]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * in2000.c - Linux device driver for the | |
3 | * Always IN2000 ISA SCSI card. | |
4 | * | |
5 | * Copyright (c) 1996 John Shifflett, GeoLog Consulting | |
6 | * john@geolog.com | |
7 | * jshiffle@netcom.com | |
8 | * | |
9 | * This program is free software; you can redistribute it and/or modify | |
10 | * it under the terms of the GNU General Public License as published by | |
11 | * the Free Software Foundation; either version 2, or (at your option) | |
12 | * any later version. | |
13 | * | |
14 | * This program is distributed in the hope that it will be useful, | |
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | * GNU General Public License for more details. | |
18 | * | |
19 | * For the avoidance of doubt the "preferred form" of this code is one which | |
20 | * is in an open non patent encumbered format. Where cryptographic key signing | |
21 | * forms part of the process of creating an executable the information | |
22 | * including keys needed to generate an equivalently functional executable | |
23 | * are deemed to be part of the source code. | |
24 | * | |
25 | * Drew Eckhardt's excellent 'Generic NCR5380' sources provided | |
26 | * much of the inspiration and some of the code for this driver. | |
27 | * The Linux IN2000 driver distributed in the Linux kernels through | |
28 | * version 1.2.13 was an extremely valuable reference on the arcane | |
29 | * (and still mysterious) workings of the IN2000's fifo. It also | |
30 | * is where I lifted in2000_biosparam(), the gist of the card | |
31 | * detection scheme, and other bits of code. Many thanks to the | |
32 | * talented and courageous people who wrote, contributed to, and | |
33 | * maintained that driver (including Brad McLean, Shaun Savage, | |
34 | * Bill Earnest, Larry Doolittle, Roger Sunshine, John Luckey, | |
35 | * Matt Postiff, Peter Lu, zerucha@shell.portal.com, and Eric | |
36 | * Youngdale). I should also mention the driver written by | |
37 | * Hamish Macdonald for the (GASP!) Amiga A2091 card, included | |
38 | * in the Linux-m68k distribution; it gave me a good initial | |
39 | * understanding of the proper way to run a WD33c93 chip, and I | |
40 | * ended up stealing lots of code from it. | |
41 | * | |
42 | * _This_ driver is (I feel) an improvement over the old one in | |
43 | * several respects: | |
44 | * - All problems relating to the data size of a SCSI request are | |
45 | * gone (as far as I know). The old driver couldn't handle | |
46 | * swapping to partitions because that involved 4k blocks, nor | |
47 | * could it deal with the st.c tape driver unmodified, because | |
48 | * that usually involved 4k - 32k blocks. The old driver never | |
49 | * quite got away from a morbid dependence on 2k block sizes - | |
50 | * which of course is the size of the card's fifo. | |
51 | * | |
52 | * - Target Disconnection/Reconnection is now supported. Any | |
53 | * system with more than one device active on the SCSI bus | |
54 | * will benefit from this. The driver defaults to what I'm | |
55 | * calling 'adaptive disconnect' - meaning that each command | |
56 | * is evaluated individually as to whether or not it should | |
57 | * be run with the option to disconnect/reselect (if the | |
58 | * device chooses), or as a "SCSI-bus-hog". | |
59 | * | |
60 | * - Synchronous data transfers are now supported. Because there | |
61 | * are a few devices (and many improperly terminated systems) | |
62 | * that choke when doing sync, the default is sync DISABLED | |
63 | * for all devices. This faster protocol can (and should!) | |
64 | * be enabled on selected devices via the command-line. | |
65 | * | |
66 | * - Runtime operating parameters can now be specified through | |
67 | * either the LILO or the 'insmod' command line. For LILO do: | |
68 | * "in2000=blah,blah,blah" | |
69 | * and with insmod go like: | |
70 | * "insmod /usr/src/linux/modules/in2000.o setup_strings=blah,blah" | |
71 | * The defaults should be good for most people. See the comment | |
72 | * for 'setup_strings' below for more details. | |
73 | * | |
74 | * - The old driver relied exclusively on what the Western Digital | |
75 | * docs call "Combination Level 2 Commands", which are a great | |
76 | * idea in that the CPU is relieved of a lot of interrupt | |
77 | * overhead. However, by accepting a certain (user-settable) | |
78 | * amount of additional interrupts, this driver achieves | |
79 | * better control over the SCSI bus, and data transfers are | |
80 | * almost as fast while being much easier to define, track, | |
81 | * and debug. | |
82 | * | |
83 | * - You can force detection of a card whose BIOS has been disabled. | |
84 | * | |
85 | * - Multiple IN2000 cards might almost be supported. I've tried to | |
86 | * keep it in mind, but have no way to test... | |
87 | * | |
88 | * | |
89 | * TODO: | |
90 | * tagged queuing. multiple cards. | |
91 | * | |
92 | * | |
93 | * NOTE: | |
94 | * When using this or any other SCSI driver as a module, you'll | |
95 | * find that with the stock kernel, at most _two_ SCSI hard | |
96 | * drives will be linked into the device list (ie, usable). | |
97 | * If your IN2000 card has more than 2 disks on its bus, you | |
98 | * might want to change the define of 'SD_EXTRA_DEVS' in the | |
99 | * 'hosts.h' file from 2 to whatever is appropriate. It took | |
100 | * me a while to track down this surprisingly obscure and | |
101 | * undocumented little "feature". | |
102 | * | |
103 | * | |
104 | * People with bug reports, wish-lists, complaints, comments, | |
105 | * or improvements are asked to pah-leeez email me (John Shifflett) | |
106 | * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get | |
107 | * this thing into as good a shape as possible, and I'm positive | |
108 | * there are lots of lurking bugs and "Stupid Places". | |
109 | * | |
110 | * Updated for Linux 2.5 by Alan Cox <alan@redhat.com> | |
111 | * - Using new_eh handler | |
112 | * - Hopefully got all the locking right again | |
113 | * See "FIXME" notes for items that could do with more work | |
114 | */ | |
115 | ||
116 | #include <linux/module.h> | |
117 | #include <linux/blkdev.h> | |
118 | #include <linux/interrupt.h> | |
119 | #include <linux/string.h> | |
120 | #include <linux/delay.h> | |
121 | #include <linux/proc_fs.h> | |
122 | #include <linux/ioport.h> | |
123 | #include <linux/stat.h> | |
124 | ||
125 | #include <asm/io.h> | |
126 | #include <asm/system.h> | |
127 | ||
128 | #include "scsi.h" | |
129 | #include <scsi/scsi_host.h> | |
130 | ||
131 | #define IN2000_VERSION "1.33-2.5" | |
132 | #define IN2000_DATE "2002/11/03" | |
133 | ||
134 | #include "in2000.h" | |
135 | ||
136 | ||
137 | /* | |
138 | * 'setup_strings' is a single string used to pass operating parameters and | |
139 | * settings from the kernel/module command-line to the driver. 'setup_args[]' | |
140 | * is an array of strings that define the compile-time default values for | |
141 | * these settings. If Linux boots with a LILO or insmod command-line, those | |
142 | * settings are combined with 'setup_args[]'. Note that LILO command-lines | |
143 | * are prefixed with "in2000=" while insmod uses a "setup_strings=" prefix. | |
144 | * The driver recognizes the following keywords (lower case required) and | |
145 | * arguments: | |
146 | * | |
147 | * - ioport:addr -Where addr is IO address of a (usually ROM-less) card. | |
148 | * - noreset -No optional args. Prevents SCSI bus reset at boot time. | |
149 | * - nosync:x -x is a bitmask where the 1st 7 bits correspond with | |
150 | * the 7 possible SCSI devices (bit 0 for device #0, etc). | |
151 | * Set a bit to PREVENT sync negotiation on that device. | |
152 | * The driver default is sync DISABLED on all devices. | |
153 | * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer | |
154 | * period. Default is 500; acceptable values are 250 - 1000. | |
155 | * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them. | |
156 | * x = 1 does 'adaptive' disconnects, which is the default | |
157 | * and generally the best choice. | |
158 | * - debug:x -If 'DEBUGGING_ON' is defined, x is a bitmask that causes | |
159 | * various types of debug output to printed - see the DB_xxx | |
160 | * defines in in2000.h | |
161 | * - proc:x -If 'PROC_INTERFACE' is defined, x is a bitmask that | |
162 | * determines how the /proc interface works and what it | |
163 | * does - see the PR_xxx defines in in2000.h | |
164 | * | |
165 | * Syntax Notes: | |
166 | * - Numeric arguments can be decimal or the '0x' form of hex notation. There | |
167 | * _must_ be a colon between a keyword and its numeric argument, with no | |
168 | * spaces. | |
169 | * - Keywords are separated by commas, no spaces, in the standard kernel | |
170 | * command-line manner. | |
171 | * - A keyword in the 'nth' comma-separated command-line member will overwrite | |
172 | * the 'nth' element of setup_args[]. A blank command-line member (in | |
173 | * other words, a comma with no preceding keyword) will _not_ overwrite | |
174 | * the corresponding setup_args[] element. | |
175 | * | |
176 | * A few LILO examples (for insmod, use 'setup_strings' instead of 'in2000'): | |
177 | * - in2000=ioport:0x220,noreset | |
178 | * - in2000=period:250,disconnect:2,nosync:0x03 | |
179 | * - in2000=debug:0x1e | |
180 | * - in2000=proc:3 | |
181 | */ | |
182 | ||
183 | /* Normally, no defaults are specified... */ | |
184 | static char *setup_args[] = { "", "", "", "", "", "", "", "", "" }; | |
185 | ||
186 | /* filled in by 'insmod' */ | |
187 | static char *setup_strings; | |
188 | ||
189 | module_param(setup_strings, charp, 0); | |
190 | ||
191 | static inline uchar read_3393(struct IN2000_hostdata *hostdata, uchar reg_num) | |
192 | { | |
193 | write1_io(reg_num, IO_WD_ADDR); | |
194 | return read1_io(IO_WD_DATA); | |
195 | } | |
196 | ||
197 | ||
198 | #define READ_AUX_STAT() read1_io(IO_WD_ASR) | |
199 | ||
200 | ||
201 | static inline void write_3393(struct IN2000_hostdata *hostdata, uchar reg_num, uchar value) | |
202 | { | |
203 | write1_io(reg_num, IO_WD_ADDR); | |
204 | write1_io(value, IO_WD_DATA); | |
205 | } | |
206 | ||
207 | ||
208 | static inline void write_3393_cmd(struct IN2000_hostdata *hostdata, uchar cmd) | |
209 | { | |
210 | /* while (READ_AUX_STAT() & ASR_CIP) | |
211 | printk("|");*/ | |
212 | write1_io(WD_COMMAND, IO_WD_ADDR); | |
213 | write1_io(cmd, IO_WD_DATA); | |
214 | } | |
215 | ||
216 | ||
217 | static uchar read_1_byte(struct IN2000_hostdata *hostdata) | |
218 | { | |
219 | uchar asr, x = 0; | |
220 | ||
221 | write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); | |
222 | write_3393_cmd(hostdata, WD_CMD_TRANS_INFO | 0x80); | |
223 | do { | |
224 | asr = READ_AUX_STAT(); | |
225 | if (asr & ASR_DBR) | |
226 | x = read_3393(hostdata, WD_DATA); | |
227 | } while (!(asr & ASR_INT)); | |
228 | return x; | |
229 | } | |
230 | ||
231 | ||
232 | static void write_3393_count(struct IN2000_hostdata *hostdata, unsigned long value) | |
233 | { | |
234 | write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR); | |
235 | write1_io((value >> 16), IO_WD_DATA); | |
236 | write1_io((value >> 8), IO_WD_DATA); | |
237 | write1_io(value, IO_WD_DATA); | |
238 | } | |
239 | ||
240 | ||
241 | static unsigned long read_3393_count(struct IN2000_hostdata *hostdata) | |
242 | { | |
243 | unsigned long value; | |
244 | ||
245 | write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR); | |
246 | value = read1_io(IO_WD_DATA) << 16; | |
247 | value |= read1_io(IO_WD_DATA) << 8; | |
248 | value |= read1_io(IO_WD_DATA); | |
249 | return value; | |
250 | } | |
251 | ||
252 | ||
253 | /* The 33c93 needs to be told which direction a command transfers its | |
254 | * data; we use this function to figure it out. Returns true if there | |
255 | * will be a DATA_OUT phase with this command, false otherwise. | |
256 | * (Thanks to Joerg Dorchain for the research and suggestion.) | |
257 | */ | |
258 | static int is_dir_out(Scsi_Cmnd * cmd) | |
259 | { | |
260 | switch (cmd->cmnd[0]) { | |
261 | case WRITE_6: | |
262 | case WRITE_10: | |
263 | case WRITE_12: | |
264 | case WRITE_LONG: | |
265 | case WRITE_SAME: | |
266 | case WRITE_BUFFER: | |
267 | case WRITE_VERIFY: | |
268 | case WRITE_VERIFY_12: | |
269 | case COMPARE: | |
270 | case COPY: | |
271 | case COPY_VERIFY: | |
272 | case SEARCH_EQUAL: | |
273 | case SEARCH_HIGH: | |
274 | case SEARCH_LOW: | |
275 | case SEARCH_EQUAL_12: | |
276 | case SEARCH_HIGH_12: | |
277 | case SEARCH_LOW_12: | |
278 | case FORMAT_UNIT: | |
279 | case REASSIGN_BLOCKS: | |
280 | case RESERVE: | |
281 | case MODE_SELECT: | |
282 | case MODE_SELECT_10: | |
283 | case LOG_SELECT: | |
284 | case SEND_DIAGNOSTIC: | |
285 | case CHANGE_DEFINITION: | |
286 | case UPDATE_BLOCK: | |
287 | case SET_WINDOW: | |
288 | case MEDIUM_SCAN: | |
289 | case SEND_VOLUME_TAG: | |
290 | case 0xea: | |
291 | return 1; | |
292 | default: | |
293 | return 0; | |
294 | } | |
295 | } | |
296 | ||
297 | ||
298 | ||
299 | static struct sx_period sx_table[] = { | |
300 | {1, 0x20}, | |
301 | {252, 0x20}, | |
302 | {376, 0x30}, | |
303 | {500, 0x40}, | |
304 | {624, 0x50}, | |
305 | {752, 0x60}, | |
306 | {876, 0x70}, | |
307 | {1000, 0x00}, | |
308 | {0, 0} | |
309 | }; | |
310 | ||
311 | static int round_period(unsigned int period) | |
312 | { | |
313 | int x; | |
314 | ||
315 | for (x = 1; sx_table[x].period_ns; x++) { | |
316 | if ((period <= sx_table[x - 0].period_ns) && (period > sx_table[x - 1].period_ns)) { | |
317 | return x; | |
318 | } | |
319 | } | |
320 | return 7; | |
321 | } | |
322 | ||
323 | static uchar calc_sync_xfer(unsigned int period, unsigned int offset) | |
324 | { | |
325 | uchar result; | |
326 | ||
327 | period *= 4; /* convert SDTR code to ns */ | |
328 | result = sx_table[round_period(period)].reg_value; | |
329 | result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF; | |
330 | return result; | |
331 | } | |
332 | ||
333 | ||
334 | ||
335 | static void in2000_execute(struct Scsi_Host *instance); | |
336 | ||
337 | static int in2000_queuecommand(Scsi_Cmnd * cmd, void (*done) (Scsi_Cmnd *)) | |
338 | { | |
339 | struct Scsi_Host *instance; | |
340 | struct IN2000_hostdata *hostdata; | |
341 | Scsi_Cmnd *tmp; | |
342 | ||
343 | instance = cmd->device->host; | |
344 | hostdata = (struct IN2000_hostdata *) instance->hostdata; | |
345 | ||
017560fc | 346 | DB(DB_QUEUE_COMMAND, scmd_printk(KERN_DEBUG, cmd, "Q-%02x-%ld(", cmd->cmnd[0], cmd->pid)) |
1da177e4 LT |
347 | |
348 | /* Set up a few fields in the Scsi_Cmnd structure for our own use: | |
349 | * - host_scribble is the pointer to the next cmd in the input queue | |
350 | * - scsi_done points to the routine we call when a cmd is finished | |
351 | * - result is what you'd expect | |
352 | */ | |
353 | cmd->host_scribble = NULL; | |
354 | cmd->scsi_done = done; | |
355 | cmd->result = 0; | |
356 | ||
357 | /* We use the Scsi_Pointer structure that's included with each command | |
358 | * as a scratchpad (as it's intended to be used!). The handy thing about | |
359 | * the SCp.xxx fields is that they're always associated with a given | |
360 | * cmd, and are preserved across disconnect-reselect. This means we | |
361 | * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages | |
362 | * if we keep all the critical pointers and counters in SCp: | |
363 | * - SCp.ptr is the pointer into the RAM buffer | |
364 | * - SCp.this_residual is the size of that buffer | |
365 | * - SCp.buffer points to the current scatter-gather buffer | |
366 | * - SCp.buffers_residual tells us how many S.G. buffers there are | |
367 | * - SCp.have_data_in helps keep track of >2048 byte transfers | |
368 | * - SCp.sent_command is not used | |
369 | * - SCp.phase records this command's SRCID_ER bit setting | |
370 | */ | |
371 | ||
372 | if (cmd->use_sg) { | |
373 | cmd->SCp.buffer = (struct scatterlist *) cmd->buffer; | |
374 | cmd->SCp.buffers_residual = cmd->use_sg - 1; | |
375 | cmd->SCp.ptr = (char *) page_address(cmd->SCp.buffer->page) + cmd->SCp.buffer->offset; | |
376 | cmd->SCp.this_residual = cmd->SCp.buffer->length; | |
377 | } else { | |
378 | cmd->SCp.buffer = NULL; | |
379 | cmd->SCp.buffers_residual = 0; | |
380 | cmd->SCp.ptr = (char *) cmd->request_buffer; | |
381 | cmd->SCp.this_residual = cmd->request_bufflen; | |
382 | } | |
383 | cmd->SCp.have_data_in = 0; | |
384 | ||
385 | /* We don't set SCp.phase here - that's done in in2000_execute() */ | |
386 | ||
387 | /* WD docs state that at the conclusion of a "LEVEL2" command, the | |
388 | * status byte can be retrieved from the LUN register. Apparently, | |
389 | * this is the case only for *uninterrupted* LEVEL2 commands! If | |
390 | * there are any unexpected phases entered, even if they are 100% | |
391 | * legal (different devices may choose to do things differently), | |
392 | * the LEVEL2 command sequence is exited. This often occurs prior | |
393 | * to receiving the status byte, in which case the driver does a | |
394 | * status phase interrupt and gets the status byte on its own. | |
395 | * While such a command can then be "resumed" (ie restarted to | |
396 | * finish up as a LEVEL2 command), the LUN register will NOT be | |
397 | * a valid status byte at the command's conclusion, and we must | |
398 | * use the byte obtained during the earlier interrupt. Here, we | |
399 | * preset SCp.Status to an illegal value (0xff) so that when | |
400 | * this command finally completes, we can tell where the actual | |
401 | * status byte is stored. | |
402 | */ | |
403 | ||
404 | cmd->SCp.Status = ILLEGAL_STATUS_BYTE; | |
405 | ||
406 | /* We need to disable interrupts before messing with the input | |
407 | * queue and calling in2000_execute(). | |
408 | */ | |
409 | ||
410 | /* | |
411 | * Add the cmd to the end of 'input_Q'. Note that REQUEST_SENSE | |
412 | * commands are added to the head of the queue so that the desired | |
413 | * sense data is not lost before REQUEST_SENSE executes. | |
414 | */ | |
415 | ||
416 | if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) { | |
417 | cmd->host_scribble = (uchar *) hostdata->input_Q; | |
418 | hostdata->input_Q = cmd; | |
419 | } else { /* find the end of the queue */ | |
420 | for (tmp = (Scsi_Cmnd *) hostdata->input_Q; tmp->host_scribble; tmp = (Scsi_Cmnd *) tmp->host_scribble); | |
421 | tmp->host_scribble = (uchar *) cmd; | |
422 | } | |
423 | ||
424 | /* We know that there's at least one command in 'input_Q' now. | |
425 | * Go see if any of them are runnable! | |
426 | */ | |
427 | ||
428 | in2000_execute(cmd->device->host); | |
429 | ||
430 | DB(DB_QUEUE_COMMAND, printk(")Q-%ld ", cmd->pid)) | |
431 | return 0; | |
432 | } | |
433 | ||
434 | ||
435 | ||
436 | /* | |
437 | * This routine attempts to start a scsi command. If the host_card is | |
438 | * already connected, we give up immediately. Otherwise, look through | |
439 | * the input_Q, using the first command we find that's intended | |
440 | * for a currently non-busy target/lun. | |
441 | * Note that this function is always called with interrupts already | |
442 | * disabled (either from in2000_queuecommand() or in2000_intr()). | |
443 | */ | |
444 | static void in2000_execute(struct Scsi_Host *instance) | |
445 | { | |
446 | struct IN2000_hostdata *hostdata; | |
447 | Scsi_Cmnd *cmd, *prev; | |
448 | int i; | |
449 | unsigned short *sp; | |
450 | unsigned short f; | |
451 | unsigned short flushbuf[16]; | |
452 | ||
453 | ||
454 | hostdata = (struct IN2000_hostdata *) instance->hostdata; | |
455 | ||
456 | DB(DB_EXECUTE, printk("EX(")) | |
457 | ||
458 | if (hostdata->selecting || hostdata->connected) { | |
459 | ||
460 | DB(DB_EXECUTE, printk(")EX-0 ")) | |
461 | ||
462 | return; | |
463 | } | |
464 | ||
465 | /* | |
466 | * Search through the input_Q for a command destined | |
467 | * for an idle target/lun. | |
468 | */ | |
469 | ||
470 | cmd = (Scsi_Cmnd *) hostdata->input_Q; | |
471 | prev = NULL; | |
472 | while (cmd) { | |
473 | if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun))) | |
474 | break; | |
475 | prev = cmd; | |
476 | cmd = (Scsi_Cmnd *) cmd->host_scribble; | |
477 | } | |
478 | ||
479 | /* quit if queue empty or all possible targets are busy */ | |
480 | ||
481 | if (!cmd) { | |
482 | ||
483 | DB(DB_EXECUTE, printk(")EX-1 ")) | |
484 | ||
485 | return; | |
486 | } | |
487 | ||
488 | /* remove command from queue */ | |
489 | ||
490 | if (prev) | |
491 | prev->host_scribble = cmd->host_scribble; | |
492 | else | |
493 | hostdata->input_Q = (Scsi_Cmnd *) cmd->host_scribble; | |
494 | ||
495 | #ifdef PROC_STATISTICS | |
496 | hostdata->cmd_cnt[cmd->device->id]++; | |
497 | #endif | |
498 | ||
499 | /* | |
500 | * Start the selection process | |
501 | */ | |
502 | ||
503 | if (is_dir_out(cmd)) | |
504 | write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id); | |
505 | else | |
506 | write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD); | |
507 | ||
508 | /* Now we need to figure out whether or not this command is a good | |
509 | * candidate for disconnect/reselect. We guess to the best of our | |
510 | * ability, based on a set of hierarchical rules. When several | |
511 | * devices are operating simultaneously, disconnects are usually | |
512 | * an advantage. In a single device system, or if only 1 device | |
513 | * is being accessed, transfers usually go faster if disconnects | |
514 | * are not allowed: | |
515 | * | |
516 | * + Commands should NEVER disconnect if hostdata->disconnect = | |
517 | * DIS_NEVER (this holds for tape drives also), and ALWAYS | |
518 | * disconnect if hostdata->disconnect = DIS_ALWAYS. | |
519 | * + Tape drive commands should always be allowed to disconnect. | |
520 | * + Disconnect should be allowed if disconnected_Q isn't empty. | |
521 | * + Commands should NOT disconnect if input_Q is empty. | |
522 | * + Disconnect should be allowed if there are commands in input_Q | |
523 | * for a different target/lun. In this case, the other commands | |
524 | * should be made disconnect-able, if not already. | |
525 | * | |
526 | * I know, I know - this code would flunk me out of any | |
527 | * "C Programming 101" class ever offered. But it's easy | |
528 | * to change around and experiment with for now. | |
529 | */ | |
530 | ||
531 | cmd->SCp.phase = 0; /* assume no disconnect */ | |
532 | if (hostdata->disconnect == DIS_NEVER) | |
533 | goto no; | |
534 | if (hostdata->disconnect == DIS_ALWAYS) | |
535 | goto yes; | |
536 | if (cmd->device->type == 1) /* tape drive? */ | |
537 | goto yes; | |
538 | if (hostdata->disconnected_Q) /* other commands disconnected? */ | |
539 | goto yes; | |
540 | if (!(hostdata->input_Q)) /* input_Q empty? */ | |
541 | goto no; | |
542 | for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble) { | |
543 | if ((prev->device->id != cmd->device->id) || (prev->device->lun != cmd->device->lun)) { | |
544 | for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble) | |
545 | prev->SCp.phase = 1; | |
546 | goto yes; | |
547 | } | |
548 | } | |
549 | goto no; | |
550 | ||
551 | yes: | |
552 | cmd->SCp.phase = 1; | |
553 | ||
554 | #ifdef PROC_STATISTICS | |
555 | hostdata->disc_allowed_cnt[cmd->device->id]++; | |
556 | #endif | |
557 | ||
558 | no: | |
559 | write_3393(hostdata, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0)); | |
560 | ||
561 | write_3393(hostdata, WD_TARGET_LUN, cmd->device->lun); | |
562 | write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]); | |
563 | hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun); | |
564 | ||
565 | if ((hostdata->level2 <= L2_NONE) || (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) { | |
566 | ||
567 | /* | |
568 | * Do a 'Select-With-ATN' command. This will end with | |
569 | * one of the following interrupts: | |
570 | * CSR_RESEL_AM: failure - can try again later. | |
571 | * CSR_TIMEOUT: failure - give up. | |
572 | * CSR_SELECT: success - proceed. | |
573 | */ | |
574 | ||
575 | hostdata->selecting = cmd; | |
576 | ||
577 | /* Every target has its own synchronous transfer setting, kept in | |
578 | * the sync_xfer array, and a corresponding status byte in sync_stat[]. | |
579 | * Each target's sync_stat[] entry is initialized to SS_UNSET, and its | |
580 | * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET | |
581 | * means that the parameters are undetermined as yet, and that we | |
582 | * need to send an SDTR message to this device after selection is | |
583 | * complete. We set SS_FIRST to tell the interrupt routine to do so, | |
584 | * unless we don't want to even _try_ synchronous transfers: In this | |
585 | * case we set SS_SET to make the defaults final. | |
586 | */ | |
587 | if (hostdata->sync_stat[cmd->device->id] == SS_UNSET) { | |
588 | if (hostdata->sync_off & (1 << cmd->device->id)) | |
589 | hostdata->sync_stat[cmd->device->id] = SS_SET; | |
590 | else | |
591 | hostdata->sync_stat[cmd->device->id] = SS_FIRST; | |
592 | } | |
593 | hostdata->state = S_SELECTING; | |
594 | write_3393_count(hostdata, 0); /* this guarantees a DATA_PHASE interrupt */ | |
595 | write_3393_cmd(hostdata, WD_CMD_SEL_ATN); | |
596 | } | |
597 | ||
598 | else { | |
599 | ||
600 | /* | |
601 | * Do a 'Select-With-ATN-Xfer' command. This will end with | |
602 | * one of the following interrupts: | |
603 | * CSR_RESEL_AM: failure - can try again later. | |
604 | * CSR_TIMEOUT: failure - give up. | |
605 | * anything else: success - proceed. | |
606 | */ | |
607 | ||
608 | hostdata->connected = cmd; | |
609 | write_3393(hostdata, WD_COMMAND_PHASE, 0); | |
610 | ||
611 | /* copy command_descriptor_block into WD chip | |
612 | * (take advantage of auto-incrementing) | |
613 | */ | |
614 | ||
615 | write1_io(WD_CDB_1, IO_WD_ADDR); | |
616 | for (i = 0; i < cmd->cmd_len; i++) | |
617 | write1_io(cmd->cmnd[i], IO_WD_DATA); | |
618 | ||
619 | /* The wd33c93 only knows about Group 0, 1, and 5 commands when | |
620 | * it's doing a 'select-and-transfer'. To be safe, we write the | |
621 | * size of the CDB into the OWN_ID register for every case. This | |
622 | * way there won't be problems with vendor-unique, audio, etc. | |
623 | */ | |
624 | ||
625 | write_3393(hostdata, WD_OWN_ID, cmd->cmd_len); | |
626 | ||
627 | /* When doing a non-disconnect command, we can save ourselves a DATA | |
628 | * phase interrupt later by setting everything up now. With writes we | |
629 | * need to pre-fill the fifo; if there's room for the 32 flush bytes, | |
630 | * put them in there too - that'll avoid a fifo interrupt. Reads are | |
631 | * somewhat simpler. | |
632 | * KLUDGE NOTE: It seems that you can't completely fill the fifo here: | |
633 | * This results in the IO_FIFO_COUNT register rolling over to zero, | |
634 | * and apparently the gate array logic sees this as empty, not full, | |
635 | * so the 3393 chip is never signalled to start reading from the | |
636 | * fifo. Or maybe it's seen as a permanent fifo interrupt condition. | |
637 | * Regardless, we fix this by temporarily pretending that the fifo | |
638 | * is 16 bytes smaller. (I see now that the old driver has a comment | |
639 | * about "don't fill completely" in an analogous place - must be the | |
640 | * same deal.) This results in CDROM, swap partitions, and tape drives | |
641 | * needing an extra interrupt per write command - I think we can live | |
642 | * with that! | |
643 | */ | |
644 | ||
645 | if (!(cmd->SCp.phase)) { | |
646 | write_3393_count(hostdata, cmd->SCp.this_residual); | |
647 | write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS); | |
648 | write1_io(0, IO_FIFO_WRITE); /* clear fifo counter, write mode */ | |
649 | ||
650 | if (is_dir_out(cmd)) { | |
651 | hostdata->fifo = FI_FIFO_WRITING; | |
652 | if ((i = cmd->SCp.this_residual) > (IN2000_FIFO_SIZE - 16)) | |
653 | i = IN2000_FIFO_SIZE - 16; | |
654 | cmd->SCp.have_data_in = i; /* this much data in fifo */ | |
655 | i >>= 1; /* Gulp. Assuming modulo 2. */ | |
656 | sp = (unsigned short *) cmd->SCp.ptr; | |
657 | f = hostdata->io_base + IO_FIFO; | |
658 | ||
659 | #ifdef FAST_WRITE_IO | |
660 | ||
661 | FAST_WRITE2_IO(); | |
662 | #else | |
663 | while (i--) | |
664 | write2_io(*sp++, IO_FIFO); | |
665 | ||
666 | #endif | |
667 | ||
668 | /* Is there room for the flush bytes? */ | |
669 | ||
670 | if (cmd->SCp.have_data_in <= ((IN2000_FIFO_SIZE - 16) - 32)) { | |
671 | sp = flushbuf; | |
672 | i = 16; | |
673 | ||
674 | #ifdef FAST_WRITE_IO | |
675 | ||
676 | FAST_WRITE2_IO(); | |
677 | #else | |
678 | while (i--) | |
679 | write2_io(0, IO_FIFO); | |
680 | ||
681 | #endif | |
682 | ||
683 | } | |
684 | } | |
685 | ||
686 | else { | |
687 | write1_io(0, IO_FIFO_READ); /* put fifo in read mode */ | |
688 | hostdata->fifo = FI_FIFO_READING; | |
689 | cmd->SCp.have_data_in = 0; /* nothing transferred yet */ | |
690 | } | |
691 | ||
692 | } else { | |
693 | write_3393_count(hostdata, 0); /* this guarantees a DATA_PHASE interrupt */ | |
694 | } | |
695 | hostdata->state = S_RUNNING_LEVEL2; | |
696 | write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); | |
697 | } | |
698 | ||
699 | /* | |
700 | * Since the SCSI bus can handle only 1 connection at a time, | |
701 | * we get out of here now. If the selection fails, or when | |
702 | * the command disconnects, we'll come back to this routine | |
703 | * to search the input_Q again... | |
704 | */ | |
705 | ||
706 | DB(DB_EXECUTE, printk("%s%ld)EX-2 ", (cmd->SCp.phase) ? "d:" : "", cmd->pid)) | |
707 | ||
708 | } | |
709 | ||
710 | ||
711 | ||
712 | static void transfer_pio(uchar * buf, int cnt, int data_in_dir, struct IN2000_hostdata *hostdata) | |
713 | { | |
714 | uchar asr; | |
715 | ||
716 | DB(DB_TRANSFER, printk("(%p,%d,%s)", buf, cnt, data_in_dir ? "in" : "out")) | |
717 | ||
718 | write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); | |
719 | write_3393_count(hostdata, cnt); | |
720 | write_3393_cmd(hostdata, WD_CMD_TRANS_INFO); | |
721 | if (data_in_dir) { | |
722 | do { | |
723 | asr = READ_AUX_STAT(); | |
724 | if (asr & ASR_DBR) | |
725 | *buf++ = read_3393(hostdata, WD_DATA); | |
726 | } while (!(asr & ASR_INT)); | |
727 | } else { | |
728 | do { | |
729 | asr = READ_AUX_STAT(); | |
730 | if (asr & ASR_DBR) | |
731 | write_3393(hostdata, WD_DATA, *buf++); | |
732 | } while (!(asr & ASR_INT)); | |
733 | } | |
734 | ||
735 | /* Note: we are returning with the interrupt UN-cleared. | |
736 | * Since (presumably) an entire I/O operation has | |
737 | * completed, the bus phase is probably different, and | |
738 | * the interrupt routine will discover this when it | |
739 | * responds to the uncleared int. | |
740 | */ | |
741 | ||
742 | } | |
743 | ||
744 | ||
745 | ||
746 | static void transfer_bytes(Scsi_Cmnd * cmd, int data_in_dir) | |
747 | { | |
748 | struct IN2000_hostdata *hostdata; | |
749 | unsigned short *sp; | |
750 | unsigned short f; | |
751 | int i; | |
752 | ||
753 | hostdata = (struct IN2000_hostdata *) cmd->device->host->hostdata; | |
754 | ||
755 | /* Normally, you'd expect 'this_residual' to be non-zero here. | |
756 | * In a series of scatter-gather transfers, however, this | |
757 | * routine will usually be called with 'this_residual' equal | |
758 | * to 0 and 'buffers_residual' non-zero. This means that a | |
759 | * previous transfer completed, clearing 'this_residual', and | |
760 | * now we need to setup the next scatter-gather buffer as the | |
761 | * source or destination for THIS transfer. | |
762 | */ | |
763 | if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) { | |
764 | ++cmd->SCp.buffer; | |
765 | --cmd->SCp.buffers_residual; | |
766 | cmd->SCp.this_residual = cmd->SCp.buffer->length; | |
767 | cmd->SCp.ptr = page_address(cmd->SCp.buffer->page) + cmd->SCp.buffer->offset; | |
768 | } | |
769 | ||
770 | /* Set up hardware registers */ | |
771 | ||
772 | write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]); | |
773 | write_3393_count(hostdata, cmd->SCp.this_residual); | |
774 | write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS); | |
775 | write1_io(0, IO_FIFO_WRITE); /* zero counter, assume write */ | |
776 | ||
777 | /* Reading is easy. Just issue the command and return - we'll | |
778 | * get an interrupt later when we have actual data to worry about. | |
779 | */ | |
780 | ||
781 | if (data_in_dir) { | |
782 | write1_io(0, IO_FIFO_READ); | |
783 | if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) { | |
784 | write_3393(hostdata, WD_COMMAND_PHASE, 0x45); | |
785 | write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); | |
786 | hostdata->state = S_RUNNING_LEVEL2; | |
787 | } else | |
788 | write_3393_cmd(hostdata, WD_CMD_TRANS_INFO); | |
789 | hostdata->fifo = FI_FIFO_READING; | |
790 | cmd->SCp.have_data_in = 0; | |
791 | return; | |
792 | } | |
793 | ||
794 | /* Writing is more involved - we'll start the WD chip and write as | |
795 | * much data to the fifo as we can right now. Later interrupts will | |
796 | * write any bytes that don't make it at this stage. | |
797 | */ | |
798 | ||
799 | if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) { | |
800 | write_3393(hostdata, WD_COMMAND_PHASE, 0x45); | |
801 | write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); | |
802 | hostdata->state = S_RUNNING_LEVEL2; | |
803 | } else | |
804 | write_3393_cmd(hostdata, WD_CMD_TRANS_INFO); | |
805 | hostdata->fifo = FI_FIFO_WRITING; | |
806 | sp = (unsigned short *) cmd->SCp.ptr; | |
807 | ||
808 | if ((i = cmd->SCp.this_residual) > IN2000_FIFO_SIZE) | |
809 | i = IN2000_FIFO_SIZE; | |
810 | cmd->SCp.have_data_in = i; | |
811 | i >>= 1; /* Gulp. We assume this_residual is modulo 2 */ | |
812 | f = hostdata->io_base + IO_FIFO; | |
813 | ||
814 | #ifdef FAST_WRITE_IO | |
815 | ||
816 | FAST_WRITE2_IO(); | |
817 | #else | |
818 | while (i--) | |
819 | write2_io(*sp++, IO_FIFO); | |
820 | ||
821 | #endif | |
822 | ||
823 | } | |
824 | ||
825 | ||
826 | /* We need to use spin_lock_irqsave() & spin_unlock_irqrestore() in this | |
827 | * function in order to work in an SMP environment. (I'd be surprised | |
828 | * if the driver is ever used by anyone on a real multi-CPU motherboard, | |
829 | * but it _does_ need to be able to compile and run in an SMP kernel.) | |
830 | */ | |
831 | ||
832 | static irqreturn_t in2000_intr(int irqnum, void *dev_id, struct pt_regs *ptregs) | |
833 | { | |
834 | struct Scsi_Host *instance = dev_id; | |
835 | struct IN2000_hostdata *hostdata; | |
836 | Scsi_Cmnd *patch, *cmd; | |
837 | uchar asr, sr, phs, id, lun, *ucp, msg; | |
838 | int i, j; | |
839 | unsigned long length; | |
840 | unsigned short *sp; | |
841 | unsigned short f; | |
842 | unsigned long flags; | |
843 | ||
844 | hostdata = (struct IN2000_hostdata *) instance->hostdata; | |
845 | ||
846 | /* Get the spin_lock and disable further ints, for SMP */ | |
847 | ||
848 | spin_lock_irqsave(instance->host_lock, flags); | |
849 | ||
850 | #ifdef PROC_STATISTICS | |
851 | hostdata->int_cnt++; | |
852 | #endif | |
853 | ||
854 | /* The IN2000 card has 2 interrupt sources OR'ed onto its IRQ line - the | |
855 | * WD3393 chip and the 2k fifo (which is actually a dual-port RAM combined | |
856 | * with a big logic array, so it's a little different than what you might | |
857 | * expect). As far as I know, there's no reason that BOTH can't be active | |
858 | * at the same time, but there's a problem: while we can read the 3393 | |
859 | * to tell if _it_ wants an interrupt, I don't know of a way to ask the | |
860 | * fifo the same question. The best we can do is check the 3393 and if | |
861 | * it _isn't_ the source of the interrupt, then we can be pretty sure | |
862 | * that the fifo is the culprit. | |
863 | * UPDATE: I have it on good authority (Bill Earnest) that bit 0 of the | |
864 | * IO_FIFO_COUNT register mirrors the fifo interrupt state. I | |
865 | * assume that bit clear means interrupt active. As it turns | |
866 | * out, the driver really doesn't need to check for this after | |
867 | * all, so my remarks above about a 'problem' can safely be | |
868 | * ignored. The way the logic is set up, there's no advantage | |
869 | * (that I can see) to worrying about it. | |
870 | * | |
871 | * It seems that the fifo interrupt signal is negated when we extract | |
872 | * bytes during read or write bytes during write. | |
873 | * - fifo will interrupt when data is moving from it to the 3393, and | |
874 | * there are 31 (or less?) bytes left to go. This is sort of short- | |
875 | * sighted: what if you don't WANT to do more? In any case, our | |
876 | * response is to push more into the fifo - either actual data or | |
877 | * dummy bytes if need be. Note that we apparently have to write at | |
878 | * least 32 additional bytes to the fifo after an interrupt in order | |
879 | * to get it to release the ones it was holding on to - writing fewer | |
880 | * than 32 will result in another fifo int. | |
881 | * UPDATE: Again, info from Bill Earnest makes this more understandable: | |
882 | * 32 bytes = two counts of the fifo counter register. He tells | |
883 | * me that the fifo interrupt is a non-latching signal derived | |
884 | * from a straightforward boolean interpretation of the 7 | |
885 | * highest bits of the fifo counter and the fifo-read/fifo-write | |
886 | * state. Who'd a thought? | |
887 | */ | |
888 | ||
889 | write1_io(0, IO_LED_ON); | |
890 | asr = READ_AUX_STAT(); | |
891 | if (!(asr & ASR_INT)) { /* no WD33c93 interrupt? */ | |
892 | ||
893 | /* Ok. This is definitely a FIFO-only interrupt. | |
894 | * | |
895 | * If FI_FIFO_READING is set, there are up to 2048 bytes waiting to be read, | |
896 | * maybe more to come from the SCSI bus. Read as many as we can out of the | |
897 | * fifo and into memory at the location of SCp.ptr[SCp.have_data_in], and | |
898 | * update have_data_in afterwards. | |
899 | * | |
900 | * If we have FI_FIFO_WRITING, the FIFO has almost run out of bytes to move | |
901 | * into the WD3393 chip (I think the interrupt happens when there are 31 | |
902 | * bytes left, but it may be fewer...). The 3393 is still waiting, so we | |
903 | * shove some more into the fifo, which gets things moving again. If the | |
904 | * original SCSI command specified more than 2048 bytes, there may still | |
905 | * be some of that data left: fine - use it (from SCp.ptr[SCp.have_data_in]). | |
906 | * Don't forget to update have_data_in. If we've already written out the | |
907 | * entire buffer, feed 32 dummy bytes to the fifo - they're needed to | |
908 | * push out the remaining real data. | |
909 | * (Big thanks to Bill Earnest for getting me out of the mud in here.) | |
910 | */ | |
911 | ||
912 | cmd = (Scsi_Cmnd *) hostdata->connected; /* assume we're connected */ | |
913 | CHECK_NULL(cmd, "fifo_int") | |
914 | ||
915 | if (hostdata->fifo == FI_FIFO_READING) { | |
916 | ||
917 | DB(DB_FIFO, printk("{R:%02x} ", read1_io(IO_FIFO_COUNT))) | |
918 | ||
919 | sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in); | |
920 | i = read1_io(IO_FIFO_COUNT) & 0xfe; | |
921 | i <<= 2; /* # of words waiting in the fifo */ | |
922 | f = hostdata->io_base + IO_FIFO; | |
923 | ||
924 | #ifdef FAST_READ_IO | |
925 | ||
926 | FAST_READ2_IO(); | |
927 | #else | |
928 | while (i--) | |
929 | *sp++ = read2_io(IO_FIFO); | |
930 | ||
931 | #endif | |
932 | ||
933 | i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in); | |
934 | i <<= 1; | |
935 | cmd->SCp.have_data_in += i; | |
936 | } | |
937 | ||
938 | else if (hostdata->fifo == FI_FIFO_WRITING) { | |
939 | ||
940 | DB(DB_FIFO, printk("{W:%02x} ", read1_io(IO_FIFO_COUNT))) | |
941 | ||
942 | /* If all bytes have been written to the fifo, flush out the stragglers. | |
943 | * Note that while writing 16 dummy words seems arbitrary, we don't | |
944 | * have another choice that I can see. What we really want is to read | |
945 | * the 3393 transfer count register (that would tell us how many bytes | |
946 | * needed flushing), but the TRANSFER_INFO command hasn't completed | |
947 | * yet (not enough bytes!) and that register won't be accessible. So, | |
948 | * we use 16 words - a number obtained through trial and error. | |
949 | * UPDATE: Bill says this is exactly what Always does, so there. | |
950 | * More thanks due him for help in this section. | |
951 | */ | |
952 | if (cmd->SCp.this_residual == cmd->SCp.have_data_in) { | |
953 | i = 16; | |
954 | while (i--) /* write 32 dummy bytes */ | |
955 | write2_io(0, IO_FIFO); | |
956 | } | |
957 | ||
958 | /* If there are still bytes left in the SCSI buffer, write as many as we | |
959 | * can out to the fifo. | |
960 | */ | |
961 | ||
962 | else { | |
963 | sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in); | |
964 | i = cmd->SCp.this_residual - cmd->SCp.have_data_in; /* bytes yet to go */ | |
965 | j = read1_io(IO_FIFO_COUNT) & 0xfe; | |
966 | j <<= 2; /* how many words the fifo has room for */ | |
967 | if ((j << 1) > i) | |
968 | j = (i >> 1); | |
969 | while (j--) | |
970 | write2_io(*sp++, IO_FIFO); | |
971 | ||
972 | i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in); | |
973 | i <<= 1; | |
974 | cmd->SCp.have_data_in += i; | |
975 | } | |
976 | } | |
977 | ||
978 | else { | |
979 | printk("*** Spurious FIFO interrupt ***"); | |
980 | } | |
981 | ||
982 | write1_io(0, IO_LED_OFF); | |
983 | ||
984 | /* release the SMP spin_lock and restore irq state */ | |
985 | spin_unlock_irqrestore(instance->host_lock, flags); | |
986 | return IRQ_HANDLED; | |
987 | } | |
988 | ||
989 | /* This interrupt was triggered by the WD33c93 chip. The fifo interrupt | |
990 | * may also be asserted, but we don't bother to check it: we get more | |
991 | * detailed info from FIFO_READING and FIFO_WRITING (see below). | |
992 | */ | |
993 | ||
994 | cmd = (Scsi_Cmnd *) hostdata->connected; /* assume we're connected */ | |
995 | sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear the interrupt */ | |
996 | phs = read_3393(hostdata, WD_COMMAND_PHASE); | |
997 | ||
998 | if (!cmd && (sr != CSR_RESEL_AM && sr != CSR_TIMEOUT && sr != CSR_SELECT)) { | |
999 | printk("\nNR:wd-intr-1\n"); | |
1000 | write1_io(0, IO_LED_OFF); | |
1001 | ||
1002 | /* release the SMP spin_lock and restore irq state */ | |
1003 | spin_unlock_irqrestore(instance->host_lock, flags); | |
1004 | return IRQ_HANDLED; | |
1005 | } | |
1006 | ||
1007 | DB(DB_INTR, printk("{%02x:%02x-", asr, sr)) | |
1008 | ||
1009 | /* After starting a FIFO-based transfer, the next _WD3393_ interrupt is | |
1010 | * guaranteed to be in response to the completion of the transfer. | |
1011 | * If we were reading, there's probably data in the fifo that needs | |
1012 | * to be copied into RAM - do that here. Also, we have to update | |
1013 | * 'this_residual' and 'ptr' based on the contents of the | |
1014 | * TRANSFER_COUNT register, in case the device decided to do an | |
1015 | * intermediate disconnect (a device may do this if it has to | |
1016 | * do a seek, or just to be nice and let other devices have | |
1017 | * some bus time during long transfers). | |
1018 | * After doing whatever is necessary with the fifo, we go on and | |
1019 | * service the WD3393 interrupt normally. | |
1020 | */ | |
1021 | if (hostdata->fifo == FI_FIFO_READING) { | |
1022 | ||
1023 | /* buffer index = start-of-buffer + #-of-bytes-already-read */ | |
1024 | ||
1025 | sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in); | |
1026 | ||
1027 | /* bytes remaining in fifo = (total-wanted - #-not-got) - #-already-read */ | |
1028 | ||
1029 | i = (cmd->SCp.this_residual - read_3393_count(hostdata)) - cmd->SCp.have_data_in; | |
1030 | i >>= 1; /* Gulp. We assume this will always be modulo 2 */ | |
1031 | f = hostdata->io_base + IO_FIFO; | |
1032 | ||
1033 | #ifdef FAST_READ_IO | |
1034 | ||
1035 | FAST_READ2_IO(); | |
1036 | #else | |
1037 | while (i--) | |
1038 | *sp++ = read2_io(IO_FIFO); | |
1039 | ||
1040 | #endif | |
1041 | ||
1042 | hostdata->fifo = FI_FIFO_UNUSED; | |
1043 | length = cmd->SCp.this_residual; | |
1044 | cmd->SCp.this_residual = read_3393_count(hostdata); | |
1045 | cmd->SCp.ptr += (length - cmd->SCp.this_residual); | |
1046 | ||
1047 | DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual)) | |
1048 | ||
1049 | } | |
1050 | ||
1051 | else if (hostdata->fifo == FI_FIFO_WRITING) { | |
1052 | hostdata->fifo = FI_FIFO_UNUSED; | |
1053 | length = cmd->SCp.this_residual; | |
1054 | cmd->SCp.this_residual = read_3393_count(hostdata); | |
1055 | cmd->SCp.ptr += (length - cmd->SCp.this_residual); | |
1056 | ||
1057 | DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual)) | |
1058 | ||
1059 | } | |
1060 | ||
1061 | /* Respond to the specific WD3393 interrupt - there are quite a few! */ | |
1062 | ||
1063 | switch (sr) { | |
1064 | ||
1065 | case CSR_TIMEOUT: | |
1066 | DB(DB_INTR, printk("TIMEOUT")) | |
1067 | ||
1068 | if (hostdata->state == S_RUNNING_LEVEL2) | |
1069 | hostdata->connected = NULL; | |
1070 | else { | |
1071 | cmd = (Scsi_Cmnd *) hostdata->selecting; /* get a valid cmd */ | |
1072 | CHECK_NULL(cmd, "csr_timeout") | |
1073 | hostdata->selecting = NULL; | |
1074 | } | |
1075 | ||
1076 | cmd->result = DID_NO_CONNECT << 16; | |
1077 | hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); | |
1078 | hostdata->state = S_UNCONNECTED; | |
1079 | cmd->scsi_done(cmd); | |
1080 | ||
1081 | /* We are not connected to a target - check to see if there | |
1082 | * are commands waiting to be executed. | |
1083 | */ | |
1084 | ||
1085 | in2000_execute(instance); | |
1086 | break; | |
1087 | ||
1088 | ||
1089 | /* Note: this interrupt should not occur in a LEVEL2 command */ | |
1090 | ||
1091 | case CSR_SELECT: | |
1092 | DB(DB_INTR, printk("SELECT")) | |
1093 | hostdata->connected = cmd = (Scsi_Cmnd *) hostdata->selecting; | |
1094 | CHECK_NULL(cmd, "csr_select") | |
1095 | hostdata->selecting = NULL; | |
1096 | ||
1097 | /* construct an IDENTIFY message with correct disconnect bit */ | |
1098 | ||
1099 | hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun); | |
1100 | if (cmd->SCp.phase) | |
1101 | hostdata->outgoing_msg[0] |= 0x40; | |
1102 | ||
1103 | if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) { | |
1104 | #ifdef SYNC_DEBUG | |
1105 | printk(" sending SDTR "); | |
1106 | #endif | |
1107 | ||
1108 | hostdata->sync_stat[cmd->device->id] = SS_WAITING; | |
1109 | ||
1110 | /* tack on a 2nd message to ask about synchronous transfers */ | |
1111 | ||
1112 | hostdata->outgoing_msg[1] = EXTENDED_MESSAGE; | |
1113 | hostdata->outgoing_msg[2] = 3; | |
1114 | hostdata->outgoing_msg[3] = EXTENDED_SDTR; | |
1115 | hostdata->outgoing_msg[4] = OPTIMUM_SX_PER / 4; | |
1116 | hostdata->outgoing_msg[5] = OPTIMUM_SX_OFF; | |
1117 | hostdata->outgoing_len = 6; | |
1118 | } else | |
1119 | hostdata->outgoing_len = 1; | |
1120 | ||
1121 | hostdata->state = S_CONNECTED; | |
1122 | break; | |
1123 | ||
1124 | ||
1125 | case CSR_XFER_DONE | PHS_DATA_IN: | |
1126 | case CSR_UNEXP | PHS_DATA_IN: | |
1127 | case CSR_SRV_REQ | PHS_DATA_IN: | |
1128 | DB(DB_INTR, printk("IN-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual)) | |
1129 | transfer_bytes(cmd, DATA_IN_DIR); | |
1130 | if (hostdata->state != S_RUNNING_LEVEL2) | |
1131 | hostdata->state = S_CONNECTED; | |
1132 | break; | |
1133 | ||
1134 | ||
1135 | case CSR_XFER_DONE | PHS_DATA_OUT: | |
1136 | case CSR_UNEXP | PHS_DATA_OUT: | |
1137 | case CSR_SRV_REQ | PHS_DATA_OUT: | |
1138 | DB(DB_INTR, printk("OUT-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual)) | |
1139 | transfer_bytes(cmd, DATA_OUT_DIR); | |
1140 | if (hostdata->state != S_RUNNING_LEVEL2) | |
1141 | hostdata->state = S_CONNECTED; | |
1142 | break; | |
1143 | ||
1144 | ||
1145 | /* Note: this interrupt should not occur in a LEVEL2 command */ | |
1146 | ||
1147 | case CSR_XFER_DONE | PHS_COMMAND: | |
1148 | case CSR_UNEXP | PHS_COMMAND: | |
1149 | case CSR_SRV_REQ | PHS_COMMAND: | |
1150 | DB(DB_INTR, printk("CMND-%02x,%ld", cmd->cmnd[0], cmd->pid)) | |
1151 | transfer_pio(cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, hostdata); | |
1152 | hostdata->state = S_CONNECTED; | |
1153 | break; | |
1154 | ||
1155 | ||
1156 | case CSR_XFER_DONE | PHS_STATUS: | |
1157 | case CSR_UNEXP | PHS_STATUS: | |
1158 | case CSR_SRV_REQ | PHS_STATUS: | |
1159 | DB(DB_INTR, printk("STATUS=")) | |
1160 | ||
1161 | cmd->SCp.Status = read_1_byte(hostdata); | |
1162 | DB(DB_INTR, printk("%02x", cmd->SCp.Status)) | |
1163 | if (hostdata->level2 >= L2_BASIC) { | |
1164 | sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */ | |
1165 | hostdata->state = S_RUNNING_LEVEL2; | |
1166 | write_3393(hostdata, WD_COMMAND_PHASE, 0x50); | |
1167 | write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); | |
1168 | } else { | |
1169 | hostdata->state = S_CONNECTED; | |
1170 | } | |
1171 | break; | |
1172 | ||
1173 | ||
1174 | case CSR_XFER_DONE | PHS_MESS_IN: | |
1175 | case CSR_UNEXP | PHS_MESS_IN: | |
1176 | case CSR_SRV_REQ | PHS_MESS_IN: | |
1177 | DB(DB_INTR, printk("MSG_IN=")) | |
1178 | ||
1179 | msg = read_1_byte(hostdata); | |
1180 | sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */ | |
1181 | ||
1182 | hostdata->incoming_msg[hostdata->incoming_ptr] = msg; | |
1183 | if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE) | |
1184 | msg = EXTENDED_MESSAGE; | |
1185 | else | |
1186 | hostdata->incoming_ptr = 0; | |
1187 | ||
1188 | cmd->SCp.Message = msg; | |
1189 | switch (msg) { | |
1190 | ||
1191 | case COMMAND_COMPLETE: | |
1192 | DB(DB_INTR, printk("CCMP-%ld", cmd->pid)) | |
1193 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | |
1194 | hostdata->state = S_PRE_CMP_DISC; | |
1195 | break; | |
1196 | ||
1197 | case SAVE_POINTERS: | |
1198 | DB(DB_INTR, printk("SDP")) | |
1199 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | |
1200 | hostdata->state = S_CONNECTED; | |
1201 | break; | |
1202 | ||
1203 | case RESTORE_POINTERS: | |
1204 | DB(DB_INTR, printk("RDP")) | |
1205 | if (hostdata->level2 >= L2_BASIC) { | |
1206 | write_3393(hostdata, WD_COMMAND_PHASE, 0x45); | |
1207 | write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); | |
1208 | hostdata->state = S_RUNNING_LEVEL2; | |
1209 | } else { | |
1210 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | |
1211 | hostdata->state = S_CONNECTED; | |
1212 | } | |
1213 | break; | |
1214 | ||
1215 | case DISCONNECT: | |
1216 | DB(DB_INTR, printk("DIS")) | |
1217 | cmd->device->disconnect = 1; | |
1218 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | |
1219 | hostdata->state = S_PRE_TMP_DISC; | |
1220 | break; | |
1221 | ||
1222 | case MESSAGE_REJECT: | |
1223 | DB(DB_INTR, printk("REJ")) | |
1224 | #ifdef SYNC_DEBUG | |
1225 | printk("-REJ-"); | |
1226 | #endif | |
1227 | if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) | |
1228 | hostdata->sync_stat[cmd->device->id] = SS_SET; | |
1229 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | |
1230 | hostdata->state = S_CONNECTED; | |
1231 | break; | |
1232 | ||
1233 | case EXTENDED_MESSAGE: | |
1234 | DB(DB_INTR, printk("EXT")) | |
1235 | ||
1236 | ucp = hostdata->incoming_msg; | |
1237 | ||
1238 | #ifdef SYNC_DEBUG | |
1239 | printk("%02x", ucp[hostdata->incoming_ptr]); | |
1240 | #endif | |
1241 | /* Is this the last byte of the extended message? */ | |
1242 | ||
1243 | if ((hostdata->incoming_ptr >= 2) && (hostdata->incoming_ptr == (ucp[1] + 1))) { | |
1244 | ||
1245 | switch (ucp[2]) { /* what's the EXTENDED code? */ | |
1246 | case EXTENDED_SDTR: | |
1247 | id = calc_sync_xfer(ucp[3], ucp[4]); | |
1248 | if (hostdata->sync_stat[cmd->device->id] != SS_WAITING) { | |
1249 | ||
1250 | /* A device has sent an unsolicited SDTR message; rather than go | |
1251 | * through the effort of decoding it and then figuring out what | |
1252 | * our reply should be, we're just gonna say that we have a | |
1253 | * synchronous fifo depth of 0. This will result in asynchronous | |
1254 | * transfers - not ideal but so much easier. | |
1255 | * Actually, this is OK because it assures us that if we don't | |
1256 | * specifically ask for sync transfers, we won't do any. | |
1257 | */ | |
1258 | ||
1259 | write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ | |
1260 | hostdata->outgoing_msg[0] = EXTENDED_MESSAGE; | |
1261 | hostdata->outgoing_msg[1] = 3; | |
1262 | hostdata->outgoing_msg[2] = EXTENDED_SDTR; | |
1263 | hostdata->outgoing_msg[3] = hostdata->default_sx_per / 4; | |
1264 | hostdata->outgoing_msg[4] = 0; | |
1265 | hostdata->outgoing_len = 5; | |
1266 | hostdata->sync_xfer[cmd->device->id] = calc_sync_xfer(hostdata->default_sx_per / 4, 0); | |
1267 | } else { | |
1268 | hostdata->sync_xfer[cmd->device->id] = id; | |
1269 | } | |
1270 | #ifdef SYNC_DEBUG | |
1271 | printk("sync_xfer=%02x", hostdata->sync_xfer[cmd->device->id]); | |
1272 | #endif | |
1273 | hostdata->sync_stat[cmd->device->id] = SS_SET; | |
1274 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | |
1275 | hostdata->state = S_CONNECTED; | |
1276 | break; | |
1277 | case EXTENDED_WDTR: | |
1278 | write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ | |
1279 | printk("sending WDTR "); | |
1280 | hostdata->outgoing_msg[0] = EXTENDED_MESSAGE; | |
1281 | hostdata->outgoing_msg[1] = 2; | |
1282 | hostdata->outgoing_msg[2] = EXTENDED_WDTR; | |
1283 | hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */ | |
1284 | hostdata->outgoing_len = 4; | |
1285 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | |
1286 | hostdata->state = S_CONNECTED; | |
1287 | break; | |
1288 | default: | |
1289 | write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ | |
1290 | printk("Rejecting Unknown Extended Message(%02x). ", ucp[2]); | |
1291 | hostdata->outgoing_msg[0] = MESSAGE_REJECT; | |
1292 | hostdata->outgoing_len = 1; | |
1293 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | |
1294 | hostdata->state = S_CONNECTED; | |
1295 | break; | |
1296 | } | |
1297 | hostdata->incoming_ptr = 0; | |
1298 | } | |
1299 | ||
1300 | /* We need to read more MESS_IN bytes for the extended message */ | |
1301 | ||
1302 | else { | |
1303 | hostdata->incoming_ptr++; | |
1304 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | |
1305 | hostdata->state = S_CONNECTED; | |
1306 | } | |
1307 | break; | |
1308 | ||
1309 | default: | |
1310 | printk("Rejecting Unknown Message(%02x) ", msg); | |
1311 | write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ | |
1312 | hostdata->outgoing_msg[0] = MESSAGE_REJECT; | |
1313 | hostdata->outgoing_len = 1; | |
1314 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | |
1315 | hostdata->state = S_CONNECTED; | |
1316 | } | |
1317 | break; | |
1318 | ||
1319 | ||
1320 | /* Note: this interrupt will occur only after a LEVEL2 command */ | |
1321 | ||
1322 | case CSR_SEL_XFER_DONE: | |
1323 | ||
1324 | /* Make sure that reselection is enabled at this point - it may | |
1325 | * have been turned off for the command that just completed. | |
1326 | */ | |
1327 | ||
1328 | write_3393(hostdata, WD_SOURCE_ID, SRCID_ER); | |
1329 | if (phs == 0x60) { | |
1330 | DB(DB_INTR, printk("SX-DONE-%ld", cmd->pid)) | |
1331 | cmd->SCp.Message = COMMAND_COMPLETE; | |
1332 | lun = read_3393(hostdata, WD_TARGET_LUN); | |
1333 | DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun)) | |
1334 | hostdata->connected = NULL; | |
1335 | hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); | |
1336 | hostdata->state = S_UNCONNECTED; | |
1337 | if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE) | |
1338 | cmd->SCp.Status = lun; | |
1339 | if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) | |
1340 | cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16); | |
1341 | else | |
1342 | cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); | |
1343 | cmd->scsi_done(cmd); | |
1344 | ||
1345 | /* We are no longer connected to a target - check to see if | |
1346 | * there are commands waiting to be executed. | |
1347 | */ | |
1348 | ||
1349 | in2000_execute(instance); | |
1350 | } else { | |
1351 | printk("%02x:%02x:%02x-%ld: Unknown SEL_XFER_DONE phase!!---", asr, sr, phs, cmd->pid); | |
1352 | } | |
1353 | break; | |
1354 | ||
1355 | ||
1356 | /* Note: this interrupt will occur only after a LEVEL2 command */ | |
1357 | ||
1358 | case CSR_SDP: | |
1359 | DB(DB_INTR, printk("SDP")) | |
1360 | hostdata->state = S_RUNNING_LEVEL2; | |
1361 | write_3393(hostdata, WD_COMMAND_PHASE, 0x41); | |
1362 | write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); | |
1363 | break; | |
1364 | ||
1365 | ||
1366 | case CSR_XFER_DONE | PHS_MESS_OUT: | |
1367 | case CSR_UNEXP | PHS_MESS_OUT: | |
1368 | case CSR_SRV_REQ | PHS_MESS_OUT: | |
1369 | DB(DB_INTR, printk("MSG_OUT=")) | |
1370 | ||
1371 | /* To get here, we've probably requested MESSAGE_OUT and have | |
1372 | * already put the correct bytes in outgoing_msg[] and filled | |
1373 | * in outgoing_len. We simply send them out to the SCSI bus. | |
1374 | * Sometimes we get MESSAGE_OUT phase when we're not expecting | |
1375 | * it - like when our SDTR message is rejected by a target. Some | |
1376 | * targets send the REJECT before receiving all of the extended | |
1377 | * message, and then seem to go back to MESSAGE_OUT for a byte | |
1378 | * or two. Not sure why, or if I'm doing something wrong to | |
1379 | * cause this to happen. Regardless, it seems that sending | |
1380 | * NOP messages in these situations results in no harm and | |
1381 | * makes everyone happy. | |
1382 | */ | |
1383 | if (hostdata->outgoing_len == 0) { | |
1384 | hostdata->outgoing_len = 1; | |
1385 | hostdata->outgoing_msg[0] = NOP; | |
1386 | } | |
1387 | transfer_pio(hostdata->outgoing_msg, hostdata->outgoing_len, DATA_OUT_DIR, hostdata); | |
1388 | DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0])) | |
1389 | hostdata->outgoing_len = 0; | |
1390 | hostdata->state = S_CONNECTED; | |
1391 | break; | |
1392 | ||
1393 | ||
1394 | case CSR_UNEXP_DISC: | |
1395 | ||
1396 | /* I think I've seen this after a request-sense that was in response | |
1397 | * to an error condition, but not sure. We certainly need to do | |
1398 | * something when we get this interrupt - the question is 'what?'. | |
1399 | * Let's think positively, and assume some command has finished | |
1400 | * in a legal manner (like a command that provokes a request-sense), | |
1401 | * so we treat it as a normal command-complete-disconnect. | |
1402 | */ | |
1403 | ||
1404 | ||
1405 | /* Make sure that reselection is enabled at this point - it may | |
1406 | * have been turned off for the command that just completed. | |
1407 | */ | |
1408 | ||
1409 | write_3393(hostdata, WD_SOURCE_ID, SRCID_ER); | |
1410 | if (cmd == NULL) { | |
1411 | printk(" - Already disconnected! "); | |
1412 | hostdata->state = S_UNCONNECTED; | |
1413 | ||
1414 | /* release the SMP spin_lock and restore irq state */ | |
1415 | spin_unlock_irqrestore(instance->host_lock, flags); | |
1416 | return IRQ_HANDLED; | |
1417 | } | |
1418 | DB(DB_INTR, printk("UNEXP_DISC-%ld", cmd->pid)) | |
1419 | hostdata->connected = NULL; | |
1420 | hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); | |
1421 | hostdata->state = S_UNCONNECTED; | |
1422 | if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) | |
1423 | cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16); | |
1424 | else | |
1425 | cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); | |
1426 | cmd->scsi_done(cmd); | |
1427 | ||
1428 | /* We are no longer connected to a target - check to see if | |
1429 | * there are commands waiting to be executed. | |
1430 | */ | |
1431 | ||
1432 | in2000_execute(instance); | |
1433 | break; | |
1434 | ||
1435 | ||
1436 | case CSR_DISC: | |
1437 | ||
1438 | /* Make sure that reselection is enabled at this point - it may | |
1439 | * have been turned off for the command that just completed. | |
1440 | */ | |
1441 | ||
1442 | write_3393(hostdata, WD_SOURCE_ID, SRCID_ER); | |
1443 | DB(DB_INTR, printk("DISC-%ld", cmd->pid)) | |
1444 | if (cmd == NULL) { | |
1445 | printk(" - Already disconnected! "); | |
1446 | hostdata->state = S_UNCONNECTED; | |
1447 | } | |
1448 | switch (hostdata->state) { | |
1449 | case S_PRE_CMP_DISC: | |
1450 | hostdata->connected = NULL; | |
1451 | hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); | |
1452 | hostdata->state = S_UNCONNECTED; | |
1453 | DB(DB_INTR, printk(":%d", cmd->SCp.Status)) | |
1454 | if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) | |
1455 | cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16); | |
1456 | else | |
1457 | cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); | |
1458 | cmd->scsi_done(cmd); | |
1459 | break; | |
1460 | case S_PRE_TMP_DISC: | |
1461 | case S_RUNNING_LEVEL2: | |
1462 | cmd->host_scribble = (uchar *) hostdata->disconnected_Q; | |
1463 | hostdata->disconnected_Q = cmd; | |
1464 | hostdata->connected = NULL; | |
1465 | hostdata->state = S_UNCONNECTED; | |
1466 | ||
1467 | #ifdef PROC_STATISTICS | |
1468 | hostdata->disc_done_cnt[cmd->device->id]++; | |
1469 | #endif | |
1470 | ||
1471 | break; | |
1472 | default: | |
1473 | printk("*** Unexpected DISCONNECT interrupt! ***"); | |
1474 | hostdata->state = S_UNCONNECTED; | |
1475 | } | |
1476 | ||
1477 | /* We are no longer connected to a target - check to see if | |
1478 | * there are commands waiting to be executed. | |
1479 | */ | |
1480 | ||
1481 | in2000_execute(instance); | |
1482 | break; | |
1483 | ||
1484 | ||
1485 | case CSR_RESEL_AM: | |
1486 | DB(DB_INTR, printk("RESEL")) | |
1487 | ||
1488 | /* First we have to make sure this reselection didn't */ | |
1489 | /* happen during Arbitration/Selection of some other device. */ | |
1490 | /* If yes, put losing command back on top of input_Q. */ | |
1491 | if (hostdata->level2 <= L2_NONE) { | |
1492 | ||
1493 | if (hostdata->selecting) { | |
1494 | cmd = (Scsi_Cmnd *) hostdata->selecting; | |
1495 | hostdata->selecting = NULL; | |
1496 | hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); | |
1497 | cmd->host_scribble = (uchar *) hostdata->input_Q; | |
1498 | hostdata->input_Q = cmd; | |
1499 | } | |
1500 | } | |
1501 | ||
1502 | else { | |
1503 | ||
1504 | if (cmd) { | |
1505 | if (phs == 0x00) { | |
1506 | hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); | |
1507 | cmd->host_scribble = (uchar *) hostdata->input_Q; | |
1508 | hostdata->input_Q = cmd; | |
1509 | } else { | |
1510 | printk("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---", asr, sr, phs); | |
1511 | while (1) | |
1512 | printk("\r"); | |
1513 | } | |
1514 | } | |
1515 | ||
1516 | } | |
1517 | ||
1518 | /* OK - find out which device reselected us. */ | |
1519 | ||
1520 | id = read_3393(hostdata, WD_SOURCE_ID); | |
1521 | id &= SRCID_MASK; | |
1522 | ||
1523 | /* and extract the lun from the ID message. (Note that we don't | |
1524 | * bother to check for a valid message here - I guess this is | |
1525 | * not the right way to go, but....) | |
1526 | */ | |
1527 | ||
1528 | lun = read_3393(hostdata, WD_DATA); | |
1529 | if (hostdata->level2 < L2_RESELECT) | |
1530 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | |
1531 | lun &= 7; | |
1532 | ||
1533 | /* Now we look for the command that's reconnecting. */ | |
1534 | ||
1535 | cmd = (Scsi_Cmnd *) hostdata->disconnected_Q; | |
1536 | patch = NULL; | |
1537 | while (cmd) { | |
1538 | if (id == cmd->device->id && lun == cmd->device->lun) | |
1539 | break; | |
1540 | patch = cmd; | |
1541 | cmd = (Scsi_Cmnd *) cmd->host_scribble; | |
1542 | } | |
1543 | ||
1544 | /* Hmm. Couldn't find a valid command.... What to do? */ | |
1545 | ||
1546 | if (!cmd) { | |
1547 | printk("---TROUBLE: target %d.%d not in disconnect queue---", id, lun); | |
1548 | break; | |
1549 | } | |
1550 | ||
1551 | /* Ok, found the command - now start it up again. */ | |
1552 | ||
1553 | if (patch) | |
1554 | patch->host_scribble = cmd->host_scribble; | |
1555 | else | |
1556 | hostdata->disconnected_Q = (Scsi_Cmnd *) cmd->host_scribble; | |
1557 | hostdata->connected = cmd; | |
1558 | ||
1559 | /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]' | |
1560 | * because these things are preserved over a disconnect. | |
1561 | * But we DO need to fix the DPD bit so it's correct for this command. | |
1562 | */ | |
1563 | ||
1564 | if (is_dir_out(cmd)) | |
1565 | write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id); | |
1566 | else | |
1567 | write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD); | |
1568 | if (hostdata->level2 >= L2_RESELECT) { | |
1569 | write_3393_count(hostdata, 0); /* we want a DATA_PHASE interrupt */ | |
1570 | write_3393(hostdata, WD_COMMAND_PHASE, 0x45); | |
1571 | write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); | |
1572 | hostdata->state = S_RUNNING_LEVEL2; | |
1573 | } else | |
1574 | hostdata->state = S_CONNECTED; | |
1575 | ||
1576 | DB(DB_INTR, printk("-%ld", cmd->pid)) | |
1577 | break; | |
1578 | ||
1579 | default: | |
1580 | printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs); | |
1581 | } | |
1582 | ||
1583 | write1_io(0, IO_LED_OFF); | |
1584 | ||
1585 | DB(DB_INTR, printk("} ")) | |
1586 | ||
1587 | /* release the SMP spin_lock and restore irq state */ | |
1588 | spin_unlock_irqrestore(instance->host_lock, flags); | |
1589 | return IRQ_HANDLED; | |
1590 | } | |
1591 | ||
1592 | ||
1593 | ||
1594 | #define RESET_CARD 0 | |
1595 | #define RESET_CARD_AND_BUS 1 | |
1596 | #define B_FLAG 0x80 | |
1597 | ||
1598 | /* | |
1599 | * Caller must hold instance lock! | |
1600 | */ | |
1601 | ||
1602 | static int reset_hardware(struct Scsi_Host *instance, int type) | |
1603 | { | |
1604 | struct IN2000_hostdata *hostdata; | |
1605 | int qt, x; | |
1606 | ||
1607 | hostdata = (struct IN2000_hostdata *) instance->hostdata; | |
1608 | ||
1609 | write1_io(0, IO_LED_ON); | |
1610 | if (type == RESET_CARD_AND_BUS) { | |
1611 | write1_io(0, IO_CARD_RESET); | |
1612 | x = read1_io(IO_HARDWARE); | |
1613 | } | |
1614 | x = read_3393(hostdata, WD_SCSI_STATUS); /* clear any WD intrpt */ | |
1615 | write_3393(hostdata, WD_OWN_ID, instance->this_id | OWNID_EAF | OWNID_RAF | OWNID_FS_8); | |
1616 | write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); | |
1617 | write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, calc_sync_xfer(hostdata->default_sx_per / 4, DEFAULT_SX_OFF)); | |
1618 | ||
1619 | write1_io(0, IO_FIFO_WRITE); /* clear fifo counter */ | |
1620 | write1_io(0, IO_FIFO_READ); /* start fifo out in read mode */ | |
1621 | write_3393(hostdata, WD_COMMAND, WD_CMD_RESET); | |
1622 | /* FIXME: timeout ?? */ | |
1623 | while (!(READ_AUX_STAT() & ASR_INT)) | |
1624 | cpu_relax(); /* wait for RESET to complete */ | |
1625 | ||
1626 | x = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */ | |
1627 | ||
1628 | write_3393(hostdata, WD_QUEUE_TAG, 0xa5); /* any random number */ | |
1629 | qt = read_3393(hostdata, WD_QUEUE_TAG); | |
1630 | if (qt == 0xa5) { | |
1631 | x |= B_FLAG; | |
1632 | write_3393(hostdata, WD_QUEUE_TAG, 0); | |
1633 | } | |
1634 | write_3393(hostdata, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE); | |
1635 | write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); | |
1636 | write1_io(0, IO_LED_OFF); | |
1637 | return x; | |
1638 | } | |
1639 | ||
1640 | ||
1641 | ||
1642 | static int in2000_bus_reset(Scsi_Cmnd * cmd) | |
1643 | { | |
1644 | struct Scsi_Host *instance; | |
1645 | struct IN2000_hostdata *hostdata; | |
1646 | int x; | |
68b3aa7c | 1647 | unsigned long flags; |
1da177e4 LT |
1648 | |
1649 | instance = cmd->device->host; | |
1650 | hostdata = (struct IN2000_hostdata *) instance->hostdata; | |
1651 | ||
1652 | printk(KERN_WARNING "scsi%d: Reset. ", instance->host_no); | |
1653 | ||
68b3aa7c | 1654 | spin_lock_irqsave(instance->host_lock, flags); |
1da177e4 | 1655 | |
68b3aa7c | 1656 | /* do scsi-reset here */ |
1da177e4 LT |
1657 | reset_hardware(instance, RESET_CARD_AND_BUS); |
1658 | for (x = 0; x < 8; x++) { | |
1659 | hostdata->busy[x] = 0; | |
1660 | hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF); | |
1661 | hostdata->sync_stat[x] = SS_UNSET; /* using default sync values */ | |
1662 | } | |
1663 | hostdata->input_Q = NULL; | |
1664 | hostdata->selecting = NULL; | |
1665 | hostdata->connected = NULL; | |
1666 | hostdata->disconnected_Q = NULL; | |
1667 | hostdata->state = S_UNCONNECTED; | |
1668 | hostdata->fifo = FI_FIFO_UNUSED; | |
1669 | hostdata->incoming_ptr = 0; | |
1670 | hostdata->outgoing_len = 0; | |
1671 | ||
1672 | cmd->result = DID_RESET << 16; | |
68b3aa7c JG |
1673 | |
1674 | spin_unlock_irqrestore(instance->host_lock, flags); | |
1da177e4 LT |
1675 | return SUCCESS; |
1676 | } | |
1677 | ||
8fa728a2 | 1678 | static int __in2000_abort(Scsi_Cmnd * cmd) |
1da177e4 LT |
1679 | { |
1680 | struct Scsi_Host *instance; | |
1681 | struct IN2000_hostdata *hostdata; | |
1682 | Scsi_Cmnd *tmp, *prev; | |
1683 | uchar sr, asr; | |
1684 | unsigned long timeout; | |
1685 | ||
1686 | instance = cmd->device->host; | |
1687 | hostdata = (struct IN2000_hostdata *) instance->hostdata; | |
1688 | ||
1689 | printk(KERN_DEBUG "scsi%d: Abort-", instance->host_no); | |
1690 | printk("(asr=%02x,count=%ld,resid=%d,buf_resid=%d,have_data=%d,FC=%02x)- ", READ_AUX_STAT(), read_3393_count(hostdata), cmd->SCp.this_residual, cmd->SCp.buffers_residual, cmd->SCp.have_data_in, read1_io(IO_FIFO_COUNT)); | |
1691 | ||
1692 | /* | |
1693 | * Case 1 : If the command hasn't been issued yet, we simply remove it | |
1694 | * from the inout_Q. | |
1695 | */ | |
1696 | ||
1697 | tmp = (Scsi_Cmnd *) hostdata->input_Q; | |
1698 | prev = NULL; | |
1699 | while (tmp) { | |
1700 | if (tmp == cmd) { | |
1701 | if (prev) | |
1702 | prev->host_scribble = cmd->host_scribble; | |
1703 | cmd->host_scribble = NULL; | |
1704 | cmd->result = DID_ABORT << 16; | |
1705 | printk(KERN_WARNING "scsi%d: Abort - removing command %ld from input_Q. ", instance->host_no, cmd->pid); | |
1706 | cmd->scsi_done(cmd); | |
1707 | return SUCCESS; | |
1708 | } | |
1709 | prev = tmp; | |
1710 | tmp = (Scsi_Cmnd *) tmp->host_scribble; | |
1711 | } | |
1712 | ||
1713 | /* | |
1714 | * Case 2 : If the command is connected, we're going to fail the abort | |
1715 | * and let the high level SCSI driver retry at a later time or | |
1716 | * issue a reset. | |
1717 | * | |
1718 | * Timeouts, and therefore aborted commands, will be highly unlikely | |
1719 | * and handling them cleanly in this situation would make the common | |
1720 | * case of noresets less efficient, and would pollute our code. So, | |
1721 | * we fail. | |
1722 | */ | |
1723 | ||
1724 | if (hostdata->connected == cmd) { | |
1725 | ||
1726 | printk(KERN_WARNING "scsi%d: Aborting connected command %ld - ", instance->host_no, cmd->pid); | |
1727 | ||
1728 | printk("sending wd33c93 ABORT command - "); | |
1729 | write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); | |
1730 | write_3393_cmd(hostdata, WD_CMD_ABORT); | |
1731 | ||
1732 | /* Now we have to attempt to flush out the FIFO... */ | |
1733 | ||
1734 | printk("flushing fifo - "); | |
1735 | timeout = 1000000; | |
1736 | do { | |
1737 | asr = READ_AUX_STAT(); | |
1738 | if (asr & ASR_DBR) | |
1739 | read_3393(hostdata, WD_DATA); | |
1740 | } while (!(asr & ASR_INT) && timeout-- > 0); | |
1741 | sr = read_3393(hostdata, WD_SCSI_STATUS); | |
1742 | printk("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", asr, sr, read_3393_count(hostdata), timeout); | |
1743 | ||
1744 | /* | |
1745 | * Abort command processed. | |
1746 | * Still connected. | |
1747 | * We must disconnect. | |
1748 | */ | |
1749 | ||
1750 | printk("sending wd33c93 DISCONNECT command - "); | |
1751 | write_3393_cmd(hostdata, WD_CMD_DISCONNECT); | |
1752 | ||
1753 | timeout = 1000000; | |
1754 | asr = READ_AUX_STAT(); | |
1755 | while ((asr & ASR_CIP) && timeout-- > 0) | |
1756 | asr = READ_AUX_STAT(); | |
1757 | sr = read_3393(hostdata, WD_SCSI_STATUS); | |
1758 | printk("asr=%02x, sr=%02x.", asr, sr); | |
1759 | ||
1760 | hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); | |
1761 | hostdata->connected = NULL; | |
1762 | hostdata->state = S_UNCONNECTED; | |
1763 | cmd->result = DID_ABORT << 16; | |
1764 | cmd->scsi_done(cmd); | |
1765 | ||
1766 | in2000_execute(instance); | |
1767 | ||
1768 | return SUCCESS; | |
1769 | } | |
1770 | ||
1771 | /* | |
1772 | * Case 3: If the command is currently disconnected from the bus, | |
1773 | * we're not going to expend much effort here: Let's just return | |
1774 | * an ABORT_SNOOZE and hope for the best... | |
1775 | */ | |
1776 | ||
1777 | for (tmp = (Scsi_Cmnd *) hostdata->disconnected_Q; tmp; tmp = (Scsi_Cmnd *) tmp->host_scribble) | |
1778 | if (cmd == tmp) { | |
1779 | printk(KERN_DEBUG "scsi%d: unable to abort disconnected command.\n", instance->host_no); | |
1780 | return FAILED; | |
1781 | } | |
1782 | ||
1783 | /* | |
1784 | * Case 4 : If we reached this point, the command was not found in any of | |
1785 | * the queues. | |
1786 | * | |
1787 | * We probably reached this point because of an unlikely race condition | |
1788 | * between the command completing successfully and the abortion code, | |
1789 | * so we won't panic, but we will notify the user in case something really | |
1790 | * broke. | |
1791 | */ | |
1792 | ||
1793 | in2000_execute(instance); | |
1794 | ||
1795 | printk("scsi%d: warning : SCSI command probably completed successfully" " before abortion. ", instance->host_no); | |
1796 | return SUCCESS; | |
1797 | } | |
1798 | ||
8fa728a2 JG |
1799 | static int in2000_abort(Scsi_Cmnd * cmd) |
1800 | { | |
1801 | int rc; | |
1802 | ||
1803 | spin_lock_irq(cmd->device->host->host_lock); | |
1804 | rc = __in2000_abort(cmd); | |
1805 | spin_unlock_irq(cmd->device->host->host_lock); | |
1806 | ||
1807 | return rc; | |
1808 | } | |
1da177e4 LT |
1809 | |
1810 | ||
1811 | #define MAX_IN2000_HOSTS 3 | |
1812 | #define MAX_SETUP_ARGS (sizeof(setup_args) / sizeof(char *)) | |
1813 | #define SETUP_BUFFER_SIZE 200 | |
1814 | static char setup_buffer[SETUP_BUFFER_SIZE]; | |
1815 | static char setup_used[MAX_SETUP_ARGS]; | |
1816 | static int done_setup = 0; | |
1817 | ||
1818 | static void __init in2000_setup(char *str, int *ints) | |
1819 | { | |
1820 | int i; | |
1821 | char *p1, *p2; | |
1822 | ||
1823 | strlcpy(setup_buffer, str, SETUP_BUFFER_SIZE); | |
1824 | p1 = setup_buffer; | |
1825 | i = 0; | |
1826 | while (*p1 && (i < MAX_SETUP_ARGS)) { | |
1827 | p2 = strchr(p1, ','); | |
1828 | if (p2) { | |
1829 | *p2 = '\0'; | |
1830 | if (p1 != p2) | |
1831 | setup_args[i] = p1; | |
1832 | p1 = p2 + 1; | |
1833 | i++; | |
1834 | } else { | |
1835 | setup_args[i] = p1; | |
1836 | break; | |
1837 | } | |
1838 | } | |
1839 | for (i = 0; i < MAX_SETUP_ARGS; i++) | |
1840 | setup_used[i] = 0; | |
1841 | done_setup = 1; | |
1842 | } | |
1843 | ||
1844 | ||
1845 | /* check_setup_args() returns index if key found, 0 if not | |
1846 | */ | |
1847 | ||
1848 | static int __init check_setup_args(char *key, int *val, char *buf) | |
1849 | { | |
1850 | int x; | |
1851 | char *cp; | |
1852 | ||
1853 | for (x = 0; x < MAX_SETUP_ARGS; x++) { | |
1854 | if (setup_used[x]) | |
1855 | continue; | |
1856 | if (!strncmp(setup_args[x], key, strlen(key))) | |
1857 | break; | |
1858 | } | |
1859 | if (x == MAX_SETUP_ARGS) | |
1860 | return 0; | |
1861 | setup_used[x] = 1; | |
1862 | cp = setup_args[x] + strlen(key); | |
1863 | *val = -1; | |
1864 | if (*cp != ':') | |
1865 | return ++x; | |
1866 | cp++; | |
1867 | if ((*cp >= '0') && (*cp <= '9')) { | |
1868 | *val = simple_strtoul(cp, NULL, 0); | |
1869 | } | |
1870 | return ++x; | |
1871 | } | |
1872 | ||
1873 | ||
1874 | ||
1875 | /* The "correct" (ie portable) way to access memory-mapped hardware | |
1876 | * such as the IN2000 EPROM and dip switch is through the use of | |
1877 | * special macros declared in 'asm/io.h'. We use readb() and readl() | |
1878 | * when reading from the card's BIOS area in in2000_detect(). | |
1879 | */ | |
1880 | static u32 bios_tab[] in2000__INITDATA = { | |
1881 | 0xc8000, | |
1882 | 0xd0000, | |
1883 | 0xd8000, | |
1884 | 0 | |
1885 | }; | |
1886 | ||
1887 | static unsigned short base_tab[] in2000__INITDATA = { | |
1888 | 0x220, | |
1889 | 0x200, | |
1890 | 0x110, | |
1891 | 0x100, | |
1892 | }; | |
1893 | ||
1894 | static int int_tab[] in2000__INITDATA = { | |
1895 | 15, | |
1896 | 14, | |
1897 | 11, | |
1898 | 10 | |
1899 | }; | |
1900 | ||
1901 | ||
d0be4a7d | 1902 | static int __init in2000_detect(struct scsi_host_template * tpnt) |
1da177e4 LT |
1903 | { |
1904 | struct Scsi_Host *instance; | |
1905 | struct IN2000_hostdata *hostdata; | |
1906 | int detect_count; | |
1907 | int bios; | |
1908 | int x; | |
1909 | unsigned short base; | |
1910 | uchar switches; | |
1911 | uchar hrev; | |
1912 | unsigned long flags; | |
1913 | int val; | |
1914 | char buf[32]; | |
1915 | ||
1916 | /* Thanks to help from Bill Earnest, probing for IN2000 cards is a | |
1917 | * pretty straightforward and fool-proof operation. There are 3 | |
1918 | * possible locations for the IN2000 EPROM in memory space - if we | |
1919 | * find a BIOS signature, we can read the dip switch settings from | |
1920 | * the byte at BIOS+32 (shadowed in by logic on the card). From 2 | |
1921 | * of the switch bits we get the card's address in IO space. There's | |
1922 | * an image of the dip switch there, also, so we have a way to back- | |
1923 | * check that this really is an IN2000 card. Very nifty. Use the | |
1924 | * 'ioport:xx' command-line parameter if your BIOS EPROM is absent | |
1925 | * or disabled. | |
1926 | */ | |
1927 | ||
1928 | if (!done_setup && setup_strings) | |
1929 | in2000_setup(setup_strings, NULL); | |
1930 | ||
1931 | detect_count = 0; | |
1932 | for (bios = 0; bios_tab[bios]; bios++) { | |
1933 | if (check_setup_args("ioport", &val, buf)) { | |
1934 | base = val; | |
1935 | switches = ~inb(base + IO_SWITCHES) & 0xff; | |
1936 | printk("Forcing IN2000 detection at IOport 0x%x ", base); | |
1937 | bios = 2; | |
1938 | } | |
1939 | /* | |
1940 | * There have been a couple of BIOS versions with different layouts | |
1941 | * for the obvious ID strings. We look for the 2 most common ones and | |
1942 | * hope that they cover all the cases... | |
1943 | */ | |
1944 | else if (isa_readl(bios_tab[bios] + 0x10) == 0x41564f4e || isa_readl(bios_tab[bios] + 0x30) == 0x61776c41) { | |
1945 | printk("Found IN2000 BIOS at 0x%x ", (unsigned int) bios_tab[bios]); | |
1946 | ||
1947 | /* Read the switch image that's mapped into EPROM space */ | |
1948 | ||
1949 | switches = ~((isa_readb(bios_tab[bios] + 0x20) & 0xff)); | |
1950 | ||
1951 | /* Find out where the IO space is */ | |
1952 | ||
1953 | x = switches & (SW_ADDR0 | SW_ADDR1); | |
1954 | base = base_tab[x]; | |
1955 | ||
1956 | /* Check for the IN2000 signature in IO space. */ | |
1957 | ||
1958 | x = ~inb(base + IO_SWITCHES) & 0xff; | |
1959 | if (x != switches) { | |
1960 | printk("Bad IO signature: %02x vs %02x.\n", x, switches); | |
1961 | continue; | |
1962 | } | |
1963 | } else | |
1964 | continue; | |
1965 | ||
1966 | /* OK. We have a base address for the IO ports - run a few safety checks */ | |
1967 | ||
1968 | if (!(switches & SW_BIT7)) { /* I _think_ all cards do this */ | |
1969 | printk("There is no IN-2000 SCSI card at IOport 0x%03x!\n", base); | |
1970 | continue; | |
1971 | } | |
1972 | ||
1973 | /* Let's assume any hardware version will work, although the driver | |
1974 | * has only been tested on 0x21, 0x22, 0x25, 0x26, and 0x27. We'll | |
1975 | * print out the rev number for reference later, but accept them all. | |
1976 | */ | |
1977 | ||
1978 | hrev = inb(base + IO_HARDWARE); | |
1979 | ||
1980 | /* Bit 2 tells us if interrupts are disabled */ | |
1981 | if (switches & SW_DISINT) { | |
1982 | printk("The IN-2000 SCSI card at IOport 0x%03x ", base); | |
1983 | printk("is not configured for interrupt operation!\n"); | |
1984 | printk("This driver requires an interrupt: cancelling detection.\n"); | |
1985 | continue; | |
1986 | } | |
1987 | ||
1988 | /* Ok. We accept that there's an IN2000 at ioaddr 'base'. Now | |
1989 | * initialize it. | |
1990 | */ | |
1991 | ||
1992 | tpnt->proc_name = "in2000"; | |
1993 | instance = scsi_register(tpnt, sizeof(struct IN2000_hostdata)); | |
1994 | if (instance == NULL) | |
1995 | continue; | |
1996 | detect_count++; | |
1997 | hostdata = (struct IN2000_hostdata *) instance->hostdata; | |
1998 | instance->io_port = hostdata->io_base = base; | |
1999 | hostdata->dip_switch = switches; | |
2000 | hostdata->hrev = hrev; | |
2001 | ||
2002 | write1_io(0, IO_FIFO_WRITE); /* clear fifo counter */ | |
2003 | write1_io(0, IO_FIFO_READ); /* start fifo out in read mode */ | |
2004 | write1_io(0, IO_INTR_MASK); /* allow all ints */ | |
2005 | x = int_tab[(switches & (SW_INT0 | SW_INT1)) >> SW_INT_SHIFT]; | |
2006 | if (request_irq(x, in2000_intr, SA_INTERRUPT, "in2000", instance)) { | |
2007 | printk("in2000_detect: Unable to allocate IRQ.\n"); | |
2008 | detect_count--; | |
2009 | continue; | |
2010 | } | |
2011 | instance->irq = x; | |
2012 | instance->n_io_port = 13; | |
2013 | request_region(base, 13, "in2000"); /* lock in this IO space for our use */ | |
2014 | ||
2015 | for (x = 0; x < 8; x++) { | |
2016 | hostdata->busy[x] = 0; | |
2017 | hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF); | |
2018 | hostdata->sync_stat[x] = SS_UNSET; /* using default sync values */ | |
2019 | #ifdef PROC_STATISTICS | |
2020 | hostdata->cmd_cnt[x] = 0; | |
2021 | hostdata->disc_allowed_cnt[x] = 0; | |
2022 | hostdata->disc_done_cnt[x] = 0; | |
2023 | #endif | |
2024 | } | |
2025 | hostdata->input_Q = NULL; | |
2026 | hostdata->selecting = NULL; | |
2027 | hostdata->connected = NULL; | |
2028 | hostdata->disconnected_Q = NULL; | |
2029 | hostdata->state = S_UNCONNECTED; | |
2030 | hostdata->fifo = FI_FIFO_UNUSED; | |
2031 | hostdata->level2 = L2_BASIC; | |
2032 | hostdata->disconnect = DIS_ADAPTIVE; | |
2033 | hostdata->args = DEBUG_DEFAULTS; | |
2034 | hostdata->incoming_ptr = 0; | |
2035 | hostdata->outgoing_len = 0; | |
2036 | hostdata->default_sx_per = DEFAULT_SX_PER; | |
2037 | ||
2038 | /* Older BIOS's had a 'sync on/off' switch - use its setting */ | |
2039 | ||
2040 | if (isa_readl(bios_tab[bios] + 0x10) == 0x41564f4e && (switches & SW_SYNC_DOS5)) | |
2041 | hostdata->sync_off = 0x00; /* sync defaults to on */ | |
2042 | else | |
2043 | hostdata->sync_off = 0xff; /* sync defaults to off */ | |
2044 | ||
2045 | #ifdef PROC_INTERFACE | |
2046 | hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS | PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP; | |
2047 | #ifdef PROC_STATISTICS | |
2048 | hostdata->int_cnt = 0; | |
2049 | #endif | |
2050 | #endif | |
2051 | ||
2052 | if (check_setup_args("nosync", &val, buf)) | |
2053 | hostdata->sync_off = val; | |
2054 | ||
2055 | if (check_setup_args("period", &val, buf)) | |
2056 | hostdata->default_sx_per = sx_table[round_period((unsigned int) val)].period_ns; | |
2057 | ||
2058 | if (check_setup_args("disconnect", &val, buf)) { | |
2059 | if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS)) | |
2060 | hostdata->disconnect = val; | |
2061 | else | |
2062 | hostdata->disconnect = DIS_ADAPTIVE; | |
2063 | } | |
2064 | ||
2065 | if (check_setup_args("noreset", &val, buf)) | |
2066 | hostdata->args ^= A_NO_SCSI_RESET; | |
2067 | ||
2068 | if (check_setup_args("level2", &val, buf)) | |
2069 | hostdata->level2 = val; | |
2070 | ||
2071 | if (check_setup_args("debug", &val, buf)) | |
2072 | hostdata->args = (val & DB_MASK); | |
2073 | ||
2074 | #ifdef PROC_INTERFACE | |
2075 | if (check_setup_args("proc", &val, buf)) | |
2076 | hostdata->proc = val; | |
2077 | #endif | |
2078 | ||
2079 | ||
2080 | /* FIXME: not strictly needed I think but the called code expects | |
2081 | to be locked */ | |
2082 | spin_lock_irqsave(instance->host_lock, flags); | |
2083 | x = reset_hardware(instance, (hostdata->args & A_NO_SCSI_RESET) ? RESET_CARD : RESET_CARD_AND_BUS); | |
2084 | spin_unlock_irqrestore(instance->host_lock, flags); | |
2085 | ||
2086 | hostdata->microcode = read_3393(hostdata, WD_CDB_1); | |
2087 | if (x & 0x01) { | |
2088 | if (x & B_FLAG) | |
2089 | hostdata->chip = C_WD33C93B; | |
2090 | else | |
2091 | hostdata->chip = C_WD33C93A; | |
2092 | } else | |
2093 | hostdata->chip = C_WD33C93; | |
2094 | ||
2095 | printk("dip_switch=%02x irq=%d ioport=%02x floppy=%s sync/DOS5=%s ", (switches & 0x7f), instance->irq, hostdata->io_base, (switches & SW_FLOPPY) ? "Yes" : "No", (switches & SW_SYNC_DOS5) ? "Yes" : "No"); | |
2096 | printk("hardware_ver=%02x chip=%s microcode=%02x\n", hrev, (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip == C_WD33C93A) ? "WD33c93A" : (hostdata->chip == C_WD33C93B) ? "WD33c93B" : "unknown", hostdata->microcode); | |
2097 | #ifdef DEBUGGING_ON | |
2098 | printk("setup_args = "); | |
2099 | for (x = 0; x < MAX_SETUP_ARGS; x++) | |
2100 | printk("%s,", setup_args[x]); | |
2101 | printk("\n"); | |
2102 | #endif | |
2103 | if (hostdata->sync_off == 0xff) | |
2104 | printk("Sync-transfer DISABLED on all devices: ENABLE from command-line\n"); | |
2105 | printk("IN2000 driver version %s - %s\n", IN2000_VERSION, IN2000_DATE); | |
2106 | } | |
2107 | ||
2108 | return detect_count; | |
2109 | } | |
2110 | ||
2111 | static int in2000_release(struct Scsi_Host *shost) | |
2112 | { | |
2113 | if (shost->irq) | |
2114 | free_irq(shost->irq, shost); | |
2115 | if (shost->io_port && shost->n_io_port) | |
2116 | release_region(shost->io_port, shost->n_io_port); | |
2117 | return 0; | |
2118 | } | |
2119 | ||
2120 | /* NOTE: I lifted this function straight out of the old driver, | |
2121 | * and have not tested it. Presumably it does what it's | |
2122 | * supposed to do... | |
2123 | */ | |
2124 | ||
2125 | static int in2000_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *iinfo) | |
2126 | { | |
2127 | int size; | |
2128 | ||
2129 | size = capacity; | |
2130 | iinfo[0] = 64; | |
2131 | iinfo[1] = 32; | |
2132 | iinfo[2] = size >> 11; | |
2133 | ||
2134 | /* This should approximate the large drive handling that the DOS ASPI manager | |
2135 | uses. Drives very near the boundaries may not be handled correctly (i.e. | |
2136 | near 2.0 Gb and 4.0 Gb) */ | |
2137 | ||
2138 | if (iinfo[2] > 1024) { | |
2139 | iinfo[0] = 64; | |
2140 | iinfo[1] = 63; | |
2141 | iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]); | |
2142 | } | |
2143 | if (iinfo[2] > 1024) { | |
2144 | iinfo[0] = 128; | |
2145 | iinfo[1] = 63; | |
2146 | iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]); | |
2147 | } | |
2148 | if (iinfo[2] > 1024) { | |
2149 | iinfo[0] = 255; | |
2150 | iinfo[1] = 63; | |
2151 | iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]); | |
2152 | } | |
2153 | return 0; | |
2154 | } | |
2155 | ||
2156 | ||
2157 | static int in2000_proc_info(struct Scsi_Host *instance, char *buf, char **start, off_t off, int len, int in) | |
2158 | { | |
2159 | ||
2160 | #ifdef PROC_INTERFACE | |
2161 | ||
2162 | char *bp; | |
2163 | char tbuf[128]; | |
2164 | unsigned long flags; | |
2165 | struct IN2000_hostdata *hd; | |
2166 | Scsi_Cmnd *cmd; | |
2167 | int x, i; | |
2168 | static int stop = 0; | |
2169 | ||
2170 | hd = (struct IN2000_hostdata *) instance->hostdata; | |
2171 | ||
2172 | /* If 'in' is TRUE we need to _read_ the proc file. We accept the following | |
2173 | * keywords (same format as command-line, but only ONE per read): | |
2174 | * debug | |
2175 | * disconnect | |
2176 | * period | |
2177 | * resync | |
2178 | * proc | |
2179 | */ | |
2180 | ||
2181 | if (in) { | |
2182 | buf[len] = '\0'; | |
2183 | bp = buf; | |
2184 | if (!strncmp(bp, "debug:", 6)) { | |
2185 | bp += 6; | |
2186 | hd->args = simple_strtoul(bp, NULL, 0) & DB_MASK; | |
2187 | } else if (!strncmp(bp, "disconnect:", 11)) { | |
2188 | bp += 11; | |
2189 | x = simple_strtoul(bp, NULL, 0); | |
2190 | if (x < DIS_NEVER || x > DIS_ALWAYS) | |
2191 | x = DIS_ADAPTIVE; | |
2192 | hd->disconnect = x; | |
2193 | } else if (!strncmp(bp, "period:", 7)) { | |
2194 | bp += 7; | |
2195 | x = simple_strtoul(bp, NULL, 0); | |
2196 | hd->default_sx_per = sx_table[round_period((unsigned int) x)].period_ns; | |
2197 | } else if (!strncmp(bp, "resync:", 7)) { | |
2198 | bp += 7; | |
2199 | x = simple_strtoul(bp, NULL, 0); | |
2200 | for (i = 0; i < 7; i++) | |
2201 | if (x & (1 << i)) | |
2202 | hd->sync_stat[i] = SS_UNSET; | |
2203 | } else if (!strncmp(bp, "proc:", 5)) { | |
2204 | bp += 5; | |
2205 | hd->proc = simple_strtoul(bp, NULL, 0); | |
2206 | } else if (!strncmp(bp, "level2:", 7)) { | |
2207 | bp += 7; | |
2208 | hd->level2 = simple_strtoul(bp, NULL, 0); | |
2209 | } | |
2210 | return len; | |
2211 | } | |
2212 | ||
2213 | spin_lock_irqsave(instance->host_lock, flags); | |
2214 | bp = buf; | |
2215 | *bp = '\0'; | |
2216 | if (hd->proc & PR_VERSION) { | |
2217 | sprintf(tbuf, "\nVersion %s - %s. Compiled %s %s", IN2000_VERSION, IN2000_DATE, __DATE__, __TIME__); | |
2218 | strcat(bp, tbuf); | |
2219 | } | |
2220 | if (hd->proc & PR_INFO) { | |
2221 | sprintf(tbuf, "\ndip_switch=%02x: irq=%d io=%02x floppy=%s sync/DOS5=%s", (hd->dip_switch & 0x7f), instance->irq, hd->io_base, (hd->dip_switch & 0x40) ? "Yes" : "No", (hd->dip_switch & 0x20) ? "Yes" : "No"); | |
2222 | strcat(bp, tbuf); | |
2223 | strcat(bp, "\nsync_xfer[] = "); | |
2224 | for (x = 0; x < 7; x++) { | |
2225 | sprintf(tbuf, "\t%02x", hd->sync_xfer[x]); | |
2226 | strcat(bp, tbuf); | |
2227 | } | |
2228 | strcat(bp, "\nsync_stat[] = "); | |
2229 | for (x = 0; x < 7; x++) { | |
2230 | sprintf(tbuf, "\t%02x", hd->sync_stat[x]); | |
2231 | strcat(bp, tbuf); | |
2232 | } | |
2233 | } | |
2234 | #ifdef PROC_STATISTICS | |
2235 | if (hd->proc & PR_STATISTICS) { | |
2236 | strcat(bp, "\ncommands issued: "); | |
2237 | for (x = 0; x < 7; x++) { | |
2238 | sprintf(tbuf, "\t%ld", hd->cmd_cnt[x]); | |
2239 | strcat(bp, tbuf); | |
2240 | } | |
2241 | strcat(bp, "\ndisconnects allowed:"); | |
2242 | for (x = 0; x < 7; x++) { | |
2243 | sprintf(tbuf, "\t%ld", hd->disc_allowed_cnt[x]); | |
2244 | strcat(bp, tbuf); | |
2245 | } | |
2246 | strcat(bp, "\ndisconnects done: "); | |
2247 | for (x = 0; x < 7; x++) { | |
2248 | sprintf(tbuf, "\t%ld", hd->disc_done_cnt[x]); | |
2249 | strcat(bp, tbuf); | |
2250 | } | |
2251 | sprintf(tbuf, "\ninterrupts: \t%ld", hd->int_cnt); | |
2252 | strcat(bp, tbuf); | |
2253 | } | |
2254 | #endif | |
2255 | if (hd->proc & PR_CONNECTED) { | |
2256 | strcat(bp, "\nconnected: "); | |
2257 | if (hd->connected) { | |
2258 | cmd = (Scsi_Cmnd *) hd->connected; | |
2259 | sprintf(tbuf, " %ld-%d:%d(%02x)", cmd->pid, cmd->device->id, cmd->device->lun, cmd->cmnd[0]); | |
2260 | strcat(bp, tbuf); | |
2261 | } | |
2262 | } | |
2263 | if (hd->proc & PR_INPUTQ) { | |
2264 | strcat(bp, "\ninput_Q: "); | |
2265 | cmd = (Scsi_Cmnd *) hd->input_Q; | |
2266 | while (cmd) { | |
2267 | sprintf(tbuf, " %ld-%d:%d(%02x)", cmd->pid, cmd->device->id, cmd->device->lun, cmd->cmnd[0]); | |
2268 | strcat(bp, tbuf); | |
2269 | cmd = (Scsi_Cmnd *) cmd->host_scribble; | |
2270 | } | |
2271 | } | |
2272 | if (hd->proc & PR_DISCQ) { | |
2273 | strcat(bp, "\ndisconnected_Q:"); | |
2274 | cmd = (Scsi_Cmnd *) hd->disconnected_Q; | |
2275 | while (cmd) { | |
2276 | sprintf(tbuf, " %ld-%d:%d(%02x)", cmd->pid, cmd->device->id, cmd->device->lun, cmd->cmnd[0]); | |
2277 | strcat(bp, tbuf); | |
2278 | cmd = (Scsi_Cmnd *) cmd->host_scribble; | |
2279 | } | |
2280 | } | |
2281 | if (hd->proc & PR_TEST) { | |
2282 | ; /* insert your own custom function here */ | |
2283 | } | |
2284 | strcat(bp, "\n"); | |
2285 | spin_unlock_irqrestore(instance->host_lock, flags); | |
2286 | *start = buf; | |
2287 | if (stop) { | |
2288 | stop = 0; | |
2289 | return 0; /* return 0 to signal end-of-file */ | |
2290 | } | |
2291 | if (off > 0x40000) /* ALWAYS stop after 256k bytes have been read */ | |
2292 | stop = 1; | |
2293 | if (hd->proc & PR_STOP) /* stop every other time */ | |
2294 | stop = 1; | |
2295 | return strlen(bp); | |
2296 | ||
2297 | #else /* PROC_INTERFACE */ | |
2298 | ||
2299 | return 0; | |
2300 | ||
2301 | #endif /* PROC_INTERFACE */ | |
2302 | ||
2303 | } | |
2304 | ||
2305 | MODULE_LICENSE("GPL"); | |
2306 | ||
2307 | ||
d0be4a7d | 2308 | static struct scsi_host_template driver_template = { |
1da177e4 LT |
2309 | .proc_name = "in2000", |
2310 | .proc_info = in2000_proc_info, | |
2311 | .name = "Always IN2000", | |
2312 | .detect = in2000_detect, | |
2313 | .release = in2000_release, | |
2314 | .queuecommand = in2000_queuecommand, | |
2315 | .eh_abort_handler = in2000_abort, | |
2316 | .eh_bus_reset_handler = in2000_bus_reset, | |
1da177e4 LT |
2317 | .bios_param = in2000_biosparam, |
2318 | .can_queue = IN2000_CAN_Q, | |
2319 | .this_id = IN2000_HOST_ID, | |
2320 | .sg_tablesize = IN2000_SG, | |
2321 | .cmd_per_lun = IN2000_CPL, | |
2322 | .use_clustering = DISABLE_CLUSTERING, | |
2323 | }; | |
2324 | #include "scsi_module.c" |