]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/scsi/libata-core.c
[PATCH] libata: make some libata-core routines extern
[mirror_ubuntu-eoan-kernel.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
6aff8f1f 64static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
83206a29
TH
68static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
69 struct ata_device *dev);
acf356b1 70static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
71
72static unsigned int ata_unique_id = 1;
73static struct workqueue_struct *ata_wq;
74
418dc1f5 75int atapi_enabled = 1;
1623c81e
JG
76module_param(atapi_enabled, int, 0444);
77MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
78
c3c013a2
JG
79int libata_fua = 0;
80module_param_named(fua, libata_fua, int, 0444);
81MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
82
1da177e4
LT
83MODULE_AUTHOR("Jeff Garzik");
84MODULE_DESCRIPTION("Library module for ATA devices");
85MODULE_LICENSE("GPL");
86MODULE_VERSION(DRV_VERSION);
87
0baab86b 88
1da177e4
LT
89/**
90 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
91 * @tf: Taskfile to convert
92 * @fis: Buffer into which data will output
93 * @pmp: Port multiplier port
94 *
95 * Converts a standard ATA taskfile to a Serial ATA
96 * FIS structure (Register - Host to Device).
97 *
98 * LOCKING:
99 * Inherited from caller.
100 */
101
057ace5e 102void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
103{
104 fis[0] = 0x27; /* Register - Host to Device FIS */
105 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
106 bit 7 indicates Command FIS */
107 fis[2] = tf->command;
108 fis[3] = tf->feature;
109
110 fis[4] = tf->lbal;
111 fis[5] = tf->lbam;
112 fis[6] = tf->lbah;
113 fis[7] = tf->device;
114
115 fis[8] = tf->hob_lbal;
116 fis[9] = tf->hob_lbam;
117 fis[10] = tf->hob_lbah;
118 fis[11] = tf->hob_feature;
119
120 fis[12] = tf->nsect;
121 fis[13] = tf->hob_nsect;
122 fis[14] = 0;
123 fis[15] = tf->ctl;
124
125 fis[16] = 0;
126 fis[17] = 0;
127 fis[18] = 0;
128 fis[19] = 0;
129}
130
131/**
132 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
133 * @fis: Buffer from which data will be input
134 * @tf: Taskfile to output
135 *
e12a1be6 136 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
137 *
138 * LOCKING:
139 * Inherited from caller.
140 */
141
057ace5e 142void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
143{
144 tf->command = fis[2]; /* status */
145 tf->feature = fis[3]; /* error */
146
147 tf->lbal = fis[4];
148 tf->lbam = fis[5];
149 tf->lbah = fis[6];
150 tf->device = fis[7];
151
152 tf->hob_lbal = fis[8];
153 tf->hob_lbam = fis[9];
154 tf->hob_lbah = fis[10];
155
156 tf->nsect = fis[12];
157 tf->hob_nsect = fis[13];
158}
159
8cbd6df1
AL
160static const u8 ata_rw_cmds[] = {
161 /* pio multi */
162 ATA_CMD_READ_MULTI,
163 ATA_CMD_WRITE_MULTI,
164 ATA_CMD_READ_MULTI_EXT,
165 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
166 0,
167 0,
168 0,
169 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
170 /* pio */
171 ATA_CMD_PIO_READ,
172 ATA_CMD_PIO_WRITE,
173 ATA_CMD_PIO_READ_EXT,
174 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
175 0,
176 0,
177 0,
178 0,
8cbd6df1
AL
179 /* dma */
180 ATA_CMD_READ,
181 ATA_CMD_WRITE,
182 ATA_CMD_READ_EXT,
9a3dccc4
TH
183 ATA_CMD_WRITE_EXT,
184 0,
185 0,
186 0,
187 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 188};
1da177e4
LT
189
190/**
8cbd6df1
AL
191 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
192 * @qc: command to examine and configure
1da177e4 193 *
2e9edbf8 194 * Examine the device configuration and tf->flags to calculate
8cbd6df1 195 * the proper read/write commands and protocol to use.
1da177e4
LT
196 *
197 * LOCKING:
198 * caller.
199 */
9a3dccc4 200int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 201{
8cbd6df1
AL
202 struct ata_taskfile *tf = &qc->tf;
203 struct ata_device *dev = qc->dev;
9a3dccc4 204 u8 cmd;
1da177e4 205
9a3dccc4 206 int index, fua, lba48, write;
2e9edbf8 207
9a3dccc4 208 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
209 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
210 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 211
8cbd6df1
AL
212 if (dev->flags & ATA_DFLAG_PIO) {
213 tf->protocol = ATA_PROT_PIO;
9a3dccc4 214 index = dev->multi_count ? 0 : 8;
8d238e01
AC
215 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
216 /* Unable to use DMA due to host limitation */
217 tf->protocol = ATA_PROT_PIO;
0565c26d 218 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
219 } else {
220 tf->protocol = ATA_PROT_DMA;
9a3dccc4 221 index = 16;
8cbd6df1 222 }
1da177e4 223
9a3dccc4
TH
224 cmd = ata_rw_cmds[index + fua + lba48 + write];
225 if (cmd) {
226 tf->command = cmd;
227 return 0;
228 }
229 return -1;
1da177e4
LT
230}
231
cb95d562
TH
232/**
233 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
234 * @pio_mask: pio_mask
235 * @mwdma_mask: mwdma_mask
236 * @udma_mask: udma_mask
237 *
238 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
239 * unsigned int xfer_mask.
240 *
241 * LOCKING:
242 * None.
243 *
244 * RETURNS:
245 * Packed xfer_mask.
246 */
247static unsigned int ata_pack_xfermask(unsigned int pio_mask,
248 unsigned int mwdma_mask,
249 unsigned int udma_mask)
250{
251 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
252 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
253 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
254}
255
c0489e4e
TH
256/**
257 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
258 * @xfer_mask: xfer_mask to unpack
259 * @pio_mask: resulting pio_mask
260 * @mwdma_mask: resulting mwdma_mask
261 * @udma_mask: resulting udma_mask
262 *
263 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
264 * Any NULL distination masks will be ignored.
265 */
266static void ata_unpack_xfermask(unsigned int xfer_mask,
267 unsigned int *pio_mask,
268 unsigned int *mwdma_mask,
269 unsigned int *udma_mask)
270{
271 if (pio_mask)
272 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
273 if (mwdma_mask)
274 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
275 if (udma_mask)
276 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
277}
278
cb95d562 279static const struct ata_xfer_ent {
be9a50c8 280 int shift, bits;
cb95d562
TH
281 u8 base;
282} ata_xfer_tbl[] = {
283 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
284 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
285 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
286 { -1, },
287};
288
289/**
290 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
291 * @xfer_mask: xfer_mask of interest
292 *
293 * Return matching XFER_* value for @xfer_mask. Only the highest
294 * bit of @xfer_mask is considered.
295 *
296 * LOCKING:
297 * None.
298 *
299 * RETURNS:
300 * Matching XFER_* value, 0 if no match found.
301 */
302static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
303{
304 int highbit = fls(xfer_mask) - 1;
305 const struct ata_xfer_ent *ent;
306
307 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
308 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
309 return ent->base + highbit - ent->shift;
310 return 0;
311}
312
313/**
314 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
315 * @xfer_mode: XFER_* of interest
316 *
317 * Return matching xfer_mask for @xfer_mode.
318 *
319 * LOCKING:
320 * None.
321 *
322 * RETURNS:
323 * Matching xfer_mask, 0 if no match found.
324 */
325static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
326{
327 const struct ata_xfer_ent *ent;
328
329 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
330 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
331 return 1 << (ent->shift + xfer_mode - ent->base);
332 return 0;
333}
334
335/**
336 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
337 * @xfer_mode: XFER_* of interest
338 *
339 * Return matching xfer_shift for @xfer_mode.
340 *
341 * LOCKING:
342 * None.
343 *
344 * RETURNS:
345 * Matching xfer_shift, -1 if no match found.
346 */
347static int ata_xfer_mode2shift(unsigned int xfer_mode)
348{
349 const struct ata_xfer_ent *ent;
350
351 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
352 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
353 return ent->shift;
354 return -1;
355}
356
1da177e4 357/**
1da7b0d0
TH
358 * ata_mode_string - convert xfer_mask to string
359 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
360 *
361 * Determine string which represents the highest speed
1da7b0d0 362 * (highest bit in @modemask).
1da177e4
LT
363 *
364 * LOCKING:
365 * None.
366 *
367 * RETURNS:
368 * Constant C string representing highest speed listed in
1da7b0d0 369 * @mode_mask, or the constant C string "<n/a>".
1da177e4 370 */
1da7b0d0 371static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 372{
75f554bc
TH
373 static const char * const xfer_mode_str[] = {
374 "PIO0",
375 "PIO1",
376 "PIO2",
377 "PIO3",
378 "PIO4",
379 "MWDMA0",
380 "MWDMA1",
381 "MWDMA2",
382 "UDMA/16",
383 "UDMA/25",
384 "UDMA/33",
385 "UDMA/44",
386 "UDMA/66",
387 "UDMA/100",
388 "UDMA/133",
389 "UDMA7",
390 };
1da7b0d0 391 int highbit;
1da177e4 392
1da7b0d0
TH
393 highbit = fls(xfer_mask) - 1;
394 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
395 return xfer_mode_str[highbit];
1da177e4 396 return "<n/a>";
1da177e4
LT
397}
398
4c360c81
TH
399static const char *sata_spd_string(unsigned int spd)
400{
401 static const char * const spd_str[] = {
402 "1.5 Gbps",
403 "3.0 Gbps",
404 };
405
406 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
407 return "<unknown>";
408 return spd_str[spd - 1];
409}
410
1ad8e7f9 411void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
0b8efb0a 412{
e1211e3f 413 if (ata_dev_enabled(dev)) {
0b8efb0a
TH
414 printk(KERN_WARNING "ata%u: dev %u disabled\n",
415 ap->id, dev->devno);
416 dev->class++;
417 }
418}
419
1da177e4
LT
420/**
421 * ata_pio_devchk - PATA device presence detection
422 * @ap: ATA channel to examine
423 * @device: Device to examine (starting at zero)
424 *
425 * This technique was originally described in
426 * Hale Landis's ATADRVR (www.ata-atapi.com), and
427 * later found its way into the ATA/ATAPI spec.
428 *
429 * Write a pattern to the ATA shadow registers,
430 * and if a device is present, it will respond by
431 * correctly storing and echoing back the
432 * ATA shadow register contents.
433 *
434 * LOCKING:
435 * caller.
436 */
437
438static unsigned int ata_pio_devchk(struct ata_port *ap,
439 unsigned int device)
440{
441 struct ata_ioports *ioaddr = &ap->ioaddr;
442 u8 nsect, lbal;
443
444 ap->ops->dev_select(ap, device);
445
446 outb(0x55, ioaddr->nsect_addr);
447 outb(0xaa, ioaddr->lbal_addr);
448
449 outb(0xaa, ioaddr->nsect_addr);
450 outb(0x55, ioaddr->lbal_addr);
451
452 outb(0x55, ioaddr->nsect_addr);
453 outb(0xaa, ioaddr->lbal_addr);
454
455 nsect = inb(ioaddr->nsect_addr);
456 lbal = inb(ioaddr->lbal_addr);
457
458 if ((nsect == 0x55) && (lbal == 0xaa))
459 return 1; /* we found a device */
460
461 return 0; /* nothing found */
462}
463
464/**
465 * ata_mmio_devchk - PATA device presence detection
466 * @ap: ATA channel to examine
467 * @device: Device to examine (starting at zero)
468 *
469 * This technique was originally described in
470 * Hale Landis's ATADRVR (www.ata-atapi.com), and
471 * later found its way into the ATA/ATAPI spec.
472 *
473 * Write a pattern to the ATA shadow registers,
474 * and if a device is present, it will respond by
475 * correctly storing and echoing back the
476 * ATA shadow register contents.
477 *
478 * LOCKING:
479 * caller.
480 */
481
482static unsigned int ata_mmio_devchk(struct ata_port *ap,
483 unsigned int device)
484{
485 struct ata_ioports *ioaddr = &ap->ioaddr;
486 u8 nsect, lbal;
487
488 ap->ops->dev_select(ap, device);
489
490 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
491 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
492
493 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
494 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
495
496 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
498
499 nsect = readb((void __iomem *) ioaddr->nsect_addr);
500 lbal = readb((void __iomem *) ioaddr->lbal_addr);
501
502 if ((nsect == 0x55) && (lbal == 0xaa))
503 return 1; /* we found a device */
504
505 return 0; /* nothing found */
506}
507
508/**
509 * ata_devchk - PATA device presence detection
510 * @ap: ATA channel to examine
511 * @device: Device to examine (starting at zero)
512 *
513 * Dispatch ATA device presence detection, depending
514 * on whether we are using PIO or MMIO to talk to the
515 * ATA shadow registers.
516 *
517 * LOCKING:
518 * caller.
519 */
520
521static unsigned int ata_devchk(struct ata_port *ap,
522 unsigned int device)
523{
524 if (ap->flags & ATA_FLAG_MMIO)
525 return ata_mmio_devchk(ap, device);
526 return ata_pio_devchk(ap, device);
527}
528
529/**
530 * ata_dev_classify - determine device type based on ATA-spec signature
531 * @tf: ATA taskfile register set for device to be identified
532 *
533 * Determine from taskfile register contents whether a device is
534 * ATA or ATAPI, as per "Signature and persistence" section
535 * of ATA/PI spec (volume 1, sect 5.14).
536 *
537 * LOCKING:
538 * None.
539 *
540 * RETURNS:
541 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
542 * the event of failure.
543 */
544
057ace5e 545unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
546{
547 /* Apple's open source Darwin code hints that some devices only
548 * put a proper signature into the LBA mid/high registers,
549 * So, we only check those. It's sufficient for uniqueness.
550 */
551
552 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
553 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
554 DPRINTK("found ATA device by sig\n");
555 return ATA_DEV_ATA;
556 }
557
558 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
559 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
560 DPRINTK("found ATAPI device by sig\n");
561 return ATA_DEV_ATAPI;
562 }
563
564 DPRINTK("unknown device\n");
565 return ATA_DEV_UNKNOWN;
566}
567
568/**
569 * ata_dev_try_classify - Parse returned ATA device signature
570 * @ap: ATA channel to examine
571 * @device: Device to examine (starting at zero)
b4dc7623 572 * @r_err: Value of error register on completion
1da177e4
LT
573 *
574 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
575 * an ATA/ATAPI-defined set of values is placed in the ATA
576 * shadow registers, indicating the results of device detection
577 * and diagnostics.
578 *
579 * Select the ATA device, and read the values from the ATA shadow
580 * registers. Then parse according to the Error register value,
581 * and the spec-defined values examined by ata_dev_classify().
582 *
583 * LOCKING:
584 * caller.
b4dc7623
TH
585 *
586 * RETURNS:
587 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
588 */
589
b4dc7623
TH
590static unsigned int
591ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 592{
1da177e4
LT
593 struct ata_taskfile tf;
594 unsigned int class;
595 u8 err;
596
597 ap->ops->dev_select(ap, device);
598
599 memset(&tf, 0, sizeof(tf));
600
1da177e4 601 ap->ops->tf_read(ap, &tf);
0169e284 602 err = tf.feature;
b4dc7623
TH
603 if (r_err)
604 *r_err = err;
1da177e4
LT
605
606 /* see if device passed diags */
607 if (err == 1)
608 /* do nothing */ ;
609 else if ((device == 0) && (err == 0x81))
610 /* do nothing */ ;
611 else
b4dc7623 612 return ATA_DEV_NONE;
1da177e4 613
b4dc7623 614 /* determine if device is ATA or ATAPI */
1da177e4 615 class = ata_dev_classify(&tf);
b4dc7623 616
1da177e4 617 if (class == ATA_DEV_UNKNOWN)
b4dc7623 618 return ATA_DEV_NONE;
1da177e4 619 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
620 return ATA_DEV_NONE;
621 return class;
1da177e4
LT
622}
623
624/**
6a62a04d 625 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
626 * @id: IDENTIFY DEVICE results we will examine
627 * @s: string into which data is output
628 * @ofs: offset into identify device page
629 * @len: length of string to return. must be an even number.
630 *
631 * The strings in the IDENTIFY DEVICE page are broken up into
632 * 16-bit chunks. Run through the string, and output each
633 * 8-bit chunk linearly, regardless of platform.
634 *
635 * LOCKING:
636 * caller.
637 */
638
6a62a04d
TH
639void ata_id_string(const u16 *id, unsigned char *s,
640 unsigned int ofs, unsigned int len)
1da177e4
LT
641{
642 unsigned int c;
643
644 while (len > 0) {
645 c = id[ofs] >> 8;
646 *s = c;
647 s++;
648
649 c = id[ofs] & 0xff;
650 *s = c;
651 s++;
652
653 ofs++;
654 len -= 2;
655 }
656}
657
0e949ff3 658/**
6a62a04d 659 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
660 * @id: IDENTIFY DEVICE results we will examine
661 * @s: string into which data is output
662 * @ofs: offset into identify device page
663 * @len: length of string to return. must be an odd number.
664 *
6a62a04d 665 * This function is identical to ata_id_string except that it
0e949ff3
TH
666 * trims trailing spaces and terminates the resulting string with
667 * null. @len must be actual maximum length (even number) + 1.
668 *
669 * LOCKING:
670 * caller.
671 */
6a62a04d
TH
672void ata_id_c_string(const u16 *id, unsigned char *s,
673 unsigned int ofs, unsigned int len)
0e949ff3
TH
674{
675 unsigned char *p;
676
677 WARN_ON(!(len & 1));
678
6a62a04d 679 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
680
681 p = s + strnlen(s, len - 1);
682 while (p > s && p[-1] == ' ')
683 p--;
684 *p = '\0';
685}
0baab86b 686
2940740b
TH
687static u64 ata_id_n_sectors(const u16 *id)
688{
689 if (ata_id_has_lba(id)) {
690 if (ata_id_has_lba48(id))
691 return ata_id_u64(id, 100);
692 else
693 return ata_id_u32(id, 60);
694 } else {
695 if (ata_id_current_chs_valid(id))
696 return ata_id_u32(id, 57);
697 else
698 return id[1] * id[3] * id[6];
699 }
700}
701
0baab86b
EF
702/**
703 * ata_noop_dev_select - Select device 0/1 on ATA bus
704 * @ap: ATA channel to manipulate
705 * @device: ATA device (numbered from zero) to select
706 *
707 * This function performs no actual function.
708 *
709 * May be used as the dev_select() entry in ata_port_operations.
710 *
711 * LOCKING:
712 * caller.
713 */
1da177e4
LT
714void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
715{
716}
717
0baab86b 718
1da177e4
LT
719/**
720 * ata_std_dev_select - Select device 0/1 on ATA bus
721 * @ap: ATA channel to manipulate
722 * @device: ATA device (numbered from zero) to select
723 *
724 * Use the method defined in the ATA specification to
725 * make either device 0, or device 1, active on the
0baab86b
EF
726 * ATA channel. Works with both PIO and MMIO.
727 *
728 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
729 *
730 * LOCKING:
731 * caller.
732 */
733
734void ata_std_dev_select (struct ata_port *ap, unsigned int device)
735{
736 u8 tmp;
737
738 if (device == 0)
739 tmp = ATA_DEVICE_OBS;
740 else
741 tmp = ATA_DEVICE_OBS | ATA_DEV1;
742
743 if (ap->flags & ATA_FLAG_MMIO) {
744 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
745 } else {
746 outb(tmp, ap->ioaddr.device_addr);
747 }
748 ata_pause(ap); /* needed; also flushes, for mmio */
749}
750
751/**
752 * ata_dev_select - Select device 0/1 on ATA bus
753 * @ap: ATA channel to manipulate
754 * @device: ATA device (numbered from zero) to select
755 * @wait: non-zero to wait for Status register BSY bit to clear
756 * @can_sleep: non-zero if context allows sleeping
757 *
758 * Use the method defined in the ATA specification to
759 * make either device 0, or device 1, active on the
760 * ATA channel.
761 *
762 * This is a high-level version of ata_std_dev_select(),
763 * which additionally provides the services of inserting
764 * the proper pauses and status polling, where needed.
765 *
766 * LOCKING:
767 * caller.
768 */
769
770void ata_dev_select(struct ata_port *ap, unsigned int device,
771 unsigned int wait, unsigned int can_sleep)
772{
773 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
774 ap->id, device, wait);
775
776 if (wait)
777 ata_wait_idle(ap);
778
779 ap->ops->dev_select(ap, device);
780
781 if (wait) {
782 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
783 msleep(150);
784 ata_wait_idle(ap);
785 }
786}
787
788/**
789 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 790 * @id: IDENTIFY DEVICE page to dump
1da177e4 791 *
0bd3300a
TH
792 * Dump selected 16-bit words from the given IDENTIFY DEVICE
793 * page.
1da177e4
LT
794 *
795 * LOCKING:
796 * caller.
797 */
798
0bd3300a 799static inline void ata_dump_id(const u16 *id)
1da177e4
LT
800{
801 DPRINTK("49==0x%04x "
802 "53==0x%04x "
803 "63==0x%04x "
804 "64==0x%04x "
805 "75==0x%04x \n",
0bd3300a
TH
806 id[49],
807 id[53],
808 id[63],
809 id[64],
810 id[75]);
1da177e4
LT
811 DPRINTK("80==0x%04x "
812 "81==0x%04x "
813 "82==0x%04x "
814 "83==0x%04x "
815 "84==0x%04x \n",
0bd3300a
TH
816 id[80],
817 id[81],
818 id[82],
819 id[83],
820 id[84]);
1da177e4
LT
821 DPRINTK("88==0x%04x "
822 "93==0x%04x\n",
0bd3300a
TH
823 id[88],
824 id[93]);
1da177e4
LT
825}
826
cb95d562
TH
827/**
828 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
829 * @id: IDENTIFY data to compute xfer mask from
830 *
831 * Compute the xfermask for this device. This is not as trivial
832 * as it seems if we must consider early devices correctly.
833 *
834 * FIXME: pre IDE drive timing (do we care ?).
835 *
836 * LOCKING:
837 * None.
838 *
839 * RETURNS:
840 * Computed xfermask
841 */
842static unsigned int ata_id_xfermask(const u16 *id)
843{
844 unsigned int pio_mask, mwdma_mask, udma_mask;
845
846 /* Usual case. Word 53 indicates word 64 is valid */
847 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
848 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
849 pio_mask <<= 3;
850 pio_mask |= 0x7;
851 } else {
852 /* If word 64 isn't valid then Word 51 high byte holds
853 * the PIO timing number for the maximum. Turn it into
854 * a mask.
855 */
856 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
857
858 /* But wait.. there's more. Design your standards by
859 * committee and you too can get a free iordy field to
860 * process. However its the speeds not the modes that
861 * are supported... Note drivers using the timing API
862 * will get this right anyway
863 */
864 }
865
866 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
867
868 udma_mask = 0;
869 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
870 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
871
872 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
873}
874
86e45b6b
TH
875/**
876 * ata_port_queue_task - Queue port_task
877 * @ap: The ata_port to queue port_task for
878 *
879 * Schedule @fn(@data) for execution after @delay jiffies using
880 * port_task. There is one port_task per port and it's the
881 * user(low level driver)'s responsibility to make sure that only
882 * one task is active at any given time.
883 *
884 * libata core layer takes care of synchronization between
885 * port_task and EH. ata_port_queue_task() may be ignored for EH
886 * synchronization.
887 *
888 * LOCKING:
889 * Inherited from caller.
890 */
891void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
892 unsigned long delay)
893{
894 int rc;
895
2e755f68 896 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
897 return;
898
899 PREPARE_WORK(&ap->port_task, fn, data);
900
901 if (!delay)
902 rc = queue_work(ata_wq, &ap->port_task);
903 else
904 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
905
906 /* rc == 0 means that another user is using port task */
907 WARN_ON(rc == 0);
908}
909
910/**
911 * ata_port_flush_task - Flush port_task
912 * @ap: The ata_port to flush port_task for
913 *
914 * After this function completes, port_task is guranteed not to
915 * be running or scheduled.
916 *
917 * LOCKING:
918 * Kernel thread context (may sleep)
919 */
920void ata_port_flush_task(struct ata_port *ap)
921{
922 unsigned long flags;
923
924 DPRINTK("ENTER\n");
925
926 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 927 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
928 spin_unlock_irqrestore(&ap->host_set->lock, flags);
929
930 DPRINTK("flush #1\n");
931 flush_workqueue(ata_wq);
932
933 /*
934 * At this point, if a task is running, it's guaranteed to see
935 * the FLUSH flag; thus, it will never queue pio tasks again.
936 * Cancel and flush.
937 */
938 if (!cancel_delayed_work(&ap->port_task)) {
939 DPRINTK("flush #2\n");
940 flush_workqueue(ata_wq);
941 }
942
943 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 944 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
945 spin_unlock_irqrestore(&ap->host_set->lock, flags);
946
947 DPRINTK("EXIT\n");
948}
949
77853bf2 950void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 951{
77853bf2 952 struct completion *waiting = qc->private_data;
a2a7a662 953
77853bf2 954 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 955 complete(waiting);
a2a7a662
TH
956}
957
958/**
959 * ata_exec_internal - execute libata internal command
960 * @ap: Port to which the command is sent
961 * @dev: Device to which the command is sent
962 * @tf: Taskfile registers for the command and the result
d69cf37d 963 * @cdb: CDB for packet command
a2a7a662
TH
964 * @dma_dir: Data tranfer direction of the command
965 * @buf: Data buffer of the command
966 * @buflen: Length of data buffer
967 *
968 * Executes libata internal command with timeout. @tf contains
969 * command on entry and result on return. Timeout and error
970 * conditions are reported via return value. No recovery action
971 * is taken after a command times out. It's caller's duty to
972 * clean up after timeout.
973 *
974 * LOCKING:
975 * None. Should be called with kernel context, might sleep.
976 */
977
1ad8e7f9
TH
978unsigned ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
979 struct ata_taskfile *tf, const u8 *cdb,
980 int dma_dir, void *buf, unsigned int buflen)
a2a7a662
TH
981{
982 u8 command = tf->command;
983 struct ata_queued_cmd *qc;
984 DECLARE_COMPLETION(wait);
985 unsigned long flags;
77853bf2 986 unsigned int err_mask;
a2a7a662
TH
987
988 spin_lock_irqsave(&ap->host_set->lock, flags);
989
990 qc = ata_qc_new_init(ap, dev);
991 BUG_ON(qc == NULL);
992
993 qc->tf = *tf;
d69cf37d
TH
994 if (cdb)
995 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
a2a7a662
TH
996 qc->dma_dir = dma_dir;
997 if (dma_dir != DMA_NONE) {
998 ata_sg_init_one(qc, buf, buflen);
999 qc->nsect = buflen / ATA_SECT_SIZE;
1000 }
1001
77853bf2 1002 qc->private_data = &wait;
a2a7a662
TH
1003 qc->complete_fn = ata_qc_complete_internal;
1004
8e0e694a 1005 ata_qc_issue(qc);
a2a7a662
TH
1006
1007 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1008
1009 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
41ade50c
AL
1010 ata_port_flush_task(ap);
1011
a2a7a662
TH
1012 spin_lock_irqsave(&ap->host_set->lock, flags);
1013
1014 /* We're racing with irq here. If we lose, the
1015 * following test prevents us from completing the qc
1016 * again. If completion irq occurs after here but
1017 * before the caller cleans up, it will result in a
1018 * spurious interrupt. We can live with that.
1019 */
77853bf2 1020 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 1021 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
1022 ata_qc_complete(qc);
1023 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1024 ap->id, command);
1025 }
1026
1027 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1028 }
1029
77853bf2
TH
1030 *tf = qc->tf;
1031 err_mask = qc->err_mask;
1032
1033 ata_qc_free(qc);
1034
1f7dd3e9
TH
1035 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1036 * Until those drivers are fixed, we detect the condition
1037 * here, fail the command with AC_ERR_SYSTEM and reenable the
1038 * port.
1039 *
1040 * Note that this doesn't change any behavior as internal
1041 * command failure results in disabling the device in the
1042 * higher layer for LLDDs without new reset/EH callbacks.
1043 *
1044 * Kill the following code as soon as those drivers are fixed.
1045 */
198e0fed 1046 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1047 err_mask |= AC_ERR_SYSTEM;
1048 ata_port_probe(ap);
1049 }
1050
77853bf2 1051 return err_mask;
a2a7a662
TH
1052}
1053
1bc4ccff
AC
1054/**
1055 * ata_pio_need_iordy - check if iordy needed
1056 * @adev: ATA device
1057 *
1058 * Check if the current speed of the device requires IORDY. Used
1059 * by various controllers for chip configuration.
1060 */
1061
1062unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1063{
1064 int pio;
1065 int speed = adev->pio_mode - XFER_PIO_0;
1066
1067 if (speed < 2)
1068 return 0;
1069 if (speed > 2)
1070 return 1;
2e9edbf8 1071
1bc4ccff
AC
1072 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1073
1074 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1075 pio = adev->id[ATA_ID_EIDE_PIO];
1076 /* Is the speed faster than the drive allows non IORDY ? */
1077 if (pio) {
1078 /* This is cycle times not frequency - watch the logic! */
1079 if (pio > 240) /* PIO2 is 240nS per cycle */
1080 return 1;
1081 return 0;
1082 }
1083 }
1084 return 0;
1085}
1086
1da177e4 1087/**
49016aca
TH
1088 * ata_dev_read_id - Read ID data from the specified device
1089 * @ap: port on which target device resides
1090 * @dev: target device
1091 * @p_class: pointer to class of the target device (may be changed)
1092 * @post_reset: is this read ID post-reset?
d9572b1d 1093 * @p_id: read IDENTIFY page (newly allocated)
1da177e4 1094 *
49016aca
TH
1095 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1096 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1097 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1098 * for pre-ATA4 drives.
1da177e4
LT
1099 *
1100 * LOCKING:
49016aca
TH
1101 * Kernel thread context (may sleep)
1102 *
1103 * RETURNS:
1104 * 0 on success, -errno otherwise.
1da177e4 1105 */
49016aca 1106static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
d9572b1d 1107 unsigned int *p_class, int post_reset, u16 **p_id)
1da177e4 1108{
49016aca 1109 unsigned int class = *p_class;
a0123703 1110 struct ata_taskfile tf;
49016aca 1111 unsigned int err_mask = 0;
d9572b1d 1112 u16 *id;
49016aca
TH
1113 const char *reason;
1114 int rc;
1da177e4 1115
49016aca 1116 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1117
49016aca 1118 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1119
d9572b1d
TH
1120 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1121 if (id == NULL) {
1122 rc = -ENOMEM;
1123 reason = "out of memory";
1124 goto err_out;
1125 }
1126
49016aca
TH
1127 retry:
1128 ata_tf_init(ap, &tf, dev->devno);
a0123703 1129
49016aca
TH
1130 switch (class) {
1131 case ATA_DEV_ATA:
a0123703 1132 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1133 break;
1134 case ATA_DEV_ATAPI:
a0123703 1135 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1136 break;
1137 default:
1138 rc = -ENODEV;
1139 reason = "unsupported class";
1140 goto err_out;
1da177e4
LT
1141 }
1142
a0123703 1143 tf.protocol = ATA_PROT_PIO;
1da177e4 1144
d69cf37d 1145 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1146 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1147 if (err_mask) {
49016aca
TH
1148 rc = -EIO;
1149 reason = "I/O error";
1da177e4
LT
1150 goto err_out;
1151 }
1152
49016aca 1153 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1154
49016aca 1155 /* sanity check */
692785e7 1156 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1157 rc = -EINVAL;
1158 reason = "device reports illegal type";
1159 goto err_out;
1160 }
1161
1162 if (post_reset && class == ATA_DEV_ATA) {
1163 /*
1164 * The exact sequence expected by certain pre-ATA4 drives is:
1165 * SRST RESET
1166 * IDENTIFY
1167 * INITIALIZE DEVICE PARAMETERS
1168 * anything else..
1169 * Some drives were very specific about that exact sequence.
1170 */
1171 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
00b6f5e9 1172 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
49016aca
TH
1173 if (err_mask) {
1174 rc = -EIO;
1175 reason = "INIT_DEV_PARAMS failed";
1176 goto err_out;
1177 }
1178
1179 /* current CHS translation info (id[53-58]) might be
1180 * changed. reread the identify device info.
1181 */
1182 post_reset = 0;
1183 goto retry;
1184 }
1185 }
1186
1187 *p_class = class;
d9572b1d 1188 *p_id = id;
49016aca
TH
1189 return 0;
1190
1191 err_out:
1192 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1193 ap->id, dev->devno, reason);
d9572b1d 1194 kfree(id);
49016aca
TH
1195 return rc;
1196}
1197
4b2f3ede
TH
1198static inline u8 ata_dev_knobble(const struct ata_port *ap,
1199 struct ata_device *dev)
1200{
1201 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1202}
1203
49016aca 1204/**
ffeae418
TH
1205 * ata_dev_configure - Configure the specified ATA/ATAPI device
1206 * @ap: Port on which target device resides
1207 * @dev: Target device to configure
4c2d721a 1208 * @print_info: Enable device info printout
ffeae418
TH
1209 *
1210 * Configure @dev according to @dev->id. Generic and low-level
1211 * driver specific fixups are also applied.
49016aca
TH
1212 *
1213 * LOCKING:
ffeae418
TH
1214 * Kernel thread context (may sleep)
1215 *
1216 * RETURNS:
1217 * 0 on success, -errno otherwise
49016aca 1218 */
4c2d721a
TH
1219static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1220 int print_info)
49016aca 1221{
1148c3a7 1222 const u16 *id = dev->id;
ff8854b2 1223 unsigned int xfer_mask;
49016aca
TH
1224 int i, rc;
1225
e1211e3f 1226 if (!ata_dev_enabled(dev)) {
49016aca 1227 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1228 ap->id, dev->devno);
1229 return 0;
49016aca
TH
1230 }
1231
ffeae418 1232 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1233
c39f5ebe
TH
1234 /* print device capabilities */
1235 if (print_info)
1236 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1237 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1238 ap->id, dev->devno, id[49], id[82], id[83],
1239 id[84], id[85], id[86], id[87], id[88]);
1240
208a9933 1241 /* initialize to-be-configured parameters */
ea1dd4e1 1242 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1243 dev->max_sectors = 0;
1244 dev->cdb_len = 0;
1245 dev->n_sectors = 0;
1246 dev->cylinders = 0;
1247 dev->heads = 0;
1248 dev->sectors = 0;
1249
1da177e4
LT
1250 /*
1251 * common ATA, ATAPI feature tests
1252 */
1253
ff8854b2 1254 /* find max transfer mode; for printk only */
1148c3a7 1255 xfer_mask = ata_id_xfermask(id);
1da177e4 1256
1148c3a7 1257 ata_dump_id(id);
1da177e4
LT
1258
1259 /* ATA-specific feature tests */
1260 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1261 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1262
1148c3a7 1263 if (ata_id_has_lba(id)) {
4c2d721a 1264 const char *lba_desc;
8bf62ece 1265
4c2d721a
TH
1266 lba_desc = "LBA";
1267 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1268 if (ata_id_has_lba48(id)) {
8bf62ece 1269 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1270 lba_desc = "LBA48";
1271 }
8bf62ece
AL
1272
1273 /* print device info to dmesg */
4c2d721a
TH
1274 if (print_info)
1275 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1276 "max %s, %Lu sectors: %s\n",
1277 ap->id, dev->devno,
1148c3a7 1278 ata_id_major_version(id),
ff8854b2 1279 ata_mode_string(xfer_mask),
4c2d721a
TH
1280 (unsigned long long)dev->n_sectors,
1281 lba_desc);
ffeae418 1282 } else {
8bf62ece
AL
1283 /* CHS */
1284
1285 /* Default translation */
1148c3a7
TH
1286 dev->cylinders = id[1];
1287 dev->heads = id[3];
1288 dev->sectors = id[6];
8bf62ece 1289
1148c3a7 1290 if (ata_id_current_chs_valid(id)) {
8bf62ece 1291 /* Current CHS translation is valid. */
1148c3a7
TH
1292 dev->cylinders = id[54];
1293 dev->heads = id[55];
1294 dev->sectors = id[56];
8bf62ece
AL
1295 }
1296
1297 /* print device info to dmesg */
4c2d721a
TH
1298 if (print_info)
1299 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1300 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1301 ap->id, dev->devno,
1148c3a7 1302 ata_id_major_version(id),
ff8854b2 1303 ata_mode_string(xfer_mask),
4c2d721a
TH
1304 (unsigned long long)dev->n_sectors,
1305 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1306 }
1307
6e7846e9 1308 dev->cdb_len = 16;
1da177e4
LT
1309 }
1310
1311 /* ATAPI-specific feature tests */
2c13b7ce 1312 else if (dev->class == ATA_DEV_ATAPI) {
1148c3a7 1313 rc = atapi_cdb_len(id);
1da177e4
LT
1314 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1315 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
ffeae418 1316 rc = -EINVAL;
1da177e4
LT
1317 goto err_out_nosup;
1318 }
6e7846e9 1319 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1320
1321 /* print device info to dmesg */
4c2d721a
TH
1322 if (print_info)
1323 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
ff8854b2 1324 ap->id, dev->devno, ata_mode_string(xfer_mask));
1da177e4
LT
1325 }
1326
6e7846e9
TH
1327 ap->host->max_cmd_len = 0;
1328 for (i = 0; i < ATA_MAX_DEVICES; i++)
1329 ap->host->max_cmd_len = max_t(unsigned int,
1330 ap->host->max_cmd_len,
1331 ap->device[i].cdb_len);
1332
4b2f3ede
TH
1333 /* limit bridge transfers to udma5, 200 sectors */
1334 if (ata_dev_knobble(ap, dev)) {
4c2d721a
TH
1335 if (print_info)
1336 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1337 ap->id, dev->devno);
5a529139 1338 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1339 dev->max_sectors = ATA_MAX_SECTORS;
1340 }
1341
1342 if (ap->ops->dev_config)
1343 ap->ops->dev_config(ap, dev);
1344
1da177e4 1345 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1346 return 0;
1da177e4
LT
1347
1348err_out_nosup:
1da177e4 1349 DPRINTK("EXIT, err\n");
ffeae418 1350 return rc;
1da177e4
LT
1351}
1352
1353/**
1354 * ata_bus_probe - Reset and probe ATA bus
1355 * @ap: Bus to probe
1356 *
0cba632b
JG
1357 * Master ATA bus probing function. Initiates a hardware-dependent
1358 * bus reset, then attempts to identify any devices found on
1359 * the bus.
1360 *
1da177e4 1361 * LOCKING:
0cba632b 1362 * PCI/etc. bus probe sem.
1da177e4
LT
1363 *
1364 * RETURNS:
96072e69 1365 * Zero on success, negative errno otherwise.
1da177e4
LT
1366 */
1367
1368static int ata_bus_probe(struct ata_port *ap)
1369{
28ca5c57 1370 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1371 int tries[ATA_MAX_DEVICES];
1372 int i, rc, down_xfermask;
e82cbdb9 1373 struct ata_device *dev;
1da177e4 1374
28ca5c57 1375 ata_port_probe(ap);
c19ba8af 1376
14d2bac1
TH
1377 for (i = 0; i < ATA_MAX_DEVICES; i++)
1378 tries[i] = ATA_PROBE_MAX_TRIES;
1379
1380 retry:
1381 down_xfermask = 0;
1382
2044470c
TH
1383 /* reset and determine device classes */
1384 for (i = 0; i < ATA_MAX_DEVICES; i++)
1385 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1386
2044470c 1387 if (ap->ops->probe_reset) {
c19ba8af 1388 rc = ap->ops->probe_reset(ap, classes);
28ca5c57
TH
1389 if (rc) {
1390 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1391 return rc;
c19ba8af 1392 }
28ca5c57 1393 } else {
c19ba8af
TH
1394 ap->ops->phy_reset(ap);
1395
198e0fed 1396 if (!(ap->flags & ATA_FLAG_DISABLED))
2044470c 1397 for (i = 0; i < ATA_MAX_DEVICES; i++)
28ca5c57 1398 classes[i] = ap->device[i].class;
2044470c 1399
28ca5c57
TH
1400 ata_port_probe(ap);
1401 }
1da177e4 1402
2044470c
TH
1403 for (i = 0; i < ATA_MAX_DEVICES; i++)
1404 if (classes[i] == ATA_DEV_UNKNOWN)
1405 classes[i] = ATA_DEV_NONE;
1406
28ca5c57 1407 /* read IDENTIFY page and configure devices */
1da177e4 1408 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1409 dev = &ap->device[i];
28ca5c57
TH
1410 dev->class = classes[i];
1411
14d2bac1
TH
1412 if (!tries[i]) {
1413 ata_down_xfermask_limit(ap, dev, 1);
1414 ata_dev_disable(ap, dev);
ffeae418
TH
1415 }
1416
14d2bac1 1417 if (!ata_dev_enabled(dev))
ffeae418 1418 continue;
ffeae418 1419
14d2bac1
TH
1420 kfree(dev->id);
1421 dev->id = NULL;
1422 rc = ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id);
1423 if (rc)
1424 goto fail;
1425
1426 rc = ata_dev_configure(ap, dev, 1);
1427 if (rc)
1428 goto fail;
1da177e4
LT
1429 }
1430
e82cbdb9
TH
1431 /* configure transfer mode */
1432 if (ap->ops->set_mode) {
1433 /* FIXME: make ->set_mode handle no device case and
1434 * return error code and failing device on failure as
1435 * ata_set_mode() does.
1436 */
14d2bac1
TH
1437 for (i = 0; i < ATA_MAX_DEVICES; i++)
1438 if (ata_dev_enabled(&ap->device[i])) {
1439 ap->ops->set_mode(ap);
1440 break;
1441 }
e82cbdb9
TH
1442 rc = 0;
1443 } else {
14d2bac1
TH
1444 rc = ata_set_mode(ap, &dev);
1445 if (rc) {
1446 down_xfermask = 1;
1447 goto fail;
1448 }
e82cbdb9 1449 }
1da177e4 1450
e82cbdb9
TH
1451 for (i = 0; i < ATA_MAX_DEVICES; i++)
1452 if (ata_dev_enabled(&ap->device[i]))
1453 return 0;
1da177e4 1454
e82cbdb9
TH
1455 /* no device present, disable port */
1456 ata_port_disable(ap);
1da177e4 1457 ap->ops->port_disable(ap);
96072e69 1458 return -ENODEV;
14d2bac1
TH
1459
1460 fail:
1461 switch (rc) {
1462 case -EINVAL:
1463 case -ENODEV:
1464 tries[dev->devno] = 0;
1465 break;
1466 case -EIO:
1467 ata_down_sata_spd_limit(ap);
1468 /* fall through */
1469 default:
1470 tries[dev->devno]--;
1471 if (down_xfermask &&
1472 ata_down_xfermask_limit(ap, dev, tries[dev->devno] == 1))
1473 tries[dev->devno] = 0;
1474 }
1475
1476 goto retry;
1da177e4
LT
1477}
1478
1479/**
0cba632b
JG
1480 * ata_port_probe - Mark port as enabled
1481 * @ap: Port for which we indicate enablement
1da177e4 1482 *
0cba632b
JG
1483 * Modify @ap data structure such that the system
1484 * thinks that the entire port is enabled.
1485 *
1486 * LOCKING: host_set lock, or some other form of
1487 * serialization.
1da177e4
LT
1488 */
1489
1490void ata_port_probe(struct ata_port *ap)
1491{
198e0fed 1492 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1493}
1494
3be680b7
TH
1495/**
1496 * sata_print_link_status - Print SATA link status
1497 * @ap: SATA port to printk link status about
1498 *
1499 * This function prints link speed and status of a SATA link.
1500 *
1501 * LOCKING:
1502 * None.
1503 */
1504static void sata_print_link_status(struct ata_port *ap)
1505{
1506 u32 sstatus, tmp;
3be680b7
TH
1507
1508 if (!ap->ops->scr_read)
1509 return;
1510
1511 sstatus = scr_read(ap, SCR_STATUS);
1512
1513 if (sata_dev_present(ap)) {
1514 tmp = (sstatus >> 4) & 0xf;
4c360c81
TH
1515 printk(KERN_INFO "ata%u: SATA link up %s (SStatus %X)\n",
1516 ap->id, sata_spd_string(tmp), sstatus);
3be680b7
TH
1517 } else {
1518 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1519 ap->id, sstatus);
1520 }
1521}
1522
1da177e4 1523/**
780a87f7
JG
1524 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1525 * @ap: SATA port associated with target SATA PHY.
1da177e4 1526 *
780a87f7
JG
1527 * This function issues commands to standard SATA Sxxx
1528 * PHY registers, to wake up the phy (and device), and
1529 * clear any reset condition.
1da177e4
LT
1530 *
1531 * LOCKING:
0cba632b 1532 * PCI/etc. bus probe sem.
1da177e4
LT
1533 *
1534 */
1535void __sata_phy_reset(struct ata_port *ap)
1536{
1537 u32 sstatus;
1538 unsigned long timeout = jiffies + (HZ * 5);
1539
1540 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1541 /* issue phy wake/reset */
1542 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1543 /* Couldn't find anything in SATA I/II specs, but
1544 * AHCI-1.1 10.4.2 says at least 1 ms. */
1545 mdelay(1);
1da177e4 1546 }
cdcca89e 1547 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1548
1549 /* wait for phy to become ready, if necessary */
1550 do {
1551 msleep(200);
1552 sstatus = scr_read(ap, SCR_STATUS);
1553 if ((sstatus & 0xf) != 1)
1554 break;
1555 } while (time_before(jiffies, timeout));
1556
3be680b7
TH
1557 /* print link status */
1558 sata_print_link_status(ap);
656563e3 1559
3be680b7
TH
1560 /* TODO: phy layer with polling, timeouts, etc. */
1561 if (sata_dev_present(ap))
1da177e4 1562 ata_port_probe(ap);
3be680b7 1563 else
1da177e4 1564 ata_port_disable(ap);
1da177e4 1565
198e0fed 1566 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1567 return;
1568
1569 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1570 ata_port_disable(ap);
1571 return;
1572 }
1573
1574 ap->cbl = ATA_CBL_SATA;
1575}
1576
1577/**
780a87f7
JG
1578 * sata_phy_reset - Reset SATA bus.
1579 * @ap: SATA port associated with target SATA PHY.
1da177e4 1580 *
780a87f7
JG
1581 * This function resets the SATA bus, and then probes
1582 * the bus for devices.
1da177e4
LT
1583 *
1584 * LOCKING:
0cba632b 1585 * PCI/etc. bus probe sem.
1da177e4
LT
1586 *
1587 */
1588void sata_phy_reset(struct ata_port *ap)
1589{
1590 __sata_phy_reset(ap);
198e0fed 1591 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1592 return;
1593 ata_bus_reset(ap);
1594}
1595
ebdfca6e
AC
1596/**
1597 * ata_dev_pair - return other device on cable
1598 * @ap: port
1599 * @adev: device
1600 *
1601 * Obtain the other device on the same cable, or if none is
1602 * present NULL is returned
1603 */
2e9edbf8 1604
ebdfca6e
AC
1605struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1606{
1607 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1608 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1609 return NULL;
1610 return pair;
1611}
1612
1da177e4 1613/**
780a87f7
JG
1614 * ata_port_disable - Disable port.
1615 * @ap: Port to be disabled.
1da177e4 1616 *
780a87f7
JG
1617 * Modify @ap data structure such that the system
1618 * thinks that the entire port is disabled, and should
1619 * never attempt to probe or communicate with devices
1620 * on this port.
1621 *
1622 * LOCKING: host_set lock, or some other form of
1623 * serialization.
1da177e4
LT
1624 */
1625
1626void ata_port_disable(struct ata_port *ap)
1627{
1628 ap->device[0].class = ATA_DEV_NONE;
1629 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1630 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1631}
1632
1c3fae4d
TH
1633/**
1634 * ata_down_sata_spd_limit - adjust SATA spd limit downward
1635 * @ap: Port to adjust SATA spd limit for
1636 *
1637 * Adjust SATA spd limit of @ap downward. Note that this
1638 * function only adjusts the limit. The change must be applied
1639 * using ata_set_sata_spd().
1640 *
1641 * LOCKING:
1642 * Inherited from caller.
1643 *
1644 * RETURNS:
1645 * 0 on success, negative errno on failure
1646 */
1ad8e7f9 1647int ata_down_sata_spd_limit(struct ata_port *ap)
1c3fae4d
TH
1648{
1649 u32 spd, mask;
1650 int highbit;
1651
1652 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1653 return -EOPNOTSUPP;
1654
1655 mask = ap->sata_spd_limit;
1656 if (mask <= 1)
1657 return -EINVAL;
1658 highbit = fls(mask) - 1;
1659 mask &= ~(1 << highbit);
1660
1661 spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
1662 if (spd <= 1)
1663 return -EINVAL;
1664 spd--;
1665 mask &= (1 << spd) - 1;
1666 if (!mask)
1667 return -EINVAL;
1668
1669 ap->sata_spd_limit = mask;
1670
1671 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1672 ap->id, sata_spd_string(fls(mask)));
1673
1674 return 0;
1675}
1676
1677static int __ata_set_sata_spd_needed(struct ata_port *ap, u32 *scontrol)
1678{
1679 u32 spd, limit;
1680
1681 if (ap->sata_spd_limit == UINT_MAX)
1682 limit = 0;
1683 else
1684 limit = fls(ap->sata_spd_limit);
1685
1686 spd = (*scontrol >> 4) & 0xf;
1687 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1688
1689 return spd != limit;
1690}
1691
1692/**
1693 * ata_set_sata_spd_needed - is SATA spd configuration needed
1694 * @ap: Port in question
1695 *
1696 * Test whether the spd limit in SControl matches
1697 * @ap->sata_spd_limit. This function is used to determine
1698 * whether hardreset is necessary to apply SATA spd
1699 * configuration.
1700 *
1701 * LOCKING:
1702 * Inherited from caller.
1703 *
1704 * RETURNS:
1705 * 1 if SATA spd configuration is needed, 0 otherwise.
1706 */
1ad8e7f9 1707int ata_set_sata_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1708{
1709 u32 scontrol;
1710
1711 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1712 return 0;
1713
1714 scontrol = scr_read(ap, SCR_CONTROL);
1715
1716 return __ata_set_sata_spd_needed(ap, &scontrol);
1717}
1718
1719/**
1720 * ata_set_sata_spd - set SATA spd according to spd limit
1721 * @ap: Port to set SATA spd for
1722 *
1723 * Set SATA spd of @ap according to sata_spd_limit.
1724 *
1725 * LOCKING:
1726 * Inherited from caller.
1727 *
1728 * RETURNS:
1729 * 0 if spd doesn't need to be changed, 1 if spd has been
1730 * changed. -EOPNOTSUPP if SCR registers are inaccessible.
1731 */
1732static int ata_set_sata_spd(struct ata_port *ap)
1733{
1734 u32 scontrol;
1735
1736 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1737 return -EOPNOTSUPP;
1738
1739 scontrol = scr_read(ap, SCR_CONTROL);
1740 if (!__ata_set_sata_spd_needed(ap, &scontrol))
1741 return 0;
1742
1743 scr_write(ap, SCR_CONTROL, scontrol);
1744 return 1;
1745}
1746
452503f9
AC
1747/*
1748 * This mode timing computation functionality is ported over from
1749 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1750 */
1751/*
1752 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1753 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1754 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1755 * is currently supported only by Maxtor drives.
452503f9
AC
1756 */
1757
1758static const struct ata_timing ata_timing[] = {
1759
1760 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1761 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1762 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1763 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1764
1765 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1766 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1767 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1768
1769/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1770
452503f9
AC
1771 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1772 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1773 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1774
452503f9
AC
1775 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1776 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1777 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1778
1779/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1780 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1781 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1782
1783 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1784 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1785 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1786
1787/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1788
1789 { 0xFF }
1790};
1791
1792#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1793#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1794
1795static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1796{
1797 q->setup = EZ(t->setup * 1000, T);
1798 q->act8b = EZ(t->act8b * 1000, T);
1799 q->rec8b = EZ(t->rec8b * 1000, T);
1800 q->cyc8b = EZ(t->cyc8b * 1000, T);
1801 q->active = EZ(t->active * 1000, T);
1802 q->recover = EZ(t->recover * 1000, T);
1803 q->cycle = EZ(t->cycle * 1000, T);
1804 q->udma = EZ(t->udma * 1000, UT);
1805}
1806
1807void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1808 struct ata_timing *m, unsigned int what)
1809{
1810 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1811 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1812 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1813 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1814 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1815 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1816 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1817 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1818}
1819
1820static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1821{
1822 const struct ata_timing *t;
1823
1824 for (t = ata_timing; t->mode != speed; t++)
91190758 1825 if (t->mode == 0xFF)
452503f9 1826 return NULL;
2e9edbf8 1827 return t;
452503f9
AC
1828}
1829
1830int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1831 struct ata_timing *t, int T, int UT)
1832{
1833 const struct ata_timing *s;
1834 struct ata_timing p;
1835
1836 /*
2e9edbf8 1837 * Find the mode.
75b1f2f8 1838 */
452503f9
AC
1839
1840 if (!(s = ata_timing_find_mode(speed)))
1841 return -EINVAL;
1842
75b1f2f8
AL
1843 memcpy(t, s, sizeof(*s));
1844
452503f9
AC
1845 /*
1846 * If the drive is an EIDE drive, it can tell us it needs extended
1847 * PIO/MW_DMA cycle timing.
1848 */
1849
1850 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1851 memset(&p, 0, sizeof(p));
1852 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1853 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1854 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1855 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1856 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1857 }
1858 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1859 }
1860
1861 /*
1862 * Convert the timing to bus clock counts.
1863 */
1864
75b1f2f8 1865 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1866
1867 /*
c893a3ae
RD
1868 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1869 * S.M.A.R.T * and some other commands. We have to ensure that the
1870 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1871 */
1872
1873 if (speed > XFER_PIO_4) {
1874 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1875 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1876 }
1877
1878 /*
c893a3ae 1879 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1880 */
1881
1882 if (t->act8b + t->rec8b < t->cyc8b) {
1883 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1884 t->rec8b = t->cyc8b - t->act8b;
1885 }
1886
1887 if (t->active + t->recover < t->cycle) {
1888 t->active += (t->cycle - (t->active + t->recover)) / 2;
1889 t->recover = t->cycle - t->active;
1890 }
1891
1892 return 0;
1893}
1894
cf176e1a
TH
1895/**
1896 * ata_down_xfermask_limit - adjust dev xfer masks downward
1897 * @ap: Port associated with device @dev
1898 * @dev: Device to adjust xfer masks
1899 * @force_pio0: Force PIO0
1900 *
1901 * Adjust xfer masks of @dev downward. Note that this function
1902 * does not apply the change. Invoking ata_set_mode() afterwards
1903 * will apply the limit.
1904 *
1905 * LOCKING:
1906 * Inherited from caller.
1907 *
1908 * RETURNS:
1909 * 0 on success, negative errno on failure
1910 */
1ad8e7f9
TH
1911int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
1912 int force_pio0)
cf176e1a
TH
1913{
1914 unsigned long xfer_mask;
1915 int highbit;
1916
1917 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1918 dev->udma_mask);
1919
1920 if (!xfer_mask)
1921 goto fail;
1922 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1923 if (xfer_mask & ATA_MASK_UDMA)
1924 xfer_mask &= ~ATA_MASK_MWDMA;
1925
1926 highbit = fls(xfer_mask) - 1;
1927 xfer_mask &= ~(1 << highbit);
1928 if (force_pio0)
1929 xfer_mask &= 1 << ATA_SHIFT_PIO;
1930 if (!xfer_mask)
1931 goto fail;
1932
1933 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1934 &dev->udma_mask);
1935
1936 printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
1937 ap->id, dev->devno, ata_mode_string(xfer_mask));
1938
1939 return 0;
1940
1941 fail:
1942 return -EINVAL;
1943}
1944
83206a29 1945static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1da177e4 1946{
83206a29
TH
1947 unsigned int err_mask;
1948 int rc;
1da177e4 1949
e8384607 1950 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
1951 if (dev->xfer_shift == ATA_SHIFT_PIO)
1952 dev->flags |= ATA_DFLAG_PIO;
1953
83206a29
TH
1954 err_mask = ata_dev_set_xfermode(ap, dev);
1955 if (err_mask) {
1956 printk(KERN_ERR
1957 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1958 ap->id, err_mask);
1959 return -EIO;
1960 }
1da177e4 1961
83206a29 1962 rc = ata_dev_revalidate(ap, dev, 0);
5eb45c02 1963 if (rc)
83206a29 1964 return rc;
48a8a14f 1965
23e71c3d
TH
1966 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1967 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4
LT
1968
1969 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
23e71c3d
TH
1970 ap->id, dev->devno,
1971 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 1972 return 0;
1da177e4
LT
1973}
1974
1da177e4
LT
1975/**
1976 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1977 * @ap: port on which timings will be programmed
e82cbdb9 1978 * @r_failed_dev: out paramter for failed device
1da177e4 1979 *
e82cbdb9
TH
1980 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1981 * ata_set_mode() fails, pointer to the failing device is
1982 * returned in @r_failed_dev.
780a87f7 1983 *
1da177e4 1984 * LOCKING:
0cba632b 1985 * PCI/etc. bus probe sem.
e82cbdb9
TH
1986 *
1987 * RETURNS:
1988 * 0 on success, negative errno otherwise
1da177e4 1989 */
1ad8e7f9 1990int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 1991{
e8e0619f 1992 struct ata_device *dev;
e82cbdb9 1993 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 1994
a6d5a51c
TH
1995 /* step 1: calculate xfer_mask */
1996 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 1997 unsigned int pio_mask, dma_mask;
a6d5a51c 1998
e8e0619f
TH
1999 dev = &ap->device[i];
2000
e1211e3f 2001 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2002 continue;
2003
acf356b1 2004 ata_dev_xfermask(ap, dev);
1da177e4 2005
acf356b1
TH
2006 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2007 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2008 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2009 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2010
4f65977d 2011 found = 1;
5444a6f4
AC
2012 if (dev->dma_mode)
2013 used_dma = 1;
a6d5a51c 2014 }
4f65977d 2015 if (!found)
e82cbdb9 2016 goto out;
a6d5a51c
TH
2017
2018 /* step 2: always set host PIO timings */
e8e0619f
TH
2019 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2020 dev = &ap->device[i];
2021 if (!ata_dev_enabled(dev))
2022 continue;
2023
2024 if (!dev->pio_mode) {
2025 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
2026 ap->id, dev->devno);
2027 rc = -EINVAL;
e82cbdb9 2028 goto out;
e8e0619f
TH
2029 }
2030
2031 dev->xfer_mode = dev->pio_mode;
2032 dev->xfer_shift = ATA_SHIFT_PIO;
2033 if (ap->ops->set_piomode)
2034 ap->ops->set_piomode(ap, dev);
2035 }
1da177e4 2036
a6d5a51c 2037 /* step 3: set host DMA timings */
e8e0619f
TH
2038 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2039 dev = &ap->device[i];
2040
2041 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2042 continue;
2043
2044 dev->xfer_mode = dev->dma_mode;
2045 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2046 if (ap->ops->set_dmamode)
2047 ap->ops->set_dmamode(ap, dev);
2048 }
1da177e4
LT
2049
2050 /* step 4: update devices' xfer mode */
83206a29 2051 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2052 dev = &ap->device[i];
1da177e4 2053
e1211e3f 2054 if (!ata_dev_enabled(dev))
83206a29
TH
2055 continue;
2056
5bbc53f4
TH
2057 rc = ata_dev_set_mode(ap, dev);
2058 if (rc)
e82cbdb9 2059 goto out;
83206a29 2060 }
1da177e4 2061
e8e0619f
TH
2062 /* Record simplex status. If we selected DMA then the other
2063 * host channels are not permitted to do so.
5444a6f4 2064 */
5444a6f4
AC
2065 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2066 ap->host_set->simplex_claimed = 1;
2067
e8e0619f 2068 /* step5: chip specific finalisation */
1da177e4
LT
2069 if (ap->ops->post_set_mode)
2070 ap->ops->post_set_mode(ap);
2071
e82cbdb9
TH
2072 out:
2073 if (rc)
2074 *r_failed_dev = dev;
2075 return rc;
1da177e4
LT
2076}
2077
1fdffbce
JG
2078/**
2079 * ata_tf_to_host - issue ATA taskfile to host controller
2080 * @ap: port to which command is being issued
2081 * @tf: ATA taskfile register set
2082 *
2083 * Issues ATA taskfile register set to ATA host controller,
2084 * with proper synchronization with interrupt handler and
2085 * other threads.
2086 *
2087 * LOCKING:
2088 * spin_lock_irqsave(host_set lock)
2089 */
2090
2091static inline void ata_tf_to_host(struct ata_port *ap,
2092 const struct ata_taskfile *tf)
2093{
2094 ap->ops->tf_load(ap, tf);
2095 ap->ops->exec_command(ap, tf);
2096}
2097
1da177e4
LT
2098/**
2099 * ata_busy_sleep - sleep until BSY clears, or timeout
2100 * @ap: port containing status register to be polled
2101 * @tmout_pat: impatience timeout
2102 * @tmout: overall timeout
2103 *
780a87f7
JG
2104 * Sleep until ATA Status register bit BSY clears,
2105 * or a timeout occurs.
2106 *
2107 * LOCKING: None.
1da177e4
LT
2108 */
2109
6f8b9958
TH
2110unsigned int ata_busy_sleep (struct ata_port *ap,
2111 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2112{
2113 unsigned long timer_start, timeout;
2114 u8 status;
2115
2116 status = ata_busy_wait(ap, ATA_BUSY, 300);
2117 timer_start = jiffies;
2118 timeout = timer_start + tmout_pat;
2119 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2120 msleep(50);
2121 status = ata_busy_wait(ap, ATA_BUSY, 3);
2122 }
2123
2124 if (status & ATA_BUSY)
2125 printk(KERN_WARNING "ata%u is slow to respond, "
2126 "please be patient\n", ap->id);
2127
2128 timeout = timer_start + tmout;
2129 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2130 msleep(50);
2131 status = ata_chk_status(ap);
2132 }
2133
2134 if (status & ATA_BUSY) {
2135 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2136 ap->id, tmout / HZ);
2137 return 1;
2138 }
2139
2140 return 0;
2141}
2142
2143static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2144{
2145 struct ata_ioports *ioaddr = &ap->ioaddr;
2146 unsigned int dev0 = devmask & (1 << 0);
2147 unsigned int dev1 = devmask & (1 << 1);
2148 unsigned long timeout;
2149
2150 /* if device 0 was found in ata_devchk, wait for its
2151 * BSY bit to clear
2152 */
2153 if (dev0)
2154 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2155
2156 /* if device 1 was found in ata_devchk, wait for
2157 * register access, then wait for BSY to clear
2158 */
2159 timeout = jiffies + ATA_TMOUT_BOOT;
2160 while (dev1) {
2161 u8 nsect, lbal;
2162
2163 ap->ops->dev_select(ap, 1);
2164 if (ap->flags & ATA_FLAG_MMIO) {
2165 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2166 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2167 } else {
2168 nsect = inb(ioaddr->nsect_addr);
2169 lbal = inb(ioaddr->lbal_addr);
2170 }
2171 if ((nsect == 1) && (lbal == 1))
2172 break;
2173 if (time_after(jiffies, timeout)) {
2174 dev1 = 0;
2175 break;
2176 }
2177 msleep(50); /* give drive a breather */
2178 }
2179 if (dev1)
2180 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2181
2182 /* is all this really necessary? */
2183 ap->ops->dev_select(ap, 0);
2184 if (dev1)
2185 ap->ops->dev_select(ap, 1);
2186 if (dev0)
2187 ap->ops->dev_select(ap, 0);
2188}
2189
1da177e4
LT
2190static unsigned int ata_bus_softreset(struct ata_port *ap,
2191 unsigned int devmask)
2192{
2193 struct ata_ioports *ioaddr = &ap->ioaddr;
2194
2195 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2196
2197 /* software reset. causes dev0 to be selected */
2198 if (ap->flags & ATA_FLAG_MMIO) {
2199 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2200 udelay(20); /* FIXME: flush */
2201 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2202 udelay(20); /* FIXME: flush */
2203 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2204 } else {
2205 outb(ap->ctl, ioaddr->ctl_addr);
2206 udelay(10);
2207 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2208 udelay(10);
2209 outb(ap->ctl, ioaddr->ctl_addr);
2210 }
2211
2212 /* spec mandates ">= 2ms" before checking status.
2213 * We wait 150ms, because that was the magic delay used for
2214 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2215 * between when the ATA command register is written, and then
2216 * status is checked. Because waiting for "a while" before
2217 * checking status is fine, post SRST, we perform this magic
2218 * delay here as well.
09c7ad79
AC
2219 *
2220 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2221 */
2222 msleep(150);
2223
2e9edbf8 2224 /* Before we perform post reset processing we want to see if
298a41ca
TH
2225 * the bus shows 0xFF because the odd clown forgets the D7
2226 * pulldown resistor.
2227 */
09c7ad79 2228 if (ata_check_status(ap) == 0xFF)
298a41ca 2229 return AC_ERR_OTHER;
09c7ad79 2230
1da177e4
LT
2231 ata_bus_post_reset(ap, devmask);
2232
2233 return 0;
2234}
2235
2236/**
2237 * ata_bus_reset - reset host port and associated ATA channel
2238 * @ap: port to reset
2239 *
2240 * This is typically the first time we actually start issuing
2241 * commands to the ATA channel. We wait for BSY to clear, then
2242 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2243 * result. Determine what devices, if any, are on the channel
2244 * by looking at the device 0/1 error register. Look at the signature
2245 * stored in each device's taskfile registers, to determine if
2246 * the device is ATA or ATAPI.
2247 *
2248 * LOCKING:
0cba632b
JG
2249 * PCI/etc. bus probe sem.
2250 * Obtains host_set lock.
1da177e4
LT
2251 *
2252 * SIDE EFFECTS:
198e0fed 2253 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2254 */
2255
2256void ata_bus_reset(struct ata_port *ap)
2257{
2258 struct ata_ioports *ioaddr = &ap->ioaddr;
2259 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2260 u8 err;
aec5c3c1 2261 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2262
2263 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2264
2265 /* determine if device 0/1 are present */
2266 if (ap->flags & ATA_FLAG_SATA_RESET)
2267 dev0 = 1;
2268 else {
2269 dev0 = ata_devchk(ap, 0);
2270 if (slave_possible)
2271 dev1 = ata_devchk(ap, 1);
2272 }
2273
2274 if (dev0)
2275 devmask |= (1 << 0);
2276 if (dev1)
2277 devmask |= (1 << 1);
2278
2279 /* select device 0 again */
2280 ap->ops->dev_select(ap, 0);
2281
2282 /* issue bus reset */
2283 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2284 if (ata_bus_softreset(ap, devmask))
2285 goto err_out;
1da177e4
LT
2286
2287 /*
2288 * determine by signature whether we have ATA or ATAPI devices
2289 */
b4dc7623 2290 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2291 if ((slave_possible) && (err != 0x81))
b4dc7623 2292 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2293
2294 /* re-enable interrupts */
2295 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2296 ata_irq_on(ap);
2297
2298 /* is double-select really necessary? */
2299 if (ap->device[1].class != ATA_DEV_NONE)
2300 ap->ops->dev_select(ap, 1);
2301 if (ap->device[0].class != ATA_DEV_NONE)
2302 ap->ops->dev_select(ap, 0);
2303
2304 /* if no devices were detected, disable this port */
2305 if ((ap->device[0].class == ATA_DEV_NONE) &&
2306 (ap->device[1].class == ATA_DEV_NONE))
2307 goto err_out;
2308
2309 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2310 /* set up device control for ATA_FLAG_SATA_RESET */
2311 if (ap->flags & ATA_FLAG_MMIO)
2312 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2313 else
2314 outb(ap->ctl, ioaddr->ctl_addr);
2315 }
2316
2317 DPRINTK("EXIT\n");
2318 return;
2319
2320err_out:
2321 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2322 ap->ops->port_disable(ap);
2323
2324 DPRINTK("EXIT\n");
2325}
2326
7a7921e8
TH
2327static int sata_phy_resume(struct ata_port *ap)
2328{
2329 unsigned long timeout = jiffies + (HZ * 5);
852ee16a 2330 u32 scontrol, sstatus;
7a7921e8 2331
852ee16a
TH
2332 scontrol = scr_read(ap, SCR_CONTROL);
2333 scontrol = (scontrol & 0x0f0) | 0x300;
2334 scr_write_flush(ap, SCR_CONTROL, scontrol);
7a7921e8
TH
2335
2336 /* Wait for phy to become ready, if necessary. */
2337 do {
2338 msleep(200);
2339 sstatus = scr_read(ap, SCR_STATUS);
2340 if ((sstatus & 0xf) != 1)
2341 return 0;
2342 } while (time_before(jiffies, timeout));
2343
2344 return -1;
2345}
2346
8a19ac89
TH
2347/**
2348 * ata_std_probeinit - initialize probing
2349 * @ap: port to be probed
2350 *
2351 * @ap is about to be probed. Initialize it. This function is
2352 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2353 *
2354 * NOTE!!! Do not use this function as probeinit if a low level
2355 * driver implements only hardreset. Just pass NULL as probeinit
2356 * in that case. Using this function is probably okay but doing
2357 * so makes reset sequence different from the original
2358 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2359 */
17efc5f7 2360void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2361{
17efc5f7 2362 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
1c3fae4d
TH
2363 u32 spd;
2364
8a19ac89 2365 sata_phy_resume(ap);
1c3fae4d
TH
2366
2367 spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
2368 if (spd)
2369 ap->sata_spd_limit &= (1 << spd) - 1;
2370
3a39746a
TH
2371 if (sata_dev_present(ap))
2372 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2373 }
8a19ac89
TH
2374}
2375
c2bd5804
TH
2376/**
2377 * ata_std_softreset - reset host port via ATA SRST
2378 * @ap: port to reset
2379 * @verbose: fail verbosely
2380 * @classes: resulting classes of attached devices
2381 *
2382 * Reset host port using ATA SRST. This function is to be used
2383 * as standard callback for ata_drive_*_reset() functions.
2384 *
2385 * LOCKING:
2386 * Kernel thread context (may sleep)
2387 *
2388 * RETURNS:
2389 * 0 on success, -errno otherwise.
2390 */
2391int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2392{
2393 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2394 unsigned int devmask = 0, err_mask;
2395 u8 err;
2396
2397 DPRINTK("ENTER\n");
2398
3a39746a
TH
2399 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2400 classes[0] = ATA_DEV_NONE;
2401 goto out;
2402 }
2403
c2bd5804
TH
2404 /* determine if device 0/1 are present */
2405 if (ata_devchk(ap, 0))
2406 devmask |= (1 << 0);
2407 if (slave_possible && ata_devchk(ap, 1))
2408 devmask |= (1 << 1);
2409
c2bd5804
TH
2410 /* select device 0 again */
2411 ap->ops->dev_select(ap, 0);
2412
2413 /* issue bus reset */
2414 DPRINTK("about to softreset, devmask=%x\n", devmask);
2415 err_mask = ata_bus_softreset(ap, devmask);
2416 if (err_mask) {
2417 if (verbose)
2418 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2419 ap->id, err_mask);
2420 else
2421 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2422 err_mask);
2423 return -EIO;
2424 }
2425
2426 /* determine by signature whether we have ATA or ATAPI devices */
2427 classes[0] = ata_dev_try_classify(ap, 0, &err);
2428 if (slave_possible && err != 0x81)
2429 classes[1] = ata_dev_try_classify(ap, 1, &err);
2430
3a39746a 2431 out:
c2bd5804
TH
2432 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2433 return 0;
2434}
2435
2436/**
2437 * sata_std_hardreset - reset host port via SATA phy reset
2438 * @ap: port to reset
2439 * @verbose: fail verbosely
2440 * @class: resulting class of attached device
2441 *
2442 * SATA phy-reset host port using DET bits of SControl register.
2443 * This function is to be used as standard callback for
2444 * ata_drive_*_reset().
2445 *
2446 * LOCKING:
2447 * Kernel thread context (may sleep)
2448 *
2449 * RETURNS:
2450 * 0 on success, -errno otherwise.
2451 */
2452int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2453{
852ee16a
TH
2454 u32 scontrol;
2455
c2bd5804
TH
2456 DPRINTK("ENTER\n");
2457
1c3fae4d
TH
2458 if (ata_set_sata_spd_needed(ap)) {
2459 /* SATA spec says nothing about how to reconfigure
2460 * spd. To be on the safe side, turn off phy during
2461 * reconfiguration. This works for at least ICH7 AHCI
2462 * and Sil3124.
2463 */
2464 scontrol = scr_read(ap, SCR_CONTROL);
2465 scontrol = (scontrol & 0x0f0) | 0x302;
2466 scr_write_flush(ap, SCR_CONTROL, scontrol);
2467
2468 ata_set_sata_spd(ap);
2469 }
2470
2471 /* issue phy wake/reset */
852ee16a
TH
2472 scontrol = scr_read(ap, SCR_CONTROL);
2473 scontrol = (scontrol & 0x0f0) | 0x301;
2474 scr_write_flush(ap, SCR_CONTROL, scontrol);
c2bd5804 2475
1c3fae4d 2476 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2477 * 10.4.2 says at least 1 ms.
2478 */
2479 msleep(1);
2480
1c3fae4d 2481 /* bring phy back */
7a7921e8 2482 sata_phy_resume(ap);
c2bd5804 2483
c2bd5804
TH
2484 /* TODO: phy layer with polling, timeouts, etc. */
2485 if (!sata_dev_present(ap)) {
2486 *class = ATA_DEV_NONE;
2487 DPRINTK("EXIT, link offline\n");
2488 return 0;
2489 }
2490
2491 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2492 if (verbose)
2493 printk(KERN_ERR "ata%u: COMRESET failed "
2494 "(device not ready)\n", ap->id);
2495 else
2496 DPRINTK("EXIT, device not ready\n");
2497 return -EIO;
2498 }
2499
3a39746a
TH
2500 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2501
c2bd5804
TH
2502 *class = ata_dev_try_classify(ap, 0, NULL);
2503
2504 DPRINTK("EXIT, class=%u\n", *class);
2505 return 0;
2506}
2507
2508/**
2509 * ata_std_postreset - standard postreset callback
2510 * @ap: the target ata_port
2511 * @classes: classes of attached devices
2512 *
2513 * This function is invoked after a successful reset. Note that
2514 * the device might have been reset more than once using
2515 * different reset methods before postreset is invoked.
c2bd5804
TH
2516 *
2517 * This function is to be used as standard callback for
2518 * ata_drive_*_reset().
2519 *
2520 * LOCKING:
2521 * Kernel thread context (may sleep)
2522 */
2523void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2524{
2525 DPRINTK("ENTER\n");
2526
56497bd5 2527 /* set cable type if it isn't already set */
c2bd5804
TH
2528 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2529 ap->cbl = ATA_CBL_SATA;
2530
2531 /* print link status */
2532 if (ap->cbl == ATA_CBL_SATA)
2533 sata_print_link_status(ap);
2534
3a39746a
TH
2535 /* re-enable interrupts */
2536 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2537 ata_irq_on(ap);
c2bd5804
TH
2538
2539 /* is double-select really necessary? */
2540 if (classes[0] != ATA_DEV_NONE)
2541 ap->ops->dev_select(ap, 1);
2542 if (classes[1] != ATA_DEV_NONE)
2543 ap->ops->dev_select(ap, 0);
2544
3a39746a
TH
2545 /* bail out if no device is present */
2546 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2547 DPRINTK("EXIT, no device\n");
2548 return;
2549 }
2550
2551 /* set up device control */
2552 if (ap->ioaddr.ctl_addr) {
2553 if (ap->flags & ATA_FLAG_MMIO)
2554 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2555 else
2556 outb(ap->ctl, ap->ioaddr.ctl_addr);
2557 }
c2bd5804
TH
2558
2559 DPRINTK("EXIT\n");
2560}
2561
2562/**
2563 * ata_std_probe_reset - standard probe reset method
2564 * @ap: prot to perform probe-reset
2565 * @classes: resulting classes of attached devices
2566 *
2567 * The stock off-the-shelf ->probe_reset method.
2568 *
2569 * LOCKING:
2570 * Kernel thread context (may sleep)
2571 *
2572 * RETURNS:
2573 * 0 on success, -errno otherwise.
2574 */
2575int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2576{
2577 ata_reset_fn_t hardreset;
2578
2579 hardreset = NULL;
b911fc3a 2580 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
c2bd5804
TH
2581 hardreset = sata_std_hardreset;
2582
8a19ac89 2583 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2584 ata_std_softreset, hardreset,
c2bd5804
TH
2585 ata_std_postreset, classes);
2586}
2587
1ad8e7f9
TH
2588int ata_do_reset(struct ata_port *ap,
2589 ata_reset_fn_t reset, ata_postreset_fn_t postreset,
2590 int verbose, unsigned int *classes)
a62c0fc5
TH
2591{
2592 int i, rc;
2593
2594 for (i = 0; i < ATA_MAX_DEVICES; i++)
2595 classes[i] = ATA_DEV_UNKNOWN;
2596
9974e7cc 2597 rc = reset(ap, verbose, classes);
a62c0fc5
TH
2598 if (rc)
2599 return rc;
2600
2601 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2602 * is complete and convert all ATA_DEV_UNKNOWN to
2603 * ATA_DEV_NONE.
2604 */
2605 for (i = 0; i < ATA_MAX_DEVICES; i++)
2606 if (classes[i] != ATA_DEV_UNKNOWN)
2607 break;
2608
2609 if (i < ATA_MAX_DEVICES)
2610 for (i = 0; i < ATA_MAX_DEVICES; i++)
2611 if (classes[i] == ATA_DEV_UNKNOWN)
2612 classes[i] = ATA_DEV_NONE;
2613
2614 if (postreset)
2615 postreset(ap, classes);
2616
9974e7cc 2617 return 0;
a62c0fc5
TH
2618}
2619
2620/**
2621 * ata_drive_probe_reset - Perform probe reset with given methods
2622 * @ap: port to reset
7944ea95 2623 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2624 * @softreset: softreset method (can be NULL)
2625 * @hardreset: hardreset method (can be NULL)
2626 * @postreset: postreset method (can be NULL)
2627 * @classes: resulting classes of attached devices
2628 *
2629 * Reset the specified port and classify attached devices using
2630 * given methods. This function prefers softreset but tries all
2631 * possible reset sequences to reset and classify devices. This
2632 * function is intended to be used for constructing ->probe_reset
2633 * callback by low level drivers.
2634 *
2635 * Reset methods should follow the following rules.
2636 *
2637 * - Return 0 on sucess, -errno on failure.
2638 * - If classification is supported, fill classes[] with
2639 * recognized class codes.
2640 * - If classification is not supported, leave classes[] alone.
2641 * - If verbose is non-zero, print error message on failure;
2642 * otherwise, shut up.
2643 *
2644 * LOCKING:
2645 * Kernel thread context (may sleep)
2646 *
2647 * RETURNS:
2648 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2649 * if classification fails, and any error code from reset
2650 * methods.
2651 */
7944ea95 2652int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2653 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2654 ata_postreset_fn_t postreset, unsigned int *classes)
2655{
2656 int rc = -EINVAL;
2657
7944ea95
TH
2658 if (probeinit)
2659 probeinit(ap);
2660
90dac02c 2661 if (softreset && !ata_set_sata_spd_needed(ap)) {
9974e7cc
TH
2662 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2663 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2664 goto done;
edbabd86
TH
2665 printk(KERN_INFO "ata%u: softreset failed, will try "
2666 "hardreset in 5 secs\n", ap->id);
2667 ssleep(5);
a62c0fc5
TH
2668 }
2669
2670 if (!hardreset)
9974e7cc 2671 goto done;
a62c0fc5 2672
90dac02c
TH
2673 while (1) {
2674 rc = ata_do_reset(ap, hardreset, postreset, 0, classes);
2675 if (rc == 0) {
2676 if (classes[0] != ATA_DEV_UNKNOWN)
2677 goto done;
2678 break;
2679 }
2680
2681 if (ata_down_sata_spd_limit(ap))
2682 goto done;
edbabd86
TH
2683
2684 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2685 "in 5 secs\n", ap->id);
2686 ssleep(5);
90dac02c 2687 }
a62c0fc5 2688
edbabd86
TH
2689 if (softreset) {
2690 printk(KERN_INFO "ata%u: hardreset succeeded without "
2691 "classification, will retry softreset in 5 secs\n",
2692 ap->id);
2693 ssleep(5);
2694
9974e7cc 2695 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
edbabd86 2696 }
a62c0fc5 2697
9974e7cc
TH
2698 done:
2699 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2700 rc = -ENODEV;
a62c0fc5
TH
2701 return rc;
2702}
2703
623a3128
TH
2704/**
2705 * ata_dev_same_device - Determine whether new ID matches configured device
2706 * @ap: port on which the device to compare against resides
2707 * @dev: device to compare against
2708 * @new_class: class of the new device
2709 * @new_id: IDENTIFY page of the new device
2710 *
2711 * Compare @new_class and @new_id against @dev and determine
2712 * whether @dev is the device indicated by @new_class and
2713 * @new_id.
2714 *
2715 * LOCKING:
2716 * None.
2717 *
2718 * RETURNS:
2719 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2720 */
2721static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2722 unsigned int new_class, const u16 *new_id)
2723{
2724 const u16 *old_id = dev->id;
2725 unsigned char model[2][41], serial[2][21];
2726 u64 new_n_sectors;
2727
2728 if (dev->class != new_class) {
2729 printk(KERN_INFO
2730 "ata%u: dev %u class mismatch %d != %d\n",
2731 ap->id, dev->devno, dev->class, new_class);
2732 return 0;
2733 }
2734
2735 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2736 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2737 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2738 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2739 new_n_sectors = ata_id_n_sectors(new_id);
2740
2741 if (strcmp(model[0], model[1])) {
2742 printk(KERN_INFO
2743 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2744 ap->id, dev->devno, model[0], model[1]);
2745 return 0;
2746 }
2747
2748 if (strcmp(serial[0], serial[1])) {
2749 printk(KERN_INFO
2750 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2751 ap->id, dev->devno, serial[0], serial[1]);
2752 return 0;
2753 }
2754
2755 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2756 printk(KERN_INFO
2757 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2758 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2759 (unsigned long long)new_n_sectors);
2760 return 0;
2761 }
2762
2763 return 1;
2764}
2765
2766/**
2767 * ata_dev_revalidate - Revalidate ATA device
2768 * @ap: port on which the device to revalidate resides
2769 * @dev: device to revalidate
2770 * @post_reset: is this revalidation after reset?
2771 *
2772 * Re-read IDENTIFY page and make sure @dev is still attached to
2773 * the port.
2774 *
2775 * LOCKING:
2776 * Kernel thread context (may sleep)
2777 *
2778 * RETURNS:
2779 * 0 on success, negative errno otherwise
2780 */
2781int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2782 int post_reset)
2783{
5eb45c02
TH
2784 unsigned int class = dev->class;
2785 u16 *id = NULL;
623a3128
TH
2786 int rc;
2787
5eb45c02
TH
2788 if (!ata_dev_enabled(dev)) {
2789 rc = -ENODEV;
2790 goto fail;
2791 }
623a3128
TH
2792
2793 /* allocate & read ID data */
2794 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2795 if (rc)
2796 goto fail;
2797
2798 /* is the device still there? */
2799 if (!ata_dev_same_device(ap, dev, class, id)) {
2800 rc = -ENODEV;
2801 goto fail;
2802 }
2803
2804 kfree(dev->id);
2805 dev->id = id;
2806
2807 /* configure device according to the new ID */
5eb45c02
TH
2808 rc = ata_dev_configure(ap, dev, 0);
2809 if (rc == 0)
2810 return 0;
623a3128
TH
2811
2812 fail:
2813 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2814 ap->id, dev->devno, rc);
2815 kfree(id);
2816 return rc;
2817}
2818
98ac62de 2819static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2820 "WDC AC11000H", NULL,
2821 "WDC AC22100H", NULL,
2822 "WDC AC32500H", NULL,
2823 "WDC AC33100H", NULL,
2824 "WDC AC31600H", NULL,
2825 "WDC AC32100H", "24.09P07",
2826 "WDC AC23200L", "21.10N21",
2827 "Compaq CRD-8241B", NULL,
2828 "CRD-8400B", NULL,
2829 "CRD-8480B", NULL,
2830 "CRD-8482B", NULL,
2831 "CRD-84", NULL,
2832 "SanDisk SDP3B", NULL,
2833 "SanDisk SDP3B-64", NULL,
2834 "SANYO CD-ROM CRD", NULL,
2835 "HITACHI CDR-8", NULL,
2e9edbf8 2836 "HITACHI CDR-8335", NULL,
f4b15fef 2837 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2838 "Toshiba CD-ROM XM-6202B", NULL,
2839 "TOSHIBA CD-ROM XM-1702BC", NULL,
2840 "CD-532E-A", NULL,
2841 "E-IDE CD-ROM CR-840", NULL,
2842 "CD-ROM Drive/F5A", NULL,
2843 "WPI CDD-820", NULL,
f4b15fef 2844 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2845 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2846 "SanDisk SDP3B-64", NULL,
2847 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2848 "_NEC DV5800A", NULL,
2849 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2850};
2e9edbf8 2851
f4b15fef
AC
2852static int ata_strim(char *s, size_t len)
2853{
2854 len = strnlen(s, len);
2855
2856 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2857 while ((len > 0) && (s[len - 1] == ' ')) {
2858 len--;
2859 s[len] = 0;
2860 }
2861 return len;
2862}
1da177e4 2863
057ace5e 2864static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2865{
f4b15fef
AC
2866 unsigned char model_num[40];
2867 unsigned char model_rev[16];
2868 unsigned int nlen, rlen;
1da177e4
LT
2869 int i;
2870
f4b15fef
AC
2871 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2872 sizeof(model_num));
2873 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2874 sizeof(model_rev));
2875 nlen = ata_strim(model_num, sizeof(model_num));
2876 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2877
f4b15fef
AC
2878 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2879 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2880 if (ata_dma_blacklist[i+1] == NULL)
2881 return 1;
2882 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2883 return 1;
2884 }
2885 }
1da177e4
LT
2886 return 0;
2887}
2888
a6d5a51c
TH
2889/**
2890 * ata_dev_xfermask - Compute supported xfermask of the given device
2891 * @ap: Port on which the device to compute xfermask for resides
2892 * @dev: Device to compute xfermask for
2893 *
acf356b1
TH
2894 * Compute supported xfermask of @dev and store it in
2895 * dev->*_mask. This function is responsible for applying all
2896 * known limits including host controller limits, device
2897 * blacklist, etc...
a6d5a51c 2898 *
600511e8
TH
2899 * FIXME: The current implementation limits all transfer modes to
2900 * the fastest of the lowested device on the port. This is not
05c8e0ac 2901 * required on most controllers.
600511e8 2902 *
a6d5a51c
TH
2903 * LOCKING:
2904 * None.
a6d5a51c 2905 */
acf356b1 2906static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
1da177e4 2907{
5444a6f4 2908 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2909 unsigned long xfer_mask;
2910 int i;
1da177e4 2911
565083e1
TH
2912 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2913 ap->mwdma_mask, ap->udma_mask);
2914
2915 /* Apply cable rule here. Don't apply it early because when
2916 * we handle hot plug the cable type can itself change.
2917 */
2918 if (ap->cbl == ATA_CBL_PATA40)
2919 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 2920
5444a6f4 2921 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2922 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2923 struct ata_device *d = &ap->device[i];
565083e1
TH
2924
2925 if (ata_dev_absent(d))
2926 continue;
2927
2928 if (ata_dev_disabled(d)) {
2929 /* to avoid violating device selection timing */
2930 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2931 UINT_MAX, UINT_MAX);
a6d5a51c 2932 continue;
565083e1
TH
2933 }
2934
2935 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2936 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
2937 xfer_mask &= ata_id_xfermask(d->id);
2938 if (ata_dma_blacklisted(d))
2939 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
2940 }
2941
a6d5a51c
TH
2942 if (ata_dma_blacklisted(dev))
2943 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2944 "disabling DMA\n", ap->id, dev->devno);
2945
5444a6f4
AC
2946 if (hs->flags & ATA_HOST_SIMPLEX) {
2947 if (hs->simplex_claimed)
2948 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2949 }
565083e1 2950
5444a6f4
AC
2951 if (ap->ops->mode_filter)
2952 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2953
565083e1
TH
2954 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2955 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
2956}
2957
1da177e4
LT
2958/**
2959 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2960 * @ap: Port associated with device @dev
2961 * @dev: Device to which command will be sent
2962 *
780a87f7
JG
2963 * Issue SET FEATURES - XFER MODE command to device @dev
2964 * on port @ap.
2965 *
1da177e4 2966 * LOCKING:
0cba632b 2967 * PCI/etc. bus probe sem.
83206a29
TH
2968 *
2969 * RETURNS:
2970 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
2971 */
2972
83206a29
TH
2973static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2974 struct ata_device *dev)
1da177e4 2975{
a0123703 2976 struct ata_taskfile tf;
83206a29 2977 unsigned int err_mask;
1da177e4
LT
2978
2979 /* set up set-features taskfile */
2980 DPRINTK("set features - xfer mode\n");
2981
a0123703
TH
2982 ata_tf_init(ap, &tf, dev->devno);
2983 tf.command = ATA_CMD_SET_FEATURES;
2984 tf.feature = SETFEATURES_XFER;
2985 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2986 tf.protocol = ATA_PROT_NODATA;
2987 tf.nsect = dev->xfer_mode;
1da177e4 2988
d69cf37d 2989 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 2990
83206a29
TH
2991 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2992 return err_mask;
1da177e4
LT
2993}
2994
8bf62ece
AL
2995/**
2996 * ata_dev_init_params - Issue INIT DEV PARAMS command
2997 * @ap: Port associated with device @dev
2998 * @dev: Device to which command will be sent
2999 *
3000 * LOCKING:
6aff8f1f
TH
3001 * Kernel thread context (may sleep)
3002 *
3003 * RETURNS:
3004 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece
AL
3005 */
3006
6aff8f1f 3007static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
3008 struct ata_device *dev,
3009 u16 heads,
3010 u16 sectors)
8bf62ece 3011{
a0123703 3012 struct ata_taskfile tf;
6aff8f1f 3013 unsigned int err_mask;
8bf62ece
AL
3014
3015 /* Number of sectors per track 1-255. Number of heads 1-16 */
3016 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3017 return AC_ERR_INVALID;
8bf62ece
AL
3018
3019 /* set up init dev params taskfile */
3020 DPRINTK("init dev params \n");
3021
a0123703
TH
3022 ata_tf_init(ap, &tf, dev->devno);
3023 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3024 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3025 tf.protocol = ATA_PROT_NODATA;
3026 tf.nsect = sectors;
3027 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3028
d69cf37d 3029 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3030
6aff8f1f
TH
3031 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3032 return err_mask;
8bf62ece
AL
3033}
3034
1da177e4 3035/**
0cba632b
JG
3036 * ata_sg_clean - Unmap DMA memory associated with command
3037 * @qc: Command containing DMA memory to be released
3038 *
3039 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3040 *
3041 * LOCKING:
0cba632b 3042 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3043 */
3044
3045static void ata_sg_clean(struct ata_queued_cmd *qc)
3046{
3047 struct ata_port *ap = qc->ap;
cedc9a47 3048 struct scatterlist *sg = qc->__sg;
1da177e4 3049 int dir = qc->dma_dir;
cedc9a47 3050 void *pad_buf = NULL;
1da177e4 3051
a4631474
TH
3052 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3053 WARN_ON(sg == NULL);
1da177e4
LT
3054
3055 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3056 WARN_ON(qc->n_elem > 1);
1da177e4 3057
2c13b7ce 3058 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3059
cedc9a47
JG
3060 /* if we padded the buffer out to 32-bit bound, and data
3061 * xfer direction is from-device, we must copy from the
3062 * pad buffer back into the supplied buffer
3063 */
3064 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3065 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3066
3067 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3068 if (qc->n_elem)
2f1f610b 3069 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3070 /* restore last sg */
3071 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3072 if (pad_buf) {
3073 struct scatterlist *psg = &qc->pad_sgent;
3074 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3075 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3076 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3077 }
3078 } else {
2e242fa9 3079 if (qc->n_elem)
2f1f610b 3080 dma_unmap_single(ap->dev,
e1410f2d
JG
3081 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3082 dir);
cedc9a47
JG
3083 /* restore sg */
3084 sg->length += qc->pad_len;
3085 if (pad_buf)
3086 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3087 pad_buf, qc->pad_len);
3088 }
1da177e4
LT
3089
3090 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3091 qc->__sg = NULL;
1da177e4
LT
3092}
3093
3094/**
3095 * ata_fill_sg - Fill PCI IDE PRD table
3096 * @qc: Metadata associated with taskfile to be transferred
3097 *
780a87f7
JG
3098 * Fill PCI IDE PRD (scatter-gather) table with segments
3099 * associated with the current disk command.
3100 *
1da177e4 3101 * LOCKING:
780a87f7 3102 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3103 *
3104 */
3105static void ata_fill_sg(struct ata_queued_cmd *qc)
3106{
1da177e4 3107 struct ata_port *ap = qc->ap;
cedc9a47
JG
3108 struct scatterlist *sg;
3109 unsigned int idx;
1da177e4 3110
a4631474 3111 WARN_ON(qc->__sg == NULL);
f131883e 3112 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3113
3114 idx = 0;
cedc9a47 3115 ata_for_each_sg(sg, qc) {
1da177e4
LT
3116 u32 addr, offset;
3117 u32 sg_len, len;
3118
3119 /* determine if physical DMA addr spans 64K boundary.
3120 * Note h/w doesn't support 64-bit, so we unconditionally
3121 * truncate dma_addr_t to u32.
3122 */
3123 addr = (u32) sg_dma_address(sg);
3124 sg_len = sg_dma_len(sg);
3125
3126 while (sg_len) {
3127 offset = addr & 0xffff;
3128 len = sg_len;
3129 if ((offset + sg_len) > 0x10000)
3130 len = 0x10000 - offset;
3131
3132 ap->prd[idx].addr = cpu_to_le32(addr);
3133 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3134 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3135
3136 idx++;
3137 sg_len -= len;
3138 addr += len;
3139 }
3140 }
3141
3142 if (idx)
3143 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3144}
3145/**
3146 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3147 * @qc: Metadata associated with taskfile to check
3148 *
780a87f7
JG
3149 * Allow low-level driver to filter ATA PACKET commands, returning
3150 * a status indicating whether or not it is OK to use DMA for the
3151 * supplied PACKET command.
3152 *
1da177e4 3153 * LOCKING:
0cba632b
JG
3154 * spin_lock_irqsave(host_set lock)
3155 *
1da177e4
LT
3156 * RETURNS: 0 when ATAPI DMA can be used
3157 * nonzero otherwise
3158 */
3159int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3160{
3161 struct ata_port *ap = qc->ap;
3162 int rc = 0; /* Assume ATAPI DMA is OK by default */
3163
3164 if (ap->ops->check_atapi_dma)
3165 rc = ap->ops->check_atapi_dma(qc);
3166
3167 return rc;
3168}
3169/**
3170 * ata_qc_prep - Prepare taskfile for submission
3171 * @qc: Metadata associated with taskfile to be prepared
3172 *
780a87f7
JG
3173 * Prepare ATA taskfile for submission.
3174 *
1da177e4
LT
3175 * LOCKING:
3176 * spin_lock_irqsave(host_set lock)
3177 */
3178void ata_qc_prep(struct ata_queued_cmd *qc)
3179{
3180 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3181 return;
3182
3183 ata_fill_sg(qc);
3184}
3185
e46834cd
BK
3186void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3187
0cba632b
JG
3188/**
3189 * ata_sg_init_one - Associate command with memory buffer
3190 * @qc: Command to be associated
3191 * @buf: Memory buffer
3192 * @buflen: Length of memory buffer, in bytes.
3193 *
3194 * Initialize the data-related elements of queued_cmd @qc
3195 * to point to a single memory buffer, @buf of byte length @buflen.
3196 *
3197 * LOCKING:
3198 * spin_lock_irqsave(host_set lock)
3199 */
3200
1da177e4
LT
3201void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3202{
3203 struct scatterlist *sg;
3204
3205 qc->flags |= ATA_QCFLAG_SINGLE;
3206
3207 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3208 qc->__sg = &qc->sgent;
1da177e4 3209 qc->n_elem = 1;
cedc9a47 3210 qc->orig_n_elem = 1;
1da177e4
LT
3211 qc->buf_virt = buf;
3212
cedc9a47 3213 sg = qc->__sg;
f0612bbc 3214 sg_init_one(sg, buf, buflen);
1da177e4
LT
3215}
3216
0cba632b
JG
3217/**
3218 * ata_sg_init - Associate command with scatter-gather table.
3219 * @qc: Command to be associated
3220 * @sg: Scatter-gather table.
3221 * @n_elem: Number of elements in s/g table.
3222 *
3223 * Initialize the data-related elements of queued_cmd @qc
3224 * to point to a scatter-gather table @sg, containing @n_elem
3225 * elements.
3226 *
3227 * LOCKING:
3228 * spin_lock_irqsave(host_set lock)
3229 */
3230
1da177e4
LT
3231void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3232 unsigned int n_elem)
3233{
3234 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3235 qc->__sg = sg;
1da177e4 3236 qc->n_elem = n_elem;
cedc9a47 3237 qc->orig_n_elem = n_elem;
1da177e4
LT
3238}
3239
3240/**
0cba632b
JG
3241 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3242 * @qc: Command with memory buffer to be mapped.
3243 *
3244 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3245 *
3246 * LOCKING:
3247 * spin_lock_irqsave(host_set lock)
3248 *
3249 * RETURNS:
0cba632b 3250 * Zero on success, negative on error.
1da177e4
LT
3251 */
3252
3253static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3254{
3255 struct ata_port *ap = qc->ap;
3256 int dir = qc->dma_dir;
cedc9a47 3257 struct scatterlist *sg = qc->__sg;
1da177e4 3258 dma_addr_t dma_address;
2e242fa9 3259 int trim_sg = 0;
1da177e4 3260
cedc9a47
JG
3261 /* we must lengthen transfers to end on a 32-bit boundary */
3262 qc->pad_len = sg->length & 3;
3263 if (qc->pad_len) {
3264 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3265 struct scatterlist *psg = &qc->pad_sgent;
3266
a4631474 3267 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3268
3269 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3270
3271 if (qc->tf.flags & ATA_TFLAG_WRITE)
3272 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3273 qc->pad_len);
3274
3275 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3276 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3277 /* trim sg */
3278 sg->length -= qc->pad_len;
2e242fa9
TH
3279 if (sg->length == 0)
3280 trim_sg = 1;
cedc9a47
JG
3281
3282 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3283 sg->length, qc->pad_len);
3284 }
3285
2e242fa9
TH
3286 if (trim_sg) {
3287 qc->n_elem--;
e1410f2d
JG
3288 goto skip_map;
3289 }
3290
2f1f610b 3291 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3292 sg->length, dir);
537a95d9
TH
3293 if (dma_mapping_error(dma_address)) {
3294 /* restore sg */
3295 sg->length += qc->pad_len;
1da177e4 3296 return -1;
537a95d9 3297 }
1da177e4
LT
3298
3299 sg_dma_address(sg) = dma_address;
32529e01 3300 sg_dma_len(sg) = sg->length;
1da177e4 3301
2e242fa9 3302skip_map:
1da177e4
LT
3303 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3304 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3305
3306 return 0;
3307}
3308
3309/**
0cba632b
JG
3310 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3311 * @qc: Command with scatter-gather table to be mapped.
3312 *
3313 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3314 *
3315 * LOCKING:
3316 * spin_lock_irqsave(host_set lock)
3317 *
3318 * RETURNS:
0cba632b 3319 * Zero on success, negative on error.
1da177e4
LT
3320 *
3321 */
3322
3323static int ata_sg_setup(struct ata_queued_cmd *qc)
3324{
3325 struct ata_port *ap = qc->ap;
cedc9a47
JG
3326 struct scatterlist *sg = qc->__sg;
3327 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3328 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3329
3330 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3331 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3332
cedc9a47
JG
3333 /* we must lengthen transfers to end on a 32-bit boundary */
3334 qc->pad_len = lsg->length & 3;
3335 if (qc->pad_len) {
3336 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3337 struct scatterlist *psg = &qc->pad_sgent;
3338 unsigned int offset;
3339
a4631474 3340 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3341
3342 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3343
3344 /*
3345 * psg->page/offset are used to copy to-be-written
3346 * data in this function or read data in ata_sg_clean.
3347 */
3348 offset = lsg->offset + lsg->length - qc->pad_len;
3349 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3350 psg->offset = offset_in_page(offset);
3351
3352 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3353 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3354 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3355 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3356 }
3357
3358 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3359 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3360 /* trim last sg */
3361 lsg->length -= qc->pad_len;
e1410f2d
JG
3362 if (lsg->length == 0)
3363 trim_sg = 1;
cedc9a47
JG
3364
3365 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3366 qc->n_elem - 1, lsg->length, qc->pad_len);
3367 }
3368
e1410f2d
JG
3369 pre_n_elem = qc->n_elem;
3370 if (trim_sg && pre_n_elem)
3371 pre_n_elem--;
3372
3373 if (!pre_n_elem) {
3374 n_elem = 0;
3375 goto skip_map;
3376 }
3377
1da177e4 3378 dir = qc->dma_dir;
2f1f610b 3379 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3380 if (n_elem < 1) {
3381 /* restore last sg */
3382 lsg->length += qc->pad_len;
1da177e4 3383 return -1;
537a95d9 3384 }
1da177e4
LT
3385
3386 DPRINTK("%d sg elements mapped\n", n_elem);
3387
e1410f2d 3388skip_map:
1da177e4
LT
3389 qc->n_elem = n_elem;
3390
3391 return 0;
3392}
3393
40e8c82c
TH
3394/**
3395 * ata_poll_qc_complete - turn irq back on and finish qc
3396 * @qc: Command to complete
8e8b77dd 3397 * @err_mask: ATA status register content
40e8c82c
TH
3398 *
3399 * LOCKING:
3400 * None. (grabs host lock)
3401 */
3402
a22e2eb0 3403void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3404{
3405 struct ata_port *ap = qc->ap;
b8f6153e 3406 unsigned long flags;
40e8c82c 3407
b8f6153e 3408 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
3409 ap->flags &= ~ATA_FLAG_NOINTR;
3410 ata_irq_on(ap);
a22e2eb0 3411 ata_qc_complete(qc);
b8f6153e 3412 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3413}
3414
1da177e4 3415/**
c893a3ae 3416 * ata_pio_poll - poll using PIO, depending on current state
c91af2c8 3417 * @qc: qc in progress
1da177e4
LT
3418 *
3419 * LOCKING:
0cba632b 3420 * None. (executing in kernel thread context)
1da177e4
LT
3421 *
3422 * RETURNS:
6f0ef4fa 3423 * timeout value to use
1da177e4 3424 */
c91af2c8 3425static unsigned long ata_pio_poll(struct ata_queued_cmd *qc)
1da177e4 3426{
c91af2c8 3427 struct ata_port *ap = qc->ap;
1da177e4 3428 u8 status;
14be71f4
AL
3429 unsigned int poll_state = HSM_ST_UNKNOWN;
3430 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4
AL
3431
3432 switch (ap->hsm_task_state) {
3433 case HSM_ST:
3434 case HSM_ST_POLL:
3435 poll_state = HSM_ST_POLL;
3436 reg_state = HSM_ST;
1da177e4 3437 break;
14be71f4
AL
3438 case HSM_ST_LAST:
3439 case HSM_ST_LAST_POLL:
3440 poll_state = HSM_ST_LAST_POLL;
3441 reg_state = HSM_ST_LAST;
1da177e4
LT
3442 break;
3443 default:
3444 BUG();
3445 break;
3446 }
3447
3448 status = ata_chk_status(ap);
3449 if (status & ATA_BUSY) {
3450 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3451 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3452 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3453 return 0;
3454 }
14be71f4 3455 ap->hsm_task_state = poll_state;
1da177e4
LT
3456 return ATA_SHORT_PAUSE;
3457 }
3458
14be71f4 3459 ap->hsm_task_state = reg_state;
1da177e4
LT
3460 return 0;
3461}
3462
3463/**
6f0ef4fa 3464 * ata_pio_complete - check if drive is busy or idle
c91af2c8 3465 * @qc: qc to complete
1da177e4
LT
3466 *
3467 * LOCKING:
0cba632b 3468 * None. (executing in kernel thread context)
7fb6ec28
JG
3469 *
3470 * RETURNS:
3471 * Non-zero if qc completed, zero otherwise.
1da177e4 3472 */
c91af2c8 3473static int ata_pio_complete(struct ata_queued_cmd *qc)
1da177e4 3474{
c91af2c8 3475 struct ata_port *ap = qc->ap;
1da177e4
LT
3476 u8 drv_stat;
3477
3478 /*
31433ea3
AC
3479 * This is purely heuristic. This is a fast path. Sometimes when
3480 * we enter, BSY will be cleared in a chk-status or two. If not,
3481 * the drive is probably seeking or something. Snooze for a couple
3482 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3483 * HSM_ST_POLL state.
1da177e4 3484 */
fe79e683
AL
3485 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3486 if (drv_stat & ATA_BUSY) {
1da177e4 3487 msleep(2);
fe79e683
AL
3488 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3489 if (drv_stat & ATA_BUSY) {
14be71f4 3490 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3491 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3492 return 0;
1da177e4
LT
3493 }
3494 }
3495
3496 drv_stat = ata_wait_idle(ap);
3497 if (!ata_ok(drv_stat)) {
1c848984 3498 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3499 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3500 return 0;
1da177e4
LT
3501 }
3502
14be71f4 3503 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3504
a4631474 3505 WARN_ON(qc->err_mask);
a22e2eb0 3506 ata_poll_qc_complete(qc);
7fb6ec28
JG
3507
3508 /* another command may start at this point */
3509
3510 return 1;
1da177e4
LT
3511}
3512
0baab86b
EF
3513
3514/**
c893a3ae 3515 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3516 * @buf: Buffer to swap
3517 * @buf_words: Number of 16-bit words in buffer.
3518 *
3519 * Swap halves of 16-bit words if needed to convert from
3520 * little-endian byte order to native cpu byte order, or
3521 * vice-versa.
3522 *
3523 * LOCKING:
6f0ef4fa 3524 * Inherited from caller.
0baab86b 3525 */
1da177e4
LT
3526void swap_buf_le16(u16 *buf, unsigned int buf_words)
3527{
3528#ifdef __BIG_ENDIAN
3529 unsigned int i;
3530
3531 for (i = 0; i < buf_words; i++)
3532 buf[i] = le16_to_cpu(buf[i]);
3533#endif /* __BIG_ENDIAN */
3534}
3535
6ae4cfb5
AL
3536/**
3537 * ata_mmio_data_xfer - Transfer data by MMIO
3538 * @ap: port to read/write
3539 * @buf: data buffer
3540 * @buflen: buffer length
344babaa 3541 * @write_data: read/write
6ae4cfb5
AL
3542 *
3543 * Transfer data from/to the device data register by MMIO.
3544 *
3545 * LOCKING:
3546 * Inherited from caller.
6ae4cfb5
AL
3547 */
3548
1da177e4
LT
3549static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3550 unsigned int buflen, int write_data)
3551{
3552 unsigned int i;
3553 unsigned int words = buflen >> 1;
3554 u16 *buf16 = (u16 *) buf;
3555 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3556
6ae4cfb5 3557 /* Transfer multiple of 2 bytes */
1da177e4
LT
3558 if (write_data) {
3559 for (i = 0; i < words; i++)
3560 writew(le16_to_cpu(buf16[i]), mmio);
3561 } else {
3562 for (i = 0; i < words; i++)
3563 buf16[i] = cpu_to_le16(readw(mmio));
3564 }
6ae4cfb5
AL
3565
3566 /* Transfer trailing 1 byte, if any. */
3567 if (unlikely(buflen & 0x01)) {
3568 u16 align_buf[1] = { 0 };
3569 unsigned char *trailing_buf = buf + buflen - 1;
3570
3571 if (write_data) {
3572 memcpy(align_buf, trailing_buf, 1);
3573 writew(le16_to_cpu(align_buf[0]), mmio);
3574 } else {
3575 align_buf[0] = cpu_to_le16(readw(mmio));
3576 memcpy(trailing_buf, align_buf, 1);
3577 }
3578 }
1da177e4
LT
3579}
3580
6ae4cfb5
AL
3581/**
3582 * ata_pio_data_xfer - Transfer data by PIO
3583 * @ap: port to read/write
3584 * @buf: data buffer
3585 * @buflen: buffer length
344babaa 3586 * @write_data: read/write
6ae4cfb5
AL
3587 *
3588 * Transfer data from/to the device data register by PIO.
3589 *
3590 * LOCKING:
3591 * Inherited from caller.
6ae4cfb5
AL
3592 */
3593
1da177e4
LT
3594static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3595 unsigned int buflen, int write_data)
3596{
6ae4cfb5 3597 unsigned int words = buflen >> 1;
1da177e4 3598
6ae4cfb5 3599 /* Transfer multiple of 2 bytes */
1da177e4 3600 if (write_data)
6ae4cfb5 3601 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3602 else
6ae4cfb5
AL
3603 insw(ap->ioaddr.data_addr, buf, words);
3604
3605 /* Transfer trailing 1 byte, if any. */
3606 if (unlikely(buflen & 0x01)) {
3607 u16 align_buf[1] = { 0 };
3608 unsigned char *trailing_buf = buf + buflen - 1;
3609
3610 if (write_data) {
3611 memcpy(align_buf, trailing_buf, 1);
3612 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3613 } else {
3614 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3615 memcpy(trailing_buf, align_buf, 1);
3616 }
3617 }
1da177e4
LT
3618}
3619
6ae4cfb5
AL
3620/**
3621 * ata_data_xfer - Transfer data from/to the data register.
3622 * @ap: port to read/write
3623 * @buf: data buffer
3624 * @buflen: buffer length
3625 * @do_write: read/write
3626 *
3627 * Transfer data from/to the device data register.
3628 *
3629 * LOCKING:
3630 * Inherited from caller.
6ae4cfb5
AL
3631 */
3632
1da177e4
LT
3633static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3634 unsigned int buflen, int do_write)
3635{
a1bd9e68
AC
3636 /* Make the crap hardware pay the costs not the good stuff */
3637 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3638 unsigned long flags;
3639 local_irq_save(flags);
3640 if (ap->flags & ATA_FLAG_MMIO)
3641 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3642 else
3643 ata_pio_data_xfer(ap, buf, buflen, do_write);
3644 local_irq_restore(flags);
3645 } else {
3646 if (ap->flags & ATA_FLAG_MMIO)
3647 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3648 else
3649 ata_pio_data_xfer(ap, buf, buflen, do_write);
3650 }
1da177e4
LT
3651}
3652
6ae4cfb5
AL
3653/**
3654 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3655 * @qc: Command on going
3656 *
3657 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3658 *
3659 * LOCKING:
3660 * Inherited from caller.
3661 */
3662
1da177e4
LT
3663static void ata_pio_sector(struct ata_queued_cmd *qc)
3664{
3665 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3666 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3667 struct ata_port *ap = qc->ap;
3668 struct page *page;
3669 unsigned int offset;
3670 unsigned char *buf;
3671
3672 if (qc->cursect == (qc->nsect - 1))
14be71f4 3673 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3674
3675 page = sg[qc->cursg].page;
3676 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3677
3678 /* get the current page and offset */
3679 page = nth_page(page, (offset >> PAGE_SHIFT));
3680 offset %= PAGE_SIZE;
3681
3682 buf = kmap(page) + offset;
3683
3684 qc->cursect++;
3685 qc->cursg_ofs++;
3686
32529e01 3687 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3688 qc->cursg++;
3689 qc->cursg_ofs = 0;
3690 }
3691
3692 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3693
3694 /* do the actual data transfer */
3695 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3696 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3697
3698 kunmap(page);
3699}
3700
6ae4cfb5
AL
3701/**
3702 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3703 * @qc: Command on going
3704 * @bytes: number of bytes
3705 *
3706 * Transfer Transfer data from/to the ATAPI device.
3707 *
3708 * LOCKING:
3709 * Inherited from caller.
3710 *
3711 */
3712
1da177e4
LT
3713static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3714{
3715 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3716 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3717 struct ata_port *ap = qc->ap;
3718 struct page *page;
3719 unsigned char *buf;
3720 unsigned int offset, count;
3721
563a6e1f 3722 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3723 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3724
3725next_sg:
563a6e1f 3726 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3727 /*
563a6e1f
AL
3728 * The end of qc->sg is reached and the device expects
3729 * more data to transfer. In order not to overrun qc->sg
3730 * and fulfill length specified in the byte count register,
3731 * - for read case, discard trailing data from the device
3732 * - for write case, padding zero data to the device
3733 */
3734 u16 pad_buf[1] = { 0 };
3735 unsigned int words = bytes >> 1;
3736 unsigned int i;
3737
3738 if (words) /* warning if bytes > 1 */
7fb6ec28 3739 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3740 ap->id, bytes);
3741
3742 for (i = 0; i < words; i++)
3743 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3744
14be71f4 3745 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3746 return;
3747 }
3748
cedc9a47 3749 sg = &qc->__sg[qc->cursg];
1da177e4 3750
1da177e4
LT
3751 page = sg->page;
3752 offset = sg->offset + qc->cursg_ofs;
3753
3754 /* get the current page and offset */
3755 page = nth_page(page, (offset >> PAGE_SHIFT));
3756 offset %= PAGE_SIZE;
3757
6952df03 3758 /* don't overrun current sg */
32529e01 3759 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3760
3761 /* don't cross page boundaries */
3762 count = min(count, (unsigned int)PAGE_SIZE - offset);
3763
3764 buf = kmap(page) + offset;
3765
3766 bytes -= count;
3767 qc->curbytes += count;
3768 qc->cursg_ofs += count;
3769
32529e01 3770 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3771 qc->cursg++;
3772 qc->cursg_ofs = 0;
3773 }
3774
3775 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3776
3777 /* do the actual data transfer */
3778 ata_data_xfer(ap, buf, count, do_write);
3779
3780 kunmap(page);
3781
563a6e1f 3782 if (bytes)
1da177e4 3783 goto next_sg;
1da177e4
LT
3784}
3785
6ae4cfb5
AL
3786/**
3787 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3788 * @qc: Command on going
3789 *
3790 * Transfer Transfer data from/to the ATAPI device.
3791 *
3792 * LOCKING:
3793 * Inherited from caller.
6ae4cfb5
AL
3794 */
3795
1da177e4
LT
3796static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3797{
3798 struct ata_port *ap = qc->ap;
3799 struct ata_device *dev = qc->dev;
3800 unsigned int ireason, bc_lo, bc_hi, bytes;
3801 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3802
3803 ap->ops->tf_read(ap, &qc->tf);
3804 ireason = qc->tf.nsect;
3805 bc_lo = qc->tf.lbam;
3806 bc_hi = qc->tf.lbah;
3807 bytes = (bc_hi << 8) | bc_lo;
3808
3809 /* shall be cleared to zero, indicating xfer of data */
3810 if (ireason & (1 << 0))
3811 goto err_out;
3812
3813 /* make sure transfer direction matches expected */
3814 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3815 if (do_write != i_write)
3816 goto err_out;
3817
3818 __atapi_pio_bytes(qc, bytes);
3819
3820 return;
3821
3822err_out:
3823 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3824 ap->id, dev->devno);
11a56d24 3825 qc->err_mask |= AC_ERR_HSM;
14be71f4 3826 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3827}
3828
3829/**
6f0ef4fa 3830 * ata_pio_block - start PIO on a block
c91af2c8 3831 * @qc: qc to transfer block for
1da177e4
LT
3832 *
3833 * LOCKING:
0cba632b 3834 * None. (executing in kernel thread context)
1da177e4 3835 */
c91af2c8 3836static void ata_pio_block(struct ata_queued_cmd *qc)
1da177e4 3837{
c91af2c8 3838 struct ata_port *ap = qc->ap;
1da177e4
LT
3839 u8 status;
3840
3841 /*
6f0ef4fa 3842 * This is purely heuristic. This is a fast path.
1da177e4
LT
3843 * Sometimes when we enter, BSY will be cleared in
3844 * a chk-status or two. If not, the drive is probably seeking
3845 * or something. Snooze for a couple msecs, then
3846 * chk-status again. If still busy, fall back to
14be71f4 3847 * HSM_ST_POLL state.
1da177e4
LT
3848 */
3849 status = ata_busy_wait(ap, ATA_BUSY, 5);
3850 if (status & ATA_BUSY) {
3851 msleep(2);
3852 status = ata_busy_wait(ap, ATA_BUSY, 10);
3853 if (status & ATA_BUSY) {
14be71f4 3854 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3855 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3856 return;
3857 }
3858 }
3859
fe79e683
AL
3860 /* check error */
3861 if (status & (ATA_ERR | ATA_DF)) {
3862 qc->err_mask |= AC_ERR_DEV;
3863 ap->hsm_task_state = HSM_ST_ERR;
3864 return;
3865 }
3866
3867 /* transfer data if any */
1da177e4 3868 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3869 /* DRQ=0 means no more data to transfer */
1da177e4 3870 if ((status & ATA_DRQ) == 0) {
14be71f4 3871 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3872 return;
3873 }
3874
3875 atapi_pio_bytes(qc);
3876 } else {
3877 /* handle BSY=0, DRQ=0 as error */
3878 if ((status & ATA_DRQ) == 0) {
11a56d24 3879 qc->err_mask |= AC_ERR_HSM;
14be71f4 3880 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3881 return;
3882 }
3883
3884 ata_pio_sector(qc);
3885 }
3886}
3887
c91af2c8 3888static void ata_pio_error(struct ata_queued_cmd *qc)
1da177e4 3889{
c91af2c8 3890 struct ata_port *ap = qc->ap;
1da177e4 3891
0565c26d 3892 if (qc->tf.command != ATA_CMD_PACKET)
d63cb4a6
TH
3893 printk(KERN_WARNING "ata%u: dev %u PIO error\n",
3894 ap->id, qc->dev->devno);
0565c26d 3895
2e9edbf8 3896 /* make sure qc->err_mask is available to
1c848984
AL
3897 * know what's wrong and recover
3898 */
a4631474 3899 WARN_ON(qc->err_mask == 0);
1c848984 3900
14be71f4 3901 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3902
a22e2eb0 3903 ata_poll_qc_complete(qc);
1da177e4
LT
3904}
3905
3906static void ata_pio_task(void *_data)
3907{
c91af2c8
TH
3908 struct ata_queued_cmd *qc = _data;
3909 struct ata_port *ap = qc->ap;
7fb6ec28
JG
3910 unsigned long timeout;
3911 int qc_completed;
3912
3913fsm_start:
3914 timeout = 0;
3915 qc_completed = 0;
1da177e4 3916
14be71f4
AL
3917 switch (ap->hsm_task_state) {
3918 case HSM_ST_IDLE:
1da177e4
LT
3919 return;
3920
14be71f4 3921 case HSM_ST:
c91af2c8 3922 ata_pio_block(qc);
1da177e4
LT
3923 break;
3924
14be71f4 3925 case HSM_ST_LAST:
c91af2c8 3926 qc_completed = ata_pio_complete(qc);
1da177e4
LT
3927 break;
3928
14be71f4
AL
3929 case HSM_ST_POLL:
3930 case HSM_ST_LAST_POLL:
c91af2c8 3931 timeout = ata_pio_poll(qc);
1da177e4
LT
3932 break;
3933
14be71f4
AL
3934 case HSM_ST_TMOUT:
3935 case HSM_ST_ERR:
c91af2c8 3936 ata_pio_error(qc);
1da177e4
LT
3937 return;
3938 }
3939
3940 if (timeout)
c91af2c8 3941 ata_port_queue_task(ap, ata_pio_task, qc, timeout);
7fb6ec28
JG
3942 else if (!qc_completed)
3943 goto fsm_start;
1da177e4
LT
3944}
3945
8061f5f0
TH
3946/**
3947 * atapi_packet_task - Write CDB bytes to hardware
c91af2c8 3948 * @_data: qc in progress
8061f5f0
TH
3949 *
3950 * When device has indicated its readiness to accept
3951 * a CDB, this function is called. Send the CDB.
3952 * If DMA is to be performed, exit immediately.
3953 * Otherwise, we are in polling mode, so poll
3954 * status under operation succeeds or fails.
3955 *
3956 * LOCKING:
3957 * Kernel thread context (may sleep)
3958 */
8061f5f0
TH
3959static void atapi_packet_task(void *_data)
3960{
c91af2c8
TH
3961 struct ata_queued_cmd *qc = _data;
3962 struct ata_port *ap = qc->ap;
8061f5f0
TH
3963 u8 status;
3964
8061f5f0
TH
3965 /* sleep-wait for BSY to clear */
3966 DPRINTK("busy wait\n");
3967 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3968 qc->err_mask |= AC_ERR_TIMEOUT;
3969 goto err_out;
3970 }
3971
3972 /* make sure DRQ is set */
3973 status = ata_chk_status(ap);
3974 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3975 qc->err_mask |= AC_ERR_HSM;
3976 goto err_out;
3977 }
3978
3979 /* send SCSI cdb */
3980 DPRINTK("send cdb\n");
3981 WARN_ON(qc->dev->cdb_len < 12);
3982
3983 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3984 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3985 unsigned long flags;
3986
3987 /* Once we're done issuing command and kicking bmdma,
3988 * irq handler takes over. To not lose irq, we need
3989 * to clear NOINTR flag before sending cdb, but
3990 * interrupt handler shouldn't be invoked before we're
3991 * finished. Hence, the following locking.
3992 */
3993 spin_lock_irqsave(&ap->host_set->lock, flags);
3994 ap->flags &= ~ATA_FLAG_NOINTR;
3995 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3996 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3997 ap->ops->bmdma_start(qc); /* initiate bmdma */
3998 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3999 } else {
4000 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4001
4002 /* PIO commands are handled by polling */
4003 ap->hsm_task_state = HSM_ST;
c91af2c8 4004 ata_port_queue_task(ap, ata_pio_task, qc, 0);
8061f5f0
TH
4005 }
4006
4007 return;
4008
4009err_out:
4010 ata_poll_qc_complete(qc);
4011}
4012
1da177e4
LT
4013/**
4014 * ata_qc_new - Request an available ATA command, for queueing
4015 * @ap: Port associated with device @dev
4016 * @dev: Device from whom we request an available command structure
4017 *
4018 * LOCKING:
0cba632b 4019 * None.
1da177e4
LT
4020 */
4021
4022static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4023{
4024 struct ata_queued_cmd *qc = NULL;
4025 unsigned int i;
4026
4027 for (i = 0; i < ATA_MAX_QUEUE; i++)
4028 if (!test_and_set_bit(i, &ap->qactive)) {
4029 qc = ata_qc_from_tag(ap, i);
4030 break;
4031 }
4032
4033 if (qc)
4034 qc->tag = i;
4035
4036 return qc;
4037}
4038
4039/**
4040 * ata_qc_new_init - Request an available ATA command, and initialize it
4041 * @ap: Port associated with device @dev
4042 * @dev: Device from whom we request an available command structure
4043 *
4044 * LOCKING:
0cba632b 4045 * None.
1da177e4
LT
4046 */
4047
4048struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4049 struct ata_device *dev)
4050{
4051 struct ata_queued_cmd *qc;
4052
4053 qc = ata_qc_new(ap);
4054 if (qc) {
1da177e4
LT
4055 qc->scsicmd = NULL;
4056 qc->ap = ap;
4057 qc->dev = dev;
1da177e4 4058
2c13b7ce 4059 ata_qc_reinit(qc);
1da177e4
LT
4060 }
4061
4062 return qc;
4063}
4064
1da177e4
LT
4065/**
4066 * ata_qc_free - free unused ata_queued_cmd
4067 * @qc: Command to complete
4068 *
4069 * Designed to free unused ata_queued_cmd object
4070 * in case something prevents using it.
4071 *
4072 * LOCKING:
0cba632b 4073 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4074 */
4075void ata_qc_free(struct ata_queued_cmd *qc)
4076{
4ba946e9
TH
4077 struct ata_port *ap = qc->ap;
4078 unsigned int tag;
4079
a4631474 4080 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4081
4ba946e9
TH
4082 qc->flags = 0;
4083 tag = qc->tag;
4084 if (likely(ata_tag_valid(tag))) {
4085 if (tag == ap->active_tag)
4086 ap->active_tag = ATA_TAG_POISON;
4087 qc->tag = ATA_TAG_POISON;
4088 clear_bit(tag, &ap->qactive);
4089 }
1da177e4
LT
4090}
4091
76014427 4092void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4093{
a4631474
TH
4094 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4095 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4096
4097 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4098 ata_sg_clean(qc);
4099
3f3791d3
AL
4100 /* atapi: mark qc as inactive to prevent the interrupt handler
4101 * from completing the command twice later, before the error handler
4102 * is called. (when rc != 0 and atapi request sense is needed)
4103 */
4104 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4105
1da177e4 4106 /* call completion callback */
77853bf2 4107 qc->complete_fn(qc);
1da177e4
LT
4108}
4109
4110static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4111{
4112 struct ata_port *ap = qc->ap;
4113
4114 switch (qc->tf.protocol) {
4115 case ATA_PROT_DMA:
4116 case ATA_PROT_ATAPI_DMA:
4117 return 1;
4118
4119 case ATA_PROT_ATAPI:
4120 case ATA_PROT_PIO:
1da177e4
LT
4121 if (ap->flags & ATA_FLAG_PIO_DMA)
4122 return 1;
4123
4124 /* fall through */
4125
4126 default:
4127 return 0;
4128 }
4129
4130 /* never reached */
4131}
4132
4133/**
4134 * ata_qc_issue - issue taskfile to device
4135 * @qc: command to issue to device
4136 *
4137 * Prepare an ATA command to submission to device.
4138 * This includes mapping the data into a DMA-able
4139 * area, filling in the S/G table, and finally
4140 * writing the taskfile to hardware, starting the command.
4141 *
4142 * LOCKING:
4143 * spin_lock_irqsave(host_set lock)
1da177e4 4144 */
8e0e694a 4145void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4146{
4147 struct ata_port *ap = qc->ap;
4148
e4a70e76
TH
4149 qc->ap->active_tag = qc->tag;
4150 qc->flags |= ATA_QCFLAG_ACTIVE;
4151
1da177e4
LT
4152 if (ata_should_dma_map(qc)) {
4153 if (qc->flags & ATA_QCFLAG_SG) {
4154 if (ata_sg_setup(qc))
8e436af9 4155 goto sg_err;
1da177e4
LT
4156 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4157 if (ata_sg_setup_one(qc))
8e436af9 4158 goto sg_err;
1da177e4
LT
4159 }
4160 } else {
4161 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4162 }
4163
4164 ap->ops->qc_prep(qc);
4165
8e0e694a
TH
4166 qc->err_mask |= ap->ops->qc_issue(qc);
4167 if (unlikely(qc->err_mask))
4168 goto err;
4169 return;
1da177e4 4170
8e436af9
TH
4171sg_err:
4172 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4173 qc->err_mask |= AC_ERR_SYSTEM;
4174err:
4175 ata_qc_complete(qc);
1da177e4
LT
4176}
4177
4178/**
4179 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4180 * @qc: command to issue to device
4181 *
4182 * Using various libata functions and hooks, this function
4183 * starts an ATA command. ATA commands are grouped into
4184 * classes called "protocols", and issuing each type of protocol
4185 * is slightly different.
4186 *
0baab86b
EF
4187 * May be used as the qc_issue() entry in ata_port_operations.
4188 *
1da177e4
LT
4189 * LOCKING:
4190 * spin_lock_irqsave(host_set lock)
4191 *
4192 * RETURNS:
9a3d9eb0 4193 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4194 */
4195
9a3d9eb0 4196unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4197{
4198 struct ata_port *ap = qc->ap;
4199
4200 ata_dev_select(ap, qc->dev->devno, 1, 0);
4201
4202 switch (qc->tf.protocol) {
4203 case ATA_PROT_NODATA:
e5338254 4204 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
4205 break;
4206
4207 case ATA_PROT_DMA:
4208 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4209 ap->ops->bmdma_setup(qc); /* set up bmdma */
4210 ap->ops->bmdma_start(qc); /* initiate bmdma */
4211 break;
4212
4213 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4214 ata_qc_set_polling(qc);
e5338254 4215 ata_tf_to_host(ap, &qc->tf);
14be71f4 4216 ap->hsm_task_state = HSM_ST;
c91af2c8 4217 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4218 break;
4219
4220 case ATA_PROT_ATAPI:
4221 ata_qc_set_polling(qc);
e5338254 4222 ata_tf_to_host(ap, &qc->tf);
c91af2c8 4223 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4224 break;
4225
4226 case ATA_PROT_ATAPI_NODATA:
c1389503 4227 ap->flags |= ATA_FLAG_NOINTR;
e5338254 4228 ata_tf_to_host(ap, &qc->tf);
c91af2c8 4229 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4230 break;
4231
4232 case ATA_PROT_ATAPI_DMA:
c1389503 4233 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
4234 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4235 ap->ops->bmdma_setup(qc); /* set up bmdma */
c91af2c8 4236 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4237 break;
4238
4239 default:
4240 WARN_ON(1);
9a3d9eb0 4241 return AC_ERR_SYSTEM;
1da177e4
LT
4242 }
4243
4244 return 0;
4245}
4246
1da177e4
LT
4247/**
4248 * ata_host_intr - Handle host interrupt for given (port, task)
4249 * @ap: Port on which interrupt arrived (possibly...)
4250 * @qc: Taskfile currently active in engine
4251 *
4252 * Handle host interrupt for given queued command. Currently,
4253 * only DMA interrupts are handled. All other commands are
4254 * handled via polling with interrupts disabled (nIEN bit).
4255 *
4256 * LOCKING:
4257 * spin_lock_irqsave(host_set lock)
4258 *
4259 * RETURNS:
4260 * One if interrupt was handled, zero if not (shared irq).
4261 */
4262
4263inline unsigned int ata_host_intr (struct ata_port *ap,
4264 struct ata_queued_cmd *qc)
4265{
4266 u8 status, host_stat;
4267
4268 switch (qc->tf.protocol) {
4269
4270 case ATA_PROT_DMA:
4271 case ATA_PROT_ATAPI_DMA:
4272 case ATA_PROT_ATAPI:
4273 /* check status of DMA engine */
4274 host_stat = ap->ops->bmdma_status(ap);
4275 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4276
4277 /* if it's not our irq... */
4278 if (!(host_stat & ATA_DMA_INTR))
4279 goto idle_irq;
4280
4281 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4282 ap->ops->bmdma_stop(qc);
1da177e4
LT
4283
4284 /* fall through */
4285
4286 case ATA_PROT_ATAPI_NODATA:
4287 case ATA_PROT_NODATA:
4288 /* check altstatus */
4289 status = ata_altstatus(ap);
4290 if (status & ATA_BUSY)
4291 goto idle_irq;
4292
4293 /* check main status, clearing INTRQ */
4294 status = ata_chk_status(ap);
4295 if (unlikely(status & ATA_BUSY))
4296 goto idle_irq;
4297 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4298 ap->id, qc->tf.protocol, status);
4299
4300 /* ack bmdma irq events */
4301 ap->ops->irq_clear(ap);
4302
4303 /* complete taskfile transaction */
a22e2eb0
AL
4304 qc->err_mask |= ac_err_mask(status);
4305 ata_qc_complete(qc);
1da177e4
LT
4306 break;
4307
4308 default:
4309 goto idle_irq;
4310 }
4311
4312 return 1; /* irq handled */
4313
4314idle_irq:
4315 ap->stats.idle_irq++;
4316
4317#ifdef ATA_IRQ_TRAP
4318 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4
LT
4319 ata_irq_ack(ap, 0); /* debug trap */
4320 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
23cfce89 4321 return 1;
1da177e4
LT
4322 }
4323#endif
4324 return 0; /* irq not handled */
4325}
4326
4327/**
4328 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4329 * @irq: irq line (unused)
4330 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4331 * @regs: unused
4332 *
0cba632b
JG
4333 * Default interrupt handler for PCI IDE devices. Calls
4334 * ata_host_intr() for each port that is not disabled.
4335 *
1da177e4 4336 * LOCKING:
0cba632b 4337 * Obtains host_set lock during operation.
1da177e4
LT
4338 *
4339 * RETURNS:
0cba632b 4340 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4341 */
4342
4343irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4344{
4345 struct ata_host_set *host_set = dev_instance;
4346 unsigned int i;
4347 unsigned int handled = 0;
4348 unsigned long flags;
4349
4350 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4351 spin_lock_irqsave(&host_set->lock, flags);
4352
4353 for (i = 0; i < host_set->n_ports; i++) {
4354 struct ata_port *ap;
4355
4356 ap = host_set->ports[i];
c1389503 4357 if (ap &&
198e0fed 4358 !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4359 struct ata_queued_cmd *qc;
4360
4361 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4362 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4363 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4364 handled |= ata_host_intr(ap, qc);
4365 }
4366 }
4367
4368 spin_unlock_irqrestore(&host_set->lock, flags);
4369
4370 return IRQ_RETVAL(handled);
4371}
4372
0baab86b 4373
9b847548
JA
4374/*
4375 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4376 * without filling any other registers
4377 */
4378static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4379 u8 cmd)
4380{
4381 struct ata_taskfile tf;
4382 int err;
4383
4384 ata_tf_init(ap, &tf, dev->devno);
4385
4386 tf.command = cmd;
4387 tf.flags |= ATA_TFLAG_DEVICE;
4388 tf.protocol = ATA_PROT_NODATA;
4389
d69cf37d 4390 err = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
9b847548
JA
4391 if (err)
4392 printk(KERN_ERR "%s: ata command failed: %d\n",
4393 __FUNCTION__, err);
4394
4395 return err;
4396}
4397
4398static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4399{
4400 u8 cmd;
4401
4402 if (!ata_try_flush_cache(dev))
4403 return 0;
4404
4405 if (ata_id_has_flush_ext(dev->id))
4406 cmd = ATA_CMD_FLUSH_EXT;
4407 else
4408 cmd = ATA_CMD_FLUSH;
4409
4410 return ata_do_simple_cmd(ap, dev, cmd);
4411}
4412
4413static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4414{
4415 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4416}
4417
4418static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4419{
4420 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4421}
4422
4423/**
4424 * ata_device_resume - wakeup a previously suspended devices
c893a3ae
RD
4425 * @ap: port the device is connected to
4426 * @dev: the device to resume
9b847548
JA
4427 *
4428 * Kick the drive back into action, by sending it an idle immediate
4429 * command and making sure its transfer mode matches between drive
4430 * and host.
4431 *
4432 */
4433int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4434{
4435 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 4436 struct ata_device *failed_dev;
9b847548 4437 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9
TH
4438 while (ata_set_mode(ap, &failed_dev))
4439 ata_dev_disable(ap, failed_dev);
9b847548 4440 }
e1211e3f 4441 if (!ata_dev_enabled(dev))
9b847548
JA
4442 return 0;
4443 if (dev->class == ATA_DEV_ATA)
4444 ata_start_drive(ap, dev);
4445
4446 return 0;
4447}
4448
4449/**
4450 * ata_device_suspend - prepare a device for suspend
c893a3ae
RD
4451 * @ap: port the device is connected to
4452 * @dev: the device to suspend
9b847548
JA
4453 *
4454 * Flush the cache on the drive, if appropriate, then issue a
4455 * standbynow command.
9b847548 4456 */
082776e4 4457int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
9b847548 4458{
e1211e3f 4459 if (!ata_dev_enabled(dev))
9b847548
JA
4460 return 0;
4461 if (dev->class == ATA_DEV_ATA)
4462 ata_flush_cache(ap, dev);
4463
082776e4
NC
4464 if (state.event != PM_EVENT_FREEZE)
4465 ata_standby_drive(ap, dev);
9b847548
JA
4466 ap->flags |= ATA_FLAG_SUSPENDED;
4467 return 0;
4468}
4469
c893a3ae
RD
4470/**
4471 * ata_port_start - Set port up for dma.
4472 * @ap: Port to initialize
4473 *
4474 * Called just after data structures for each port are
4475 * initialized. Allocates space for PRD table.
4476 *
4477 * May be used as the port_start() entry in ata_port_operations.
4478 *
4479 * LOCKING:
4480 * Inherited from caller.
4481 */
4482
1da177e4
LT
4483int ata_port_start (struct ata_port *ap)
4484{
2f1f610b 4485 struct device *dev = ap->dev;
6037d6bb 4486 int rc;
1da177e4
LT
4487
4488 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4489 if (!ap->prd)
4490 return -ENOMEM;
4491
6037d6bb
JG
4492 rc = ata_pad_alloc(ap, dev);
4493 if (rc) {
cedc9a47 4494 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4495 return rc;
cedc9a47
JG
4496 }
4497
1da177e4
LT
4498 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4499
4500 return 0;
4501}
4502
0baab86b
EF
4503
4504/**
4505 * ata_port_stop - Undo ata_port_start()
4506 * @ap: Port to shut down
4507 *
4508 * Frees the PRD table.
4509 *
4510 * May be used as the port_stop() entry in ata_port_operations.
4511 *
4512 * LOCKING:
6f0ef4fa 4513 * Inherited from caller.
0baab86b
EF
4514 */
4515
1da177e4
LT
4516void ata_port_stop (struct ata_port *ap)
4517{
2f1f610b 4518 struct device *dev = ap->dev;
1da177e4
LT
4519
4520 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4521 ata_pad_free(ap, dev);
1da177e4
LT
4522}
4523
aa8f0dc6
JG
4524void ata_host_stop (struct ata_host_set *host_set)
4525{
4526 if (host_set->mmio_base)
4527 iounmap(host_set->mmio_base);
4528}
4529
4530
1da177e4
LT
4531/**
4532 * ata_host_remove - Unregister SCSI host structure with upper layers
4533 * @ap: Port to unregister
4534 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4535 *
4536 * LOCKING:
6f0ef4fa 4537 * Inherited from caller.
1da177e4
LT
4538 */
4539
4540static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4541{
4542 struct Scsi_Host *sh = ap->host;
4543
4544 DPRINTK("ENTER\n");
4545
4546 if (do_unregister)
4547 scsi_remove_host(sh);
4548
4549 ap->ops->port_stop(ap);
4550}
4551
4552/**
4553 * ata_host_init - Initialize an ata_port structure
4554 * @ap: Structure to initialize
4555 * @host: associated SCSI mid-layer structure
4556 * @host_set: Collection of hosts to which @ap belongs
4557 * @ent: Probe information provided by low-level driver
4558 * @port_no: Port number associated with this ata_port
4559 *
0cba632b
JG
4560 * Initialize a new ata_port structure, and its associated
4561 * scsi_host.
4562 *
1da177e4 4563 * LOCKING:
0cba632b 4564 * Inherited from caller.
1da177e4
LT
4565 */
4566
4567static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4568 struct ata_host_set *host_set,
057ace5e 4569 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4570{
4571 unsigned int i;
4572
4573 host->max_id = 16;
4574 host->max_lun = 1;
4575 host->max_channel = 1;
4576 host->unique_id = ata_unique_id++;
4577 host->max_cmd_len = 12;
12413197 4578
198e0fed 4579 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
4580 ap->id = host->unique_id;
4581 ap->host = host;
4582 ap->ctl = ATA_DEVCTL_OBS;
4583 ap->host_set = host_set;
2f1f610b 4584 ap->dev = ent->dev;
1da177e4
LT
4585 ap->port_no = port_no;
4586 ap->hard_port_no =
4587 ent->legacy_mode ? ent->hard_port_no : port_no;
4588 ap->pio_mask = ent->pio_mask;
4589 ap->mwdma_mask = ent->mwdma_mask;
4590 ap->udma_mask = ent->udma_mask;
4591 ap->flags |= ent->host_flags;
4592 ap->ops = ent->port_ops;
4593 ap->cbl = ATA_CBL_NONE;
1c3fae4d 4594 ap->sata_spd_limit = UINT_MAX;
1da177e4
LT
4595 ap->active_tag = ATA_TAG_POISON;
4596 ap->last_ctl = 0xFF;
4597
86e45b6b 4598 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4599 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 4600
acf356b1
TH
4601 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4602 struct ata_device *dev = &ap->device[i];
4603 dev->devno = i;
4604 dev->pio_mask = UINT_MAX;
4605 dev->mwdma_mask = UINT_MAX;
4606 dev->udma_mask = UINT_MAX;
4607 }
1da177e4
LT
4608
4609#ifdef ATA_IRQ_TRAP
4610 ap->stats.unhandled_irq = 1;
4611 ap->stats.idle_irq = 1;
4612#endif
4613
4614 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4615}
4616
4617/**
4618 * ata_host_add - Attach low-level ATA driver to system
4619 * @ent: Information provided by low-level driver
4620 * @host_set: Collections of ports to which we add
4621 * @port_no: Port number associated with this host
4622 *
0cba632b
JG
4623 * Attach low-level ATA driver to system.
4624 *
1da177e4 4625 * LOCKING:
0cba632b 4626 * PCI/etc. bus probe sem.
1da177e4
LT
4627 *
4628 * RETURNS:
0cba632b 4629 * New ata_port on success, for NULL on error.
1da177e4
LT
4630 */
4631
057ace5e 4632static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4633 struct ata_host_set *host_set,
4634 unsigned int port_no)
4635{
4636 struct Scsi_Host *host;
4637 struct ata_port *ap;
4638 int rc;
4639
4640 DPRINTK("ENTER\n");
aec5c3c1
TH
4641
4642 if (!ent->port_ops->probe_reset &&
4643 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4644 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4645 port_no);
4646 return NULL;
4647 }
4648
1da177e4
LT
4649 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4650 if (!host)
4651 return NULL;
4652
30afc84c
TH
4653 host->transportt = &ata_scsi_transport_template;
4654
1da177e4
LT
4655 ap = (struct ata_port *) &host->hostdata[0];
4656
4657 ata_host_init(ap, host, host_set, ent, port_no);
4658
4659 rc = ap->ops->port_start(ap);
4660 if (rc)
4661 goto err_out;
4662
4663 return ap;
4664
4665err_out:
4666 scsi_host_put(host);
4667 return NULL;
4668}
4669
4670/**
0cba632b
JG
4671 * ata_device_add - Register hardware device with ATA and SCSI layers
4672 * @ent: Probe information describing hardware device to be registered
4673 *
4674 * This function processes the information provided in the probe
4675 * information struct @ent, allocates the necessary ATA and SCSI
4676 * host information structures, initializes them, and registers
4677 * everything with requisite kernel subsystems.
4678 *
4679 * This function requests irqs, probes the ATA bus, and probes
4680 * the SCSI bus.
1da177e4
LT
4681 *
4682 * LOCKING:
0cba632b 4683 * PCI/etc. bus probe sem.
1da177e4
LT
4684 *
4685 * RETURNS:
0cba632b 4686 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4687 */
4688
057ace5e 4689int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4690{
4691 unsigned int count = 0, i;
4692 struct device *dev = ent->dev;
4693 struct ata_host_set *host_set;
4694
4695 DPRINTK("ENTER\n");
4696 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4697 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4698 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4699 if (!host_set)
4700 return 0;
1da177e4
LT
4701 spin_lock_init(&host_set->lock);
4702
4703 host_set->dev = dev;
4704 host_set->n_ports = ent->n_ports;
4705 host_set->irq = ent->irq;
4706 host_set->mmio_base = ent->mmio_base;
4707 host_set->private_data = ent->private_data;
4708 host_set->ops = ent->port_ops;
5444a6f4 4709 host_set->flags = ent->host_set_flags;
1da177e4
LT
4710
4711 /* register each port bound to this device */
4712 for (i = 0; i < ent->n_ports; i++) {
4713 struct ata_port *ap;
4714 unsigned long xfer_mode_mask;
4715
4716 ap = ata_host_add(ent, host_set, i);
4717 if (!ap)
4718 goto err_out;
4719
4720 host_set->ports[i] = ap;
4721 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4722 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4723 (ap->pio_mask << ATA_SHIFT_PIO);
4724
4725 /* print per-port info to dmesg */
4726 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4727 "bmdma 0x%lX irq %lu\n",
4728 ap->id,
4729 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4730 ata_mode_string(xfer_mode_mask),
4731 ap->ioaddr.cmd_addr,
4732 ap->ioaddr.ctl_addr,
4733 ap->ioaddr.bmdma_addr,
4734 ent->irq);
4735
4736 ata_chk_status(ap);
4737 host_set->ops->irq_clear(ap);
4738 count++;
4739 }
4740
57f3bda8
RD
4741 if (!count)
4742 goto err_free_ret;
1da177e4
LT
4743
4744 /* obtain irq, that is shared between channels */
4745 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4746 DRV_NAME, host_set))
4747 goto err_out;
4748
4749 /* perform each probe synchronously */
4750 DPRINTK("probe begin\n");
4751 for (i = 0; i < count; i++) {
4752 struct ata_port *ap;
4753 int rc;
4754
4755 ap = host_set->ports[i];
4756
c893a3ae 4757 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4758 rc = ata_bus_probe(ap);
c893a3ae 4759 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4760
4761 if (rc) {
4762 /* FIXME: do something useful here?
4763 * Current libata behavior will
4764 * tear down everything when
4765 * the module is removed
4766 * or the h/w is unplugged.
4767 */
4768 }
4769
4770 rc = scsi_add_host(ap->host, dev);
4771 if (rc) {
4772 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4773 ap->id);
4774 /* FIXME: do something useful here */
4775 /* FIXME: handle unconditional calls to
4776 * scsi_scan_host and ata_host_remove, below,
4777 * at the very least
4778 */
4779 }
4780 }
4781
4782 /* probes are done, now scan each port's disk(s) */
c893a3ae 4783 DPRINTK("host probe begin\n");
1da177e4
LT
4784 for (i = 0; i < count; i++) {
4785 struct ata_port *ap = host_set->ports[i];
4786
644dd0cc 4787 ata_scsi_scan_host(ap);
1da177e4
LT
4788 }
4789
4790 dev_set_drvdata(dev, host_set);
4791
4792 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4793 return ent->n_ports; /* success */
4794
4795err_out:
4796 for (i = 0; i < count; i++) {
4797 ata_host_remove(host_set->ports[i], 1);
4798 scsi_host_put(host_set->ports[i]->host);
4799 }
57f3bda8 4800err_free_ret:
1da177e4
LT
4801 kfree(host_set);
4802 VPRINTK("EXIT, returning 0\n");
4803 return 0;
4804}
4805
17b14451
AC
4806/**
4807 * ata_host_set_remove - PCI layer callback for device removal
4808 * @host_set: ATA host set that was removed
4809 *
2e9edbf8 4810 * Unregister all objects associated with this host set. Free those
17b14451
AC
4811 * objects.
4812 *
4813 * LOCKING:
4814 * Inherited from calling layer (may sleep).
4815 */
4816
17b14451
AC
4817void ata_host_set_remove(struct ata_host_set *host_set)
4818{
4819 struct ata_port *ap;
4820 unsigned int i;
4821
4822 for (i = 0; i < host_set->n_ports; i++) {
4823 ap = host_set->ports[i];
4824 scsi_remove_host(ap->host);
4825 }
4826
4827 free_irq(host_set->irq, host_set);
4828
4829 for (i = 0; i < host_set->n_ports; i++) {
4830 ap = host_set->ports[i];
4831
4832 ata_scsi_release(ap->host);
4833
4834 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4835 struct ata_ioports *ioaddr = &ap->ioaddr;
4836
4837 if (ioaddr->cmd_addr == 0x1f0)
4838 release_region(0x1f0, 8);
4839 else if (ioaddr->cmd_addr == 0x170)
4840 release_region(0x170, 8);
4841 }
4842
4843 scsi_host_put(ap->host);
4844 }
4845
4846 if (host_set->ops->host_stop)
4847 host_set->ops->host_stop(host_set);
4848
4849 kfree(host_set);
4850}
4851
1da177e4
LT
4852/**
4853 * ata_scsi_release - SCSI layer callback hook for host unload
4854 * @host: libata host to be unloaded
4855 *
4856 * Performs all duties necessary to shut down a libata port...
4857 * Kill port kthread, disable port, and release resources.
4858 *
4859 * LOCKING:
4860 * Inherited from SCSI layer.
4861 *
4862 * RETURNS:
4863 * One.
4864 */
4865
4866int ata_scsi_release(struct Scsi_Host *host)
4867{
4868 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
d9572b1d 4869 int i;
1da177e4
LT
4870
4871 DPRINTK("ENTER\n");
4872
4873 ap->ops->port_disable(ap);
4874 ata_host_remove(ap, 0);
d9572b1d
TH
4875 for (i = 0; i < ATA_MAX_DEVICES; i++)
4876 kfree(ap->device[i].id);
1da177e4
LT
4877
4878 DPRINTK("EXIT\n");
4879 return 1;
4880}
4881
4882/**
4883 * ata_std_ports - initialize ioaddr with standard port offsets.
4884 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4885 *
4886 * Utility function which initializes data_addr, error_addr,
4887 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4888 * device_addr, status_addr, and command_addr to standard offsets
4889 * relative to cmd_addr.
4890 *
4891 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4892 */
0baab86b 4893
1da177e4
LT
4894void ata_std_ports(struct ata_ioports *ioaddr)
4895{
4896 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4897 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4898 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4899 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4900 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4901 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4902 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4903 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4904 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4905 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4906}
4907
0baab86b 4908
374b1873
JG
4909#ifdef CONFIG_PCI
4910
4911void ata_pci_host_stop (struct ata_host_set *host_set)
4912{
4913 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4914
4915 pci_iounmap(pdev, host_set->mmio_base);
4916}
4917
1da177e4
LT
4918/**
4919 * ata_pci_remove_one - PCI layer callback for device removal
4920 * @pdev: PCI device that was removed
4921 *
4922 * PCI layer indicates to libata via this hook that
6f0ef4fa 4923 * hot-unplug or module unload event has occurred.
1da177e4
LT
4924 * Handle this by unregistering all objects associated
4925 * with this PCI device. Free those objects. Then finally
4926 * release PCI resources and disable device.
4927 *
4928 * LOCKING:
4929 * Inherited from PCI layer (may sleep).
4930 */
4931
4932void ata_pci_remove_one (struct pci_dev *pdev)
4933{
4934 struct device *dev = pci_dev_to_dev(pdev);
4935 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4936
17b14451 4937 ata_host_set_remove(host_set);
1da177e4
LT
4938 pci_release_regions(pdev);
4939 pci_disable_device(pdev);
4940 dev_set_drvdata(dev, NULL);
4941}
4942
4943/* move to PCI subsystem */
057ace5e 4944int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4945{
4946 unsigned long tmp = 0;
4947
4948 switch (bits->width) {
4949 case 1: {
4950 u8 tmp8 = 0;
4951 pci_read_config_byte(pdev, bits->reg, &tmp8);
4952 tmp = tmp8;
4953 break;
4954 }
4955 case 2: {
4956 u16 tmp16 = 0;
4957 pci_read_config_word(pdev, bits->reg, &tmp16);
4958 tmp = tmp16;
4959 break;
4960 }
4961 case 4: {
4962 u32 tmp32 = 0;
4963 pci_read_config_dword(pdev, bits->reg, &tmp32);
4964 tmp = tmp32;
4965 break;
4966 }
4967
4968 default:
4969 return -EINVAL;
4970 }
4971
4972 tmp &= bits->mask;
4973
4974 return (tmp == bits->val) ? 1 : 0;
4975}
9b847548
JA
4976
4977int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4978{
4979 pci_save_state(pdev);
4980 pci_disable_device(pdev);
4981 pci_set_power_state(pdev, PCI_D3hot);
4982 return 0;
4983}
4984
4985int ata_pci_device_resume(struct pci_dev *pdev)
4986{
4987 pci_set_power_state(pdev, PCI_D0);
4988 pci_restore_state(pdev);
4989 pci_enable_device(pdev);
4990 pci_set_master(pdev);
4991 return 0;
4992}
1da177e4
LT
4993#endif /* CONFIG_PCI */
4994
4995
1da177e4
LT
4996static int __init ata_init(void)
4997{
4998 ata_wq = create_workqueue("ata");
4999 if (!ata_wq)
5000 return -ENOMEM;
5001
5002 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5003 return 0;
5004}
5005
5006static void __exit ata_exit(void)
5007{
5008 destroy_workqueue(ata_wq);
5009}
5010
5011module_init(ata_init);
5012module_exit(ata_exit);
5013
67846b30
JG
5014static unsigned long ratelimit_time;
5015static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5016
5017int ata_ratelimit(void)
5018{
5019 int rc;
5020 unsigned long flags;
5021
5022 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5023
5024 if (time_after(jiffies, ratelimit_time)) {
5025 rc = 1;
5026 ratelimit_time = jiffies + (HZ/5);
5027 } else
5028 rc = 0;
5029
5030 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5031
5032 return rc;
5033}
5034
1da177e4
LT
5035/*
5036 * libata is essentially a library of internal helper functions for
5037 * low-level ATA host controller drivers. As such, the API/ABI is
5038 * likely to change as new drivers are added and updated.
5039 * Do not depend on ABI/API stability.
5040 */
5041
5042EXPORT_SYMBOL_GPL(ata_std_bios_param);
5043EXPORT_SYMBOL_GPL(ata_std_ports);
5044EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5045EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5046EXPORT_SYMBOL_GPL(ata_sg_init);
5047EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 5048EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4 5049EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5050EXPORT_SYMBOL_GPL(ata_tf_load);
5051EXPORT_SYMBOL_GPL(ata_tf_read);
5052EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5053EXPORT_SYMBOL_GPL(ata_std_dev_select);
5054EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5055EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5056EXPORT_SYMBOL_GPL(ata_check_status);
5057EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5058EXPORT_SYMBOL_GPL(ata_exec_command);
5059EXPORT_SYMBOL_GPL(ata_port_start);
5060EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5061EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5062EXPORT_SYMBOL_GPL(ata_interrupt);
5063EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5064EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5065EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5066EXPORT_SYMBOL_GPL(ata_bmdma_start);
5067EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5068EXPORT_SYMBOL_GPL(ata_bmdma_status);
5069EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5070EXPORT_SYMBOL_GPL(ata_port_probe);
5071EXPORT_SYMBOL_GPL(sata_phy_reset);
5072EXPORT_SYMBOL_GPL(__sata_phy_reset);
5073EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5074EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
5075EXPORT_SYMBOL_GPL(ata_std_softreset);
5076EXPORT_SYMBOL_GPL(sata_std_hardreset);
5077EXPORT_SYMBOL_GPL(ata_std_postreset);
5078EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5079EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5080EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5081EXPORT_SYMBOL_GPL(ata_dev_classify);
5082EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5083EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5084EXPORT_SYMBOL_GPL(ata_ratelimit);
6f8b9958 5085EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5086EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5087EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5088EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4
LT
5089EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5090EXPORT_SYMBOL_GPL(ata_scsi_release);
5091EXPORT_SYMBOL_GPL(ata_host_intr);
6a62a04d
TH
5092EXPORT_SYMBOL_GPL(ata_id_string);
5093EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5094EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5095
1bc4ccff 5096EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5097EXPORT_SYMBOL_GPL(ata_timing_compute);
5098EXPORT_SYMBOL_GPL(ata_timing_merge);
5099
1da177e4
LT
5100#ifdef CONFIG_PCI
5101EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5102EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5103EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5104EXPORT_SYMBOL_GPL(ata_pci_init_one);
5105EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5106EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5107EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5108EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5109EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5110#endif /* CONFIG_PCI */
9b847548
JA
5111
5112EXPORT_SYMBOL_GPL(ata_device_suspend);
5113EXPORT_SYMBOL_GPL(ata_device_resume);
5114EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5115EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636
TH
5116
5117EXPORT_SYMBOL_GPL(ata_scsi_error);
5118EXPORT_SYMBOL_GPL(ata_eng_timeout);
5119EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5120EXPORT_SYMBOL_GPL(ata_eh_qc_retry);