]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/scsi/libata-core.c
[PATCH] libata: Setup nbytes in ata_sg_init_one
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
d7bb4cc7
TH
64/* debounce timing parameters in msecs { interval, duration, timeout } */
65const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
66const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
67const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
68
3373efd8
TH
69static unsigned int ata_dev_init_params(struct ata_device *dev,
70 u16 heads, u16 sectors);
71static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
72static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
73
74static unsigned int ata_unique_id = 1;
75static struct workqueue_struct *ata_wq;
76
453b07ac
TH
77struct workqueue_struct *ata_aux_wq;
78
418dc1f5 79int atapi_enabled = 1;
1623c81e
JG
80module_param(atapi_enabled, int, 0444);
81MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82
95de719a
AL
83int atapi_dmadir = 0;
84module_param(atapi_dmadir, int, 0444);
85MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86
c3c013a2
JG
87int libata_fua = 0;
88module_param_named(fua, libata_fua, int, 0444);
89MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
90
1da177e4
LT
91MODULE_AUTHOR("Jeff Garzik");
92MODULE_DESCRIPTION("Library module for ATA devices");
93MODULE_LICENSE("GPL");
94MODULE_VERSION(DRV_VERSION);
95
0baab86b 96
1da177e4
LT
97/**
98 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
99 * @tf: Taskfile to convert
100 * @fis: Buffer into which data will output
101 * @pmp: Port multiplier port
102 *
103 * Converts a standard ATA taskfile to a Serial ATA
104 * FIS structure (Register - Host to Device).
105 *
106 * LOCKING:
107 * Inherited from caller.
108 */
109
057ace5e 110void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
111{
112 fis[0] = 0x27; /* Register - Host to Device FIS */
113 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
114 bit 7 indicates Command FIS */
115 fis[2] = tf->command;
116 fis[3] = tf->feature;
117
118 fis[4] = tf->lbal;
119 fis[5] = tf->lbam;
120 fis[6] = tf->lbah;
121 fis[7] = tf->device;
122
123 fis[8] = tf->hob_lbal;
124 fis[9] = tf->hob_lbam;
125 fis[10] = tf->hob_lbah;
126 fis[11] = tf->hob_feature;
127
128 fis[12] = tf->nsect;
129 fis[13] = tf->hob_nsect;
130 fis[14] = 0;
131 fis[15] = tf->ctl;
132
133 fis[16] = 0;
134 fis[17] = 0;
135 fis[18] = 0;
136 fis[19] = 0;
137}
138
139/**
140 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
141 * @fis: Buffer from which data will be input
142 * @tf: Taskfile to output
143 *
e12a1be6 144 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
057ace5e 150void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
151{
152 tf->command = fis[2]; /* status */
153 tf->feature = fis[3]; /* error */
154
155 tf->lbal = fis[4];
156 tf->lbam = fis[5];
157 tf->lbah = fis[6];
158 tf->device = fis[7];
159
160 tf->hob_lbal = fis[8];
161 tf->hob_lbam = fis[9];
162 tf->hob_lbah = fis[10];
163
164 tf->nsect = fis[12];
165 tf->hob_nsect = fis[13];
166}
167
8cbd6df1
AL
168static const u8 ata_rw_cmds[] = {
169 /* pio multi */
170 ATA_CMD_READ_MULTI,
171 ATA_CMD_WRITE_MULTI,
172 ATA_CMD_READ_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
174 0,
175 0,
176 0,
177 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
178 /* pio */
179 ATA_CMD_PIO_READ,
180 ATA_CMD_PIO_WRITE,
181 ATA_CMD_PIO_READ_EXT,
182 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
183 0,
184 0,
185 0,
186 0,
8cbd6df1
AL
187 /* dma */
188 ATA_CMD_READ,
189 ATA_CMD_WRITE,
190 ATA_CMD_READ_EXT,
9a3dccc4
TH
191 ATA_CMD_WRITE_EXT,
192 0,
193 0,
194 0,
195 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 196};
1da177e4
LT
197
198/**
8cbd6df1
AL
199 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
200 * @qc: command to examine and configure
1da177e4 201 *
2e9edbf8 202 * Examine the device configuration and tf->flags to calculate
8cbd6df1 203 * the proper read/write commands and protocol to use.
1da177e4
LT
204 *
205 * LOCKING:
206 * caller.
207 */
9a3dccc4 208int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 209{
8cbd6df1
AL
210 struct ata_taskfile *tf = &qc->tf;
211 struct ata_device *dev = qc->dev;
9a3dccc4 212 u8 cmd;
1da177e4 213
9a3dccc4 214 int index, fua, lba48, write;
2e9edbf8 215
9a3dccc4 216 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
217 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
218 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 219
8cbd6df1
AL
220 if (dev->flags & ATA_DFLAG_PIO) {
221 tf->protocol = ATA_PROT_PIO;
9a3dccc4 222 index = dev->multi_count ? 0 : 8;
8d238e01
AC
223 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
224 /* Unable to use DMA due to host limitation */
225 tf->protocol = ATA_PROT_PIO;
0565c26d 226 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
227 } else {
228 tf->protocol = ATA_PROT_DMA;
9a3dccc4 229 index = 16;
8cbd6df1 230 }
1da177e4 231
9a3dccc4
TH
232 cmd = ata_rw_cmds[index + fua + lba48 + write];
233 if (cmd) {
234 tf->command = cmd;
235 return 0;
236 }
237 return -1;
1da177e4
LT
238}
239
cb95d562
TH
240/**
241 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
242 * @pio_mask: pio_mask
243 * @mwdma_mask: mwdma_mask
244 * @udma_mask: udma_mask
245 *
246 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
247 * unsigned int xfer_mask.
248 *
249 * LOCKING:
250 * None.
251 *
252 * RETURNS:
253 * Packed xfer_mask.
254 */
255static unsigned int ata_pack_xfermask(unsigned int pio_mask,
256 unsigned int mwdma_mask,
257 unsigned int udma_mask)
258{
259 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
260 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
261 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
262}
263
c0489e4e
TH
264/**
265 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
266 * @xfer_mask: xfer_mask to unpack
267 * @pio_mask: resulting pio_mask
268 * @mwdma_mask: resulting mwdma_mask
269 * @udma_mask: resulting udma_mask
270 *
271 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
272 * Any NULL distination masks will be ignored.
273 */
274static void ata_unpack_xfermask(unsigned int xfer_mask,
275 unsigned int *pio_mask,
276 unsigned int *mwdma_mask,
277 unsigned int *udma_mask)
278{
279 if (pio_mask)
280 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
281 if (mwdma_mask)
282 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
283 if (udma_mask)
284 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
285}
286
cb95d562 287static const struct ata_xfer_ent {
be9a50c8 288 int shift, bits;
cb95d562
TH
289 u8 base;
290} ata_xfer_tbl[] = {
291 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
292 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
293 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
294 { -1, },
295};
296
297/**
298 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
299 * @xfer_mask: xfer_mask of interest
300 *
301 * Return matching XFER_* value for @xfer_mask. Only the highest
302 * bit of @xfer_mask is considered.
303 *
304 * LOCKING:
305 * None.
306 *
307 * RETURNS:
308 * Matching XFER_* value, 0 if no match found.
309 */
310static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
311{
312 int highbit = fls(xfer_mask) - 1;
313 const struct ata_xfer_ent *ent;
314
315 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
316 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
317 return ent->base + highbit - ent->shift;
318 return 0;
319}
320
321/**
322 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
323 * @xfer_mode: XFER_* of interest
324 *
325 * Return matching xfer_mask for @xfer_mode.
326 *
327 * LOCKING:
328 * None.
329 *
330 * RETURNS:
331 * Matching xfer_mask, 0 if no match found.
332 */
333static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
334{
335 const struct ata_xfer_ent *ent;
336
337 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
338 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
339 return 1 << (ent->shift + xfer_mode - ent->base);
340 return 0;
341}
342
343/**
344 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
345 * @xfer_mode: XFER_* of interest
346 *
347 * Return matching xfer_shift for @xfer_mode.
348 *
349 * LOCKING:
350 * None.
351 *
352 * RETURNS:
353 * Matching xfer_shift, -1 if no match found.
354 */
355static int ata_xfer_mode2shift(unsigned int xfer_mode)
356{
357 const struct ata_xfer_ent *ent;
358
359 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
360 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
361 return ent->shift;
362 return -1;
363}
364
1da177e4 365/**
1da7b0d0
TH
366 * ata_mode_string - convert xfer_mask to string
367 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
368 *
369 * Determine string which represents the highest speed
1da7b0d0 370 * (highest bit in @modemask).
1da177e4
LT
371 *
372 * LOCKING:
373 * None.
374 *
375 * RETURNS:
376 * Constant C string representing highest speed listed in
1da7b0d0 377 * @mode_mask, or the constant C string "<n/a>".
1da177e4 378 */
1da7b0d0 379static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 380{
75f554bc
TH
381 static const char * const xfer_mode_str[] = {
382 "PIO0",
383 "PIO1",
384 "PIO2",
385 "PIO3",
386 "PIO4",
387 "MWDMA0",
388 "MWDMA1",
389 "MWDMA2",
390 "UDMA/16",
391 "UDMA/25",
392 "UDMA/33",
393 "UDMA/44",
394 "UDMA/66",
395 "UDMA/100",
396 "UDMA/133",
397 "UDMA7",
398 };
1da7b0d0 399 int highbit;
1da177e4 400
1da7b0d0
TH
401 highbit = fls(xfer_mask) - 1;
402 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
403 return xfer_mode_str[highbit];
1da177e4 404 return "<n/a>";
1da177e4
LT
405}
406
4c360c81
TH
407static const char *sata_spd_string(unsigned int spd)
408{
409 static const char * const spd_str[] = {
410 "1.5 Gbps",
411 "3.0 Gbps",
412 };
413
414 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
415 return "<unknown>";
416 return spd_str[spd - 1];
417}
418
3373efd8 419void ata_dev_disable(struct ata_device *dev)
0b8efb0a 420{
e1211e3f 421 if (ata_dev_enabled(dev)) {
f15a1daf 422 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
423 dev->class++;
424 }
425}
426
1da177e4
LT
427/**
428 * ata_pio_devchk - PATA device presence detection
429 * @ap: ATA channel to examine
430 * @device: Device to examine (starting at zero)
431 *
432 * This technique was originally described in
433 * Hale Landis's ATADRVR (www.ata-atapi.com), and
434 * later found its way into the ATA/ATAPI spec.
435 *
436 * Write a pattern to the ATA shadow registers,
437 * and if a device is present, it will respond by
438 * correctly storing and echoing back the
439 * ATA shadow register contents.
440 *
441 * LOCKING:
442 * caller.
443 */
444
445static unsigned int ata_pio_devchk(struct ata_port *ap,
446 unsigned int device)
447{
448 struct ata_ioports *ioaddr = &ap->ioaddr;
449 u8 nsect, lbal;
450
451 ap->ops->dev_select(ap, device);
452
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
455
456 outb(0xaa, ioaddr->nsect_addr);
457 outb(0x55, ioaddr->lbal_addr);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 nsect = inb(ioaddr->nsect_addr);
463 lbal = inb(ioaddr->lbal_addr);
464
465 if ((nsect == 0x55) && (lbal == 0xaa))
466 return 1; /* we found a device */
467
468 return 0; /* nothing found */
469}
470
471/**
472 * ata_mmio_devchk - PATA device presence detection
473 * @ap: ATA channel to examine
474 * @device: Device to examine (starting at zero)
475 *
476 * This technique was originally described in
477 * Hale Landis's ATADRVR (www.ata-atapi.com), and
478 * later found its way into the ATA/ATAPI spec.
479 *
480 * Write a pattern to the ATA shadow registers,
481 * and if a device is present, it will respond by
482 * correctly storing and echoing back the
483 * ATA shadow register contents.
484 *
485 * LOCKING:
486 * caller.
487 */
488
489static unsigned int ata_mmio_devchk(struct ata_port *ap,
490 unsigned int device)
491{
492 struct ata_ioports *ioaddr = &ap->ioaddr;
493 u8 nsect, lbal;
494
495 ap->ops->dev_select(ap, device);
496
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 nsect = readb((void __iomem *) ioaddr->nsect_addr);
507 lbal = readb((void __iomem *) ioaddr->lbal_addr);
508
509 if ((nsect == 0x55) && (lbal == 0xaa))
510 return 1; /* we found a device */
511
512 return 0; /* nothing found */
513}
514
515/**
516 * ata_devchk - PATA device presence detection
517 * @ap: ATA channel to examine
518 * @device: Device to examine (starting at zero)
519 *
520 * Dispatch ATA device presence detection, depending
521 * on whether we are using PIO or MMIO to talk to the
522 * ATA shadow registers.
523 *
524 * LOCKING:
525 * caller.
526 */
527
528static unsigned int ata_devchk(struct ata_port *ap,
529 unsigned int device)
530{
531 if (ap->flags & ATA_FLAG_MMIO)
532 return ata_mmio_devchk(ap, device);
533 return ata_pio_devchk(ap, device);
534}
535
536/**
537 * ata_dev_classify - determine device type based on ATA-spec signature
538 * @tf: ATA taskfile register set for device to be identified
539 *
540 * Determine from taskfile register contents whether a device is
541 * ATA or ATAPI, as per "Signature and persistence" section
542 * of ATA/PI spec (volume 1, sect 5.14).
543 *
544 * LOCKING:
545 * None.
546 *
547 * RETURNS:
548 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
549 * the event of failure.
550 */
551
057ace5e 552unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
553{
554 /* Apple's open source Darwin code hints that some devices only
555 * put a proper signature into the LBA mid/high registers,
556 * So, we only check those. It's sufficient for uniqueness.
557 */
558
559 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
560 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
561 DPRINTK("found ATA device by sig\n");
562 return ATA_DEV_ATA;
563 }
564
565 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
566 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
567 DPRINTK("found ATAPI device by sig\n");
568 return ATA_DEV_ATAPI;
569 }
570
571 DPRINTK("unknown device\n");
572 return ATA_DEV_UNKNOWN;
573}
574
575/**
576 * ata_dev_try_classify - Parse returned ATA device signature
577 * @ap: ATA channel to examine
578 * @device: Device to examine (starting at zero)
b4dc7623 579 * @r_err: Value of error register on completion
1da177e4
LT
580 *
581 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
582 * an ATA/ATAPI-defined set of values is placed in the ATA
583 * shadow registers, indicating the results of device detection
584 * and diagnostics.
585 *
586 * Select the ATA device, and read the values from the ATA shadow
587 * registers. Then parse according to the Error register value,
588 * and the spec-defined values examined by ata_dev_classify().
589 *
590 * LOCKING:
591 * caller.
b4dc7623
TH
592 *
593 * RETURNS:
594 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
595 */
596
b4dc7623
TH
597static unsigned int
598ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 599{
1da177e4
LT
600 struct ata_taskfile tf;
601 unsigned int class;
602 u8 err;
603
604 ap->ops->dev_select(ap, device);
605
606 memset(&tf, 0, sizeof(tf));
607
1da177e4 608 ap->ops->tf_read(ap, &tf);
0169e284 609 err = tf.feature;
b4dc7623
TH
610 if (r_err)
611 *r_err = err;
1da177e4
LT
612
613 /* see if device passed diags */
614 if (err == 1)
615 /* do nothing */ ;
616 else if ((device == 0) && (err == 0x81))
617 /* do nothing */ ;
618 else
b4dc7623 619 return ATA_DEV_NONE;
1da177e4 620
b4dc7623 621 /* determine if device is ATA or ATAPI */
1da177e4 622 class = ata_dev_classify(&tf);
b4dc7623 623
1da177e4 624 if (class == ATA_DEV_UNKNOWN)
b4dc7623 625 return ATA_DEV_NONE;
1da177e4 626 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
627 return ATA_DEV_NONE;
628 return class;
1da177e4
LT
629}
630
631/**
6a62a04d 632 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
633 * @id: IDENTIFY DEVICE results we will examine
634 * @s: string into which data is output
635 * @ofs: offset into identify device page
636 * @len: length of string to return. must be an even number.
637 *
638 * The strings in the IDENTIFY DEVICE page are broken up into
639 * 16-bit chunks. Run through the string, and output each
640 * 8-bit chunk linearly, regardless of platform.
641 *
642 * LOCKING:
643 * caller.
644 */
645
6a62a04d
TH
646void ata_id_string(const u16 *id, unsigned char *s,
647 unsigned int ofs, unsigned int len)
1da177e4
LT
648{
649 unsigned int c;
650
651 while (len > 0) {
652 c = id[ofs] >> 8;
653 *s = c;
654 s++;
655
656 c = id[ofs] & 0xff;
657 *s = c;
658 s++;
659
660 ofs++;
661 len -= 2;
662 }
663}
664
0e949ff3 665/**
6a62a04d 666 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
667 * @id: IDENTIFY DEVICE results we will examine
668 * @s: string into which data is output
669 * @ofs: offset into identify device page
670 * @len: length of string to return. must be an odd number.
671 *
6a62a04d 672 * This function is identical to ata_id_string except that it
0e949ff3
TH
673 * trims trailing spaces and terminates the resulting string with
674 * null. @len must be actual maximum length (even number) + 1.
675 *
676 * LOCKING:
677 * caller.
678 */
6a62a04d
TH
679void ata_id_c_string(const u16 *id, unsigned char *s,
680 unsigned int ofs, unsigned int len)
0e949ff3
TH
681{
682 unsigned char *p;
683
684 WARN_ON(!(len & 1));
685
6a62a04d 686 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
687
688 p = s + strnlen(s, len - 1);
689 while (p > s && p[-1] == ' ')
690 p--;
691 *p = '\0';
692}
0baab86b 693
2940740b
TH
694static u64 ata_id_n_sectors(const u16 *id)
695{
696 if (ata_id_has_lba(id)) {
697 if (ata_id_has_lba48(id))
698 return ata_id_u64(id, 100);
699 else
700 return ata_id_u32(id, 60);
701 } else {
702 if (ata_id_current_chs_valid(id))
703 return ata_id_u32(id, 57);
704 else
705 return id[1] * id[3] * id[6];
706 }
707}
708
0baab86b
EF
709/**
710 * ata_noop_dev_select - Select device 0/1 on ATA bus
711 * @ap: ATA channel to manipulate
712 * @device: ATA device (numbered from zero) to select
713 *
714 * This function performs no actual function.
715 *
716 * May be used as the dev_select() entry in ata_port_operations.
717 *
718 * LOCKING:
719 * caller.
720 */
1da177e4
LT
721void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
722{
723}
724
0baab86b 725
1da177e4
LT
726/**
727 * ata_std_dev_select - Select device 0/1 on ATA bus
728 * @ap: ATA channel to manipulate
729 * @device: ATA device (numbered from zero) to select
730 *
731 * Use the method defined in the ATA specification to
732 * make either device 0, or device 1, active on the
0baab86b
EF
733 * ATA channel. Works with both PIO and MMIO.
734 *
735 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
736 *
737 * LOCKING:
738 * caller.
739 */
740
741void ata_std_dev_select (struct ata_port *ap, unsigned int device)
742{
743 u8 tmp;
744
745 if (device == 0)
746 tmp = ATA_DEVICE_OBS;
747 else
748 tmp = ATA_DEVICE_OBS | ATA_DEV1;
749
750 if (ap->flags & ATA_FLAG_MMIO) {
751 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
752 } else {
753 outb(tmp, ap->ioaddr.device_addr);
754 }
755 ata_pause(ap); /* needed; also flushes, for mmio */
756}
757
758/**
759 * ata_dev_select - Select device 0/1 on ATA bus
760 * @ap: ATA channel to manipulate
761 * @device: ATA device (numbered from zero) to select
762 * @wait: non-zero to wait for Status register BSY bit to clear
763 * @can_sleep: non-zero if context allows sleeping
764 *
765 * Use the method defined in the ATA specification to
766 * make either device 0, or device 1, active on the
767 * ATA channel.
768 *
769 * This is a high-level version of ata_std_dev_select(),
770 * which additionally provides the services of inserting
771 * the proper pauses and status polling, where needed.
772 *
773 * LOCKING:
774 * caller.
775 */
776
777void ata_dev_select(struct ata_port *ap, unsigned int device,
778 unsigned int wait, unsigned int can_sleep)
779{
780 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
781 ap->id, device, wait);
782
783 if (wait)
784 ata_wait_idle(ap);
785
786 ap->ops->dev_select(ap, device);
787
788 if (wait) {
789 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
790 msleep(150);
791 ata_wait_idle(ap);
792 }
793}
794
795/**
796 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 797 * @id: IDENTIFY DEVICE page to dump
1da177e4 798 *
0bd3300a
TH
799 * Dump selected 16-bit words from the given IDENTIFY DEVICE
800 * page.
1da177e4
LT
801 *
802 * LOCKING:
803 * caller.
804 */
805
0bd3300a 806static inline void ata_dump_id(const u16 *id)
1da177e4
LT
807{
808 DPRINTK("49==0x%04x "
809 "53==0x%04x "
810 "63==0x%04x "
811 "64==0x%04x "
812 "75==0x%04x \n",
0bd3300a
TH
813 id[49],
814 id[53],
815 id[63],
816 id[64],
817 id[75]);
1da177e4
LT
818 DPRINTK("80==0x%04x "
819 "81==0x%04x "
820 "82==0x%04x "
821 "83==0x%04x "
822 "84==0x%04x \n",
0bd3300a
TH
823 id[80],
824 id[81],
825 id[82],
826 id[83],
827 id[84]);
1da177e4
LT
828 DPRINTK("88==0x%04x "
829 "93==0x%04x\n",
0bd3300a
TH
830 id[88],
831 id[93]);
1da177e4
LT
832}
833
cb95d562
TH
834/**
835 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
836 * @id: IDENTIFY data to compute xfer mask from
837 *
838 * Compute the xfermask for this device. This is not as trivial
839 * as it seems if we must consider early devices correctly.
840 *
841 * FIXME: pre IDE drive timing (do we care ?).
842 *
843 * LOCKING:
844 * None.
845 *
846 * RETURNS:
847 * Computed xfermask
848 */
849static unsigned int ata_id_xfermask(const u16 *id)
850{
851 unsigned int pio_mask, mwdma_mask, udma_mask;
852
853 /* Usual case. Word 53 indicates word 64 is valid */
854 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
855 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
856 pio_mask <<= 3;
857 pio_mask |= 0x7;
858 } else {
859 /* If word 64 isn't valid then Word 51 high byte holds
860 * the PIO timing number for the maximum. Turn it into
861 * a mask.
862 */
863 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
864
865 /* But wait.. there's more. Design your standards by
866 * committee and you too can get a free iordy field to
867 * process. However its the speeds not the modes that
868 * are supported... Note drivers using the timing API
869 * will get this right anyway
870 */
871 }
872
873 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
874
875 udma_mask = 0;
876 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
877 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
878
879 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
880}
881
86e45b6b
TH
882/**
883 * ata_port_queue_task - Queue port_task
884 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
885 * @fn: workqueue function to be scheduled
886 * @data: data value to pass to workqueue function
887 * @delay: delay time for workqueue function
86e45b6b
TH
888 *
889 * Schedule @fn(@data) for execution after @delay jiffies using
890 * port_task. There is one port_task per port and it's the
891 * user(low level driver)'s responsibility to make sure that only
892 * one task is active at any given time.
893 *
894 * libata core layer takes care of synchronization between
895 * port_task and EH. ata_port_queue_task() may be ignored for EH
896 * synchronization.
897 *
898 * LOCKING:
899 * Inherited from caller.
900 */
901void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
902 unsigned long delay)
903{
904 int rc;
905
2e755f68 906 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
907 return;
908
909 PREPARE_WORK(&ap->port_task, fn, data);
910
911 if (!delay)
912 rc = queue_work(ata_wq, &ap->port_task);
913 else
914 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
915
916 /* rc == 0 means that another user is using port task */
917 WARN_ON(rc == 0);
918}
919
920/**
921 * ata_port_flush_task - Flush port_task
922 * @ap: The ata_port to flush port_task for
923 *
924 * After this function completes, port_task is guranteed not to
925 * be running or scheduled.
926 *
927 * LOCKING:
928 * Kernel thread context (may sleep)
929 */
930void ata_port_flush_task(struct ata_port *ap)
931{
932 unsigned long flags;
933
934 DPRINTK("ENTER\n");
935
936 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 937 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
938 spin_unlock_irqrestore(&ap->host_set->lock, flags);
939
940 DPRINTK("flush #1\n");
941 flush_workqueue(ata_wq);
942
943 /*
944 * At this point, if a task is running, it's guaranteed to see
945 * the FLUSH flag; thus, it will never queue pio tasks again.
946 * Cancel and flush.
947 */
948 if (!cancel_delayed_work(&ap->port_task)) {
949 DPRINTK("flush #2\n");
950 flush_workqueue(ata_wq);
951 }
952
953 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 954 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
955 spin_unlock_irqrestore(&ap->host_set->lock, flags);
956
957 DPRINTK("EXIT\n");
958}
959
77853bf2 960void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 961{
77853bf2 962 struct completion *waiting = qc->private_data;
a2a7a662 963
a2a7a662 964 complete(waiting);
a2a7a662
TH
965}
966
967/**
968 * ata_exec_internal - execute libata internal command
a2a7a662
TH
969 * @dev: Device to which the command is sent
970 * @tf: Taskfile registers for the command and the result
d69cf37d 971 * @cdb: CDB for packet command
a2a7a662
TH
972 * @dma_dir: Data tranfer direction of the command
973 * @buf: Data buffer of the command
974 * @buflen: Length of data buffer
975 *
976 * Executes libata internal command with timeout. @tf contains
977 * command on entry and result on return. Timeout and error
978 * conditions are reported via return value. No recovery action
979 * is taken after a command times out. It's caller's duty to
980 * clean up after timeout.
981 *
982 * LOCKING:
983 * None. Should be called with kernel context, might sleep.
984 */
985
3373efd8 986unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
987 struct ata_taskfile *tf, const u8 *cdb,
988 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 989{
3373efd8 990 struct ata_port *ap = dev->ap;
a2a7a662
TH
991 u8 command = tf->command;
992 struct ata_queued_cmd *qc;
2ab7db1f 993 unsigned int tag, preempted_tag;
dedaf2b0 994 u32 preempted_sactive, preempted_qc_active;
a2a7a662
TH
995 DECLARE_COMPLETION(wait);
996 unsigned long flags;
77853bf2 997 unsigned int err_mask;
d95a717f 998 int rc;
a2a7a662
TH
999
1000 spin_lock_irqsave(&ap->host_set->lock, flags);
1001
e3180499
TH
1002 /* no internal command while frozen */
1003 if (ap->flags & ATA_FLAG_FROZEN) {
1004 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1005 return AC_ERR_SYSTEM;
1006 }
1007
2ab7db1f 1008 /* initialize internal qc */
a2a7a662 1009
2ab7db1f
TH
1010 /* XXX: Tag 0 is used for drivers with legacy EH as some
1011 * drivers choke if any other tag is given. This breaks
1012 * ata_tag_internal() test for those drivers. Don't use new
1013 * EH stuff without converting to it.
1014 */
1015 if (ap->ops->error_handler)
1016 tag = ATA_TAG_INTERNAL;
1017 else
1018 tag = 0;
1019
6cec4a39 1020 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1021 BUG();
f69499f4 1022 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1023
1024 qc->tag = tag;
1025 qc->scsicmd = NULL;
1026 qc->ap = ap;
1027 qc->dev = dev;
1028 ata_qc_reinit(qc);
1029
1030 preempted_tag = ap->active_tag;
dedaf2b0
TH
1031 preempted_sactive = ap->sactive;
1032 preempted_qc_active = ap->qc_active;
2ab7db1f 1033 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1034 ap->sactive = 0;
1035 ap->qc_active = 0;
2ab7db1f
TH
1036
1037 /* prepare & issue qc */
a2a7a662 1038 qc->tf = *tf;
d69cf37d
TH
1039 if (cdb)
1040 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1041 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1042 qc->dma_dir = dma_dir;
1043 if (dma_dir != DMA_NONE) {
1044 ata_sg_init_one(qc, buf, buflen);
1045 qc->nsect = buflen / ATA_SECT_SIZE;
1046 }
1047
77853bf2 1048 qc->private_data = &wait;
a2a7a662
TH
1049 qc->complete_fn = ata_qc_complete_internal;
1050
8e0e694a 1051 ata_qc_issue(qc);
a2a7a662
TH
1052
1053 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1054
d95a717f
TH
1055 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1056
1057 ata_port_flush_task(ap);
41ade50c 1058
d95a717f 1059 if (!rc) {
a2a7a662
TH
1060 spin_lock_irqsave(&ap->host_set->lock, flags);
1061
1062 /* We're racing with irq here. If we lose, the
1063 * following test prevents us from completing the qc
d95a717f
TH
1064 * twice. If we win, the port is frozen and will be
1065 * cleaned up by ->post_internal_cmd().
a2a7a662 1066 */
77853bf2 1067 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1068 qc->err_mask |= AC_ERR_TIMEOUT;
1069
1070 if (ap->ops->error_handler)
1071 ata_port_freeze(ap);
1072 else
1073 ata_qc_complete(qc);
f15a1daf
TH
1074
1075 ata_dev_printk(dev, KERN_WARNING,
1076 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1077 }
1078
1079 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1080 }
1081
d95a717f
TH
1082 /* do post_internal_cmd */
1083 if (ap->ops->post_internal_cmd)
1084 ap->ops->post_internal_cmd(qc);
1085
1086 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1087 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1088 "internal command, assuming AC_ERR_OTHER\n");
1089 qc->err_mask |= AC_ERR_OTHER;
1090 }
1091
15869303
TH
1092 /* finish up */
1093 spin_lock_irqsave(&ap->host_set->lock, flags);
1094
e61e0672 1095 *tf = qc->result_tf;
77853bf2
TH
1096 err_mask = qc->err_mask;
1097
1098 ata_qc_free(qc);
2ab7db1f 1099 ap->active_tag = preempted_tag;
dedaf2b0
TH
1100 ap->sactive = preempted_sactive;
1101 ap->qc_active = preempted_qc_active;
77853bf2 1102
1f7dd3e9
TH
1103 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1104 * Until those drivers are fixed, we detect the condition
1105 * here, fail the command with AC_ERR_SYSTEM and reenable the
1106 * port.
1107 *
1108 * Note that this doesn't change any behavior as internal
1109 * command failure results in disabling the device in the
1110 * higher layer for LLDDs without new reset/EH callbacks.
1111 *
1112 * Kill the following code as soon as those drivers are fixed.
1113 */
198e0fed 1114 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1115 err_mask |= AC_ERR_SYSTEM;
1116 ata_port_probe(ap);
1117 }
1118
15869303
TH
1119 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1120
77853bf2 1121 return err_mask;
a2a7a662
TH
1122}
1123
1bc4ccff
AC
1124/**
1125 * ata_pio_need_iordy - check if iordy needed
1126 * @adev: ATA device
1127 *
1128 * Check if the current speed of the device requires IORDY. Used
1129 * by various controllers for chip configuration.
1130 */
1131
1132unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1133{
1134 int pio;
1135 int speed = adev->pio_mode - XFER_PIO_0;
1136
1137 if (speed < 2)
1138 return 0;
1139 if (speed > 2)
1140 return 1;
2e9edbf8 1141
1bc4ccff
AC
1142 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1143
1144 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1145 pio = adev->id[ATA_ID_EIDE_PIO];
1146 /* Is the speed faster than the drive allows non IORDY ? */
1147 if (pio) {
1148 /* This is cycle times not frequency - watch the logic! */
1149 if (pio > 240) /* PIO2 is 240nS per cycle */
1150 return 1;
1151 return 0;
1152 }
1153 }
1154 return 0;
1155}
1156
1da177e4 1157/**
49016aca 1158 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1159 * @dev: target device
1160 * @p_class: pointer to class of the target device (may be changed)
1161 * @post_reset: is this read ID post-reset?
fe635c7e 1162 * @id: buffer to read IDENTIFY data into
1da177e4 1163 *
49016aca
TH
1164 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1165 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1166 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1167 * for pre-ATA4 drives.
1da177e4
LT
1168 *
1169 * LOCKING:
49016aca
TH
1170 * Kernel thread context (may sleep)
1171 *
1172 * RETURNS:
1173 * 0 on success, -errno otherwise.
1da177e4 1174 */
a9beec95
TH
1175int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1176 int post_reset, u16 *id)
1da177e4 1177{
3373efd8 1178 struct ata_port *ap = dev->ap;
49016aca 1179 unsigned int class = *p_class;
a0123703 1180 struct ata_taskfile tf;
49016aca
TH
1181 unsigned int err_mask = 0;
1182 const char *reason;
1183 int rc;
1da177e4 1184
49016aca 1185 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1186
49016aca 1187 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1188
49016aca 1189 retry:
3373efd8 1190 ata_tf_init(dev, &tf);
a0123703 1191
49016aca
TH
1192 switch (class) {
1193 case ATA_DEV_ATA:
a0123703 1194 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1195 break;
1196 case ATA_DEV_ATAPI:
a0123703 1197 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1198 break;
1199 default:
1200 rc = -ENODEV;
1201 reason = "unsupported class";
1202 goto err_out;
1da177e4
LT
1203 }
1204
a0123703 1205 tf.protocol = ATA_PROT_PIO;
1da177e4 1206
3373efd8 1207 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1208 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1209 if (err_mask) {
49016aca
TH
1210 rc = -EIO;
1211 reason = "I/O error";
1da177e4
LT
1212 goto err_out;
1213 }
1214
49016aca 1215 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1216
49016aca 1217 /* sanity check */
692785e7 1218 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1219 rc = -EINVAL;
1220 reason = "device reports illegal type";
1221 goto err_out;
1222 }
1223
1224 if (post_reset && class == ATA_DEV_ATA) {
1225 /*
1226 * The exact sequence expected by certain pre-ATA4 drives is:
1227 * SRST RESET
1228 * IDENTIFY
1229 * INITIALIZE DEVICE PARAMETERS
1230 * anything else..
1231 * Some drives were very specific about that exact sequence.
1232 */
1233 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1234 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1235 if (err_mask) {
1236 rc = -EIO;
1237 reason = "INIT_DEV_PARAMS failed";
1238 goto err_out;
1239 }
1240
1241 /* current CHS translation info (id[53-58]) might be
1242 * changed. reread the identify device info.
1243 */
1244 post_reset = 0;
1245 goto retry;
1246 }
1247 }
1248
1249 *p_class = class;
fe635c7e 1250
49016aca
TH
1251 return 0;
1252
1253 err_out:
f15a1daf
TH
1254 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1255 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1256 return rc;
1257}
1258
3373efd8 1259static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1260{
3373efd8 1261 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1262}
1263
a6e6ce8e
TH
1264static void ata_dev_config_ncq(struct ata_device *dev,
1265 char *desc, size_t desc_sz)
1266{
1267 struct ata_port *ap = dev->ap;
1268 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1269
1270 if (!ata_id_has_ncq(dev->id)) {
1271 desc[0] = '\0';
1272 return;
1273 }
1274
1275 if (ap->flags & ATA_FLAG_NCQ) {
1276 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1277 dev->flags |= ATA_DFLAG_NCQ;
1278 }
1279
1280 if (hdepth >= ddepth)
1281 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1282 else
1283 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1284}
1285
49016aca 1286/**
ffeae418 1287 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1288 * @dev: Target device to configure
4c2d721a 1289 * @print_info: Enable device info printout
ffeae418
TH
1290 *
1291 * Configure @dev according to @dev->id. Generic and low-level
1292 * driver specific fixups are also applied.
49016aca
TH
1293 *
1294 * LOCKING:
ffeae418
TH
1295 * Kernel thread context (may sleep)
1296 *
1297 * RETURNS:
1298 * 0 on success, -errno otherwise
49016aca 1299 */
a9beec95 1300int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1301{
3373efd8 1302 struct ata_port *ap = dev->ap;
1148c3a7 1303 const u16 *id = dev->id;
ff8854b2 1304 unsigned int xfer_mask;
49016aca
TH
1305 int i, rc;
1306
e1211e3f 1307 if (!ata_dev_enabled(dev)) {
49016aca 1308 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1309 ap->id, dev->devno);
1310 return 0;
49016aca
TH
1311 }
1312
ffeae418 1313 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1314
c39f5ebe
TH
1315 /* print device capabilities */
1316 if (print_info)
f15a1daf
TH
1317 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1318 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1319 id[49], id[82], id[83], id[84],
1320 id[85], id[86], id[87], id[88]);
c39f5ebe 1321
208a9933 1322 /* initialize to-be-configured parameters */
ea1dd4e1 1323 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1324 dev->max_sectors = 0;
1325 dev->cdb_len = 0;
1326 dev->n_sectors = 0;
1327 dev->cylinders = 0;
1328 dev->heads = 0;
1329 dev->sectors = 0;
1330
1da177e4
LT
1331 /*
1332 * common ATA, ATAPI feature tests
1333 */
1334
ff8854b2 1335 /* find max transfer mode; for printk only */
1148c3a7 1336 xfer_mask = ata_id_xfermask(id);
1da177e4 1337
1148c3a7 1338 ata_dump_id(id);
1da177e4
LT
1339
1340 /* ATA-specific feature tests */
1341 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1342 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1343
1148c3a7 1344 if (ata_id_has_lba(id)) {
4c2d721a 1345 const char *lba_desc;
a6e6ce8e 1346 char ncq_desc[20];
8bf62ece 1347
4c2d721a
TH
1348 lba_desc = "LBA";
1349 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1350 if (ata_id_has_lba48(id)) {
8bf62ece 1351 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1352 lba_desc = "LBA48";
1353 }
8bf62ece 1354
a6e6ce8e
TH
1355 /* config NCQ */
1356 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1357
8bf62ece 1358 /* print device info to dmesg */
4c2d721a 1359 if (print_info)
f15a1daf 1360 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
a6e6ce8e 1361 "max %s, %Lu sectors: %s %s\n",
f15a1daf
TH
1362 ata_id_major_version(id),
1363 ata_mode_string(xfer_mask),
1364 (unsigned long long)dev->n_sectors,
a6e6ce8e 1365 lba_desc, ncq_desc);
ffeae418 1366 } else {
8bf62ece
AL
1367 /* CHS */
1368
1369 /* Default translation */
1148c3a7
TH
1370 dev->cylinders = id[1];
1371 dev->heads = id[3];
1372 dev->sectors = id[6];
8bf62ece 1373
1148c3a7 1374 if (ata_id_current_chs_valid(id)) {
8bf62ece 1375 /* Current CHS translation is valid. */
1148c3a7
TH
1376 dev->cylinders = id[54];
1377 dev->heads = id[55];
1378 dev->sectors = id[56];
8bf62ece
AL
1379 }
1380
1381 /* print device info to dmesg */
4c2d721a 1382 if (print_info)
f15a1daf
TH
1383 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1384 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1385 ata_id_major_version(id),
1386 ata_mode_string(xfer_mask),
1387 (unsigned long long)dev->n_sectors,
1388 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1389 }
1390
07f6f7d0
AL
1391 if (dev->id[59] & 0x100) {
1392 dev->multi_count = dev->id[59] & 0xff;
1393 DPRINTK("ata%u: dev %u multi count %u\n",
999bb6f4 1394 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1395 }
1396
6e7846e9 1397 dev->cdb_len = 16;
1da177e4
LT
1398 }
1399
1400 /* ATAPI-specific feature tests */
2c13b7ce 1401 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1402 char *cdb_intr_string = "";
1403
1148c3a7 1404 rc = atapi_cdb_len(id);
1da177e4 1405 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
f15a1daf
TH
1406 ata_dev_printk(dev, KERN_WARNING,
1407 "unsupported CDB len\n");
ffeae418 1408 rc = -EINVAL;
1da177e4
LT
1409 goto err_out_nosup;
1410 }
6e7846e9 1411 dev->cdb_len = (unsigned int) rc;
1da177e4 1412
08a556db 1413 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1414 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1415 cdb_intr_string = ", CDB intr";
1416 }
312f7da2 1417
1da177e4 1418 /* print device info to dmesg */
4c2d721a 1419 if (print_info)
12436c30
TH
1420 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1421 ata_mode_string(xfer_mask),
1422 cdb_intr_string);
1da177e4
LT
1423 }
1424
6e7846e9
TH
1425 ap->host->max_cmd_len = 0;
1426 for (i = 0; i < ATA_MAX_DEVICES; i++)
1427 ap->host->max_cmd_len = max_t(unsigned int,
1428 ap->host->max_cmd_len,
1429 ap->device[i].cdb_len);
1430
4b2f3ede 1431 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1432 if (ata_dev_knobble(dev)) {
4c2d721a 1433 if (print_info)
f15a1daf
TH
1434 ata_dev_printk(dev, KERN_INFO,
1435 "applying bridge limits\n");
5a529139 1436 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1437 dev->max_sectors = ATA_MAX_SECTORS;
1438 }
1439
1440 if (ap->ops->dev_config)
1441 ap->ops->dev_config(ap, dev);
1442
1da177e4 1443 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1444 return 0;
1da177e4
LT
1445
1446err_out_nosup:
1da177e4 1447 DPRINTK("EXIT, err\n");
ffeae418 1448 return rc;
1da177e4
LT
1449}
1450
1451/**
1452 * ata_bus_probe - Reset and probe ATA bus
1453 * @ap: Bus to probe
1454 *
0cba632b
JG
1455 * Master ATA bus probing function. Initiates a hardware-dependent
1456 * bus reset, then attempts to identify any devices found on
1457 * the bus.
1458 *
1da177e4 1459 * LOCKING:
0cba632b 1460 * PCI/etc. bus probe sem.
1da177e4
LT
1461 *
1462 * RETURNS:
96072e69 1463 * Zero on success, negative errno otherwise.
1da177e4
LT
1464 */
1465
1466static int ata_bus_probe(struct ata_port *ap)
1467{
28ca5c57 1468 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1469 int tries[ATA_MAX_DEVICES];
1470 int i, rc, down_xfermask;
e82cbdb9 1471 struct ata_device *dev;
1da177e4 1472
28ca5c57 1473 ata_port_probe(ap);
c19ba8af 1474
14d2bac1
TH
1475 for (i = 0; i < ATA_MAX_DEVICES; i++)
1476 tries[i] = ATA_PROBE_MAX_TRIES;
1477
1478 retry:
1479 down_xfermask = 0;
1480
2044470c 1481 /* reset and determine device classes */
52783c5d 1482 ap->ops->phy_reset(ap);
2061a47a 1483
52783c5d
TH
1484 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1485 dev = &ap->device[i];
c19ba8af 1486
52783c5d
TH
1487 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1488 dev->class != ATA_DEV_UNKNOWN)
1489 classes[dev->devno] = dev->class;
1490 else
1491 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1492
52783c5d 1493 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1494 }
1da177e4 1495
52783c5d 1496 ata_port_probe(ap);
2044470c 1497
b6079ca4
AC
1498 /* after the reset the device state is PIO 0 and the controller
1499 state is undefined. Record the mode */
1500
1501 for (i = 0; i < ATA_MAX_DEVICES; i++)
1502 ap->device[i].pio_mode = XFER_PIO_0;
1503
28ca5c57 1504 /* read IDENTIFY page and configure devices */
1da177e4 1505 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1506 dev = &ap->device[i];
28ca5c57 1507
ec573755
TH
1508 if (tries[i])
1509 dev->class = classes[i];
ffeae418 1510
14d2bac1 1511 if (!ata_dev_enabled(dev))
ffeae418 1512 continue;
ffeae418 1513
3373efd8 1514 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1515 if (rc)
1516 goto fail;
1517
3373efd8 1518 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1519 if (rc)
1520 goto fail;
1da177e4
LT
1521 }
1522
e82cbdb9 1523 /* configure transfer mode */
3adcebb2 1524 rc = ata_set_mode(ap, &dev);
51713d35
TH
1525 if (rc) {
1526 down_xfermask = 1;
1527 goto fail;
e82cbdb9 1528 }
1da177e4 1529
e82cbdb9
TH
1530 for (i = 0; i < ATA_MAX_DEVICES; i++)
1531 if (ata_dev_enabled(&ap->device[i]))
1532 return 0;
1da177e4 1533
e82cbdb9
TH
1534 /* no device present, disable port */
1535 ata_port_disable(ap);
1da177e4 1536 ap->ops->port_disable(ap);
96072e69 1537 return -ENODEV;
14d2bac1
TH
1538
1539 fail:
1540 switch (rc) {
1541 case -EINVAL:
1542 case -ENODEV:
1543 tries[dev->devno] = 0;
1544 break;
1545 case -EIO:
3c567b7d 1546 sata_down_spd_limit(ap);
14d2bac1
TH
1547 /* fall through */
1548 default:
1549 tries[dev->devno]--;
1550 if (down_xfermask &&
3373efd8 1551 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1552 tries[dev->devno] = 0;
1553 }
1554
ec573755 1555 if (!tries[dev->devno]) {
3373efd8
TH
1556 ata_down_xfermask_limit(dev, 1);
1557 ata_dev_disable(dev);
ec573755
TH
1558 }
1559
14d2bac1 1560 goto retry;
1da177e4
LT
1561}
1562
1563/**
0cba632b
JG
1564 * ata_port_probe - Mark port as enabled
1565 * @ap: Port for which we indicate enablement
1da177e4 1566 *
0cba632b
JG
1567 * Modify @ap data structure such that the system
1568 * thinks that the entire port is enabled.
1569 *
1570 * LOCKING: host_set lock, or some other form of
1571 * serialization.
1da177e4
LT
1572 */
1573
1574void ata_port_probe(struct ata_port *ap)
1575{
198e0fed 1576 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1577}
1578
3be680b7
TH
1579/**
1580 * sata_print_link_status - Print SATA link status
1581 * @ap: SATA port to printk link status about
1582 *
1583 * This function prints link speed and status of a SATA link.
1584 *
1585 * LOCKING:
1586 * None.
1587 */
1588static void sata_print_link_status(struct ata_port *ap)
1589{
6d5f9732 1590 u32 sstatus, scontrol, tmp;
3be680b7 1591
81952c54 1592 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1593 return;
81952c54 1594 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1595
81952c54 1596 if (ata_port_online(ap)) {
3be680b7 1597 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1598 ata_port_printk(ap, KERN_INFO,
1599 "SATA link up %s (SStatus %X SControl %X)\n",
1600 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1601 } else {
f15a1daf
TH
1602 ata_port_printk(ap, KERN_INFO,
1603 "SATA link down (SStatus %X SControl %X)\n",
1604 sstatus, scontrol);
3be680b7
TH
1605 }
1606}
1607
1da177e4 1608/**
780a87f7
JG
1609 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1610 * @ap: SATA port associated with target SATA PHY.
1da177e4 1611 *
780a87f7
JG
1612 * This function issues commands to standard SATA Sxxx
1613 * PHY registers, to wake up the phy (and device), and
1614 * clear any reset condition.
1da177e4
LT
1615 *
1616 * LOCKING:
0cba632b 1617 * PCI/etc. bus probe sem.
1da177e4
LT
1618 *
1619 */
1620void __sata_phy_reset(struct ata_port *ap)
1621{
1622 u32 sstatus;
1623 unsigned long timeout = jiffies + (HZ * 5);
1624
1625 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1626 /* issue phy wake/reset */
81952c54 1627 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1628 /* Couldn't find anything in SATA I/II specs, but
1629 * AHCI-1.1 10.4.2 says at least 1 ms. */
1630 mdelay(1);
1da177e4 1631 }
81952c54
TH
1632 /* phy wake/clear reset */
1633 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1634
1635 /* wait for phy to become ready, if necessary */
1636 do {
1637 msleep(200);
81952c54 1638 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1639 if ((sstatus & 0xf) != 1)
1640 break;
1641 } while (time_before(jiffies, timeout));
1642
3be680b7
TH
1643 /* print link status */
1644 sata_print_link_status(ap);
656563e3 1645
3be680b7 1646 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1647 if (!ata_port_offline(ap))
1da177e4 1648 ata_port_probe(ap);
3be680b7 1649 else
1da177e4 1650 ata_port_disable(ap);
1da177e4 1651
198e0fed 1652 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1653 return;
1654
1655 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1656 ata_port_disable(ap);
1657 return;
1658 }
1659
1660 ap->cbl = ATA_CBL_SATA;
1661}
1662
1663/**
780a87f7
JG
1664 * sata_phy_reset - Reset SATA bus.
1665 * @ap: SATA port associated with target SATA PHY.
1da177e4 1666 *
780a87f7
JG
1667 * This function resets the SATA bus, and then probes
1668 * the bus for devices.
1da177e4
LT
1669 *
1670 * LOCKING:
0cba632b 1671 * PCI/etc. bus probe sem.
1da177e4
LT
1672 *
1673 */
1674void sata_phy_reset(struct ata_port *ap)
1675{
1676 __sata_phy_reset(ap);
198e0fed 1677 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1678 return;
1679 ata_bus_reset(ap);
1680}
1681
ebdfca6e
AC
1682/**
1683 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1684 * @adev: device
1685 *
1686 * Obtain the other device on the same cable, or if none is
1687 * present NULL is returned
1688 */
2e9edbf8 1689
3373efd8 1690struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1691{
3373efd8 1692 struct ata_port *ap = adev->ap;
ebdfca6e 1693 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1694 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1695 return NULL;
1696 return pair;
1697}
1698
1da177e4 1699/**
780a87f7
JG
1700 * ata_port_disable - Disable port.
1701 * @ap: Port to be disabled.
1da177e4 1702 *
780a87f7
JG
1703 * Modify @ap data structure such that the system
1704 * thinks that the entire port is disabled, and should
1705 * never attempt to probe or communicate with devices
1706 * on this port.
1707 *
1708 * LOCKING: host_set lock, or some other form of
1709 * serialization.
1da177e4
LT
1710 */
1711
1712void ata_port_disable(struct ata_port *ap)
1713{
1714 ap->device[0].class = ATA_DEV_NONE;
1715 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1716 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1717}
1718
1c3fae4d 1719/**
3c567b7d 1720 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1721 * @ap: Port to adjust SATA spd limit for
1722 *
1723 * Adjust SATA spd limit of @ap downward. Note that this
1724 * function only adjusts the limit. The change must be applied
3c567b7d 1725 * using sata_set_spd().
1c3fae4d
TH
1726 *
1727 * LOCKING:
1728 * Inherited from caller.
1729 *
1730 * RETURNS:
1731 * 0 on success, negative errno on failure
1732 */
3c567b7d 1733int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1734{
81952c54
TH
1735 u32 sstatus, spd, mask;
1736 int rc, highbit;
1c3fae4d 1737
81952c54
TH
1738 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1739 if (rc)
1740 return rc;
1c3fae4d
TH
1741
1742 mask = ap->sata_spd_limit;
1743 if (mask <= 1)
1744 return -EINVAL;
1745 highbit = fls(mask) - 1;
1746 mask &= ~(1 << highbit);
1747
81952c54 1748 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1749 if (spd <= 1)
1750 return -EINVAL;
1751 spd--;
1752 mask &= (1 << spd) - 1;
1753 if (!mask)
1754 return -EINVAL;
1755
1756 ap->sata_spd_limit = mask;
1757
f15a1daf
TH
1758 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1759 sata_spd_string(fls(mask)));
1c3fae4d
TH
1760
1761 return 0;
1762}
1763
3c567b7d 1764static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1765{
1766 u32 spd, limit;
1767
1768 if (ap->sata_spd_limit == UINT_MAX)
1769 limit = 0;
1770 else
1771 limit = fls(ap->sata_spd_limit);
1772
1773 spd = (*scontrol >> 4) & 0xf;
1774 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1775
1776 return spd != limit;
1777}
1778
1779/**
3c567b7d 1780 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1781 * @ap: Port in question
1782 *
1783 * Test whether the spd limit in SControl matches
1784 * @ap->sata_spd_limit. This function is used to determine
1785 * whether hardreset is necessary to apply SATA spd
1786 * configuration.
1787 *
1788 * LOCKING:
1789 * Inherited from caller.
1790 *
1791 * RETURNS:
1792 * 1 if SATA spd configuration is needed, 0 otherwise.
1793 */
3c567b7d 1794int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1795{
1796 u32 scontrol;
1797
81952c54 1798 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1799 return 0;
1800
3c567b7d 1801 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1802}
1803
1804/**
3c567b7d 1805 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1806 * @ap: Port to set SATA spd for
1807 *
1808 * Set SATA spd of @ap according to sata_spd_limit.
1809 *
1810 * LOCKING:
1811 * Inherited from caller.
1812 *
1813 * RETURNS:
1814 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1815 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1816 */
3c567b7d 1817int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1818{
1819 u32 scontrol;
81952c54 1820 int rc;
1c3fae4d 1821
81952c54
TH
1822 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1823 return rc;
1c3fae4d 1824
3c567b7d 1825 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1826 return 0;
1827
81952c54
TH
1828 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1829 return rc;
1830
1c3fae4d
TH
1831 return 1;
1832}
1833
452503f9
AC
1834/*
1835 * This mode timing computation functionality is ported over from
1836 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1837 */
1838/*
1839 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1840 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1841 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1842 * is currently supported only by Maxtor drives.
452503f9
AC
1843 */
1844
1845static const struct ata_timing ata_timing[] = {
1846
1847 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1848 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1849 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1850 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1851
1852 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1853 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1854 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1855
1856/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1857
452503f9
AC
1858 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1859 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1860 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1861
452503f9
AC
1862 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1863 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1864 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1865
1866/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1867 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1868 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1869
1870 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1871 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1872 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1873
1874/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1875
1876 { 0xFF }
1877};
1878
1879#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1880#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1881
1882static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1883{
1884 q->setup = EZ(t->setup * 1000, T);
1885 q->act8b = EZ(t->act8b * 1000, T);
1886 q->rec8b = EZ(t->rec8b * 1000, T);
1887 q->cyc8b = EZ(t->cyc8b * 1000, T);
1888 q->active = EZ(t->active * 1000, T);
1889 q->recover = EZ(t->recover * 1000, T);
1890 q->cycle = EZ(t->cycle * 1000, T);
1891 q->udma = EZ(t->udma * 1000, UT);
1892}
1893
1894void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1895 struct ata_timing *m, unsigned int what)
1896{
1897 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1898 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1899 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1900 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1901 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1902 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1903 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1904 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1905}
1906
1907static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1908{
1909 const struct ata_timing *t;
1910
1911 for (t = ata_timing; t->mode != speed; t++)
91190758 1912 if (t->mode == 0xFF)
452503f9 1913 return NULL;
2e9edbf8 1914 return t;
452503f9
AC
1915}
1916
1917int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1918 struct ata_timing *t, int T, int UT)
1919{
1920 const struct ata_timing *s;
1921 struct ata_timing p;
1922
1923 /*
2e9edbf8 1924 * Find the mode.
75b1f2f8 1925 */
452503f9
AC
1926
1927 if (!(s = ata_timing_find_mode(speed)))
1928 return -EINVAL;
1929
75b1f2f8
AL
1930 memcpy(t, s, sizeof(*s));
1931
452503f9
AC
1932 /*
1933 * If the drive is an EIDE drive, it can tell us it needs extended
1934 * PIO/MW_DMA cycle timing.
1935 */
1936
1937 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1938 memset(&p, 0, sizeof(p));
1939 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1940 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1941 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1942 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1943 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1944 }
1945 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1946 }
1947
1948 /*
1949 * Convert the timing to bus clock counts.
1950 */
1951
75b1f2f8 1952 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1953
1954 /*
c893a3ae
RD
1955 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1956 * S.M.A.R.T * and some other commands. We have to ensure that the
1957 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1958 */
1959
1960 if (speed > XFER_PIO_4) {
1961 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1962 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1963 }
1964
1965 /*
c893a3ae 1966 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1967 */
1968
1969 if (t->act8b + t->rec8b < t->cyc8b) {
1970 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1971 t->rec8b = t->cyc8b - t->act8b;
1972 }
1973
1974 if (t->active + t->recover < t->cycle) {
1975 t->active += (t->cycle - (t->active + t->recover)) / 2;
1976 t->recover = t->cycle - t->active;
1977 }
1978
1979 return 0;
1980}
1981
cf176e1a
TH
1982/**
1983 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
1984 * @dev: Device to adjust xfer masks
1985 * @force_pio0: Force PIO0
1986 *
1987 * Adjust xfer masks of @dev downward. Note that this function
1988 * does not apply the change. Invoking ata_set_mode() afterwards
1989 * will apply the limit.
1990 *
1991 * LOCKING:
1992 * Inherited from caller.
1993 *
1994 * RETURNS:
1995 * 0 on success, negative errno on failure
1996 */
3373efd8 1997int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
1998{
1999 unsigned long xfer_mask;
2000 int highbit;
2001
2002 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2003 dev->udma_mask);
2004
2005 if (!xfer_mask)
2006 goto fail;
2007 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2008 if (xfer_mask & ATA_MASK_UDMA)
2009 xfer_mask &= ~ATA_MASK_MWDMA;
2010
2011 highbit = fls(xfer_mask) - 1;
2012 xfer_mask &= ~(1 << highbit);
2013 if (force_pio0)
2014 xfer_mask &= 1 << ATA_SHIFT_PIO;
2015 if (!xfer_mask)
2016 goto fail;
2017
2018 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2019 &dev->udma_mask);
2020
f15a1daf
TH
2021 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2022 ata_mode_string(xfer_mask));
cf176e1a
TH
2023
2024 return 0;
2025
2026 fail:
2027 return -EINVAL;
2028}
2029
3373efd8 2030static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2031{
83206a29
TH
2032 unsigned int err_mask;
2033 int rc;
1da177e4 2034
e8384607 2035 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2036 if (dev->xfer_shift == ATA_SHIFT_PIO)
2037 dev->flags |= ATA_DFLAG_PIO;
2038
3373efd8 2039 err_mask = ata_dev_set_xfermode(dev);
83206a29 2040 if (err_mask) {
f15a1daf
TH
2041 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2042 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2043 return -EIO;
2044 }
1da177e4 2045
3373efd8 2046 rc = ata_dev_revalidate(dev, 0);
5eb45c02 2047 if (rc)
83206a29 2048 return rc;
48a8a14f 2049
23e71c3d
TH
2050 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2051 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2052
f15a1daf
TH
2053 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2054 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2055 return 0;
1da177e4
LT
2056}
2057
1da177e4
LT
2058/**
2059 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2060 * @ap: port on which timings will be programmed
e82cbdb9 2061 * @r_failed_dev: out paramter for failed device
1da177e4 2062 *
e82cbdb9
TH
2063 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2064 * ata_set_mode() fails, pointer to the failing device is
2065 * returned in @r_failed_dev.
780a87f7 2066 *
1da177e4 2067 * LOCKING:
0cba632b 2068 * PCI/etc. bus probe sem.
e82cbdb9
TH
2069 *
2070 * RETURNS:
2071 * 0 on success, negative errno otherwise
1da177e4 2072 */
1ad8e7f9 2073int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2074{
e8e0619f 2075 struct ata_device *dev;
e82cbdb9 2076 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2077
3adcebb2
TH
2078 /* has private set_mode? */
2079 if (ap->ops->set_mode) {
2080 /* FIXME: make ->set_mode handle no device case and
2081 * return error code and failing device on failure.
2082 */
2083 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2084 if (ata_dev_enabled(&ap->device[i])) {
2085 ap->ops->set_mode(ap);
2086 break;
2087 }
2088 }
2089 return 0;
2090 }
2091
a6d5a51c
TH
2092 /* step 1: calculate xfer_mask */
2093 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2094 unsigned int pio_mask, dma_mask;
a6d5a51c 2095
e8e0619f
TH
2096 dev = &ap->device[i];
2097
e1211e3f 2098 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2099 continue;
2100
3373efd8 2101 ata_dev_xfermask(dev);
1da177e4 2102
acf356b1
TH
2103 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2104 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2105 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2106 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2107
4f65977d 2108 found = 1;
5444a6f4
AC
2109 if (dev->dma_mode)
2110 used_dma = 1;
a6d5a51c 2111 }
4f65977d 2112 if (!found)
e82cbdb9 2113 goto out;
a6d5a51c
TH
2114
2115 /* step 2: always set host PIO timings */
e8e0619f
TH
2116 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2117 dev = &ap->device[i];
2118 if (!ata_dev_enabled(dev))
2119 continue;
2120
2121 if (!dev->pio_mode) {
f15a1daf 2122 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2123 rc = -EINVAL;
e82cbdb9 2124 goto out;
e8e0619f
TH
2125 }
2126
2127 dev->xfer_mode = dev->pio_mode;
2128 dev->xfer_shift = ATA_SHIFT_PIO;
2129 if (ap->ops->set_piomode)
2130 ap->ops->set_piomode(ap, dev);
2131 }
1da177e4 2132
a6d5a51c 2133 /* step 3: set host DMA timings */
e8e0619f
TH
2134 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2135 dev = &ap->device[i];
2136
2137 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2138 continue;
2139
2140 dev->xfer_mode = dev->dma_mode;
2141 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2142 if (ap->ops->set_dmamode)
2143 ap->ops->set_dmamode(ap, dev);
2144 }
1da177e4
LT
2145
2146 /* step 4: update devices' xfer mode */
83206a29 2147 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2148 dev = &ap->device[i];
1da177e4 2149
e1211e3f 2150 if (!ata_dev_enabled(dev))
83206a29
TH
2151 continue;
2152
3373efd8 2153 rc = ata_dev_set_mode(dev);
5bbc53f4 2154 if (rc)
e82cbdb9 2155 goto out;
83206a29 2156 }
1da177e4 2157
e8e0619f
TH
2158 /* Record simplex status. If we selected DMA then the other
2159 * host channels are not permitted to do so.
5444a6f4 2160 */
5444a6f4
AC
2161 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2162 ap->host_set->simplex_claimed = 1;
2163
e8e0619f 2164 /* step5: chip specific finalisation */
1da177e4
LT
2165 if (ap->ops->post_set_mode)
2166 ap->ops->post_set_mode(ap);
2167
e82cbdb9
TH
2168 out:
2169 if (rc)
2170 *r_failed_dev = dev;
2171 return rc;
1da177e4
LT
2172}
2173
1fdffbce
JG
2174/**
2175 * ata_tf_to_host - issue ATA taskfile to host controller
2176 * @ap: port to which command is being issued
2177 * @tf: ATA taskfile register set
2178 *
2179 * Issues ATA taskfile register set to ATA host controller,
2180 * with proper synchronization with interrupt handler and
2181 * other threads.
2182 *
2183 * LOCKING:
2184 * spin_lock_irqsave(host_set lock)
2185 */
2186
2187static inline void ata_tf_to_host(struct ata_port *ap,
2188 const struct ata_taskfile *tf)
2189{
2190 ap->ops->tf_load(ap, tf);
2191 ap->ops->exec_command(ap, tf);
2192}
2193
1da177e4
LT
2194/**
2195 * ata_busy_sleep - sleep until BSY clears, or timeout
2196 * @ap: port containing status register to be polled
2197 * @tmout_pat: impatience timeout
2198 * @tmout: overall timeout
2199 *
780a87f7
JG
2200 * Sleep until ATA Status register bit BSY clears,
2201 * or a timeout occurs.
2202 *
2203 * LOCKING: None.
1da177e4
LT
2204 */
2205
6f8b9958
TH
2206unsigned int ata_busy_sleep (struct ata_port *ap,
2207 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2208{
2209 unsigned long timer_start, timeout;
2210 u8 status;
2211
2212 status = ata_busy_wait(ap, ATA_BUSY, 300);
2213 timer_start = jiffies;
2214 timeout = timer_start + tmout_pat;
2215 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2216 msleep(50);
2217 status = ata_busy_wait(ap, ATA_BUSY, 3);
2218 }
2219
2220 if (status & ATA_BUSY)
f15a1daf
TH
2221 ata_port_printk(ap, KERN_WARNING,
2222 "port is slow to respond, please be patient\n");
1da177e4
LT
2223
2224 timeout = timer_start + tmout;
2225 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2226 msleep(50);
2227 status = ata_chk_status(ap);
2228 }
2229
2230 if (status & ATA_BUSY) {
f15a1daf
TH
2231 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2232 "(%lu secs)\n", tmout / HZ);
1da177e4
LT
2233 return 1;
2234 }
2235
2236 return 0;
2237}
2238
2239static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2240{
2241 struct ata_ioports *ioaddr = &ap->ioaddr;
2242 unsigned int dev0 = devmask & (1 << 0);
2243 unsigned int dev1 = devmask & (1 << 1);
2244 unsigned long timeout;
2245
2246 /* if device 0 was found in ata_devchk, wait for its
2247 * BSY bit to clear
2248 */
2249 if (dev0)
2250 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2251
2252 /* if device 1 was found in ata_devchk, wait for
2253 * register access, then wait for BSY to clear
2254 */
2255 timeout = jiffies + ATA_TMOUT_BOOT;
2256 while (dev1) {
2257 u8 nsect, lbal;
2258
2259 ap->ops->dev_select(ap, 1);
2260 if (ap->flags & ATA_FLAG_MMIO) {
2261 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2262 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2263 } else {
2264 nsect = inb(ioaddr->nsect_addr);
2265 lbal = inb(ioaddr->lbal_addr);
2266 }
2267 if ((nsect == 1) && (lbal == 1))
2268 break;
2269 if (time_after(jiffies, timeout)) {
2270 dev1 = 0;
2271 break;
2272 }
2273 msleep(50); /* give drive a breather */
2274 }
2275 if (dev1)
2276 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2277
2278 /* is all this really necessary? */
2279 ap->ops->dev_select(ap, 0);
2280 if (dev1)
2281 ap->ops->dev_select(ap, 1);
2282 if (dev0)
2283 ap->ops->dev_select(ap, 0);
2284}
2285
1da177e4
LT
2286static unsigned int ata_bus_softreset(struct ata_port *ap,
2287 unsigned int devmask)
2288{
2289 struct ata_ioports *ioaddr = &ap->ioaddr;
2290
2291 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2292
2293 /* software reset. causes dev0 to be selected */
2294 if (ap->flags & ATA_FLAG_MMIO) {
2295 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2296 udelay(20); /* FIXME: flush */
2297 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2298 udelay(20); /* FIXME: flush */
2299 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2300 } else {
2301 outb(ap->ctl, ioaddr->ctl_addr);
2302 udelay(10);
2303 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2304 udelay(10);
2305 outb(ap->ctl, ioaddr->ctl_addr);
2306 }
2307
2308 /* spec mandates ">= 2ms" before checking status.
2309 * We wait 150ms, because that was the magic delay used for
2310 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2311 * between when the ATA command register is written, and then
2312 * status is checked. Because waiting for "a while" before
2313 * checking status is fine, post SRST, we perform this magic
2314 * delay here as well.
09c7ad79
AC
2315 *
2316 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2317 */
2318 msleep(150);
2319
2e9edbf8 2320 /* Before we perform post reset processing we want to see if
298a41ca
TH
2321 * the bus shows 0xFF because the odd clown forgets the D7
2322 * pulldown resistor.
2323 */
987d2f05 2324 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2325 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2326 return AC_ERR_OTHER;
987d2f05 2327 }
09c7ad79 2328
1da177e4
LT
2329 ata_bus_post_reset(ap, devmask);
2330
2331 return 0;
2332}
2333
2334/**
2335 * ata_bus_reset - reset host port and associated ATA channel
2336 * @ap: port to reset
2337 *
2338 * This is typically the first time we actually start issuing
2339 * commands to the ATA channel. We wait for BSY to clear, then
2340 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2341 * result. Determine what devices, if any, are on the channel
2342 * by looking at the device 0/1 error register. Look at the signature
2343 * stored in each device's taskfile registers, to determine if
2344 * the device is ATA or ATAPI.
2345 *
2346 * LOCKING:
0cba632b
JG
2347 * PCI/etc. bus probe sem.
2348 * Obtains host_set lock.
1da177e4
LT
2349 *
2350 * SIDE EFFECTS:
198e0fed 2351 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2352 */
2353
2354void ata_bus_reset(struct ata_port *ap)
2355{
2356 struct ata_ioports *ioaddr = &ap->ioaddr;
2357 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2358 u8 err;
aec5c3c1 2359 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2360
2361 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2362
2363 /* determine if device 0/1 are present */
2364 if (ap->flags & ATA_FLAG_SATA_RESET)
2365 dev0 = 1;
2366 else {
2367 dev0 = ata_devchk(ap, 0);
2368 if (slave_possible)
2369 dev1 = ata_devchk(ap, 1);
2370 }
2371
2372 if (dev0)
2373 devmask |= (1 << 0);
2374 if (dev1)
2375 devmask |= (1 << 1);
2376
2377 /* select device 0 again */
2378 ap->ops->dev_select(ap, 0);
2379
2380 /* issue bus reset */
2381 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2382 if (ata_bus_softreset(ap, devmask))
2383 goto err_out;
1da177e4
LT
2384
2385 /*
2386 * determine by signature whether we have ATA or ATAPI devices
2387 */
b4dc7623 2388 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2389 if ((slave_possible) && (err != 0x81))
b4dc7623 2390 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2391
2392 /* re-enable interrupts */
2393 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2394 ata_irq_on(ap);
2395
2396 /* is double-select really necessary? */
2397 if (ap->device[1].class != ATA_DEV_NONE)
2398 ap->ops->dev_select(ap, 1);
2399 if (ap->device[0].class != ATA_DEV_NONE)
2400 ap->ops->dev_select(ap, 0);
2401
2402 /* if no devices were detected, disable this port */
2403 if ((ap->device[0].class == ATA_DEV_NONE) &&
2404 (ap->device[1].class == ATA_DEV_NONE))
2405 goto err_out;
2406
2407 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2408 /* set up device control for ATA_FLAG_SATA_RESET */
2409 if (ap->flags & ATA_FLAG_MMIO)
2410 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2411 else
2412 outb(ap->ctl, ioaddr->ctl_addr);
2413 }
2414
2415 DPRINTK("EXIT\n");
2416 return;
2417
2418err_out:
f15a1daf 2419 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2420 ap->ops->port_disable(ap);
2421
2422 DPRINTK("EXIT\n");
2423}
2424
d7bb4cc7
TH
2425/**
2426 * sata_phy_debounce - debounce SATA phy status
2427 * @ap: ATA port to debounce SATA phy status for
2428 * @params: timing parameters { interval, duratinon, timeout } in msec
2429 *
2430 * Make sure SStatus of @ap reaches stable state, determined by
2431 * holding the same value where DET is not 1 for @duration polled
2432 * every @interval, before @timeout. Timeout constraints the
2433 * beginning of the stable state. Because, after hot unplugging,
2434 * DET gets stuck at 1 on some controllers, this functions waits
2435 * until timeout then returns 0 if DET is stable at 1.
2436 *
2437 * LOCKING:
2438 * Kernel thread context (may sleep)
2439 *
2440 * RETURNS:
2441 * 0 on success, -errno on failure.
2442 */
2443int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2444{
d7bb4cc7
TH
2445 unsigned long interval_msec = params[0];
2446 unsigned long duration = params[1] * HZ / 1000;
2447 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2448 unsigned long last_jiffies;
2449 u32 last, cur;
2450 int rc;
2451
2452 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2453 return rc;
2454 cur &= 0xf;
2455
2456 last = cur;
2457 last_jiffies = jiffies;
2458
2459 while (1) {
2460 msleep(interval_msec);
2461 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2462 return rc;
2463 cur &= 0xf;
2464
2465 /* DET stable? */
2466 if (cur == last) {
2467 if (cur == 1 && time_before(jiffies, timeout))
2468 continue;
2469 if (time_after(jiffies, last_jiffies + duration))
2470 return 0;
2471 continue;
2472 }
2473
2474 /* unstable, start over */
2475 last = cur;
2476 last_jiffies = jiffies;
2477
2478 /* check timeout */
2479 if (time_after(jiffies, timeout))
2480 return -EBUSY;
2481 }
2482}
2483
2484/**
2485 * sata_phy_resume - resume SATA phy
2486 * @ap: ATA port to resume SATA phy for
2487 * @params: timing parameters { interval, duratinon, timeout } in msec
2488 *
2489 * Resume SATA phy of @ap and debounce it.
2490 *
2491 * LOCKING:
2492 * Kernel thread context (may sleep)
2493 *
2494 * RETURNS:
2495 * 0 on success, -errno on failure.
2496 */
2497int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2498{
2499 u32 scontrol;
81952c54
TH
2500 int rc;
2501
2502 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2503 return rc;
7a7921e8 2504
852ee16a 2505 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2506
2507 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2508 return rc;
7a7921e8 2509
d7bb4cc7
TH
2510 /* Some PHYs react badly if SStatus is pounded immediately
2511 * after resuming. Delay 200ms before debouncing.
2512 */
2513 msleep(200);
7a7921e8 2514
d7bb4cc7 2515 return sata_phy_debounce(ap, params);
7a7921e8
TH
2516}
2517
f5914a46
TH
2518static void ata_wait_spinup(struct ata_port *ap)
2519{
2520 struct ata_eh_context *ehc = &ap->eh_context;
2521 unsigned long end, secs;
2522 int rc;
2523
2524 /* first, debounce phy if SATA */
2525 if (ap->cbl == ATA_CBL_SATA) {
2526 rc = sata_phy_debounce(ap, sata_deb_timing_eh);
2527
2528 /* if debounced successfully and offline, no need to wait */
2529 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2530 return;
2531 }
2532
2533 /* okay, let's give the drive time to spin up */
2534 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2535 secs = ((end - jiffies) + HZ - 1) / HZ;
2536
2537 if (time_after(jiffies, end))
2538 return;
2539
2540 if (secs > 5)
2541 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2542 "(%lu secs)\n", secs);
2543
2544 schedule_timeout_uninterruptible(end - jiffies);
2545}
2546
2547/**
2548 * ata_std_prereset - prepare for reset
2549 * @ap: ATA port to be reset
2550 *
2551 * @ap is about to be reset. Initialize it.
2552 *
2553 * LOCKING:
2554 * Kernel thread context (may sleep)
2555 *
2556 * RETURNS:
2557 * 0 on success, -errno otherwise.
2558 */
2559int ata_std_prereset(struct ata_port *ap)
2560{
2561 struct ata_eh_context *ehc = &ap->eh_context;
2562 const unsigned long *timing;
2563 int rc;
2564
2565 /* hotplug? */
2566 if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
2567 if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
2568 ehc->i.action |= ATA_EH_HARDRESET;
2569 if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
2570 ata_wait_spinup(ap);
2571 }
2572
2573 /* if we're about to do hardreset, nothing more to do */
2574 if (ehc->i.action & ATA_EH_HARDRESET)
2575 return 0;
2576
2577 /* if SATA, resume phy */
2578 if (ap->cbl == ATA_CBL_SATA) {
2579 if (ap->flags & ATA_FLAG_LOADING)
2580 timing = sata_deb_timing_boot;
2581 else
2582 timing = sata_deb_timing_eh;
2583
2584 rc = sata_phy_resume(ap, timing);
2585 if (rc && rc != -EOPNOTSUPP) {
2586 /* phy resume failed */
2587 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2588 "link for reset (errno=%d)\n", rc);
2589 return rc;
2590 }
2591 }
2592
2593 /* Wait for !BSY if the controller can wait for the first D2H
2594 * Reg FIS and we don't know that no device is attached.
2595 */
2596 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2597 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2598
2599 return 0;
2600}
2601
c2bd5804
TH
2602/**
2603 * ata_std_softreset - reset host port via ATA SRST
2604 * @ap: port to reset
c2bd5804
TH
2605 * @classes: resulting classes of attached devices
2606 *
52783c5d 2607 * Reset host port using ATA SRST.
c2bd5804
TH
2608 *
2609 * LOCKING:
2610 * Kernel thread context (may sleep)
2611 *
2612 * RETURNS:
2613 * 0 on success, -errno otherwise.
2614 */
2bf2cb26 2615int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2616{
2617 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2618 unsigned int devmask = 0, err_mask;
2619 u8 err;
2620
2621 DPRINTK("ENTER\n");
2622
81952c54 2623 if (ata_port_offline(ap)) {
3a39746a
TH
2624 classes[0] = ATA_DEV_NONE;
2625 goto out;
2626 }
2627
c2bd5804
TH
2628 /* determine if device 0/1 are present */
2629 if (ata_devchk(ap, 0))
2630 devmask |= (1 << 0);
2631 if (slave_possible && ata_devchk(ap, 1))
2632 devmask |= (1 << 1);
2633
c2bd5804
TH
2634 /* select device 0 again */
2635 ap->ops->dev_select(ap, 0);
2636
2637 /* issue bus reset */
2638 DPRINTK("about to softreset, devmask=%x\n", devmask);
2639 err_mask = ata_bus_softreset(ap, devmask);
2640 if (err_mask) {
f15a1daf
TH
2641 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2642 err_mask);
c2bd5804
TH
2643 return -EIO;
2644 }
2645
2646 /* determine by signature whether we have ATA or ATAPI devices */
2647 classes[0] = ata_dev_try_classify(ap, 0, &err);
2648 if (slave_possible && err != 0x81)
2649 classes[1] = ata_dev_try_classify(ap, 1, &err);
2650
3a39746a 2651 out:
c2bd5804
TH
2652 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2653 return 0;
2654}
2655
2656/**
2657 * sata_std_hardreset - reset host port via SATA phy reset
2658 * @ap: port to reset
c2bd5804
TH
2659 * @class: resulting class of attached device
2660 *
2661 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
2662 *
2663 * LOCKING:
2664 * Kernel thread context (may sleep)
2665 *
2666 * RETURNS:
2667 * 0 on success, -errno otherwise.
2668 */
2bf2cb26 2669int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2670{
852ee16a 2671 u32 scontrol;
81952c54 2672 int rc;
852ee16a 2673
c2bd5804
TH
2674 DPRINTK("ENTER\n");
2675
3c567b7d 2676 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2677 /* SATA spec says nothing about how to reconfigure
2678 * spd. To be on the safe side, turn off phy during
2679 * reconfiguration. This works for at least ICH7 AHCI
2680 * and Sil3124.
2681 */
81952c54
TH
2682 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2683 return rc;
2684
1c3fae4d 2685 scontrol = (scontrol & 0x0f0) | 0x302;
81952c54
TH
2686
2687 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2688 return rc;
1c3fae4d 2689
3c567b7d 2690 sata_set_spd(ap);
1c3fae4d
TH
2691 }
2692
2693 /* issue phy wake/reset */
81952c54
TH
2694 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2695 return rc;
2696
852ee16a 2697 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2698
2699 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2700 return rc;
c2bd5804 2701
1c3fae4d 2702 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2703 * 10.4.2 says at least 1 ms.
2704 */
2705 msleep(1);
2706
1c3fae4d 2707 /* bring phy back */
d7bb4cc7 2708 sata_phy_resume(ap, sata_deb_timing_eh);
c2bd5804 2709
c2bd5804 2710 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2711 if (ata_port_offline(ap)) {
c2bd5804
TH
2712 *class = ATA_DEV_NONE;
2713 DPRINTK("EXIT, link offline\n");
2714 return 0;
2715 }
2716
2717 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2718 ata_port_printk(ap, KERN_ERR,
2719 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2720 return -EIO;
2721 }
2722
3a39746a
TH
2723 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2724
c2bd5804
TH
2725 *class = ata_dev_try_classify(ap, 0, NULL);
2726
2727 DPRINTK("EXIT, class=%u\n", *class);
2728 return 0;
2729}
2730
2731/**
2732 * ata_std_postreset - standard postreset callback
2733 * @ap: the target ata_port
2734 * @classes: classes of attached devices
2735 *
2736 * This function is invoked after a successful reset. Note that
2737 * the device might have been reset more than once using
2738 * different reset methods before postreset is invoked.
c2bd5804 2739 *
c2bd5804
TH
2740 * LOCKING:
2741 * Kernel thread context (may sleep)
2742 */
2743void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2744{
dc2b3515
TH
2745 u32 serror;
2746
c2bd5804
TH
2747 DPRINTK("ENTER\n");
2748
c2bd5804 2749 /* print link status */
81952c54 2750 sata_print_link_status(ap);
c2bd5804 2751
dc2b3515
TH
2752 /* clear SError */
2753 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2754 sata_scr_write(ap, SCR_ERROR, serror);
2755
3a39746a 2756 /* re-enable interrupts */
e3180499
TH
2757 if (!ap->ops->error_handler) {
2758 /* FIXME: hack. create a hook instead */
2759 if (ap->ioaddr.ctl_addr)
2760 ata_irq_on(ap);
2761 }
c2bd5804
TH
2762
2763 /* is double-select really necessary? */
2764 if (classes[0] != ATA_DEV_NONE)
2765 ap->ops->dev_select(ap, 1);
2766 if (classes[1] != ATA_DEV_NONE)
2767 ap->ops->dev_select(ap, 0);
2768
3a39746a
TH
2769 /* bail out if no device is present */
2770 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2771 DPRINTK("EXIT, no device\n");
2772 return;
2773 }
2774
2775 /* set up device control */
2776 if (ap->ioaddr.ctl_addr) {
2777 if (ap->flags & ATA_FLAG_MMIO)
2778 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2779 else
2780 outb(ap->ctl, ap->ioaddr.ctl_addr);
2781 }
c2bd5804
TH
2782
2783 DPRINTK("EXIT\n");
2784}
2785
623a3128
TH
2786/**
2787 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2788 * @dev: device to compare against
2789 * @new_class: class of the new device
2790 * @new_id: IDENTIFY page of the new device
2791 *
2792 * Compare @new_class and @new_id against @dev and determine
2793 * whether @dev is the device indicated by @new_class and
2794 * @new_id.
2795 *
2796 * LOCKING:
2797 * None.
2798 *
2799 * RETURNS:
2800 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2801 */
3373efd8
TH
2802static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2803 const u16 *new_id)
623a3128
TH
2804{
2805 const u16 *old_id = dev->id;
2806 unsigned char model[2][41], serial[2][21];
2807 u64 new_n_sectors;
2808
2809 if (dev->class != new_class) {
f15a1daf
TH
2810 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2811 dev->class, new_class);
623a3128
TH
2812 return 0;
2813 }
2814
2815 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2816 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2817 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2818 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2819 new_n_sectors = ata_id_n_sectors(new_id);
2820
2821 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2822 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2823 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2824 return 0;
2825 }
2826
2827 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2828 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2829 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2830 return 0;
2831 }
2832
2833 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2834 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2835 "%llu != %llu\n",
2836 (unsigned long long)dev->n_sectors,
2837 (unsigned long long)new_n_sectors);
623a3128
TH
2838 return 0;
2839 }
2840
2841 return 1;
2842}
2843
2844/**
2845 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2846 * @dev: device to revalidate
2847 * @post_reset: is this revalidation after reset?
2848 *
2849 * Re-read IDENTIFY page and make sure @dev is still attached to
2850 * the port.
2851 *
2852 * LOCKING:
2853 * Kernel thread context (may sleep)
2854 *
2855 * RETURNS:
2856 * 0 on success, negative errno otherwise
2857 */
3373efd8 2858int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2859{
5eb45c02 2860 unsigned int class = dev->class;
f15a1daf 2861 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
2862 int rc;
2863
5eb45c02
TH
2864 if (!ata_dev_enabled(dev)) {
2865 rc = -ENODEV;
2866 goto fail;
2867 }
623a3128 2868
fe635c7e 2869 /* read ID data */
3373efd8 2870 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2871 if (rc)
2872 goto fail;
2873
2874 /* is the device still there? */
3373efd8 2875 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
2876 rc = -ENODEV;
2877 goto fail;
2878 }
2879
fe635c7e 2880 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
2881
2882 /* configure device according to the new ID */
3373efd8 2883 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
2884 if (rc == 0)
2885 return 0;
623a3128
TH
2886
2887 fail:
f15a1daf 2888 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
2889 return rc;
2890}
2891
98ac62de 2892static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2893 "WDC AC11000H", NULL,
2894 "WDC AC22100H", NULL,
2895 "WDC AC32500H", NULL,
2896 "WDC AC33100H", NULL,
2897 "WDC AC31600H", NULL,
2898 "WDC AC32100H", "24.09P07",
2899 "WDC AC23200L", "21.10N21",
2900 "Compaq CRD-8241B", NULL,
2901 "CRD-8400B", NULL,
2902 "CRD-8480B", NULL,
2903 "CRD-8482B", NULL,
2904 "CRD-84", NULL,
2905 "SanDisk SDP3B", NULL,
2906 "SanDisk SDP3B-64", NULL,
2907 "SANYO CD-ROM CRD", NULL,
2908 "HITACHI CDR-8", NULL,
2e9edbf8 2909 "HITACHI CDR-8335", NULL,
f4b15fef 2910 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2911 "Toshiba CD-ROM XM-6202B", NULL,
2912 "TOSHIBA CD-ROM XM-1702BC", NULL,
2913 "CD-532E-A", NULL,
2914 "E-IDE CD-ROM CR-840", NULL,
2915 "CD-ROM Drive/F5A", NULL,
2916 "WPI CDD-820", NULL,
f4b15fef 2917 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2918 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2919 "SanDisk SDP3B-64", NULL,
2920 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2921 "_NEC DV5800A", NULL,
2922 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2923};
2e9edbf8 2924
f4b15fef
AC
2925static int ata_strim(char *s, size_t len)
2926{
2927 len = strnlen(s, len);
2928
2929 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2930 while ((len > 0) && (s[len - 1] == ' ')) {
2931 len--;
2932 s[len] = 0;
2933 }
2934 return len;
2935}
1da177e4 2936
057ace5e 2937static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2938{
f4b15fef
AC
2939 unsigned char model_num[40];
2940 unsigned char model_rev[16];
2941 unsigned int nlen, rlen;
1da177e4
LT
2942 int i;
2943
f4b15fef
AC
2944 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2945 sizeof(model_num));
2946 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2947 sizeof(model_rev));
2948 nlen = ata_strim(model_num, sizeof(model_num));
2949 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2950
f4b15fef
AC
2951 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2952 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2953 if (ata_dma_blacklist[i+1] == NULL)
2954 return 1;
2955 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2956 return 1;
2957 }
2958 }
1da177e4
LT
2959 return 0;
2960}
2961
a6d5a51c
TH
2962/**
2963 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
2964 * @dev: Device to compute xfermask for
2965 *
acf356b1
TH
2966 * Compute supported xfermask of @dev and store it in
2967 * dev->*_mask. This function is responsible for applying all
2968 * known limits including host controller limits, device
2969 * blacklist, etc...
a6d5a51c 2970 *
600511e8
TH
2971 * FIXME: The current implementation limits all transfer modes to
2972 * the fastest of the lowested device on the port. This is not
05c8e0ac 2973 * required on most controllers.
600511e8 2974 *
a6d5a51c
TH
2975 * LOCKING:
2976 * None.
a6d5a51c 2977 */
3373efd8 2978static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 2979{
3373efd8 2980 struct ata_port *ap = dev->ap;
5444a6f4 2981 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2982 unsigned long xfer_mask;
2983 int i;
1da177e4 2984
565083e1
TH
2985 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2986 ap->mwdma_mask, ap->udma_mask);
2987
2988 /* Apply cable rule here. Don't apply it early because when
2989 * we handle hot plug the cable type can itself change.
2990 */
2991 if (ap->cbl == ATA_CBL_PATA40)
2992 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 2993
5444a6f4 2994 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2995 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2996 struct ata_device *d = &ap->device[i];
565083e1
TH
2997
2998 if (ata_dev_absent(d))
2999 continue;
3000
3001 if (ata_dev_disabled(d)) {
3002 /* to avoid violating device selection timing */
3003 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3004 UINT_MAX, UINT_MAX);
a6d5a51c 3005 continue;
565083e1
TH
3006 }
3007
3008 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3009 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
3010 xfer_mask &= ata_id_xfermask(d->id);
3011 if (ata_dma_blacklisted(d))
3012 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
3013 }
3014
a6d5a51c 3015 if (ata_dma_blacklisted(dev))
f15a1daf
TH
3016 ata_dev_printk(dev, KERN_WARNING,
3017 "device is on DMA blacklist, disabling DMA\n");
a6d5a51c 3018
5444a6f4
AC
3019 if (hs->flags & ATA_HOST_SIMPLEX) {
3020 if (hs->simplex_claimed)
3021 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3022 }
565083e1 3023
5444a6f4
AC
3024 if (ap->ops->mode_filter)
3025 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3026
565083e1
TH
3027 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3028 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3029}
3030
1da177e4
LT
3031/**
3032 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3033 * @dev: Device to which command will be sent
3034 *
780a87f7
JG
3035 * Issue SET FEATURES - XFER MODE command to device @dev
3036 * on port @ap.
3037 *
1da177e4 3038 * LOCKING:
0cba632b 3039 * PCI/etc. bus probe sem.
83206a29
TH
3040 *
3041 * RETURNS:
3042 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3043 */
3044
3373efd8 3045static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3046{
a0123703 3047 struct ata_taskfile tf;
83206a29 3048 unsigned int err_mask;
1da177e4
LT
3049
3050 /* set up set-features taskfile */
3051 DPRINTK("set features - xfer mode\n");
3052
3373efd8 3053 ata_tf_init(dev, &tf);
a0123703
TH
3054 tf.command = ATA_CMD_SET_FEATURES;
3055 tf.feature = SETFEATURES_XFER;
3056 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3057 tf.protocol = ATA_PROT_NODATA;
3058 tf.nsect = dev->xfer_mode;
1da177e4 3059
3373efd8 3060 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3061
83206a29
TH
3062 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3063 return err_mask;
1da177e4
LT
3064}
3065
8bf62ece
AL
3066/**
3067 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3068 * @dev: Device to which command will be sent
e2a7f77a
RD
3069 * @heads: Number of heads (taskfile parameter)
3070 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3071 *
3072 * LOCKING:
6aff8f1f
TH
3073 * Kernel thread context (may sleep)
3074 *
3075 * RETURNS:
3076 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3077 */
3373efd8
TH
3078static unsigned int ata_dev_init_params(struct ata_device *dev,
3079 u16 heads, u16 sectors)
8bf62ece 3080{
a0123703 3081 struct ata_taskfile tf;
6aff8f1f 3082 unsigned int err_mask;
8bf62ece
AL
3083
3084 /* Number of sectors per track 1-255. Number of heads 1-16 */
3085 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3086 return AC_ERR_INVALID;
8bf62ece
AL
3087
3088 /* set up init dev params taskfile */
3089 DPRINTK("init dev params \n");
3090
3373efd8 3091 ata_tf_init(dev, &tf);
a0123703
TH
3092 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3093 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3094 tf.protocol = ATA_PROT_NODATA;
3095 tf.nsect = sectors;
3096 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3097
3373efd8 3098 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3099
6aff8f1f
TH
3100 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3101 return err_mask;
8bf62ece
AL
3102}
3103
1da177e4 3104/**
0cba632b
JG
3105 * ata_sg_clean - Unmap DMA memory associated with command
3106 * @qc: Command containing DMA memory to be released
3107 *
3108 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3109 *
3110 * LOCKING:
0cba632b 3111 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3112 */
3113
3114static void ata_sg_clean(struct ata_queued_cmd *qc)
3115{
3116 struct ata_port *ap = qc->ap;
cedc9a47 3117 struct scatterlist *sg = qc->__sg;
1da177e4 3118 int dir = qc->dma_dir;
cedc9a47 3119 void *pad_buf = NULL;
1da177e4 3120
a4631474
TH
3121 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3122 WARN_ON(sg == NULL);
1da177e4
LT
3123
3124 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3125 WARN_ON(qc->n_elem > 1);
1da177e4 3126
2c13b7ce 3127 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3128
cedc9a47
JG
3129 /* if we padded the buffer out to 32-bit bound, and data
3130 * xfer direction is from-device, we must copy from the
3131 * pad buffer back into the supplied buffer
3132 */
3133 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3134 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3135
3136 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3137 if (qc->n_elem)
2f1f610b 3138 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3139 /* restore last sg */
3140 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3141 if (pad_buf) {
3142 struct scatterlist *psg = &qc->pad_sgent;
3143 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3144 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3145 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3146 }
3147 } else {
2e242fa9 3148 if (qc->n_elem)
2f1f610b 3149 dma_unmap_single(ap->dev,
e1410f2d
JG
3150 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3151 dir);
cedc9a47
JG
3152 /* restore sg */
3153 sg->length += qc->pad_len;
3154 if (pad_buf)
3155 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3156 pad_buf, qc->pad_len);
3157 }
1da177e4
LT
3158
3159 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3160 qc->__sg = NULL;
1da177e4
LT
3161}
3162
3163/**
3164 * ata_fill_sg - Fill PCI IDE PRD table
3165 * @qc: Metadata associated with taskfile to be transferred
3166 *
780a87f7
JG
3167 * Fill PCI IDE PRD (scatter-gather) table with segments
3168 * associated with the current disk command.
3169 *
1da177e4 3170 * LOCKING:
780a87f7 3171 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3172 *
3173 */
3174static void ata_fill_sg(struct ata_queued_cmd *qc)
3175{
1da177e4 3176 struct ata_port *ap = qc->ap;
cedc9a47
JG
3177 struct scatterlist *sg;
3178 unsigned int idx;
1da177e4 3179
a4631474 3180 WARN_ON(qc->__sg == NULL);
f131883e 3181 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3182
3183 idx = 0;
cedc9a47 3184 ata_for_each_sg(sg, qc) {
1da177e4
LT
3185 u32 addr, offset;
3186 u32 sg_len, len;
3187
3188 /* determine if physical DMA addr spans 64K boundary.
3189 * Note h/w doesn't support 64-bit, so we unconditionally
3190 * truncate dma_addr_t to u32.
3191 */
3192 addr = (u32) sg_dma_address(sg);
3193 sg_len = sg_dma_len(sg);
3194
3195 while (sg_len) {
3196 offset = addr & 0xffff;
3197 len = sg_len;
3198 if ((offset + sg_len) > 0x10000)
3199 len = 0x10000 - offset;
3200
3201 ap->prd[idx].addr = cpu_to_le32(addr);
3202 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3203 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3204
3205 idx++;
3206 sg_len -= len;
3207 addr += len;
3208 }
3209 }
3210
3211 if (idx)
3212 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3213}
3214/**
3215 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3216 * @qc: Metadata associated with taskfile to check
3217 *
780a87f7
JG
3218 * Allow low-level driver to filter ATA PACKET commands, returning
3219 * a status indicating whether or not it is OK to use DMA for the
3220 * supplied PACKET command.
3221 *
1da177e4 3222 * LOCKING:
0cba632b
JG
3223 * spin_lock_irqsave(host_set lock)
3224 *
1da177e4
LT
3225 * RETURNS: 0 when ATAPI DMA can be used
3226 * nonzero otherwise
3227 */
3228int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3229{
3230 struct ata_port *ap = qc->ap;
3231 int rc = 0; /* Assume ATAPI DMA is OK by default */
3232
3233 if (ap->ops->check_atapi_dma)
3234 rc = ap->ops->check_atapi_dma(qc);
3235
c2bbc551
AL
3236 /* We don't support polling DMA.
3237 * Use PIO if the LLDD handles only interrupts in
3238 * the HSM_ST_LAST state and the ATAPI device
3239 * generates CDB interrupts.
3240 */
3241 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3242 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3243 rc = 1;
3244
1da177e4
LT
3245 return rc;
3246}
3247/**
3248 * ata_qc_prep - Prepare taskfile for submission
3249 * @qc: Metadata associated with taskfile to be prepared
3250 *
780a87f7
JG
3251 * Prepare ATA taskfile for submission.
3252 *
1da177e4
LT
3253 * LOCKING:
3254 * spin_lock_irqsave(host_set lock)
3255 */
3256void ata_qc_prep(struct ata_queued_cmd *qc)
3257{
3258 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3259 return;
3260
3261 ata_fill_sg(qc);
3262}
3263
e46834cd
BK
3264void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3265
0cba632b
JG
3266/**
3267 * ata_sg_init_one - Associate command with memory buffer
3268 * @qc: Command to be associated
3269 * @buf: Memory buffer
3270 * @buflen: Length of memory buffer, in bytes.
3271 *
3272 * Initialize the data-related elements of queued_cmd @qc
3273 * to point to a single memory buffer, @buf of byte length @buflen.
3274 *
3275 * LOCKING:
3276 * spin_lock_irqsave(host_set lock)
3277 */
3278
1da177e4
LT
3279void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3280{
3281 struct scatterlist *sg;
3282
3283 qc->flags |= ATA_QCFLAG_SINGLE;
3284
3285 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3286 qc->__sg = &qc->sgent;
1da177e4 3287 qc->n_elem = 1;
cedc9a47 3288 qc->orig_n_elem = 1;
1da177e4 3289 qc->buf_virt = buf;
233277ca 3290 qc->nbytes = buflen;
1da177e4 3291
cedc9a47 3292 sg = qc->__sg;
f0612bbc 3293 sg_init_one(sg, buf, buflen);
1da177e4
LT
3294}
3295
0cba632b
JG
3296/**
3297 * ata_sg_init - Associate command with scatter-gather table.
3298 * @qc: Command to be associated
3299 * @sg: Scatter-gather table.
3300 * @n_elem: Number of elements in s/g table.
3301 *
3302 * Initialize the data-related elements of queued_cmd @qc
3303 * to point to a scatter-gather table @sg, containing @n_elem
3304 * elements.
3305 *
3306 * LOCKING:
3307 * spin_lock_irqsave(host_set lock)
3308 */
3309
1da177e4
LT
3310void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3311 unsigned int n_elem)
3312{
3313 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3314 qc->__sg = sg;
1da177e4 3315 qc->n_elem = n_elem;
cedc9a47 3316 qc->orig_n_elem = n_elem;
1da177e4
LT
3317}
3318
3319/**
0cba632b
JG
3320 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3321 * @qc: Command with memory buffer to be mapped.
3322 *
3323 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3324 *
3325 * LOCKING:
3326 * spin_lock_irqsave(host_set lock)
3327 *
3328 * RETURNS:
0cba632b 3329 * Zero on success, negative on error.
1da177e4
LT
3330 */
3331
3332static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3333{
3334 struct ata_port *ap = qc->ap;
3335 int dir = qc->dma_dir;
cedc9a47 3336 struct scatterlist *sg = qc->__sg;
1da177e4 3337 dma_addr_t dma_address;
2e242fa9 3338 int trim_sg = 0;
1da177e4 3339
cedc9a47
JG
3340 /* we must lengthen transfers to end on a 32-bit boundary */
3341 qc->pad_len = sg->length & 3;
3342 if (qc->pad_len) {
3343 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3344 struct scatterlist *psg = &qc->pad_sgent;
3345
a4631474 3346 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3347
3348 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3349
3350 if (qc->tf.flags & ATA_TFLAG_WRITE)
3351 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3352 qc->pad_len);
3353
3354 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3355 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3356 /* trim sg */
3357 sg->length -= qc->pad_len;
2e242fa9
TH
3358 if (sg->length == 0)
3359 trim_sg = 1;
cedc9a47
JG
3360
3361 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3362 sg->length, qc->pad_len);
3363 }
3364
2e242fa9
TH
3365 if (trim_sg) {
3366 qc->n_elem--;
e1410f2d
JG
3367 goto skip_map;
3368 }
3369
2f1f610b 3370 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3371 sg->length, dir);
537a95d9
TH
3372 if (dma_mapping_error(dma_address)) {
3373 /* restore sg */
3374 sg->length += qc->pad_len;
1da177e4 3375 return -1;
537a95d9 3376 }
1da177e4
LT
3377
3378 sg_dma_address(sg) = dma_address;
32529e01 3379 sg_dma_len(sg) = sg->length;
1da177e4 3380
2e242fa9 3381skip_map:
1da177e4
LT
3382 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3383 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3384
3385 return 0;
3386}
3387
3388/**
0cba632b
JG
3389 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3390 * @qc: Command with scatter-gather table to be mapped.
3391 *
3392 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3393 *
3394 * LOCKING:
3395 * spin_lock_irqsave(host_set lock)
3396 *
3397 * RETURNS:
0cba632b 3398 * Zero on success, negative on error.
1da177e4
LT
3399 *
3400 */
3401
3402static int ata_sg_setup(struct ata_queued_cmd *qc)
3403{
3404 struct ata_port *ap = qc->ap;
cedc9a47
JG
3405 struct scatterlist *sg = qc->__sg;
3406 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3407 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3408
3409 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3410 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3411
cedc9a47
JG
3412 /* we must lengthen transfers to end on a 32-bit boundary */
3413 qc->pad_len = lsg->length & 3;
3414 if (qc->pad_len) {
3415 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3416 struct scatterlist *psg = &qc->pad_sgent;
3417 unsigned int offset;
3418
a4631474 3419 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3420
3421 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3422
3423 /*
3424 * psg->page/offset are used to copy to-be-written
3425 * data in this function or read data in ata_sg_clean.
3426 */
3427 offset = lsg->offset + lsg->length - qc->pad_len;
3428 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3429 psg->offset = offset_in_page(offset);
3430
3431 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3432 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3433 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3434 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3435 }
3436
3437 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3438 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3439 /* trim last sg */
3440 lsg->length -= qc->pad_len;
e1410f2d
JG
3441 if (lsg->length == 0)
3442 trim_sg = 1;
cedc9a47
JG
3443
3444 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3445 qc->n_elem - 1, lsg->length, qc->pad_len);
3446 }
3447
e1410f2d
JG
3448 pre_n_elem = qc->n_elem;
3449 if (trim_sg && pre_n_elem)
3450 pre_n_elem--;
3451
3452 if (!pre_n_elem) {
3453 n_elem = 0;
3454 goto skip_map;
3455 }
3456
1da177e4 3457 dir = qc->dma_dir;
2f1f610b 3458 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3459 if (n_elem < 1) {
3460 /* restore last sg */
3461 lsg->length += qc->pad_len;
1da177e4 3462 return -1;
537a95d9 3463 }
1da177e4
LT
3464
3465 DPRINTK("%d sg elements mapped\n", n_elem);
3466
e1410f2d 3467skip_map:
1da177e4
LT
3468 qc->n_elem = n_elem;
3469
3470 return 0;
3471}
3472
0baab86b 3473/**
c893a3ae 3474 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3475 * @buf: Buffer to swap
3476 * @buf_words: Number of 16-bit words in buffer.
3477 *
3478 * Swap halves of 16-bit words if needed to convert from
3479 * little-endian byte order to native cpu byte order, or
3480 * vice-versa.
3481 *
3482 * LOCKING:
6f0ef4fa 3483 * Inherited from caller.
0baab86b 3484 */
1da177e4
LT
3485void swap_buf_le16(u16 *buf, unsigned int buf_words)
3486{
3487#ifdef __BIG_ENDIAN
3488 unsigned int i;
3489
3490 for (i = 0; i < buf_words; i++)
3491 buf[i] = le16_to_cpu(buf[i]);
3492#endif /* __BIG_ENDIAN */
3493}
3494
6ae4cfb5
AL
3495/**
3496 * ata_mmio_data_xfer - Transfer data by MMIO
a6b2c5d4 3497 * @dev: device for this I/O
6ae4cfb5
AL
3498 * @buf: data buffer
3499 * @buflen: buffer length
344babaa 3500 * @write_data: read/write
6ae4cfb5
AL
3501 *
3502 * Transfer data from/to the device data register by MMIO.
3503 *
3504 * LOCKING:
3505 * Inherited from caller.
6ae4cfb5
AL
3506 */
3507
a6b2c5d4
AC
3508void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3509 unsigned int buflen, int write_data)
1da177e4 3510{
a6b2c5d4 3511 struct ata_port *ap = adev->ap;
1da177e4
LT
3512 unsigned int i;
3513 unsigned int words = buflen >> 1;
3514 u16 *buf16 = (u16 *) buf;
3515 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3516
6ae4cfb5 3517 /* Transfer multiple of 2 bytes */
1da177e4
LT
3518 if (write_data) {
3519 for (i = 0; i < words; i++)
3520 writew(le16_to_cpu(buf16[i]), mmio);
3521 } else {
3522 for (i = 0; i < words; i++)
3523 buf16[i] = cpu_to_le16(readw(mmio));
3524 }
6ae4cfb5
AL
3525
3526 /* Transfer trailing 1 byte, if any. */
3527 if (unlikely(buflen & 0x01)) {
3528 u16 align_buf[1] = { 0 };
3529 unsigned char *trailing_buf = buf + buflen - 1;
3530
3531 if (write_data) {
3532 memcpy(align_buf, trailing_buf, 1);
3533 writew(le16_to_cpu(align_buf[0]), mmio);
3534 } else {
3535 align_buf[0] = cpu_to_le16(readw(mmio));
3536 memcpy(trailing_buf, align_buf, 1);
3537 }
3538 }
1da177e4
LT
3539}
3540
6ae4cfb5
AL
3541/**
3542 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3543 * @adev: device to target
6ae4cfb5
AL
3544 * @buf: data buffer
3545 * @buflen: buffer length
344babaa 3546 * @write_data: read/write
6ae4cfb5
AL
3547 *
3548 * Transfer data from/to the device data register by PIO.
3549 *
3550 * LOCKING:
3551 * Inherited from caller.
6ae4cfb5
AL
3552 */
3553
a6b2c5d4
AC
3554void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3555 unsigned int buflen, int write_data)
1da177e4 3556{
a6b2c5d4 3557 struct ata_port *ap = adev->ap;
6ae4cfb5 3558 unsigned int words = buflen >> 1;
1da177e4 3559
6ae4cfb5 3560 /* Transfer multiple of 2 bytes */
1da177e4 3561 if (write_data)
6ae4cfb5 3562 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3563 else
6ae4cfb5
AL
3564 insw(ap->ioaddr.data_addr, buf, words);
3565
3566 /* Transfer trailing 1 byte, if any. */
3567 if (unlikely(buflen & 0x01)) {
3568 u16 align_buf[1] = { 0 };
3569 unsigned char *trailing_buf = buf + buflen - 1;
3570
3571 if (write_data) {
3572 memcpy(align_buf, trailing_buf, 1);
3573 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3574 } else {
3575 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3576 memcpy(trailing_buf, align_buf, 1);
3577 }
3578 }
1da177e4
LT
3579}
3580
75e99585
AC
3581/**
3582 * ata_pio_data_xfer_noirq - Transfer data by PIO
3583 * @adev: device to target
3584 * @buf: data buffer
3585 * @buflen: buffer length
3586 * @write_data: read/write
3587 *
3588 * Transfer data from/to the device data register by PIO. Do the
3589 * transfer with interrupts disabled.
3590 *
3591 * LOCKING:
3592 * Inherited from caller.
3593 */
3594
3595void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3596 unsigned int buflen, int write_data)
3597{
3598 unsigned long flags;
3599 local_irq_save(flags);
3600 ata_pio_data_xfer(adev, buf, buflen, write_data);
3601 local_irq_restore(flags);
3602}
3603
3604
6ae4cfb5
AL
3605/**
3606 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3607 * @qc: Command on going
3608 *
3609 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3610 *
3611 * LOCKING:
3612 * Inherited from caller.
3613 */
3614
1da177e4
LT
3615static void ata_pio_sector(struct ata_queued_cmd *qc)
3616{
3617 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3618 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3619 struct ata_port *ap = qc->ap;
3620 struct page *page;
3621 unsigned int offset;
3622 unsigned char *buf;
3623
3624 if (qc->cursect == (qc->nsect - 1))
14be71f4 3625 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3626
3627 page = sg[qc->cursg].page;
3628 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3629
3630 /* get the current page and offset */
3631 page = nth_page(page, (offset >> PAGE_SHIFT));
3632 offset %= PAGE_SIZE;
3633
1da177e4
LT
3634 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3635
91b8b313
AL
3636 if (PageHighMem(page)) {
3637 unsigned long flags;
3638
a6b2c5d4 3639 /* FIXME: use a bounce buffer */
91b8b313
AL
3640 local_irq_save(flags);
3641 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3642
91b8b313 3643 /* do the actual data transfer */
a6b2c5d4 3644 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3645
91b8b313
AL
3646 kunmap_atomic(buf, KM_IRQ0);
3647 local_irq_restore(flags);
3648 } else {
3649 buf = page_address(page);
a6b2c5d4 3650 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3651 }
1da177e4
LT
3652
3653 qc->cursect++;
3654 qc->cursg_ofs++;
3655
32529e01 3656 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3657 qc->cursg++;
3658 qc->cursg_ofs = 0;
3659 }
1da177e4 3660}
1da177e4 3661
07f6f7d0
AL
3662/**
3663 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3664 * @qc: Command on going
3665 *
c81e29b4 3666 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3667 * ATA device for the DRQ request.
3668 *
3669 * LOCKING:
3670 * Inherited from caller.
3671 */
1da177e4 3672
07f6f7d0
AL
3673static void ata_pio_sectors(struct ata_queued_cmd *qc)
3674{
3675 if (is_multi_taskfile(&qc->tf)) {
3676 /* READ/WRITE MULTIPLE */
3677 unsigned int nsect;
3678
587005de 3679 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3680
07f6f7d0
AL
3681 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3682 while (nsect--)
3683 ata_pio_sector(qc);
3684 } else
3685 ata_pio_sector(qc);
3686}
3687
c71c1857
AL
3688/**
3689 * atapi_send_cdb - Write CDB bytes to hardware
3690 * @ap: Port to which ATAPI device is attached.
3691 * @qc: Taskfile currently active
3692 *
3693 * When device has indicated its readiness to accept
3694 * a CDB, this function is called. Send the CDB.
3695 *
3696 * LOCKING:
3697 * caller.
3698 */
3699
3700static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3701{
3702 /* send SCSI cdb */
3703 DPRINTK("send cdb\n");
db024d53 3704 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3705
a6b2c5d4 3706 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3707 ata_altstatus(ap); /* flush */
3708
3709 switch (qc->tf.protocol) {
3710 case ATA_PROT_ATAPI:
3711 ap->hsm_task_state = HSM_ST;
3712 break;
3713 case ATA_PROT_ATAPI_NODATA:
3714 ap->hsm_task_state = HSM_ST_LAST;
3715 break;
3716 case ATA_PROT_ATAPI_DMA:
3717 ap->hsm_task_state = HSM_ST_LAST;
3718 /* initiate bmdma */
3719 ap->ops->bmdma_start(qc);
3720 break;
3721 }
1da177e4
LT
3722}
3723
6ae4cfb5
AL
3724/**
3725 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3726 * @qc: Command on going
3727 * @bytes: number of bytes
3728 *
3729 * Transfer Transfer data from/to the ATAPI device.
3730 *
3731 * LOCKING:
3732 * Inherited from caller.
3733 *
3734 */
3735
1da177e4
LT
3736static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3737{
3738 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3739 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3740 struct ata_port *ap = qc->ap;
3741 struct page *page;
3742 unsigned char *buf;
3743 unsigned int offset, count;
3744
563a6e1f 3745 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3746 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3747
3748next_sg:
563a6e1f 3749 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3750 /*
563a6e1f
AL
3751 * The end of qc->sg is reached and the device expects
3752 * more data to transfer. In order not to overrun qc->sg
3753 * and fulfill length specified in the byte count register,
3754 * - for read case, discard trailing data from the device
3755 * - for write case, padding zero data to the device
3756 */
3757 u16 pad_buf[1] = { 0 };
3758 unsigned int words = bytes >> 1;
3759 unsigned int i;
3760
3761 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3762 ata_dev_printk(qc->dev, KERN_WARNING,
3763 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3764
3765 for (i = 0; i < words; i++)
a6b2c5d4 3766 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 3767
14be71f4 3768 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3769 return;
3770 }
3771
cedc9a47 3772 sg = &qc->__sg[qc->cursg];
1da177e4 3773
1da177e4
LT
3774 page = sg->page;
3775 offset = sg->offset + qc->cursg_ofs;
3776
3777 /* get the current page and offset */
3778 page = nth_page(page, (offset >> PAGE_SHIFT));
3779 offset %= PAGE_SIZE;
3780
6952df03 3781 /* don't overrun current sg */
32529e01 3782 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3783
3784 /* don't cross page boundaries */
3785 count = min(count, (unsigned int)PAGE_SIZE - offset);
3786
7282aa4b
AL
3787 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3788
91b8b313
AL
3789 if (PageHighMem(page)) {
3790 unsigned long flags;
3791
a6b2c5d4 3792 /* FIXME: use bounce buffer */
91b8b313
AL
3793 local_irq_save(flags);
3794 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3795
91b8b313 3796 /* do the actual data transfer */
a6b2c5d4 3797 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 3798
91b8b313
AL
3799 kunmap_atomic(buf, KM_IRQ0);
3800 local_irq_restore(flags);
3801 } else {
3802 buf = page_address(page);
a6b2c5d4 3803 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 3804 }
1da177e4
LT
3805
3806 bytes -= count;
3807 qc->curbytes += count;
3808 qc->cursg_ofs += count;
3809
32529e01 3810 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3811 qc->cursg++;
3812 qc->cursg_ofs = 0;
3813 }
3814
563a6e1f 3815 if (bytes)
1da177e4 3816 goto next_sg;
1da177e4
LT
3817}
3818
6ae4cfb5
AL
3819/**
3820 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3821 * @qc: Command on going
3822 *
3823 * Transfer Transfer data from/to the ATAPI device.
3824 *
3825 * LOCKING:
3826 * Inherited from caller.
6ae4cfb5
AL
3827 */
3828
1da177e4
LT
3829static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3830{
3831 struct ata_port *ap = qc->ap;
3832 struct ata_device *dev = qc->dev;
3833 unsigned int ireason, bc_lo, bc_hi, bytes;
3834 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3835
eec4c3f3
AL
3836 /* Abuse qc->result_tf for temp storage of intermediate TF
3837 * here to save some kernel stack usage.
3838 * For normal completion, qc->result_tf is not relevant. For
3839 * error, qc->result_tf is later overwritten by ata_qc_complete().
3840 * So, the correctness of qc->result_tf is not affected.
3841 */
3842 ap->ops->tf_read(ap, &qc->result_tf);
3843 ireason = qc->result_tf.nsect;
3844 bc_lo = qc->result_tf.lbam;
3845 bc_hi = qc->result_tf.lbah;
1da177e4
LT
3846 bytes = (bc_hi << 8) | bc_lo;
3847
3848 /* shall be cleared to zero, indicating xfer of data */
3849 if (ireason & (1 << 0))
3850 goto err_out;
3851
3852 /* make sure transfer direction matches expected */
3853 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3854 if (do_write != i_write)
3855 goto err_out;
3856
312f7da2
AL
3857 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3858
1da177e4
LT
3859 __atapi_pio_bytes(qc, bytes);
3860
3861 return;
3862
3863err_out:
f15a1daf 3864 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 3865 qc->err_mask |= AC_ERR_HSM;
14be71f4 3866 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3867}
3868
3869/**
c234fb00
AL
3870 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3871 * @ap: the target ata_port
3872 * @qc: qc on going
1da177e4 3873 *
c234fb00
AL
3874 * RETURNS:
3875 * 1 if ok in workqueue, 0 otherwise.
1da177e4 3876 */
c234fb00
AL
3877
3878static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 3879{
c234fb00
AL
3880 if (qc->tf.flags & ATA_TFLAG_POLLING)
3881 return 1;
1da177e4 3882
c234fb00
AL
3883 if (ap->hsm_task_state == HSM_ST_FIRST) {
3884 if (qc->tf.protocol == ATA_PROT_PIO &&
3885 (qc->tf.flags & ATA_TFLAG_WRITE))
3886 return 1;
1da177e4 3887
c234fb00
AL
3888 if (is_atapi_taskfile(&qc->tf) &&
3889 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3890 return 1;
fe79e683
AL
3891 }
3892
c234fb00
AL
3893 return 0;
3894}
1da177e4 3895
c17ea20d
TH
3896/**
3897 * ata_hsm_qc_complete - finish a qc running on standard HSM
3898 * @qc: Command to complete
3899 * @in_wq: 1 if called from workqueue, 0 otherwise
3900 *
3901 * Finish @qc which is running on standard HSM.
3902 *
3903 * LOCKING:
3904 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3905 * Otherwise, none on entry and grabs host lock.
3906 */
3907static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3908{
3909 struct ata_port *ap = qc->ap;
3910 unsigned long flags;
3911
3912 if (ap->ops->error_handler) {
3913 if (in_wq) {
3914 spin_lock_irqsave(&ap->host_set->lock, flags);
3915
3916 /* EH might have kicked in while host_set lock
3917 * is released.
3918 */
3919 qc = ata_qc_from_tag(ap, qc->tag);
3920 if (qc) {
3921 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3922 ata_irq_on(ap);
3923 ata_qc_complete(qc);
3924 } else
3925 ata_port_freeze(ap);
3926 }
3927
3928 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3929 } else {
3930 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3931 ata_qc_complete(qc);
3932 else
3933 ata_port_freeze(ap);
3934 }
3935 } else {
3936 if (in_wq) {
3937 spin_lock_irqsave(&ap->host_set->lock, flags);
3938 ata_irq_on(ap);
3939 ata_qc_complete(qc);
3940 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3941 } else
3942 ata_qc_complete(qc);
3943 }
1da177e4 3944
c81e29b4 3945 ata_altstatus(ap); /* flush */
c17ea20d
TH
3946}
3947
bb5cb290
AL
3948/**
3949 * ata_hsm_move - move the HSM to the next state.
3950 * @ap: the target ata_port
3951 * @qc: qc on going
3952 * @status: current device status
3953 * @in_wq: 1 if called from workqueue, 0 otherwise
3954 *
3955 * RETURNS:
3956 * 1 when poll next status needed, 0 otherwise.
3957 */
9a1004d0
TH
3958int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3959 u8 status, int in_wq)
e2cec771 3960{
bb5cb290
AL
3961 unsigned long flags = 0;
3962 int poll_next;
3963
6912ccd5
AL
3964 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3965
bb5cb290
AL
3966 /* Make sure ata_qc_issue_prot() does not throw things
3967 * like DMA polling into the workqueue. Notice that
3968 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
3969 */
c234fb00 3970 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 3971
e2cec771 3972fsm_start:
999bb6f4
AL
3973 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
3974 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
3975
e2cec771
AL
3976 switch (ap->hsm_task_state) {
3977 case HSM_ST_FIRST:
bb5cb290
AL
3978 /* Send first data block or PACKET CDB */
3979
3980 /* If polling, we will stay in the work queue after
3981 * sending the data. Otherwise, interrupt handler
3982 * takes over after sending the data.
3983 */
3984 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
3985
e2cec771 3986 /* check device status */
3655d1d3
AL
3987 if (unlikely((status & ATA_DRQ) == 0)) {
3988 /* handle BSY=0, DRQ=0 as error */
3989 if (likely(status & (ATA_ERR | ATA_DF)))
3990 /* device stops HSM for abort/error */
3991 qc->err_mask |= AC_ERR_DEV;
3992 else
3993 /* HSM violation. Let EH handle this */
3994 qc->err_mask |= AC_ERR_HSM;
3995
14be71f4 3996 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 3997 goto fsm_start;
1da177e4
LT
3998 }
3999
71601958
AL
4000 /* Device should not ask for data transfer (DRQ=1)
4001 * when it finds something wrong.
eee6c32f
AL
4002 * We ignore DRQ here and stop the HSM by
4003 * changing hsm_task_state to HSM_ST_ERR and
4004 * let the EH abort the command or reset the device.
71601958
AL
4005 */
4006 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4007 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4008 ap->id, status);
3655d1d3 4009 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4010 ap->hsm_task_state = HSM_ST_ERR;
4011 goto fsm_start;
71601958 4012 }
1da177e4 4013
bb5cb290
AL
4014 /* Send the CDB (atapi) or the first data block (ata pio out).
4015 * During the state transition, interrupt handler shouldn't
4016 * be invoked before the data transfer is complete and
4017 * hsm_task_state is changed. Hence, the following locking.
4018 */
4019 if (in_wq)
4020 spin_lock_irqsave(&ap->host_set->lock, flags);
1da177e4 4021
bb5cb290
AL
4022 if (qc->tf.protocol == ATA_PROT_PIO) {
4023 /* PIO data out protocol.
4024 * send first data block.
4025 */
0565c26d 4026
bb5cb290
AL
4027 /* ata_pio_sectors() might change the state
4028 * to HSM_ST_LAST. so, the state is changed here
4029 * before ata_pio_sectors().
4030 */
4031 ap->hsm_task_state = HSM_ST;
4032 ata_pio_sectors(qc);
4033 ata_altstatus(ap); /* flush */
4034 } else
4035 /* send CDB */
4036 atapi_send_cdb(ap, qc);
4037
4038 if (in_wq)
4039 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4040
4041 /* if polling, ata_pio_task() handles the rest.
4042 * otherwise, interrupt handler takes over from here.
4043 */
e2cec771 4044 break;
1c848984 4045
e2cec771
AL
4046 case HSM_ST:
4047 /* complete command or read/write the data register */
4048 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4049 /* ATAPI PIO protocol */
4050 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4051 /* No more data to transfer or device error.
4052 * Device error will be tagged in HSM_ST_LAST.
4053 */
e2cec771
AL
4054 ap->hsm_task_state = HSM_ST_LAST;
4055 goto fsm_start;
4056 }
1da177e4 4057
71601958
AL
4058 /* Device should not ask for data transfer (DRQ=1)
4059 * when it finds something wrong.
eee6c32f
AL
4060 * We ignore DRQ here and stop the HSM by
4061 * changing hsm_task_state to HSM_ST_ERR and
4062 * let the EH abort the command or reset the device.
71601958
AL
4063 */
4064 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4065 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4066 ap->id, status);
3655d1d3 4067 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4068 ap->hsm_task_state = HSM_ST_ERR;
4069 goto fsm_start;
71601958 4070 }
1da177e4 4071
e2cec771 4072 atapi_pio_bytes(qc);
7fb6ec28 4073
e2cec771
AL
4074 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4075 /* bad ireason reported by device */
4076 goto fsm_start;
1da177e4 4077
e2cec771
AL
4078 } else {
4079 /* ATA PIO protocol */
4080 if (unlikely((status & ATA_DRQ) == 0)) {
4081 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4082 if (likely(status & (ATA_ERR | ATA_DF)))
4083 /* device stops HSM for abort/error */
4084 qc->err_mask |= AC_ERR_DEV;
4085 else
4086 /* HSM violation. Let EH handle this */
4087 qc->err_mask |= AC_ERR_HSM;
4088
e2cec771
AL
4089 ap->hsm_task_state = HSM_ST_ERR;
4090 goto fsm_start;
4091 }
1da177e4 4092
eee6c32f
AL
4093 /* For PIO reads, some devices may ask for
4094 * data transfer (DRQ=1) alone with ERR=1.
4095 * We respect DRQ here and transfer one
4096 * block of junk data before changing the
4097 * hsm_task_state to HSM_ST_ERR.
4098 *
4099 * For PIO writes, ERR=1 DRQ=1 doesn't make
4100 * sense since the data block has been
4101 * transferred to the device.
71601958
AL
4102 */
4103 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4104 /* data might be corrputed */
4105 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4106
4107 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4108 ata_pio_sectors(qc);
4109 ata_altstatus(ap);
4110 status = ata_wait_idle(ap);
4111 }
4112
3655d1d3
AL
4113 if (status & (ATA_BUSY | ATA_DRQ))
4114 qc->err_mask |= AC_ERR_HSM;
4115
eee6c32f
AL
4116 /* ata_pio_sectors() might change the
4117 * state to HSM_ST_LAST. so, the state
4118 * is changed after ata_pio_sectors().
4119 */
4120 ap->hsm_task_state = HSM_ST_ERR;
4121 goto fsm_start;
71601958
AL
4122 }
4123
e2cec771
AL
4124 ata_pio_sectors(qc);
4125
4126 if (ap->hsm_task_state == HSM_ST_LAST &&
4127 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4128 /* all data read */
4129 ata_altstatus(ap);
52a32205 4130 status = ata_wait_idle(ap);
e2cec771
AL
4131 goto fsm_start;
4132 }
4133 }
4134
4135 ata_altstatus(ap); /* flush */
bb5cb290 4136 poll_next = 1;
1da177e4
LT
4137 break;
4138
14be71f4 4139 case HSM_ST_LAST:
6912ccd5
AL
4140 if (unlikely(!ata_ok(status))) {
4141 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4142 ap->hsm_task_state = HSM_ST_ERR;
4143 goto fsm_start;
4144 }
4145
4146 /* no more data to transfer */
4332a771
AL
4147 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4148 ap->id, qc->dev->devno, status);
e2cec771 4149
6912ccd5
AL
4150 WARN_ON(qc->err_mask);
4151
e2cec771 4152 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4153
e2cec771 4154 /* complete taskfile transaction */
c17ea20d 4155 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4156
4157 poll_next = 0;
1da177e4
LT
4158 break;
4159
14be71f4 4160 case HSM_ST_ERR:
e2cec771
AL
4161 /* make sure qc->err_mask is available to
4162 * know what's wrong and recover
4163 */
4164 WARN_ON(qc->err_mask == 0);
4165
4166 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4167
999bb6f4 4168 /* complete taskfile transaction */
c17ea20d 4169 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4170
4171 poll_next = 0;
e2cec771
AL
4172 break;
4173 default:
bb5cb290 4174 poll_next = 0;
6912ccd5 4175 BUG();
1da177e4
LT
4176 }
4177
bb5cb290 4178 return poll_next;
1da177e4
LT
4179}
4180
1da177e4 4181static void ata_pio_task(void *_data)
8061f5f0 4182{
c91af2c8
TH
4183 struct ata_queued_cmd *qc = _data;
4184 struct ata_port *ap = qc->ap;
8061f5f0 4185 u8 status;
a1af3734 4186 int poll_next;
8061f5f0 4187
7fb6ec28 4188fsm_start:
a1af3734 4189 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4190
a1af3734
AL
4191 /*
4192 * This is purely heuristic. This is a fast path.
4193 * Sometimes when we enter, BSY will be cleared in
4194 * a chk-status or two. If not, the drive is probably seeking
4195 * or something. Snooze for a couple msecs, then
4196 * chk-status again. If still busy, queue delayed work.
4197 */
4198 status = ata_busy_wait(ap, ATA_BUSY, 5);
4199 if (status & ATA_BUSY) {
4200 msleep(2);
4201 status = ata_busy_wait(ap, ATA_BUSY, 10);
4202 if (status & ATA_BUSY) {
31ce6dae 4203 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4204 return;
4205 }
8061f5f0
TH
4206 }
4207
a1af3734
AL
4208 /* move the HSM */
4209 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4210
a1af3734
AL
4211 /* another command or interrupt handler
4212 * may be running at this point.
4213 */
4214 if (poll_next)
7fb6ec28 4215 goto fsm_start;
8061f5f0
TH
4216}
4217
1da177e4
LT
4218/**
4219 * ata_qc_new - Request an available ATA command, for queueing
4220 * @ap: Port associated with device @dev
4221 * @dev: Device from whom we request an available command structure
4222 *
4223 * LOCKING:
0cba632b 4224 * None.
1da177e4
LT
4225 */
4226
4227static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4228{
4229 struct ata_queued_cmd *qc = NULL;
4230 unsigned int i;
4231
e3180499
TH
4232 /* no command while frozen */
4233 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4234 return NULL;
4235
2ab7db1f
TH
4236 /* the last tag is reserved for internal command. */
4237 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4238 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4239 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4240 break;
4241 }
4242
4243 if (qc)
4244 qc->tag = i;
4245
4246 return qc;
4247}
4248
4249/**
4250 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4251 * @dev: Device from whom we request an available command structure
4252 *
4253 * LOCKING:
0cba632b 4254 * None.
1da177e4
LT
4255 */
4256
3373efd8 4257struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4258{
3373efd8 4259 struct ata_port *ap = dev->ap;
1da177e4
LT
4260 struct ata_queued_cmd *qc;
4261
4262 qc = ata_qc_new(ap);
4263 if (qc) {
1da177e4
LT
4264 qc->scsicmd = NULL;
4265 qc->ap = ap;
4266 qc->dev = dev;
1da177e4 4267
2c13b7ce 4268 ata_qc_reinit(qc);
1da177e4
LT
4269 }
4270
4271 return qc;
4272}
4273
1da177e4
LT
4274/**
4275 * ata_qc_free - free unused ata_queued_cmd
4276 * @qc: Command to complete
4277 *
4278 * Designed to free unused ata_queued_cmd object
4279 * in case something prevents using it.
4280 *
4281 * LOCKING:
0cba632b 4282 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4283 */
4284void ata_qc_free(struct ata_queued_cmd *qc)
4285{
4ba946e9
TH
4286 struct ata_port *ap = qc->ap;
4287 unsigned int tag;
4288
a4631474 4289 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4290
4ba946e9
TH
4291 qc->flags = 0;
4292 tag = qc->tag;
4293 if (likely(ata_tag_valid(tag))) {
4ba946e9 4294 qc->tag = ATA_TAG_POISON;
6cec4a39 4295 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4296 }
1da177e4
LT
4297}
4298
76014427 4299void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4300{
dedaf2b0
TH
4301 struct ata_port *ap = qc->ap;
4302
a4631474
TH
4303 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4304 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4305
4306 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4307 ata_sg_clean(qc);
4308
7401abf2 4309 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4310 if (qc->tf.protocol == ATA_PROT_NCQ)
4311 ap->sactive &= ~(1 << qc->tag);
4312 else
4313 ap->active_tag = ATA_TAG_POISON;
7401abf2 4314
3f3791d3
AL
4315 /* atapi: mark qc as inactive to prevent the interrupt handler
4316 * from completing the command twice later, before the error handler
4317 * is called. (when rc != 0 and atapi request sense is needed)
4318 */
4319 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4320 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4321
1da177e4 4322 /* call completion callback */
77853bf2 4323 qc->complete_fn(qc);
1da177e4
LT
4324}
4325
f686bcb8
TH
4326/**
4327 * ata_qc_complete - Complete an active ATA command
4328 * @qc: Command to complete
4329 * @err_mask: ATA Status register contents
4330 *
4331 * Indicate to the mid and upper layers that an ATA
4332 * command has completed, with either an ok or not-ok status.
4333 *
4334 * LOCKING:
4335 * spin_lock_irqsave(host_set lock)
4336 */
4337void ata_qc_complete(struct ata_queued_cmd *qc)
4338{
4339 struct ata_port *ap = qc->ap;
4340
4341 /* XXX: New EH and old EH use different mechanisms to
4342 * synchronize EH with regular execution path.
4343 *
4344 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4345 * Normal execution path is responsible for not accessing a
4346 * failed qc. libata core enforces the rule by returning NULL
4347 * from ata_qc_from_tag() for failed qcs.
4348 *
4349 * Old EH depends on ata_qc_complete() nullifying completion
4350 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4351 * not synchronize with interrupt handler. Only PIO task is
4352 * taken care of.
4353 */
4354 if (ap->ops->error_handler) {
4355 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4356
4357 if (unlikely(qc->err_mask))
4358 qc->flags |= ATA_QCFLAG_FAILED;
4359
4360 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4361 if (!ata_tag_internal(qc->tag)) {
4362 /* always fill result TF for failed qc */
4363 ap->ops->tf_read(ap, &qc->result_tf);
4364 ata_qc_schedule_eh(qc);
4365 return;
4366 }
4367 }
4368
4369 /* read result TF if requested */
4370 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4371 ap->ops->tf_read(ap, &qc->result_tf);
4372
4373 __ata_qc_complete(qc);
4374 } else {
4375 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4376 return;
4377
4378 /* read result TF if failed or requested */
4379 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4380 ap->ops->tf_read(ap, &qc->result_tf);
4381
4382 __ata_qc_complete(qc);
4383 }
4384}
4385
dedaf2b0
TH
4386/**
4387 * ata_qc_complete_multiple - Complete multiple qcs successfully
4388 * @ap: port in question
4389 * @qc_active: new qc_active mask
4390 * @finish_qc: LLDD callback invoked before completing a qc
4391 *
4392 * Complete in-flight commands. This functions is meant to be
4393 * called from low-level driver's interrupt routine to complete
4394 * requests normally. ap->qc_active and @qc_active is compared
4395 * and commands are completed accordingly.
4396 *
4397 * LOCKING:
4398 * spin_lock_irqsave(host_set lock)
4399 *
4400 * RETURNS:
4401 * Number of completed commands on success, -errno otherwise.
4402 */
4403int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4404 void (*finish_qc)(struct ata_queued_cmd *))
4405{
4406 int nr_done = 0;
4407 u32 done_mask;
4408 int i;
4409
4410 done_mask = ap->qc_active ^ qc_active;
4411
4412 if (unlikely(done_mask & qc_active)) {
4413 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4414 "(%08x->%08x)\n", ap->qc_active, qc_active);
4415 return -EINVAL;
4416 }
4417
4418 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4419 struct ata_queued_cmd *qc;
4420
4421 if (!(done_mask & (1 << i)))
4422 continue;
4423
4424 if ((qc = ata_qc_from_tag(ap, i))) {
4425 if (finish_qc)
4426 finish_qc(qc);
4427 ata_qc_complete(qc);
4428 nr_done++;
4429 }
4430 }
4431
4432 return nr_done;
4433}
4434
1da177e4
LT
4435static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4436{
4437 struct ata_port *ap = qc->ap;
4438
4439 switch (qc->tf.protocol) {
3dc1d881 4440 case ATA_PROT_NCQ:
1da177e4
LT
4441 case ATA_PROT_DMA:
4442 case ATA_PROT_ATAPI_DMA:
4443 return 1;
4444
4445 case ATA_PROT_ATAPI:
4446 case ATA_PROT_PIO:
1da177e4
LT
4447 if (ap->flags & ATA_FLAG_PIO_DMA)
4448 return 1;
4449
4450 /* fall through */
4451
4452 default:
4453 return 0;
4454 }
4455
4456 /* never reached */
4457}
4458
4459/**
4460 * ata_qc_issue - issue taskfile to device
4461 * @qc: command to issue to device
4462 *
4463 * Prepare an ATA command to submission to device.
4464 * This includes mapping the data into a DMA-able
4465 * area, filling in the S/G table, and finally
4466 * writing the taskfile to hardware, starting the command.
4467 *
4468 * LOCKING:
4469 * spin_lock_irqsave(host_set lock)
1da177e4 4470 */
8e0e694a 4471void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4472{
4473 struct ata_port *ap = qc->ap;
4474
dedaf2b0
TH
4475 /* Make sure only one non-NCQ command is outstanding. The
4476 * check is skipped for old EH because it reuses active qc to
4477 * request ATAPI sense.
4478 */
4479 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4480
4481 if (qc->tf.protocol == ATA_PROT_NCQ) {
4482 WARN_ON(ap->sactive & (1 << qc->tag));
4483 ap->sactive |= 1 << qc->tag;
4484 } else {
4485 WARN_ON(ap->sactive);
4486 ap->active_tag = qc->tag;
4487 }
4488
e4a70e76 4489 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4490 ap->qc_active |= 1 << qc->tag;
e4a70e76 4491
1da177e4
LT
4492 if (ata_should_dma_map(qc)) {
4493 if (qc->flags & ATA_QCFLAG_SG) {
4494 if (ata_sg_setup(qc))
8e436af9 4495 goto sg_err;
1da177e4
LT
4496 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4497 if (ata_sg_setup_one(qc))
8e436af9 4498 goto sg_err;
1da177e4
LT
4499 }
4500 } else {
4501 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4502 }
4503
4504 ap->ops->qc_prep(qc);
4505
8e0e694a
TH
4506 qc->err_mask |= ap->ops->qc_issue(qc);
4507 if (unlikely(qc->err_mask))
4508 goto err;
4509 return;
1da177e4 4510
8e436af9
TH
4511sg_err:
4512 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4513 qc->err_mask |= AC_ERR_SYSTEM;
4514err:
4515 ata_qc_complete(qc);
1da177e4
LT
4516}
4517
4518/**
4519 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4520 * @qc: command to issue to device
4521 *
4522 * Using various libata functions and hooks, this function
4523 * starts an ATA command. ATA commands are grouped into
4524 * classes called "protocols", and issuing each type of protocol
4525 * is slightly different.
4526 *
0baab86b
EF
4527 * May be used as the qc_issue() entry in ata_port_operations.
4528 *
1da177e4
LT
4529 * LOCKING:
4530 * spin_lock_irqsave(host_set lock)
4531 *
4532 * RETURNS:
9a3d9eb0 4533 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4534 */
4535
9a3d9eb0 4536unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4537{
4538 struct ata_port *ap = qc->ap;
4539
e50362ec
AL
4540 /* Use polling pio if the LLD doesn't handle
4541 * interrupt driven pio and atapi CDB interrupt.
4542 */
4543 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4544 switch (qc->tf.protocol) {
4545 case ATA_PROT_PIO:
4546 case ATA_PROT_ATAPI:
4547 case ATA_PROT_ATAPI_NODATA:
4548 qc->tf.flags |= ATA_TFLAG_POLLING;
4549 break;
4550 case ATA_PROT_ATAPI_DMA:
4551 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
c2bbc551 4552 /* see ata_check_atapi_dma() */
e50362ec
AL
4553 BUG();
4554 break;
4555 default:
4556 break;
4557 }
4558 }
4559
312f7da2 4560 /* select the device */
1da177e4
LT
4561 ata_dev_select(ap, qc->dev->devno, 1, 0);
4562
312f7da2 4563 /* start the command */
1da177e4
LT
4564 switch (qc->tf.protocol) {
4565 case ATA_PROT_NODATA:
312f7da2
AL
4566 if (qc->tf.flags & ATA_TFLAG_POLLING)
4567 ata_qc_set_polling(qc);
4568
e5338254 4569 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4570 ap->hsm_task_state = HSM_ST_LAST;
4571
4572 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4573 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4574
1da177e4
LT
4575 break;
4576
4577 case ATA_PROT_DMA:
587005de 4578 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4579
1da177e4
LT
4580 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4581 ap->ops->bmdma_setup(qc); /* set up bmdma */
4582 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4583 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4584 break;
4585
312f7da2
AL
4586 case ATA_PROT_PIO:
4587 if (qc->tf.flags & ATA_TFLAG_POLLING)
4588 ata_qc_set_polling(qc);
1da177e4 4589
e5338254 4590 ata_tf_to_host(ap, &qc->tf);
312f7da2 4591
54f00389
AL
4592 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4593 /* PIO data out protocol */
4594 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4595 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4596
4597 /* always send first data block using
e27486db 4598 * the ata_pio_task() codepath.
54f00389 4599 */
312f7da2 4600 } else {
54f00389
AL
4601 /* PIO data in protocol */
4602 ap->hsm_task_state = HSM_ST;
4603
4604 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4605 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4606
4607 /* if polling, ata_pio_task() handles the rest.
4608 * otherwise, interrupt handler takes over from here.
4609 */
312f7da2
AL
4610 }
4611
1da177e4
LT
4612 break;
4613
1da177e4 4614 case ATA_PROT_ATAPI:
1da177e4 4615 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4616 if (qc->tf.flags & ATA_TFLAG_POLLING)
4617 ata_qc_set_polling(qc);
4618
e5338254 4619 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4620
312f7da2
AL
4621 ap->hsm_task_state = HSM_ST_FIRST;
4622
4623 /* send cdb by polling if no cdb interrupt */
4624 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4625 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4626 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4627 break;
4628
4629 case ATA_PROT_ATAPI_DMA:
587005de 4630 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4631
1da177e4
LT
4632 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4633 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4634 ap->hsm_task_state = HSM_ST_FIRST;
4635
4636 /* send cdb by polling if no cdb interrupt */
4637 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4638 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4639 break;
4640
4641 default:
4642 WARN_ON(1);
9a3d9eb0 4643 return AC_ERR_SYSTEM;
1da177e4
LT
4644 }
4645
4646 return 0;
4647}
4648
1da177e4
LT
4649/**
4650 * ata_host_intr - Handle host interrupt for given (port, task)
4651 * @ap: Port on which interrupt arrived (possibly...)
4652 * @qc: Taskfile currently active in engine
4653 *
4654 * Handle host interrupt for given queued command. Currently,
4655 * only DMA interrupts are handled. All other commands are
4656 * handled via polling with interrupts disabled (nIEN bit).
4657 *
4658 * LOCKING:
4659 * spin_lock_irqsave(host_set lock)
4660 *
4661 * RETURNS:
4662 * One if interrupt was handled, zero if not (shared irq).
4663 */
4664
4665inline unsigned int ata_host_intr (struct ata_port *ap,
4666 struct ata_queued_cmd *qc)
4667{
312f7da2 4668 u8 status, host_stat = 0;
1da177e4 4669
312f7da2
AL
4670 VPRINTK("ata%u: protocol %d task_state %d\n",
4671 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4672
312f7da2
AL
4673 /* Check whether we are expecting interrupt in this state */
4674 switch (ap->hsm_task_state) {
4675 case HSM_ST_FIRST:
6912ccd5
AL
4676 /* Some pre-ATAPI-4 devices assert INTRQ
4677 * at this state when ready to receive CDB.
4678 */
1da177e4 4679
312f7da2
AL
4680 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4681 * The flag was turned on only for atapi devices.
4682 * No need to check is_atapi_taskfile(&qc->tf) again.
4683 */
4684 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4685 goto idle_irq;
1da177e4 4686 break;
312f7da2
AL
4687 case HSM_ST_LAST:
4688 if (qc->tf.protocol == ATA_PROT_DMA ||
4689 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4690 /* check status of DMA engine */
4691 host_stat = ap->ops->bmdma_status(ap);
4692 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4693
4694 /* if it's not our irq... */
4695 if (!(host_stat & ATA_DMA_INTR))
4696 goto idle_irq;
4697
4698 /* before we do anything else, clear DMA-Start bit */
4699 ap->ops->bmdma_stop(qc);
a4f16610
AL
4700
4701 if (unlikely(host_stat & ATA_DMA_ERR)) {
4702 /* error when transfering data to/from memory */
4703 qc->err_mask |= AC_ERR_HOST_BUS;
4704 ap->hsm_task_state = HSM_ST_ERR;
4705 }
312f7da2
AL
4706 }
4707 break;
4708 case HSM_ST:
4709 break;
1da177e4
LT
4710 default:
4711 goto idle_irq;
4712 }
4713
312f7da2
AL
4714 /* check altstatus */
4715 status = ata_altstatus(ap);
4716 if (status & ATA_BUSY)
4717 goto idle_irq;
1da177e4 4718
312f7da2
AL
4719 /* check main status, clearing INTRQ */
4720 status = ata_chk_status(ap);
4721 if (unlikely(status & ATA_BUSY))
4722 goto idle_irq;
1da177e4 4723
312f7da2
AL
4724 /* ack bmdma irq events */
4725 ap->ops->irq_clear(ap);
1da177e4 4726
bb5cb290 4727 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4728 return 1; /* irq handled */
4729
4730idle_irq:
4731 ap->stats.idle_irq++;
4732
4733#ifdef ATA_IRQ_TRAP
4734 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4735 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4736 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4737 return 1;
1da177e4
LT
4738 }
4739#endif
4740 return 0; /* irq not handled */
4741}
4742
4743/**
4744 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4745 * @irq: irq line (unused)
4746 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4747 * @regs: unused
4748 *
0cba632b
JG
4749 * Default interrupt handler for PCI IDE devices. Calls
4750 * ata_host_intr() for each port that is not disabled.
4751 *
1da177e4 4752 * LOCKING:
0cba632b 4753 * Obtains host_set lock during operation.
1da177e4
LT
4754 *
4755 * RETURNS:
0cba632b 4756 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4757 */
4758
4759irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4760{
4761 struct ata_host_set *host_set = dev_instance;
4762 unsigned int i;
4763 unsigned int handled = 0;
4764 unsigned long flags;
4765
4766 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4767 spin_lock_irqsave(&host_set->lock, flags);
4768
4769 for (i = 0; i < host_set->n_ports; i++) {
4770 struct ata_port *ap;
4771
4772 ap = host_set->ports[i];
c1389503 4773 if (ap &&
029f5468 4774 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4775 struct ata_queued_cmd *qc;
4776
4777 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4778 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4779 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4780 handled |= ata_host_intr(ap, qc);
4781 }
4782 }
4783
4784 spin_unlock_irqrestore(&host_set->lock, flags);
4785
4786 return IRQ_RETVAL(handled);
4787}
4788
34bf2170
TH
4789/**
4790 * sata_scr_valid - test whether SCRs are accessible
4791 * @ap: ATA port to test SCR accessibility for
4792 *
4793 * Test whether SCRs are accessible for @ap.
4794 *
4795 * LOCKING:
4796 * None.
4797 *
4798 * RETURNS:
4799 * 1 if SCRs are accessible, 0 otherwise.
4800 */
4801int sata_scr_valid(struct ata_port *ap)
4802{
4803 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4804}
4805
4806/**
4807 * sata_scr_read - read SCR register of the specified port
4808 * @ap: ATA port to read SCR for
4809 * @reg: SCR to read
4810 * @val: Place to store read value
4811 *
4812 * Read SCR register @reg of @ap into *@val. This function is
4813 * guaranteed to succeed if the cable type of the port is SATA
4814 * and the port implements ->scr_read.
4815 *
4816 * LOCKING:
4817 * None.
4818 *
4819 * RETURNS:
4820 * 0 on success, negative errno on failure.
4821 */
4822int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4823{
4824 if (sata_scr_valid(ap)) {
4825 *val = ap->ops->scr_read(ap, reg);
4826 return 0;
4827 }
4828 return -EOPNOTSUPP;
4829}
4830
4831/**
4832 * sata_scr_write - write SCR register of the specified port
4833 * @ap: ATA port to write SCR for
4834 * @reg: SCR to write
4835 * @val: value to write
4836 *
4837 * Write @val to SCR register @reg of @ap. This function is
4838 * guaranteed to succeed if the cable type of the port is SATA
4839 * and the port implements ->scr_read.
4840 *
4841 * LOCKING:
4842 * None.
4843 *
4844 * RETURNS:
4845 * 0 on success, negative errno on failure.
4846 */
4847int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4848{
4849 if (sata_scr_valid(ap)) {
4850 ap->ops->scr_write(ap, reg, val);
4851 return 0;
4852 }
4853 return -EOPNOTSUPP;
4854}
4855
4856/**
4857 * sata_scr_write_flush - write SCR register of the specified port and flush
4858 * @ap: ATA port to write SCR for
4859 * @reg: SCR to write
4860 * @val: value to write
4861 *
4862 * This function is identical to sata_scr_write() except that this
4863 * function performs flush after writing to the register.
4864 *
4865 * LOCKING:
4866 * None.
4867 *
4868 * RETURNS:
4869 * 0 on success, negative errno on failure.
4870 */
4871int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4872{
4873 if (sata_scr_valid(ap)) {
4874 ap->ops->scr_write(ap, reg, val);
4875 ap->ops->scr_read(ap, reg);
4876 return 0;
4877 }
4878 return -EOPNOTSUPP;
4879}
4880
4881/**
4882 * ata_port_online - test whether the given port is online
4883 * @ap: ATA port to test
4884 *
4885 * Test whether @ap is online. Note that this function returns 0
4886 * if online status of @ap cannot be obtained, so
4887 * ata_port_online(ap) != !ata_port_offline(ap).
4888 *
4889 * LOCKING:
4890 * None.
4891 *
4892 * RETURNS:
4893 * 1 if the port online status is available and online.
4894 */
4895int ata_port_online(struct ata_port *ap)
4896{
4897 u32 sstatus;
4898
4899 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4900 return 1;
4901 return 0;
4902}
4903
4904/**
4905 * ata_port_offline - test whether the given port is offline
4906 * @ap: ATA port to test
4907 *
4908 * Test whether @ap is offline. Note that this function returns
4909 * 0 if offline status of @ap cannot be obtained, so
4910 * ata_port_online(ap) != !ata_port_offline(ap).
4911 *
4912 * LOCKING:
4913 * None.
4914 *
4915 * RETURNS:
4916 * 1 if the port offline status is available and offline.
4917 */
4918int ata_port_offline(struct ata_port *ap)
4919{
4920 u32 sstatus;
4921
4922 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4923 return 1;
4924 return 0;
4925}
0baab86b 4926
9b847548
JA
4927/*
4928 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4929 * without filling any other registers
4930 */
3373efd8 4931static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
9b847548
JA
4932{
4933 struct ata_taskfile tf;
4934 int err;
4935
3373efd8 4936 ata_tf_init(dev, &tf);
9b847548
JA
4937
4938 tf.command = cmd;
4939 tf.flags |= ATA_TFLAG_DEVICE;
4940 tf.protocol = ATA_PROT_NODATA;
4941
3373efd8 4942 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
9b847548 4943 if (err)
f15a1daf
TH
4944 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4945 __FUNCTION__, err);
9b847548
JA
4946
4947 return err;
4948}
4949
3373efd8 4950static int ata_flush_cache(struct ata_device *dev)
9b847548
JA
4951{
4952 u8 cmd;
4953
4954 if (!ata_try_flush_cache(dev))
4955 return 0;
4956
4957 if (ata_id_has_flush_ext(dev->id))
4958 cmd = ATA_CMD_FLUSH_EXT;
4959 else
4960 cmd = ATA_CMD_FLUSH;
4961
3373efd8 4962 return ata_do_simple_cmd(dev, cmd);
9b847548
JA
4963}
4964
3373efd8 4965static int ata_standby_drive(struct ata_device *dev)
9b847548 4966{
3373efd8 4967 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
9b847548
JA
4968}
4969
3373efd8 4970static int ata_start_drive(struct ata_device *dev)
9b847548 4971{
3373efd8 4972 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
9b847548
JA
4973}
4974
4975/**
4976 * ata_device_resume - wakeup a previously suspended devices
c893a3ae 4977 * @dev: the device to resume
9b847548
JA
4978 *
4979 * Kick the drive back into action, by sending it an idle immediate
4980 * command and making sure its transfer mode matches between drive
4981 * and host.
4982 *
4983 */
3373efd8 4984int ata_device_resume(struct ata_device *dev)
9b847548 4985{
3373efd8
TH
4986 struct ata_port *ap = dev->ap;
4987
9b847548 4988 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 4989 struct ata_device *failed_dev;
e42d7be2 4990
0737ac89 4991 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
e42d7be2 4992
9b847548 4993 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9 4994 while (ata_set_mode(ap, &failed_dev))
3373efd8 4995 ata_dev_disable(failed_dev);
9b847548 4996 }
e1211e3f 4997 if (!ata_dev_enabled(dev))
9b847548
JA
4998 return 0;
4999 if (dev->class == ATA_DEV_ATA)
3373efd8 5000 ata_start_drive(dev);
9b847548
JA
5001
5002 return 0;
5003}
5004
5005/**
5006 * ata_device_suspend - prepare a device for suspend
c893a3ae 5007 * @dev: the device to suspend
e2a7f77a 5008 * @state: target power management state
9b847548
JA
5009 *
5010 * Flush the cache on the drive, if appropriate, then issue a
5011 * standbynow command.
9b847548 5012 */
3373efd8 5013int ata_device_suspend(struct ata_device *dev, pm_message_t state)
9b847548 5014{
3373efd8
TH
5015 struct ata_port *ap = dev->ap;
5016
e1211e3f 5017 if (!ata_dev_enabled(dev))
9b847548
JA
5018 return 0;
5019 if (dev->class == ATA_DEV_ATA)
3373efd8 5020 ata_flush_cache(dev);
9b847548 5021
082776e4 5022 if (state.event != PM_EVENT_FREEZE)
3373efd8 5023 ata_standby_drive(dev);
9b847548
JA
5024 ap->flags |= ATA_FLAG_SUSPENDED;
5025 return 0;
5026}
5027
c893a3ae
RD
5028/**
5029 * ata_port_start - Set port up for dma.
5030 * @ap: Port to initialize
5031 *
5032 * Called just after data structures for each port are
5033 * initialized. Allocates space for PRD table.
5034 *
5035 * May be used as the port_start() entry in ata_port_operations.
5036 *
5037 * LOCKING:
5038 * Inherited from caller.
5039 */
5040
1da177e4
LT
5041int ata_port_start (struct ata_port *ap)
5042{
2f1f610b 5043 struct device *dev = ap->dev;
6037d6bb 5044 int rc;
1da177e4
LT
5045
5046 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5047 if (!ap->prd)
5048 return -ENOMEM;
5049
6037d6bb
JG
5050 rc = ata_pad_alloc(ap, dev);
5051 if (rc) {
cedc9a47 5052 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5053 return rc;
cedc9a47
JG
5054 }
5055
1da177e4
LT
5056 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5057
5058 return 0;
5059}
5060
0baab86b
EF
5061
5062/**
5063 * ata_port_stop - Undo ata_port_start()
5064 * @ap: Port to shut down
5065 *
5066 * Frees the PRD table.
5067 *
5068 * May be used as the port_stop() entry in ata_port_operations.
5069 *
5070 * LOCKING:
6f0ef4fa 5071 * Inherited from caller.
0baab86b
EF
5072 */
5073
1da177e4
LT
5074void ata_port_stop (struct ata_port *ap)
5075{
2f1f610b 5076 struct device *dev = ap->dev;
1da177e4
LT
5077
5078 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5079 ata_pad_free(ap, dev);
1da177e4
LT
5080}
5081
aa8f0dc6
JG
5082void ata_host_stop (struct ata_host_set *host_set)
5083{
5084 if (host_set->mmio_base)
5085 iounmap(host_set->mmio_base);
5086}
5087
5088
1da177e4
LT
5089/**
5090 * ata_host_remove - Unregister SCSI host structure with upper layers
5091 * @ap: Port to unregister
5092 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5093 *
5094 * LOCKING:
6f0ef4fa 5095 * Inherited from caller.
1da177e4
LT
5096 */
5097
5098static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5099{
5100 struct Scsi_Host *sh = ap->host;
5101
5102 DPRINTK("ENTER\n");
5103
5104 if (do_unregister)
5105 scsi_remove_host(sh);
5106
5107 ap->ops->port_stop(ap);
5108}
5109
3ef3b43d
TH
5110/**
5111 * ata_dev_init - Initialize an ata_device structure
5112 * @dev: Device structure to initialize
5113 *
5114 * Initialize @dev in preparation for probing.
5115 *
5116 * LOCKING:
5117 * Inherited from caller.
5118 */
5119void ata_dev_init(struct ata_device *dev)
5120{
5121 struct ata_port *ap = dev->ap;
72fa4b74
TH
5122 unsigned long flags;
5123
5a04bf4b
TH
5124 /* SATA spd limit is bound to the first device */
5125 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5126
72fa4b74
TH
5127 /* High bits of dev->flags are used to record warm plug
5128 * requests which occur asynchronously. Synchronize using
5129 * host_set lock.
5130 */
5131 spin_lock_irqsave(&ap->host_set->lock, flags);
5132 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5133 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3ef3b43d 5134
72fa4b74
TH
5135 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5136 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5137 dev->pio_mask = UINT_MAX;
5138 dev->mwdma_mask = UINT_MAX;
5139 dev->udma_mask = UINT_MAX;
5140}
5141
1da177e4
LT
5142/**
5143 * ata_host_init - Initialize an ata_port structure
5144 * @ap: Structure to initialize
5145 * @host: associated SCSI mid-layer structure
5146 * @host_set: Collection of hosts to which @ap belongs
5147 * @ent: Probe information provided by low-level driver
5148 * @port_no: Port number associated with this ata_port
5149 *
0cba632b
JG
5150 * Initialize a new ata_port structure, and its associated
5151 * scsi_host.
5152 *
1da177e4 5153 * LOCKING:
0cba632b 5154 * Inherited from caller.
1da177e4 5155 */
1da177e4
LT
5156static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5157 struct ata_host_set *host_set,
057ace5e 5158 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5159{
5160 unsigned int i;
5161
5162 host->max_id = 16;
5163 host->max_lun = 1;
5164 host->max_channel = 1;
5165 host->unique_id = ata_unique_id++;
5166 host->max_cmd_len = 12;
12413197 5167
198e0fed 5168 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
5169 ap->id = host->unique_id;
5170 ap->host = host;
5171 ap->ctl = ATA_DEVCTL_OBS;
5172 ap->host_set = host_set;
2f1f610b 5173 ap->dev = ent->dev;
1da177e4
LT
5174 ap->port_no = port_no;
5175 ap->hard_port_no =
5176 ent->legacy_mode ? ent->hard_port_no : port_no;
5177 ap->pio_mask = ent->pio_mask;
5178 ap->mwdma_mask = ent->mwdma_mask;
5179 ap->udma_mask = ent->udma_mask;
5180 ap->flags |= ent->host_flags;
5181 ap->ops = ent->port_ops;
5a04bf4b 5182 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5183 ap->active_tag = ATA_TAG_POISON;
5184 ap->last_ctl = 0xFF;
bd5d825c
BP
5185
5186#if defined(ATA_VERBOSE_DEBUG)
5187 /* turn on all debugging levels */
5188 ap->msg_enable = 0x00FF;
5189#elif defined(ATA_DEBUG)
5190 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5191#else
5192 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR;
5193#endif
1da177e4 5194
86e45b6b 5195 INIT_WORK(&ap->port_task, NULL, NULL);
580b2102 5196 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
a72ec4ce 5197 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5198 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5199
838df628
TH
5200 /* set cable type */
5201 ap->cbl = ATA_CBL_NONE;
5202 if (ap->flags & ATA_FLAG_SATA)
5203 ap->cbl = ATA_CBL_SATA;
5204
acf356b1
TH
5205 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5206 struct ata_device *dev = &ap->device[i];
38d87234 5207 dev->ap = ap;
72fa4b74 5208 dev->devno = i;
3ef3b43d 5209 ata_dev_init(dev);
acf356b1 5210 }
1da177e4
LT
5211
5212#ifdef ATA_IRQ_TRAP
5213 ap->stats.unhandled_irq = 1;
5214 ap->stats.idle_irq = 1;
5215#endif
5216
5217 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5218}
5219
5220/**
5221 * ata_host_add - Attach low-level ATA driver to system
5222 * @ent: Information provided by low-level driver
5223 * @host_set: Collections of ports to which we add
5224 * @port_no: Port number associated with this host
5225 *
0cba632b
JG
5226 * Attach low-level ATA driver to system.
5227 *
1da177e4 5228 * LOCKING:
0cba632b 5229 * PCI/etc. bus probe sem.
1da177e4
LT
5230 *
5231 * RETURNS:
0cba632b 5232 * New ata_port on success, for NULL on error.
1da177e4
LT
5233 */
5234
057ace5e 5235static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
5236 struct ata_host_set *host_set,
5237 unsigned int port_no)
5238{
5239 struct Scsi_Host *host;
5240 struct ata_port *ap;
5241 int rc;
5242
5243 DPRINTK("ENTER\n");
aec5c3c1 5244
52783c5d 5245 if (!ent->port_ops->error_handler &&
aec5c3c1
TH
5246 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5247 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5248 port_no);
5249 return NULL;
5250 }
5251
1da177e4
LT
5252 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5253 if (!host)
5254 return NULL;
5255
30afc84c
TH
5256 host->transportt = &ata_scsi_transport_template;
5257
35bb94b1 5258 ap = ata_shost_to_port(host);
1da177e4
LT
5259
5260 ata_host_init(ap, host, host_set, ent, port_no);
5261
5262 rc = ap->ops->port_start(ap);
5263 if (rc)
5264 goto err_out;
5265
5266 return ap;
5267
5268err_out:
5269 scsi_host_put(host);
5270 return NULL;
5271}
5272
5273/**
0cba632b
JG
5274 * ata_device_add - Register hardware device with ATA and SCSI layers
5275 * @ent: Probe information describing hardware device to be registered
5276 *
5277 * This function processes the information provided in the probe
5278 * information struct @ent, allocates the necessary ATA and SCSI
5279 * host information structures, initializes them, and registers
5280 * everything with requisite kernel subsystems.
5281 *
5282 * This function requests irqs, probes the ATA bus, and probes
5283 * the SCSI bus.
1da177e4
LT
5284 *
5285 * LOCKING:
0cba632b 5286 * PCI/etc. bus probe sem.
1da177e4
LT
5287 *
5288 * RETURNS:
0cba632b 5289 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5290 */
057ace5e 5291int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
5292{
5293 unsigned int count = 0, i;
5294 struct device *dev = ent->dev;
5295 struct ata_host_set *host_set;
5296
5297 DPRINTK("ENTER\n");
5298 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 5299 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
5300 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5301 if (!host_set)
5302 return 0;
1da177e4
LT
5303 spin_lock_init(&host_set->lock);
5304
5305 host_set->dev = dev;
5306 host_set->n_ports = ent->n_ports;
5307 host_set->irq = ent->irq;
5308 host_set->mmio_base = ent->mmio_base;
5309 host_set->private_data = ent->private_data;
5310 host_set->ops = ent->port_ops;
5444a6f4 5311 host_set->flags = ent->host_set_flags;
1da177e4
LT
5312
5313 /* register each port bound to this device */
5314 for (i = 0; i < ent->n_ports; i++) {
5315 struct ata_port *ap;
5316 unsigned long xfer_mode_mask;
5317
5318 ap = ata_host_add(ent, host_set, i);
5319 if (!ap)
5320 goto err_out;
5321
5322 host_set->ports[i] = ap;
5323 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5324 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5325 (ap->pio_mask << ATA_SHIFT_PIO);
5326
5327 /* print per-port info to dmesg */
f15a1daf
TH
5328 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5329 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5330 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5331 ata_mode_string(xfer_mode_mask),
5332 ap->ioaddr.cmd_addr,
5333 ap->ioaddr.ctl_addr,
5334 ap->ioaddr.bmdma_addr,
5335 ent->irq);
1da177e4
LT
5336
5337 ata_chk_status(ap);
5338 host_set->ops->irq_clear(ap);
e3180499 5339 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5340 count++;
5341 }
5342
57f3bda8
RD
5343 if (!count)
5344 goto err_free_ret;
1da177e4
LT
5345
5346 /* obtain irq, that is shared between channels */
5347 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5348 DRV_NAME, host_set))
5349 goto err_out;
5350
5351 /* perform each probe synchronously */
5352 DPRINTK("probe begin\n");
5353 for (i = 0; i < count; i++) {
5354 struct ata_port *ap;
5a04bf4b 5355 u32 scontrol;
1da177e4
LT
5356 int rc;
5357
5358 ap = host_set->ports[i];
5359
5a04bf4b
TH
5360 /* init sata_spd_limit to the current value */
5361 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5362 int spd = (scontrol >> 4) & 0xf;
5363 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5364 }
5365 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5366
1da177e4
LT
5367 rc = scsi_add_host(ap->host, dev);
5368 if (rc) {
f15a1daf 5369 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5370 /* FIXME: do something useful here */
5371 /* FIXME: handle unconditional calls to
5372 * scsi_scan_host and ata_host_remove, below,
5373 * at the very least
5374 */
5375 }
3e706399 5376
52783c5d 5377 if (ap->ops->error_handler) {
3e706399
TH
5378 unsigned long flags;
5379
5380 ata_port_probe(ap);
5381
5382 /* kick EH for boot probing */
5383 spin_lock_irqsave(&ap->host_set->lock, flags);
5384
5385 ap->eh_info.probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5386 ap->eh_info.action |= ATA_EH_SOFTRESET;
5387
5388 ap->flags |= ATA_FLAG_LOADING;
5389 ata_port_schedule_eh(ap);
5390
5391 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5392
5393 /* wait for EH to finish */
5394 ata_port_wait_eh(ap);
5395 } else {
5396 DPRINTK("ata%u: bus probe begin\n", ap->id);
5397 rc = ata_bus_probe(ap);
5398 DPRINTK("ata%u: bus probe end\n", ap->id);
5399
5400 if (rc) {
5401 /* FIXME: do something useful here?
5402 * Current libata behavior will
5403 * tear down everything when
5404 * the module is removed
5405 * or the h/w is unplugged.
5406 */
5407 }
5408 }
1da177e4
LT
5409 }
5410
5411 /* probes are done, now scan each port's disk(s) */
c893a3ae 5412 DPRINTK("host probe begin\n");
1da177e4
LT
5413 for (i = 0; i < count; i++) {
5414 struct ata_port *ap = host_set->ports[i];
5415
644dd0cc 5416 ata_scsi_scan_host(ap);
1da177e4
LT
5417 }
5418
5419 dev_set_drvdata(dev, host_set);
5420
5421 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5422 return ent->n_ports; /* success */
5423
5424err_out:
5425 for (i = 0; i < count; i++) {
5426 ata_host_remove(host_set->ports[i], 1);
5427 scsi_host_put(host_set->ports[i]->host);
5428 }
57f3bda8 5429err_free_ret:
1da177e4
LT
5430 kfree(host_set);
5431 VPRINTK("EXIT, returning 0\n");
5432 return 0;
5433}
5434
720ba126
TH
5435/**
5436 * ata_port_detach - Detach ATA port in prepration of device removal
5437 * @ap: ATA port to be detached
5438 *
5439 * Detach all ATA devices and the associated SCSI devices of @ap;
5440 * then, remove the associated SCSI host. @ap is guaranteed to
5441 * be quiescent on return from this function.
5442 *
5443 * LOCKING:
5444 * Kernel thread context (may sleep).
5445 */
5446void ata_port_detach(struct ata_port *ap)
5447{
5448 unsigned long flags;
5449 int i;
5450
5451 if (!ap->ops->error_handler)
5452 return;
5453
5454 /* tell EH we're leaving & flush EH */
5455 spin_lock_irqsave(&ap->host_set->lock, flags);
5456 ap->flags |= ATA_FLAG_UNLOADING;
5457 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5458
5459 ata_port_wait_eh(ap);
5460
5461 /* EH is now guaranteed to see UNLOADING, so no new device
5462 * will be attached. Disable all existing devices.
5463 */
5464 spin_lock_irqsave(&ap->host_set->lock, flags);
5465
5466 for (i = 0; i < ATA_MAX_DEVICES; i++)
5467 ata_dev_disable(&ap->device[i]);
5468
5469 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5470
5471 /* Final freeze & EH. All in-flight commands are aborted. EH
5472 * will be skipped and retrials will be terminated with bad
5473 * target.
5474 */
5475 spin_lock_irqsave(&ap->host_set->lock, flags);
5476 ata_port_freeze(ap); /* won't be thawed */
5477 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5478
5479 ata_port_wait_eh(ap);
5480
5481 /* Flush hotplug task. The sequence is similar to
5482 * ata_port_flush_task().
5483 */
5484 flush_workqueue(ata_aux_wq);
5485 cancel_delayed_work(&ap->hotplug_task);
5486 flush_workqueue(ata_aux_wq);
5487
5488 /* remove the associated SCSI host */
5489 scsi_remove_host(ap->host);
5490}
5491
17b14451
AC
5492/**
5493 * ata_host_set_remove - PCI layer callback for device removal
5494 * @host_set: ATA host set that was removed
5495 *
2e9edbf8 5496 * Unregister all objects associated with this host set. Free those
17b14451
AC
5497 * objects.
5498 *
5499 * LOCKING:
5500 * Inherited from calling layer (may sleep).
5501 */
5502
17b14451
AC
5503void ata_host_set_remove(struct ata_host_set *host_set)
5504{
17b14451
AC
5505 unsigned int i;
5506
720ba126
TH
5507 for (i = 0; i < host_set->n_ports; i++)
5508 ata_port_detach(host_set->ports[i]);
17b14451
AC
5509
5510 free_irq(host_set->irq, host_set);
5511
5512 for (i = 0; i < host_set->n_ports; i++) {
720ba126 5513 struct ata_port *ap = host_set->ports[i];
17b14451
AC
5514
5515 ata_scsi_release(ap->host);
5516
5517 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5518 struct ata_ioports *ioaddr = &ap->ioaddr;
5519
5520 if (ioaddr->cmd_addr == 0x1f0)
5521 release_region(0x1f0, 8);
5522 else if (ioaddr->cmd_addr == 0x170)
5523 release_region(0x170, 8);
5524 }
5525
5526 scsi_host_put(ap->host);
5527 }
5528
5529 if (host_set->ops->host_stop)
5530 host_set->ops->host_stop(host_set);
5531
5532 kfree(host_set);
5533}
5534
1da177e4
LT
5535/**
5536 * ata_scsi_release - SCSI layer callback hook for host unload
5537 * @host: libata host to be unloaded
5538 *
5539 * Performs all duties necessary to shut down a libata port...
5540 * Kill port kthread, disable port, and release resources.
5541 *
5542 * LOCKING:
5543 * Inherited from SCSI layer.
5544 *
5545 * RETURNS:
5546 * One.
5547 */
5548
5549int ata_scsi_release(struct Scsi_Host *host)
5550{
35bb94b1 5551 struct ata_port *ap = ata_shost_to_port(host);
1da177e4
LT
5552
5553 DPRINTK("ENTER\n");
5554
5555 ap->ops->port_disable(ap);
5556 ata_host_remove(ap, 0);
5557
5558 DPRINTK("EXIT\n");
5559 return 1;
5560}
5561
5562/**
5563 * ata_std_ports - initialize ioaddr with standard port offsets.
5564 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5565 *
5566 * Utility function which initializes data_addr, error_addr,
5567 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5568 * device_addr, status_addr, and command_addr to standard offsets
5569 * relative to cmd_addr.
5570 *
5571 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5572 */
0baab86b 5573
1da177e4
LT
5574void ata_std_ports(struct ata_ioports *ioaddr)
5575{
5576 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5577 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5578 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5579 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5580 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5581 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5582 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5583 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5584 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5585 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5586}
5587
0baab86b 5588
374b1873
JG
5589#ifdef CONFIG_PCI
5590
5591void ata_pci_host_stop (struct ata_host_set *host_set)
5592{
5593 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5594
5595 pci_iounmap(pdev, host_set->mmio_base);
5596}
5597
1da177e4
LT
5598/**
5599 * ata_pci_remove_one - PCI layer callback for device removal
5600 * @pdev: PCI device that was removed
5601 *
5602 * PCI layer indicates to libata via this hook that
6f0ef4fa 5603 * hot-unplug or module unload event has occurred.
1da177e4
LT
5604 * Handle this by unregistering all objects associated
5605 * with this PCI device. Free those objects. Then finally
5606 * release PCI resources and disable device.
5607 *
5608 * LOCKING:
5609 * Inherited from PCI layer (may sleep).
5610 */
5611
5612void ata_pci_remove_one (struct pci_dev *pdev)
5613{
5614 struct device *dev = pci_dev_to_dev(pdev);
5615 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 5616
17b14451 5617 ata_host_set_remove(host_set);
1da177e4
LT
5618 pci_release_regions(pdev);
5619 pci_disable_device(pdev);
5620 dev_set_drvdata(dev, NULL);
5621}
5622
5623/* move to PCI subsystem */
057ace5e 5624int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5625{
5626 unsigned long tmp = 0;
5627
5628 switch (bits->width) {
5629 case 1: {
5630 u8 tmp8 = 0;
5631 pci_read_config_byte(pdev, bits->reg, &tmp8);
5632 tmp = tmp8;
5633 break;
5634 }
5635 case 2: {
5636 u16 tmp16 = 0;
5637 pci_read_config_word(pdev, bits->reg, &tmp16);
5638 tmp = tmp16;
5639 break;
5640 }
5641 case 4: {
5642 u32 tmp32 = 0;
5643 pci_read_config_dword(pdev, bits->reg, &tmp32);
5644 tmp = tmp32;
5645 break;
5646 }
5647
5648 default:
5649 return -EINVAL;
5650 }
5651
5652 tmp &= bits->mask;
5653
5654 return (tmp == bits->val) ? 1 : 0;
5655}
9b847548
JA
5656
5657int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5658{
5659 pci_save_state(pdev);
5660 pci_disable_device(pdev);
5661 pci_set_power_state(pdev, PCI_D3hot);
5662 return 0;
5663}
5664
5665int ata_pci_device_resume(struct pci_dev *pdev)
5666{
5667 pci_set_power_state(pdev, PCI_D0);
5668 pci_restore_state(pdev);
5669 pci_enable_device(pdev);
5670 pci_set_master(pdev);
5671 return 0;
5672}
1da177e4
LT
5673#endif /* CONFIG_PCI */
5674
5675
1da177e4
LT
5676static int __init ata_init(void)
5677{
5678 ata_wq = create_workqueue("ata");
5679 if (!ata_wq)
5680 return -ENOMEM;
5681
453b07ac
TH
5682 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5683 if (!ata_aux_wq) {
5684 destroy_workqueue(ata_wq);
5685 return -ENOMEM;
5686 }
5687
1da177e4
LT
5688 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5689 return 0;
5690}
5691
5692static void __exit ata_exit(void)
5693{
5694 destroy_workqueue(ata_wq);
453b07ac 5695 destroy_workqueue(ata_aux_wq);
1da177e4
LT
5696}
5697
5698module_init(ata_init);
5699module_exit(ata_exit);
5700
67846b30
JG
5701static unsigned long ratelimit_time;
5702static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5703
5704int ata_ratelimit(void)
5705{
5706 int rc;
5707 unsigned long flags;
5708
5709 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5710
5711 if (time_after(jiffies, ratelimit_time)) {
5712 rc = 1;
5713 ratelimit_time = jiffies + (HZ/5);
5714 } else
5715 rc = 0;
5716
5717 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5718
5719 return rc;
5720}
5721
c22daff4
TH
5722/**
5723 * ata_wait_register - wait until register value changes
5724 * @reg: IO-mapped register
5725 * @mask: Mask to apply to read register value
5726 * @val: Wait condition
5727 * @interval_msec: polling interval in milliseconds
5728 * @timeout_msec: timeout in milliseconds
5729 *
5730 * Waiting for some bits of register to change is a common
5731 * operation for ATA controllers. This function reads 32bit LE
5732 * IO-mapped register @reg and tests for the following condition.
5733 *
5734 * (*@reg & mask) != val
5735 *
5736 * If the condition is met, it returns; otherwise, the process is
5737 * repeated after @interval_msec until timeout.
5738 *
5739 * LOCKING:
5740 * Kernel thread context (may sleep)
5741 *
5742 * RETURNS:
5743 * The final register value.
5744 */
5745u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5746 unsigned long interval_msec,
5747 unsigned long timeout_msec)
5748{
5749 unsigned long timeout;
5750 u32 tmp;
5751
5752 tmp = ioread32(reg);
5753
5754 /* Calculate timeout _after_ the first read to make sure
5755 * preceding writes reach the controller before starting to
5756 * eat away the timeout.
5757 */
5758 timeout = jiffies + (timeout_msec * HZ) / 1000;
5759
5760 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5761 msleep(interval_msec);
5762 tmp = ioread32(reg);
5763 }
5764
5765 return tmp;
5766}
5767
1da177e4
LT
5768/*
5769 * libata is essentially a library of internal helper functions for
5770 * low-level ATA host controller drivers. As such, the API/ABI is
5771 * likely to change as new drivers are added and updated.
5772 * Do not depend on ABI/API stability.
5773 */
5774
d7bb4cc7
TH
5775EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5776EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5777EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
1da177e4
LT
5778EXPORT_SYMBOL_GPL(ata_std_bios_param);
5779EXPORT_SYMBOL_GPL(ata_std_ports);
5780EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 5781EXPORT_SYMBOL_GPL(ata_port_detach);
17b14451 5782EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5783EXPORT_SYMBOL_GPL(ata_sg_init);
5784EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 5785EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 5786EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 5787EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 5788EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5789EXPORT_SYMBOL_GPL(ata_tf_load);
5790EXPORT_SYMBOL_GPL(ata_tf_read);
5791EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5792EXPORT_SYMBOL_GPL(ata_std_dev_select);
5793EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5794EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5795EXPORT_SYMBOL_GPL(ata_check_status);
5796EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5797EXPORT_SYMBOL_GPL(ata_exec_command);
5798EXPORT_SYMBOL_GPL(ata_port_start);
5799EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5800EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 5801EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
5802EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5803EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 5804EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 5805EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5806EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5807EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5808EXPORT_SYMBOL_GPL(ata_bmdma_start);
5809EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5810EXPORT_SYMBOL_GPL(ata_bmdma_status);
5811EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
5812EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5813EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5814EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5815EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5816EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 5817EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 5818EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
5819EXPORT_SYMBOL_GPL(sata_phy_debounce);
5820EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
5821EXPORT_SYMBOL_GPL(sata_phy_reset);
5822EXPORT_SYMBOL_GPL(__sata_phy_reset);
5823EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 5824EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804
TH
5825EXPORT_SYMBOL_GPL(ata_std_softreset);
5826EXPORT_SYMBOL_GPL(sata_std_hardreset);
5827EXPORT_SYMBOL_GPL(ata_std_postreset);
623a3128 5828EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5829EXPORT_SYMBOL_GPL(ata_dev_classify);
5830EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5831EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5832EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 5833EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 5834EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5835EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5836EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5837EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 5838EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 5839EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 5840EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
5841EXPORT_SYMBOL_GPL(ata_scsi_release);
5842EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
5843EXPORT_SYMBOL_GPL(sata_scr_valid);
5844EXPORT_SYMBOL_GPL(sata_scr_read);
5845EXPORT_SYMBOL_GPL(sata_scr_write);
5846EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5847EXPORT_SYMBOL_GPL(ata_port_online);
5848EXPORT_SYMBOL_GPL(ata_port_offline);
6a62a04d
TH
5849EXPORT_SYMBOL_GPL(ata_id_string);
5850EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5851EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5852
1bc4ccff 5853EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5854EXPORT_SYMBOL_GPL(ata_timing_compute);
5855EXPORT_SYMBOL_GPL(ata_timing_merge);
5856
1da177e4
LT
5857#ifdef CONFIG_PCI
5858EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5859EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5860EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5861EXPORT_SYMBOL_GPL(ata_pci_init_one);
5862EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5863EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5864EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5865EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5866EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5867#endif /* CONFIG_PCI */
9b847548
JA
5868
5869EXPORT_SYMBOL_GPL(ata_device_suspend);
5870EXPORT_SYMBOL_GPL(ata_device_resume);
5871EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5872EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 5873
ece1d636 5874EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
5875EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5876EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
5877EXPORT_SYMBOL_GPL(ata_port_freeze);
5878EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5879EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
5880EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5881EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 5882EXPORT_SYMBOL_GPL(ata_do_eh);