]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/scsi/isci/host.c
isci: replace isci_timer list with proper embedded timers
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / isci / host.c
CommitLineData
6f231dda
DW
1/*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
cc9203bf
DW
55#include <linux/device.h>
56#include <scsi/sas.h>
57#include "host.h"
6f231dda 58#include "isci.h"
6f231dda 59#include "port.h"
6f231dda 60#include "host.h"
d044af17 61#include "probe_roms.h"
cc9203bf
DW
62#include "remote_device.h"
63#include "request.h"
cc9203bf
DW
64#include "scu_completion_codes.h"
65#include "scu_event_codes.h"
63a3a15f 66#include "registers.h"
cc9203bf
DW
67#include "scu_remote_node_context.h"
68#include "scu_task_context.h"
69#include "scu_unsolicited_frame.h"
ce2b3261 70#include "timers.h"
6f231dda 71
cc9203bf
DW
72#define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
73
74/**
75 * smu_dcc_get_max_ports() -
76 *
77 * This macro returns the maximum number of logical ports supported by the
78 * hardware. The caller passes in the value read from the device context
79 * capacity register and this macro will mash and shift the value appropriately.
80 */
81#define smu_dcc_get_max_ports(dcc_value) \
82 (\
83 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
84 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
85 )
86
87/**
88 * smu_dcc_get_max_task_context() -
89 *
90 * This macro returns the maximum number of task contexts supported by the
91 * hardware. The caller passes in the value read from the device context
92 * capacity register and this macro will mash and shift the value appropriately.
93 */
94#define smu_dcc_get_max_task_context(dcc_value) \
95 (\
96 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
97 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
98 )
99
100/**
101 * smu_dcc_get_max_remote_node_context() -
102 *
103 * This macro returns the maximum number of remote node contexts supported by
104 * the hardware. The caller passes in the value read from the device context
105 * capacity register and this macro will mash and shift the value appropriately.
106 */
107#define smu_dcc_get_max_remote_node_context(dcc_value) \
108 (\
109 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
110 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
111 )
112
113
114#define SCIC_SDS_CONTROLLER_MIN_TIMER_COUNT 3
115#define SCIC_SDS_CONTROLLER_MAX_TIMER_COUNT 3
116
117/**
118 *
119 *
120 * The number of milliseconds to wait for a phy to start.
121 */
122#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
123
124/**
125 *
126 *
127 * The number of milliseconds to wait while a given phy is consuming power
128 * before allowing another set of phys to consume power. Ultimately, this will
129 * be specified by OEM parameter.
130 */
131#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
132
133/**
134 * NORMALIZE_PUT_POINTER() -
135 *
136 * This macro will normalize the completion queue put pointer so its value can
137 * be used as an array inde
138 */
139#define NORMALIZE_PUT_POINTER(x) \
140 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
141
142
143/**
144 * NORMALIZE_EVENT_POINTER() -
145 *
146 * This macro will normalize the completion queue event entry so its value can
147 * be used as an index.
148 */
149#define NORMALIZE_EVENT_POINTER(x) \
150 (\
151 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
152 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
153 )
154
155/**
156 * INCREMENT_COMPLETION_QUEUE_GET() -
157 *
158 * This macro will increment the controllers completion queue index value and
159 * possibly toggle the cycle bit if the completion queue index wraps back to 0.
160 */
161#define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \
162 INCREMENT_QUEUE_GET(\
163 (index), \
164 (cycle), \
165 (controller)->completion_queue_entries, \
166 SMU_CQGR_CYCLE_BIT \
167 )
168
169/**
170 * INCREMENT_EVENT_QUEUE_GET() -
171 *
172 * This macro will increment the controllers event queue index value and
173 * possibly toggle the event cycle bit if the event queue index wraps back to 0.
174 */
175#define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \
176 INCREMENT_QUEUE_GET(\
177 (index), \
178 (cycle), \
179 (controller)->completion_event_entries, \
180 SMU_CQGR_EVENT_CYCLE_BIT \
181 )
182
183
184/**
185 * NORMALIZE_GET_POINTER() -
186 *
187 * This macro will normalize the completion queue get pointer so its value can
188 * be used as an index into an array
189 */
190#define NORMALIZE_GET_POINTER(x) \
191 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
192
193/**
194 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
195 *
196 * This macro will normalize the completion queue cycle pointer so it matches
197 * the completion queue cycle bit
198 */
199#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
200 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
201
202/**
203 * COMPLETION_QUEUE_CYCLE_BIT() -
204 *
205 * This macro will return the cycle bit of the completion queue entry
206 */
207#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
208
209static bool scic_sds_controller_completion_queue_has_entries(
210 struct scic_sds_controller *scic)
211{
212 u32 get_value = scic->completion_queue_get;
213 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
214
215 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
216 COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index]))
217 return true;
218
219 return false;
220}
221
222static bool scic_sds_controller_isr(struct scic_sds_controller *scic)
223{
224 if (scic_sds_controller_completion_queue_has_entries(scic)) {
225 return true;
226 } else {
227 /*
228 * we have a spurious interrupt it could be that we have already
229 * emptied the completion queue from a previous interrupt */
230 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
231
232 /*
233 * There is a race in the hardware that could cause us not to be notified
234 * of an interrupt completion if we do not take this step. We will mask
235 * then unmask the interrupts so if there is another interrupt pending
236 * the clearing of the interrupt source we get the next interrupt message. */
237 writel(0xFF000000, &scic->smu_registers->interrupt_mask);
238 writel(0, &scic->smu_registers->interrupt_mask);
239 }
240
241 return false;
242}
243
c7ef4031 244irqreturn_t isci_msix_isr(int vec, void *data)
6f231dda 245{
c7ef4031 246 struct isci_host *ihost = data;
c7ef4031 247
cc3dbd0a 248 if (scic_sds_controller_isr(&ihost->sci))
0cf89d1d 249 tasklet_schedule(&ihost->completion_tasklet);
6f231dda 250
c7ef4031 251 return IRQ_HANDLED;
6f231dda
DW
252}
253
cc9203bf
DW
254static bool scic_sds_controller_error_isr(struct scic_sds_controller *scic)
255{
256 u32 interrupt_status;
257
258 interrupt_status =
259 readl(&scic->smu_registers->interrupt_status);
260 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
261
262 if (interrupt_status != 0) {
263 /*
264 * There is an error interrupt pending so let it through and handle
265 * in the callback */
266 return true;
267 }
268
269 /*
270 * There is a race in the hardware that could cause us not to be notified
271 * of an interrupt completion if we do not take this step. We will mask
272 * then unmask the error interrupts so if there was another interrupt
273 * pending we will be notified.
274 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
275 writel(0xff, &scic->smu_registers->interrupt_mask);
276 writel(0, &scic->smu_registers->interrupt_mask);
277
278 return false;
279}
280
281static void scic_sds_controller_task_completion(struct scic_sds_controller *scic,
282 u32 completion_entry)
283{
284 u32 index;
285 struct scic_sds_request *io_request;
286
287 index = SCU_GET_COMPLETION_INDEX(completion_entry);
288 io_request = scic->io_request_table[index];
289
290 /* Make sure that we really want to process this IO request */
291 if (
292 (io_request != NULL)
293 && (io_request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG)
294 && (
295 scic_sds_io_tag_get_sequence(io_request->io_tag)
296 == scic->io_request_sequence[index]
297 )
298 ) {
299 /* Yep this is a valid io request pass it along to the io request handler */
300 scic_sds_io_request_tc_completion(io_request, completion_entry);
301 }
302}
303
304static void scic_sds_controller_sdma_completion(struct scic_sds_controller *scic,
305 u32 completion_entry)
306{
307 u32 index;
308 struct scic_sds_request *io_request;
309 struct scic_sds_remote_device *device;
310
311 index = SCU_GET_COMPLETION_INDEX(completion_entry);
312
313 switch (scu_get_command_request_type(completion_entry)) {
314 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
315 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
316 io_request = scic->io_request_table[index];
317 dev_warn(scic_to_dev(scic),
318 "%s: SCIC SDS Completion type SDMA %x for io request "
319 "%p\n",
320 __func__,
321 completion_entry,
322 io_request);
323 /* @todo For a post TC operation we need to fail the IO
324 * request
325 */
326 break;
327
328 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
329 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
330 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
331 device = scic->device_table[index];
332 dev_warn(scic_to_dev(scic),
333 "%s: SCIC SDS Completion type SDMA %x for remote "
334 "device %p\n",
335 __func__,
336 completion_entry,
337 device);
338 /* @todo For a port RNC operation we need to fail the
339 * device
340 */
341 break;
342
343 default:
344 dev_warn(scic_to_dev(scic),
345 "%s: SCIC SDS Completion unknown SDMA completion "
346 "type %x\n",
347 __func__,
348 completion_entry);
349 break;
350
351 }
352}
353
354static void scic_sds_controller_unsolicited_frame(struct scic_sds_controller *scic,
355 u32 completion_entry)
356{
357 u32 index;
358 u32 frame_index;
359
360 struct isci_host *ihost = scic_to_ihost(scic);
361 struct scu_unsolicited_frame_header *frame_header;
362 struct scic_sds_phy *phy;
363 struct scic_sds_remote_device *device;
364
365 enum sci_status result = SCI_FAILURE;
366
367 frame_index = SCU_GET_FRAME_INDEX(completion_entry);
368
369 frame_header = scic->uf_control.buffers.array[frame_index].header;
370 scic->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
371
372 if (SCU_GET_FRAME_ERROR(completion_entry)) {
373 /*
374 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
375 * / this cause a problem? We expect the phy initialization will
376 * / fail if there is an error in the frame. */
377 scic_sds_controller_release_frame(scic, frame_index);
378 return;
379 }
380
381 if (frame_header->is_address_frame) {
382 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
383 phy = &ihost->phys[index].sci;
384 result = scic_sds_phy_frame_handler(phy, frame_index);
385 } else {
386
387 index = SCU_GET_COMPLETION_INDEX(completion_entry);
388
389 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
390 /*
391 * This is a signature fis or a frame from a direct attached SATA
392 * device that has not yet been created. In either case forwared
393 * the frame to the PE and let it take care of the frame data. */
394 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
395 phy = &ihost->phys[index].sci;
396 result = scic_sds_phy_frame_handler(phy, frame_index);
397 } else {
398 if (index < scic->remote_node_entries)
399 device = scic->device_table[index];
400 else
401 device = NULL;
402
403 if (device != NULL)
404 result = scic_sds_remote_device_frame_handler(device, frame_index);
405 else
406 scic_sds_controller_release_frame(scic, frame_index);
407 }
408 }
409
410 if (result != SCI_SUCCESS) {
411 /*
412 * / @todo Is there any reason to report some additional error message
413 * / when we get this failure notifiction? */
414 }
415}
416
417static void scic_sds_controller_event_completion(struct scic_sds_controller *scic,
418 u32 completion_entry)
419{
420 struct isci_host *ihost = scic_to_ihost(scic);
421 struct scic_sds_request *io_request;
422 struct scic_sds_remote_device *device;
423 struct scic_sds_phy *phy;
424 u32 index;
425
426 index = SCU_GET_COMPLETION_INDEX(completion_entry);
427
428 switch (scu_get_event_type(completion_entry)) {
429 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
430 /* / @todo The driver did something wrong and we need to fix the condtion. */
431 dev_err(scic_to_dev(scic),
432 "%s: SCIC Controller 0x%p received SMU command error "
433 "0x%x\n",
434 __func__,
435 scic,
436 completion_entry);
437 break;
438
439 case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
440 case SCU_EVENT_TYPE_SMU_ERROR:
441 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
442 /*
443 * / @todo This is a hardware failure and its likely that we want to
444 * / reset the controller. */
445 dev_err(scic_to_dev(scic),
446 "%s: SCIC Controller 0x%p received fatal controller "
447 "event 0x%x\n",
448 __func__,
449 scic,
450 completion_entry);
451 break;
452
453 case SCU_EVENT_TYPE_TRANSPORT_ERROR:
454 io_request = scic->io_request_table[index];
455 scic_sds_io_request_event_handler(io_request, completion_entry);
456 break;
457
458 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
459 switch (scu_get_event_specifier(completion_entry)) {
460 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
461 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
462 io_request = scic->io_request_table[index];
463 if (io_request != NULL)
464 scic_sds_io_request_event_handler(io_request, completion_entry);
465 else
466 dev_warn(scic_to_dev(scic),
467 "%s: SCIC Controller 0x%p received "
468 "event 0x%x for io request object "
469 "that doesnt exist.\n",
470 __func__,
471 scic,
472 completion_entry);
473
474 break;
475
476 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
477 device = scic->device_table[index];
478 if (device != NULL)
479 scic_sds_remote_device_event_handler(device, completion_entry);
480 else
481 dev_warn(scic_to_dev(scic),
482 "%s: SCIC Controller 0x%p received "
483 "event 0x%x for remote device object "
484 "that doesnt exist.\n",
485 __func__,
486 scic,
487 completion_entry);
488
489 break;
490 }
491 break;
492
493 case SCU_EVENT_TYPE_BROADCAST_CHANGE:
494 /*
495 * direct the broadcast change event to the phy first and then let
496 * the phy redirect the broadcast change to the port object */
497 case SCU_EVENT_TYPE_ERR_CNT_EVENT:
498 /*
499 * direct error counter event to the phy object since that is where
500 * we get the event notification. This is a type 4 event. */
501 case SCU_EVENT_TYPE_OSSP_EVENT:
502 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
503 phy = &ihost->phys[index].sci;
504 scic_sds_phy_event_handler(phy, completion_entry);
505 break;
506
507 case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
508 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
509 case SCU_EVENT_TYPE_RNC_OPS_MISC:
510 if (index < scic->remote_node_entries) {
511 device = scic->device_table[index];
512
513 if (device != NULL)
514 scic_sds_remote_device_event_handler(device, completion_entry);
515 } else
516 dev_err(scic_to_dev(scic),
517 "%s: SCIC Controller 0x%p received event 0x%x "
518 "for remote device object 0x%0x that doesnt "
519 "exist.\n",
520 __func__,
521 scic,
522 completion_entry,
523 index);
524
525 break;
526
527 default:
528 dev_warn(scic_to_dev(scic),
529 "%s: SCIC Controller received unknown event code %x\n",
530 __func__,
531 completion_entry);
532 break;
533 }
534}
535
536
537
538static void scic_sds_controller_process_completions(struct scic_sds_controller *scic)
539{
540 u32 completion_count = 0;
541 u32 completion_entry;
542 u32 get_index;
543 u32 get_cycle;
544 u32 event_index;
545 u32 event_cycle;
546
547 dev_dbg(scic_to_dev(scic),
548 "%s: completion queue begining get:0x%08x\n",
549 __func__,
550 scic->completion_queue_get);
551
552 /* Get the component parts of the completion queue */
553 get_index = NORMALIZE_GET_POINTER(scic->completion_queue_get);
554 get_cycle = SMU_CQGR_CYCLE_BIT & scic->completion_queue_get;
555
556 event_index = NORMALIZE_EVENT_POINTER(scic->completion_queue_get);
557 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & scic->completion_queue_get;
558
559 while (
560 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
561 == COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index])
562 ) {
563 completion_count++;
564
565 completion_entry = scic->completion_queue[get_index];
566 INCREMENT_COMPLETION_QUEUE_GET(scic, get_index, get_cycle);
567
568 dev_dbg(scic_to_dev(scic),
569 "%s: completion queue entry:0x%08x\n",
570 __func__,
571 completion_entry);
572
573 switch (SCU_GET_COMPLETION_TYPE(completion_entry)) {
574 case SCU_COMPLETION_TYPE_TASK:
575 scic_sds_controller_task_completion(scic, completion_entry);
576 break;
577
578 case SCU_COMPLETION_TYPE_SDMA:
579 scic_sds_controller_sdma_completion(scic, completion_entry);
580 break;
581
582 case SCU_COMPLETION_TYPE_UFI:
583 scic_sds_controller_unsolicited_frame(scic, completion_entry);
584 break;
585
586 case SCU_COMPLETION_TYPE_EVENT:
587 INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
588 scic_sds_controller_event_completion(scic, completion_entry);
589 break;
590
591 case SCU_COMPLETION_TYPE_NOTIFY:
592 /*
593 * Presently we do the same thing with a notify event that we do with the
594 * other event codes. */
595 INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
596 scic_sds_controller_event_completion(scic, completion_entry);
597 break;
598
599 default:
600 dev_warn(scic_to_dev(scic),
601 "%s: SCIC Controller received unknown "
602 "completion type %x\n",
603 __func__,
604 completion_entry);
605 break;
606 }
607 }
608
609 /* Update the get register if we completed one or more entries */
610 if (completion_count > 0) {
611 scic->completion_queue_get =
612 SMU_CQGR_GEN_BIT(ENABLE) |
613 SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
614 event_cycle |
615 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index) |
616 get_cycle |
617 SMU_CQGR_GEN_VAL(POINTER, get_index);
618
619 writel(scic->completion_queue_get,
620 &scic->smu_registers->completion_queue_get);
621
622 }
623
624 dev_dbg(scic_to_dev(scic),
625 "%s: completion queue ending get:0x%08x\n",
626 __func__,
627 scic->completion_queue_get);
628
629}
630
631static void scic_sds_controller_error_handler(struct scic_sds_controller *scic)
632{
633 u32 interrupt_status;
634
635 interrupt_status =
636 readl(&scic->smu_registers->interrupt_status);
637
638 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
639 scic_sds_controller_completion_queue_has_entries(scic)) {
640
641 scic_sds_controller_process_completions(scic);
642 writel(SMU_ISR_QUEUE_SUSPEND, &scic->smu_registers->interrupt_status);
643 } else {
644 dev_err(scic_to_dev(scic), "%s: status: %#x\n", __func__,
645 interrupt_status);
646
647 sci_base_state_machine_change_state(&scic->state_machine,
648 SCI_BASE_CONTROLLER_STATE_FAILED);
649
650 return;
651 }
652
653 /* If we dont process any completions I am not sure that we want to do this.
654 * We are in the middle of a hardware fault and should probably be reset.
655 */
656 writel(0, &scic->smu_registers->interrupt_mask);
657}
658
c7ef4031 659irqreturn_t isci_intx_isr(int vec, void *data)
6f231dda 660{
6f231dda 661 irqreturn_t ret = IRQ_NONE;
31e824ed 662 struct isci_host *ihost = data;
cc3dbd0a 663 struct scic_sds_controller *scic = &ihost->sci;
c7ef4031 664
31e824ed
DW
665 if (scic_sds_controller_isr(scic)) {
666 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
667 tasklet_schedule(&ihost->completion_tasklet);
668 ret = IRQ_HANDLED;
669 } else if (scic_sds_controller_error_isr(scic)) {
670 spin_lock(&ihost->scic_lock);
671 scic_sds_controller_error_handler(scic);
672 spin_unlock(&ihost->scic_lock);
673 ret = IRQ_HANDLED;
6f231dda 674 }
92f4f0f5 675
6f231dda
DW
676 return ret;
677}
678
92f4f0f5
DW
679irqreturn_t isci_error_isr(int vec, void *data)
680{
681 struct isci_host *ihost = data;
92f4f0f5 682
cc3dbd0a
AW
683 if (scic_sds_controller_error_isr(&ihost->sci))
684 scic_sds_controller_error_handler(&ihost->sci);
92f4f0f5
DW
685
686 return IRQ_HANDLED;
687}
6f231dda
DW
688
689/**
690 * isci_host_start_complete() - This function is called by the core library,
691 * through the ISCI Module, to indicate controller start status.
692 * @isci_host: This parameter specifies the ISCI host object
693 * @completion_status: This parameter specifies the completion status from the
694 * core library.
695 *
696 */
cc9203bf 697static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
6f231dda 698{
0cf89d1d
DW
699 if (completion_status != SCI_SUCCESS)
700 dev_info(&ihost->pdev->dev,
701 "controller start timed out, continuing...\n");
702 isci_host_change_state(ihost, isci_ready);
703 clear_bit(IHOST_START_PENDING, &ihost->flags);
704 wake_up(&ihost->eventq);
6f231dda
DW
705}
706
c7ef4031 707int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
6f231dda 708{
4393aa4e 709 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
6f231dda 710
77950f51 711 if (test_bit(IHOST_START_PENDING, &ihost->flags))
6f231dda 712 return 0;
6f231dda 713
77950f51
EN
714 /* todo: use sas_flush_discovery once it is upstream */
715 scsi_flush_work(shost);
716
717 scsi_flush_work(shost);
6f231dda 718
0cf89d1d
DW
719 dev_dbg(&ihost->pdev->dev,
720 "%s: ihost->status = %d, time = %ld\n",
721 __func__, isci_host_get_state(ihost), time);
6f231dda 722
6f231dda
DW
723 return 1;
724
725}
726
cc9203bf
DW
727/**
728 * scic_controller_get_suggested_start_timeout() - This method returns the
729 * suggested scic_controller_start() timeout amount. The user is free to
730 * use any timeout value, but this method provides the suggested minimum
731 * start timeout value. The returned value is based upon empirical
732 * information determined as a result of interoperability testing.
733 * @controller: the handle to the controller object for which to return the
734 * suggested start timeout.
735 *
736 * This method returns the number of milliseconds for the suggested start
737 * operation timeout.
738 */
739static u32 scic_controller_get_suggested_start_timeout(
740 struct scic_sds_controller *sc)
741{
742 /* Validate the user supplied parameters. */
743 if (sc == NULL)
744 return 0;
745
746 /*
747 * The suggested minimum timeout value for a controller start operation:
748 *
749 * Signature FIS Timeout
750 * + Phy Start Timeout
751 * + Number of Phy Spin Up Intervals
752 * ---------------------------------
753 * Number of milliseconds for the controller start operation.
754 *
755 * NOTE: The number of phy spin up intervals will be equivalent
756 * to the number of phys divided by the number phys allowed
757 * per interval - 1 (once OEM parameters are supported).
758 * Currently we assume only 1 phy per interval. */
759
760 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
761 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
762 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
763}
764
765static void scic_controller_enable_interrupts(
766 struct scic_sds_controller *scic)
767{
768 BUG_ON(scic->smu_registers == NULL);
769 writel(0, &scic->smu_registers->interrupt_mask);
770}
771
772void scic_controller_disable_interrupts(
773 struct scic_sds_controller *scic)
774{
775 BUG_ON(scic->smu_registers == NULL);
776 writel(0xffffffff, &scic->smu_registers->interrupt_mask);
777}
778
779static void scic_sds_controller_enable_port_task_scheduler(
780 struct scic_sds_controller *scic)
781{
782 u32 port_task_scheduler_value;
783
784 port_task_scheduler_value =
785 readl(&scic->scu_registers->peg0.ptsg.control);
786 port_task_scheduler_value |=
787 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
788 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
789 writel(port_task_scheduler_value,
790 &scic->scu_registers->peg0.ptsg.control);
791}
792
793static void scic_sds_controller_assign_task_entries(struct scic_sds_controller *scic)
794{
795 u32 task_assignment;
796
797 /*
798 * Assign all the TCs to function 0
799 * TODO: Do we actually need to read this register to write it back?
800 */
801
802 task_assignment =
803 readl(&scic->smu_registers->task_context_assignment[0]);
804
805 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
806 (SMU_TCA_GEN_VAL(ENDING, scic->task_context_entries - 1)) |
807 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
808
809 writel(task_assignment,
810 &scic->smu_registers->task_context_assignment[0]);
811
812}
813
814static void scic_sds_controller_initialize_completion_queue(struct scic_sds_controller *scic)
815{
816 u32 index;
817 u32 completion_queue_control_value;
818 u32 completion_queue_get_value;
819 u32 completion_queue_put_value;
820
821 scic->completion_queue_get = 0;
822
823 completion_queue_control_value = (
824 SMU_CQC_QUEUE_LIMIT_SET(scic->completion_queue_entries - 1)
825 | SMU_CQC_EVENT_LIMIT_SET(scic->completion_event_entries - 1)
826 );
827
828 writel(completion_queue_control_value,
829 &scic->smu_registers->completion_queue_control);
830
831
832 /* Set the completion queue get pointer and enable the queue */
833 completion_queue_get_value = (
834 (SMU_CQGR_GEN_VAL(POINTER, 0))
835 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
836 | (SMU_CQGR_GEN_BIT(ENABLE))
837 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
838 );
839
840 writel(completion_queue_get_value,
841 &scic->smu_registers->completion_queue_get);
842
843 /* Set the completion queue put pointer */
844 completion_queue_put_value = (
845 (SMU_CQPR_GEN_VAL(POINTER, 0))
846 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
847 );
848
849 writel(completion_queue_put_value,
850 &scic->smu_registers->completion_queue_put);
851
852 /* Initialize the cycle bit of the completion queue entries */
853 for (index = 0; index < scic->completion_queue_entries; index++) {
854 /*
855 * If get.cycle_bit != completion_queue.cycle_bit
856 * its not a valid completion queue entry
857 * so at system start all entries are invalid */
858 scic->completion_queue[index] = 0x80000000;
859 }
860}
861
862static void scic_sds_controller_initialize_unsolicited_frame_queue(struct scic_sds_controller *scic)
863{
864 u32 frame_queue_control_value;
865 u32 frame_queue_get_value;
866 u32 frame_queue_put_value;
867
868 /* Write the queue size */
869 frame_queue_control_value =
870 SCU_UFQC_GEN_VAL(QUEUE_SIZE,
871 scic->uf_control.address_table.count);
872
873 writel(frame_queue_control_value,
874 &scic->scu_registers->sdma.unsolicited_frame_queue_control);
875
876 /* Setup the get pointer for the unsolicited frame queue */
877 frame_queue_get_value = (
878 SCU_UFQGP_GEN_VAL(POINTER, 0)
879 | SCU_UFQGP_GEN_BIT(ENABLE_BIT)
880 );
881
882 writel(frame_queue_get_value,
883 &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
884 /* Setup the put pointer for the unsolicited frame queue */
885 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
886 writel(frame_queue_put_value,
887 &scic->scu_registers->sdma.unsolicited_frame_put_pointer);
888}
889
890/**
891 * This method will attempt to transition into the ready state for the
892 * controller and indicate that the controller start operation has completed
893 * if all criteria are met.
894 * @scic: This parameter indicates the controller object for which
895 * to transition to ready.
896 * @status: This parameter indicates the status value to be pass into the call
897 * to scic_cb_controller_start_complete().
898 *
899 * none.
900 */
901static void scic_sds_controller_transition_to_ready(
902 struct scic_sds_controller *scic,
903 enum sci_status status)
904{
905 struct isci_host *ihost = scic_to_ihost(scic);
906
907 if (scic->state_machine.current_state_id ==
908 SCI_BASE_CONTROLLER_STATE_STARTING) {
909 /*
910 * We move into the ready state, because some of the phys/ports
911 * may be up and operational.
912 */
913 sci_base_state_machine_change_state(&scic->state_machine,
914 SCI_BASE_CONTROLLER_STATE_READY);
915
916 isci_host_start_complete(ihost, status);
917 }
918}
919
920static void scic_sds_controller_phy_timer_stop(struct scic_sds_controller *scic)
921{
922 isci_timer_stop(scic->phy_startup_timer);
923
924 scic->phy_startup_timer_pending = false;
925}
926
927static void scic_sds_controller_phy_timer_start(struct scic_sds_controller *scic)
928{
929 isci_timer_start(scic->phy_startup_timer,
930 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
931
932 scic->phy_startup_timer_pending = true;
933}
934
4a33c525
AG
935static bool is_phy_starting(struct scic_sds_phy *sci_phy)
936{
937 enum scic_sds_phy_states state;
938
939 state = sci_phy->state_machine.current_state_id;
940 switch (state) {
941 case SCI_BASE_PHY_STATE_STARTING:
942 case SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL:
943 case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN:
944 case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF:
945 case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER:
946 case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER:
947 case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN:
948 case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN:
949 case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF:
950 case SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL:
951 return true;
952 default:
953 return false;
954 }
955}
956
cc9203bf
DW
957/**
958 * scic_sds_controller_start_next_phy - start phy
959 * @scic: controller
960 *
961 * If all the phys have been started, then attempt to transition the
962 * controller to the READY state and inform the user
963 * (scic_cb_controller_start_complete()).
964 */
965static enum sci_status scic_sds_controller_start_next_phy(struct scic_sds_controller *scic)
966{
967 struct isci_host *ihost = scic_to_ihost(scic);
968 struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
969 struct scic_sds_phy *sci_phy;
970 enum sci_status status;
971
972 status = SCI_SUCCESS;
973
974 if (scic->phy_startup_timer_pending)
975 return status;
976
977 if (scic->next_phy_to_start >= SCI_MAX_PHYS) {
978 bool is_controller_start_complete = true;
979 u32 state;
980 u8 index;
981
982 for (index = 0; index < SCI_MAX_PHYS; index++) {
983 sci_phy = &ihost->phys[index].sci;
984 state = sci_phy->state_machine.current_state_id;
985
4f20ef4f 986 if (!phy_get_non_dummy_port(sci_phy))
cc9203bf
DW
987 continue;
988
989 /* The controller start operation is complete iff:
990 * - all links have been given an opportunity to start
991 * - have no indication of a connected device
992 * - have an indication of a connected device and it has
993 * finished the link training process.
994 */
995 if ((sci_phy->is_in_link_training == false &&
996 state == SCI_BASE_PHY_STATE_INITIAL) ||
997 (sci_phy->is_in_link_training == false &&
998 state == SCI_BASE_PHY_STATE_STOPPED) ||
999 (sci_phy->is_in_link_training == true &&
4a33c525 1000 is_phy_starting(sci_phy))) {
cc9203bf
DW
1001 is_controller_start_complete = false;
1002 break;
1003 }
1004 }
1005
1006 /*
1007 * The controller has successfully finished the start process.
1008 * Inform the SCI Core user and transition to the READY state. */
1009 if (is_controller_start_complete == true) {
1010 scic_sds_controller_transition_to_ready(scic, SCI_SUCCESS);
1011 scic_sds_controller_phy_timer_stop(scic);
1012 }
1013 } else {
1014 sci_phy = &ihost->phys[scic->next_phy_to_start].sci;
1015
1016 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
4f20ef4f 1017 if (phy_get_non_dummy_port(sci_phy) == NULL) {
cc9203bf
DW
1018 scic->next_phy_to_start++;
1019
1020 /* Caution recursion ahead be forwarned
1021 *
1022 * The PHY was never added to a PORT in MPC mode
1023 * so start the next phy in sequence This phy
1024 * will never go link up and will not draw power
1025 * the OEM parameters either configured the phy
1026 * incorrectly for the PORT or it was never
1027 * assigned to a PORT
1028 */
1029 return scic_sds_controller_start_next_phy(scic);
1030 }
1031 }
1032
1033 status = scic_sds_phy_start(sci_phy);
1034
1035 if (status == SCI_SUCCESS) {
1036 scic_sds_controller_phy_timer_start(scic);
1037 } else {
1038 dev_warn(scic_to_dev(scic),
1039 "%s: Controller stop operation failed "
1040 "to stop phy %d because of status "
1041 "%d.\n",
1042 __func__,
1043 ihost->phys[scic->next_phy_to_start].sci.phy_index,
1044 status);
1045 }
1046
1047 scic->next_phy_to_start++;
1048 }
1049
1050 return status;
1051}
1052
1053static void scic_sds_controller_phy_startup_timeout_handler(void *_scic)
1054{
1055 struct scic_sds_controller *scic = _scic;
1056 enum sci_status status;
1057
1058 scic->phy_startup_timer_pending = false;
1059 status = SCI_FAILURE;
1060 while (status != SCI_SUCCESS)
1061 status = scic_sds_controller_start_next_phy(scic);
1062}
1063
1064static enum sci_status scic_controller_start(struct scic_sds_controller *scic,
1065 u32 timeout)
1066{
1067 struct isci_host *ihost = scic_to_ihost(scic);
1068 enum sci_status result;
1069 u16 index;
1070
1071 if (scic->state_machine.current_state_id !=
1072 SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
1073 dev_warn(scic_to_dev(scic),
1074 "SCIC Controller start operation requested in "
1075 "invalid state\n");
1076 return SCI_FAILURE_INVALID_STATE;
1077 }
1078
1079 /* Build the TCi free pool */
1080 sci_pool_initialize(scic->tci_pool);
1081 for (index = 0; index < scic->task_context_entries; index++)
1082 sci_pool_put(scic->tci_pool, index);
1083
1084 /* Build the RNi free pool */
1085 scic_sds_remote_node_table_initialize(
1086 &scic->available_remote_nodes,
1087 scic->remote_node_entries);
1088
1089 /*
1090 * Before anything else lets make sure we will not be
1091 * interrupted by the hardware.
1092 */
1093 scic_controller_disable_interrupts(scic);
1094
1095 /* Enable the port task scheduler */
1096 scic_sds_controller_enable_port_task_scheduler(scic);
1097
1098 /* Assign all the task entries to scic physical function */
1099 scic_sds_controller_assign_task_entries(scic);
1100
1101 /* Now initialize the completion queue */
1102 scic_sds_controller_initialize_completion_queue(scic);
1103
1104 /* Initialize the unsolicited frame queue for use */
1105 scic_sds_controller_initialize_unsolicited_frame_queue(scic);
1106
1107 /* Start all of the ports on this controller */
1108 for (index = 0; index < scic->logical_port_entries; index++) {
1109 struct scic_sds_port *sci_port = &ihost->ports[index].sci;
1110
d76f71d9 1111 result = scic_sds_port_start(sci_port);
cc9203bf
DW
1112 if (result)
1113 return result;
1114 }
1115
1116 scic_sds_controller_start_next_phy(scic);
1117
1118 isci_timer_start(scic->timeout_timer, timeout);
1119
1120 sci_base_state_machine_change_state(&scic->state_machine,
1121 SCI_BASE_CONTROLLER_STATE_STARTING);
1122
1123 return SCI_SUCCESS;
1124}
1125
6f231dda
DW
1126void isci_host_scan_start(struct Scsi_Host *shost)
1127{
4393aa4e 1128 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
cc3dbd0a 1129 unsigned long tmo = scic_controller_get_suggested_start_timeout(&ihost->sci);
6f231dda 1130
0cf89d1d 1131 set_bit(IHOST_START_PENDING, &ihost->flags);
77950f51
EN
1132
1133 spin_lock_irq(&ihost->scic_lock);
cc3dbd0a
AW
1134 scic_controller_start(&ihost->sci, tmo);
1135 scic_controller_enable_interrupts(&ihost->sci);
77950f51 1136 spin_unlock_irq(&ihost->scic_lock);
6f231dda
DW
1137}
1138
cc9203bf 1139static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
6f231dda 1140{
0cf89d1d 1141 isci_host_change_state(ihost, isci_stopped);
cc3dbd0a 1142 scic_controller_disable_interrupts(&ihost->sci);
0cf89d1d
DW
1143 clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1144 wake_up(&ihost->eventq);
6f231dda
DW
1145}
1146
cc9203bf
DW
1147static void scic_sds_controller_completion_handler(struct scic_sds_controller *scic)
1148{
1149 /* Empty out the completion queue */
1150 if (scic_sds_controller_completion_queue_has_entries(scic))
1151 scic_sds_controller_process_completions(scic);
1152
1153 /* Clear the interrupt and enable all interrupts again */
1154 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
1155 /* Could we write the value of SMU_ISR_COMPLETION? */
1156 writel(0xFF000000, &scic->smu_registers->interrupt_mask);
1157 writel(0, &scic->smu_registers->interrupt_mask);
1158}
1159
6f231dda
DW
1160/**
1161 * isci_host_completion_routine() - This function is the delayed service
1162 * routine that calls the sci core library's completion handler. It's
1163 * scheduled as a tasklet from the interrupt service routine when interrupts
1164 * in use, or set as the timeout function in polled mode.
1165 * @data: This parameter specifies the ISCI host object
1166 *
1167 */
1168static void isci_host_completion_routine(unsigned long data)
1169{
1170 struct isci_host *isci_host = (struct isci_host *)data;
11b00c19
JS
1171 struct list_head completed_request_list;
1172 struct list_head errored_request_list;
1173 struct list_head *current_position;
1174 struct list_head *next_position;
6f231dda
DW
1175 struct isci_request *request;
1176 struct isci_request *next_request;
11b00c19 1177 struct sas_task *task;
6f231dda
DW
1178
1179 INIT_LIST_HEAD(&completed_request_list);
11b00c19 1180 INIT_LIST_HEAD(&errored_request_list);
6f231dda
DW
1181
1182 spin_lock_irq(&isci_host->scic_lock);
1183
cc3dbd0a 1184 scic_sds_controller_completion_handler(&isci_host->sci);
c7ef4031 1185
6f231dda 1186 /* Take the lists of completed I/Os from the host. */
11b00c19 1187
6f231dda
DW
1188 list_splice_init(&isci_host->requests_to_complete,
1189 &completed_request_list);
1190
11b00c19
JS
1191 /* Take the list of errored I/Os from the host. */
1192 list_splice_init(&isci_host->requests_to_errorback,
1193 &errored_request_list);
6f231dda
DW
1194
1195 spin_unlock_irq(&isci_host->scic_lock);
1196
1197 /* Process any completions in the lists. */
1198 list_for_each_safe(current_position, next_position,
1199 &completed_request_list) {
1200
1201 request = list_entry(current_position, struct isci_request,
1202 completed_node);
1203 task = isci_request_access_task(request);
1204
1205 /* Normal notification (task_done) */
1206 dev_dbg(&isci_host->pdev->dev,
1207 "%s: Normal - request/task = %p/%p\n",
1208 __func__,
1209 request,
1210 task);
1211
11b00c19
JS
1212 /* Return the task to libsas */
1213 if (task != NULL) {
1214
1215 task->lldd_task = NULL;
1216 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
6f231dda 1217
11b00c19
JS
1218 /* If the task is already in the abort path,
1219 * the task_done callback cannot be called.
1220 */
1221 task->task_done(task);
1222 }
1223 }
6f231dda
DW
1224 /* Free the request object. */
1225 isci_request_free(isci_host, request);
1226 }
11b00c19 1227 list_for_each_entry_safe(request, next_request, &errored_request_list,
6f231dda
DW
1228 completed_node) {
1229
1230 task = isci_request_access_task(request);
1231
1232 /* Use sas_task_abort */
1233 dev_warn(&isci_host->pdev->dev,
1234 "%s: Error - request/task = %p/%p\n",
1235 __func__,
1236 request,
1237 task);
1238
11b00c19
JS
1239 if (task != NULL) {
1240
1241 /* Put the task into the abort path if it's not there
1242 * already.
1243 */
1244 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1245 sas_task_abort(task);
1246
1247 } else {
1248 /* This is a case where the request has completed with a
1249 * status such that it needed further target servicing,
1250 * but the sas_task reference has already been removed
1251 * from the request. Since it was errored, it was not
1252 * being aborted, so there is nothing to do except free
1253 * it.
1254 */
1255
1256 spin_lock_irq(&isci_host->scic_lock);
1257 /* Remove the request from the remote device's list
1258 * of pending requests.
1259 */
1260 list_del_init(&request->dev_node);
1261 spin_unlock_irq(&isci_host->scic_lock);
1262
1263 /* Free the request object. */
1264 isci_request_free(isci_host, request);
1265 }
6f231dda
DW
1266 }
1267
1268}
1269
cc9203bf
DW
1270/**
1271 * scic_controller_stop() - This method will stop an individual controller
1272 * object.This method will invoke the associated user callback upon
1273 * completion. The completion callback is called when the following
1274 * conditions are met: -# the method return status is SCI_SUCCESS. -# the
1275 * controller has been quiesced. This method will ensure that all IO
1276 * requests are quiesced, phys are stopped, and all additional operation by
1277 * the hardware is halted.
1278 * @controller: the handle to the controller object to stop.
1279 * @timeout: This parameter specifies the number of milliseconds in which the
1280 * stop operation should complete.
1281 *
1282 * The controller must be in the STARTED or STOPPED state. Indicate if the
1283 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1284 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1285 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1286 * controller is not either in the STARTED or STOPPED states.
1287 */
1288static enum sci_status scic_controller_stop(struct scic_sds_controller *scic,
1289 u32 timeout)
6f231dda 1290{
cc9203bf
DW
1291 if (scic->state_machine.current_state_id !=
1292 SCI_BASE_CONTROLLER_STATE_READY) {
1293 dev_warn(scic_to_dev(scic),
1294 "SCIC Controller stop operation requested in "
1295 "invalid state\n");
1296 return SCI_FAILURE_INVALID_STATE;
1297 }
6f231dda 1298
cc9203bf
DW
1299 isci_timer_start(scic->timeout_timer, timeout);
1300 sci_base_state_machine_change_state(&scic->state_machine,
1301 SCI_BASE_CONTROLLER_STATE_STOPPING);
1302 return SCI_SUCCESS;
1303}
1304
1305/**
1306 * scic_controller_reset() - This method will reset the supplied core
1307 * controller regardless of the state of said controller. This operation is
1308 * considered destructive. In other words, all current operations are wiped
1309 * out. No IO completions for outstanding devices occur. Outstanding IO
1310 * requests are not aborted or completed at the actual remote device.
1311 * @controller: the handle to the controller object to reset.
1312 *
1313 * Indicate if the controller reset method succeeded or failed in some way.
1314 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1315 * the controller reset operation is unable to complete.
1316 */
1317static enum sci_status scic_controller_reset(struct scic_sds_controller *scic)
1318{
1319 switch (scic->state_machine.current_state_id) {
1320 case SCI_BASE_CONTROLLER_STATE_RESET:
1321 case SCI_BASE_CONTROLLER_STATE_READY:
1322 case SCI_BASE_CONTROLLER_STATE_STOPPED:
1323 case SCI_BASE_CONTROLLER_STATE_FAILED:
1324 /*
1325 * The reset operation is not a graceful cleanup, just
1326 * perform the state transition.
1327 */
1328 sci_base_state_machine_change_state(&scic->state_machine,
1329 SCI_BASE_CONTROLLER_STATE_RESETTING);
1330 return SCI_SUCCESS;
1331 default:
1332 dev_warn(scic_to_dev(scic),
1333 "SCIC Controller reset operation requested in "
1334 "invalid state\n");
1335 return SCI_FAILURE_INVALID_STATE;
1336 }
1337}
1338
1339void isci_host_deinit(struct isci_host *ihost)
1340{
1341 int i;
1342
1343 isci_host_change_state(ihost, isci_stopping);
6f231dda 1344 for (i = 0; i < SCI_MAX_PORTS; i++) {
e531381e 1345 struct isci_port *iport = &ihost->ports[i];
0cf89d1d
DW
1346 struct isci_remote_device *idev, *d;
1347
e531381e 1348 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
0cf89d1d 1349 isci_remote_device_change_state(idev, isci_stopping);
6ad31fec 1350 isci_remote_device_stop(ihost, idev);
6f231dda
DW
1351 }
1352 }
1353
0cf89d1d 1354 set_bit(IHOST_STOP_PENDING, &ihost->flags);
7c40a803
DW
1355
1356 spin_lock_irq(&ihost->scic_lock);
cc3dbd0a 1357 scic_controller_stop(&ihost->sci, SCIC_CONTROLLER_STOP_TIMEOUT);
7c40a803
DW
1358 spin_unlock_irq(&ihost->scic_lock);
1359
0cf89d1d 1360 wait_for_stop(ihost);
cc3dbd0a 1361 scic_controller_reset(&ihost->sci);
5553ba2b
EN
1362
1363 /* Cancel any/all outstanding port timers */
1364 for (i = 0; i < ihost->sci.logical_port_entries; i++) {
1365 struct scic_sds_port *sci_port = &ihost->ports[i].sci;
1366 del_timer_sync(&sci_port->timer.timer);
1367 }
1368
7c40a803 1369 isci_timer_list_destroy(ihost);
6f231dda
DW
1370}
1371
6f231dda
DW
1372static void __iomem *scu_base(struct isci_host *isci_host)
1373{
1374 struct pci_dev *pdev = isci_host->pdev;
1375 int id = isci_host->id;
1376
1377 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1378}
1379
1380static void __iomem *smu_base(struct isci_host *isci_host)
1381{
1382 struct pci_dev *pdev = isci_host->pdev;
1383 int id = isci_host->id;
1384
1385 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1386}
1387
b5f18a20
DJ
1388static void isci_user_parameters_get(
1389 struct isci_host *isci_host,
1390 union scic_user_parameters *scic_user_params)
1391{
1392 struct scic_sds_user_parameters *u = &scic_user_params->sds1;
1393 int i;
1394
1395 for (i = 0; i < SCI_MAX_PHYS; i++) {
1396 struct sci_phy_user_params *u_phy = &u->phys[i];
1397
1398 u_phy->max_speed_generation = phy_gen;
1399
1400 /* we are not exporting these for now */
1401 u_phy->align_insertion_frequency = 0x7f;
1402 u_phy->in_connection_align_insertion_frequency = 0xff;
1403 u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1404 }
1405
1406 u->stp_inactivity_timeout = stp_inactive_to;
1407 u->ssp_inactivity_timeout = ssp_inactive_to;
1408 u->stp_max_occupancy_timeout = stp_max_occ_to;
1409 u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1410 u->no_outbound_task_timeout = no_outbound_task_to;
1411 u->max_number_concurrent_device_spin_up = max_concurr_spinup;
1412}
1413
9269e0e8 1414static void scic_sds_controller_initial_state_enter(struct sci_base_state_machine *sm)
cc9203bf 1415{
9269e0e8 1416 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
cc9203bf
DW
1417
1418 sci_base_state_machine_change_state(&scic->state_machine,
1419 SCI_BASE_CONTROLLER_STATE_RESET);
1420}
1421
9269e0e8 1422static inline void scic_sds_controller_starting_state_exit(struct sci_base_state_machine *sm)
cc9203bf 1423{
9269e0e8 1424 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
cc9203bf
DW
1425
1426 isci_timer_stop(scic->timeout_timer);
1427}
1428
1429#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1430#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1431#define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
1432#define INTERRUPT_COALESCE_NUMBER_MAX 256
1433#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
1434#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
1435
1436/**
1437 * scic_controller_set_interrupt_coalescence() - This method allows the user to
1438 * configure the interrupt coalescence.
1439 * @controller: This parameter represents the handle to the controller object
1440 * for which its interrupt coalesce register is overridden.
1441 * @coalesce_number: Used to control the number of entries in the Completion
1442 * Queue before an interrupt is generated. If the number of entries exceed
1443 * this number, an interrupt will be generated. The valid range of the input
1444 * is [0, 256]. A setting of 0 results in coalescing being disabled.
1445 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1446 * input is [0, 2700000] . A setting of 0 is allowed and results in no
1447 * interrupt coalescing timeout.
1448 *
1449 * Indicate if the user successfully set the interrupt coalesce parameters.
1450 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1451 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1452 */
1453static enum sci_status scic_controller_set_interrupt_coalescence(
1454 struct scic_sds_controller *scic_controller,
1455 u32 coalesce_number,
1456 u32 coalesce_timeout)
1457{
1458 u8 timeout_encode = 0;
1459 u32 min = 0;
1460 u32 max = 0;
1461
1462 /* Check if the input parameters fall in the range. */
1463 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1464 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1465
1466 /*
1467 * Defined encoding for interrupt coalescing timeout:
1468 * Value Min Max Units
1469 * ----- --- --- -----
1470 * 0 - - Disabled
1471 * 1 13.3 20.0 ns
1472 * 2 26.7 40.0
1473 * 3 53.3 80.0
1474 * 4 106.7 160.0
1475 * 5 213.3 320.0
1476 * 6 426.7 640.0
1477 * 7 853.3 1280.0
1478 * 8 1.7 2.6 us
1479 * 9 3.4 5.1
1480 * 10 6.8 10.2
1481 * 11 13.7 20.5
1482 * 12 27.3 41.0
1483 * 13 54.6 81.9
1484 * 14 109.2 163.8
1485 * 15 218.5 327.7
1486 * 16 436.9 655.4
1487 * 17 873.8 1310.7
1488 * 18 1.7 2.6 ms
1489 * 19 3.5 5.2
1490 * 20 7.0 10.5
1491 * 21 14.0 21.0
1492 * 22 28.0 41.9
1493 * 23 55.9 83.9
1494 * 24 111.8 167.8
1495 * 25 223.7 335.5
1496 * 26 447.4 671.1
1497 * 27 894.8 1342.2
1498 * 28 1.8 2.7 s
1499 * Others Undefined */
1500
1501 /*
1502 * Use the table above to decide the encode of interrupt coalescing timeout
1503 * value for register writing. */
1504 if (coalesce_timeout == 0)
1505 timeout_encode = 0;
1506 else{
1507 /* make the timeout value in unit of (10 ns). */
1508 coalesce_timeout = coalesce_timeout * 100;
1509 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1510 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1511
1512 /* get the encode of timeout for register writing. */
1513 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1514 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1515 timeout_encode++) {
1516 if (min <= coalesce_timeout && max > coalesce_timeout)
1517 break;
1518 else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1519 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1520 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1521 break;
1522 else{
1523 timeout_encode++;
1524 break;
1525 }
1526 } else {
1527 max = max * 2;
1528 min = min * 2;
1529 }
1530 }
1531
1532 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1533 /* the value is out of range. */
1534 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1535 }
1536
1537 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1538 SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1539 &scic_controller->smu_registers->interrupt_coalesce_control);
1540
1541
1542 scic_controller->interrupt_coalesce_number = (u16)coalesce_number;
1543 scic_controller->interrupt_coalesce_timeout = coalesce_timeout / 100;
1544
1545 return SCI_SUCCESS;
1546}
1547
1548
9269e0e8 1549static void scic_sds_controller_ready_state_enter(struct sci_base_state_machine *sm)
cc9203bf 1550{
9269e0e8 1551 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
cc9203bf
DW
1552
1553 /* set the default interrupt coalescence number and timeout value. */
1554 scic_controller_set_interrupt_coalescence(scic, 0x10, 250);
1555}
1556
9269e0e8 1557static void scic_sds_controller_ready_state_exit(struct sci_base_state_machine *sm)
cc9203bf 1558{
9269e0e8 1559 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
cc9203bf
DW
1560
1561 /* disable interrupt coalescence. */
1562 scic_controller_set_interrupt_coalescence(scic, 0, 0);
1563}
1564
1565static enum sci_status scic_sds_controller_stop_phys(struct scic_sds_controller *scic)
1566{
1567 u32 index;
1568 enum sci_status status;
1569 enum sci_status phy_status;
1570 struct isci_host *ihost = scic_to_ihost(scic);
1571
1572 status = SCI_SUCCESS;
1573
1574 for (index = 0; index < SCI_MAX_PHYS; index++) {
1575 phy_status = scic_sds_phy_stop(&ihost->phys[index].sci);
1576
1577 if (phy_status != SCI_SUCCESS &&
1578 phy_status != SCI_FAILURE_INVALID_STATE) {
1579 status = SCI_FAILURE;
1580
1581 dev_warn(scic_to_dev(scic),
1582 "%s: Controller stop operation failed to stop "
1583 "phy %d because of status %d.\n",
1584 __func__,
1585 ihost->phys[index].sci.phy_index, phy_status);
1586 }
1587 }
1588
1589 return status;
1590}
1591
1592static enum sci_status scic_sds_controller_stop_ports(struct scic_sds_controller *scic)
1593{
1594 u32 index;
1595 enum sci_status port_status;
1596 enum sci_status status = SCI_SUCCESS;
1597 struct isci_host *ihost = scic_to_ihost(scic);
1598
1599 for (index = 0; index < scic->logical_port_entries; index++) {
1600 struct scic_sds_port *sci_port = &ihost->ports[index].sci;
cc9203bf 1601
8bc80d30 1602 port_status = scic_sds_port_stop(sci_port);
cc9203bf
DW
1603
1604 if ((port_status != SCI_SUCCESS) &&
1605 (port_status != SCI_FAILURE_INVALID_STATE)) {
1606 status = SCI_FAILURE;
1607
1608 dev_warn(scic_to_dev(scic),
1609 "%s: Controller stop operation failed to "
1610 "stop port %d because of status %d.\n",
1611 __func__,
1612 sci_port->logical_port_index,
1613 port_status);
1614 }
1615 }
1616
1617 return status;
1618}
1619
1620static enum sci_status scic_sds_controller_stop_devices(struct scic_sds_controller *scic)
1621{
1622 u32 index;
1623 enum sci_status status;
1624 enum sci_status device_status;
1625
1626 status = SCI_SUCCESS;
1627
1628 for (index = 0; index < scic->remote_node_entries; index++) {
1629 if (scic->device_table[index] != NULL) {
1630 /* / @todo What timeout value do we want to provide to this request? */
1631 device_status = scic_remote_device_stop(scic->device_table[index], 0);
1632
1633 if ((device_status != SCI_SUCCESS) &&
1634 (device_status != SCI_FAILURE_INVALID_STATE)) {
1635 dev_warn(scic_to_dev(scic),
1636 "%s: Controller stop operation failed "
1637 "to stop device 0x%p because of "
1638 "status %d.\n",
1639 __func__,
1640 scic->device_table[index], device_status);
1641 }
1642 }
1643 }
1644
1645 return status;
1646}
1647
9269e0e8 1648static void scic_sds_controller_stopping_state_enter(struct sci_base_state_machine *sm)
cc9203bf 1649{
9269e0e8 1650 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
cc9203bf
DW
1651
1652 /* Stop all of the components for this controller */
1653 scic_sds_controller_stop_phys(scic);
1654 scic_sds_controller_stop_ports(scic);
1655 scic_sds_controller_stop_devices(scic);
1656}
1657
9269e0e8 1658static void scic_sds_controller_stopping_state_exit(struct sci_base_state_machine *sm)
cc9203bf 1659{
9269e0e8 1660 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
cc9203bf
DW
1661
1662 isci_timer_stop(scic->timeout_timer);
1663}
1664
1665
1666/**
1667 * scic_sds_controller_reset_hardware() -
1668 *
1669 * This method will reset the controller hardware.
1670 */
1671static void scic_sds_controller_reset_hardware(struct scic_sds_controller *scic)
1672{
1673 /* Disable interrupts so we dont take any spurious interrupts */
1674 scic_controller_disable_interrupts(scic);
1675
1676 /* Reset the SCU */
1677 writel(0xFFFFFFFF, &scic->smu_registers->soft_reset_control);
1678
1679 /* Delay for 1ms to before clearing the CQP and UFQPR. */
1680 udelay(1000);
1681
1682 /* The write to the CQGR clears the CQP */
1683 writel(0x00000000, &scic->smu_registers->completion_queue_get);
1684
1685 /* The write to the UFQGP clears the UFQPR */
1686 writel(0, &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
1687}
1688
9269e0e8 1689static void scic_sds_controller_resetting_state_enter(struct sci_base_state_machine *sm)
cc9203bf 1690{
9269e0e8 1691 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), state_machine);
cc9203bf
DW
1692
1693 scic_sds_controller_reset_hardware(scic);
1694 sci_base_state_machine_change_state(&scic->state_machine,
1695 SCI_BASE_CONTROLLER_STATE_RESET);
1696}
1697
1698static const struct sci_base_state scic_sds_controller_state_table[] = {
1699 [SCI_BASE_CONTROLLER_STATE_INITIAL] = {
1700 .enter_state = scic_sds_controller_initial_state_enter,
1701 },
1702 [SCI_BASE_CONTROLLER_STATE_RESET] = {},
1703 [SCI_BASE_CONTROLLER_STATE_INITIALIZING] = {},
1704 [SCI_BASE_CONTROLLER_STATE_INITIALIZED] = {},
1705 [SCI_BASE_CONTROLLER_STATE_STARTING] = {
1706 .exit_state = scic_sds_controller_starting_state_exit,
1707 },
1708 [SCI_BASE_CONTROLLER_STATE_READY] = {
1709 .enter_state = scic_sds_controller_ready_state_enter,
1710 .exit_state = scic_sds_controller_ready_state_exit,
1711 },
1712 [SCI_BASE_CONTROLLER_STATE_RESETTING] = {
1713 .enter_state = scic_sds_controller_resetting_state_enter,
1714 },
1715 [SCI_BASE_CONTROLLER_STATE_STOPPING] = {
1716 .enter_state = scic_sds_controller_stopping_state_enter,
1717 .exit_state = scic_sds_controller_stopping_state_exit,
1718 },
1719 [SCI_BASE_CONTROLLER_STATE_STOPPED] = {},
1720 [SCI_BASE_CONTROLLER_STATE_FAILED] = {}
1721};
1722
1723static void scic_sds_controller_set_default_config_parameters(struct scic_sds_controller *scic)
1724{
1725 /* these defaults are overridden by the platform / firmware */
1726 struct isci_host *ihost = scic_to_ihost(scic);
1727 u16 index;
1728
1729 /* Default to APC mode. */
1730 scic->oem_parameters.sds1.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1731
1732 /* Default to APC mode. */
1733 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up = 1;
1734
1735 /* Default to no SSC operation. */
1736 scic->oem_parameters.sds1.controller.do_enable_ssc = false;
1737
1738 /* Initialize all of the port parameter information to narrow ports. */
1739 for (index = 0; index < SCI_MAX_PORTS; index++) {
1740 scic->oem_parameters.sds1.ports[index].phy_mask = 0;
1741 }
1742
1743 /* Initialize all of the phy parameter information. */
1744 for (index = 0; index < SCI_MAX_PHYS; index++) {
1745 /* Default to 6G (i.e. Gen 3) for now. */
1746 scic->user_parameters.sds1.phys[index].max_speed_generation = 3;
1747
1748 /* the frequencies cannot be 0 */
1749 scic->user_parameters.sds1.phys[index].align_insertion_frequency = 0x7f;
1750 scic->user_parameters.sds1.phys[index].in_connection_align_insertion_frequency = 0xff;
1751 scic->user_parameters.sds1.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1752
1753 /*
1754 * Previous Vitesse based expanders had a arbitration issue that
1755 * is worked around by having the upper 32-bits of SAS address
1756 * with a value greater then the Vitesse company identifier.
1757 * Hence, usage of 0x5FCFFFFF. */
1758 scic->oem_parameters.sds1.phys[index].sas_address.low = 0x1 + ihost->id;
1759 scic->oem_parameters.sds1.phys[index].sas_address.high = 0x5FCFFFFF;
1760 }
1761
1762 scic->user_parameters.sds1.stp_inactivity_timeout = 5;
1763 scic->user_parameters.sds1.ssp_inactivity_timeout = 5;
1764 scic->user_parameters.sds1.stp_max_occupancy_timeout = 5;
1765 scic->user_parameters.sds1.ssp_max_occupancy_timeout = 20;
1766 scic->user_parameters.sds1.no_outbound_task_timeout = 20;
1767}
1768
1769
1770
1771/**
1772 * scic_controller_construct() - This method will attempt to construct a
1773 * controller object utilizing the supplied parameter information.
1774 * @c: This parameter specifies the controller to be constructed.
1775 * @scu_base: mapped base address of the scu registers
1776 * @smu_base: mapped base address of the smu registers
1777 *
1778 * Indicate if the controller was successfully constructed or if it failed in
1779 * some way. SCI_SUCCESS This value is returned if the controller was
1780 * successfully constructed. SCI_WARNING_TIMER_CONFLICT This value is returned
1781 * if the interrupt coalescence timer may cause SAS compliance issues for SMP
1782 * Target mode response processing. SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE
1783 * This value is returned if the controller does not support the supplied type.
1784 * SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned if the
1785 * controller does not support the supplied initialization data version.
1786 */
1787static enum sci_status scic_controller_construct(struct scic_sds_controller *scic,
1788 void __iomem *scu_base,
1789 void __iomem *smu_base)
1790{
1791 struct isci_host *ihost = scic_to_ihost(scic);
1792 u8 i;
1793
1794 sci_base_state_machine_construct(&scic->state_machine,
9269e0e8
DW
1795 scic_sds_controller_state_table,
1796 SCI_BASE_CONTROLLER_STATE_INITIAL);
cc9203bf
DW
1797
1798 sci_base_state_machine_start(&scic->state_machine);
1799
1800 scic->scu_registers = scu_base;
1801 scic->smu_registers = smu_base;
1802
1803 scic_sds_port_configuration_agent_construct(&scic->port_agent);
1804
1805 /* Construct the ports for this controller */
1806 for (i = 0; i < SCI_MAX_PORTS; i++)
1807 scic_sds_port_construct(&ihost->ports[i].sci, i, scic);
1808 scic_sds_port_construct(&ihost->ports[i].sci, SCIC_SDS_DUMMY_PORT, scic);
1809
1810 /* Construct the phys for this controller */
1811 for (i = 0; i < SCI_MAX_PHYS; i++) {
1812 /* Add all the PHYs to the dummy port */
1813 scic_sds_phy_construct(&ihost->phys[i].sci,
1814 &ihost->ports[SCI_MAX_PORTS].sci, i);
1815 }
1816
1817 scic->invalid_phy_mask = 0;
1818
1819 /* Set the default maximum values */
1820 scic->completion_event_entries = SCU_EVENT_COUNT;
1821 scic->completion_queue_entries = SCU_COMPLETION_QUEUE_COUNT;
1822 scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
1823 scic->logical_port_entries = SCI_MAX_PORTS;
1824 scic->task_context_entries = SCU_IO_REQUEST_COUNT;
1825 scic->uf_control.buffers.count = SCU_UNSOLICITED_FRAME_COUNT;
1826 scic->uf_control.address_table.count = SCU_UNSOLICITED_FRAME_COUNT;
1827
1828 /* Initialize the User and OEM parameters to default values. */
1829 scic_sds_controller_set_default_config_parameters(scic);
1830
1831 return scic_controller_reset(scic);
1832}
1833
1834int scic_oem_parameters_validate(struct scic_sds_oem_params *oem)
1835{
1836 int i;
1837
1838 for (i = 0; i < SCI_MAX_PORTS; i++)
1839 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1840 return -EINVAL;
1841
1842 for (i = 0; i < SCI_MAX_PHYS; i++)
1843 if (oem->phys[i].sas_address.high == 0 &&
1844 oem->phys[i].sas_address.low == 0)
1845 return -EINVAL;
1846
1847 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1848 for (i = 0; i < SCI_MAX_PHYS; i++)
1849 if (oem->ports[i].phy_mask != 0)
1850 return -EINVAL;
1851 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1852 u8 phy_mask = 0;
1853
1854 for (i = 0; i < SCI_MAX_PHYS; i++)
1855 phy_mask |= oem->ports[i].phy_mask;
1856
1857 if (phy_mask == 0)
1858 return -EINVAL;
1859 } else
1860 return -EINVAL;
1861
1862 if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
1863 return -EINVAL;
1864
1865 return 0;
1866}
1867
1868static enum sci_status scic_oem_parameters_set(struct scic_sds_controller *scic,
1869 union scic_oem_parameters *scic_parms)
1870{
1871 u32 state = scic->state_machine.current_state_id;
1872
1873 if (state == SCI_BASE_CONTROLLER_STATE_RESET ||
1874 state == SCI_BASE_CONTROLLER_STATE_INITIALIZING ||
1875 state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
1876
1877 if (scic_oem_parameters_validate(&scic_parms->sds1))
1878 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1879 scic->oem_parameters.sds1 = scic_parms->sds1;
1880
1881 return SCI_SUCCESS;
1882 }
1883
1884 return SCI_FAILURE_INVALID_STATE;
1885}
1886
1887void scic_oem_parameters_get(
1888 struct scic_sds_controller *scic,
1889 union scic_oem_parameters *scic_parms)
1890{
1891 memcpy(scic_parms, (&scic->oem_parameters), sizeof(*scic_parms));
1892}
1893
1894static void scic_sds_controller_timeout_handler(void *_scic)
1895{
1896 struct scic_sds_controller *scic = _scic;
1897 struct isci_host *ihost = scic_to_ihost(scic);
1898 struct sci_base_state_machine *sm = &scic->state_machine;
1899
1900 if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STARTING)
1901 scic_sds_controller_transition_to_ready(scic, SCI_FAILURE_TIMEOUT);
1902 else if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STOPPING) {
1903 sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_FAILED);
1904 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1905 } else /* / @todo Now what do we want to do in this case? */
1906 dev_err(scic_to_dev(scic),
1907 "%s: Controller timer fired when controller was not "
1908 "in a state being timed.\n",
1909 __func__);
1910}
1911
1912static enum sci_status scic_sds_controller_initialize_phy_startup(struct scic_sds_controller *scic)
1913{
1914 struct isci_host *ihost = scic_to_ihost(scic);
1915
1916 scic->phy_startup_timer = isci_timer_create(ihost,
1917 scic,
1918 scic_sds_controller_phy_startup_timeout_handler);
1919
1920 if (scic->phy_startup_timer == NULL)
1921 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
1922 else {
1923 scic->next_phy_to_start = 0;
1924 scic->phy_startup_timer_pending = false;
1925 }
1926
1927 return SCI_SUCCESS;
1928}
1929
1930static void scic_sds_controller_power_control_timer_start(struct scic_sds_controller *scic)
1931{
1932 isci_timer_start(scic->power_control.timer,
1933 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1934
1935 scic->power_control.timer_started = true;
1936}
1937
1938static void scic_sds_controller_power_control_timer_stop(struct scic_sds_controller *scic)
1939{
1940 if (scic->power_control.timer_started) {
1941 isci_timer_stop(scic->power_control.timer);
1942 scic->power_control.timer_started = false;
1943 }
1944}
1945
1946static void scic_sds_controller_power_control_timer_restart(struct scic_sds_controller *scic)
1947{
1948 scic_sds_controller_power_control_timer_stop(scic);
1949 scic_sds_controller_power_control_timer_start(scic);
1950}
1951
1952static void scic_sds_controller_power_control_timer_handler(
1953 void *controller)
1954{
1955 struct scic_sds_controller *scic;
1956
1957 scic = (struct scic_sds_controller *)controller;
1958
1959 scic->power_control.phys_granted_power = 0;
1960
1961 if (scic->power_control.phys_waiting == 0) {
1962 scic->power_control.timer_started = false;
1963 } else {
1964 struct scic_sds_phy *sci_phy = NULL;
1965 u8 i;
1966
1967 for (i = 0;
1968 (i < SCI_MAX_PHYS)
1969 && (scic->power_control.phys_waiting != 0);
1970 i++) {
1971 if (scic->power_control.requesters[i] != NULL) {
1972 if (scic->power_control.phys_granted_power <
1973 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
1974 sci_phy = scic->power_control.requesters[i];
1975 scic->power_control.requesters[i] = NULL;
1976 scic->power_control.phys_waiting--;
1977 scic->power_control.phys_granted_power++;
1978 scic_sds_phy_consume_power_handler(sci_phy);
1979 } else {
1980 break;
1981 }
1982 }
1983 }
1984
1985 /*
1986 * It doesn't matter if the power list is empty, we need to start the
1987 * timer in case another phy becomes ready.
1988 */
1989 scic_sds_controller_power_control_timer_start(scic);
1990 }
1991}
1992
1993/**
1994 * This method inserts the phy in the stagger spinup control queue.
1995 * @scic:
1996 *
1997 *
1998 */
1999void scic_sds_controller_power_control_queue_insert(
2000 struct scic_sds_controller *scic,
2001 struct scic_sds_phy *sci_phy)
2002{
2003 BUG_ON(sci_phy == NULL);
2004
2005 if (scic->power_control.phys_granted_power <
2006 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
2007 scic->power_control.phys_granted_power++;
2008 scic_sds_phy_consume_power_handler(sci_phy);
2009
2010 /*
2011 * stop and start the power_control timer. When the timer fires, the
2012 * no_of_phys_granted_power will be set to 0
2013 */
2014 scic_sds_controller_power_control_timer_restart(scic);
2015 } else {
2016 /* Add the phy in the waiting list */
2017 scic->power_control.requesters[sci_phy->phy_index] = sci_phy;
2018 scic->power_control.phys_waiting++;
2019 }
2020}
2021
2022/**
2023 * This method removes the phy from the stagger spinup control queue.
2024 * @scic:
2025 *
2026 *
2027 */
2028void scic_sds_controller_power_control_queue_remove(
2029 struct scic_sds_controller *scic,
2030 struct scic_sds_phy *sci_phy)
2031{
2032 BUG_ON(sci_phy == NULL);
2033
2034 if (scic->power_control.requesters[sci_phy->phy_index] != NULL) {
2035 scic->power_control.phys_waiting--;
2036 }
2037
2038 scic->power_control.requesters[sci_phy->phy_index] = NULL;
2039}
2040
2041#define AFE_REGISTER_WRITE_DELAY 10
2042
2043/* Initialize the AFE for this phy index. We need to read the AFE setup from
2044 * the OEM parameters
2045 */
2046static void scic_sds_controller_afe_initialization(struct scic_sds_controller *scic)
2047{
2048 const struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
2049 u32 afe_status;
2050 u32 phy_id;
2051
2052 /* Clear DFX Status registers */
2053 writel(0x0081000f, &scic->scu_registers->afe.afe_dfx_master_control0);
2054 udelay(AFE_REGISTER_WRITE_DELAY);
2055
2056 if (is_b0()) {
2057 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
2058 * Timer, PM Stagger Timer */
2059 writel(0x0007BFFF, &scic->scu_registers->afe.afe_pmsn_master_control2);
2060 udelay(AFE_REGISTER_WRITE_DELAY);
2061 }
2062
2063 /* Configure bias currents to normal */
2064 if (is_a0())
2065 writel(0x00005500, &scic->scu_registers->afe.afe_bias_control);
2066 else if (is_a2())
2067 writel(0x00005A00, &scic->scu_registers->afe.afe_bias_control);
2068 else if (is_b0())
2069 writel(0x00005F00, &scic->scu_registers->afe.afe_bias_control);
2070
2071 udelay(AFE_REGISTER_WRITE_DELAY);
2072
2073 /* Enable PLL */
2074 if (is_b0())
2075 writel(0x80040A08, &scic->scu_registers->afe.afe_pll_control0);
2076 else
2077 writel(0x80040908, &scic->scu_registers->afe.afe_pll_control0);
2078
2079 udelay(AFE_REGISTER_WRITE_DELAY);
2080
2081 /* Wait for the PLL to lock */
2082 do {
2083 afe_status = readl(&scic->scu_registers->afe.afe_common_block_status);
2084 udelay(AFE_REGISTER_WRITE_DELAY);
2085 } while ((afe_status & 0x00001000) == 0);
2086
2087 if (is_a0() || is_a2()) {
2088 /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
2089 writel(0x7bcc96ad, &scic->scu_registers->afe.afe_pmsn_master_control0);
2090 udelay(AFE_REGISTER_WRITE_DELAY);
2091 }
2092
2093 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
2094 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
2095
2096 if (is_b0()) {
2097 /* Configure transmitter SSC parameters */
2098 writel(0x00030000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
2099 udelay(AFE_REGISTER_WRITE_DELAY);
2100 } else {
2101 /*
2102 * All defaults, except the Receive Word Alignament/Comma Detect
2103 * Enable....(0xe800) */
2104 writel(0x00004512, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2105 udelay(AFE_REGISTER_WRITE_DELAY);
2106
2107 writel(0x0050100F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
2108 udelay(AFE_REGISTER_WRITE_DELAY);
2109 }
2110
2111 /*
2112 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2113 * & increase TX int & ext bias 20%....(0xe85c) */
2114 if (is_a0())
2115 writel(0x000003D4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2116 else if (is_a2())
2117 writel(0x000003F0, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2118 else {
2119 /* Power down TX and RX (PWRDNTX and PWRDNRX) */
2120 writel(0x000003d7, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2121 udelay(AFE_REGISTER_WRITE_DELAY);
2122
2123 /*
2124 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2125 * & increase TX int & ext bias 20%....(0xe85c) */
2126 writel(0x000003d4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2127 }
2128 udelay(AFE_REGISTER_WRITE_DELAY);
2129
2130 if (is_a0() || is_a2()) {
2131 /* Enable TX equalization (0xe824) */
2132 writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2133 udelay(AFE_REGISTER_WRITE_DELAY);
2134 }
2135
2136 /*
2137 * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
2138 * RDD=0x0(RX Detect Enabled) ....(0xe800) */
2139 writel(0x00004100, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2140 udelay(AFE_REGISTER_WRITE_DELAY);
2141
2142 /* Leave DFE/FFE on */
2143 if (is_a0())
2144 writel(0x3F09983F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2145 else if (is_a2())
2146 writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2147 else {
2148 writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2149 udelay(AFE_REGISTER_WRITE_DELAY);
2150 /* Enable TX equalization (0xe824) */
2151 writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2152 }
2153 udelay(AFE_REGISTER_WRITE_DELAY);
2154
2155 writel(oem_phy->afe_tx_amp_control0,
2156 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
2157 udelay(AFE_REGISTER_WRITE_DELAY);
2158
2159 writel(oem_phy->afe_tx_amp_control1,
2160 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
2161 udelay(AFE_REGISTER_WRITE_DELAY);
2162
2163 writel(oem_phy->afe_tx_amp_control2,
2164 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
2165 udelay(AFE_REGISTER_WRITE_DELAY);
2166
2167 writel(oem_phy->afe_tx_amp_control3,
2168 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
2169 udelay(AFE_REGISTER_WRITE_DELAY);
2170 }
2171
2172 /* Transfer control to the PEs */
2173 writel(0x00010f00, &scic->scu_registers->afe.afe_dfx_master_control0);
2174 udelay(AFE_REGISTER_WRITE_DELAY);
2175}
2176
2177static enum sci_status scic_controller_set_mode(struct scic_sds_controller *scic,
2178 enum sci_controller_mode operating_mode)
2179{
2180 enum sci_status status = SCI_SUCCESS;
2181
2182 if ((scic->state_machine.current_state_id ==
2183 SCI_BASE_CONTROLLER_STATE_INITIALIZING) ||
2184 (scic->state_machine.current_state_id ==
2185 SCI_BASE_CONTROLLER_STATE_INITIALIZED)) {
2186 switch (operating_mode) {
2187 case SCI_MODE_SPEED:
2188 scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
2189 scic->task_context_entries = SCU_IO_REQUEST_COUNT;
2190 scic->uf_control.buffers.count =
2191 SCU_UNSOLICITED_FRAME_COUNT;
2192 scic->completion_event_entries = SCU_EVENT_COUNT;
2193 scic->completion_queue_entries =
2194 SCU_COMPLETION_QUEUE_COUNT;
2195 break;
2196
2197 case SCI_MODE_SIZE:
2198 scic->remote_node_entries = SCI_MIN_REMOTE_DEVICES;
2199 scic->task_context_entries = SCI_MIN_IO_REQUESTS;
2200 scic->uf_control.buffers.count =
2201 SCU_MIN_UNSOLICITED_FRAMES;
2202 scic->completion_event_entries = SCU_MIN_EVENTS;
2203 scic->completion_queue_entries =
2204 SCU_MIN_COMPLETION_QUEUE_ENTRIES;
2205 break;
2206
2207 default:
2208 status = SCI_FAILURE_INVALID_PARAMETER_VALUE;
2209 break;
2210 }
2211 } else
2212 status = SCI_FAILURE_INVALID_STATE;
2213
2214 return status;
2215}
2216
2217static void scic_sds_controller_initialize_power_control(struct scic_sds_controller *scic)
2218{
2219 struct isci_host *ihost = scic_to_ihost(scic);
2220 scic->power_control.timer = isci_timer_create(ihost,
2221 scic,
2222 scic_sds_controller_power_control_timer_handler);
2223
2224 memset(scic->power_control.requesters, 0,
2225 sizeof(scic->power_control.requesters));
2226
2227 scic->power_control.phys_waiting = 0;
2228 scic->power_control.phys_granted_power = 0;
2229}
2230
2231static enum sci_status scic_controller_initialize(struct scic_sds_controller *scic)
2232{
2233 struct sci_base_state_machine *sm = &scic->state_machine;
2234 enum sci_status result = SCI_SUCCESS;
2235 struct isci_host *ihost = scic_to_ihost(scic);
2236 u32 index, state;
2237
2238 if (scic->state_machine.current_state_id !=
2239 SCI_BASE_CONTROLLER_STATE_RESET) {
2240 dev_warn(scic_to_dev(scic),
2241 "SCIC Controller initialize operation requested "
2242 "in invalid state\n");
2243 return SCI_FAILURE_INVALID_STATE;
2244 }
2245
2246 sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_INITIALIZING);
2247
2248 scic->timeout_timer = isci_timer_create(ihost, scic,
2249 scic_sds_controller_timeout_handler);
2250
2251 scic_sds_controller_initialize_phy_startup(scic);
2252
2253 scic_sds_controller_initialize_power_control(scic);
2254
2255 /*
2256 * There is nothing to do here for B0 since we do not have to
2257 * program the AFE registers.
2258 * / @todo The AFE settings are supposed to be correct for the B0 but
2259 * / presently they seem to be wrong. */
2260 scic_sds_controller_afe_initialization(scic);
2261
2262 if (result == SCI_SUCCESS) {
2263 u32 status;
2264 u32 terminate_loop;
2265
2266 /* Take the hardware out of reset */
2267 writel(0, &scic->smu_registers->soft_reset_control);
2268
2269 /*
2270 * / @todo Provide meaningfull error code for hardware failure
2271 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2272 result = SCI_FAILURE;
2273 terminate_loop = 100;
2274
2275 while (terminate_loop-- && (result != SCI_SUCCESS)) {
2276 /* Loop until the hardware reports success */
2277 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2278 status = readl(&scic->smu_registers->control_status);
2279
2280 if ((status & SCU_RAM_INIT_COMPLETED) ==
2281 SCU_RAM_INIT_COMPLETED)
2282 result = SCI_SUCCESS;
2283 }
2284 }
2285
2286 if (result == SCI_SUCCESS) {
2287 u32 max_supported_ports;
2288 u32 max_supported_devices;
2289 u32 max_supported_io_requests;
2290 u32 device_context_capacity;
2291
2292 /*
2293 * Determine what are the actaul device capacities that the
2294 * hardware will support */
2295 device_context_capacity =
2296 readl(&scic->smu_registers->device_context_capacity);
2297
2298
2299 max_supported_ports = smu_dcc_get_max_ports(device_context_capacity);
2300 max_supported_devices = smu_dcc_get_max_remote_node_context(device_context_capacity);
2301 max_supported_io_requests = smu_dcc_get_max_task_context(device_context_capacity);
2302
2303 /*
2304 * Make all PEs that are unassigned match up with the
2305 * logical ports
2306 */
2307 for (index = 0; index < max_supported_ports; index++) {
2308 struct scu_port_task_scheduler_group_registers __iomem
2309 *ptsg = &scic->scu_registers->peg0.ptsg;
2310
2311 writel(index, &ptsg->protocol_engine[index]);
2312 }
2313
2314 /* Record the smaller of the two capacity values */
2315 scic->logical_port_entries =
2316 min(max_supported_ports, scic->logical_port_entries);
2317
2318 scic->task_context_entries =
2319 min(max_supported_io_requests,
2320 scic->task_context_entries);
2321
2322 scic->remote_node_entries =
2323 min(max_supported_devices, scic->remote_node_entries);
2324
2325 /*
2326 * Now that we have the correct hardware reported minimum values
2327 * build the MDL for the controller. Default to a performance
2328 * configuration.
2329 */
2330 scic_controller_set_mode(scic, SCI_MODE_SPEED);
2331 }
2332
2333 /* Initialize hardware PCI Relaxed ordering in DMA engines */
2334 if (result == SCI_SUCCESS) {
2335 u32 dma_configuration;
2336
2337 /* Configure the payload DMA */
2338 dma_configuration =
2339 readl(&scic->scu_registers->sdma.pdma_configuration);
2340 dma_configuration |=
2341 SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2342 writel(dma_configuration,
2343 &scic->scu_registers->sdma.pdma_configuration);
2344
2345 /* Configure the control DMA */
2346 dma_configuration =
2347 readl(&scic->scu_registers->sdma.cdma_configuration);
2348 dma_configuration |=
2349 SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2350 writel(dma_configuration,
2351 &scic->scu_registers->sdma.cdma_configuration);
2352 }
2353
2354 /*
2355 * Initialize the PHYs before the PORTs because the PHY registers
2356 * are accessed during the port initialization.
2357 */
2358 if (result == SCI_SUCCESS) {
2359 /* Initialize the phys */
2360 for (index = 0;
2361 (result == SCI_SUCCESS) && (index < SCI_MAX_PHYS);
2362 index++) {
2363 result = scic_sds_phy_initialize(
2364 &ihost->phys[index].sci,
2365 &scic->scu_registers->peg0.pe[index].tl,
2366 &scic->scu_registers->peg0.pe[index].ll);
2367 }
2368 }
2369
2370 if (result == SCI_SUCCESS) {
2371 /* Initialize the logical ports */
2372 for (index = 0;
2373 (index < scic->logical_port_entries) &&
2374 (result == SCI_SUCCESS);
2375 index++) {
2376 result = scic_sds_port_initialize(
2377 &ihost->ports[index].sci,
2378 &scic->scu_registers->peg0.ptsg.port[index],
2379 &scic->scu_registers->peg0.ptsg.protocol_engine,
2380 &scic->scu_registers->peg0.viit[index]);
2381 }
2382 }
2383
2384 if (result == SCI_SUCCESS)
2385 result = scic_sds_port_configuration_agent_initialize(
2386 scic,
2387 &scic->port_agent);
2388
2389 /* Advance the controller state machine */
2390 if (result == SCI_SUCCESS)
2391 state = SCI_BASE_CONTROLLER_STATE_INITIALIZED;
2392 else
2393 state = SCI_BASE_CONTROLLER_STATE_FAILED;
2394 sci_base_state_machine_change_state(sm, state);
2395
2396 return result;
2397}
2398
2399static enum sci_status scic_user_parameters_set(
2400 struct scic_sds_controller *scic,
2401 union scic_user_parameters *scic_parms)
2402{
2403 u32 state = scic->state_machine.current_state_id;
2404
2405 if (state == SCI_BASE_CONTROLLER_STATE_RESET ||
2406 state == SCI_BASE_CONTROLLER_STATE_INITIALIZING ||
2407 state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
2408 u16 index;
2409
2410 /*
2411 * Validate the user parameters. If they are not legal, then
2412 * return a failure.
2413 */
2414 for (index = 0; index < SCI_MAX_PHYS; index++) {
2415 struct sci_phy_user_params *user_phy;
2416
2417 user_phy = &scic_parms->sds1.phys[index];
2418
2419 if (!((user_phy->max_speed_generation <=
2420 SCIC_SDS_PARM_MAX_SPEED) &&
2421 (user_phy->max_speed_generation >
2422 SCIC_SDS_PARM_NO_SPEED)))
2423 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2424
2425 if (user_phy->in_connection_align_insertion_frequency <
2426 3)
2427 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2428
2429 if ((user_phy->in_connection_align_insertion_frequency <
2430 3) ||
2431 (user_phy->align_insertion_frequency == 0) ||
2432 (user_phy->
2433 notify_enable_spin_up_insertion_frequency ==
2434 0))
2435 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2436 }
2437
2438 if ((scic_parms->sds1.stp_inactivity_timeout == 0) ||
2439 (scic_parms->sds1.ssp_inactivity_timeout == 0) ||
2440 (scic_parms->sds1.stp_max_occupancy_timeout == 0) ||
2441 (scic_parms->sds1.ssp_max_occupancy_timeout == 0) ||
2442 (scic_parms->sds1.no_outbound_task_timeout == 0))
2443 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2444
2445 memcpy(&scic->user_parameters, scic_parms, sizeof(*scic_parms));
2446
2447 return SCI_SUCCESS;
2448 }
2449
2450 return SCI_FAILURE_INVALID_STATE;
2451}
2452
2453static int scic_controller_mem_init(struct scic_sds_controller *scic)
2454{
2455 struct device *dev = scic_to_dev(scic);
2456 dma_addr_t dma_handle;
2457 enum sci_status result;
2458
2459 scic->completion_queue = dmam_alloc_coherent(dev,
2460 scic->completion_queue_entries * sizeof(u32),
2461 &dma_handle, GFP_KERNEL);
2462 if (!scic->completion_queue)
2463 return -ENOMEM;
2464
2465 writel(lower_32_bits(dma_handle),
2466 &scic->smu_registers->completion_queue_lower);
2467 writel(upper_32_bits(dma_handle),
2468 &scic->smu_registers->completion_queue_upper);
2469
2470 scic->remote_node_context_table = dmam_alloc_coherent(dev,
2471 scic->remote_node_entries *
2472 sizeof(union scu_remote_node_context),
2473 &dma_handle, GFP_KERNEL);
2474 if (!scic->remote_node_context_table)
2475 return -ENOMEM;
2476
2477 writel(lower_32_bits(dma_handle),
2478 &scic->smu_registers->remote_node_context_lower);
2479 writel(upper_32_bits(dma_handle),
2480 &scic->smu_registers->remote_node_context_upper);
2481
2482 scic->task_context_table = dmam_alloc_coherent(dev,
2483 scic->task_context_entries *
2484 sizeof(struct scu_task_context),
2485 &dma_handle, GFP_KERNEL);
2486 if (!scic->task_context_table)
2487 return -ENOMEM;
2488
2489 writel(lower_32_bits(dma_handle),
2490 &scic->smu_registers->host_task_table_lower);
2491 writel(upper_32_bits(dma_handle),
2492 &scic->smu_registers->host_task_table_upper);
2493
2494 result = scic_sds_unsolicited_frame_control_construct(scic);
2495 if (result)
2496 return result;
2497
2498 /*
2499 * Inform the silicon as to the location of the UF headers and
2500 * address table.
2501 */
2502 writel(lower_32_bits(scic->uf_control.headers.physical_address),
2503 &scic->scu_registers->sdma.uf_header_base_address_lower);
2504 writel(upper_32_bits(scic->uf_control.headers.physical_address),
2505 &scic->scu_registers->sdma.uf_header_base_address_upper);
2506
2507 writel(lower_32_bits(scic->uf_control.address_table.physical_address),
2508 &scic->scu_registers->sdma.uf_address_table_lower);
2509 writel(upper_32_bits(scic->uf_control.address_table.physical_address),
2510 &scic->scu_registers->sdma.uf_address_table_upper);
2511
2512 return 0;
2513}
2514
6f231dda
DW
2515int isci_host_init(struct isci_host *isci_host)
2516{
d9c37390 2517 int err = 0, i;
6f231dda 2518 enum sci_status status;
4711ba10 2519 union scic_oem_parameters oem;
6f231dda 2520 union scic_user_parameters scic_user_params;
d044af17 2521 struct isci_pci_info *pci_info = to_pci_info(isci_host->pdev);
6f231dda 2522
7c40a803 2523 isci_timer_list_construct(isci_host);
6f231dda 2524
6f231dda
DW
2525 spin_lock_init(&isci_host->state_lock);
2526 spin_lock_init(&isci_host->scic_lock);
2527 spin_lock_init(&isci_host->queue_lock);
0cf89d1d 2528 init_waitqueue_head(&isci_host->eventq);
6f231dda
DW
2529
2530 isci_host_change_state(isci_host, isci_starting);
2531 isci_host->can_queue = ISCI_CAN_QUEUE_VAL;
2532
cc3dbd0a 2533 status = scic_controller_construct(&isci_host->sci, scu_base(isci_host),
6f231dda
DW
2534 smu_base(isci_host));
2535
2536 if (status != SCI_SUCCESS) {
2537 dev_err(&isci_host->pdev->dev,
2538 "%s: scic_controller_construct failed - status = %x\n",
2539 __func__,
2540 status);
858d4aa7 2541 return -ENODEV;
6f231dda
DW
2542 }
2543
2544 isci_host->sas_ha.dev = &isci_host->pdev->dev;
2545 isci_host->sas_ha.lldd_ha = isci_host;
2546
d044af17
DW
2547 /*
2548 * grab initial values stored in the controller object for OEM and USER
2549 * parameters
2550 */
b5f18a20 2551 isci_user_parameters_get(isci_host, &scic_user_params);
cc3dbd0a 2552 status = scic_user_parameters_set(&isci_host->sci,
d044af17
DW
2553 &scic_user_params);
2554 if (status != SCI_SUCCESS) {
2555 dev_warn(&isci_host->pdev->dev,
2556 "%s: scic_user_parameters_set failed\n",
2557 __func__);
2558 return -ENODEV;
2559 }
2560
cc3dbd0a 2561 scic_oem_parameters_get(&isci_host->sci, &oem);
6f231dda 2562
d044af17
DW
2563 /* grab any OEM parameters specified in orom */
2564 if (pci_info->orom) {
4711ba10 2565 status = isci_parse_oem_parameters(&oem,
d044af17
DW
2566 pci_info->orom,
2567 isci_host->id);
6f231dda
DW
2568 if (status != SCI_SUCCESS) {
2569 dev_warn(&isci_host->pdev->dev,
2570 "parsing firmware oem parameters failed\n");
858d4aa7 2571 return -EINVAL;
6f231dda 2572 }
4711ba10
DW
2573 }
2574
cc3dbd0a 2575 status = scic_oem_parameters_set(&isci_host->sci, &oem);
4711ba10
DW
2576 if (status != SCI_SUCCESS) {
2577 dev_warn(&isci_host->pdev->dev,
2578 "%s: scic_oem_parameters_set failed\n",
2579 __func__);
2580 return -ENODEV;
6f231dda
DW
2581 }
2582
7c40a803
DW
2583 tasklet_init(&isci_host->completion_tasklet,
2584 isci_host_completion_routine, (unsigned long)isci_host);
2585
7c40a803 2586 INIT_LIST_HEAD(&isci_host->requests_to_complete);
11b00c19 2587 INIT_LIST_HEAD(&isci_host->requests_to_errorback);
7c40a803
DW
2588
2589 spin_lock_irq(&isci_host->scic_lock);
cc3dbd0a 2590 status = scic_controller_initialize(&isci_host->sci);
7c40a803 2591 spin_unlock_irq(&isci_host->scic_lock);
6f231dda
DW
2592 if (status != SCI_SUCCESS) {
2593 dev_warn(&isci_host->pdev->dev,
2594 "%s: scic_controller_initialize failed -"
2595 " status = 0x%x\n",
2596 __func__, status);
858d4aa7 2597 return -ENODEV;
6f231dda
DW
2598 }
2599
cc3dbd0a 2600 err = scic_controller_mem_init(&isci_host->sci);
6f231dda 2601 if (err)
858d4aa7 2602 return err;
6f231dda 2603
6f231dda 2604 isci_host->dma_pool = dmam_pool_create(DRV_NAME, &isci_host->pdev->dev,
67ea838d 2605 sizeof(struct isci_request),
6f231dda
DW
2606 SLAB_HWCACHE_ALIGN, 0);
2607
858d4aa7
DJ
2608 if (!isci_host->dma_pool)
2609 return -ENOMEM;
6f231dda 2610
d9c37390 2611 for (i = 0; i < SCI_MAX_PORTS; i++)
e531381e 2612 isci_port_init(&isci_host->ports[i], isci_host, i);
6f231dda 2613
d9c37390
DW
2614 for (i = 0; i < SCI_MAX_PHYS; i++)
2615 isci_phy_init(&isci_host->phys[i], isci_host, i);
2616
2617 for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
57f20f4e 2618 struct isci_remote_device *idev = &isci_host->devices[i];
d9c37390
DW
2619
2620 INIT_LIST_HEAD(&idev->reqs_in_process);
2621 INIT_LIST_HEAD(&idev->node);
2622 spin_lock_init(&idev->state_lock);
2623 }
6f231dda 2624
858d4aa7 2625 return 0;
6f231dda 2626}
cc9203bf
DW
2627
2628void scic_sds_controller_link_up(struct scic_sds_controller *scic,
2629 struct scic_sds_port *port, struct scic_sds_phy *phy)
2630{
2631 switch (scic->state_machine.current_state_id) {
2632 case SCI_BASE_CONTROLLER_STATE_STARTING:
2633 scic_sds_controller_phy_timer_stop(scic);
2634 scic->port_agent.link_up_handler(scic, &scic->port_agent,
2635 port, phy);
2636 scic_sds_controller_start_next_phy(scic);
2637 break;
2638 case SCI_BASE_CONTROLLER_STATE_READY:
2639 scic->port_agent.link_up_handler(scic, &scic->port_agent,
2640 port, phy);
2641 break;
2642 default:
2643 dev_dbg(scic_to_dev(scic),
2644 "%s: SCIC Controller linkup event from phy %d in "
2645 "unexpected state %d\n", __func__, phy->phy_index,
2646 scic->state_machine.current_state_id);
2647 }
2648}
2649
2650void scic_sds_controller_link_down(struct scic_sds_controller *scic,
2651 struct scic_sds_port *port, struct scic_sds_phy *phy)
2652{
2653 switch (scic->state_machine.current_state_id) {
2654 case SCI_BASE_CONTROLLER_STATE_STARTING:
2655 case SCI_BASE_CONTROLLER_STATE_READY:
2656 scic->port_agent.link_down_handler(scic, &scic->port_agent,
2657 port, phy);
2658 break;
2659 default:
2660 dev_dbg(scic_to_dev(scic),
2661 "%s: SCIC Controller linkdown event from phy %d in "
2662 "unexpected state %d\n",
2663 __func__,
2664 phy->phy_index,
2665 scic->state_machine.current_state_id);
2666 }
2667}
2668
2669/**
2670 * This is a helper method to determine if any remote devices on this
2671 * controller are still in the stopping state.
2672 *
2673 */
2674static bool scic_sds_controller_has_remote_devices_stopping(
2675 struct scic_sds_controller *controller)
2676{
2677 u32 index;
2678
2679 for (index = 0; index < controller->remote_node_entries; index++) {
2680 if ((controller->device_table[index] != NULL) &&
2681 (controller->device_table[index]->state_machine.current_state_id
2682 == SCI_BASE_REMOTE_DEVICE_STATE_STOPPING))
2683 return true;
2684 }
2685
2686 return false;
2687}
2688
2689/**
2690 * This method is called by the remote device to inform the controller
2691 * object that the remote device has stopped.
2692 */
2693void scic_sds_controller_remote_device_stopped(struct scic_sds_controller *scic,
2694 struct scic_sds_remote_device *sci_dev)
2695{
2696 if (scic->state_machine.current_state_id !=
2697 SCI_BASE_CONTROLLER_STATE_STOPPING) {
2698 dev_dbg(scic_to_dev(scic),
2699 "SCIC Controller 0x%p remote device stopped event "
2700 "from device 0x%p in unexpected state %d\n",
2701 scic, sci_dev,
2702 scic->state_machine.current_state_id);
2703 return;
2704 }
2705
2706 if (!scic_sds_controller_has_remote_devices_stopping(scic)) {
2707 sci_base_state_machine_change_state(&scic->state_machine,
2708 SCI_BASE_CONTROLLER_STATE_STOPPED);
2709 }
2710}
2711
2712/**
2713 * This method will write to the SCU PCP register the request value. The method
2714 * is used to suspend/resume ports, devices, and phys.
2715 * @scic:
2716 *
2717 *
2718 */
2719void scic_sds_controller_post_request(
2720 struct scic_sds_controller *scic,
2721 u32 request)
2722{
2723 dev_dbg(scic_to_dev(scic),
2724 "%s: SCIC Controller 0x%p post request 0x%08x\n",
2725 __func__,
2726 scic,
2727 request);
2728
2729 writel(request, &scic->smu_registers->post_context_port);
2730}
2731
2732/**
2733 * This method will copy the soft copy of the task context into the physical
2734 * memory accessible by the controller.
2735 * @scic: This parameter specifies the controller for which to copy
2736 * the task context.
2737 * @sci_req: This parameter specifies the request for which the task
2738 * context is being copied.
2739 *
2740 * After this call is made the SCIC_SDS_IO_REQUEST object will always point to
2741 * the physical memory version of the task context. Thus, all subsequent
2742 * updates to the task context are performed in the TC table (i.e. DMAable
2743 * memory). none
2744 */
2745void scic_sds_controller_copy_task_context(
2746 struct scic_sds_controller *scic,
2747 struct scic_sds_request *sci_req)
2748{
2749 struct scu_task_context *task_context_buffer;
2750
2751 task_context_buffer = scic_sds_controller_get_task_context_buffer(
2752 scic, sci_req->io_tag);
2753
2754 memcpy(task_context_buffer,
2755 sci_req->task_context_buffer,
2756 offsetof(struct scu_task_context, sgl_snapshot_ac));
2757
2758 /*
2759 * Now that the soft copy of the TC has been copied into the TC
2760 * table accessible by the silicon. Thus, any further changes to
2761 * the TC (e.g. TC termination) occur in the appropriate location. */
2762 sci_req->task_context_buffer = task_context_buffer;
2763}
2764
2765/**
2766 * This method returns the task context buffer for the given io tag.
2767 * @scic:
2768 * @io_tag:
2769 *
2770 * struct scu_task_context*
2771 */
2772struct scu_task_context *scic_sds_controller_get_task_context_buffer(
2773 struct scic_sds_controller *scic,
2774 u16 io_tag
2775 ) {
2776 u16 task_index = scic_sds_io_tag_get_index(io_tag);
2777
2778 if (task_index < scic->task_context_entries) {
2779 return &scic->task_context_table[task_index];
2780 }
2781
2782 return NULL;
2783}
2784
2785struct scic_sds_request *scic_request_by_tag(struct scic_sds_controller *scic,
2786 u16 io_tag)
2787{
2788 u16 task_index;
2789 u16 task_sequence;
2790
2791 task_index = scic_sds_io_tag_get_index(io_tag);
2792
2793 if (task_index < scic->task_context_entries) {
2794 if (scic->io_request_table[task_index] != NULL) {
2795 task_sequence = scic_sds_io_tag_get_sequence(io_tag);
2796
2797 if (task_sequence == scic->io_request_sequence[task_index]) {
2798 return scic->io_request_table[task_index];
2799 }
2800 }
2801 }
2802
2803 return NULL;
2804}
2805
2806/**
2807 * This method allocates remote node index and the reserves the remote node
2808 * context space for use. This method can fail if there are no more remote
2809 * node index available.
2810 * @scic: This is the controller object which contains the set of
2811 * free remote node ids
2812 * @sci_dev: This is the device object which is requesting the a remote node
2813 * id
2814 * @node_id: This is the remote node id that is assinged to the device if one
2815 * is available
2816 *
2817 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2818 * node index available.
2819 */
2820enum sci_status scic_sds_controller_allocate_remote_node_context(
2821 struct scic_sds_controller *scic,
2822 struct scic_sds_remote_device *sci_dev,
2823 u16 *node_id)
2824{
2825 u16 node_index;
2826 u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
2827
2828 node_index = scic_sds_remote_node_table_allocate_remote_node(
2829 &scic->available_remote_nodes, remote_node_count
2830 );
2831
2832 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2833 scic->device_table[node_index] = sci_dev;
2834
2835 *node_id = node_index;
2836
2837 return SCI_SUCCESS;
2838 }
2839
2840 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2841}
2842
2843/**
2844 * This method frees the remote node index back to the available pool. Once
2845 * this is done the remote node context buffer is no longer valid and can
2846 * not be used.
2847 * @scic:
2848 * @sci_dev:
2849 * @node_id:
2850 *
2851 */
2852void scic_sds_controller_free_remote_node_context(
2853 struct scic_sds_controller *scic,
2854 struct scic_sds_remote_device *sci_dev,
2855 u16 node_id)
2856{
2857 u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
2858
2859 if (scic->device_table[node_id] == sci_dev) {
2860 scic->device_table[node_id] = NULL;
2861
2862 scic_sds_remote_node_table_release_remote_node_index(
2863 &scic->available_remote_nodes, remote_node_count, node_id
2864 );
2865 }
2866}
2867
2868/**
2869 * This method returns the union scu_remote_node_context for the specified remote
2870 * node id.
2871 * @scic:
2872 * @node_id:
2873 *
2874 * union scu_remote_node_context*
2875 */
2876union scu_remote_node_context *scic_sds_controller_get_remote_node_context_buffer(
2877 struct scic_sds_controller *scic,
2878 u16 node_id
2879 ) {
2880 if (
2881 (node_id < scic->remote_node_entries)
2882 && (scic->device_table[node_id] != NULL)
2883 ) {
2884 return &scic->remote_node_context_table[node_id];
2885 }
2886
2887 return NULL;
2888}
2889
2890/**
2891 *
2892 * @resposne_buffer: This is the buffer into which the D2H register FIS will be
2893 * constructed.
2894 * @frame_header: This is the frame header returned by the hardware.
2895 * @frame_buffer: This is the frame buffer returned by the hardware.
2896 *
2897 * This method will combind the frame header and frame buffer to create a SATA
2898 * D2H register FIS none
2899 */
2900void scic_sds_controller_copy_sata_response(
2901 void *response_buffer,
2902 void *frame_header,
2903 void *frame_buffer)
2904{
2905 memcpy(response_buffer, frame_header, sizeof(u32));
2906
2907 memcpy(response_buffer + sizeof(u32),
2908 frame_buffer,
2909 sizeof(struct dev_to_host_fis) - sizeof(u32));
2910}
2911
2912/**
2913 * This method releases the frame once this is done the frame is available for
2914 * re-use by the hardware. The data contained in the frame header and frame
2915 * buffer is no longer valid. The UF queue get pointer is only updated if UF
2916 * control indicates this is appropriate.
2917 * @scic:
2918 * @frame_index:
2919 *
2920 */
2921void scic_sds_controller_release_frame(
2922 struct scic_sds_controller *scic,
2923 u32 frame_index)
2924{
2925 if (scic_sds_unsolicited_frame_control_release_frame(
2926 &scic->uf_control, frame_index) == true)
2927 writel(scic->uf_control.get,
2928 &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
2929}
2930
2931/**
2932 * scic_controller_start_io() - This method is called by the SCI user to
2933 * send/start an IO request. If the method invocation is successful, then
2934 * the IO request has been queued to the hardware for processing.
2935 * @controller: the handle to the controller object for which to start an IO
2936 * request.
2937 * @remote_device: the handle to the remote device object for which to start an
2938 * IO request.
2939 * @io_request: the handle to the io request object to start.
2940 * @io_tag: This parameter specifies a previously allocated IO tag that the
2941 * user desires to be utilized for this request. This parameter is optional.
2942 * The user is allowed to supply SCI_CONTROLLER_INVALID_IO_TAG as the value
2943 * for this parameter.
2944 *
2945 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
2946 * to ensure that each of the methods that may allocate or free available IO
2947 * tags are handled in a mutually exclusive manner. This method is one of said
2948 * methods requiring proper critical code section protection (e.g. semaphore,
2949 * spin-lock, etc.). - For SATA, the user is required to manage NCQ tags. As a
2950 * result, it is expected the user will have set the NCQ tag field in the host
2951 * to device register FIS prior to calling this method. There is also a
2952 * requirement for the user to call scic_stp_io_set_ncq_tag() prior to invoking
2953 * the scic_controller_start_io() method. scic_controller_allocate_tag() for
2954 * more information on allocating a tag. Indicate if the controller
2955 * successfully started the IO request. SCI_SUCCESS if the IO request was
2956 * successfully started. Determine the failure situations and return values.
2957 */
2958enum sci_status scic_controller_start_io(
2959 struct scic_sds_controller *scic,
2960 struct scic_sds_remote_device *rdev,
2961 struct scic_sds_request *req,
2962 u16 io_tag)
2963{
2964 enum sci_status status;
2965
2966 if (scic->state_machine.current_state_id !=
2967 SCI_BASE_CONTROLLER_STATE_READY) {
2968 dev_warn(scic_to_dev(scic), "invalid state to start I/O");
2969 return SCI_FAILURE_INVALID_STATE;
2970 }
2971
2972 status = scic_sds_remote_device_start_io(scic, rdev, req);
2973 if (status != SCI_SUCCESS)
2974 return status;
2975
2976 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
2977 scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(req));
2978 return SCI_SUCCESS;
2979}
2980
2981/**
2982 * scic_controller_terminate_request() - This method is called by the SCI Core
2983 * user to terminate an ongoing (i.e. started) core IO request. This does
2984 * not abort the IO request at the target, but rather removes the IO request
2985 * from the host controller.
2986 * @controller: the handle to the controller object for which to terminate a
2987 * request.
2988 * @remote_device: the handle to the remote device object for which to
2989 * terminate a request.
2990 * @request: the handle to the io or task management request object to
2991 * terminate.
2992 *
2993 * Indicate if the controller successfully began the terminate process for the
2994 * IO request. SCI_SUCCESS if the terminate process was successfully started
2995 * for the request. Determine the failure situations and return values.
2996 */
2997enum sci_status scic_controller_terminate_request(
2998 struct scic_sds_controller *scic,
2999 struct scic_sds_remote_device *rdev,
3000 struct scic_sds_request *req)
3001{
3002 enum sci_status status;
3003
3004 if (scic->state_machine.current_state_id !=
3005 SCI_BASE_CONTROLLER_STATE_READY) {
3006 dev_warn(scic_to_dev(scic),
3007 "invalid state to terminate request\n");
3008 return SCI_FAILURE_INVALID_STATE;
3009 }
3010
3011 status = scic_sds_io_request_terminate(req);
3012 if (status != SCI_SUCCESS)
3013 return status;
3014
3015 /*
3016 * Utilize the original post context command and or in the POST_TC_ABORT
3017 * request sub-type.
3018 */
3019 scic_sds_controller_post_request(scic,
3020 scic_sds_request_get_post_context(req) |
3021 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
3022 return SCI_SUCCESS;
3023}
3024
3025/**
3026 * scic_controller_complete_io() - This method will perform core specific
3027 * completion operations for an IO request. After this method is invoked,
3028 * the user should consider the IO request as invalid until it is properly
3029 * reused (i.e. re-constructed).
3030 * @controller: The handle to the controller object for which to complete the
3031 * IO request.
3032 * @remote_device: The handle to the remote device object for which to complete
3033 * the IO request.
3034 * @io_request: the handle to the io request object to complete.
3035 *
3036 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
3037 * to ensure that each of the methods that may allocate or free available IO
3038 * tags are handled in a mutually exclusive manner. This method is one of said
3039 * methods requiring proper critical code section protection (e.g. semaphore,
3040 * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
3041 * Core user, using the scic_controller_allocate_io_tag() method, then it is
3042 * the responsibility of the caller to invoke the scic_controller_free_io_tag()
3043 * method to free the tag (i.e. this method will not free the IO tag). Indicate
3044 * if the controller successfully completed the IO request. SCI_SUCCESS if the
3045 * completion process was successful.
3046 */
3047enum sci_status scic_controller_complete_io(
3048 struct scic_sds_controller *scic,
3049 struct scic_sds_remote_device *rdev,
3050 struct scic_sds_request *request)
3051{
3052 enum sci_status status;
3053 u16 index;
3054
3055 switch (scic->state_machine.current_state_id) {
3056 case SCI_BASE_CONTROLLER_STATE_STOPPING:
3057 /* XXX: Implement this function */
3058 return SCI_FAILURE;
3059 case SCI_BASE_CONTROLLER_STATE_READY:
3060 status = scic_sds_remote_device_complete_io(scic, rdev, request);
3061 if (status != SCI_SUCCESS)
3062 return status;
3063
3064 index = scic_sds_io_tag_get_index(request->io_tag);
3065 scic->io_request_table[index] = NULL;
3066 return SCI_SUCCESS;
3067 default:
3068 dev_warn(scic_to_dev(scic), "invalid state to complete I/O");
3069 return SCI_FAILURE_INVALID_STATE;
3070 }
3071
3072}
3073
3074enum sci_status scic_controller_continue_io(struct scic_sds_request *sci_req)
3075{
3076 struct scic_sds_controller *scic = sci_req->owning_controller;
3077
3078 if (scic->state_machine.current_state_id !=
3079 SCI_BASE_CONTROLLER_STATE_READY) {
3080 dev_warn(scic_to_dev(scic), "invalid state to continue I/O");
3081 return SCI_FAILURE_INVALID_STATE;
3082 }
3083
3084 scic->io_request_table[scic_sds_io_tag_get_index(sci_req->io_tag)] = sci_req;
3085 scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(sci_req));
3086 return SCI_SUCCESS;
3087}
3088
3089/**
3090 * scic_controller_start_task() - This method is called by the SCIC user to
3091 * send/start a framework task management request.
3092 * @controller: the handle to the controller object for which to start the task
3093 * management request.
3094 * @remote_device: the handle to the remote device object for which to start
3095 * the task management request.
3096 * @task_request: the handle to the task request object to start.
3097 * @io_tag: This parameter specifies a previously allocated IO tag that the
3098 * user desires to be utilized for this request. Note this not the io_tag
3099 * of the request being managed. It is to be utilized for the task request
3100 * itself. This parameter is optional. The user is allowed to supply
3101 * SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter.
3102 *
3103 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
3104 * to ensure that each of the methods that may allocate or free available IO
3105 * tags are handled in a mutually exclusive manner. This method is one of said
3106 * methods requiring proper critical code section protection (e.g. semaphore,
3107 * spin-lock, etc.). - The user must synchronize this task with completion
3108 * queue processing. If they are not synchronized then it is possible for the
3109 * io requests that are being managed by the task request can complete before
3110 * starting the task request. scic_controller_allocate_tag() for more
3111 * information on allocating a tag. Indicate if the controller successfully
3112 * started the IO request. SCI_TASK_SUCCESS if the task request was
3113 * successfully started. SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is
3114 * returned if there is/are task(s) outstanding that require termination or
3115 * completion before this request can succeed.
3116 */
3117enum sci_task_status scic_controller_start_task(
3118 struct scic_sds_controller *scic,
3119 struct scic_sds_remote_device *rdev,
3120 struct scic_sds_request *req,
3121 u16 task_tag)
3122{
3123 enum sci_status status;
3124
3125 if (scic->state_machine.current_state_id !=
3126 SCI_BASE_CONTROLLER_STATE_READY) {
3127 dev_warn(scic_to_dev(scic),
3128 "%s: SCIC Controller starting task from invalid "
3129 "state\n",
3130 __func__);
3131 return SCI_TASK_FAILURE_INVALID_STATE;
3132 }
3133
3134 status = scic_sds_remote_device_start_task(scic, rdev, req);
3135 switch (status) {
3136 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
3137 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
3138
3139 /*
3140 * We will let framework know this task request started successfully,
3141 * although core is still woring on starting the request (to post tc when
3142 * RNC is resumed.)
3143 */
3144 return SCI_SUCCESS;
3145 case SCI_SUCCESS:
3146 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
3147
3148 scic_sds_controller_post_request(scic,
3149 scic_sds_request_get_post_context(req));
3150 break;
3151 default:
3152 break;
3153 }
3154
3155 return status;
3156}
3157
3158/**
3159 * scic_controller_allocate_io_tag() - This method will allocate a tag from the
3160 * pool of free IO tags. Direct allocation of IO tags by the SCI Core user
3161 * is optional. The scic_controller_start_io() method will allocate an IO
3162 * tag if this method is not utilized and the tag is not supplied to the IO
3163 * construct routine. Direct allocation of IO tags may provide additional
3164 * performance improvements in environments capable of supporting this usage
3165 * model. Additionally, direct allocation of IO tags also provides
3166 * additional flexibility to the SCI Core user. Specifically, the user may
3167 * retain IO tags across the lives of multiple IO requests.
3168 * @controller: the handle to the controller object for which to allocate the
3169 * tag.
3170 *
3171 * IO tags are a protected resource. It is incumbent upon the SCI Core user to
3172 * ensure that each of the methods that may allocate or free available IO tags
3173 * are handled in a mutually exclusive manner. This method is one of said
3174 * methods requiring proper critical code section protection (e.g. semaphore,
3175 * spin-lock, etc.). An unsigned integer representing an available IO tag.
3176 * SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there are no
3177 * currently available tags to be allocated. All return other values indicate a
3178 * legitimate tag.
3179 */
3180u16 scic_controller_allocate_io_tag(
3181 struct scic_sds_controller *scic)
3182{
3183 u16 task_context;
3184 u16 sequence_count;
3185
3186 if (!sci_pool_empty(scic->tci_pool)) {
3187 sci_pool_get(scic->tci_pool, task_context);
3188
3189 sequence_count = scic->io_request_sequence[task_context];
3190
3191 return scic_sds_io_tag_construct(sequence_count, task_context);
3192 }
3193
3194 return SCI_CONTROLLER_INVALID_IO_TAG;
3195}
3196
3197/**
3198 * scic_controller_free_io_tag() - This method will free an IO tag to the pool
3199 * of free IO tags. This method provides the SCI Core user more flexibility
3200 * with regards to IO tags. The user may desire to keep an IO tag after an
3201 * IO request has completed, because they plan on re-using the tag for a
3202 * subsequent IO request. This method is only legal if the tag was
3203 * allocated via scic_controller_allocate_io_tag().
3204 * @controller: This parameter specifies the handle to the controller object
3205 * for which to free/return the tag.
3206 * @io_tag: This parameter represents the tag to be freed to the pool of
3207 * available tags.
3208 *
3209 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
3210 * to ensure that each of the methods that may allocate or free available IO
3211 * tags are handled in a mutually exclusive manner. This method is one of said
3212 * methods requiring proper critical code section protection (e.g. semaphore,
3213 * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
3214 * Core user, using the scic_controller_allocate_io_tag() method, then it is
3215 * the responsibility of the caller to invoke this method to free the tag. This
3216 * method returns an indication of whether the tag was successfully put back
3217 * (freed) to the pool of available tags. SCI_SUCCESS This return value
3218 * indicates the tag was successfully placed into the pool of available IO
3219 * tags. SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied tag
3220 * is not a valid IO tag value.
3221 */
3222enum sci_status scic_controller_free_io_tag(
3223 struct scic_sds_controller *scic,
3224 u16 io_tag)
3225{
3226 u16 sequence;
3227 u16 index;
3228
3229 BUG_ON(io_tag == SCI_CONTROLLER_INVALID_IO_TAG);
3230
3231 sequence = scic_sds_io_tag_get_sequence(io_tag);
3232 index = scic_sds_io_tag_get_index(io_tag);
3233
3234 if (!sci_pool_full(scic->tci_pool)) {
3235 if (sequence == scic->io_request_sequence[index]) {
3236 scic_sds_io_sequence_increment(
3237 scic->io_request_sequence[index]);
3238
3239 sci_pool_put(scic->tci_pool, index);
3240
3241 return SCI_SUCCESS;
3242 }
3243 }
3244
3245 return SCI_FAILURE_INVALID_IO_TAG;
3246}
3247
3248