]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/scsi/libata-core.c
[PATCH] libata-dev: irq-pio minor fix
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
6aff8f1f 64static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
83206a29
TH
68static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
69 struct ata_device *dev);
acf356b1 70static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
71
72static unsigned int ata_unique_id = 1;
73static struct workqueue_struct *ata_wq;
74
418dc1f5 75int atapi_enabled = 1;
1623c81e
JG
76module_param(atapi_enabled, int, 0444);
77MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
78
c3c013a2
JG
79int libata_fua = 0;
80module_param_named(fua, libata_fua, int, 0444);
81MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
82
1da177e4
LT
83MODULE_AUTHOR("Jeff Garzik");
84MODULE_DESCRIPTION("Library module for ATA devices");
85MODULE_LICENSE("GPL");
86MODULE_VERSION(DRV_VERSION);
87
0baab86b 88
1da177e4
LT
89/**
90 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
91 * @tf: Taskfile to convert
92 * @fis: Buffer into which data will output
93 * @pmp: Port multiplier port
94 *
95 * Converts a standard ATA taskfile to a Serial ATA
96 * FIS structure (Register - Host to Device).
97 *
98 * LOCKING:
99 * Inherited from caller.
100 */
101
057ace5e 102void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
103{
104 fis[0] = 0x27; /* Register - Host to Device FIS */
105 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
106 bit 7 indicates Command FIS */
107 fis[2] = tf->command;
108 fis[3] = tf->feature;
109
110 fis[4] = tf->lbal;
111 fis[5] = tf->lbam;
112 fis[6] = tf->lbah;
113 fis[7] = tf->device;
114
115 fis[8] = tf->hob_lbal;
116 fis[9] = tf->hob_lbam;
117 fis[10] = tf->hob_lbah;
118 fis[11] = tf->hob_feature;
119
120 fis[12] = tf->nsect;
121 fis[13] = tf->hob_nsect;
122 fis[14] = 0;
123 fis[15] = tf->ctl;
124
125 fis[16] = 0;
126 fis[17] = 0;
127 fis[18] = 0;
128 fis[19] = 0;
129}
130
131/**
132 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
133 * @fis: Buffer from which data will be input
134 * @tf: Taskfile to output
135 *
e12a1be6 136 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
137 *
138 * LOCKING:
139 * Inherited from caller.
140 */
141
057ace5e 142void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
143{
144 tf->command = fis[2]; /* status */
145 tf->feature = fis[3]; /* error */
146
147 tf->lbal = fis[4];
148 tf->lbam = fis[5];
149 tf->lbah = fis[6];
150 tf->device = fis[7];
151
152 tf->hob_lbal = fis[8];
153 tf->hob_lbam = fis[9];
154 tf->hob_lbah = fis[10];
155
156 tf->nsect = fis[12];
157 tf->hob_nsect = fis[13];
158}
159
8cbd6df1
AL
160static const u8 ata_rw_cmds[] = {
161 /* pio multi */
162 ATA_CMD_READ_MULTI,
163 ATA_CMD_WRITE_MULTI,
164 ATA_CMD_READ_MULTI_EXT,
165 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
166 0,
167 0,
168 0,
169 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
170 /* pio */
171 ATA_CMD_PIO_READ,
172 ATA_CMD_PIO_WRITE,
173 ATA_CMD_PIO_READ_EXT,
174 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
175 0,
176 0,
177 0,
178 0,
8cbd6df1
AL
179 /* dma */
180 ATA_CMD_READ,
181 ATA_CMD_WRITE,
182 ATA_CMD_READ_EXT,
9a3dccc4
TH
183 ATA_CMD_WRITE_EXT,
184 0,
185 0,
186 0,
187 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 188};
1da177e4
LT
189
190/**
8cbd6df1
AL
191 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
192 * @qc: command to examine and configure
1da177e4 193 *
2e9edbf8 194 * Examine the device configuration and tf->flags to calculate
8cbd6df1 195 * the proper read/write commands and protocol to use.
1da177e4
LT
196 *
197 * LOCKING:
198 * caller.
199 */
9a3dccc4 200int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 201{
8cbd6df1
AL
202 struct ata_taskfile *tf = &qc->tf;
203 struct ata_device *dev = qc->dev;
9a3dccc4 204 u8 cmd;
1da177e4 205
9a3dccc4 206 int index, fua, lba48, write;
2e9edbf8 207
9a3dccc4 208 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
209 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
210 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 211
8cbd6df1
AL
212 if (dev->flags & ATA_DFLAG_PIO) {
213 tf->protocol = ATA_PROT_PIO;
9a3dccc4 214 index = dev->multi_count ? 0 : 8;
8d238e01
AC
215 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
216 /* Unable to use DMA due to host limitation */
217 tf->protocol = ATA_PROT_PIO;
aef9d533 218 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
219 } else {
220 tf->protocol = ATA_PROT_DMA;
9a3dccc4 221 index = 16;
8cbd6df1 222 }
1da177e4 223
9a3dccc4
TH
224 cmd = ata_rw_cmds[index + fua + lba48 + write];
225 if (cmd) {
226 tf->command = cmd;
227 return 0;
228 }
229 return -1;
1da177e4
LT
230}
231
cb95d562
TH
232/**
233 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
234 * @pio_mask: pio_mask
235 * @mwdma_mask: mwdma_mask
236 * @udma_mask: udma_mask
237 *
238 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
239 * unsigned int xfer_mask.
240 *
241 * LOCKING:
242 * None.
243 *
244 * RETURNS:
245 * Packed xfer_mask.
246 */
247static unsigned int ata_pack_xfermask(unsigned int pio_mask,
248 unsigned int mwdma_mask,
249 unsigned int udma_mask)
250{
251 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
252 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
253 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
254}
255
c0489e4e
TH
256/**
257 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
258 * @xfer_mask: xfer_mask to unpack
259 * @pio_mask: resulting pio_mask
260 * @mwdma_mask: resulting mwdma_mask
261 * @udma_mask: resulting udma_mask
262 *
263 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
264 * Any NULL distination masks will be ignored.
265 */
266static void ata_unpack_xfermask(unsigned int xfer_mask,
267 unsigned int *pio_mask,
268 unsigned int *mwdma_mask,
269 unsigned int *udma_mask)
270{
271 if (pio_mask)
272 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
273 if (mwdma_mask)
274 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
275 if (udma_mask)
276 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
277}
278
cb95d562 279static const struct ata_xfer_ent {
be9a50c8 280 int shift, bits;
cb95d562
TH
281 u8 base;
282} ata_xfer_tbl[] = {
283 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
284 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
285 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
286 { -1, },
1da177e4
LT
287};
288
289/**
cb95d562
TH
290 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
291 * @xfer_mask: xfer_mask of interest
1da177e4 292 *
cb95d562
TH
293 * Return matching XFER_* value for @xfer_mask. Only the highest
294 * bit of @xfer_mask is considered.
1da177e4
LT
295 *
296 * LOCKING:
297 * None.
298 *
299 * RETURNS:
cb95d562 300 * Matching XFER_* value, 0 if no match found.
1da177e4 301 */
cb95d562
TH
302static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
303{
304 int highbit = fls(xfer_mask) - 1;
305 const struct ata_xfer_ent *ent;
1da177e4 306
cb95d562
TH
307 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
308 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
309 return ent->base + highbit - ent->shift;
310 return 0;
311}
312
313/**
314 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
315 * @xfer_mode: XFER_* of interest
316 *
317 * Return matching xfer_mask for @xfer_mode.
318 *
319 * LOCKING:
320 * None.
321 *
322 * RETURNS:
323 * Matching xfer_mask, 0 if no match found.
324 */
325static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
1da177e4 326{
cb95d562 327 const struct ata_xfer_ent *ent;
1da177e4 328
cb95d562
TH
329 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
330 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
331 return 1 << (ent->shift + xfer_mode - ent->base);
332 return 0;
333}
1da177e4 334
cb95d562
TH
335/**
336 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
337 * @xfer_mode: XFER_* of interest
338 *
339 * Return matching xfer_shift for @xfer_mode.
340 *
341 * LOCKING:
342 * None.
343 *
344 * RETURNS:
345 * Matching xfer_shift, -1 if no match found.
346 */
347static int ata_xfer_mode2shift(unsigned int xfer_mode)
348{
349 const struct ata_xfer_ent *ent;
1da177e4 350
cb95d562
TH
351 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
352 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
353 return ent->shift;
354 return -1;
355}
356
1da177e4 357/**
1da7b0d0
TH
358 * ata_mode_string - convert xfer_mask to string
359 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
360 *
361 * Determine string which represents the highest speed
1da7b0d0 362 * (highest bit in @modemask).
1da177e4
LT
363 *
364 * LOCKING:
365 * None.
366 *
367 * RETURNS:
368 * Constant C string representing highest speed listed in
1da7b0d0 369 * @mode_mask, or the constant C string "<n/a>".
1da177e4 370 */
1da7b0d0 371static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 372{
75f554bc
TH
373 static const char * const xfer_mode_str[] = {
374 "PIO0",
375 "PIO1",
376 "PIO2",
377 "PIO3",
378 "PIO4",
379 "MWDMA0",
380 "MWDMA1",
381 "MWDMA2",
382 "UDMA/16",
383 "UDMA/25",
384 "UDMA/33",
385 "UDMA/44",
386 "UDMA/66",
387 "UDMA/100",
388 "UDMA/133",
389 "UDMA7",
390 };
1da7b0d0 391 int highbit;
1da177e4 392
1da7b0d0
TH
393 highbit = fls(xfer_mask) - 1;
394 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
395 return xfer_mode_str[highbit];
1da177e4 396 return "<n/a>";
1da177e4
LT
397}
398
4c360c81
TH
399static const char *sata_spd_string(unsigned int spd)
400{
401 static const char * const spd_str[] = {
402 "1.5 Gbps",
403 "3.0 Gbps",
404 };
405
406 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
407 return "<unknown>";
408 return spd_str[spd - 1];
409}
410
1ad8e7f9 411void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
0b8efb0a 412{
e1211e3f 413 if (ata_dev_enabled(dev)) {
0b8efb0a
TH
414 printk(KERN_WARNING "ata%u: dev %u disabled\n",
415 ap->id, dev->devno);
416 dev->class++;
417 }
418}
419
1da177e4
LT
420/**
421 * ata_pio_devchk - PATA device presence detection
422 * @ap: ATA channel to examine
423 * @device: Device to examine (starting at zero)
424 *
425 * This technique was originally described in
426 * Hale Landis's ATADRVR (www.ata-atapi.com), and
427 * later found its way into the ATA/ATAPI spec.
428 *
429 * Write a pattern to the ATA shadow registers,
430 * and if a device is present, it will respond by
431 * correctly storing and echoing back the
432 * ATA shadow register contents.
433 *
434 * LOCKING:
435 * caller.
436 */
437
438static unsigned int ata_pio_devchk(struct ata_port *ap,
439 unsigned int device)
440{
441 struct ata_ioports *ioaddr = &ap->ioaddr;
442 u8 nsect, lbal;
443
444 ap->ops->dev_select(ap, device);
445
446 outb(0x55, ioaddr->nsect_addr);
447 outb(0xaa, ioaddr->lbal_addr);
448
449 outb(0xaa, ioaddr->nsect_addr);
450 outb(0x55, ioaddr->lbal_addr);
451
452 outb(0x55, ioaddr->nsect_addr);
453 outb(0xaa, ioaddr->lbal_addr);
454
455 nsect = inb(ioaddr->nsect_addr);
456 lbal = inb(ioaddr->lbal_addr);
457
458 if ((nsect == 0x55) && (lbal == 0xaa))
459 return 1; /* we found a device */
460
461 return 0; /* nothing found */
462}
463
464/**
465 * ata_mmio_devchk - PATA device presence detection
466 * @ap: ATA channel to examine
467 * @device: Device to examine (starting at zero)
468 *
469 * This technique was originally described in
470 * Hale Landis's ATADRVR (www.ata-atapi.com), and
471 * later found its way into the ATA/ATAPI spec.
472 *
473 * Write a pattern to the ATA shadow registers,
474 * and if a device is present, it will respond by
475 * correctly storing and echoing back the
476 * ATA shadow register contents.
477 *
478 * LOCKING:
479 * caller.
480 */
481
482static unsigned int ata_mmio_devchk(struct ata_port *ap,
483 unsigned int device)
484{
485 struct ata_ioports *ioaddr = &ap->ioaddr;
486 u8 nsect, lbal;
487
488 ap->ops->dev_select(ap, device);
489
490 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
491 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
492
493 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
494 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
495
496 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
498
499 nsect = readb((void __iomem *) ioaddr->nsect_addr);
500 lbal = readb((void __iomem *) ioaddr->lbal_addr);
501
502 if ((nsect == 0x55) && (lbal == 0xaa))
503 return 1; /* we found a device */
504
505 return 0; /* nothing found */
506}
507
508/**
509 * ata_devchk - PATA device presence detection
510 * @ap: ATA channel to examine
511 * @device: Device to examine (starting at zero)
512 *
513 * Dispatch ATA device presence detection, depending
514 * on whether we are using PIO or MMIO to talk to the
515 * ATA shadow registers.
516 *
517 * LOCKING:
518 * caller.
519 */
520
521static unsigned int ata_devchk(struct ata_port *ap,
522 unsigned int device)
523{
524 if (ap->flags & ATA_FLAG_MMIO)
525 return ata_mmio_devchk(ap, device);
526 return ata_pio_devchk(ap, device);
527}
528
529/**
530 * ata_dev_classify - determine device type based on ATA-spec signature
531 * @tf: ATA taskfile register set for device to be identified
532 *
533 * Determine from taskfile register contents whether a device is
534 * ATA or ATAPI, as per "Signature and persistence" section
535 * of ATA/PI spec (volume 1, sect 5.14).
536 *
537 * LOCKING:
538 * None.
539 *
540 * RETURNS:
541 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
542 * the event of failure.
543 */
544
057ace5e 545unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
546{
547 /* Apple's open source Darwin code hints that some devices only
548 * put a proper signature into the LBA mid/high registers,
549 * So, we only check those. It's sufficient for uniqueness.
550 */
551
552 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
553 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
554 DPRINTK("found ATA device by sig\n");
555 return ATA_DEV_ATA;
556 }
557
558 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
559 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
560 DPRINTK("found ATAPI device by sig\n");
561 return ATA_DEV_ATAPI;
562 }
563
564 DPRINTK("unknown device\n");
565 return ATA_DEV_UNKNOWN;
566}
567
568/**
569 * ata_dev_try_classify - Parse returned ATA device signature
570 * @ap: ATA channel to examine
571 * @device: Device to examine (starting at zero)
b4dc7623 572 * @r_err: Value of error register on completion
1da177e4
LT
573 *
574 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
575 * an ATA/ATAPI-defined set of values is placed in the ATA
576 * shadow registers, indicating the results of device detection
577 * and diagnostics.
578 *
579 * Select the ATA device, and read the values from the ATA shadow
580 * registers. Then parse according to the Error register value,
581 * and the spec-defined values examined by ata_dev_classify().
582 *
583 * LOCKING:
584 * caller.
b4dc7623
TH
585 *
586 * RETURNS:
587 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
588 */
589
b4dc7623
TH
590static unsigned int
591ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 592{
1da177e4
LT
593 struct ata_taskfile tf;
594 unsigned int class;
595 u8 err;
596
597 ap->ops->dev_select(ap, device);
598
599 memset(&tf, 0, sizeof(tf));
600
1da177e4 601 ap->ops->tf_read(ap, &tf);
0169e284 602 err = tf.feature;
b4dc7623
TH
603 if (r_err)
604 *r_err = err;
1da177e4
LT
605
606 /* see if device passed diags */
607 if (err == 1)
608 /* do nothing */ ;
609 else if ((device == 0) && (err == 0x81))
610 /* do nothing */ ;
611 else
b4dc7623 612 return ATA_DEV_NONE;
1da177e4 613
b4dc7623 614 /* determine if device is ATA or ATAPI */
1da177e4 615 class = ata_dev_classify(&tf);
b4dc7623 616
1da177e4 617 if (class == ATA_DEV_UNKNOWN)
b4dc7623 618 return ATA_DEV_NONE;
1da177e4 619 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
620 return ATA_DEV_NONE;
621 return class;
1da177e4
LT
622}
623
624/**
6a62a04d 625 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
626 * @id: IDENTIFY DEVICE results we will examine
627 * @s: string into which data is output
628 * @ofs: offset into identify device page
629 * @len: length of string to return. must be an even number.
630 *
631 * The strings in the IDENTIFY DEVICE page are broken up into
632 * 16-bit chunks. Run through the string, and output each
633 * 8-bit chunk linearly, regardless of platform.
634 *
635 * LOCKING:
636 * caller.
637 */
638
6a62a04d
TH
639void ata_id_string(const u16 *id, unsigned char *s,
640 unsigned int ofs, unsigned int len)
1da177e4
LT
641{
642 unsigned int c;
643
644 while (len > 0) {
645 c = id[ofs] >> 8;
646 *s = c;
647 s++;
648
649 c = id[ofs] & 0xff;
650 *s = c;
651 s++;
652
653 ofs++;
654 len -= 2;
655 }
656}
657
0e949ff3 658/**
6a62a04d 659 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
660 * @id: IDENTIFY DEVICE results we will examine
661 * @s: string into which data is output
662 * @ofs: offset into identify device page
663 * @len: length of string to return. must be an odd number.
664 *
6a62a04d 665 * This function is identical to ata_id_string except that it
0e949ff3
TH
666 * trims trailing spaces and terminates the resulting string with
667 * null. @len must be actual maximum length (even number) + 1.
668 *
669 * LOCKING:
670 * caller.
671 */
6a62a04d
TH
672void ata_id_c_string(const u16 *id, unsigned char *s,
673 unsigned int ofs, unsigned int len)
0e949ff3
TH
674{
675 unsigned char *p;
676
677 WARN_ON(!(len & 1));
678
6a62a04d 679 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
680
681 p = s + strnlen(s, len - 1);
682 while (p > s && p[-1] == ' ')
683 p--;
684 *p = '\0';
685}
0baab86b 686
2940740b
TH
687static u64 ata_id_n_sectors(const u16 *id)
688{
689 if (ata_id_has_lba(id)) {
690 if (ata_id_has_lba48(id))
691 return ata_id_u64(id, 100);
692 else
693 return ata_id_u32(id, 60);
694 } else {
695 if (ata_id_current_chs_valid(id))
696 return ata_id_u32(id, 57);
697 else
698 return id[1] * id[3] * id[6];
699 }
700}
0baab86b
EF
701
702/**
703 * ata_noop_dev_select - Select device 0/1 on ATA bus
704 * @ap: ATA channel to manipulate
705 * @device: ATA device (numbered from zero) to select
706 *
707 * This function performs no actual function.
708 *
709 * May be used as the dev_select() entry in ata_port_operations.
710 *
711 * LOCKING:
712 * caller.
713 */
1da177e4
LT
714void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
715{
716}
717
0baab86b 718
1da177e4
LT
719/**
720 * ata_std_dev_select - Select device 0/1 on ATA bus
721 * @ap: ATA channel to manipulate
722 * @device: ATA device (numbered from zero) to select
723 *
724 * Use the method defined in the ATA specification to
725 * make either device 0, or device 1, active on the
0baab86b
EF
726 * ATA channel. Works with both PIO and MMIO.
727 *
728 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
729 *
730 * LOCKING:
731 * caller.
732 */
733
734void ata_std_dev_select (struct ata_port *ap, unsigned int device)
735{
736 u8 tmp;
737
738 if (device == 0)
739 tmp = ATA_DEVICE_OBS;
740 else
741 tmp = ATA_DEVICE_OBS | ATA_DEV1;
742
743 if (ap->flags & ATA_FLAG_MMIO) {
744 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
745 } else {
746 outb(tmp, ap->ioaddr.device_addr);
747 }
748 ata_pause(ap); /* needed; also flushes, for mmio */
749}
750
751/**
752 * ata_dev_select - Select device 0/1 on ATA bus
753 * @ap: ATA channel to manipulate
754 * @device: ATA device (numbered from zero) to select
755 * @wait: non-zero to wait for Status register BSY bit to clear
756 * @can_sleep: non-zero if context allows sleeping
757 *
758 * Use the method defined in the ATA specification to
759 * make either device 0, or device 1, active on the
760 * ATA channel.
761 *
762 * This is a high-level version of ata_std_dev_select(),
763 * which additionally provides the services of inserting
764 * the proper pauses and status polling, where needed.
765 *
766 * LOCKING:
767 * caller.
768 */
769
770void ata_dev_select(struct ata_port *ap, unsigned int device,
771 unsigned int wait, unsigned int can_sleep)
772{
773 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
774 ap->id, device, wait);
775
776 if (wait)
777 ata_wait_idle(ap);
778
779 ap->ops->dev_select(ap, device);
780
781 if (wait) {
782 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
783 msleep(150);
784 ata_wait_idle(ap);
785 }
786}
787
788/**
789 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 790 * @id: IDENTIFY DEVICE page to dump
1da177e4 791 *
0bd3300a
TH
792 * Dump selected 16-bit words from the given IDENTIFY DEVICE
793 * page.
1da177e4
LT
794 *
795 * LOCKING:
796 * caller.
797 */
798
0bd3300a 799static inline void ata_dump_id(const u16 *id)
1da177e4
LT
800{
801 DPRINTK("49==0x%04x "
802 "53==0x%04x "
803 "63==0x%04x "
804 "64==0x%04x "
805 "75==0x%04x \n",
0bd3300a
TH
806 id[49],
807 id[53],
808 id[63],
809 id[64],
810 id[75]);
1da177e4
LT
811 DPRINTK("80==0x%04x "
812 "81==0x%04x "
813 "82==0x%04x "
814 "83==0x%04x "
815 "84==0x%04x \n",
0bd3300a
TH
816 id[80],
817 id[81],
818 id[82],
819 id[83],
820 id[84]);
1da177e4
LT
821 DPRINTK("88==0x%04x "
822 "93==0x%04x\n",
0bd3300a
TH
823 id[88],
824 id[93]);
1da177e4
LT
825}
826
cb95d562
TH
827/**
828 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
829 * @id: IDENTIFY data to compute xfer mask from
11e29e21 830 *
cb95d562
TH
831 * Compute the xfermask for this device. This is not as trivial
832 * as it seems if we must consider early devices correctly.
833 *
834 * FIXME: pre IDE drive timing (do we care ?).
835 *
836 * LOCKING:
837 * None.
838 *
839 * RETURNS:
840 * Computed xfermask
11e29e21 841 */
cb95d562 842static unsigned int ata_id_xfermask(const u16 *id)
11e29e21 843{
cb95d562 844 unsigned int pio_mask, mwdma_mask, udma_mask;
11e29e21 845
ffa29456 846 /* Usual case. Word 53 indicates word 64 is valid */
cb95d562
TH
847 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
848 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
849 pio_mask <<= 3;
850 pio_mask |= 0x7;
851 } else {
852 /* If word 64 isn't valid then Word 51 high byte holds
853 * the PIO timing number for the maximum. Turn it into
854 * a mask.
855 */
856 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
857
858 /* But wait.. there's more. Design your standards by
859 * committee and you too can get a free iordy field to
860 * process. However its the speeds not the modes that
861 * are supported... Note drivers using the timing API
862 * will get this right anyway
863 */
11e29e21
AC
864 }
865
cb95d562 866 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
867
868 udma_mask = 0;
869 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
870 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
11e29e21 871
cb95d562 872 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
95064379
TH
873}
874
86e45b6b
TH
875/**
876 * ata_port_queue_task - Queue port_task
877 * @ap: The ata_port to queue port_task for
878 *
879 * Schedule @fn(@data) for execution after @delay jiffies using
880 * port_task. There is one port_task per port and it's the
881 * user(low level driver)'s responsibility to make sure that only
882 * one task is active at any given time.
883 *
884 * libata core layer takes care of synchronization between
885 * port_task and EH. ata_port_queue_task() may be ignored for EH
886 * synchronization.
887 *
888 * LOCKING:
889 * Inherited from caller.
890 */
891void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
892 unsigned long delay)
95064379 893{
86e45b6b
TH
894 int rc;
895
2e755f68 896 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
897 return;
898
899 PREPARE_WORK(&ap->port_task, fn, data);
900
901 if (!delay)
902 rc = queue_work(ata_wq, &ap->port_task);
903 else
904 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
905
906 /* rc == 0 means that another user is using port task */
907 WARN_ON(rc == 0);
c18d06f8
TH
908}
909
910/**
86e45b6b
TH
911 * ata_port_flush_task - Flush port_task
912 * @ap: The ata_port to flush port_task for
c18d06f8 913 *
86e45b6b
TH
914 * After this function completes, port_task is guranteed not to
915 * be running or scheduled.
c18d06f8
TH
916 *
917 * LOCKING:
918 * Kernel thread context (may sleep)
919 */
86e45b6b 920void ata_port_flush_task(struct ata_port *ap)
c18d06f8 921{
c18d06f8
TH
922 unsigned long flags;
923
924 DPRINTK("ENTER\n");
925
926 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 927 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
c18d06f8
TH
928 spin_unlock_irqrestore(&ap->host_set->lock, flags);
929
930 DPRINTK("flush #1\n");
931 flush_workqueue(ata_wq);
932
933 /*
934 * At this point, if a task is running, it's guaranteed to see
935 * the FLUSH flag; thus, it will never queue pio tasks again.
936 * Cancel and flush.
937 */
86e45b6b 938 if (!cancel_delayed_work(&ap->port_task)) {
c18d06f8
TH
939 DPRINTK("flush #2\n");
940 flush_workqueue(ata_wq);
941 }
942
943 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 944 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
c18d06f8
TH
945 spin_unlock_irqrestore(&ap->host_set->lock, flags);
946
947 DPRINTK("EXIT\n");
95064379
TH
948}
949
77853bf2 950void ata_qc_complete_internal(struct ata_queued_cmd *qc)
64f043d8 951{
77853bf2 952 struct completion *waiting = qc->private_data;
64f043d8 953
77853bf2 954 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 955 complete(waiting);
a2a7a662
TH
956}
957
958/**
959 * ata_exec_internal - execute libata internal command
960 * @ap: Port to which the command is sent
961 * @dev: Device to which the command is sent
962 * @tf: Taskfile registers for the command and the result
d69cf37d 963 * @cdb: CDB for packet command
a2a7a662
TH
964 * @dma_dir: Data tranfer direction of the command
965 * @buf: Data buffer of the command
966 * @buflen: Length of data buffer
967 *
968 * Executes libata internal command with timeout. @tf contains
969 * command on entry and result on return. Timeout and error
970 * conditions are reported via return value. No recovery action
971 * is taken after a command times out. It's caller's duty to
972 * clean up after timeout.
973 *
974 * LOCKING:
975 * None. Should be called with kernel context, might sleep.
976 */
977
1ad8e7f9
TH
978unsigned ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
979 struct ata_taskfile *tf, const u8 *cdb,
980 int dma_dir, void *buf, unsigned int buflen)
a2a7a662
TH
981{
982 u8 command = tf->command;
983 struct ata_queued_cmd *qc;
984 DECLARE_COMPLETION(wait);
985 unsigned long flags;
77853bf2 986 unsigned int err_mask;
a2a7a662
TH
987
988 spin_lock_irqsave(&ap->host_set->lock, flags);
989
990 qc = ata_qc_new_init(ap, dev);
991 BUG_ON(qc == NULL);
992
993 qc->tf = *tf;
d69cf37d
TH
994 if (cdb)
995 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
a2a7a662
TH
996 qc->dma_dir = dma_dir;
997 if (dma_dir != DMA_NONE) {
998 ata_sg_init_one(qc, buf, buflen);
999 qc->nsect = buflen / ATA_SECT_SIZE;
1000 }
1001
77853bf2 1002 qc->private_data = &wait;
a2a7a662
TH
1003 qc->complete_fn = ata_qc_complete_internal;
1004
8e0e694a 1005 ata_qc_issue(qc);
a2a7a662
TH
1006
1007 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1008
1009 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
41ade50c
AL
1010 ata_port_flush_task(ap);
1011
a2a7a662
TH
1012 spin_lock_irqsave(&ap->host_set->lock, flags);
1013
1014 /* We're racing with irq here. If we lose, the
1015 * following test prevents us from completing the qc
1016 * again. If completion irq occurs after here but
1017 * before the caller cleans up, it will result in a
1018 * spurious interrupt. We can live with that.
1019 */
77853bf2 1020 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 1021 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
1022 ata_qc_complete(qc);
1023 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1024 ap->id, command);
64f043d8
JG
1025 }
1026
a2a7a662 1027 spin_unlock_irqrestore(&ap->host_set->lock, flags);
64f043d8
JG
1028 }
1029
77853bf2
TH
1030 *tf = qc->tf;
1031 err_mask = qc->err_mask;
1032
1033 ata_qc_free(qc);
1034
1f7dd3e9
TH
1035 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1036 * Until those drivers are fixed, we detect the condition
1037 * here, fail the command with AC_ERR_SYSTEM and reenable the
1038 * port.
1039 *
1040 * Note that this doesn't change any behavior as internal
1041 * command failure results in disabling the device in the
1042 * higher layer for LLDDs without new reset/EH callbacks.
1043 *
1044 * Kill the following code as soon as those drivers are fixed.
1045 */
198e0fed 1046 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1047 err_mask |= AC_ERR_SYSTEM;
1048 ata_port_probe(ap);
1049 }
1050
77853bf2 1051 return err_mask;
64f043d8
JG
1052}
1053
1bc4ccff
AC
1054/**
1055 * ata_pio_need_iordy - check if iordy needed
1056 * @adev: ATA device
1057 *
1058 * Check if the current speed of the device requires IORDY. Used
1059 * by various controllers for chip configuration.
1060 */
1061
1062unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1063{
1064 int pio;
1065 int speed = adev->pio_mode - XFER_PIO_0;
1066
1067 if (speed < 2)
1068 return 0;
1069 if (speed > 2)
1070 return 1;
2e9edbf8 1071
1bc4ccff
AC
1072 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1073
1074 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1075 pio = adev->id[ATA_ID_EIDE_PIO];
1076 /* Is the speed faster than the drive allows non IORDY ? */
1077 if (pio) {
1078 /* This is cycle times not frequency - watch the logic! */
1079 if (pio > 240) /* PIO2 is 240nS per cycle */
1080 return 1;
1081 return 0;
1082 }
1083 }
1084 return 0;
1085}
1086
1da177e4 1087/**
49016aca
TH
1088 * ata_dev_read_id - Read ID data from the specified device
1089 * @ap: port on which target device resides
1090 * @dev: target device
1091 * @p_class: pointer to class of the target device (may be changed)
1092 * @post_reset: is this read ID post-reset?
d9572b1d 1093 * @p_id: read IDENTIFY page (newly allocated)
1da177e4 1094 *
49016aca
TH
1095 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1096 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1097 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1098 * for pre-ATA4 drives.
1da177e4
LT
1099 *
1100 * LOCKING:
49016aca
TH
1101 * Kernel thread context (may sleep)
1102 *
1103 * RETURNS:
1104 * 0 on success, -errno otherwise.
1da177e4 1105 */
49016aca 1106static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
d9572b1d 1107 unsigned int *p_class, int post_reset, u16 **p_id)
1da177e4 1108{
49016aca 1109 unsigned int class = *p_class;
a0123703 1110 struct ata_taskfile tf;
49016aca 1111 unsigned int err_mask = 0;
d9572b1d 1112 u16 *id;
49016aca
TH
1113 const char *reason;
1114 int rc;
1da177e4 1115
49016aca 1116 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1117
49016aca 1118 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1119
d9572b1d
TH
1120 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1121 if (id == NULL) {
1122 rc = -ENOMEM;
1123 reason = "out of memory";
1124 goto err_out;
1125 }
1126
49016aca
TH
1127 retry:
1128 ata_tf_init(ap, &tf, dev->devno);
a0123703 1129
49016aca
TH
1130 switch (class) {
1131 case ATA_DEV_ATA:
a0123703 1132 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1133 break;
1134 case ATA_DEV_ATAPI:
a0123703 1135 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1136 break;
1137 default:
1138 rc = -ENODEV;
1139 reason = "unsupported class";
1140 goto err_out;
1da177e4
LT
1141 }
1142
a0123703 1143 tf.protocol = ATA_PROT_PIO;
1da177e4 1144
d69cf37d 1145 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1146 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1147 if (err_mask) {
49016aca
TH
1148 rc = -EIO;
1149 reason = "I/O error";
1da177e4
LT
1150 goto err_out;
1151 }
1152
49016aca 1153 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1154
49016aca 1155 /* sanity check */
692785e7 1156 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1157 rc = -EINVAL;
1158 reason = "device reports illegal type";
1159 goto err_out;
1160 }
1161
1162 if (post_reset && class == ATA_DEV_ATA) {
1163 /*
1164 * The exact sequence expected by certain pre-ATA4 drives is:
1165 * SRST RESET
1166 * IDENTIFY
1167 * INITIALIZE DEVICE PARAMETERS
1168 * anything else..
1169 * Some drives were very specific about that exact sequence.
1170 */
1171 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
00b6f5e9 1172 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
49016aca
TH
1173 if (err_mask) {
1174 rc = -EIO;
1175 reason = "INIT_DEV_PARAMS failed";
1176 goto err_out;
1177 }
1178
1179 /* current CHS translation info (id[53-58]) might be
1180 * changed. reread the identify device info.
1181 */
1182 post_reset = 0;
1183 goto retry;
1184 }
1185 }
1186
1187 *p_class = class;
d9572b1d 1188 *p_id = id;
49016aca
TH
1189 return 0;
1190
1191 err_out:
1192 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1193 ap->id, dev->devno, reason);
d9572b1d 1194 kfree(id);
49016aca
TH
1195 return rc;
1196}
1197
4b2f3ede
TH
1198static inline u8 ata_dev_knobble(const struct ata_port *ap,
1199 struct ata_device *dev)
1200{
1201 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1202}
1203
49016aca 1204/**
ffeae418
TH
1205 * ata_dev_configure - Configure the specified ATA/ATAPI device
1206 * @ap: Port on which target device resides
1207 * @dev: Target device to configure
4c2d721a 1208 * @print_info: Enable device info printout
ffeae418
TH
1209 *
1210 * Configure @dev according to @dev->id. Generic and low-level
1211 * driver specific fixups are also applied.
49016aca
TH
1212 *
1213 * LOCKING:
ffeae418
TH
1214 * Kernel thread context (may sleep)
1215 *
1216 * RETURNS:
1217 * 0 on success, -errno otherwise
49016aca 1218 */
4c2d721a
TH
1219static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1220 int print_info)
49016aca 1221{
1148c3a7 1222 const u16 *id = dev->id;
ff8854b2 1223 unsigned int xfer_mask;
49016aca
TH
1224 int i, rc;
1225
e1211e3f 1226 if (!ata_dev_enabled(dev)) {
49016aca 1227 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1228 ap->id, dev->devno);
1229 return 0;
49016aca
TH
1230 }
1231
ffeae418 1232 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
49016aca 1233
c39f5ebe
TH
1234 /* print device capabilities */
1235 if (print_info)
1236 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1237 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1238 ap->id, dev->devno, id[49], id[82], id[83],
1239 id[84], id[85], id[86], id[87], id[88]);
1240
208a9933 1241 /* initialize to-be-configured parameters */
ea1dd4e1 1242 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1243 dev->max_sectors = 0;
1244 dev->cdb_len = 0;
1245 dev->n_sectors = 0;
1246 dev->cylinders = 0;
1247 dev->heads = 0;
1248 dev->sectors = 0;
1da177e4
LT
1249
1250 /*
1251 * common ATA, ATAPI feature tests
1252 */
1253
ff8854b2 1254 /* find max transfer mode; for printk only */
1148c3a7 1255 xfer_mask = ata_id_xfermask(id);
1da177e4 1256
1148c3a7 1257 ata_dump_id(id);
1da177e4
LT
1258
1259 /* ATA-specific feature tests */
1260 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1261 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1262
1148c3a7 1263 if (ata_id_has_lba(id)) {
4c2d721a 1264 const char *lba_desc;
8bf62ece 1265
4c2d721a
TH
1266 lba_desc = "LBA";
1267 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1268 if (ata_id_has_lba48(id)) {
8bf62ece 1269 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1270 lba_desc = "LBA48";
1271 }
8bf62ece
AL
1272
1273 /* print device info to dmesg */
4c2d721a
TH
1274 if (print_info)
1275 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1276 "max %s, %Lu sectors: %s\n",
1277 ap->id, dev->devno,
1148c3a7 1278 ata_id_major_version(id),
ff8854b2 1279 ata_mode_string(xfer_mask),
4c2d721a
TH
1280 (unsigned long long)dev->n_sectors,
1281 lba_desc);
ffeae418 1282 } else {
8bf62ece
AL
1283 /* CHS */
1284
1285 /* Default translation */
1148c3a7
TH
1286 dev->cylinders = id[1];
1287 dev->heads = id[3];
1288 dev->sectors = id[6];
8bf62ece 1289
1148c3a7 1290 if (ata_id_current_chs_valid(id)) {
8bf62ece 1291 /* Current CHS translation is valid. */
1148c3a7
TH
1292 dev->cylinders = id[54];
1293 dev->heads = id[55];
1294 dev->sectors = id[56];
8bf62ece
AL
1295 }
1296
1297 /* print device info to dmesg */
4c2d721a
TH
1298 if (print_info)
1299 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1300 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1301 ap->id, dev->devno,
1148c3a7 1302 ata_id_major_version(id),
ff8854b2 1303 ata_mode_string(xfer_mask),
4c2d721a
TH
1304 (unsigned long long)dev->n_sectors,
1305 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1306 }
1307
07f6f7d0
AL
1308 if (dev->id[59] & 0x100) {
1309 dev->multi_count = dev->id[59] & 0xff;
1310 DPRINTK("ata%u: dev %u multi count %u\n",
999bb6f4 1311 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1312 }
1313
13ee4628 1314 dev->cdb_len = 16;
1da177e4
LT
1315 }
1316
1317 /* ATAPI-specific feature tests */
2c13b7ce 1318 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1319 char *cdb_intr_string = "";
1320
1148c3a7 1321 rc = atapi_cdb_len(id);
1da177e4
LT
1322 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1323 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
ffeae418 1324 rc = -EINVAL;
1da177e4
LT
1325 goto err_out_nosup;
1326 }
6e7846e9 1327 dev->cdb_len = (unsigned int) rc;
1da177e4 1328
08a556db 1329 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1330 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1331 cdb_intr_string = ", CDB intr";
1332 }
312f7da2 1333
1da177e4 1334 /* print device info to dmesg */
4c2d721a 1335 if (print_info)
08a556db
AL
1336 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s%s\n",
1337 ap->id, dev->devno, ata_mode_string(xfer_mask),
1338 cdb_intr_string);
1da177e4
LT
1339 }
1340
6e7846e9
TH
1341 ap->host->max_cmd_len = 0;
1342 for (i = 0; i < ATA_MAX_DEVICES; i++)
1343 ap->host->max_cmd_len = max_t(unsigned int,
1344 ap->host->max_cmd_len,
1345 ap->device[i].cdb_len);
1346
6f2f3812 1347 /* limit bridge transfers to udma5, 200 sectors */
4b2f3ede 1348 if (ata_dev_knobble(ap, dev)) {
4c2d721a
TH
1349 if (print_info)
1350 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1351 ap->id, dev->devno);
5a529139 1352 dev->udma_mask &= ATA_UDMA5;
4b2f3ede 1353 dev->max_sectors = ATA_MAX_SECTORS;
6f2f3812
BC
1354 }
1355
1356 if (ap->ops->dev_config)
4b2f3ede
TH
1357 ap->ops->dev_config(ap, dev);
1358
1da177e4 1359 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1360 return 0;
1da177e4
LT
1361
1362err_out_nosup:
1da177e4 1363 DPRINTK("EXIT, err\n");
ffeae418 1364 return rc;
6f2f3812
BC
1365}
1366
1da177e4
LT
1367/**
1368 * ata_bus_probe - Reset and probe ATA bus
1369 * @ap: Bus to probe
1370 *
0cba632b
JG
1371 * Master ATA bus probing function. Initiates a hardware-dependent
1372 * bus reset, then attempts to identify any devices found on
1373 * the bus.
1374 *
1da177e4 1375 * LOCKING:
0cba632b 1376 * PCI/etc. bus probe sem.
1da177e4
LT
1377 *
1378 * RETURNS:
96072e69 1379 * Zero on success, negative errno otherwise.
1da177e4
LT
1380 */
1381
1382static int ata_bus_probe(struct ata_port *ap)
1383{
28ca5c57 1384 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1385 int tries[ATA_MAX_DEVICES];
1386 int i, rc, down_xfermask;
e82cbdb9 1387 struct ata_device *dev;
1da177e4 1388
28ca5c57 1389 ata_port_probe(ap);
c19ba8af 1390
14d2bac1
TH
1391 for (i = 0; i < ATA_MAX_DEVICES; i++)
1392 tries[i] = ATA_PROBE_MAX_TRIES;
1393
1394 retry:
1395 down_xfermask = 0;
1396
2044470c
TH
1397 /* reset and determine device classes */
1398 for (i = 0; i < ATA_MAX_DEVICES; i++)
1399 classes[i] = ATA_DEV_UNKNOWN;
c19ba8af 1400
2044470c 1401 if (ap->ops->probe_reset) {
c19ba8af 1402 rc = ap->ops->probe_reset(ap, classes);
28ca5c57
TH
1403 if (rc) {
1404 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1405 return rc;
c19ba8af 1406 }
28ca5c57 1407 } else {
c19ba8af
TH
1408 ap->ops->phy_reset(ap);
1409
198e0fed 1410 if (!(ap->flags & ATA_FLAG_DISABLED))
2044470c 1411 for (i = 0; i < ATA_MAX_DEVICES; i++)
28ca5c57 1412 classes[i] = ap->device[i].class;
2044470c 1413
28ca5c57
TH
1414 ata_port_probe(ap);
1415 }
1da177e4 1416
2044470c
TH
1417 for (i = 0; i < ATA_MAX_DEVICES; i++)
1418 if (classes[i] == ATA_DEV_UNKNOWN)
1419 classes[i] = ATA_DEV_NONE;
1420
28ca5c57 1421 /* read IDENTIFY page and configure devices */
1da177e4 1422 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1423 dev = &ap->device[i];
28ca5c57
TH
1424 dev->class = classes[i];
1425
14d2bac1
TH
1426 if (!tries[i]) {
1427 ata_down_xfermask_limit(ap, dev, 1);
1428 ata_dev_disable(ap, dev);
ffeae418
TH
1429 }
1430
14d2bac1 1431 if (!ata_dev_enabled(dev))
ffeae418 1432 continue;
ffeae418 1433
14d2bac1
TH
1434 kfree(dev->id);
1435 dev->id = NULL;
1436 rc = ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id);
1437 if (rc)
1438 goto fail;
1439
1440 rc = ata_dev_configure(ap, dev, 1);
1441 if (rc)
1442 goto fail;
1da177e4
LT
1443 }
1444
e82cbdb9
TH
1445 /* configure transfer mode */
1446 if (ap->ops->set_mode) {
1447 /* FIXME: make ->set_mode handle no device case and
1448 * return error code and failing device on failure as
1449 * ata_set_mode() does.
1450 */
14d2bac1
TH
1451 for (i = 0; i < ATA_MAX_DEVICES; i++)
1452 if (ata_dev_enabled(&ap->device[i])) {
1453 ap->ops->set_mode(ap);
1454 break;
1455 }
e82cbdb9
TH
1456 rc = 0;
1457 } else {
14d2bac1
TH
1458 rc = ata_set_mode(ap, &dev);
1459 if (rc) {
1460 down_xfermask = 1;
1461 goto fail;
1462 }
e82cbdb9 1463 }
1da177e4 1464
e82cbdb9
TH
1465 for (i = 0; i < ATA_MAX_DEVICES; i++)
1466 if (ata_dev_enabled(&ap->device[i]))
1467 return 0;
1da177e4 1468
e82cbdb9
TH
1469 /* no device present, disable port */
1470 ata_port_disable(ap);
1da177e4 1471 ap->ops->port_disable(ap);
96072e69 1472 return -ENODEV;
14d2bac1
TH
1473
1474 fail:
1475 switch (rc) {
1476 case -EINVAL:
1477 case -ENODEV:
1478 tries[dev->devno] = 0;
1479 break;
1480 case -EIO:
1481 ata_down_sata_spd_limit(ap);
1482 /* fall through */
1483 default:
1484 tries[dev->devno]--;
1485 if (down_xfermask &&
1486 ata_down_xfermask_limit(ap, dev, tries[dev->devno] == 1))
1487 tries[dev->devno] = 0;
1488 }
1489
1490 goto retry;
1da177e4
LT
1491}
1492
1493/**
0cba632b
JG
1494 * ata_port_probe - Mark port as enabled
1495 * @ap: Port for which we indicate enablement
1da177e4 1496 *
0cba632b
JG
1497 * Modify @ap data structure such that the system
1498 * thinks that the entire port is enabled.
1499 *
1500 * LOCKING: host_set lock, or some other form of
1501 * serialization.
1da177e4
LT
1502 */
1503
1504void ata_port_probe(struct ata_port *ap)
1505{
198e0fed 1506 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1507}
1508
3be680b7
TH
1509/**
1510 * sata_print_link_status - Print SATA link status
1511 * @ap: SATA port to printk link status about
1512 *
1513 * This function prints link speed and status of a SATA link.
1514 *
1515 * LOCKING:
1516 * None.
1517 */
1518static void sata_print_link_status(struct ata_port *ap)
1519{
6d5f9732 1520 u32 sstatus, scontrol, tmp;
3be680b7
TH
1521
1522 if (!ap->ops->scr_read)
1523 return;
1524
1525 sstatus = scr_read(ap, SCR_STATUS);
6d5f9732 1526 scontrol = scr_read(ap, SCR_CONTROL);
3be680b7
TH
1527
1528 if (sata_dev_present(ap)) {
1529 tmp = (sstatus >> 4) & 0xf;
6d5f9732
TH
1530 printk(KERN_INFO
1531 "ata%u: SATA link up %s (SStatus %X SControl %X)\n",
1532 ap->id, sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1533 } else {
6d5f9732
TH
1534 printk(KERN_INFO
1535 "ata%u: SATA link down (SStatus %X SControl %X)\n",
1536 ap->id, sstatus, scontrol);
3be680b7
TH
1537 }
1538}
1539
1da177e4 1540/**
780a87f7
JG
1541 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1542 * @ap: SATA port associated with target SATA PHY.
1da177e4 1543 *
780a87f7
JG
1544 * This function issues commands to standard SATA Sxxx
1545 * PHY registers, to wake up the phy (and device), and
1546 * clear any reset condition.
1da177e4
LT
1547 *
1548 * LOCKING:
0cba632b 1549 * PCI/etc. bus probe sem.
1da177e4
LT
1550 *
1551 */
1552void __sata_phy_reset(struct ata_port *ap)
1553{
1554 u32 sstatus;
1555 unsigned long timeout = jiffies + (HZ * 5);
1556
1557 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1558 /* issue phy wake/reset */
1559 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1560 /* Couldn't find anything in SATA I/II specs, but
1561 * AHCI-1.1 10.4.2 says at least 1 ms. */
1562 mdelay(1);
1da177e4 1563 }
cdcca89e 1564 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1565
1566 /* wait for phy to become ready, if necessary */
1567 do {
1568 msleep(200);
1569 sstatus = scr_read(ap, SCR_STATUS);
1570 if ((sstatus & 0xf) != 1)
1571 break;
1572 } while (time_before(jiffies, timeout));
1573
3be680b7
TH
1574 /* print link status */
1575 sata_print_link_status(ap);
656563e3 1576
3be680b7
TH
1577 /* TODO: phy layer with polling, timeouts, etc. */
1578 if (sata_dev_present(ap))
1da177e4 1579 ata_port_probe(ap);
3be680b7 1580 else
1da177e4 1581 ata_port_disable(ap);
1da177e4 1582
198e0fed 1583 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1584 return;
1585
1586 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1587 ata_port_disable(ap);
1588 return;
1589 }
1590
1591 ap->cbl = ATA_CBL_SATA;
1592}
1593
1594/**
780a87f7
JG
1595 * sata_phy_reset - Reset SATA bus.
1596 * @ap: SATA port associated with target SATA PHY.
1da177e4 1597 *
780a87f7
JG
1598 * This function resets the SATA bus, and then probes
1599 * the bus for devices.
1da177e4
LT
1600 *
1601 * LOCKING:
0cba632b 1602 * PCI/etc. bus probe sem.
1da177e4
LT
1603 *
1604 */
1605void sata_phy_reset(struct ata_port *ap)
1606{
1607 __sata_phy_reset(ap);
198e0fed 1608 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1609 return;
1610 ata_bus_reset(ap);
1611}
1612
ebdfca6e
AC
1613/**
1614 * ata_dev_pair - return other device on cable
1615 * @ap: port
1616 * @adev: device
1617 *
1618 * Obtain the other device on the same cable, or if none is
1619 * present NULL is returned
1620 */
2e9edbf8 1621
ebdfca6e
AC
1622struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1623{
1624 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1625 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1626 return NULL;
1627 return pair;
1628}
1629
1da177e4 1630/**
780a87f7
JG
1631 * ata_port_disable - Disable port.
1632 * @ap: Port to be disabled.
1da177e4 1633 *
780a87f7
JG
1634 * Modify @ap data structure such that the system
1635 * thinks that the entire port is disabled, and should
1636 * never attempt to probe or communicate with devices
1637 * on this port.
1638 *
1639 * LOCKING: host_set lock, or some other form of
1640 * serialization.
1da177e4
LT
1641 */
1642
1643void ata_port_disable(struct ata_port *ap)
1644{
1645 ap->device[0].class = ATA_DEV_NONE;
1646 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1647 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1648}
1649
1c3fae4d
TH
1650/**
1651 * ata_down_sata_spd_limit - adjust SATA spd limit downward
1652 * @ap: Port to adjust SATA spd limit for
1653 *
1654 * Adjust SATA spd limit of @ap downward. Note that this
1655 * function only adjusts the limit. The change must be applied
1656 * using ata_set_sata_spd().
1657 *
1658 * LOCKING:
1659 * Inherited from caller.
1660 *
1661 * RETURNS:
1662 * 0 on success, negative errno on failure
1663 */
1ad8e7f9 1664int ata_down_sata_spd_limit(struct ata_port *ap)
1c3fae4d
TH
1665{
1666 u32 spd, mask;
1667 int highbit;
1668
1669 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1670 return -EOPNOTSUPP;
1671
1672 mask = ap->sata_spd_limit;
1673 if (mask <= 1)
1674 return -EINVAL;
1675 highbit = fls(mask) - 1;
1676 mask &= ~(1 << highbit);
1677
1678 spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
1679 if (spd <= 1)
1680 return -EINVAL;
1681 spd--;
1682 mask &= (1 << spd) - 1;
1683 if (!mask)
1684 return -EINVAL;
1685
1686 ap->sata_spd_limit = mask;
1687
1688 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1689 ap->id, sata_spd_string(fls(mask)));
1690
1691 return 0;
1692}
1693
1694static int __ata_set_sata_spd_needed(struct ata_port *ap, u32 *scontrol)
1695{
1696 u32 spd, limit;
1697
1698 if (ap->sata_spd_limit == UINT_MAX)
1699 limit = 0;
1700 else
1701 limit = fls(ap->sata_spd_limit);
1702
1703 spd = (*scontrol >> 4) & 0xf;
1704 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1705
1706 return spd != limit;
1707}
1708
1709/**
1710 * ata_set_sata_spd_needed - is SATA spd configuration needed
1711 * @ap: Port in question
1712 *
1713 * Test whether the spd limit in SControl matches
1714 * @ap->sata_spd_limit. This function is used to determine
1715 * whether hardreset is necessary to apply SATA spd
1716 * configuration.
1717 *
1718 * LOCKING:
1719 * Inherited from caller.
1720 *
1721 * RETURNS:
1722 * 1 if SATA spd configuration is needed, 0 otherwise.
1723 */
1ad8e7f9 1724int ata_set_sata_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1725{
1726 u32 scontrol;
1727
1728 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1729 return 0;
1730
1731 scontrol = scr_read(ap, SCR_CONTROL);
1732
1733 return __ata_set_sata_spd_needed(ap, &scontrol);
1734}
1735
1736/**
1737 * ata_set_sata_spd - set SATA spd according to spd limit
1738 * @ap: Port to set SATA spd for
1739 *
1740 * Set SATA spd of @ap according to sata_spd_limit.
1741 *
1742 * LOCKING:
1743 * Inherited from caller.
1744 *
1745 * RETURNS:
1746 * 0 if spd doesn't need to be changed, 1 if spd has been
1747 * changed. -EOPNOTSUPP if SCR registers are inaccessible.
1748 */
1749static int ata_set_sata_spd(struct ata_port *ap)
1750{
1751 u32 scontrol;
1752
1753 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1754 return -EOPNOTSUPP;
1755
1756 scontrol = scr_read(ap, SCR_CONTROL);
1757 if (!__ata_set_sata_spd_needed(ap, &scontrol))
1758 return 0;
1759
1760 scr_write(ap, SCR_CONTROL, scontrol);
1761 return 1;
1da177e4
LT
1762}
1763
452503f9
AC
1764/*
1765 * This mode timing computation functionality is ported over from
1766 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1767 */
1768/*
1769 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1770 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1771 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1772 * is currently supported only by Maxtor drives.
452503f9
AC
1773 */
1774
1775static const struct ata_timing ata_timing[] = {
1776
1777 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1778 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1779 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1780 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1781
1782 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1783 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1784 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1785
1786/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1787
452503f9
AC
1788 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1789 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1790 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1791
452503f9
AC
1792 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1793 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1794 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1795
1796/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1797 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1798 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1799
1800 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1801 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1802 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1803
1804/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1805
1806 { 0xFF }
1807};
1808
1809#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1810#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1811
1812static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1813{
1814 q->setup = EZ(t->setup * 1000, T);
1815 q->act8b = EZ(t->act8b * 1000, T);
1816 q->rec8b = EZ(t->rec8b * 1000, T);
1817 q->cyc8b = EZ(t->cyc8b * 1000, T);
1818 q->active = EZ(t->active * 1000, T);
1819 q->recover = EZ(t->recover * 1000, T);
1820 q->cycle = EZ(t->cycle * 1000, T);
1821 q->udma = EZ(t->udma * 1000, UT);
1822}
1823
1824void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1825 struct ata_timing *m, unsigned int what)
1826{
1827 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1828 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1829 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1830 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1831 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1832 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1833 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1834 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1835}
1836
1837static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1838{
1839 const struct ata_timing *t;
1840
1841 for (t = ata_timing; t->mode != speed; t++)
91190758 1842 if (t->mode == 0xFF)
452503f9 1843 return NULL;
2e9edbf8 1844 return t;
452503f9
AC
1845}
1846
1847int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1848 struct ata_timing *t, int T, int UT)
1849{
1850 const struct ata_timing *s;
1851 struct ata_timing p;
1852
1853 /*
2e9edbf8 1854 * Find the mode.
75b1f2f8 1855 */
452503f9
AC
1856
1857 if (!(s = ata_timing_find_mode(speed)))
1858 return -EINVAL;
1859
75b1f2f8
AL
1860 memcpy(t, s, sizeof(*s));
1861
452503f9
AC
1862 /*
1863 * If the drive is an EIDE drive, it can tell us it needs extended
1864 * PIO/MW_DMA cycle timing.
1865 */
1866
1867 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1868 memset(&p, 0, sizeof(p));
1869 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1870 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1871 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1872 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1873 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1874 }
1875 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1876 }
1877
1878 /*
1879 * Convert the timing to bus clock counts.
1880 */
1881
75b1f2f8 1882 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1883
1884 /*
c893a3ae
RD
1885 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1886 * S.M.A.R.T * and some other commands. We have to ensure that the
1887 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1888 */
1889
1890 if (speed > XFER_PIO_4) {
1891 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1892 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1893 }
1894
1895 /*
c893a3ae 1896 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1897 */
1898
1899 if (t->act8b + t->rec8b < t->cyc8b) {
1900 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1901 t->rec8b = t->cyc8b - t->act8b;
1902 }
1903
1904 if (t->active + t->recover < t->cycle) {
1905 t->active += (t->cycle - (t->active + t->recover)) / 2;
1906 t->recover = t->cycle - t->active;
1907 }
1908
1909 return 0;
1910}
1911
cf176e1a
TH
1912/**
1913 * ata_down_xfermask_limit - adjust dev xfer masks downward
1914 * @ap: Port associated with device @dev
1915 * @dev: Device to adjust xfer masks
1916 * @force_pio0: Force PIO0
1917 *
1918 * Adjust xfer masks of @dev downward. Note that this function
1919 * does not apply the change. Invoking ata_set_mode() afterwards
1920 * will apply the limit.
1921 *
1922 * LOCKING:
1923 * Inherited from caller.
1924 *
1925 * RETURNS:
1926 * 0 on success, negative errno on failure
1927 */
1ad8e7f9
TH
1928int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
1929 int force_pio0)
cf176e1a
TH
1930{
1931 unsigned long xfer_mask;
1932 int highbit;
1933
1934 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1935 dev->udma_mask);
1936
1937 if (!xfer_mask)
1938 goto fail;
1939 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1940 if (xfer_mask & ATA_MASK_UDMA)
1941 xfer_mask &= ~ATA_MASK_MWDMA;
1942
1943 highbit = fls(xfer_mask) - 1;
1944 xfer_mask &= ~(1 << highbit);
1945 if (force_pio0)
1946 xfer_mask &= 1 << ATA_SHIFT_PIO;
1947 if (!xfer_mask)
1948 goto fail;
1949
1950 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1951 &dev->udma_mask);
1952
1953 printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
1954 ap->id, dev->devno, ata_mode_string(xfer_mask));
1955
1956 return 0;
1957
1958 fail:
1959 return -EINVAL;
1960}
1961
83206a29 1962static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1da177e4 1963{
83206a29
TH
1964 unsigned int err_mask;
1965 int rc;
1da177e4 1966
e8384607 1967 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
1968 if (dev->xfer_shift == ATA_SHIFT_PIO)
1969 dev->flags |= ATA_DFLAG_PIO;
1970
83206a29
TH
1971 err_mask = ata_dev_set_xfermode(ap, dev);
1972 if (err_mask) {
1973 printk(KERN_ERR
1974 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1975 ap->id, err_mask);
1976 return -EIO;
1977 }
1da177e4 1978
83206a29 1979 rc = ata_dev_revalidate(ap, dev, 0);
5eb45c02 1980 if (rc)
83206a29 1981 return rc;
1da177e4 1982
23e71c3d
TH
1983 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1984 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4
LT
1985
1986 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
23e71c3d
TH
1987 ap->id, dev->devno,
1988 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 1989 return 0;
1da177e4
LT
1990}
1991
1da177e4
LT
1992/**
1993 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1994 * @ap: port on which timings will be programmed
e82cbdb9 1995 * @r_failed_dev: out paramter for failed device
1da177e4 1996 *
e82cbdb9
TH
1997 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1998 * ata_set_mode() fails, pointer to the failing device is
1999 * returned in @r_failed_dev.
780a87f7 2000 *
1da177e4 2001 * LOCKING:
0cba632b 2002 * PCI/etc. bus probe sem.
e82cbdb9
TH
2003 *
2004 * RETURNS:
2005 * 0 on success, negative errno otherwise
1da177e4 2006 */
1ad8e7f9 2007int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2008{
e8e0619f 2009 struct ata_device *dev;
e82cbdb9 2010 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2011
a6d5a51c
TH
2012 /* step 1: calculate xfer_mask */
2013 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2014 unsigned int pio_mask, dma_mask;
a6d5a51c 2015
e8e0619f
TH
2016 dev = &ap->device[i];
2017
e1211e3f 2018 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2019 continue;
2020
acf356b1 2021 ata_dev_xfermask(ap, dev);
1da177e4 2022
acf356b1
TH
2023 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2024 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2025 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2026 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2027
4f65977d 2028 found = 1;
5444a6f4
AC
2029 if (dev->dma_mode)
2030 used_dma = 1;
a6d5a51c 2031 }
4f65977d 2032 if (!found)
e82cbdb9 2033 goto out;
a6d5a51c
TH
2034
2035 /* step 2: always set host PIO timings */
e8e0619f
TH
2036 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2037 dev = &ap->device[i];
2038 if (!ata_dev_enabled(dev))
2039 continue;
2040
2041 if (!dev->pio_mode) {
2042 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
2043 ap->id, dev->devno);
2044 rc = -EINVAL;
e82cbdb9 2045 goto out;
e8e0619f
TH
2046 }
2047
2048 dev->xfer_mode = dev->pio_mode;
2049 dev->xfer_shift = ATA_SHIFT_PIO;
2050 if (ap->ops->set_piomode)
2051 ap->ops->set_piomode(ap, dev);
2052 }
1da177e4 2053
a6d5a51c 2054 /* step 3: set host DMA timings */
e8e0619f
TH
2055 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2056 dev = &ap->device[i];
2057
2058 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2059 continue;
2060
2061 dev->xfer_mode = dev->dma_mode;
2062 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2063 if (ap->ops->set_dmamode)
2064 ap->ops->set_dmamode(ap, dev);
2065 }
1da177e4
LT
2066
2067 /* step 4: update devices' xfer mode */
83206a29 2068 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2069 dev = &ap->device[i];
1da177e4 2070
e1211e3f 2071 if (!ata_dev_enabled(dev))
83206a29
TH
2072 continue;
2073
5bbc53f4
TH
2074 rc = ata_dev_set_mode(ap, dev);
2075 if (rc)
e82cbdb9 2076 goto out;
83206a29 2077 }
1da177e4 2078
e8e0619f
TH
2079 /* Record simplex status. If we selected DMA then the other
2080 * host channels are not permitted to do so.
5444a6f4 2081 */
5444a6f4
AC
2082 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2083 ap->host_set->simplex_claimed = 1;
2084
e8e0619f 2085 /* step5: chip specific finalisation */
1da177e4
LT
2086 if (ap->ops->post_set_mode)
2087 ap->ops->post_set_mode(ap);
2088
e82cbdb9
TH
2089 out:
2090 if (rc)
2091 *r_failed_dev = dev;
2092 return rc;
1da177e4
LT
2093}
2094
1fdffbce
JG
2095/**
2096 * ata_tf_to_host - issue ATA taskfile to host controller
2097 * @ap: port to which command is being issued
2098 * @tf: ATA taskfile register set
2099 *
2100 * Issues ATA taskfile register set to ATA host controller,
2101 * with proper synchronization with interrupt handler and
2102 * other threads.
2103 *
2104 * LOCKING:
2105 * spin_lock_irqsave(host_set lock)
2106 */
2107
2108static inline void ata_tf_to_host(struct ata_port *ap,
2109 const struct ata_taskfile *tf)
2110{
2111 ap->ops->tf_load(ap, tf);
2112 ap->ops->exec_command(ap, tf);
2113}
2114
1da177e4
LT
2115/**
2116 * ata_busy_sleep - sleep until BSY clears, or timeout
2117 * @ap: port containing status register to be polled
2118 * @tmout_pat: impatience timeout
2119 * @tmout: overall timeout
2120 *
780a87f7
JG
2121 * Sleep until ATA Status register bit BSY clears,
2122 * or a timeout occurs.
2123 *
2124 * LOCKING: None.
1da177e4
LT
2125 */
2126
6f8b9958
TH
2127unsigned int ata_busy_sleep (struct ata_port *ap,
2128 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2129{
2130 unsigned long timer_start, timeout;
2131 u8 status;
2132
2133 status = ata_busy_wait(ap, ATA_BUSY, 300);
2134 timer_start = jiffies;
2135 timeout = timer_start + tmout_pat;
2136 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2137 msleep(50);
2138 status = ata_busy_wait(ap, ATA_BUSY, 3);
2139 }
2140
2141 if (status & ATA_BUSY)
2142 printk(KERN_WARNING "ata%u is slow to respond, "
2143 "please be patient\n", ap->id);
2144
2145 timeout = timer_start + tmout;
2146 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2147 msleep(50);
2148 status = ata_chk_status(ap);
2149 }
2150
2151 if (status & ATA_BUSY) {
2152 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2153 ap->id, tmout / HZ);
2154 return 1;
2155 }
2156
2157 return 0;
2158}
2159
2160static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2161{
2162 struct ata_ioports *ioaddr = &ap->ioaddr;
2163 unsigned int dev0 = devmask & (1 << 0);
2164 unsigned int dev1 = devmask & (1 << 1);
2165 unsigned long timeout;
2166
2167 /* if device 0 was found in ata_devchk, wait for its
2168 * BSY bit to clear
2169 */
2170 if (dev0)
2171 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2172
2173 /* if device 1 was found in ata_devchk, wait for
2174 * register access, then wait for BSY to clear
2175 */
2176 timeout = jiffies + ATA_TMOUT_BOOT;
2177 while (dev1) {
2178 u8 nsect, lbal;
2179
2180 ap->ops->dev_select(ap, 1);
2181 if (ap->flags & ATA_FLAG_MMIO) {
2182 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2183 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2184 } else {
2185 nsect = inb(ioaddr->nsect_addr);
2186 lbal = inb(ioaddr->lbal_addr);
2187 }
2188 if ((nsect == 1) && (lbal == 1))
2189 break;
2190 if (time_after(jiffies, timeout)) {
2191 dev1 = 0;
2192 break;
2193 }
2194 msleep(50); /* give drive a breather */
2195 }
2196 if (dev1)
2197 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2198
2199 /* is all this really necessary? */
2200 ap->ops->dev_select(ap, 0);
2201 if (dev1)
2202 ap->ops->dev_select(ap, 1);
2203 if (dev0)
2204 ap->ops->dev_select(ap, 0);
2205}
2206
1da177e4
LT
2207static unsigned int ata_bus_softreset(struct ata_port *ap,
2208 unsigned int devmask)
2209{
2210 struct ata_ioports *ioaddr = &ap->ioaddr;
2211
2212 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2213
2214 /* software reset. causes dev0 to be selected */
2215 if (ap->flags & ATA_FLAG_MMIO) {
2216 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2217 udelay(20); /* FIXME: flush */
2218 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2219 udelay(20); /* FIXME: flush */
2220 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2221 } else {
2222 outb(ap->ctl, ioaddr->ctl_addr);
2223 udelay(10);
2224 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2225 udelay(10);
2226 outb(ap->ctl, ioaddr->ctl_addr);
2227 }
2228
2229 /* spec mandates ">= 2ms" before checking status.
2230 * We wait 150ms, because that was the magic delay used for
2231 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2232 * between when the ATA command register is written, and then
2233 * status is checked. Because waiting for "a while" before
2234 * checking status is fine, post SRST, we perform this magic
2235 * delay here as well.
09c7ad79
AC
2236 *
2237 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2238 */
2239 msleep(150);
2240
2e9edbf8 2241 /* Before we perform post reset processing we want to see if
298a41ca
TH
2242 * the bus shows 0xFF because the odd clown forgets the D7
2243 * pulldown resistor.
2244 */
09c7ad79 2245 if (ata_check_status(ap) == 0xFF)
298a41ca 2246 return AC_ERR_OTHER;
09c7ad79 2247
1da177e4
LT
2248 ata_bus_post_reset(ap, devmask);
2249
2250 return 0;
2251}
2252
2253/**
2254 * ata_bus_reset - reset host port and associated ATA channel
2255 * @ap: port to reset
2256 *
2257 * This is typically the first time we actually start issuing
2258 * commands to the ATA channel. We wait for BSY to clear, then
2259 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2260 * result. Determine what devices, if any, are on the channel
2261 * by looking at the device 0/1 error register. Look at the signature
2262 * stored in each device's taskfile registers, to determine if
2263 * the device is ATA or ATAPI.
2264 *
2265 * LOCKING:
0cba632b
JG
2266 * PCI/etc. bus probe sem.
2267 * Obtains host_set lock.
1da177e4
LT
2268 *
2269 * SIDE EFFECTS:
198e0fed 2270 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2271 */
2272
2273void ata_bus_reset(struct ata_port *ap)
2274{
2275 struct ata_ioports *ioaddr = &ap->ioaddr;
2276 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2277 u8 err;
aec5c3c1 2278 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2279
2280 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2281
2282 /* determine if device 0/1 are present */
2283 if (ap->flags & ATA_FLAG_SATA_RESET)
2284 dev0 = 1;
2285 else {
2286 dev0 = ata_devchk(ap, 0);
2287 if (slave_possible)
2288 dev1 = ata_devchk(ap, 1);
2289 }
2290
2291 if (dev0)
2292 devmask |= (1 << 0);
2293 if (dev1)
2294 devmask |= (1 << 1);
2295
2296 /* select device 0 again */
2297 ap->ops->dev_select(ap, 0);
2298
2299 /* issue bus reset */
2300 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2301 if (ata_bus_softreset(ap, devmask))
2302 goto err_out;
1da177e4
LT
2303
2304 /*
2305 * determine by signature whether we have ATA or ATAPI devices
2306 */
b4dc7623 2307 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2308 if ((slave_possible) && (err != 0x81))
b4dc7623 2309 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2310
2311 /* re-enable interrupts */
2312 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2313 ata_irq_on(ap);
2314
2315 /* is double-select really necessary? */
2316 if (ap->device[1].class != ATA_DEV_NONE)
2317 ap->ops->dev_select(ap, 1);
2318 if (ap->device[0].class != ATA_DEV_NONE)
2319 ap->ops->dev_select(ap, 0);
2320
2321 /* if no devices were detected, disable this port */
2322 if ((ap->device[0].class == ATA_DEV_NONE) &&
2323 (ap->device[1].class == ATA_DEV_NONE))
2324 goto err_out;
2325
2326 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2327 /* set up device control for ATA_FLAG_SATA_RESET */
2328 if (ap->flags & ATA_FLAG_MMIO)
2329 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2330 else
2331 outb(ap->ctl, ioaddr->ctl_addr);
2332 }
2333
2334 DPRINTK("EXIT\n");
2335 return;
2336
2337err_out:
2338 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2339 ap->ops->port_disable(ap);
2340
2341 DPRINTK("EXIT\n");
2342}
2343
7a7921e8
TH
2344static int sata_phy_resume(struct ata_port *ap)
2345{
2346 unsigned long timeout = jiffies + (HZ * 5);
852ee16a 2347 u32 scontrol, sstatus;
7a7921e8 2348
852ee16a
TH
2349 scontrol = scr_read(ap, SCR_CONTROL);
2350 scontrol = (scontrol & 0x0f0) | 0x300;
2351 scr_write_flush(ap, SCR_CONTROL, scontrol);
7a7921e8
TH
2352
2353 /* Wait for phy to become ready, if necessary. */
2354 do {
2355 msleep(200);
2356 sstatus = scr_read(ap, SCR_STATUS);
2357 if ((sstatus & 0xf) != 1)
2358 return 0;
2359 } while (time_before(jiffies, timeout));
2360
2361 return -1;
2362}
2363
8a19ac89
TH
2364/**
2365 * ata_std_probeinit - initialize probing
2366 * @ap: port to be probed
2367 *
2368 * @ap is about to be probed. Initialize it. This function is
2369 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2370 *
2371 * NOTE!!! Do not use this function as probeinit if a low level
2372 * driver implements only hardreset. Just pass NULL as probeinit
2373 * in that case. Using this function is probably okay but doing
2374 * so makes reset sequence different from the original
2375 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2376 */
17efc5f7 2377void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2378{
17efc5f7 2379 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
1c3fae4d
TH
2380 u32 spd;
2381
8a19ac89 2382 sata_phy_resume(ap);
1c3fae4d
TH
2383
2384 spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
2385 if (spd)
2386 ap->sata_spd_limit &= (1 << spd) - 1;
2387
3a39746a
TH
2388 if (sata_dev_present(ap))
2389 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2390 }
8a19ac89
TH
2391}
2392
c2bd5804
TH
2393/**
2394 * ata_std_softreset - reset host port via ATA SRST
2395 * @ap: port to reset
2396 * @verbose: fail verbosely
2397 * @classes: resulting classes of attached devices
2398 *
2399 * Reset host port using ATA SRST. This function is to be used
2400 * as standard callback for ata_drive_*_reset() functions.
2401 *
2402 * LOCKING:
2403 * Kernel thread context (may sleep)
2404 *
2405 * RETURNS:
2406 * 0 on success, -errno otherwise.
2407 */
2408int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2409{
2410 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2411 unsigned int devmask = 0, err_mask;
2412 u8 err;
2413
2414 DPRINTK("ENTER\n");
2415
3a39746a
TH
2416 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2417 classes[0] = ATA_DEV_NONE;
2418 goto out;
2419 }
2420
c2bd5804
TH
2421 /* determine if device 0/1 are present */
2422 if (ata_devchk(ap, 0))
2423 devmask |= (1 << 0);
2424 if (slave_possible && ata_devchk(ap, 1))
2425 devmask |= (1 << 1);
2426
c2bd5804
TH
2427 /* select device 0 again */
2428 ap->ops->dev_select(ap, 0);
2429
2430 /* issue bus reset */
2431 DPRINTK("about to softreset, devmask=%x\n", devmask);
2432 err_mask = ata_bus_softreset(ap, devmask);
2433 if (err_mask) {
2434 if (verbose)
2435 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2436 ap->id, err_mask);
2437 else
2438 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2439 err_mask);
2440 return -EIO;
2441 }
2442
2443 /* determine by signature whether we have ATA or ATAPI devices */
2444 classes[0] = ata_dev_try_classify(ap, 0, &err);
2445 if (slave_possible && err != 0x81)
2446 classes[1] = ata_dev_try_classify(ap, 1, &err);
2447
3a39746a 2448 out:
c2bd5804
TH
2449 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2450 return 0;
2451}
2452
2453/**
2454 * sata_std_hardreset - reset host port via SATA phy reset
2455 * @ap: port to reset
2456 * @verbose: fail verbosely
2457 * @class: resulting class of attached device
2458 *
2459 * SATA phy-reset host port using DET bits of SControl register.
2460 * This function is to be used as standard callback for
2461 * ata_drive_*_reset().
2462 *
2463 * LOCKING:
2464 * Kernel thread context (may sleep)
2465 *
2466 * RETURNS:
2467 * 0 on success, -errno otherwise.
2468 */
2469int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2470{
852ee16a
TH
2471 u32 scontrol;
2472
c2bd5804
TH
2473 DPRINTK("ENTER\n");
2474
1c3fae4d
TH
2475 if (ata_set_sata_spd_needed(ap)) {
2476 /* SATA spec says nothing about how to reconfigure
2477 * spd. To be on the safe side, turn off phy during
2478 * reconfiguration. This works for at least ICH7 AHCI
2479 * and Sil3124.
2480 */
2481 scontrol = scr_read(ap, SCR_CONTROL);
2482 scontrol = (scontrol & 0x0f0) | 0x302;
2483 scr_write_flush(ap, SCR_CONTROL, scontrol);
2484
2485 ata_set_sata_spd(ap);
2486 }
2487
2488 /* issue phy wake/reset */
852ee16a
TH
2489 scontrol = scr_read(ap, SCR_CONTROL);
2490 scontrol = (scontrol & 0x0f0) | 0x301;
2491 scr_write_flush(ap, SCR_CONTROL, scontrol);
c2bd5804 2492
1c3fae4d 2493 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2494 * 10.4.2 says at least 1 ms.
2495 */
2496 msleep(1);
2497
1c3fae4d 2498 /* bring phy back */
7a7921e8 2499 sata_phy_resume(ap);
c2bd5804 2500
c2bd5804
TH
2501 /* TODO: phy layer with polling, timeouts, etc. */
2502 if (!sata_dev_present(ap)) {
2503 *class = ATA_DEV_NONE;
2504 DPRINTK("EXIT, link offline\n");
2505 return 0;
2506 }
2507
2508 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2509 if (verbose)
2510 printk(KERN_ERR "ata%u: COMRESET failed "
2511 "(device not ready)\n", ap->id);
2512 else
2513 DPRINTK("EXIT, device not ready\n");
2514 return -EIO;
2515 }
2516
3a39746a
TH
2517 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2518
c2bd5804
TH
2519 *class = ata_dev_try_classify(ap, 0, NULL);
2520
2521 DPRINTK("EXIT, class=%u\n", *class);
2522 return 0;
2523}
2524
2525/**
2526 * ata_std_postreset - standard postreset callback
2527 * @ap: the target ata_port
2528 * @classes: classes of attached devices
2529 *
2530 * This function is invoked after a successful reset. Note that
2531 * the device might have been reset more than once using
2532 * different reset methods before postreset is invoked.
c2bd5804
TH
2533 *
2534 * This function is to be used as standard callback for
2535 * ata_drive_*_reset().
2536 *
2537 * LOCKING:
2538 * Kernel thread context (may sleep)
2539 */
2540void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2541{
2542 DPRINTK("ENTER\n");
2543
56497bd5 2544 /* set cable type if it isn't already set */
c2bd5804
TH
2545 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2546 ap->cbl = ATA_CBL_SATA;
2547
2548 /* print link status */
2549 if (ap->cbl == ATA_CBL_SATA)
2550 sata_print_link_status(ap);
2551
3a39746a
TH
2552 /* re-enable interrupts */
2553 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2554 ata_irq_on(ap);
c2bd5804
TH
2555
2556 /* is double-select really necessary? */
2557 if (classes[0] != ATA_DEV_NONE)
2558 ap->ops->dev_select(ap, 1);
2559 if (classes[1] != ATA_DEV_NONE)
2560 ap->ops->dev_select(ap, 0);
2561
3a39746a
TH
2562 /* bail out if no device is present */
2563 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2564 DPRINTK("EXIT, no device\n");
2565 return;
2566 }
2567
2568 /* set up device control */
2569 if (ap->ioaddr.ctl_addr) {
2570 if (ap->flags & ATA_FLAG_MMIO)
2571 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2572 else
2573 outb(ap->ctl, ap->ioaddr.ctl_addr);
2574 }
c2bd5804
TH
2575
2576 DPRINTK("EXIT\n");
2577}
2578
2579/**
2580 * ata_std_probe_reset - standard probe reset method
2581 * @ap: prot to perform probe-reset
2582 * @classes: resulting classes of attached devices
2583 *
2584 * The stock off-the-shelf ->probe_reset method.
2585 *
2586 * LOCKING:
2587 * Kernel thread context (may sleep)
2588 *
2589 * RETURNS:
2590 * 0 on success, -errno otherwise.
2591 */
2592int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2593{
2594 ata_reset_fn_t hardreset;
2595
2596 hardreset = NULL;
b911fc3a 2597 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
c2bd5804
TH
2598 hardreset = sata_std_hardreset;
2599
8a19ac89 2600 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2601 ata_std_softreset, hardreset,
c2bd5804
TH
2602 ata_std_postreset, classes);
2603}
2604
1ad8e7f9
TH
2605int ata_do_reset(struct ata_port *ap,
2606 ata_reset_fn_t reset, ata_postreset_fn_t postreset,
2607 int verbose, unsigned int *classes)
a62c0fc5
TH
2608{
2609 int i, rc;
2610
2611 for (i = 0; i < ATA_MAX_DEVICES; i++)
2612 classes[i] = ATA_DEV_UNKNOWN;
2613
9974e7cc 2614 rc = reset(ap, verbose, classes);
a62c0fc5
TH
2615 if (rc)
2616 return rc;
2617
2618 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2619 * is complete and convert all ATA_DEV_UNKNOWN to
2620 * ATA_DEV_NONE.
2621 */
2622 for (i = 0; i < ATA_MAX_DEVICES; i++)
2623 if (classes[i] != ATA_DEV_UNKNOWN)
2624 break;
2625
2626 if (i < ATA_MAX_DEVICES)
2627 for (i = 0; i < ATA_MAX_DEVICES; i++)
2628 if (classes[i] == ATA_DEV_UNKNOWN)
2629 classes[i] = ATA_DEV_NONE;
2630
2631 if (postreset)
2632 postreset(ap, classes);
2633
9974e7cc 2634 return 0;
a62c0fc5
TH
2635}
2636
2637/**
2638 * ata_drive_probe_reset - Perform probe reset with given methods
2639 * @ap: port to reset
7944ea95 2640 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2641 * @softreset: softreset method (can be NULL)
2642 * @hardreset: hardreset method (can be NULL)
2643 * @postreset: postreset method (can be NULL)
2644 * @classes: resulting classes of attached devices
2645 *
2646 * Reset the specified port and classify attached devices using
2647 * given methods. This function prefers softreset but tries all
2648 * possible reset sequences to reset and classify devices. This
2649 * function is intended to be used for constructing ->probe_reset
2650 * callback by low level drivers.
2651 *
2652 * Reset methods should follow the following rules.
2653 *
2654 * - Return 0 on sucess, -errno on failure.
2655 * - If classification is supported, fill classes[] with
2656 * recognized class codes.
2657 * - If classification is not supported, leave classes[] alone.
2658 * - If verbose is non-zero, print error message on failure;
2659 * otherwise, shut up.
2660 *
2661 * LOCKING:
2662 * Kernel thread context (may sleep)
2663 *
2664 * RETURNS:
2665 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2666 * if classification fails, and any error code from reset
2667 * methods.
2668 */
7944ea95 2669int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2670 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2671 ata_postreset_fn_t postreset, unsigned int *classes)
2672{
2673 int rc = -EINVAL;
2674
7944ea95
TH
2675 if (probeinit)
2676 probeinit(ap);
2677
90dac02c 2678 if (softreset && !ata_set_sata_spd_needed(ap)) {
9974e7cc
TH
2679 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2680 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2681 goto done;
edbabd86
TH
2682 printk(KERN_INFO "ata%u: softreset failed, will try "
2683 "hardreset in 5 secs\n", ap->id);
2684 ssleep(5);
a62c0fc5
TH
2685 }
2686
2687 if (!hardreset)
9974e7cc 2688 goto done;
a62c0fc5 2689
90dac02c
TH
2690 while (1) {
2691 rc = ata_do_reset(ap, hardreset, postreset, 0, classes);
2692 if (rc == 0) {
2693 if (classes[0] != ATA_DEV_UNKNOWN)
2694 goto done;
2695 break;
2696 }
2697
2698 if (ata_down_sata_spd_limit(ap))
2699 goto done;
edbabd86
TH
2700
2701 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2702 "in 5 secs\n", ap->id);
2703 ssleep(5);
90dac02c 2704 }
a62c0fc5 2705
edbabd86
TH
2706 if (softreset) {
2707 printk(KERN_INFO "ata%u: hardreset succeeded without "
2708 "classification, will retry softreset in 5 secs\n",
2709 ap->id);
2710 ssleep(5);
a62c0fc5 2711
9974e7cc 2712 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
edbabd86 2713 }
a62c0fc5 2714
9974e7cc
TH
2715 done:
2716 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2717 rc = -ENODEV;
a62c0fc5
TH
2718 return rc;
2719}
2720
623a3128
TH
2721/**
2722 * ata_dev_same_device - Determine whether new ID matches configured device
2723 * @ap: port on which the device to compare against resides
2724 * @dev: device to compare against
2725 * @new_class: class of the new device
2726 * @new_id: IDENTIFY page of the new device
2727 *
2728 * Compare @new_class and @new_id against @dev and determine
2729 * whether @dev is the device indicated by @new_class and
2730 * @new_id.
2731 *
2732 * LOCKING:
2733 * None.
2734 *
2735 * RETURNS:
2736 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2737 */
2738static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2739 unsigned int new_class, const u16 *new_id)
2740{
2741 const u16 *old_id = dev->id;
2742 unsigned char model[2][41], serial[2][21];
2743 u64 new_n_sectors;
2744
2745 if (dev->class != new_class) {
2746 printk(KERN_INFO
2747 "ata%u: dev %u class mismatch %d != %d\n",
2748 ap->id, dev->devno, dev->class, new_class);
2749 return 0;
2750 }
2751
2752 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2753 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2754 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2755 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2756 new_n_sectors = ata_id_n_sectors(new_id);
2757
2758 if (strcmp(model[0], model[1])) {
2759 printk(KERN_INFO
2760 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2761 ap->id, dev->devno, model[0], model[1]);
2762 return 0;
2763 }
2764
2765 if (strcmp(serial[0], serial[1])) {
2766 printk(KERN_INFO
2767 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2768 ap->id, dev->devno, serial[0], serial[1]);
2769 return 0;
2770 }
2771
2772 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2773 printk(KERN_INFO
2774 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2775 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2776 (unsigned long long)new_n_sectors);
2777 return 0;
2778 }
2779
2780 return 1;
2781}
2782
2783/**
2784 * ata_dev_revalidate - Revalidate ATA device
2785 * @ap: port on which the device to revalidate resides
2786 * @dev: device to revalidate
2787 * @post_reset: is this revalidation after reset?
2788 *
2789 * Re-read IDENTIFY page and make sure @dev is still attached to
2790 * the port.
2791 *
2792 * LOCKING:
2793 * Kernel thread context (may sleep)
2794 *
2795 * RETURNS:
2796 * 0 on success, negative errno otherwise
2797 */
2798int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2799 int post_reset)
1da177e4 2800{
5eb45c02
TH
2801 unsigned int class = dev->class;
2802 u16 *id = NULL;
623a3128
TH
2803 int rc;
2804
5eb45c02
TH
2805 if (!ata_dev_enabled(dev)) {
2806 rc = -ENODEV;
2807 goto fail;
2808 }
623a3128
TH
2809
2810 /* allocate & read ID data */
2811 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2812 if (rc)
2813 goto fail;
2814
2815 /* is the device still there? */
2816 if (!ata_dev_same_device(ap, dev, class, id)) {
2817 rc = -ENODEV;
2818 goto fail;
2819 }
2820
2821 kfree(dev->id);
2822 dev->id = id;
2823
2824 /* configure device according to the new ID */
5eb45c02
TH
2825 rc = ata_dev_configure(ap, dev, 0);
2826 if (rc == 0)
2827 return 0;
623a3128
TH
2828
2829 fail:
2830 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2831 ap->id, dev->devno, rc);
2832 kfree(id);
2833 return rc;
1da177e4
LT
2834}
2835
98ac62de 2836static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2837 "WDC AC11000H", NULL,
2838 "WDC AC22100H", NULL,
2839 "WDC AC32500H", NULL,
2840 "WDC AC33100H", NULL,
2841 "WDC AC31600H", NULL,
2842 "WDC AC32100H", "24.09P07",
2843 "WDC AC23200L", "21.10N21",
2844 "Compaq CRD-8241B", NULL,
2845 "CRD-8400B", NULL,
2846 "CRD-8480B", NULL,
2847 "CRD-8482B", NULL,
2848 "CRD-84", NULL,
2849 "SanDisk SDP3B", NULL,
2850 "SanDisk SDP3B-64", NULL,
2851 "SANYO CD-ROM CRD", NULL,
2852 "HITACHI CDR-8", NULL,
2e9edbf8 2853 "HITACHI CDR-8335", NULL,
f4b15fef 2854 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2855 "Toshiba CD-ROM XM-6202B", NULL,
2856 "TOSHIBA CD-ROM XM-1702BC", NULL,
2857 "CD-532E-A", NULL,
2858 "E-IDE CD-ROM CR-840", NULL,
2859 "CD-ROM Drive/F5A", NULL,
2860 "WPI CDD-820", NULL,
f4b15fef 2861 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2862 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2863 "SanDisk SDP3B-64", NULL,
2864 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2865 "_NEC DV5800A", NULL,
2866 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2867};
2e9edbf8 2868
f4b15fef
AC
2869static int ata_strim(char *s, size_t len)
2870{
2871 len = strnlen(s, len);
2872
2873 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2874 while ((len > 0) && (s[len - 1] == ' ')) {
2875 len--;
2876 s[len] = 0;
2877 }
2878 return len;
2879}
1da177e4 2880
057ace5e 2881static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2882{
f4b15fef
AC
2883 unsigned char model_num[40];
2884 unsigned char model_rev[16];
2885 unsigned int nlen, rlen;
1da177e4
LT
2886 int i;
2887
f4b15fef
AC
2888 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2889 sizeof(model_num));
2890 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2891 sizeof(model_rev));
2892 nlen = ata_strim(model_num, sizeof(model_num));
2893 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2894
f4b15fef
AC
2895 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2896 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2897 if (ata_dma_blacklist[i+1] == NULL)
2898 return 1;
2899 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2900 return 1;
2901 }
2902 }
1da177e4
LT
2903 return 0;
2904}
2905
1da177e4 2906/**
a6d5a51c
TH
2907 * ata_dev_xfermask - Compute supported xfermask of the given device
2908 * @ap: Port on which the device to compute xfermask for resides
2909 * @dev: Device to compute xfermask for
1da177e4 2910 *
acf356b1
TH
2911 * Compute supported xfermask of @dev and store it in
2912 * dev->*_mask. This function is responsible for applying all
2913 * known limits including host controller limits, device
2914 * blacklist, etc...
0cba632b 2915 *
600511e8
TH
2916 * FIXME: The current implementation limits all transfer modes to
2917 * the fastest of the lowested device on the port. This is not
05c8e0ac 2918 * required on most controllers.
600511e8 2919 *
1da177e4 2920 * LOCKING:
a6d5a51c 2921 * None.
1da177e4 2922 */
acf356b1 2923static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
1da177e4 2924{
5444a6f4 2925 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2926 unsigned long xfer_mask;
2927 int i;
1da177e4 2928
565083e1
TH
2929 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2930 ap->mwdma_mask, ap->udma_mask);
2931
2932 /* Apply cable rule here. Don't apply it early because when
2933 * we handle hot plug the cable type can itself change.
2934 */
2935 if (ap->cbl == ATA_CBL_PATA40)
2936 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 2937
5444a6f4 2938 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2939 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2940 struct ata_device *d = &ap->device[i];
565083e1
TH
2941
2942 if (ata_dev_absent(d))
a6d5a51c 2943 continue;
565083e1
TH
2944
2945 if (ata_dev_disabled(d)) {
2946 /* to avoid violating device selection timing */
2947 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2948 UINT_MAX, UINT_MAX);
a6d5a51c 2949 continue;
565083e1
TH
2950 }
2951
2952 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2953 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
2954 xfer_mask &= ata_id_xfermask(d->id);
2955 if (ata_dma_blacklisted(d))
2956 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
2957 }
2958
a6d5a51c
TH
2959 if (ata_dma_blacklisted(dev))
2960 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2961 "disabling DMA\n", ap->id, dev->devno);
2962
5444a6f4
AC
2963 if (hs->flags & ATA_HOST_SIMPLEX) {
2964 if (hs->simplex_claimed)
2965 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2966 }
565083e1 2967
5444a6f4
AC
2968 if (ap->ops->mode_filter)
2969 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2970
565083e1
TH
2971 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2972 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
2973}
2974
2975/**
2976 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2977 * @ap: Port associated with device @dev
2978 * @dev: Device to which command will be sent
2979 *
780a87f7
JG
2980 * Issue SET FEATURES - XFER MODE command to device @dev
2981 * on port @ap.
2982 *
1da177e4 2983 * LOCKING:
0cba632b 2984 * PCI/etc. bus probe sem.
83206a29
TH
2985 *
2986 * RETURNS:
2987 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
2988 */
2989
83206a29
TH
2990static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2991 struct ata_device *dev)
1da177e4 2992{
a0123703 2993 struct ata_taskfile tf;
83206a29 2994 unsigned int err_mask;
1da177e4
LT
2995
2996 /* set up set-features taskfile */
2997 DPRINTK("set features - xfer mode\n");
2998
a0123703
TH
2999 ata_tf_init(ap, &tf, dev->devno);
3000 tf.command = ATA_CMD_SET_FEATURES;
3001 tf.feature = SETFEATURES_XFER;
3002 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3003 tf.protocol = ATA_PROT_NODATA;
3004 tf.nsect = dev->xfer_mode;
1da177e4 3005
d69cf37d 3006 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3007
83206a29
TH
3008 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3009 return err_mask;
1da177e4
LT
3010}
3011
8bf62ece
AL
3012/**
3013 * ata_dev_init_params - Issue INIT DEV PARAMS command
3014 * @ap: Port associated with device @dev
3015 * @dev: Device to which command will be sent
3016 *
3017 * LOCKING:
6aff8f1f
TH
3018 * Kernel thread context (may sleep)
3019 *
3020 * RETURNS:
3021 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece
AL
3022 */
3023
6aff8f1f 3024static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
3025 struct ata_device *dev,
3026 u16 heads,
3027 u16 sectors)
8bf62ece 3028{
a0123703 3029 struct ata_taskfile tf;
6aff8f1f 3030 unsigned int err_mask;
8bf62ece
AL
3031
3032 /* Number of sectors per track 1-255. Number of heads 1-16 */
3033 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3034 return AC_ERR_INVALID;
8bf62ece
AL
3035
3036 /* set up init dev params taskfile */
3037 DPRINTK("init dev params \n");
3038
a0123703
TH
3039 ata_tf_init(ap, &tf, dev->devno);
3040 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3041 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3042 tf.protocol = ATA_PROT_NODATA;
3043 tf.nsect = sectors;
3044 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3045
d69cf37d 3046 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3047
6aff8f1f
TH
3048 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3049 return err_mask;
8bf62ece
AL
3050}
3051
1da177e4 3052/**
0cba632b
JG
3053 * ata_sg_clean - Unmap DMA memory associated with command
3054 * @qc: Command containing DMA memory to be released
3055 *
3056 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3057 *
3058 * LOCKING:
0cba632b 3059 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3060 */
3061
3062static void ata_sg_clean(struct ata_queued_cmd *qc)
3063{
3064 struct ata_port *ap = qc->ap;
cedc9a47 3065 struct scatterlist *sg = qc->__sg;
1da177e4 3066 int dir = qc->dma_dir;
cedc9a47 3067 void *pad_buf = NULL;
1da177e4 3068
a4631474
TH
3069 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3070 WARN_ON(sg == NULL);
1da177e4
LT
3071
3072 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3073 WARN_ON(qc->n_elem > 1);
1da177e4 3074
2c13b7ce 3075 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3076
cedc9a47
JG
3077 /* if we padded the buffer out to 32-bit bound, and data
3078 * xfer direction is from-device, we must copy from the
3079 * pad buffer back into the supplied buffer
3080 */
3081 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3082 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3083
3084 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3085 if (qc->n_elem)
2f1f610b 3086 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3087 /* restore last sg */
3088 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3089 if (pad_buf) {
3090 struct scatterlist *psg = &qc->pad_sgent;
3091 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3092 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3093 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3094 }
3095 } else {
2e242fa9 3096 if (qc->n_elem)
2f1f610b 3097 dma_unmap_single(ap->dev,
e1410f2d
JG
3098 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3099 dir);
cedc9a47
JG
3100 /* restore sg */
3101 sg->length += qc->pad_len;
3102 if (pad_buf)
3103 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3104 pad_buf, qc->pad_len);
3105 }
1da177e4
LT
3106
3107 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3108 qc->__sg = NULL;
1da177e4
LT
3109}
3110
3111/**
3112 * ata_fill_sg - Fill PCI IDE PRD table
3113 * @qc: Metadata associated with taskfile to be transferred
3114 *
780a87f7
JG
3115 * Fill PCI IDE PRD (scatter-gather) table with segments
3116 * associated with the current disk command.
3117 *
1da177e4 3118 * LOCKING:
780a87f7 3119 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3120 *
3121 */
3122static void ata_fill_sg(struct ata_queued_cmd *qc)
3123{
1da177e4 3124 struct ata_port *ap = qc->ap;
cedc9a47
JG
3125 struct scatterlist *sg;
3126 unsigned int idx;
1da177e4 3127
a4631474 3128 WARN_ON(qc->__sg == NULL);
f131883e 3129 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3130
3131 idx = 0;
cedc9a47 3132 ata_for_each_sg(sg, qc) {
1da177e4
LT
3133 u32 addr, offset;
3134 u32 sg_len, len;
3135
3136 /* determine if physical DMA addr spans 64K boundary.
3137 * Note h/w doesn't support 64-bit, so we unconditionally
3138 * truncate dma_addr_t to u32.
3139 */
3140 addr = (u32) sg_dma_address(sg);
3141 sg_len = sg_dma_len(sg);
3142
3143 while (sg_len) {
3144 offset = addr & 0xffff;
3145 len = sg_len;
3146 if ((offset + sg_len) > 0x10000)
3147 len = 0x10000 - offset;
3148
3149 ap->prd[idx].addr = cpu_to_le32(addr);
3150 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3151 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3152
3153 idx++;
3154 sg_len -= len;
3155 addr += len;
3156 }
3157 }
3158
3159 if (idx)
3160 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3161}
3162/**
3163 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3164 * @qc: Metadata associated with taskfile to check
3165 *
780a87f7
JG
3166 * Allow low-level driver to filter ATA PACKET commands, returning
3167 * a status indicating whether or not it is OK to use DMA for the
3168 * supplied PACKET command.
3169 *
1da177e4 3170 * LOCKING:
0cba632b
JG
3171 * spin_lock_irqsave(host_set lock)
3172 *
1da177e4
LT
3173 * RETURNS: 0 when ATAPI DMA can be used
3174 * nonzero otherwise
3175 */
3176int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3177{
3178 struct ata_port *ap = qc->ap;
3179 int rc = 0; /* Assume ATAPI DMA is OK by default */
3180
3181 if (ap->ops->check_atapi_dma)
3182 rc = ap->ops->check_atapi_dma(qc);
3183
c2bbc551
AL
3184 /* We don't support polling DMA.
3185 * Use PIO if the LLDD handles only interrupts in
3186 * the HSM_ST_LAST state and the ATAPI device
3187 * generates CDB interrupts.
3188 */
3189 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3190 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3191 rc = 1;
3192
1da177e4
LT
3193 return rc;
3194}
3195/**
3196 * ata_qc_prep - Prepare taskfile for submission
3197 * @qc: Metadata associated with taskfile to be prepared
3198 *
780a87f7
JG
3199 * Prepare ATA taskfile for submission.
3200 *
1da177e4
LT
3201 * LOCKING:
3202 * spin_lock_irqsave(host_set lock)
3203 */
3204void ata_qc_prep(struct ata_queued_cmd *qc)
3205{
3206 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3207 return;
3208
3209 ata_fill_sg(qc);
3210}
3211
e46834cd
BK
3212void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3213
0cba632b
JG
3214/**
3215 * ata_sg_init_one - Associate command with memory buffer
3216 * @qc: Command to be associated
3217 * @buf: Memory buffer
3218 * @buflen: Length of memory buffer, in bytes.
3219 *
3220 * Initialize the data-related elements of queued_cmd @qc
3221 * to point to a single memory buffer, @buf of byte length @buflen.
3222 *
3223 * LOCKING:
3224 * spin_lock_irqsave(host_set lock)
3225 */
3226
1da177e4
LT
3227void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3228{
3229 struct scatterlist *sg;
3230
3231 qc->flags |= ATA_QCFLAG_SINGLE;
3232
3233 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3234 qc->__sg = &qc->sgent;
1da177e4 3235 qc->n_elem = 1;
cedc9a47 3236 qc->orig_n_elem = 1;
1da177e4
LT
3237 qc->buf_virt = buf;
3238
cedc9a47 3239 sg = qc->__sg;
f0612bbc 3240 sg_init_one(sg, buf, buflen);
1da177e4
LT
3241}
3242
0cba632b
JG
3243/**
3244 * ata_sg_init - Associate command with scatter-gather table.
3245 * @qc: Command to be associated
3246 * @sg: Scatter-gather table.
3247 * @n_elem: Number of elements in s/g table.
3248 *
3249 * Initialize the data-related elements of queued_cmd @qc
3250 * to point to a scatter-gather table @sg, containing @n_elem
3251 * elements.
3252 *
3253 * LOCKING:
3254 * spin_lock_irqsave(host_set lock)
3255 */
3256
1da177e4
LT
3257void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3258 unsigned int n_elem)
3259{
3260 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3261 qc->__sg = sg;
1da177e4 3262 qc->n_elem = n_elem;
cedc9a47 3263 qc->orig_n_elem = n_elem;
1da177e4
LT
3264}
3265
3266/**
0cba632b
JG
3267 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3268 * @qc: Command with memory buffer to be mapped.
3269 *
3270 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3271 *
3272 * LOCKING:
3273 * spin_lock_irqsave(host_set lock)
3274 *
3275 * RETURNS:
0cba632b 3276 * Zero on success, negative on error.
1da177e4
LT
3277 */
3278
3279static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3280{
3281 struct ata_port *ap = qc->ap;
3282 int dir = qc->dma_dir;
cedc9a47 3283 struct scatterlist *sg = qc->__sg;
1da177e4 3284 dma_addr_t dma_address;
2e242fa9 3285 int trim_sg = 0;
1da177e4 3286
cedc9a47
JG
3287 /* we must lengthen transfers to end on a 32-bit boundary */
3288 qc->pad_len = sg->length & 3;
3289 if (qc->pad_len) {
3290 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3291 struct scatterlist *psg = &qc->pad_sgent;
3292
a4631474 3293 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3294
3295 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3296
3297 if (qc->tf.flags & ATA_TFLAG_WRITE)
3298 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3299 qc->pad_len);
3300
3301 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3302 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3303 /* trim sg */
3304 sg->length -= qc->pad_len;
2e242fa9
TH
3305 if (sg->length == 0)
3306 trim_sg = 1;
cedc9a47
JG
3307
3308 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3309 sg->length, qc->pad_len);
3310 }
3311
2e242fa9
TH
3312 if (trim_sg) {
3313 qc->n_elem--;
e1410f2d
JG
3314 goto skip_map;
3315 }
3316
2f1f610b 3317 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3318 sg->length, dir);
537a95d9
TH
3319 if (dma_mapping_error(dma_address)) {
3320 /* restore sg */
3321 sg->length += qc->pad_len;
1da177e4 3322 return -1;
537a95d9 3323 }
1da177e4
LT
3324
3325 sg_dma_address(sg) = dma_address;
32529e01 3326 sg_dma_len(sg) = sg->length;
1da177e4 3327
2e242fa9 3328skip_map:
1da177e4
LT
3329 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3330 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3331
3332 return 0;
3333}
3334
3335/**
0cba632b
JG
3336 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3337 * @qc: Command with scatter-gather table to be mapped.
3338 *
3339 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3340 *
3341 * LOCKING:
3342 * spin_lock_irqsave(host_set lock)
3343 *
3344 * RETURNS:
0cba632b 3345 * Zero on success, negative on error.
1da177e4
LT
3346 *
3347 */
3348
3349static int ata_sg_setup(struct ata_queued_cmd *qc)
3350{
3351 struct ata_port *ap = qc->ap;
cedc9a47
JG
3352 struct scatterlist *sg = qc->__sg;
3353 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3354 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3355
3356 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3357 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3358
cedc9a47
JG
3359 /* we must lengthen transfers to end on a 32-bit boundary */
3360 qc->pad_len = lsg->length & 3;
3361 if (qc->pad_len) {
3362 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3363 struct scatterlist *psg = &qc->pad_sgent;
3364 unsigned int offset;
3365
a4631474 3366 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3367
3368 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3369
3370 /*
3371 * psg->page/offset are used to copy to-be-written
3372 * data in this function or read data in ata_sg_clean.
3373 */
3374 offset = lsg->offset + lsg->length - qc->pad_len;
3375 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3376 psg->offset = offset_in_page(offset);
3377
3378 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3379 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3380 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3381 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3382 }
3383
3384 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3385 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3386 /* trim last sg */
3387 lsg->length -= qc->pad_len;
e1410f2d
JG
3388 if (lsg->length == 0)
3389 trim_sg = 1;
cedc9a47
JG
3390
3391 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3392 qc->n_elem - 1, lsg->length, qc->pad_len);
3393 }
3394
e1410f2d
JG
3395 pre_n_elem = qc->n_elem;
3396 if (trim_sg && pre_n_elem)
3397 pre_n_elem--;
3398
3399 if (!pre_n_elem) {
3400 n_elem = 0;
3401 goto skip_map;
3402 }
3403
1da177e4 3404 dir = qc->dma_dir;
2f1f610b 3405 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3406 if (n_elem < 1) {
3407 /* restore last sg */
3408 lsg->length += qc->pad_len;
1da177e4 3409 return -1;
537a95d9 3410 }
1da177e4
LT
3411
3412 DPRINTK("%d sg elements mapped\n", n_elem);
3413
e1410f2d 3414skip_map:
1da177e4
LT
3415 qc->n_elem = n_elem;
3416
3417 return 0;
3418}
3419
40e8c82c
TH
3420/**
3421 * ata_poll_qc_complete - turn irq back on and finish qc
3422 * @qc: Command to complete
8e8b77dd 3423 * @err_mask: ATA status register content
40e8c82c
TH
3424 *
3425 * LOCKING:
3426 * None. (grabs host lock)
3427 */
3428
a22e2eb0 3429void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3430{
3431 struct ata_port *ap = qc->ap;
b8f6153e 3432 unsigned long flags;
40e8c82c 3433
b8f6153e 3434 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c 3435 ata_irq_on(ap);
a22e2eb0 3436 ata_qc_complete(qc);
b8f6153e 3437 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3438}
3439
0baab86b 3440/**
c893a3ae 3441 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3442 * @buf: Buffer to swap
3443 * @buf_words: Number of 16-bit words in buffer.
3444 *
3445 * Swap halves of 16-bit words if needed to convert from
3446 * little-endian byte order to native cpu byte order, or
3447 * vice-versa.
3448 *
3449 * LOCKING:
6f0ef4fa 3450 * Inherited from caller.
0baab86b 3451 */
1da177e4
LT
3452void swap_buf_le16(u16 *buf, unsigned int buf_words)
3453{
3454#ifdef __BIG_ENDIAN
3455 unsigned int i;
3456
3457 for (i = 0; i < buf_words; i++)
3458 buf[i] = le16_to_cpu(buf[i]);
3459#endif /* __BIG_ENDIAN */
3460}
3461
6ae4cfb5
AL
3462/**
3463 * ata_mmio_data_xfer - Transfer data by MMIO
3464 * @ap: port to read/write
3465 * @buf: data buffer
3466 * @buflen: buffer length
344babaa 3467 * @write_data: read/write
6ae4cfb5
AL
3468 *
3469 * Transfer data from/to the device data register by MMIO.
3470 *
3471 * LOCKING:
3472 * Inherited from caller.
6ae4cfb5
AL
3473 */
3474
1da177e4
LT
3475static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3476 unsigned int buflen, int write_data)
3477{
3478 unsigned int i;
3479 unsigned int words = buflen >> 1;
3480 u16 *buf16 = (u16 *) buf;
3481 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3482
6ae4cfb5 3483 /* Transfer multiple of 2 bytes */
1da177e4
LT
3484 if (write_data) {
3485 for (i = 0; i < words; i++)
3486 writew(le16_to_cpu(buf16[i]), mmio);
3487 } else {
3488 for (i = 0; i < words; i++)
3489 buf16[i] = cpu_to_le16(readw(mmio));
3490 }
6ae4cfb5
AL
3491
3492 /* Transfer trailing 1 byte, if any. */
3493 if (unlikely(buflen & 0x01)) {
3494 u16 align_buf[1] = { 0 };
3495 unsigned char *trailing_buf = buf + buflen - 1;
3496
3497 if (write_data) {
3498 memcpy(align_buf, trailing_buf, 1);
3499 writew(le16_to_cpu(align_buf[0]), mmio);
3500 } else {
3501 align_buf[0] = cpu_to_le16(readw(mmio));
3502 memcpy(trailing_buf, align_buf, 1);
3503 }
3504 }
1da177e4
LT
3505}
3506
6ae4cfb5
AL
3507/**
3508 * ata_pio_data_xfer - Transfer data by PIO
3509 * @ap: port to read/write
3510 * @buf: data buffer
3511 * @buflen: buffer length
344babaa 3512 * @write_data: read/write
6ae4cfb5
AL
3513 *
3514 * Transfer data from/to the device data register by PIO.
3515 *
3516 * LOCKING:
3517 * Inherited from caller.
6ae4cfb5
AL
3518 */
3519
1da177e4
LT
3520static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3521 unsigned int buflen, int write_data)
3522{
6ae4cfb5 3523 unsigned int words = buflen >> 1;
1da177e4 3524
6ae4cfb5 3525 /* Transfer multiple of 2 bytes */
1da177e4 3526 if (write_data)
6ae4cfb5 3527 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3528 else
6ae4cfb5
AL
3529 insw(ap->ioaddr.data_addr, buf, words);
3530
3531 /* Transfer trailing 1 byte, if any. */
3532 if (unlikely(buflen & 0x01)) {
3533 u16 align_buf[1] = { 0 };
3534 unsigned char *trailing_buf = buf + buflen - 1;
3535
3536 if (write_data) {
3537 memcpy(align_buf, trailing_buf, 1);
3538 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3539 } else {
3540 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3541 memcpy(trailing_buf, align_buf, 1);
3542 }
3543 }
1da177e4
LT
3544}
3545
6ae4cfb5
AL
3546/**
3547 * ata_data_xfer - Transfer data from/to the data register.
3548 * @ap: port to read/write
3549 * @buf: data buffer
3550 * @buflen: buffer length
3551 * @do_write: read/write
3552 *
3553 * Transfer data from/to the device data register.
3554 *
3555 * LOCKING:
3556 * Inherited from caller.
6ae4cfb5
AL
3557 */
3558
1da177e4
LT
3559static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3560 unsigned int buflen, int do_write)
3561{
a1bd9e68
AC
3562 /* Make the crap hardware pay the costs not the good stuff */
3563 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3564 unsigned long flags;
3565 local_irq_save(flags);
3566 if (ap->flags & ATA_FLAG_MMIO)
3567 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3568 else
3569 ata_pio_data_xfer(ap, buf, buflen, do_write);
3570 local_irq_restore(flags);
3571 } else {
3572 if (ap->flags & ATA_FLAG_MMIO)
3573 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3574 else
3575 ata_pio_data_xfer(ap, buf, buflen, do_write);
3576 }
1da177e4
LT
3577}
3578
6ae4cfb5
AL
3579/**
3580 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3581 * @qc: Command on going
3582 *
3583 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3584 *
3585 * LOCKING:
3586 * Inherited from caller.
3587 */
3588
1da177e4
LT
3589static void ata_pio_sector(struct ata_queued_cmd *qc)
3590{
3591 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3592 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3593 struct ata_port *ap = qc->ap;
3594 struct page *page;
3595 unsigned int offset;
3596 unsigned char *buf;
3597
3598 if (qc->cursect == (qc->nsect - 1))
14be71f4 3599 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3600
3601 page = sg[qc->cursg].page;
3602 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3603
3604 /* get the current page and offset */
3605 page = nth_page(page, (offset >> PAGE_SHIFT));
3606 offset %= PAGE_SIZE;
3607
1da177e4
LT
3608 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3609
91b8b313
AL
3610 if (PageHighMem(page)) {
3611 unsigned long flags;
3612
3613 local_irq_save(flags);
3614 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3615
91b8b313
AL
3616 /* do the actual data transfer */
3617 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3618
91b8b313
AL
3619 kunmap_atomic(buf, KM_IRQ0);
3620 local_irq_restore(flags);
3621 } else {
3622 buf = page_address(page);
3623 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
3624 }
7282aa4b
AL
3625
3626 qc->cursect++;
3627 qc->cursg_ofs++;
3628
3629 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3630 qc->cursg++;
3631 qc->cursg_ofs = 0;
3632 }
1da177e4
LT
3633}
3634
07f6f7d0
AL
3635/**
3636 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3637 * @qc: Command on going
3638 *
3639 * Transfer one or many ATA_SECT_SIZE of data from/to the
3640 * ATA device for the DRQ request.
3641 *
3642 * LOCKING:
3643 * Inherited from caller.
3644 */
3645
3646static void ata_pio_sectors(struct ata_queued_cmd *qc)
3647{
3648 if (is_multi_taskfile(&qc->tf)) {
3649 /* READ/WRITE MULTIPLE */
3650 unsigned int nsect;
3651
587005de 3652 WARN_ON(qc->dev->multi_count == 0);
07f6f7d0
AL
3653
3654 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3655 while (nsect--)
3656 ata_pio_sector(qc);
3657 } else
3658 ata_pio_sector(qc);
3659}
3660
c71c1857
AL
3661/**
3662 * atapi_send_cdb - Write CDB bytes to hardware
3663 * @ap: Port to which ATAPI device is attached.
3664 * @qc: Taskfile currently active
3665 *
3666 * When device has indicated its readiness to accept
3667 * a CDB, this function is called. Send the CDB.
3668 *
3669 * LOCKING:
3670 * caller.
3671 */
3672
3673static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3674{
3675 /* send SCSI cdb */
3676 DPRINTK("send cdb\n");
db024d53 3677 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3678
db024d53 3679 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3680 ata_altstatus(ap); /* flush */
3681
3682 switch (qc->tf.protocol) {
3683 case ATA_PROT_ATAPI:
3684 ap->hsm_task_state = HSM_ST;
3685 break;
3686 case ATA_PROT_ATAPI_NODATA:
3687 ap->hsm_task_state = HSM_ST_LAST;
3688 break;
3689 case ATA_PROT_ATAPI_DMA:
3690 ap->hsm_task_state = HSM_ST_LAST;
3691 /* initiate bmdma */
3692 ap->ops->bmdma_start(qc);
3693 break;
3694 }
3695}
3696
6ae4cfb5
AL
3697/**
3698 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3699 * @qc: Command on going
3700 * @bytes: number of bytes
3701 *
3702 * Transfer Transfer data from/to the ATAPI device.
3703 *
3704 * LOCKING:
3705 * Inherited from caller.
3706 *
3707 */
3708
1da177e4
LT
3709static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3710{
3711 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3712 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3713 struct ata_port *ap = qc->ap;
3714 struct page *page;
3715 unsigned char *buf;
3716 unsigned int offset, count;
3717
563a6e1f 3718 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3719 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3720
3721next_sg:
563a6e1f 3722 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3723 /*
563a6e1f
AL
3724 * The end of qc->sg is reached and the device expects
3725 * more data to transfer. In order not to overrun qc->sg
3726 * and fulfill length specified in the byte count register,
3727 * - for read case, discard trailing data from the device
3728 * - for write case, padding zero data to the device
3729 */
3730 u16 pad_buf[1] = { 0 };
3731 unsigned int words = bytes >> 1;
3732 unsigned int i;
3733
3734 if (words) /* warning if bytes > 1 */
7fb6ec28 3735 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3736 ap->id, bytes);
3737
3738 for (i = 0; i < words; i++)
3739 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3740
14be71f4 3741 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3742 return;
3743 }
3744
cedc9a47 3745 sg = &qc->__sg[qc->cursg];
1da177e4 3746
1da177e4
LT
3747 page = sg->page;
3748 offset = sg->offset + qc->cursg_ofs;
3749
3750 /* get the current page and offset */
3751 page = nth_page(page, (offset >> PAGE_SHIFT));
3752 offset %= PAGE_SIZE;
3753
6952df03 3754 /* don't overrun current sg */
32529e01 3755 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3756
3757 /* don't cross page boundaries */
3758 count = min(count, (unsigned int)PAGE_SIZE - offset);
3759
7282aa4b
AL
3760 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3761
91b8b313
AL
3762 if (PageHighMem(page)) {
3763 unsigned long flags;
3764
3765 local_irq_save(flags);
3766 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3767
91b8b313
AL
3768 /* do the actual data transfer */
3769 ata_data_xfer(ap, buf + offset, count, do_write);
7282aa4b 3770
91b8b313
AL
3771 kunmap_atomic(buf, KM_IRQ0);
3772 local_irq_restore(flags);
3773 } else {
3774 buf = page_address(page);
3775 ata_data_xfer(ap, buf + offset, count, do_write);
3776 }
7282aa4b 3777
1da177e4
LT
3778 bytes -= count;
3779 qc->curbytes += count;
3780 qc->cursg_ofs += count;
3781
32529e01 3782 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3783 qc->cursg++;
3784 qc->cursg_ofs = 0;
3785 }
3786
563a6e1f 3787 if (bytes)
1da177e4 3788 goto next_sg;
1da177e4
LT
3789}
3790
6ae4cfb5
AL
3791/**
3792 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3793 * @qc: Command on going
3794 *
3795 * Transfer Transfer data from/to the ATAPI device.
3796 *
3797 * LOCKING:
3798 * Inherited from caller.
6ae4cfb5
AL
3799 */
3800
1da177e4
LT
3801static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3802{
3803 struct ata_port *ap = qc->ap;
3804 struct ata_device *dev = qc->dev;
3805 unsigned int ireason, bc_lo, bc_hi, bytes;
3806 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3807
3808 ap->ops->tf_read(ap, &qc->tf);
3809 ireason = qc->tf.nsect;
3810 bc_lo = qc->tf.lbam;
3811 bc_hi = qc->tf.lbah;
3812 bytes = (bc_hi << 8) | bc_lo;
3813
3814 /* shall be cleared to zero, indicating xfer of data */
3815 if (ireason & (1 << 0))
3816 goto err_out;
3817
3818 /* make sure transfer direction matches expected */
3819 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3820 if (do_write != i_write)
3821 goto err_out;
3822
312f7da2
AL
3823 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3824
1da177e4
LT
3825 __atapi_pio_bytes(qc, bytes);
3826
3827 return;
3828
3829err_out:
3830 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3831 ap->id, dev->devno);
11a56d24 3832 qc->err_mask |= AC_ERR_HSM;
14be71f4 3833 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3834}
3835
c234fb00
AL
3836/**
3837 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3838 * @ap: the target ata_port
3839 * @qc: qc on going
3840 *
3841 * RETURNS:
3842 * 1 if ok in workqueue, 0 otherwise.
3843 */
3844
3845static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3846{
3847 if (qc->tf.flags & ATA_TFLAG_POLLING)
3848 return 1;
3849
3850 if (ap->hsm_task_state == HSM_ST_FIRST) {
3851 if (qc->tf.protocol == ATA_PROT_PIO &&
3852 (qc->tf.flags & ATA_TFLAG_WRITE))
3853 return 1;
3854
3855 if (is_atapi_taskfile(&qc->tf) &&
3856 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3857 return 1;
3858 }
3859
3860 return 0;
3861}
3862
bb5cb290
AL
3863/**
3864 * ata_hsm_move - move the HSM to the next state.
3865 * @ap: the target ata_port
3866 * @qc: qc on going
3867 * @status: current device status
3868 * @in_wq: 1 if called from workqueue, 0 otherwise
3869 *
3870 * RETURNS:
3871 * 1 when poll next status needed, 0 otherwise.
3872 */
3873
3874static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3875 u8 status, int in_wq)
e2cec771 3876{
bb5cb290
AL
3877 unsigned long flags = 0;
3878 int poll_next;
3879
6912ccd5
AL
3880 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3881
bb5cb290
AL
3882 /* Make sure ata_qc_issue_prot() does not throw things
3883 * like DMA polling into the workqueue. Notice that
3884 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
3885 */
c234fb00 3886 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 3887
e2cec771 3888fsm_start:
999bb6f4
AL
3889 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
3890 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
3891
e2cec771
AL
3892 switch (ap->hsm_task_state) {
3893 case HSM_ST_FIRST:
bb5cb290
AL
3894 /* Send first data block or PACKET CDB */
3895
3896 /* If polling, we will stay in the work queue after
3897 * sending the data. Otherwise, interrupt handler
3898 * takes over after sending the data.
3899 */
3900 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
3901
e2cec771
AL
3902 /* check device status */
3903 if (unlikely((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)) {
3904 /* Wrong status. Let EH handle this */
3905 qc->err_mask |= AC_ERR_HSM;
3906 ap->hsm_task_state = HSM_ST_ERR;
3907 goto fsm_start;
3908 }
3909
71601958
AL
3910 /* Device should not ask for data transfer (DRQ=1)
3911 * when it finds something wrong.
eee6c32f
AL
3912 * We ignore DRQ here and stop the HSM by
3913 * changing hsm_task_state to HSM_ST_ERR and
3914 * let the EH abort the command or reset the device.
71601958
AL
3915 */
3916 if (unlikely(status & (ATA_ERR | ATA_DF))) {
3917 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
3918 ap->id, status);
3919 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
3920 ap->hsm_task_state = HSM_ST_ERR;
3921 goto fsm_start;
71601958
AL
3922 }
3923
bb5cb290
AL
3924 /* Send the CDB (atapi) or the first data block (ata pio out).
3925 * During the state transition, interrupt handler shouldn't
3926 * be invoked before the data transfer is complete and
3927 * hsm_task_state is changed. Hence, the following locking.
3928 */
3929 if (in_wq)
3930 spin_lock_irqsave(&ap->host_set->lock, flags);
3931
3932 if (qc->tf.protocol == ATA_PROT_PIO) {
3933 /* PIO data out protocol.
3934 * send first data block.
3935 */
e2cec771 3936
bb5cb290
AL
3937 /* ata_pio_sectors() might change the state
3938 * to HSM_ST_LAST. so, the state is changed here
3939 * before ata_pio_sectors().
3940 */
3941 ap->hsm_task_state = HSM_ST;
3942 ata_pio_sectors(qc);
3943 ata_altstatus(ap); /* flush */
3944 } else
3945 /* send CDB */
3946 atapi_send_cdb(ap, qc);
3947
3948 if (in_wq)
3949 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3950
3951 /* if polling, ata_pio_task() handles the rest.
3952 * otherwise, interrupt handler takes over from here.
3953 */
e2cec771
AL
3954 break;
3955
3956 case HSM_ST:
3957 /* complete command or read/write the data register */
3958 if (qc->tf.protocol == ATA_PROT_ATAPI) {
3959 /* ATAPI PIO protocol */
3960 if ((status & ATA_DRQ) == 0) {
3961 /* no more data to transfer */
3962 ap->hsm_task_state = HSM_ST_LAST;
3963 goto fsm_start;
3964 }
3965
71601958
AL
3966 /* Device should not ask for data transfer (DRQ=1)
3967 * when it finds something wrong.
eee6c32f
AL
3968 * We ignore DRQ here and stop the HSM by
3969 * changing hsm_task_state to HSM_ST_ERR and
3970 * let the EH abort the command or reset the device.
71601958
AL
3971 */
3972 if (unlikely(status & (ATA_ERR | ATA_DF))) {
3973 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
3974 ap->id, status);
3975 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
3976 ap->hsm_task_state = HSM_ST_ERR;
3977 goto fsm_start;
71601958
AL
3978 }
3979
e2cec771
AL
3980 atapi_pio_bytes(qc);
3981
3982 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
3983 /* bad ireason reported by device */
3984 goto fsm_start;
3985
3986 } else {
3987 /* ATA PIO protocol */
3988 if (unlikely((status & ATA_DRQ) == 0)) {
3989 /* handle BSY=0, DRQ=0 as error */
3990 qc->err_mask |= AC_ERR_HSM;
3991 ap->hsm_task_state = HSM_ST_ERR;
3992 goto fsm_start;
3993 }
3994
eee6c32f
AL
3995 /* For PIO reads, some devices may ask for
3996 * data transfer (DRQ=1) alone with ERR=1.
3997 * We respect DRQ here and transfer one
3998 * block of junk data before changing the
3999 * hsm_task_state to HSM_ST_ERR.
4000 *
4001 * For PIO writes, ERR=1 DRQ=1 doesn't make
4002 * sense since the data block has been
4003 * transferred to the device.
71601958
AL
4004 */
4005 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4006 /* data might be corrputed */
4007 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4008
4009 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4010 ata_pio_sectors(qc);
4011 ata_altstatus(ap);
4012 status = ata_wait_idle(ap);
4013 }
4014
4015 /* ata_pio_sectors() might change the
4016 * state to HSM_ST_LAST. so, the state
4017 * is changed after ata_pio_sectors().
4018 */
4019 ap->hsm_task_state = HSM_ST_ERR;
4020 goto fsm_start;
71601958
AL
4021 }
4022
e2cec771
AL
4023 ata_pio_sectors(qc);
4024
4025 if (ap->hsm_task_state == HSM_ST_LAST &&
4026 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4027 /* all data read */
4028 ata_altstatus(ap);
52a32205 4029 status = ata_wait_idle(ap);
e2cec771
AL
4030 goto fsm_start;
4031 }
4032 }
4033
4034 ata_altstatus(ap); /* flush */
bb5cb290 4035 poll_next = 1;
e2cec771
AL
4036 break;
4037
4038 case HSM_ST_LAST:
6912ccd5
AL
4039 if (unlikely(!ata_ok(status))) {
4040 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4041 ap->hsm_task_state = HSM_ST_ERR;
4042 goto fsm_start;
4043 }
4044
4045 /* no more data to transfer */
4332a771
AL
4046 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4047 ap->id, qc->dev->devno, status);
e2cec771 4048
6912ccd5
AL
4049 WARN_ON(qc->err_mask);
4050
e2cec771
AL
4051 ap->hsm_task_state = HSM_ST_IDLE;
4052
4053 /* complete taskfile transaction */
bb5cb290
AL
4054 if (in_wq)
4055 ata_poll_qc_complete(qc);
4056 else
4057 ata_qc_complete(qc);
4058
4059 poll_next = 0;
e2cec771
AL
4060 break;
4061
4062 case HSM_ST_ERR:
4063 if (qc->tf.command != ATA_CMD_PACKET)
4332a771
AL
4064 printk(KERN_ERR "ata%u: dev %u command error, drv_stat 0x%x\n",
4065 ap->id, qc->dev->devno, status);
e2cec771
AL
4066
4067 /* make sure qc->err_mask is available to
4068 * know what's wrong and recover
4069 */
4070 WARN_ON(qc->err_mask == 0);
4071
4072 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4073
999bb6f4 4074 /* complete taskfile transaction */
bb5cb290
AL
4075 if (in_wq)
4076 ata_poll_qc_complete(qc);
4077 else
4078 ata_qc_complete(qc);
4079
4080 poll_next = 0;
e2cec771
AL
4081 break;
4082 default:
bb5cb290 4083 poll_next = 0;
6912ccd5 4084 BUG();
e2cec771
AL
4085 }
4086
bb5cb290 4087 return poll_next;
e2cec771
AL
4088}
4089
1da177e4
LT
4090static void ata_pio_task(void *_data)
4091{
029f5468
JG
4092 struct ata_queued_cmd *qc = _data;
4093 struct ata_port *ap = qc->ap;
a1af3734
AL
4094 u8 status;
4095 int poll_next;
7fb6ec28
JG
4096
4097fsm_start:
a1af3734 4098 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
1da177e4 4099
a1af3734
AL
4100 qc = ata_qc_from_tag(ap, ap->active_tag);
4101 WARN_ON(qc == NULL);
467b16d4 4102
a1af3734
AL
4103 /*
4104 * This is purely heuristic. This is a fast path.
4105 * Sometimes when we enter, BSY will be cleared in
4106 * a chk-status or two. If not, the drive is probably seeking
4107 * or something. Snooze for a couple msecs, then
4108 * chk-status again. If still busy, queue delayed work.
4109 */
4110 status = ata_busy_wait(ap, ATA_BUSY, 5);
4111 if (status & ATA_BUSY) {
4112 msleep(2);
4113 status = ata_busy_wait(ap, ATA_BUSY, 10);
4114 if (status & ATA_BUSY) {
4115 ata_port_queue_task(ap, ata_pio_task, ap, ATA_SHORT_PAUSE);
4116 return;
4117 }
1da177e4
LT
4118 }
4119
a1af3734
AL
4120 /* move the HSM */
4121 poll_next = ata_hsm_move(ap, qc, status, 1);
4122
4123 /* another command or interrupt handler
4124 * may be running at this point.
4125 */
4126 if (poll_next)
7fb6ec28 4127 goto fsm_start;
1da177e4
LT
4128}
4129
1da177e4
LT
4130/**
4131 * ata_qc_new - Request an available ATA command, for queueing
4132 * @ap: Port associated with device @dev
4133 * @dev: Device from whom we request an available command structure
4134 *
4135 * LOCKING:
0cba632b 4136 * None.
1da177e4
LT
4137 */
4138
4139static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4140{
4141 struct ata_queued_cmd *qc = NULL;
4142 unsigned int i;
4143
4144 for (i = 0; i < ATA_MAX_QUEUE; i++)
4145 if (!test_and_set_bit(i, &ap->qactive)) {
4146 qc = ata_qc_from_tag(ap, i);
4147 break;
4148 }
4149
4150 if (qc)
4151 qc->tag = i;
4152
4153 return qc;
4154}
4155
4156/**
4157 * ata_qc_new_init - Request an available ATA command, and initialize it
4158 * @ap: Port associated with device @dev
4159 * @dev: Device from whom we request an available command structure
4160 *
4161 * LOCKING:
0cba632b 4162 * None.
1da177e4
LT
4163 */
4164
4165struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4166 struct ata_device *dev)
4167{
4168 struct ata_queued_cmd *qc;
4169
4170 qc = ata_qc_new(ap);
4171 if (qc) {
1da177e4
LT
4172 qc->scsicmd = NULL;
4173 qc->ap = ap;
4174 qc->dev = dev;
1da177e4 4175
2c13b7ce 4176 ata_qc_reinit(qc);
1da177e4
LT
4177 }
4178
4179 return qc;
4180}
4181
1da177e4
LT
4182/**
4183 * ata_qc_free - free unused ata_queued_cmd
4184 * @qc: Command to complete
4185 *
4186 * Designed to free unused ata_queued_cmd object
4187 * in case something prevents using it.
4188 *
4189 * LOCKING:
0cba632b 4190 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4191 */
4192void ata_qc_free(struct ata_queued_cmd *qc)
4193{
4ba946e9
TH
4194 struct ata_port *ap = qc->ap;
4195 unsigned int tag;
4196
a4631474 4197 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4198
4ba946e9
TH
4199 qc->flags = 0;
4200 tag = qc->tag;
4201 if (likely(ata_tag_valid(tag))) {
4202 if (tag == ap->active_tag)
4203 ap->active_tag = ATA_TAG_POISON;
4204 qc->tag = ATA_TAG_POISON;
4205 clear_bit(tag, &ap->qactive);
4206 }
1da177e4
LT
4207}
4208
76014427 4209void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4210{
a4631474
TH
4211 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4212 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4213
4214 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4215 ata_sg_clean(qc);
4216
3f3791d3
AL
4217 /* atapi: mark qc as inactive to prevent the interrupt handler
4218 * from completing the command twice later, before the error handler
4219 * is called. (when rc != 0 and atapi request sense is needed)
4220 */
4221 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4222
1da177e4 4223 /* call completion callback */
77853bf2 4224 qc->complete_fn(qc);
1da177e4
LT
4225}
4226
4227static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4228{
4229 struct ata_port *ap = qc->ap;
4230
4231 switch (qc->tf.protocol) {
4232 case ATA_PROT_DMA:
4233 case ATA_PROT_ATAPI_DMA:
4234 return 1;
4235
4236 case ATA_PROT_ATAPI:
4237 case ATA_PROT_PIO:
1da177e4
LT
4238 if (ap->flags & ATA_FLAG_PIO_DMA)
4239 return 1;
4240
4241 /* fall through */
4242
4243 default:
4244 return 0;
4245 }
4246
4247 /* never reached */
4248}
4249
4250/**
4251 * ata_qc_issue - issue taskfile to device
4252 * @qc: command to issue to device
4253 *
4254 * Prepare an ATA command to submission to device.
4255 * This includes mapping the data into a DMA-able
4256 * area, filling in the S/G table, and finally
4257 * writing the taskfile to hardware, starting the command.
4258 *
4259 * LOCKING:
4260 * spin_lock_irqsave(host_set lock)
1da177e4 4261 */
8e0e694a 4262void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4263{
4264 struct ata_port *ap = qc->ap;
4265
e4a70e76
TH
4266 qc->ap->active_tag = qc->tag;
4267 qc->flags |= ATA_QCFLAG_ACTIVE;
4268
1da177e4
LT
4269 if (ata_should_dma_map(qc)) {
4270 if (qc->flags & ATA_QCFLAG_SG) {
4271 if (ata_sg_setup(qc))
8e436af9 4272 goto sg_err;
1da177e4
LT
4273 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4274 if (ata_sg_setup_one(qc))
8e436af9 4275 goto sg_err;
1da177e4
LT
4276 }
4277 } else {
4278 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4279 }
4280
4281 ap->ops->qc_prep(qc);
4282
8e0e694a
TH
4283 qc->err_mask |= ap->ops->qc_issue(qc);
4284 if (unlikely(qc->err_mask))
4285 goto err;
4286 return;
1da177e4 4287
8e436af9
TH
4288sg_err:
4289 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4290 qc->err_mask |= AC_ERR_SYSTEM;
4291err:
4292 ata_qc_complete(qc);
1da177e4
LT
4293}
4294
4295/**
4296 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4297 * @qc: command to issue to device
4298 *
4299 * Using various libata functions and hooks, this function
4300 * starts an ATA command. ATA commands are grouped into
4301 * classes called "protocols", and issuing each type of protocol
4302 * is slightly different.
4303 *
0baab86b
EF
4304 * May be used as the qc_issue() entry in ata_port_operations.
4305 *
1da177e4
LT
4306 * LOCKING:
4307 * spin_lock_irqsave(host_set lock)
4308 *
4309 * RETURNS:
9a3d9eb0 4310 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4311 */
4312
9a3d9eb0 4313unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4314{
4315 struct ata_port *ap = qc->ap;
4316
e50362ec
AL
4317 /* Use polling pio if the LLD doesn't handle
4318 * interrupt driven pio and atapi CDB interrupt.
4319 */
4320 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4321 switch (qc->tf.protocol) {
4322 case ATA_PROT_PIO:
4323 case ATA_PROT_ATAPI:
4324 case ATA_PROT_ATAPI_NODATA:
4325 qc->tf.flags |= ATA_TFLAG_POLLING;
4326 break;
4327 case ATA_PROT_ATAPI_DMA:
4328 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
c2bbc551 4329 /* see ata_check_atapi_dma() */
e50362ec
AL
4330 BUG();
4331 break;
4332 default:
4333 break;
4334 }
4335 }
4336
312f7da2 4337 /* select the device */
1da177e4
LT
4338 ata_dev_select(ap, qc->dev->devno, 1, 0);
4339
312f7da2 4340 /* start the command */
1da177e4
LT
4341 switch (qc->tf.protocol) {
4342 case ATA_PROT_NODATA:
312f7da2
AL
4343 if (qc->tf.flags & ATA_TFLAG_POLLING)
4344 ata_qc_set_polling(qc);
4345
e5338254 4346 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4347 ap->hsm_task_state = HSM_ST_LAST;
4348
4349 if (qc->tf.flags & ATA_TFLAG_POLLING)
46e202ec 4350 ata_port_queue_task(ap, ata_pio_task, ap, 0);
312f7da2 4351
1da177e4
LT
4352 break;
4353
4354 case ATA_PROT_DMA:
587005de 4355 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4356
1da177e4
LT
4357 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4358 ap->ops->bmdma_setup(qc); /* set up bmdma */
4359 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4360 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4361 break;
4362
312f7da2
AL
4363 case ATA_PROT_PIO:
4364 if (qc->tf.flags & ATA_TFLAG_POLLING)
4365 ata_qc_set_polling(qc);
4366
e5338254 4367 ata_tf_to_host(ap, &qc->tf);
312f7da2 4368
54f00389
AL
4369 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4370 /* PIO data out protocol */
4371 ap->hsm_task_state = HSM_ST_FIRST;
ce1e7a2a 4372 ata_port_queue_task(ap, ata_pio_task, ap, 0);
54f00389
AL
4373
4374 /* always send first data block using
e27486db 4375 * the ata_pio_task() codepath.
54f00389 4376 */
312f7da2 4377 } else {
54f00389
AL
4378 /* PIO data in protocol */
4379 ap->hsm_task_state = HSM_ST;
4380
4381 if (qc->tf.flags & ATA_TFLAG_POLLING)
ce1e7a2a 4382 ata_port_queue_task(ap, ata_pio_task, ap, 0);
54f00389
AL
4383
4384 /* if polling, ata_pio_task() handles the rest.
4385 * otherwise, interrupt handler takes over from here.
4386 */
312f7da2
AL
4387 }
4388
1da177e4
LT
4389 break;
4390
4391 case ATA_PROT_ATAPI:
1da177e4 4392 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4393 if (qc->tf.flags & ATA_TFLAG_POLLING)
4394 ata_qc_set_polling(qc);
4395
e5338254 4396 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4397
312f7da2
AL
4398 ap->hsm_task_state = HSM_ST_FIRST;
4399
4400 /* send cdb by polling if no cdb interrupt */
4401 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4402 (qc->tf.flags & ATA_TFLAG_POLLING))
13ee4628 4403 ata_port_queue_task(ap, ata_pio_task, ap, 0);
1da177e4
LT
4404 break;
4405
4406 case ATA_PROT_ATAPI_DMA:
587005de 4407 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4408
1da177e4
LT
4409 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4410 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4411 ap->hsm_task_state = HSM_ST_FIRST;
4412
4413 /* send cdb by polling if no cdb interrupt */
4414 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
13ee4628 4415 ata_port_queue_task(ap, ata_pio_task, ap, 0);
1da177e4
LT
4416 break;
4417
4418 default:
4419 WARN_ON(1);
9a3d9eb0 4420 return AC_ERR_SYSTEM;
1da177e4
LT
4421 }
4422
4423 return 0;
4424}
4425
1da177e4
LT
4426/**
4427 * ata_host_intr - Handle host interrupt for given (port, task)
4428 * @ap: Port on which interrupt arrived (possibly...)
4429 * @qc: Taskfile currently active in engine
4430 *
4431 * Handle host interrupt for given queued command. Currently,
4432 * only DMA interrupts are handled. All other commands are
4433 * handled via polling with interrupts disabled (nIEN bit).
4434 *
4435 * LOCKING:
4436 * spin_lock_irqsave(host_set lock)
4437 *
4438 * RETURNS:
4439 * One if interrupt was handled, zero if not (shared irq).
4440 */
4441
4442inline unsigned int ata_host_intr (struct ata_port *ap,
4443 struct ata_queued_cmd *qc)
4444{
312f7da2 4445 u8 status, host_stat = 0;
1da177e4 4446
312f7da2
AL
4447 VPRINTK("ata%u: protocol %d task_state %d\n",
4448 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4449
312f7da2
AL
4450 /* Check whether we are expecting interrupt in this state */
4451 switch (ap->hsm_task_state) {
4452 case HSM_ST_FIRST:
6912ccd5
AL
4453 /* Some pre-ATAPI-4 devices assert INTRQ
4454 * at this state when ready to receive CDB.
4455 */
4456
312f7da2
AL
4457 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4458 * The flag was turned on only for atapi devices.
4459 * No need to check is_atapi_taskfile(&qc->tf) again.
4460 */
4461 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4462 goto idle_irq;
312f7da2
AL
4463 break;
4464 case HSM_ST_LAST:
4465 if (qc->tf.protocol == ATA_PROT_DMA ||
4466 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4467 /* check status of DMA engine */
4468 host_stat = ap->ops->bmdma_status(ap);
4469 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4470
4471 /* if it's not our irq... */
4472 if (!(host_stat & ATA_DMA_INTR))
4473 goto idle_irq;
4474
4475 /* before we do anything else, clear DMA-Start bit */
4476 ap->ops->bmdma_stop(qc);
a4f16610
AL
4477
4478 if (unlikely(host_stat & ATA_DMA_ERR)) {
4479 /* error when transfering data to/from memory */
4480 qc->err_mask |= AC_ERR_HOST_BUS;
4481 ap->hsm_task_state = HSM_ST_ERR;
4482 }
312f7da2
AL
4483 }
4484 break;
4485 case HSM_ST:
4486 break;
4487 default:
4488 goto idle_irq;
4489 }
1da177e4 4490
312f7da2
AL
4491 /* check altstatus */
4492 status = ata_altstatus(ap);
4493 if (status & ATA_BUSY)
4494 goto idle_irq;
1da177e4 4495
312f7da2
AL
4496 /* check main status, clearing INTRQ */
4497 status = ata_chk_status(ap);
4498 if (unlikely(status & ATA_BUSY))
4499 goto idle_irq;
1da177e4 4500
312f7da2
AL
4501 /* ack bmdma irq events */
4502 ap->ops->irq_clear(ap);
1da177e4 4503
bb5cb290 4504 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4505 return 1; /* irq handled */
4506
4507idle_irq:
4508 ap->stats.idle_irq++;
4509
4510#ifdef ATA_IRQ_TRAP
4511 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4
LT
4512 ata_irq_ack(ap, 0); /* debug trap */
4513 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
23cfce89 4514 return 1;
1da177e4
LT
4515 }
4516#endif
4517 return 0; /* irq not handled */
4518}
4519
4520/**
4521 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4522 * @irq: irq line (unused)
4523 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4524 * @regs: unused
4525 *
0cba632b
JG
4526 * Default interrupt handler for PCI IDE devices. Calls
4527 * ata_host_intr() for each port that is not disabled.
4528 *
1da177e4 4529 * LOCKING:
0cba632b 4530 * Obtains host_set lock during operation.
1da177e4
LT
4531 *
4532 * RETURNS:
0cba632b 4533 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4534 */
4535
4536irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4537{
4538 struct ata_host_set *host_set = dev_instance;
4539 unsigned int i;
4540 unsigned int handled = 0;
4541 unsigned long flags;
4542
4543 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4544 spin_lock_irqsave(&host_set->lock, flags);
4545
4546 for (i = 0; i < host_set->n_ports; i++) {
4547 struct ata_port *ap;
4548
4549 ap = host_set->ports[i];
c1389503 4550 if (ap &&
029f5468 4551 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4552 struct ata_queued_cmd *qc;
4553
4554 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4555 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4556 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4557 handled |= ata_host_intr(ap, qc);
4558 }
4559 }
4560
4561 spin_unlock_irqrestore(&host_set->lock, flags);
4562
4563 return IRQ_RETVAL(handled);
4564}
4565
0baab86b 4566
9b847548
JA
4567/*
4568 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4569 * without filling any other registers
4570 */
4571static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4572 u8 cmd)
4573{
4574 struct ata_taskfile tf;
4575 int err;
4576
4577 ata_tf_init(ap, &tf, dev->devno);
4578
4579 tf.command = cmd;
4580 tf.flags |= ATA_TFLAG_DEVICE;
4581 tf.protocol = ATA_PROT_NODATA;
4582
d69cf37d 4583 err = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
9b847548
JA
4584 if (err)
4585 printk(KERN_ERR "%s: ata command failed: %d\n",
4586 __FUNCTION__, err);
4587
4588 return err;
4589}
4590
4591static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4592{
4593 u8 cmd;
4594
4595 if (!ata_try_flush_cache(dev))
4596 return 0;
4597
4598 if (ata_id_has_flush_ext(dev->id))
4599 cmd = ATA_CMD_FLUSH_EXT;
4600 else
4601 cmd = ATA_CMD_FLUSH;
4602
4603 return ata_do_simple_cmd(ap, dev, cmd);
4604}
4605
4606static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4607{
4608 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4609}
4610
4611static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4612{
4613 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4614}
4615
4616/**
4617 * ata_device_resume - wakeup a previously suspended devices
c893a3ae
RD
4618 * @ap: port the device is connected to
4619 * @dev: the device to resume
9b847548
JA
4620 *
4621 * Kick the drive back into action, by sending it an idle immediate
4622 * command and making sure its transfer mode matches between drive
4623 * and host.
4624 *
4625 */
4626int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4627{
4628 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 4629 struct ata_device *failed_dev;
9b847548 4630 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9
TH
4631 while (ata_set_mode(ap, &failed_dev))
4632 ata_dev_disable(ap, failed_dev);
9b847548 4633 }
e1211e3f 4634 if (!ata_dev_enabled(dev))
9b847548
JA
4635 return 0;
4636 if (dev->class == ATA_DEV_ATA)
4637 ata_start_drive(ap, dev);
4638
4639 return 0;
4640}
4641
4642/**
4643 * ata_device_suspend - prepare a device for suspend
c893a3ae
RD
4644 * @ap: port the device is connected to
4645 * @dev: the device to suspend
9b847548
JA
4646 *
4647 * Flush the cache on the drive, if appropriate, then issue a
4648 * standbynow command.
9b847548 4649 */
082776e4 4650int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
9b847548 4651{
e1211e3f 4652 if (!ata_dev_enabled(dev))
9b847548
JA
4653 return 0;
4654 if (dev->class == ATA_DEV_ATA)
4655 ata_flush_cache(ap, dev);
4656
082776e4
NC
4657 if (state.event != PM_EVENT_FREEZE)
4658 ata_standby_drive(ap, dev);
9b847548
JA
4659 ap->flags |= ATA_FLAG_SUSPENDED;
4660 return 0;
4661}
4662
332b5a52
AL
4663/**
4664 * ata_port_start - Set port up for dma.
4665 * @ap: Port to initialize
4666 *
4667 * Called just after data structures for each port are
4668 * initialized. Allocates space for PRD table.
4669 *
4670 * May be used as the port_start() entry in ata_port_operations.
4671 *
4672 * LOCKING:
4673 * Inherited from caller.
4674 */
4675
1da177e4
LT
4676int ata_port_start (struct ata_port *ap)
4677{
2f1f610b 4678 struct device *dev = ap->dev;
6037d6bb 4679 int rc;
1da177e4
LT
4680
4681 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4682 if (!ap->prd)
4683 return -ENOMEM;
4684
6037d6bb
JG
4685 rc = ata_pad_alloc(ap, dev);
4686 if (rc) {
cedc9a47 4687 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4688 return rc;
cedc9a47
JG
4689 }
4690
1da177e4
LT
4691 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4692
4693 return 0;
4694}
4695
0baab86b
EF
4696
4697/**
4698 * ata_port_stop - Undo ata_port_start()
4699 * @ap: Port to shut down
4700 *
4701 * Frees the PRD table.
4702 *
4703 * May be used as the port_stop() entry in ata_port_operations.
4704 *
4705 * LOCKING:
6f0ef4fa 4706 * Inherited from caller.
0baab86b
EF
4707 */
4708
1da177e4
LT
4709void ata_port_stop (struct ata_port *ap)
4710{
2f1f610b 4711 struct device *dev = ap->dev;
1da177e4
LT
4712
4713 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4714 ata_pad_free(ap, dev);
1da177e4
LT
4715}
4716
aa8f0dc6
JG
4717void ata_host_stop (struct ata_host_set *host_set)
4718{
4719 if (host_set->mmio_base)
4720 iounmap(host_set->mmio_base);
4721}
4722
4723
1da177e4
LT
4724/**
4725 * ata_host_remove - Unregister SCSI host structure with upper layers
4726 * @ap: Port to unregister
4727 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4728 *
4729 * LOCKING:
6f0ef4fa 4730 * Inherited from caller.
1da177e4
LT
4731 */
4732
4733static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4734{
4735 struct Scsi_Host *sh = ap->host;
4736
4737 DPRINTK("ENTER\n");
4738
4739 if (do_unregister)
4740 scsi_remove_host(sh);
4741
4742 ap->ops->port_stop(ap);
4743}
4744
4745/**
4746 * ata_host_init - Initialize an ata_port structure
4747 * @ap: Structure to initialize
4748 * @host: associated SCSI mid-layer structure
4749 * @host_set: Collection of hosts to which @ap belongs
4750 * @ent: Probe information provided by low-level driver
4751 * @port_no: Port number associated with this ata_port
4752 *
0cba632b
JG
4753 * Initialize a new ata_port structure, and its associated
4754 * scsi_host.
4755 *
1da177e4 4756 * LOCKING:
0cba632b 4757 * Inherited from caller.
1da177e4
LT
4758 */
4759
4760static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4761 struct ata_host_set *host_set,
057ace5e 4762 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4763{
4764 unsigned int i;
4765
4766 host->max_id = 16;
4767 host->max_lun = 1;
4768 host->max_channel = 1;
4769 host->unique_id = ata_unique_id++;
4770 host->max_cmd_len = 12;
12413197 4771
198e0fed 4772 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
4773 ap->id = host->unique_id;
4774 ap->host = host;
4775 ap->ctl = ATA_DEVCTL_OBS;
4776 ap->host_set = host_set;
2f1f610b 4777 ap->dev = ent->dev;
1da177e4
LT
4778 ap->port_no = port_no;
4779 ap->hard_port_no =
4780 ent->legacy_mode ? ent->hard_port_no : port_no;
4781 ap->pio_mask = ent->pio_mask;
4782 ap->mwdma_mask = ent->mwdma_mask;
4783 ap->udma_mask = ent->udma_mask;
4784 ap->flags |= ent->host_flags;
4785 ap->ops = ent->port_ops;
4786 ap->cbl = ATA_CBL_NONE;
1c3fae4d 4787 ap->sata_spd_limit = UINT_MAX;
1da177e4
LT
4788 ap->active_tag = ATA_TAG_POISON;
4789 ap->last_ctl = 0xFF;
4790
86e45b6b 4791 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4792 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 4793
acf356b1
TH
4794 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4795 struct ata_device *dev = &ap->device[i];
4796 dev->devno = i;
4797 dev->pio_mask = UINT_MAX;
4798 dev->mwdma_mask = UINT_MAX;
4799 dev->udma_mask = UINT_MAX;
4800 }
1da177e4
LT
4801
4802#ifdef ATA_IRQ_TRAP
4803 ap->stats.unhandled_irq = 1;
4804 ap->stats.idle_irq = 1;
4805#endif
4806
4807 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4808}
4809
4810/**
4811 * ata_host_add - Attach low-level ATA driver to system
4812 * @ent: Information provided by low-level driver
4813 * @host_set: Collections of ports to which we add
4814 * @port_no: Port number associated with this host
4815 *
0cba632b
JG
4816 * Attach low-level ATA driver to system.
4817 *
1da177e4 4818 * LOCKING:
0cba632b 4819 * PCI/etc. bus probe sem.
1da177e4
LT
4820 *
4821 * RETURNS:
0cba632b 4822 * New ata_port on success, for NULL on error.
1da177e4
LT
4823 */
4824
057ace5e 4825static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4826 struct ata_host_set *host_set,
4827 unsigned int port_no)
4828{
4829 struct Scsi_Host *host;
4830 struct ata_port *ap;
4831 int rc;
4832
4833 DPRINTK("ENTER\n");
aec5c3c1
TH
4834
4835 if (!ent->port_ops->probe_reset &&
4836 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4837 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4838 port_no);
4839 return NULL;
4840 }
4841
1da177e4
LT
4842 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4843 if (!host)
4844 return NULL;
4845
30afc84c
TH
4846 host->transportt = &ata_scsi_transport_template;
4847
1da177e4
LT
4848 ap = (struct ata_port *) &host->hostdata[0];
4849
4850 ata_host_init(ap, host, host_set, ent, port_no);
4851
4852 rc = ap->ops->port_start(ap);
4853 if (rc)
4854 goto err_out;
4855
4856 return ap;
4857
4858err_out:
4859 scsi_host_put(host);
4860 return NULL;
4861}
4862
4863/**
0cba632b
JG
4864 * ata_device_add - Register hardware device with ATA and SCSI layers
4865 * @ent: Probe information describing hardware device to be registered
4866 *
4867 * This function processes the information provided in the probe
4868 * information struct @ent, allocates the necessary ATA and SCSI
4869 * host information structures, initializes them, and registers
4870 * everything with requisite kernel subsystems.
4871 *
4872 * This function requests irqs, probes the ATA bus, and probes
4873 * the SCSI bus.
1da177e4
LT
4874 *
4875 * LOCKING:
0cba632b 4876 * PCI/etc. bus probe sem.
1da177e4
LT
4877 *
4878 * RETURNS:
0cba632b 4879 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4880 */
4881
057ace5e 4882int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4883{
4884 unsigned int count = 0, i;
4885 struct device *dev = ent->dev;
4886 struct ata_host_set *host_set;
4887
4888 DPRINTK("ENTER\n");
4889 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4890 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4891 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4892 if (!host_set)
4893 return 0;
1da177e4
LT
4894 spin_lock_init(&host_set->lock);
4895
4896 host_set->dev = dev;
4897 host_set->n_ports = ent->n_ports;
4898 host_set->irq = ent->irq;
4899 host_set->mmio_base = ent->mmio_base;
4900 host_set->private_data = ent->private_data;
4901 host_set->ops = ent->port_ops;
5444a6f4 4902 host_set->flags = ent->host_set_flags;
1da177e4
LT
4903
4904 /* register each port bound to this device */
4905 for (i = 0; i < ent->n_ports; i++) {
4906 struct ata_port *ap;
4907 unsigned long xfer_mode_mask;
4908
4909 ap = ata_host_add(ent, host_set, i);
4910 if (!ap)
4911 goto err_out;
4912
4913 host_set->ports[i] = ap;
4914 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4915 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4916 (ap->pio_mask << ATA_SHIFT_PIO);
4917
4918 /* print per-port info to dmesg */
4919 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4920 "bmdma 0x%lX irq %lu\n",
4921 ap->id,
4922 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4923 ata_mode_string(xfer_mode_mask),
4924 ap->ioaddr.cmd_addr,
4925 ap->ioaddr.ctl_addr,
4926 ap->ioaddr.bmdma_addr,
4927 ent->irq);
4928
4929 ata_chk_status(ap);
4930 host_set->ops->irq_clear(ap);
4931 count++;
4932 }
4933
57f3bda8
RD
4934 if (!count)
4935 goto err_free_ret;
1da177e4
LT
4936
4937 /* obtain irq, that is shared between channels */
4938 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4939 DRV_NAME, host_set))
4940 goto err_out;
4941
4942 /* perform each probe synchronously */
4943 DPRINTK("probe begin\n");
4944 for (i = 0; i < count; i++) {
4945 struct ata_port *ap;
4946 int rc;
4947
4948 ap = host_set->ports[i];
4949
c893a3ae 4950 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4951 rc = ata_bus_probe(ap);
c893a3ae 4952 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4953
4954 if (rc) {
4955 /* FIXME: do something useful here?
4956 * Current libata behavior will
4957 * tear down everything when
4958 * the module is removed
4959 * or the h/w is unplugged.
4960 */
4961 }
4962
4963 rc = scsi_add_host(ap->host, dev);
4964 if (rc) {
4965 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4966 ap->id);
4967 /* FIXME: do something useful here */
4968 /* FIXME: handle unconditional calls to
4969 * scsi_scan_host and ata_host_remove, below,
4970 * at the very least
4971 */
4972 }
4973 }
4974
4975 /* probes are done, now scan each port's disk(s) */
c893a3ae 4976 DPRINTK("host probe begin\n");
1da177e4
LT
4977 for (i = 0; i < count; i++) {
4978 struct ata_port *ap = host_set->ports[i];
4979
644dd0cc 4980 ata_scsi_scan_host(ap);
1da177e4
LT
4981 }
4982
4983 dev_set_drvdata(dev, host_set);
4984
4985 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4986 return ent->n_ports; /* success */
4987
4988err_out:
4989 for (i = 0; i < count; i++) {
4990 ata_host_remove(host_set->ports[i], 1);
4991 scsi_host_put(host_set->ports[i]->host);
4992 }
57f3bda8 4993err_free_ret:
1da177e4
LT
4994 kfree(host_set);
4995 VPRINTK("EXIT, returning 0\n");
4996 return 0;
4997}
4998
17b14451
AC
4999/**
5000 * ata_host_set_remove - PCI layer callback for device removal
5001 * @host_set: ATA host set that was removed
5002 *
2e9edbf8 5003 * Unregister all objects associated with this host set. Free those
17b14451
AC
5004 * objects.
5005 *
5006 * LOCKING:
5007 * Inherited from calling layer (may sleep).
5008 */
5009
17b14451
AC
5010void ata_host_set_remove(struct ata_host_set *host_set)
5011{
5012 struct ata_port *ap;
5013 unsigned int i;
5014
5015 for (i = 0; i < host_set->n_ports; i++) {
5016 ap = host_set->ports[i];
5017 scsi_remove_host(ap->host);
5018 }
5019
5020 free_irq(host_set->irq, host_set);
5021
5022 for (i = 0; i < host_set->n_ports; i++) {
5023 ap = host_set->ports[i];
5024
5025 ata_scsi_release(ap->host);
5026
5027 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5028 struct ata_ioports *ioaddr = &ap->ioaddr;
5029
5030 if (ioaddr->cmd_addr == 0x1f0)
5031 release_region(0x1f0, 8);
5032 else if (ioaddr->cmd_addr == 0x170)
5033 release_region(0x170, 8);
5034 }
5035
5036 scsi_host_put(ap->host);
5037 }
5038
5039 if (host_set->ops->host_stop)
5040 host_set->ops->host_stop(host_set);
5041
5042 kfree(host_set);
5043}
5044
1da177e4
LT
5045/**
5046 * ata_scsi_release - SCSI layer callback hook for host unload
5047 * @host: libata host to be unloaded
5048 *
5049 * Performs all duties necessary to shut down a libata port...
5050 * Kill port kthread, disable port, and release resources.
5051 *
5052 * LOCKING:
5053 * Inherited from SCSI layer.
5054 *
5055 * RETURNS:
5056 * One.
5057 */
5058
5059int ata_scsi_release(struct Scsi_Host *host)
5060{
5061 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
d9572b1d 5062 int i;
1da177e4
LT
5063
5064 DPRINTK("ENTER\n");
5065
5066 ap->ops->port_disable(ap);
5067 ata_host_remove(ap, 0);
d9572b1d
TH
5068 for (i = 0; i < ATA_MAX_DEVICES; i++)
5069 kfree(ap->device[i].id);
1da177e4
LT
5070
5071 DPRINTK("EXIT\n");
5072 return 1;
5073}
5074
5075/**
5076 * ata_std_ports - initialize ioaddr with standard port offsets.
5077 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5078 *
5079 * Utility function which initializes data_addr, error_addr,
5080 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5081 * device_addr, status_addr, and command_addr to standard offsets
5082 * relative to cmd_addr.
5083 *
5084 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5085 */
0baab86b 5086
1da177e4
LT
5087void ata_std_ports(struct ata_ioports *ioaddr)
5088{
5089 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5090 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5091 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5092 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5093 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5094 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5095 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5096 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5097 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5098 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5099}
5100
0baab86b 5101
374b1873
JG
5102#ifdef CONFIG_PCI
5103
5104void ata_pci_host_stop (struct ata_host_set *host_set)
5105{
5106 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5107
5108 pci_iounmap(pdev, host_set->mmio_base);
5109}
5110
1da177e4
LT
5111/**
5112 * ata_pci_remove_one - PCI layer callback for device removal
5113 * @pdev: PCI device that was removed
5114 *
5115 * PCI layer indicates to libata via this hook that
6f0ef4fa 5116 * hot-unplug or module unload event has occurred.
1da177e4
LT
5117 * Handle this by unregistering all objects associated
5118 * with this PCI device. Free those objects. Then finally
5119 * release PCI resources and disable device.
5120 *
5121 * LOCKING:
5122 * Inherited from PCI layer (may sleep).
5123 */
5124
5125void ata_pci_remove_one (struct pci_dev *pdev)
5126{
5127 struct device *dev = pci_dev_to_dev(pdev);
5128 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 5129
17b14451 5130 ata_host_set_remove(host_set);
1da177e4
LT
5131 pci_release_regions(pdev);
5132 pci_disable_device(pdev);
5133 dev_set_drvdata(dev, NULL);
5134}
5135
5136/* move to PCI subsystem */
057ace5e 5137int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5138{
5139 unsigned long tmp = 0;
5140
5141 switch (bits->width) {
5142 case 1: {
5143 u8 tmp8 = 0;
5144 pci_read_config_byte(pdev, bits->reg, &tmp8);
5145 tmp = tmp8;
5146 break;
5147 }
5148 case 2: {
5149 u16 tmp16 = 0;
5150 pci_read_config_word(pdev, bits->reg, &tmp16);
5151 tmp = tmp16;
5152 break;
5153 }
5154 case 4: {
5155 u32 tmp32 = 0;
5156 pci_read_config_dword(pdev, bits->reg, &tmp32);
5157 tmp = tmp32;
5158 break;
5159 }
5160
5161 default:
5162 return -EINVAL;
5163 }
5164
5165 tmp &= bits->mask;
5166
5167 return (tmp == bits->val) ? 1 : 0;
5168}
9b847548
JA
5169
5170int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5171{
5172 pci_save_state(pdev);
5173 pci_disable_device(pdev);
5174 pci_set_power_state(pdev, PCI_D3hot);
5175 return 0;
5176}
5177
5178int ata_pci_device_resume(struct pci_dev *pdev)
5179{
5180 pci_set_power_state(pdev, PCI_D0);
5181 pci_restore_state(pdev);
5182 pci_enable_device(pdev);
5183 pci_set_master(pdev);
5184 return 0;
5185}
1da177e4
LT
5186#endif /* CONFIG_PCI */
5187
5188
1da177e4
LT
5189static int __init ata_init(void)
5190{
5191 ata_wq = create_workqueue("ata");
5192 if (!ata_wq)
5193 return -ENOMEM;
5194
5195 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5196 return 0;
5197}
5198
5199static void __exit ata_exit(void)
5200{
5201 destroy_workqueue(ata_wq);
5202}
5203
5204module_init(ata_init);
5205module_exit(ata_exit);
5206
67846b30
JG
5207static unsigned long ratelimit_time;
5208static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5209
5210int ata_ratelimit(void)
5211{
5212 int rc;
5213 unsigned long flags;
5214
5215 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5216
5217 if (time_after(jiffies, ratelimit_time)) {
5218 rc = 1;
5219 ratelimit_time = jiffies + (HZ/5);
5220 } else
5221 rc = 0;
5222
5223 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5224
5225 return rc;
5226}
5227
1da177e4
LT
5228/*
5229 * libata is essentially a library of internal helper functions for
5230 * low-level ATA host controller drivers. As such, the API/ABI is
5231 * likely to change as new drivers are added and updated.
5232 * Do not depend on ABI/API stability.
5233 */
5234
5235EXPORT_SYMBOL_GPL(ata_std_bios_param);
5236EXPORT_SYMBOL_GPL(ata_std_ports);
5237EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5238EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5239EXPORT_SYMBOL_GPL(ata_sg_init);
5240EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 5241EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4 5242EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5243EXPORT_SYMBOL_GPL(ata_tf_load);
5244EXPORT_SYMBOL_GPL(ata_tf_read);
5245EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5246EXPORT_SYMBOL_GPL(ata_std_dev_select);
5247EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5248EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5249EXPORT_SYMBOL_GPL(ata_check_status);
5250EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5251EXPORT_SYMBOL_GPL(ata_exec_command);
5252EXPORT_SYMBOL_GPL(ata_port_start);
5253EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5254EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5255EXPORT_SYMBOL_GPL(ata_interrupt);
5256EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5257EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5258EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5259EXPORT_SYMBOL_GPL(ata_bmdma_start);
5260EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5261EXPORT_SYMBOL_GPL(ata_bmdma_status);
5262EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5263EXPORT_SYMBOL_GPL(ata_port_probe);
5264EXPORT_SYMBOL_GPL(sata_phy_reset);
5265EXPORT_SYMBOL_GPL(__sata_phy_reset);
5266EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5267EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
5268EXPORT_SYMBOL_GPL(ata_std_softreset);
5269EXPORT_SYMBOL_GPL(sata_std_hardreset);
5270EXPORT_SYMBOL_GPL(ata_std_postreset);
5271EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5272EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5273EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5274EXPORT_SYMBOL_GPL(ata_dev_classify);
5275EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5276EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5277EXPORT_SYMBOL_GPL(ata_ratelimit);
6f8b9958 5278EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5279EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5280EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5281EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4
LT
5282EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5283EXPORT_SYMBOL_GPL(ata_scsi_release);
5284EXPORT_SYMBOL_GPL(ata_host_intr);
6a62a04d
TH
5285EXPORT_SYMBOL_GPL(ata_id_string);
5286EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5287EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5288
1bc4ccff 5289EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5290EXPORT_SYMBOL_GPL(ata_timing_compute);
5291EXPORT_SYMBOL_GPL(ata_timing_merge);
5292
1da177e4
LT
5293#ifdef CONFIG_PCI
5294EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5295EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5296EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5297EXPORT_SYMBOL_GPL(ata_pci_init_one);
5298EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5299EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5300EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5301EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5302EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5303#endif /* CONFIG_PCI */
9b847548
JA
5304
5305EXPORT_SYMBOL_GPL(ata_device_suspend);
5306EXPORT_SYMBOL_GPL(ata_device_resume);
5307EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5308EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636
TH
5309
5310EXPORT_SYMBOL_GPL(ata_scsi_error);
5311EXPORT_SYMBOL_GPL(ata_eng_timeout);
5312EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5313EXPORT_SYMBOL_GPL(ata_eh_qc_retry);