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9437{
d9a729f3
WS
9438 hpsa_free_ioaccel2_sg_chain_blocks(h);
9439
105a3dbc 9440 if (h->ioaccel2_cmd_pool) {
1fb7c98a
RE
9441 pci_free_consistent(h->pdev,
9442 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9443 h->ioaccel2_cmd_pool,
9444 h->ioaccel2_cmd_pool_dhandle);
105a3dbc
RE
9445 h->ioaccel2_cmd_pool = NULL;
9446 h->ioaccel2_cmd_pool_dhandle = 0;
9447 }
1fb7c98a 9448 kfree(h->ioaccel2_blockFetchTable);
105a3dbc 9449 h->ioaccel2_blockFetchTable = NULL;
1fb7c98a
RE
9450}
9451
d37ffbe4
RE
9452/* Allocate ioaccel2 mode command blocks and block fetch table */
9453static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
aca9012a 9454{
d9a729f3
WS
9455 int rc;
9456
aca9012a
SC
9457 /* Allocate ioaccel2 mode command blocks and block fetch table */
9458
9459 h->ioaccel_maxsg =
9460 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9461 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9462 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9463
aca9012a
SC
9464 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9465 IOACCEL2_COMMANDLIST_ALIGNMENT);
9466 h->ioaccel2_cmd_pool =
9467 pci_alloc_consistent(h->pdev,
9468 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9469 &(h->ioaccel2_cmd_pool_dhandle));
9470
9471 h->ioaccel2_blockFetchTable =
9472 kmalloc(((h->ioaccel_maxsg + 1) *
9473 sizeof(u32)), GFP_KERNEL);
9474
9475 if ((h->ioaccel2_cmd_pool == NULL) ||
d9a729f3
WS
9476 (h->ioaccel2_blockFetchTable == NULL)) {
9477 rc = -ENOMEM;
9478 goto clean_up;
9479 }
9480
9481 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9482 if (rc)
aca9012a
SC
9483 goto clean_up;
9484
9485 memset(h->ioaccel2_cmd_pool, 0,
9486 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9487 return 0;
9488
9489clean_up:
1fb7c98a 9490 hpsa_free_ioaccel2_cmd_and_bft(h);
d9a729f3 9491 return rc;
aca9012a
SC
9492}
9493
105a3dbc
RE
9494/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9495static void hpsa_free_performant_mode(struct ctlr_info *h)
9496{
9497 kfree(h->blockFetchTable);
9498 h->blockFetchTable = NULL;
9499 hpsa_free_reply_queues(h);
9500 hpsa_free_ioaccel1_cmd_and_bft(h);
9501 hpsa_free_ioaccel2_cmd_and_bft(h);
9502}
9503
9504/* return -ENODEV on error, 0 on success (or no action)
9505 * allocates numerous items that must be freed later
9506 */
9507static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
6c311b57
SC
9508{
9509 u32 trans_support;
e1f7de0c
MG
9510 unsigned long transMethod = CFGTBL_Trans_Performant |
9511 CFGTBL_Trans_use_short_tags;
105a3dbc 9512 int i, rc;
6c311b57 9513
02ec19c8 9514 if (hpsa_simple_mode)
105a3dbc 9515 return 0;
02ec19c8 9516
67c99a72 9517 trans_support = readl(&(h->cfgtable->TransportSupport));
9518 if (!(trans_support & PERFORMANT_MODE))
105a3dbc 9519 return 0;
67c99a72 9520
e1f7de0c
MG
9521 /* Check for I/O accelerator mode support */
9522 if (trans_support & CFGTBL_Trans_io_accel1) {
9523 transMethod |= CFGTBL_Trans_io_accel1 |
9524 CFGTBL_Trans_enable_directed_msix;
105a3dbc
RE
9525 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9526 if (rc)
9527 return rc;
9528 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9529 transMethod |= CFGTBL_Trans_io_accel2 |
aca9012a 9530 CFGTBL_Trans_enable_directed_msix;
105a3dbc
RE
9531 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9532 if (rc)
9533 return rc;
e1f7de0c
MG
9534 }
9535
bc2bb154 9536 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
cba3d38b 9537 hpsa_get_max_perf_mode_cmds(h);
6c311b57 9538 /* Performant mode ring buffer and supporting data structures */
072b0518 9539 h->reply_queue_size = h->max_commands * sizeof(u64);
6c311b57 9540
254f796b 9541 for (i = 0; i < h->nreply_queues; i++) {
072b0518
SC
9542 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9543 h->reply_queue_size,
9544 &(h->reply_queue[i].busaddr));
105a3dbc
RE
9545 if (!h->reply_queue[i].head) {
9546 rc = -ENOMEM;
9547 goto clean1; /* rq, ioaccel */
9548 }
254f796b
MG
9549 h->reply_queue[i].size = h->max_commands;
9550 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9551 h->reply_queue[i].current_entry = 0;
9552 }
9553
6c311b57 9554 /* Need a block fetch table for performant mode */
d66ae08b 9555 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
6c311b57 9556 sizeof(u32)), GFP_KERNEL);
105a3dbc
RE
9557 if (!h->blockFetchTable) {
9558 rc = -ENOMEM;
9559 goto clean1; /* rq, ioaccel */
9560 }
6c311b57 9561
105a3dbc
RE
9562 rc = hpsa_enter_performant_mode(h, trans_support);
9563 if (rc)
9564 goto clean2; /* bft, rq, ioaccel */
9565 return 0;
303932fd 9566
105a3dbc 9567clean2: /* bft, rq, ioaccel */
303932fd 9568 kfree(h->blockFetchTable);
105a3dbc
RE
9569 h->blockFetchTable = NULL;
9570clean1: /* rq, ioaccel */
9571 hpsa_free_reply_queues(h);
9572 hpsa_free_ioaccel1_cmd_and_bft(h);
9573 hpsa_free_ioaccel2_cmd_and_bft(h);
9574 return rc;
303932fd
DB
9575}
9576
23100dd9 9577static int is_accelerated_cmd(struct CommandList *c)
76438d08 9578{
23100dd9
SC
9579 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9580}
9581
9582static void hpsa_drain_accel_commands(struct ctlr_info *h)
9583{
9584 struct CommandList *c = NULL;
f2405db8 9585 int i, accel_cmds_out;
281a7fd0 9586 int refcount;
76438d08 9587
f2405db8 9588 do { /* wait for all outstanding ioaccel commands to drain out */
23100dd9 9589 accel_cmds_out = 0;
f2405db8 9590 for (i = 0; i < h->nr_cmds; i++) {
f2405db8 9591 c = h->cmd_pool + i;
281a7fd0
WS
9592 refcount = atomic_inc_return(&c->refcount);
9593 if (refcount > 1) /* Command is allocated */
9594 accel_cmds_out += is_accelerated_cmd(c);
9595 cmd_free(h, c);
f2405db8 9596 }
23100dd9 9597 if (accel_cmds_out <= 0)
281a7fd0 9598 break;
76438d08
SC
9599 msleep(100);
9600 } while (1);
9601}
9602
d04e62b9
KB
9603static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9604 struct hpsa_sas_port *hpsa_sas_port)
9605{
9606 struct hpsa_sas_phy *hpsa_sas_phy;
9607 struct sas_phy *phy;
9608
9609 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9610 if (!hpsa_sas_phy)
9611 return NULL;
9612
9613 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9614 hpsa_sas_port->next_phy_index);
9615 if (!phy) {
9616 kfree(hpsa_sas_phy);
9617 return NULL;
9618 }
9619
9620 hpsa_sas_port->next_phy_index++;
9621 hpsa_sas_phy->phy = phy;
9622 hpsa_sas_phy->parent_port = hpsa_sas_port;
9623
9624 return hpsa_sas_phy;
9625}
9626
9627static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9628{
9629 struct sas_phy *phy = hpsa_sas_phy->phy;
9630
9631 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9632 sas_phy_free(phy);
9633 if (hpsa_sas_phy->added_to_port)
9634 list_del(&hpsa_sas_phy->phy_list_entry);
9635 kfree(hpsa_sas_phy);
9636}
9637
9638static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9639{
9640 int rc;
9641 struct hpsa_sas_port *hpsa_sas_port;
9642 struct sas_phy *phy;
9643 struct sas_identify *identify;
9644
9645 hpsa_sas_port = hpsa_sas_phy->parent_port;
9646 phy = hpsa_sas_phy->phy;
9647
9648 identify = &phy->identify;
9649 memset(identify, 0, sizeof(*identify));
9650 identify->sas_address = hpsa_sas_port->sas_address;
9651 identify->device_type = SAS_END_DEVICE;
9652 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9653 identify->target_port_protocols = SAS_PROTOCOL_STP;
9654 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9655 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9656 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9657 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9658 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9659
9660 rc = sas_phy_add(hpsa_sas_phy->phy);
9661 if (rc)
9662 return rc;
9663
9664 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9665 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9666 &hpsa_sas_port->phy_list_head);
9667 hpsa_sas_phy->added_to_port = true;
9668
9669 return 0;
9670}
9671
9672static int
9673 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9674 struct sas_rphy *rphy)
9675{
9676 struct sas_identify *identify;
9677
9678 identify = &rphy->identify;
9679 identify->sas_address = hpsa_sas_port->sas_address;
9680 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9681 identify->target_port_protocols = SAS_PROTOCOL_STP;
9682
9683 return sas_rphy_add(rphy);
9684}
9685
9686static struct hpsa_sas_port
9687 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9688 u64 sas_address)
9689{
9690 int rc;
9691 struct hpsa_sas_port *hpsa_sas_port;
9692 struct sas_port *port;
9693
9694 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9695 if (!hpsa_sas_port)
9696 return NULL;
9697
9698 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9699 hpsa_sas_port->parent_node = hpsa_sas_node;
9700
9701 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9702 if (!port)
9703 goto free_hpsa_port;
9704
9705 rc = sas_port_add(port);
9706 if (rc)
9707 goto free_sas_port;
9708
9709 hpsa_sas_port->port = port;
9710 hpsa_sas_port->sas_address = sas_address;
9711 list_add_tail(&hpsa_sas_port->port_list_entry,
9712 &hpsa_sas_node->port_list_head);
9713
9714 return hpsa_sas_port;
9715
9716free_sas_port:
9717 sas_port_free(port);
9718free_hpsa_port:
9719 kfree(hpsa_sas_port);
9720
9721 return NULL;
9722}
9723
9724static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9725{
9726 struct hpsa_sas_phy *hpsa_sas_phy;
9727 struct hpsa_sas_phy *next;
9728
9729 list_for_each_entry_safe(hpsa_sas_phy, next,
9730 &hpsa_sas_port->phy_list_head, phy_list_entry)
9731 hpsa_free_sas_phy(hpsa_sas_phy);
9732
9733 sas_port_delete(hpsa_sas_port->port);
9734 list_del(&hpsa_sas_port->port_list_entry);
9735 kfree(hpsa_sas_port);
9736}
9737
9738static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9739{
9740 struct hpsa_sas_node *hpsa_sas_node;
9741
9742 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9743 if (hpsa_sas_node) {
9744 hpsa_sas_node->parent_dev = parent_dev;
9745 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9746 }
9747
9748 return hpsa_sas_node;
9749}
9750
9751static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9752{
9753 struct hpsa_sas_port *hpsa_sas_port;
9754 struct hpsa_sas_port *next;
9755
9756 if (!hpsa_sas_node)
9757 return;
9758
9759 list_for_each_entry_safe(hpsa_sas_port, next,
9760 &hpsa_sas_node->port_list_head, port_list_entry)
9761 hpsa_free_sas_port(hpsa_sas_port);
9762
9763 kfree(hpsa_sas_node);
9764}
9765
9766static struct hpsa_scsi_dev_t
9767 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9768 struct sas_rphy *rphy)
9769{
9770 int i;
9771 struct hpsa_scsi_dev_t *device;
9772
9773 for (i = 0; i < h->ndevices; i++) {
9774 device = h->dev[i];
9775 if (!device->sas_port)
9776 continue;
9777 if (device->sas_port->rphy == rphy)
9778 return device;
9779 }
9780
9781 return NULL;
9782}
9783
9784static int hpsa_add_sas_host(struct ctlr_info *h)
9785{
9786 int rc;
9787 struct device *parent_dev;
9788 struct hpsa_sas_node *hpsa_sas_node;
9789 struct hpsa_sas_port *hpsa_sas_port;
9790 struct hpsa_sas_phy *hpsa_sas_phy;
9791
9792 parent_dev = &h->scsi_host->shost_gendev;
9793
9794 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9795 if (!hpsa_sas_node)
9796 return -ENOMEM;
9797
9798 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9799 if (!hpsa_sas_port) {
9800 rc = -ENODEV;
9801 goto free_sas_node;
9802 }
9803
9804 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9805 if (!hpsa_sas_phy) {
9806 rc = -ENODEV;
9807 goto free_sas_port;
9808 }
9809
9810 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9811 if (rc)
9812 goto free_sas_phy;
9813
9814 h->sas_host = hpsa_sas_node;
9815
9816 return 0;
9817
9818free_sas_phy:
9819 hpsa_free_sas_phy(hpsa_sas_phy);
9820free_sas_port:
9821 hpsa_free_sas_port(hpsa_sas_port);
9822free_sas_node:
9823 hpsa_free_sas_node(hpsa_sas_node);
9824
9825 return rc;
9826}
9827
9828static void hpsa_delete_sas_host(struct ctlr_info *h)
9829{
9830 hpsa_free_sas_node(h->sas_host);
9831}
9832
9833static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9834 struct hpsa_scsi_dev_t *device)
9835{
9836 int rc;
9837 struct hpsa_sas_port *hpsa_sas_port;
9838 struct sas_rphy *rphy;
9839
9840 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9841 if (!hpsa_sas_port)
9842 return -ENOMEM;
9843
9844 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9845 if (!rphy) {
9846 rc = -ENODEV;
9847 goto free_sas_port;
9848 }
9849
9850 hpsa_sas_port->rphy = rphy;
9851 device->sas_port = hpsa_sas_port;
9852
9853 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9854 if (rc)
9855 goto free_sas_port;
9856
9857 return 0;
9858
9859free_sas_port:
9860 hpsa_free_sas_port(hpsa_sas_port);
9861 device->sas_port = NULL;
9862
9863 return rc;
9864}
9865
9866static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9867{
9868 if (device->sas_port) {
9869 hpsa_free_sas_port(device->sas_port);
9870 device->sas_port = NULL;
9871 }
9872}
9873
9874static int
9875hpsa_sas_get_linkerrors(struct sas_phy *phy)
9876{
9877 return 0;
9878}
9879
9880static int
9881hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9882{
aa105695 9883 *identifier = 0;
d04e62b9
KB
9884 return 0;
9885}
9886
9887static int
9888hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9889{
9890 return -ENXIO;
9891}
9892
9893static int
9894hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9895{
9896 return 0;
9897}
9898
9899static int
9900hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9901{
9902 return 0;
9903}
9904
9905static int
9906hpsa_sas_phy_setup(struct sas_phy *phy)
9907{
9908 return 0;
9909}
9910
9911static void
9912hpsa_sas_phy_release(struct sas_phy *phy)
9913{
9914}
9915
9916static int
9917hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9918{
9919 return -EINVAL;
9920}
9921
9922/* SMP = Serial Management Protocol */
9923static int
9924hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9925struct request *req)
9926{
9927 return -EINVAL;
9928}
9929
9930static struct sas_function_template hpsa_sas_transport_functions = {
9931 .get_linkerrors = hpsa_sas_get_linkerrors,
9932 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9933 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9934 .phy_reset = hpsa_sas_phy_reset,
9935 .phy_enable = hpsa_sas_phy_enable,
9936 .phy_setup = hpsa_sas_phy_setup,
9937 .phy_release = hpsa_sas_phy_release,
9938 .set_phy_speed = hpsa_sas_phy_speed,
9939 .smp_handler = hpsa_sas_smp_handler,
9940};
9941
edd16368
SC
9942/*
9943 * This is it. Register the PCI driver information for the cards we control
9944 * the OS will call our registered routines when it finds one of our cards.
9945 */
9946static int __init hpsa_init(void)
9947{
d04e62b9
KB
9948 int rc;
9949
9950 hpsa_sas_transport_template =
9951 sas_attach_transport(&hpsa_sas_transport_functions);
9952 if (!hpsa_sas_transport_template)
9953 return -ENODEV;
9954
9955 rc = pci_register_driver(&hpsa_pci_driver);
9956
9957 if (rc)
9958 sas_release_transport(hpsa_sas_transport_template);
9959
9960 return rc;
edd16368
SC
9961}
9962
9963static void __exit hpsa_cleanup(void)
9964{
9965 pci_unregister_driver(&hpsa_pci_driver);
d04e62b9 9966 sas_release_transport(hpsa_sas_transport_template);
edd16368
SC
9967}
9968
e1f7de0c
MG
9969static void __attribute__((unused)) verify_offsets(void)
9970{
dd0e19f3
ST
9971#define VERIFY_OFFSET(member, offset) \
9972 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9973
9974 VERIFY_OFFSET(structure_size, 0);
9975 VERIFY_OFFSET(volume_blk_size, 4);
9976 VERIFY_OFFSET(volume_blk_cnt, 8);
9977 VERIFY_OFFSET(phys_blk_shift, 16);
9978 VERIFY_OFFSET(parity_rotation_shift, 17);
9979 VERIFY_OFFSET(strip_size, 18);
9980 VERIFY_OFFSET(disk_starting_blk, 20);
9981 VERIFY_OFFSET(disk_blk_cnt, 28);
9982 VERIFY_OFFSET(data_disks_per_row, 36);
9983 VERIFY_OFFSET(metadata_disks_per_row, 38);
9984 VERIFY_OFFSET(row_cnt, 40);
9985 VERIFY_OFFSET(layout_map_count, 42);
9986 VERIFY_OFFSET(flags, 44);
9987 VERIFY_OFFSET(dekindex, 46);
9988 /* VERIFY_OFFSET(reserved, 48 */
9989 VERIFY_OFFSET(data, 64);
9990
9991#undef VERIFY_OFFSET
9992
b66cc250
MM
9993#define VERIFY_OFFSET(member, offset) \
9994 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9995
9996 VERIFY_OFFSET(IU_type, 0);
9997 VERIFY_OFFSET(direction, 1);
9998 VERIFY_OFFSET(reply_queue, 2);
9999 /* VERIFY_OFFSET(reserved1, 3); */
10000 VERIFY_OFFSET(scsi_nexus, 4);
10001 VERIFY_OFFSET(Tag, 8);
10002 VERIFY_OFFSET(cdb, 16);
10003 VERIFY_OFFSET(cciss_lun, 32);
10004 VERIFY_OFFSET(data_len, 40);
10005 VERIFY_OFFSET(cmd_priority_task_attr, 44);
10006 VERIFY_OFFSET(sg_count, 45);
10007 /* VERIFY_OFFSET(reserved3 */
10008 VERIFY_OFFSET(err_ptr, 48);
10009 VERIFY_OFFSET(err_len, 56);
10010 /* VERIFY_OFFSET(reserved4 */
10011 VERIFY_OFFSET(sg, 64);
10012
10013#undef VERIFY_OFFSET
10014
e1f7de0c
MG
10015#define VERIFY_OFFSET(member, offset) \
10016 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10017
10018 VERIFY_OFFSET(dev_handle, 0x00);
10019 VERIFY_OFFSET(reserved1, 0x02);
10020 VERIFY_OFFSET(function, 0x03);
10021 VERIFY_OFFSET(reserved2, 0x04);
10022 VERIFY_OFFSET(err_info, 0x0C);
10023 VERIFY_OFFSET(reserved3, 0x10);
10024 VERIFY_OFFSET(err_info_len, 0x12);
10025 VERIFY_OFFSET(reserved4, 0x13);
10026 VERIFY_OFFSET(sgl_offset, 0x14);
10027 VERIFY_OFFSET(reserved5, 0x15);
10028 VERIFY_OFFSET(transfer_len, 0x1C);
10029 VERIFY_OFFSET(reserved6, 0x20);
10030 VERIFY_OFFSET(io_flags, 0x24);
10031 VERIFY_OFFSET(reserved7, 0x26);
10032 VERIFY_OFFSET(LUN, 0x34);
10033 VERIFY_OFFSET(control, 0x3C);
10034 VERIFY_OFFSET(CDB, 0x40);
10035 VERIFY_OFFSET(reserved8, 0x50);
10036 VERIFY_OFFSET(host_context_flags, 0x60);
10037 VERIFY_OFFSET(timeout_sec, 0x62);
10038 VERIFY_OFFSET(ReplyQueue, 0x64);
10039 VERIFY_OFFSET(reserved9, 0x65);
50a0decf 10040 VERIFY_OFFSET(tag, 0x68);
e1f7de0c
MG
10041 VERIFY_OFFSET(host_addr, 0x70);
10042 VERIFY_OFFSET(CISS_LUN, 0x78);
10043 VERIFY_OFFSET(SG, 0x78 + 8);
10044#undef VERIFY_OFFSET
10045}
10046
edd16368
SC
10047module_init(hpsa_init);
10048module_exit(hpsa_cleanup);