]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/scsi/libata-core.c
[PATCH] libata: set default cbl in probeinit
[mirror_ubuntu-focal-kernel.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
6aff8f1f 64static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
83206a29
TH
68static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
69 struct ata_device *dev);
acf356b1 70static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
71
72static unsigned int ata_unique_id = 1;
73static struct workqueue_struct *ata_wq;
74
418dc1f5 75int atapi_enabled = 1;
1623c81e
JG
76module_param(atapi_enabled, int, 0444);
77MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
78
95de719a
AL
79int atapi_dmadir = 0;
80module_param(atapi_dmadir, int, 0444);
81MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
82
c3c013a2
JG
83int libata_fua = 0;
84module_param_named(fua, libata_fua, int, 0444);
85MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
86
1da177e4
LT
87MODULE_AUTHOR("Jeff Garzik");
88MODULE_DESCRIPTION("Library module for ATA devices");
89MODULE_LICENSE("GPL");
90MODULE_VERSION(DRV_VERSION);
91
0baab86b 92
1da177e4
LT
93/**
94 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
95 * @tf: Taskfile to convert
96 * @fis: Buffer into which data will output
97 * @pmp: Port multiplier port
98 *
99 * Converts a standard ATA taskfile to a Serial ATA
100 * FIS structure (Register - Host to Device).
101 *
102 * LOCKING:
103 * Inherited from caller.
104 */
105
057ace5e 106void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
107{
108 fis[0] = 0x27; /* Register - Host to Device FIS */
109 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
110 bit 7 indicates Command FIS */
111 fis[2] = tf->command;
112 fis[3] = tf->feature;
113
114 fis[4] = tf->lbal;
115 fis[5] = tf->lbam;
116 fis[6] = tf->lbah;
117 fis[7] = tf->device;
118
119 fis[8] = tf->hob_lbal;
120 fis[9] = tf->hob_lbam;
121 fis[10] = tf->hob_lbah;
122 fis[11] = tf->hob_feature;
123
124 fis[12] = tf->nsect;
125 fis[13] = tf->hob_nsect;
126 fis[14] = 0;
127 fis[15] = tf->ctl;
128
129 fis[16] = 0;
130 fis[17] = 0;
131 fis[18] = 0;
132 fis[19] = 0;
133}
134
135/**
136 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
137 * @fis: Buffer from which data will be input
138 * @tf: Taskfile to output
139 *
e12a1be6 140 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
141 *
142 * LOCKING:
143 * Inherited from caller.
144 */
145
057ace5e 146void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
147{
148 tf->command = fis[2]; /* status */
149 tf->feature = fis[3]; /* error */
150
151 tf->lbal = fis[4];
152 tf->lbam = fis[5];
153 tf->lbah = fis[6];
154 tf->device = fis[7];
155
156 tf->hob_lbal = fis[8];
157 tf->hob_lbam = fis[9];
158 tf->hob_lbah = fis[10];
159
160 tf->nsect = fis[12];
161 tf->hob_nsect = fis[13];
162}
163
8cbd6df1
AL
164static const u8 ata_rw_cmds[] = {
165 /* pio multi */
166 ATA_CMD_READ_MULTI,
167 ATA_CMD_WRITE_MULTI,
168 ATA_CMD_READ_MULTI_EXT,
169 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
170 0,
171 0,
172 0,
173 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
174 /* pio */
175 ATA_CMD_PIO_READ,
176 ATA_CMD_PIO_WRITE,
177 ATA_CMD_PIO_READ_EXT,
178 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
179 0,
180 0,
181 0,
182 0,
8cbd6df1
AL
183 /* dma */
184 ATA_CMD_READ,
185 ATA_CMD_WRITE,
186 ATA_CMD_READ_EXT,
9a3dccc4
TH
187 ATA_CMD_WRITE_EXT,
188 0,
189 0,
190 0,
191 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 192};
1da177e4
LT
193
194/**
8cbd6df1
AL
195 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
196 * @qc: command to examine and configure
1da177e4 197 *
2e9edbf8 198 * Examine the device configuration and tf->flags to calculate
8cbd6df1 199 * the proper read/write commands and protocol to use.
1da177e4
LT
200 *
201 * LOCKING:
202 * caller.
203 */
9a3dccc4 204int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 205{
8cbd6df1
AL
206 struct ata_taskfile *tf = &qc->tf;
207 struct ata_device *dev = qc->dev;
9a3dccc4 208 u8 cmd;
1da177e4 209
9a3dccc4 210 int index, fua, lba48, write;
2e9edbf8 211
9a3dccc4 212 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
213 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
214 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 215
8cbd6df1
AL
216 if (dev->flags & ATA_DFLAG_PIO) {
217 tf->protocol = ATA_PROT_PIO;
9a3dccc4 218 index = dev->multi_count ? 0 : 8;
8d238e01
AC
219 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
220 /* Unable to use DMA due to host limitation */
221 tf->protocol = ATA_PROT_PIO;
0565c26d 222 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
223 } else {
224 tf->protocol = ATA_PROT_DMA;
9a3dccc4 225 index = 16;
8cbd6df1 226 }
1da177e4 227
9a3dccc4
TH
228 cmd = ata_rw_cmds[index + fua + lba48 + write];
229 if (cmd) {
230 tf->command = cmd;
231 return 0;
232 }
233 return -1;
1da177e4
LT
234}
235
cb95d562
TH
236/**
237 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
238 * @pio_mask: pio_mask
239 * @mwdma_mask: mwdma_mask
240 * @udma_mask: udma_mask
241 *
242 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
243 * unsigned int xfer_mask.
244 *
245 * LOCKING:
246 * None.
247 *
248 * RETURNS:
249 * Packed xfer_mask.
250 */
251static unsigned int ata_pack_xfermask(unsigned int pio_mask,
252 unsigned int mwdma_mask,
253 unsigned int udma_mask)
254{
255 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
256 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
257 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
258}
259
c0489e4e
TH
260/**
261 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
262 * @xfer_mask: xfer_mask to unpack
263 * @pio_mask: resulting pio_mask
264 * @mwdma_mask: resulting mwdma_mask
265 * @udma_mask: resulting udma_mask
266 *
267 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
268 * Any NULL distination masks will be ignored.
269 */
270static void ata_unpack_xfermask(unsigned int xfer_mask,
271 unsigned int *pio_mask,
272 unsigned int *mwdma_mask,
273 unsigned int *udma_mask)
274{
275 if (pio_mask)
276 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
277 if (mwdma_mask)
278 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
279 if (udma_mask)
280 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
281}
282
cb95d562 283static const struct ata_xfer_ent {
be9a50c8 284 int shift, bits;
cb95d562
TH
285 u8 base;
286} ata_xfer_tbl[] = {
287 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
288 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
289 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
290 { -1, },
291};
292
293/**
294 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
295 * @xfer_mask: xfer_mask of interest
296 *
297 * Return matching XFER_* value for @xfer_mask. Only the highest
298 * bit of @xfer_mask is considered.
299 *
300 * LOCKING:
301 * None.
302 *
303 * RETURNS:
304 * Matching XFER_* value, 0 if no match found.
305 */
306static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
307{
308 int highbit = fls(xfer_mask) - 1;
309 const struct ata_xfer_ent *ent;
310
311 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
312 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
313 return ent->base + highbit - ent->shift;
314 return 0;
315}
316
317/**
318 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
319 * @xfer_mode: XFER_* of interest
320 *
321 * Return matching xfer_mask for @xfer_mode.
322 *
323 * LOCKING:
324 * None.
325 *
326 * RETURNS:
327 * Matching xfer_mask, 0 if no match found.
328 */
329static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
330{
331 const struct ata_xfer_ent *ent;
332
333 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
334 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
335 return 1 << (ent->shift + xfer_mode - ent->base);
336 return 0;
337}
338
339/**
340 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
341 * @xfer_mode: XFER_* of interest
342 *
343 * Return matching xfer_shift for @xfer_mode.
344 *
345 * LOCKING:
346 * None.
347 *
348 * RETURNS:
349 * Matching xfer_shift, -1 if no match found.
350 */
351static int ata_xfer_mode2shift(unsigned int xfer_mode)
352{
353 const struct ata_xfer_ent *ent;
354
355 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
356 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
357 return ent->shift;
358 return -1;
359}
360
1da177e4 361/**
1da7b0d0
TH
362 * ata_mode_string - convert xfer_mask to string
363 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
364 *
365 * Determine string which represents the highest speed
1da7b0d0 366 * (highest bit in @modemask).
1da177e4
LT
367 *
368 * LOCKING:
369 * None.
370 *
371 * RETURNS:
372 * Constant C string representing highest speed listed in
1da7b0d0 373 * @mode_mask, or the constant C string "<n/a>".
1da177e4 374 */
1da7b0d0 375static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 376{
75f554bc
TH
377 static const char * const xfer_mode_str[] = {
378 "PIO0",
379 "PIO1",
380 "PIO2",
381 "PIO3",
382 "PIO4",
383 "MWDMA0",
384 "MWDMA1",
385 "MWDMA2",
386 "UDMA/16",
387 "UDMA/25",
388 "UDMA/33",
389 "UDMA/44",
390 "UDMA/66",
391 "UDMA/100",
392 "UDMA/133",
393 "UDMA7",
394 };
1da7b0d0 395 int highbit;
1da177e4 396
1da7b0d0
TH
397 highbit = fls(xfer_mask) - 1;
398 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
399 return xfer_mode_str[highbit];
1da177e4 400 return "<n/a>";
1da177e4
LT
401}
402
4c360c81
TH
403static const char *sata_spd_string(unsigned int spd)
404{
405 static const char * const spd_str[] = {
406 "1.5 Gbps",
407 "3.0 Gbps",
408 };
409
410 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
411 return "<unknown>";
412 return spd_str[spd - 1];
413}
414
1ad8e7f9 415void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
0b8efb0a 416{
e1211e3f 417 if (ata_dev_enabled(dev)) {
0b8efb0a
TH
418 printk(KERN_WARNING "ata%u: dev %u disabled\n",
419 ap->id, dev->devno);
420 dev->class++;
421 }
422}
423
1da177e4
LT
424/**
425 * ata_pio_devchk - PATA device presence detection
426 * @ap: ATA channel to examine
427 * @device: Device to examine (starting at zero)
428 *
429 * This technique was originally described in
430 * Hale Landis's ATADRVR (www.ata-atapi.com), and
431 * later found its way into the ATA/ATAPI spec.
432 *
433 * Write a pattern to the ATA shadow registers,
434 * and if a device is present, it will respond by
435 * correctly storing and echoing back the
436 * ATA shadow register contents.
437 *
438 * LOCKING:
439 * caller.
440 */
441
442static unsigned int ata_pio_devchk(struct ata_port *ap,
443 unsigned int device)
444{
445 struct ata_ioports *ioaddr = &ap->ioaddr;
446 u8 nsect, lbal;
447
448 ap->ops->dev_select(ap, device);
449
450 outb(0x55, ioaddr->nsect_addr);
451 outb(0xaa, ioaddr->lbal_addr);
452
453 outb(0xaa, ioaddr->nsect_addr);
454 outb(0x55, ioaddr->lbal_addr);
455
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
458
459 nsect = inb(ioaddr->nsect_addr);
460 lbal = inb(ioaddr->lbal_addr);
461
462 if ((nsect == 0x55) && (lbal == 0xaa))
463 return 1; /* we found a device */
464
465 return 0; /* nothing found */
466}
467
468/**
469 * ata_mmio_devchk - PATA device presence detection
470 * @ap: ATA channel to examine
471 * @device: Device to examine (starting at zero)
472 *
473 * This technique was originally described in
474 * Hale Landis's ATADRVR (www.ata-atapi.com), and
475 * later found its way into the ATA/ATAPI spec.
476 *
477 * Write a pattern to the ATA shadow registers,
478 * and if a device is present, it will respond by
479 * correctly storing and echoing back the
480 * ATA shadow register contents.
481 *
482 * LOCKING:
483 * caller.
484 */
485
486static unsigned int ata_mmio_devchk(struct ata_port *ap,
487 unsigned int device)
488{
489 struct ata_ioports *ioaddr = &ap->ioaddr;
490 u8 nsect, lbal;
491
492 ap->ops->dev_select(ap, device);
493
494 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
495 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
496
497 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
502
503 nsect = readb((void __iomem *) ioaddr->nsect_addr);
504 lbal = readb((void __iomem *) ioaddr->lbal_addr);
505
506 if ((nsect == 0x55) && (lbal == 0xaa))
507 return 1; /* we found a device */
508
509 return 0; /* nothing found */
510}
511
512/**
513 * ata_devchk - PATA device presence detection
514 * @ap: ATA channel to examine
515 * @device: Device to examine (starting at zero)
516 *
517 * Dispatch ATA device presence detection, depending
518 * on whether we are using PIO or MMIO to talk to the
519 * ATA shadow registers.
520 *
521 * LOCKING:
522 * caller.
523 */
524
525static unsigned int ata_devchk(struct ata_port *ap,
526 unsigned int device)
527{
528 if (ap->flags & ATA_FLAG_MMIO)
529 return ata_mmio_devchk(ap, device);
530 return ata_pio_devchk(ap, device);
531}
532
533/**
534 * ata_dev_classify - determine device type based on ATA-spec signature
535 * @tf: ATA taskfile register set for device to be identified
536 *
537 * Determine from taskfile register contents whether a device is
538 * ATA or ATAPI, as per "Signature and persistence" section
539 * of ATA/PI spec (volume 1, sect 5.14).
540 *
541 * LOCKING:
542 * None.
543 *
544 * RETURNS:
545 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
546 * the event of failure.
547 */
548
057ace5e 549unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
550{
551 /* Apple's open source Darwin code hints that some devices only
552 * put a proper signature into the LBA mid/high registers,
553 * So, we only check those. It's sufficient for uniqueness.
554 */
555
556 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
557 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
558 DPRINTK("found ATA device by sig\n");
559 return ATA_DEV_ATA;
560 }
561
562 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
563 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
564 DPRINTK("found ATAPI device by sig\n");
565 return ATA_DEV_ATAPI;
566 }
567
568 DPRINTK("unknown device\n");
569 return ATA_DEV_UNKNOWN;
570}
571
572/**
573 * ata_dev_try_classify - Parse returned ATA device signature
574 * @ap: ATA channel to examine
575 * @device: Device to examine (starting at zero)
b4dc7623 576 * @r_err: Value of error register on completion
1da177e4
LT
577 *
578 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
579 * an ATA/ATAPI-defined set of values is placed in the ATA
580 * shadow registers, indicating the results of device detection
581 * and diagnostics.
582 *
583 * Select the ATA device, and read the values from the ATA shadow
584 * registers. Then parse according to the Error register value,
585 * and the spec-defined values examined by ata_dev_classify().
586 *
587 * LOCKING:
588 * caller.
b4dc7623
TH
589 *
590 * RETURNS:
591 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
592 */
593
b4dc7623
TH
594static unsigned int
595ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 596{
1da177e4
LT
597 struct ata_taskfile tf;
598 unsigned int class;
599 u8 err;
600
601 ap->ops->dev_select(ap, device);
602
603 memset(&tf, 0, sizeof(tf));
604
1da177e4 605 ap->ops->tf_read(ap, &tf);
0169e284 606 err = tf.feature;
b4dc7623
TH
607 if (r_err)
608 *r_err = err;
1da177e4
LT
609
610 /* see if device passed diags */
611 if (err == 1)
612 /* do nothing */ ;
613 else if ((device == 0) && (err == 0x81))
614 /* do nothing */ ;
615 else
b4dc7623 616 return ATA_DEV_NONE;
1da177e4 617
b4dc7623 618 /* determine if device is ATA or ATAPI */
1da177e4 619 class = ata_dev_classify(&tf);
b4dc7623 620
1da177e4 621 if (class == ATA_DEV_UNKNOWN)
b4dc7623 622 return ATA_DEV_NONE;
1da177e4 623 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
624 return ATA_DEV_NONE;
625 return class;
1da177e4
LT
626}
627
628/**
6a62a04d 629 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
630 * @id: IDENTIFY DEVICE results we will examine
631 * @s: string into which data is output
632 * @ofs: offset into identify device page
633 * @len: length of string to return. must be an even number.
634 *
635 * The strings in the IDENTIFY DEVICE page are broken up into
636 * 16-bit chunks. Run through the string, and output each
637 * 8-bit chunk linearly, regardless of platform.
638 *
639 * LOCKING:
640 * caller.
641 */
642
6a62a04d
TH
643void ata_id_string(const u16 *id, unsigned char *s,
644 unsigned int ofs, unsigned int len)
1da177e4
LT
645{
646 unsigned int c;
647
648 while (len > 0) {
649 c = id[ofs] >> 8;
650 *s = c;
651 s++;
652
653 c = id[ofs] & 0xff;
654 *s = c;
655 s++;
656
657 ofs++;
658 len -= 2;
659 }
660}
661
0e949ff3 662/**
6a62a04d 663 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
664 * @id: IDENTIFY DEVICE results we will examine
665 * @s: string into which data is output
666 * @ofs: offset into identify device page
667 * @len: length of string to return. must be an odd number.
668 *
6a62a04d 669 * This function is identical to ata_id_string except that it
0e949ff3
TH
670 * trims trailing spaces and terminates the resulting string with
671 * null. @len must be actual maximum length (even number) + 1.
672 *
673 * LOCKING:
674 * caller.
675 */
6a62a04d
TH
676void ata_id_c_string(const u16 *id, unsigned char *s,
677 unsigned int ofs, unsigned int len)
0e949ff3
TH
678{
679 unsigned char *p;
680
681 WARN_ON(!(len & 1));
682
6a62a04d 683 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
684
685 p = s + strnlen(s, len - 1);
686 while (p > s && p[-1] == ' ')
687 p--;
688 *p = '\0';
689}
0baab86b 690
2940740b
TH
691static u64 ata_id_n_sectors(const u16 *id)
692{
693 if (ata_id_has_lba(id)) {
694 if (ata_id_has_lba48(id))
695 return ata_id_u64(id, 100);
696 else
697 return ata_id_u32(id, 60);
698 } else {
699 if (ata_id_current_chs_valid(id))
700 return ata_id_u32(id, 57);
701 else
702 return id[1] * id[3] * id[6];
703 }
704}
705
0baab86b
EF
706/**
707 * ata_noop_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
710 *
711 * This function performs no actual function.
712 *
713 * May be used as the dev_select() entry in ata_port_operations.
714 *
715 * LOCKING:
716 * caller.
717 */
1da177e4
LT
718void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
719{
720}
721
0baab86b 722
1da177e4
LT
723/**
724 * ata_std_dev_select - Select device 0/1 on ATA bus
725 * @ap: ATA channel to manipulate
726 * @device: ATA device (numbered from zero) to select
727 *
728 * Use the method defined in the ATA specification to
729 * make either device 0, or device 1, active on the
0baab86b
EF
730 * ATA channel. Works with both PIO and MMIO.
731 *
732 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
733 *
734 * LOCKING:
735 * caller.
736 */
737
738void ata_std_dev_select (struct ata_port *ap, unsigned int device)
739{
740 u8 tmp;
741
742 if (device == 0)
743 tmp = ATA_DEVICE_OBS;
744 else
745 tmp = ATA_DEVICE_OBS | ATA_DEV1;
746
747 if (ap->flags & ATA_FLAG_MMIO) {
748 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
749 } else {
750 outb(tmp, ap->ioaddr.device_addr);
751 }
752 ata_pause(ap); /* needed; also flushes, for mmio */
753}
754
755/**
756 * ata_dev_select - Select device 0/1 on ATA bus
757 * @ap: ATA channel to manipulate
758 * @device: ATA device (numbered from zero) to select
759 * @wait: non-zero to wait for Status register BSY bit to clear
760 * @can_sleep: non-zero if context allows sleeping
761 *
762 * Use the method defined in the ATA specification to
763 * make either device 0, or device 1, active on the
764 * ATA channel.
765 *
766 * This is a high-level version of ata_std_dev_select(),
767 * which additionally provides the services of inserting
768 * the proper pauses and status polling, where needed.
769 *
770 * LOCKING:
771 * caller.
772 */
773
774void ata_dev_select(struct ata_port *ap, unsigned int device,
775 unsigned int wait, unsigned int can_sleep)
776{
777 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
778 ap->id, device, wait);
779
780 if (wait)
781 ata_wait_idle(ap);
782
783 ap->ops->dev_select(ap, device);
784
785 if (wait) {
786 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
787 msleep(150);
788 ata_wait_idle(ap);
789 }
790}
791
792/**
793 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 794 * @id: IDENTIFY DEVICE page to dump
1da177e4 795 *
0bd3300a
TH
796 * Dump selected 16-bit words from the given IDENTIFY DEVICE
797 * page.
1da177e4
LT
798 *
799 * LOCKING:
800 * caller.
801 */
802
0bd3300a 803static inline void ata_dump_id(const u16 *id)
1da177e4
LT
804{
805 DPRINTK("49==0x%04x "
806 "53==0x%04x "
807 "63==0x%04x "
808 "64==0x%04x "
809 "75==0x%04x \n",
0bd3300a
TH
810 id[49],
811 id[53],
812 id[63],
813 id[64],
814 id[75]);
1da177e4
LT
815 DPRINTK("80==0x%04x "
816 "81==0x%04x "
817 "82==0x%04x "
818 "83==0x%04x "
819 "84==0x%04x \n",
0bd3300a
TH
820 id[80],
821 id[81],
822 id[82],
823 id[83],
824 id[84]);
1da177e4
LT
825 DPRINTK("88==0x%04x "
826 "93==0x%04x\n",
0bd3300a
TH
827 id[88],
828 id[93]);
1da177e4
LT
829}
830
cb95d562
TH
831/**
832 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
833 * @id: IDENTIFY data to compute xfer mask from
834 *
835 * Compute the xfermask for this device. This is not as trivial
836 * as it seems if we must consider early devices correctly.
837 *
838 * FIXME: pre IDE drive timing (do we care ?).
839 *
840 * LOCKING:
841 * None.
842 *
843 * RETURNS:
844 * Computed xfermask
845 */
846static unsigned int ata_id_xfermask(const u16 *id)
847{
848 unsigned int pio_mask, mwdma_mask, udma_mask;
849
850 /* Usual case. Word 53 indicates word 64 is valid */
851 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
852 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
853 pio_mask <<= 3;
854 pio_mask |= 0x7;
855 } else {
856 /* If word 64 isn't valid then Word 51 high byte holds
857 * the PIO timing number for the maximum. Turn it into
858 * a mask.
859 */
860 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
861
862 /* But wait.. there's more. Design your standards by
863 * committee and you too can get a free iordy field to
864 * process. However its the speeds not the modes that
865 * are supported... Note drivers using the timing API
866 * will get this right anyway
867 */
868 }
869
870 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
871
872 udma_mask = 0;
873 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
874 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
875
876 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
877}
878
86e45b6b
TH
879/**
880 * ata_port_queue_task - Queue port_task
881 * @ap: The ata_port to queue port_task for
882 *
883 * Schedule @fn(@data) for execution after @delay jiffies using
884 * port_task. There is one port_task per port and it's the
885 * user(low level driver)'s responsibility to make sure that only
886 * one task is active at any given time.
887 *
888 * libata core layer takes care of synchronization between
889 * port_task and EH. ata_port_queue_task() may be ignored for EH
890 * synchronization.
891 *
892 * LOCKING:
893 * Inherited from caller.
894 */
895void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
896 unsigned long delay)
897{
898 int rc;
899
2e755f68 900 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
901 return;
902
903 PREPARE_WORK(&ap->port_task, fn, data);
904
905 if (!delay)
906 rc = queue_work(ata_wq, &ap->port_task);
907 else
908 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
909
910 /* rc == 0 means that another user is using port task */
911 WARN_ON(rc == 0);
912}
913
914/**
915 * ata_port_flush_task - Flush port_task
916 * @ap: The ata_port to flush port_task for
917 *
918 * After this function completes, port_task is guranteed not to
919 * be running or scheduled.
920 *
921 * LOCKING:
922 * Kernel thread context (may sleep)
923 */
924void ata_port_flush_task(struct ata_port *ap)
925{
926 unsigned long flags;
927
928 DPRINTK("ENTER\n");
929
930 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 931 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
933
934 DPRINTK("flush #1\n");
935 flush_workqueue(ata_wq);
936
937 /*
938 * At this point, if a task is running, it's guaranteed to see
939 * the FLUSH flag; thus, it will never queue pio tasks again.
940 * Cancel and flush.
941 */
942 if (!cancel_delayed_work(&ap->port_task)) {
943 DPRINTK("flush #2\n");
944 flush_workqueue(ata_wq);
945 }
946
947 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 948 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
949 spin_unlock_irqrestore(&ap->host_set->lock, flags);
950
951 DPRINTK("EXIT\n");
952}
953
77853bf2 954void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 955{
77853bf2 956 struct completion *waiting = qc->private_data;
a2a7a662 957
77853bf2 958 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 959 complete(waiting);
a2a7a662
TH
960}
961
962/**
963 * ata_exec_internal - execute libata internal command
964 * @ap: Port to which the command is sent
965 * @dev: Device to which the command is sent
966 * @tf: Taskfile registers for the command and the result
d69cf37d 967 * @cdb: CDB for packet command
a2a7a662
TH
968 * @dma_dir: Data tranfer direction of the command
969 * @buf: Data buffer of the command
970 * @buflen: Length of data buffer
971 *
972 * Executes libata internal command with timeout. @tf contains
973 * command on entry and result on return. Timeout and error
974 * conditions are reported via return value. No recovery action
975 * is taken after a command times out. It's caller's duty to
976 * clean up after timeout.
977 *
978 * LOCKING:
979 * None. Should be called with kernel context, might sleep.
980 */
981
1ad8e7f9
TH
982unsigned ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
983 struct ata_taskfile *tf, const u8 *cdb,
984 int dma_dir, void *buf, unsigned int buflen)
a2a7a662
TH
985{
986 u8 command = tf->command;
987 struct ata_queued_cmd *qc;
988 DECLARE_COMPLETION(wait);
989 unsigned long flags;
77853bf2 990 unsigned int err_mask;
a2a7a662
TH
991
992 spin_lock_irqsave(&ap->host_set->lock, flags);
993
994 qc = ata_qc_new_init(ap, dev);
995 BUG_ON(qc == NULL);
996
997 qc->tf = *tf;
d69cf37d
TH
998 if (cdb)
999 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
a2a7a662
TH
1000 qc->dma_dir = dma_dir;
1001 if (dma_dir != DMA_NONE) {
1002 ata_sg_init_one(qc, buf, buflen);
1003 qc->nsect = buflen / ATA_SECT_SIZE;
1004 }
1005
77853bf2 1006 qc->private_data = &wait;
a2a7a662
TH
1007 qc->complete_fn = ata_qc_complete_internal;
1008
8e0e694a 1009 ata_qc_issue(qc);
a2a7a662
TH
1010
1011 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1012
1013 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
41ade50c
AL
1014 ata_port_flush_task(ap);
1015
a2a7a662
TH
1016 spin_lock_irqsave(&ap->host_set->lock, flags);
1017
1018 /* We're racing with irq here. If we lose, the
1019 * following test prevents us from completing the qc
1020 * again. If completion irq occurs after here but
1021 * before the caller cleans up, it will result in a
1022 * spurious interrupt. We can live with that.
1023 */
77853bf2 1024 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 1025 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
1026 ata_qc_complete(qc);
1027 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1028 ap->id, command);
1029 }
1030
1031 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1032 }
1033
77853bf2
TH
1034 *tf = qc->tf;
1035 err_mask = qc->err_mask;
1036
1037 ata_qc_free(qc);
1038
1f7dd3e9
TH
1039 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1040 * Until those drivers are fixed, we detect the condition
1041 * here, fail the command with AC_ERR_SYSTEM and reenable the
1042 * port.
1043 *
1044 * Note that this doesn't change any behavior as internal
1045 * command failure results in disabling the device in the
1046 * higher layer for LLDDs without new reset/EH callbacks.
1047 *
1048 * Kill the following code as soon as those drivers are fixed.
1049 */
198e0fed 1050 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1051 err_mask |= AC_ERR_SYSTEM;
1052 ata_port_probe(ap);
1053 }
1054
77853bf2 1055 return err_mask;
a2a7a662
TH
1056}
1057
1bc4ccff
AC
1058/**
1059 * ata_pio_need_iordy - check if iordy needed
1060 * @adev: ATA device
1061 *
1062 * Check if the current speed of the device requires IORDY. Used
1063 * by various controllers for chip configuration.
1064 */
1065
1066unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1067{
1068 int pio;
1069 int speed = adev->pio_mode - XFER_PIO_0;
1070
1071 if (speed < 2)
1072 return 0;
1073 if (speed > 2)
1074 return 1;
2e9edbf8 1075
1bc4ccff
AC
1076 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1077
1078 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1079 pio = adev->id[ATA_ID_EIDE_PIO];
1080 /* Is the speed faster than the drive allows non IORDY ? */
1081 if (pio) {
1082 /* This is cycle times not frequency - watch the logic! */
1083 if (pio > 240) /* PIO2 is 240nS per cycle */
1084 return 1;
1085 return 0;
1086 }
1087 }
1088 return 0;
1089}
1090
1da177e4 1091/**
49016aca
TH
1092 * ata_dev_read_id - Read ID data from the specified device
1093 * @ap: port on which target device resides
1094 * @dev: target device
1095 * @p_class: pointer to class of the target device (may be changed)
1096 * @post_reset: is this read ID post-reset?
d9572b1d 1097 * @p_id: read IDENTIFY page (newly allocated)
1da177e4 1098 *
49016aca
TH
1099 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1100 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1101 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1102 * for pre-ATA4 drives.
1da177e4
LT
1103 *
1104 * LOCKING:
49016aca
TH
1105 * Kernel thread context (may sleep)
1106 *
1107 * RETURNS:
1108 * 0 on success, -errno otherwise.
1da177e4 1109 */
49016aca 1110static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
d9572b1d 1111 unsigned int *p_class, int post_reset, u16 **p_id)
1da177e4 1112{
49016aca 1113 unsigned int class = *p_class;
a0123703 1114 struct ata_taskfile tf;
49016aca 1115 unsigned int err_mask = 0;
d9572b1d 1116 u16 *id;
49016aca
TH
1117 const char *reason;
1118 int rc;
1da177e4 1119
49016aca 1120 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1121
49016aca 1122 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1123
d9572b1d
TH
1124 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1125 if (id == NULL) {
1126 rc = -ENOMEM;
1127 reason = "out of memory";
1128 goto err_out;
1129 }
1130
49016aca
TH
1131 retry:
1132 ata_tf_init(ap, &tf, dev->devno);
a0123703 1133
49016aca
TH
1134 switch (class) {
1135 case ATA_DEV_ATA:
a0123703 1136 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1137 break;
1138 case ATA_DEV_ATAPI:
a0123703 1139 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1140 break;
1141 default:
1142 rc = -ENODEV;
1143 reason = "unsupported class";
1144 goto err_out;
1da177e4
LT
1145 }
1146
a0123703 1147 tf.protocol = ATA_PROT_PIO;
1da177e4 1148
d69cf37d 1149 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1150 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1151 if (err_mask) {
49016aca
TH
1152 rc = -EIO;
1153 reason = "I/O error";
1da177e4
LT
1154 goto err_out;
1155 }
1156
49016aca 1157 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1158
49016aca 1159 /* sanity check */
692785e7 1160 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1161 rc = -EINVAL;
1162 reason = "device reports illegal type";
1163 goto err_out;
1164 }
1165
1166 if (post_reset && class == ATA_DEV_ATA) {
1167 /*
1168 * The exact sequence expected by certain pre-ATA4 drives is:
1169 * SRST RESET
1170 * IDENTIFY
1171 * INITIALIZE DEVICE PARAMETERS
1172 * anything else..
1173 * Some drives were very specific about that exact sequence.
1174 */
1175 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
00b6f5e9 1176 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
49016aca
TH
1177 if (err_mask) {
1178 rc = -EIO;
1179 reason = "INIT_DEV_PARAMS failed";
1180 goto err_out;
1181 }
1182
1183 /* current CHS translation info (id[53-58]) might be
1184 * changed. reread the identify device info.
1185 */
1186 post_reset = 0;
1187 goto retry;
1188 }
1189 }
1190
1191 *p_class = class;
d9572b1d 1192 *p_id = id;
49016aca
TH
1193 return 0;
1194
1195 err_out:
1196 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1197 ap->id, dev->devno, reason);
d9572b1d 1198 kfree(id);
49016aca
TH
1199 return rc;
1200}
1201
4b2f3ede
TH
1202static inline u8 ata_dev_knobble(const struct ata_port *ap,
1203 struct ata_device *dev)
1204{
1205 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1206}
1207
49016aca 1208/**
ffeae418
TH
1209 * ata_dev_configure - Configure the specified ATA/ATAPI device
1210 * @ap: Port on which target device resides
1211 * @dev: Target device to configure
4c2d721a 1212 * @print_info: Enable device info printout
ffeae418
TH
1213 *
1214 * Configure @dev according to @dev->id. Generic and low-level
1215 * driver specific fixups are also applied.
49016aca
TH
1216 *
1217 * LOCKING:
ffeae418
TH
1218 * Kernel thread context (may sleep)
1219 *
1220 * RETURNS:
1221 * 0 on success, -errno otherwise
49016aca 1222 */
4c2d721a
TH
1223static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1224 int print_info)
49016aca 1225{
1148c3a7 1226 const u16 *id = dev->id;
ff8854b2 1227 unsigned int xfer_mask;
49016aca
TH
1228 int i, rc;
1229
e1211e3f 1230 if (!ata_dev_enabled(dev)) {
49016aca 1231 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1232 ap->id, dev->devno);
1233 return 0;
49016aca
TH
1234 }
1235
ffeae418 1236 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1237
c39f5ebe
TH
1238 /* print device capabilities */
1239 if (print_info)
1240 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1241 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1242 ap->id, dev->devno, id[49], id[82], id[83],
1243 id[84], id[85], id[86], id[87], id[88]);
1244
208a9933 1245 /* initialize to-be-configured parameters */
ea1dd4e1 1246 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1247 dev->max_sectors = 0;
1248 dev->cdb_len = 0;
1249 dev->n_sectors = 0;
1250 dev->cylinders = 0;
1251 dev->heads = 0;
1252 dev->sectors = 0;
1253
1da177e4
LT
1254 /*
1255 * common ATA, ATAPI feature tests
1256 */
1257
ff8854b2 1258 /* find max transfer mode; for printk only */
1148c3a7 1259 xfer_mask = ata_id_xfermask(id);
1da177e4 1260
1148c3a7 1261 ata_dump_id(id);
1da177e4
LT
1262
1263 /* ATA-specific feature tests */
1264 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1265 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1266
1148c3a7 1267 if (ata_id_has_lba(id)) {
4c2d721a 1268 const char *lba_desc;
8bf62ece 1269
4c2d721a
TH
1270 lba_desc = "LBA";
1271 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1272 if (ata_id_has_lba48(id)) {
8bf62ece 1273 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1274 lba_desc = "LBA48";
1275 }
8bf62ece
AL
1276
1277 /* print device info to dmesg */
4c2d721a
TH
1278 if (print_info)
1279 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1280 "max %s, %Lu sectors: %s\n",
1281 ap->id, dev->devno,
1148c3a7 1282 ata_id_major_version(id),
ff8854b2 1283 ata_mode_string(xfer_mask),
4c2d721a
TH
1284 (unsigned long long)dev->n_sectors,
1285 lba_desc);
ffeae418 1286 } else {
8bf62ece
AL
1287 /* CHS */
1288
1289 /* Default translation */
1148c3a7
TH
1290 dev->cylinders = id[1];
1291 dev->heads = id[3];
1292 dev->sectors = id[6];
8bf62ece 1293
1148c3a7 1294 if (ata_id_current_chs_valid(id)) {
8bf62ece 1295 /* Current CHS translation is valid. */
1148c3a7
TH
1296 dev->cylinders = id[54];
1297 dev->heads = id[55];
1298 dev->sectors = id[56];
8bf62ece
AL
1299 }
1300
1301 /* print device info to dmesg */
4c2d721a
TH
1302 if (print_info)
1303 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1304 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1305 ap->id, dev->devno,
1148c3a7 1306 ata_id_major_version(id),
ff8854b2 1307 ata_mode_string(xfer_mask),
4c2d721a
TH
1308 (unsigned long long)dev->n_sectors,
1309 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1310 }
1311
6e7846e9 1312 dev->cdb_len = 16;
1da177e4
LT
1313 }
1314
1315 /* ATAPI-specific feature tests */
2c13b7ce 1316 else if (dev->class == ATA_DEV_ATAPI) {
1148c3a7 1317 rc = atapi_cdb_len(id);
1da177e4
LT
1318 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1319 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
ffeae418 1320 rc = -EINVAL;
1da177e4
LT
1321 goto err_out_nosup;
1322 }
6e7846e9 1323 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1324
1325 /* print device info to dmesg */
4c2d721a
TH
1326 if (print_info)
1327 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
ff8854b2 1328 ap->id, dev->devno, ata_mode_string(xfer_mask));
1da177e4
LT
1329 }
1330
6e7846e9
TH
1331 ap->host->max_cmd_len = 0;
1332 for (i = 0; i < ATA_MAX_DEVICES; i++)
1333 ap->host->max_cmd_len = max_t(unsigned int,
1334 ap->host->max_cmd_len,
1335 ap->device[i].cdb_len);
1336
4b2f3ede
TH
1337 /* limit bridge transfers to udma5, 200 sectors */
1338 if (ata_dev_knobble(ap, dev)) {
4c2d721a
TH
1339 if (print_info)
1340 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1341 ap->id, dev->devno);
5a529139 1342 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1343 dev->max_sectors = ATA_MAX_SECTORS;
1344 }
1345
1346 if (ap->ops->dev_config)
1347 ap->ops->dev_config(ap, dev);
1348
1da177e4 1349 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1350 return 0;
1da177e4
LT
1351
1352err_out_nosup:
1da177e4 1353 DPRINTK("EXIT, err\n");
ffeae418 1354 return rc;
1da177e4
LT
1355}
1356
1357/**
1358 * ata_bus_probe - Reset and probe ATA bus
1359 * @ap: Bus to probe
1360 *
0cba632b
JG
1361 * Master ATA bus probing function. Initiates a hardware-dependent
1362 * bus reset, then attempts to identify any devices found on
1363 * the bus.
1364 *
1da177e4 1365 * LOCKING:
0cba632b 1366 * PCI/etc. bus probe sem.
1da177e4
LT
1367 *
1368 * RETURNS:
96072e69 1369 * Zero on success, negative errno otherwise.
1da177e4
LT
1370 */
1371
1372static int ata_bus_probe(struct ata_port *ap)
1373{
28ca5c57 1374 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1375 int tries[ATA_MAX_DEVICES];
1376 int i, rc, down_xfermask;
e82cbdb9 1377 struct ata_device *dev;
1da177e4 1378
28ca5c57 1379 ata_port_probe(ap);
c19ba8af 1380
14d2bac1
TH
1381 for (i = 0; i < ATA_MAX_DEVICES; i++)
1382 tries[i] = ATA_PROBE_MAX_TRIES;
1383
1384 retry:
1385 down_xfermask = 0;
1386
2044470c
TH
1387 /* reset and determine device classes */
1388 for (i = 0; i < ATA_MAX_DEVICES; i++)
1389 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1390
2044470c 1391 if (ap->ops->probe_reset) {
c19ba8af 1392 rc = ap->ops->probe_reset(ap, classes);
28ca5c57
TH
1393 if (rc) {
1394 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1395 return rc;
c19ba8af 1396 }
28ca5c57 1397 } else {
c19ba8af
TH
1398 ap->ops->phy_reset(ap);
1399
198e0fed 1400 if (!(ap->flags & ATA_FLAG_DISABLED))
2044470c 1401 for (i = 0; i < ATA_MAX_DEVICES; i++)
28ca5c57 1402 classes[i] = ap->device[i].class;
2044470c 1403
28ca5c57
TH
1404 ata_port_probe(ap);
1405 }
1da177e4 1406
2044470c
TH
1407 for (i = 0; i < ATA_MAX_DEVICES; i++)
1408 if (classes[i] == ATA_DEV_UNKNOWN)
1409 classes[i] = ATA_DEV_NONE;
1410
28ca5c57 1411 /* read IDENTIFY page and configure devices */
1da177e4 1412 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1413 dev = &ap->device[i];
28ca5c57
TH
1414 dev->class = classes[i];
1415
14d2bac1
TH
1416 if (!tries[i]) {
1417 ata_down_xfermask_limit(ap, dev, 1);
1418 ata_dev_disable(ap, dev);
ffeae418
TH
1419 }
1420
14d2bac1 1421 if (!ata_dev_enabled(dev))
ffeae418 1422 continue;
ffeae418 1423
14d2bac1
TH
1424 kfree(dev->id);
1425 dev->id = NULL;
1426 rc = ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id);
1427 if (rc)
1428 goto fail;
1429
1430 rc = ata_dev_configure(ap, dev, 1);
1431 if (rc)
1432 goto fail;
1da177e4
LT
1433 }
1434
e82cbdb9
TH
1435 /* configure transfer mode */
1436 if (ap->ops->set_mode) {
1437 /* FIXME: make ->set_mode handle no device case and
1438 * return error code and failing device on failure as
1439 * ata_set_mode() does.
1440 */
14d2bac1
TH
1441 for (i = 0; i < ATA_MAX_DEVICES; i++)
1442 if (ata_dev_enabled(&ap->device[i])) {
1443 ap->ops->set_mode(ap);
1444 break;
1445 }
e82cbdb9
TH
1446 rc = 0;
1447 } else {
14d2bac1
TH
1448 rc = ata_set_mode(ap, &dev);
1449 if (rc) {
1450 down_xfermask = 1;
1451 goto fail;
1452 }
e82cbdb9 1453 }
1da177e4 1454
e82cbdb9
TH
1455 for (i = 0; i < ATA_MAX_DEVICES; i++)
1456 if (ata_dev_enabled(&ap->device[i]))
1457 return 0;
1da177e4 1458
e82cbdb9
TH
1459 /* no device present, disable port */
1460 ata_port_disable(ap);
1da177e4 1461 ap->ops->port_disable(ap);
96072e69 1462 return -ENODEV;
14d2bac1
TH
1463
1464 fail:
1465 switch (rc) {
1466 case -EINVAL:
1467 case -ENODEV:
1468 tries[dev->devno] = 0;
1469 break;
1470 case -EIO:
1471 ata_down_sata_spd_limit(ap);
1472 /* fall through */
1473 default:
1474 tries[dev->devno]--;
1475 if (down_xfermask &&
1476 ata_down_xfermask_limit(ap, dev, tries[dev->devno] == 1))
1477 tries[dev->devno] = 0;
1478 }
1479
1480 goto retry;
1da177e4
LT
1481}
1482
1483/**
0cba632b
JG
1484 * ata_port_probe - Mark port as enabled
1485 * @ap: Port for which we indicate enablement
1da177e4 1486 *
0cba632b
JG
1487 * Modify @ap data structure such that the system
1488 * thinks that the entire port is enabled.
1489 *
1490 * LOCKING: host_set lock, or some other form of
1491 * serialization.
1da177e4
LT
1492 */
1493
1494void ata_port_probe(struct ata_port *ap)
1495{
198e0fed 1496 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1497}
1498
3be680b7
TH
1499/**
1500 * sata_print_link_status - Print SATA link status
1501 * @ap: SATA port to printk link status about
1502 *
1503 * This function prints link speed and status of a SATA link.
1504 *
1505 * LOCKING:
1506 * None.
1507 */
1508static void sata_print_link_status(struct ata_port *ap)
1509{
6d5f9732 1510 u32 sstatus, scontrol, tmp;
3be680b7
TH
1511
1512 if (!ap->ops->scr_read)
1513 return;
1514
1515 sstatus = scr_read(ap, SCR_STATUS);
6d5f9732 1516 scontrol = scr_read(ap, SCR_CONTROL);
3be680b7
TH
1517
1518 if (sata_dev_present(ap)) {
1519 tmp = (sstatus >> 4) & 0xf;
6d5f9732
TH
1520 printk(KERN_INFO
1521 "ata%u: SATA link up %s (SStatus %X SControl %X)\n",
1522 ap->id, sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1523 } else {
6d5f9732
TH
1524 printk(KERN_INFO
1525 "ata%u: SATA link down (SStatus %X SControl %X)\n",
1526 ap->id, sstatus, scontrol);
3be680b7
TH
1527 }
1528}
1529
1da177e4 1530/**
780a87f7
JG
1531 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1532 * @ap: SATA port associated with target SATA PHY.
1da177e4 1533 *
780a87f7
JG
1534 * This function issues commands to standard SATA Sxxx
1535 * PHY registers, to wake up the phy (and device), and
1536 * clear any reset condition.
1da177e4
LT
1537 *
1538 * LOCKING:
0cba632b 1539 * PCI/etc. bus probe sem.
1da177e4
LT
1540 *
1541 */
1542void __sata_phy_reset(struct ata_port *ap)
1543{
1544 u32 sstatus;
1545 unsigned long timeout = jiffies + (HZ * 5);
1546
1547 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1548 /* issue phy wake/reset */
1549 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1550 /* Couldn't find anything in SATA I/II specs, but
1551 * AHCI-1.1 10.4.2 says at least 1 ms. */
1552 mdelay(1);
1da177e4 1553 }
cdcca89e 1554 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1555
1556 /* wait for phy to become ready, if necessary */
1557 do {
1558 msleep(200);
1559 sstatus = scr_read(ap, SCR_STATUS);
1560 if ((sstatus & 0xf) != 1)
1561 break;
1562 } while (time_before(jiffies, timeout));
1563
3be680b7
TH
1564 /* print link status */
1565 sata_print_link_status(ap);
656563e3 1566
3be680b7
TH
1567 /* TODO: phy layer with polling, timeouts, etc. */
1568 if (sata_dev_present(ap))
1da177e4 1569 ata_port_probe(ap);
3be680b7 1570 else
1da177e4 1571 ata_port_disable(ap);
1da177e4 1572
198e0fed 1573 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1574 return;
1575
1576 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1577 ata_port_disable(ap);
1578 return;
1579 }
1580
1581 ap->cbl = ATA_CBL_SATA;
1582}
1583
1584/**
780a87f7
JG
1585 * sata_phy_reset - Reset SATA bus.
1586 * @ap: SATA port associated with target SATA PHY.
1da177e4 1587 *
780a87f7
JG
1588 * This function resets the SATA bus, and then probes
1589 * the bus for devices.
1da177e4
LT
1590 *
1591 * LOCKING:
0cba632b 1592 * PCI/etc. bus probe sem.
1da177e4
LT
1593 *
1594 */
1595void sata_phy_reset(struct ata_port *ap)
1596{
1597 __sata_phy_reset(ap);
198e0fed 1598 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1599 return;
1600 ata_bus_reset(ap);
1601}
1602
ebdfca6e
AC
1603/**
1604 * ata_dev_pair - return other device on cable
1605 * @ap: port
1606 * @adev: device
1607 *
1608 * Obtain the other device on the same cable, or if none is
1609 * present NULL is returned
1610 */
2e9edbf8 1611
ebdfca6e
AC
1612struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1613{
1614 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1615 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1616 return NULL;
1617 return pair;
1618}
1619
1da177e4 1620/**
780a87f7
JG
1621 * ata_port_disable - Disable port.
1622 * @ap: Port to be disabled.
1da177e4 1623 *
780a87f7
JG
1624 * Modify @ap data structure such that the system
1625 * thinks that the entire port is disabled, and should
1626 * never attempt to probe or communicate with devices
1627 * on this port.
1628 *
1629 * LOCKING: host_set lock, or some other form of
1630 * serialization.
1da177e4
LT
1631 */
1632
1633void ata_port_disable(struct ata_port *ap)
1634{
1635 ap->device[0].class = ATA_DEV_NONE;
1636 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1637 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1638}
1639
1c3fae4d
TH
1640/**
1641 * ata_down_sata_spd_limit - adjust SATA spd limit downward
1642 * @ap: Port to adjust SATA spd limit for
1643 *
1644 * Adjust SATA spd limit of @ap downward. Note that this
1645 * function only adjusts the limit. The change must be applied
1646 * using ata_set_sata_spd().
1647 *
1648 * LOCKING:
1649 * Inherited from caller.
1650 *
1651 * RETURNS:
1652 * 0 on success, negative errno on failure
1653 */
1ad8e7f9 1654int ata_down_sata_spd_limit(struct ata_port *ap)
1c3fae4d
TH
1655{
1656 u32 spd, mask;
1657 int highbit;
1658
1659 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1660 return -EOPNOTSUPP;
1661
1662 mask = ap->sata_spd_limit;
1663 if (mask <= 1)
1664 return -EINVAL;
1665 highbit = fls(mask) - 1;
1666 mask &= ~(1 << highbit);
1667
1668 spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
1669 if (spd <= 1)
1670 return -EINVAL;
1671 spd--;
1672 mask &= (1 << spd) - 1;
1673 if (!mask)
1674 return -EINVAL;
1675
1676 ap->sata_spd_limit = mask;
1677
1678 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1679 ap->id, sata_spd_string(fls(mask)));
1680
1681 return 0;
1682}
1683
1684static int __ata_set_sata_spd_needed(struct ata_port *ap, u32 *scontrol)
1685{
1686 u32 spd, limit;
1687
1688 if (ap->sata_spd_limit == UINT_MAX)
1689 limit = 0;
1690 else
1691 limit = fls(ap->sata_spd_limit);
1692
1693 spd = (*scontrol >> 4) & 0xf;
1694 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1695
1696 return spd != limit;
1697}
1698
1699/**
1700 * ata_set_sata_spd_needed - is SATA spd configuration needed
1701 * @ap: Port in question
1702 *
1703 * Test whether the spd limit in SControl matches
1704 * @ap->sata_spd_limit. This function is used to determine
1705 * whether hardreset is necessary to apply SATA spd
1706 * configuration.
1707 *
1708 * LOCKING:
1709 * Inherited from caller.
1710 *
1711 * RETURNS:
1712 * 1 if SATA spd configuration is needed, 0 otherwise.
1713 */
1ad8e7f9 1714int ata_set_sata_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1715{
1716 u32 scontrol;
1717
1718 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1719 return 0;
1720
1721 scontrol = scr_read(ap, SCR_CONTROL);
1722
1723 return __ata_set_sata_spd_needed(ap, &scontrol);
1724}
1725
1726/**
1727 * ata_set_sata_spd - set SATA spd according to spd limit
1728 * @ap: Port to set SATA spd for
1729 *
1730 * Set SATA spd of @ap according to sata_spd_limit.
1731 *
1732 * LOCKING:
1733 * Inherited from caller.
1734 *
1735 * RETURNS:
1736 * 0 if spd doesn't need to be changed, 1 if spd has been
1737 * changed. -EOPNOTSUPP if SCR registers are inaccessible.
1738 */
1739static int ata_set_sata_spd(struct ata_port *ap)
1740{
1741 u32 scontrol;
1742
1743 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1744 return -EOPNOTSUPP;
1745
1746 scontrol = scr_read(ap, SCR_CONTROL);
1747 if (!__ata_set_sata_spd_needed(ap, &scontrol))
1748 return 0;
1749
1750 scr_write(ap, SCR_CONTROL, scontrol);
1751 return 1;
1752}
1753
452503f9
AC
1754/*
1755 * This mode timing computation functionality is ported over from
1756 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1757 */
1758/*
1759 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1760 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1761 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1762 * is currently supported only by Maxtor drives.
452503f9
AC
1763 */
1764
1765static const struct ata_timing ata_timing[] = {
1766
1767 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1768 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1769 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1770 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1771
1772 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1773 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1774 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1775
1776/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1777
452503f9
AC
1778 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1779 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1780 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1781
452503f9
AC
1782 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1783 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1784 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1785
1786/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1787 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1788 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1789
1790 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1791 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1792 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1793
1794/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1795
1796 { 0xFF }
1797};
1798
1799#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1800#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1801
1802static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1803{
1804 q->setup = EZ(t->setup * 1000, T);
1805 q->act8b = EZ(t->act8b * 1000, T);
1806 q->rec8b = EZ(t->rec8b * 1000, T);
1807 q->cyc8b = EZ(t->cyc8b * 1000, T);
1808 q->active = EZ(t->active * 1000, T);
1809 q->recover = EZ(t->recover * 1000, T);
1810 q->cycle = EZ(t->cycle * 1000, T);
1811 q->udma = EZ(t->udma * 1000, UT);
1812}
1813
1814void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1815 struct ata_timing *m, unsigned int what)
1816{
1817 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1818 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1819 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1820 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1821 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1822 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1823 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1824 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1825}
1826
1827static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1828{
1829 const struct ata_timing *t;
1830
1831 for (t = ata_timing; t->mode != speed; t++)
91190758 1832 if (t->mode == 0xFF)
452503f9 1833 return NULL;
2e9edbf8 1834 return t;
452503f9
AC
1835}
1836
1837int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1838 struct ata_timing *t, int T, int UT)
1839{
1840 const struct ata_timing *s;
1841 struct ata_timing p;
1842
1843 /*
2e9edbf8 1844 * Find the mode.
75b1f2f8 1845 */
452503f9
AC
1846
1847 if (!(s = ata_timing_find_mode(speed)))
1848 return -EINVAL;
1849
75b1f2f8
AL
1850 memcpy(t, s, sizeof(*s));
1851
452503f9
AC
1852 /*
1853 * If the drive is an EIDE drive, it can tell us it needs extended
1854 * PIO/MW_DMA cycle timing.
1855 */
1856
1857 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1858 memset(&p, 0, sizeof(p));
1859 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1860 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1861 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1862 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1863 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1864 }
1865 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1866 }
1867
1868 /*
1869 * Convert the timing to bus clock counts.
1870 */
1871
75b1f2f8 1872 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1873
1874 /*
c893a3ae
RD
1875 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1876 * S.M.A.R.T * and some other commands. We have to ensure that the
1877 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1878 */
1879
1880 if (speed > XFER_PIO_4) {
1881 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1882 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1883 }
1884
1885 /*
c893a3ae 1886 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1887 */
1888
1889 if (t->act8b + t->rec8b < t->cyc8b) {
1890 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1891 t->rec8b = t->cyc8b - t->act8b;
1892 }
1893
1894 if (t->active + t->recover < t->cycle) {
1895 t->active += (t->cycle - (t->active + t->recover)) / 2;
1896 t->recover = t->cycle - t->active;
1897 }
1898
1899 return 0;
1900}
1901
cf176e1a
TH
1902/**
1903 * ata_down_xfermask_limit - adjust dev xfer masks downward
1904 * @ap: Port associated with device @dev
1905 * @dev: Device to adjust xfer masks
1906 * @force_pio0: Force PIO0
1907 *
1908 * Adjust xfer masks of @dev downward. Note that this function
1909 * does not apply the change. Invoking ata_set_mode() afterwards
1910 * will apply the limit.
1911 *
1912 * LOCKING:
1913 * Inherited from caller.
1914 *
1915 * RETURNS:
1916 * 0 on success, negative errno on failure
1917 */
1ad8e7f9
TH
1918int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
1919 int force_pio0)
cf176e1a
TH
1920{
1921 unsigned long xfer_mask;
1922 int highbit;
1923
1924 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1925 dev->udma_mask);
1926
1927 if (!xfer_mask)
1928 goto fail;
1929 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1930 if (xfer_mask & ATA_MASK_UDMA)
1931 xfer_mask &= ~ATA_MASK_MWDMA;
1932
1933 highbit = fls(xfer_mask) - 1;
1934 xfer_mask &= ~(1 << highbit);
1935 if (force_pio0)
1936 xfer_mask &= 1 << ATA_SHIFT_PIO;
1937 if (!xfer_mask)
1938 goto fail;
1939
1940 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1941 &dev->udma_mask);
1942
1943 printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
1944 ap->id, dev->devno, ata_mode_string(xfer_mask));
1945
1946 return 0;
1947
1948 fail:
1949 return -EINVAL;
1950}
1951
83206a29 1952static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1da177e4 1953{
83206a29
TH
1954 unsigned int err_mask;
1955 int rc;
1da177e4 1956
e8384607 1957 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
1958 if (dev->xfer_shift == ATA_SHIFT_PIO)
1959 dev->flags |= ATA_DFLAG_PIO;
1960
83206a29
TH
1961 err_mask = ata_dev_set_xfermode(ap, dev);
1962 if (err_mask) {
1963 printk(KERN_ERR
1964 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1965 ap->id, err_mask);
1966 return -EIO;
1967 }
1da177e4 1968
83206a29 1969 rc = ata_dev_revalidate(ap, dev, 0);
5eb45c02 1970 if (rc)
83206a29 1971 return rc;
48a8a14f 1972
23e71c3d
TH
1973 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1974 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4
LT
1975
1976 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
23e71c3d
TH
1977 ap->id, dev->devno,
1978 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 1979 return 0;
1da177e4
LT
1980}
1981
1da177e4
LT
1982/**
1983 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1984 * @ap: port on which timings will be programmed
e82cbdb9 1985 * @r_failed_dev: out paramter for failed device
1da177e4 1986 *
e82cbdb9
TH
1987 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1988 * ata_set_mode() fails, pointer to the failing device is
1989 * returned in @r_failed_dev.
780a87f7 1990 *
1da177e4 1991 * LOCKING:
0cba632b 1992 * PCI/etc. bus probe sem.
e82cbdb9
TH
1993 *
1994 * RETURNS:
1995 * 0 on success, negative errno otherwise
1da177e4 1996 */
1ad8e7f9 1997int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 1998{
e8e0619f 1999 struct ata_device *dev;
e82cbdb9 2000 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2001
a6d5a51c
TH
2002 /* step 1: calculate xfer_mask */
2003 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2004 unsigned int pio_mask, dma_mask;
a6d5a51c 2005
e8e0619f
TH
2006 dev = &ap->device[i];
2007
e1211e3f 2008 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2009 continue;
2010
acf356b1 2011 ata_dev_xfermask(ap, dev);
1da177e4 2012
acf356b1
TH
2013 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2014 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2015 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2016 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2017
4f65977d 2018 found = 1;
5444a6f4
AC
2019 if (dev->dma_mode)
2020 used_dma = 1;
a6d5a51c 2021 }
4f65977d 2022 if (!found)
e82cbdb9 2023 goto out;
a6d5a51c
TH
2024
2025 /* step 2: always set host PIO timings */
e8e0619f
TH
2026 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2027 dev = &ap->device[i];
2028 if (!ata_dev_enabled(dev))
2029 continue;
2030
2031 if (!dev->pio_mode) {
2032 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
2033 ap->id, dev->devno);
2034 rc = -EINVAL;
e82cbdb9 2035 goto out;
e8e0619f
TH
2036 }
2037
2038 dev->xfer_mode = dev->pio_mode;
2039 dev->xfer_shift = ATA_SHIFT_PIO;
2040 if (ap->ops->set_piomode)
2041 ap->ops->set_piomode(ap, dev);
2042 }
1da177e4 2043
a6d5a51c 2044 /* step 3: set host DMA timings */
e8e0619f
TH
2045 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2046 dev = &ap->device[i];
2047
2048 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2049 continue;
2050
2051 dev->xfer_mode = dev->dma_mode;
2052 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2053 if (ap->ops->set_dmamode)
2054 ap->ops->set_dmamode(ap, dev);
2055 }
1da177e4
LT
2056
2057 /* step 4: update devices' xfer mode */
83206a29 2058 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2059 dev = &ap->device[i];
1da177e4 2060
e1211e3f 2061 if (!ata_dev_enabled(dev))
83206a29
TH
2062 continue;
2063
5bbc53f4
TH
2064 rc = ata_dev_set_mode(ap, dev);
2065 if (rc)
e82cbdb9 2066 goto out;
83206a29 2067 }
1da177e4 2068
e8e0619f
TH
2069 /* Record simplex status. If we selected DMA then the other
2070 * host channels are not permitted to do so.
5444a6f4 2071 */
5444a6f4
AC
2072 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2073 ap->host_set->simplex_claimed = 1;
2074
e8e0619f 2075 /* step5: chip specific finalisation */
1da177e4
LT
2076 if (ap->ops->post_set_mode)
2077 ap->ops->post_set_mode(ap);
2078
e82cbdb9
TH
2079 out:
2080 if (rc)
2081 *r_failed_dev = dev;
2082 return rc;
1da177e4
LT
2083}
2084
1fdffbce
JG
2085/**
2086 * ata_tf_to_host - issue ATA taskfile to host controller
2087 * @ap: port to which command is being issued
2088 * @tf: ATA taskfile register set
2089 *
2090 * Issues ATA taskfile register set to ATA host controller,
2091 * with proper synchronization with interrupt handler and
2092 * other threads.
2093 *
2094 * LOCKING:
2095 * spin_lock_irqsave(host_set lock)
2096 */
2097
2098static inline void ata_tf_to_host(struct ata_port *ap,
2099 const struct ata_taskfile *tf)
2100{
2101 ap->ops->tf_load(ap, tf);
2102 ap->ops->exec_command(ap, tf);
2103}
2104
1da177e4
LT
2105/**
2106 * ata_busy_sleep - sleep until BSY clears, or timeout
2107 * @ap: port containing status register to be polled
2108 * @tmout_pat: impatience timeout
2109 * @tmout: overall timeout
2110 *
780a87f7
JG
2111 * Sleep until ATA Status register bit BSY clears,
2112 * or a timeout occurs.
2113 *
2114 * LOCKING: None.
1da177e4
LT
2115 */
2116
6f8b9958
TH
2117unsigned int ata_busy_sleep (struct ata_port *ap,
2118 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2119{
2120 unsigned long timer_start, timeout;
2121 u8 status;
2122
2123 status = ata_busy_wait(ap, ATA_BUSY, 300);
2124 timer_start = jiffies;
2125 timeout = timer_start + tmout_pat;
2126 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2127 msleep(50);
2128 status = ata_busy_wait(ap, ATA_BUSY, 3);
2129 }
2130
2131 if (status & ATA_BUSY)
2132 printk(KERN_WARNING "ata%u is slow to respond, "
2133 "please be patient\n", ap->id);
2134
2135 timeout = timer_start + tmout;
2136 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2137 msleep(50);
2138 status = ata_chk_status(ap);
2139 }
2140
2141 if (status & ATA_BUSY) {
2142 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2143 ap->id, tmout / HZ);
2144 return 1;
2145 }
2146
2147 return 0;
2148}
2149
2150static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2151{
2152 struct ata_ioports *ioaddr = &ap->ioaddr;
2153 unsigned int dev0 = devmask & (1 << 0);
2154 unsigned int dev1 = devmask & (1 << 1);
2155 unsigned long timeout;
2156
2157 /* if device 0 was found in ata_devchk, wait for its
2158 * BSY bit to clear
2159 */
2160 if (dev0)
2161 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2162
2163 /* if device 1 was found in ata_devchk, wait for
2164 * register access, then wait for BSY to clear
2165 */
2166 timeout = jiffies + ATA_TMOUT_BOOT;
2167 while (dev1) {
2168 u8 nsect, lbal;
2169
2170 ap->ops->dev_select(ap, 1);
2171 if (ap->flags & ATA_FLAG_MMIO) {
2172 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2173 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2174 } else {
2175 nsect = inb(ioaddr->nsect_addr);
2176 lbal = inb(ioaddr->lbal_addr);
2177 }
2178 if ((nsect == 1) && (lbal == 1))
2179 break;
2180 if (time_after(jiffies, timeout)) {
2181 dev1 = 0;
2182 break;
2183 }
2184 msleep(50); /* give drive a breather */
2185 }
2186 if (dev1)
2187 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2188
2189 /* is all this really necessary? */
2190 ap->ops->dev_select(ap, 0);
2191 if (dev1)
2192 ap->ops->dev_select(ap, 1);
2193 if (dev0)
2194 ap->ops->dev_select(ap, 0);
2195}
2196
1da177e4
LT
2197static unsigned int ata_bus_softreset(struct ata_port *ap,
2198 unsigned int devmask)
2199{
2200 struct ata_ioports *ioaddr = &ap->ioaddr;
2201
2202 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2203
2204 /* software reset. causes dev0 to be selected */
2205 if (ap->flags & ATA_FLAG_MMIO) {
2206 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2207 udelay(20); /* FIXME: flush */
2208 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2209 udelay(20); /* FIXME: flush */
2210 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2211 } else {
2212 outb(ap->ctl, ioaddr->ctl_addr);
2213 udelay(10);
2214 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2215 udelay(10);
2216 outb(ap->ctl, ioaddr->ctl_addr);
2217 }
2218
2219 /* spec mandates ">= 2ms" before checking status.
2220 * We wait 150ms, because that was the magic delay used for
2221 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2222 * between when the ATA command register is written, and then
2223 * status is checked. Because waiting for "a while" before
2224 * checking status is fine, post SRST, we perform this magic
2225 * delay here as well.
09c7ad79
AC
2226 *
2227 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2228 */
2229 msleep(150);
2230
2e9edbf8 2231 /* Before we perform post reset processing we want to see if
298a41ca
TH
2232 * the bus shows 0xFF because the odd clown forgets the D7
2233 * pulldown resistor.
2234 */
09c7ad79 2235 if (ata_check_status(ap) == 0xFF)
298a41ca 2236 return AC_ERR_OTHER;
09c7ad79 2237
1da177e4
LT
2238 ata_bus_post_reset(ap, devmask);
2239
2240 return 0;
2241}
2242
2243/**
2244 * ata_bus_reset - reset host port and associated ATA channel
2245 * @ap: port to reset
2246 *
2247 * This is typically the first time we actually start issuing
2248 * commands to the ATA channel. We wait for BSY to clear, then
2249 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2250 * result. Determine what devices, if any, are on the channel
2251 * by looking at the device 0/1 error register. Look at the signature
2252 * stored in each device's taskfile registers, to determine if
2253 * the device is ATA or ATAPI.
2254 *
2255 * LOCKING:
0cba632b
JG
2256 * PCI/etc. bus probe sem.
2257 * Obtains host_set lock.
1da177e4
LT
2258 *
2259 * SIDE EFFECTS:
198e0fed 2260 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2261 */
2262
2263void ata_bus_reset(struct ata_port *ap)
2264{
2265 struct ata_ioports *ioaddr = &ap->ioaddr;
2266 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2267 u8 err;
aec5c3c1 2268 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2269
2270 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2271
2272 /* determine if device 0/1 are present */
2273 if (ap->flags & ATA_FLAG_SATA_RESET)
2274 dev0 = 1;
2275 else {
2276 dev0 = ata_devchk(ap, 0);
2277 if (slave_possible)
2278 dev1 = ata_devchk(ap, 1);
2279 }
2280
2281 if (dev0)
2282 devmask |= (1 << 0);
2283 if (dev1)
2284 devmask |= (1 << 1);
2285
2286 /* select device 0 again */
2287 ap->ops->dev_select(ap, 0);
2288
2289 /* issue bus reset */
2290 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2291 if (ata_bus_softreset(ap, devmask))
2292 goto err_out;
1da177e4
LT
2293
2294 /*
2295 * determine by signature whether we have ATA or ATAPI devices
2296 */
b4dc7623 2297 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2298 if ((slave_possible) && (err != 0x81))
b4dc7623 2299 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2300
2301 /* re-enable interrupts */
2302 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2303 ata_irq_on(ap);
2304
2305 /* is double-select really necessary? */
2306 if (ap->device[1].class != ATA_DEV_NONE)
2307 ap->ops->dev_select(ap, 1);
2308 if (ap->device[0].class != ATA_DEV_NONE)
2309 ap->ops->dev_select(ap, 0);
2310
2311 /* if no devices were detected, disable this port */
2312 if ((ap->device[0].class == ATA_DEV_NONE) &&
2313 (ap->device[1].class == ATA_DEV_NONE))
2314 goto err_out;
2315
2316 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2317 /* set up device control for ATA_FLAG_SATA_RESET */
2318 if (ap->flags & ATA_FLAG_MMIO)
2319 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2320 else
2321 outb(ap->ctl, ioaddr->ctl_addr);
2322 }
2323
2324 DPRINTK("EXIT\n");
2325 return;
2326
2327err_out:
2328 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2329 ap->ops->port_disable(ap);
2330
2331 DPRINTK("EXIT\n");
2332}
2333
7a7921e8
TH
2334static int sata_phy_resume(struct ata_port *ap)
2335{
2336 unsigned long timeout = jiffies + (HZ * 5);
852ee16a 2337 u32 scontrol, sstatus;
7a7921e8 2338
852ee16a
TH
2339 scontrol = scr_read(ap, SCR_CONTROL);
2340 scontrol = (scontrol & 0x0f0) | 0x300;
2341 scr_write_flush(ap, SCR_CONTROL, scontrol);
7a7921e8
TH
2342
2343 /* Wait for phy to become ready, if necessary. */
2344 do {
2345 msleep(200);
2346 sstatus = scr_read(ap, SCR_STATUS);
2347 if ((sstatus & 0xf) != 1)
2348 return 0;
2349 } while (time_before(jiffies, timeout));
2350
2351 return -1;
2352}
2353
8a19ac89
TH
2354/**
2355 * ata_std_probeinit - initialize probing
2356 * @ap: port to be probed
2357 *
2358 * @ap is about to be probed. Initialize it. This function is
2359 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2360 *
2361 * NOTE!!! Do not use this function as probeinit if a low level
2362 * driver implements only hardreset. Just pass NULL as probeinit
2363 * in that case. Using this function is probably okay but doing
2364 * so makes reset sequence different from the original
2365 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2366 */
17efc5f7 2367void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2368{
17efc5f7 2369 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
1c3fae4d
TH
2370 u32 spd;
2371
db70fef0
TH
2372 /* set cable type and resume link */
2373 ap->cbl = ATA_CBL_SATA;
8a19ac89 2374 sata_phy_resume(ap);
1c3fae4d 2375
db70fef0 2376 /* init sata_spd_limit to the current value */
1c3fae4d
TH
2377 spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
2378 if (spd)
2379 ap->sata_spd_limit &= (1 << spd) - 1;
2380
db70fef0 2381 /* wait for device */
3a39746a
TH
2382 if (sata_dev_present(ap))
2383 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2384 }
8a19ac89
TH
2385}
2386
c2bd5804
TH
2387/**
2388 * ata_std_softreset - reset host port via ATA SRST
2389 * @ap: port to reset
2390 * @verbose: fail verbosely
2391 * @classes: resulting classes of attached devices
2392 *
2393 * Reset host port using ATA SRST. This function is to be used
2394 * as standard callback for ata_drive_*_reset() functions.
2395 *
2396 * LOCKING:
2397 * Kernel thread context (may sleep)
2398 *
2399 * RETURNS:
2400 * 0 on success, -errno otherwise.
2401 */
2402int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2403{
2404 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2405 unsigned int devmask = 0, err_mask;
2406 u8 err;
2407
2408 DPRINTK("ENTER\n");
2409
3a39746a
TH
2410 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2411 classes[0] = ATA_DEV_NONE;
2412 goto out;
2413 }
2414
c2bd5804
TH
2415 /* determine if device 0/1 are present */
2416 if (ata_devchk(ap, 0))
2417 devmask |= (1 << 0);
2418 if (slave_possible && ata_devchk(ap, 1))
2419 devmask |= (1 << 1);
2420
c2bd5804
TH
2421 /* select device 0 again */
2422 ap->ops->dev_select(ap, 0);
2423
2424 /* issue bus reset */
2425 DPRINTK("about to softreset, devmask=%x\n", devmask);
2426 err_mask = ata_bus_softreset(ap, devmask);
2427 if (err_mask) {
2428 if (verbose)
2429 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2430 ap->id, err_mask);
2431 else
2432 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2433 err_mask);
2434 return -EIO;
2435 }
2436
2437 /* determine by signature whether we have ATA or ATAPI devices */
2438 classes[0] = ata_dev_try_classify(ap, 0, &err);
2439 if (slave_possible && err != 0x81)
2440 classes[1] = ata_dev_try_classify(ap, 1, &err);
2441
3a39746a 2442 out:
c2bd5804
TH
2443 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2444 return 0;
2445}
2446
2447/**
2448 * sata_std_hardreset - reset host port via SATA phy reset
2449 * @ap: port to reset
2450 * @verbose: fail verbosely
2451 * @class: resulting class of attached device
2452 *
2453 * SATA phy-reset host port using DET bits of SControl register.
2454 * This function is to be used as standard callback for
2455 * ata_drive_*_reset().
2456 *
2457 * LOCKING:
2458 * Kernel thread context (may sleep)
2459 *
2460 * RETURNS:
2461 * 0 on success, -errno otherwise.
2462 */
2463int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2464{
852ee16a
TH
2465 u32 scontrol;
2466
c2bd5804
TH
2467 DPRINTK("ENTER\n");
2468
1c3fae4d
TH
2469 if (ata_set_sata_spd_needed(ap)) {
2470 /* SATA spec says nothing about how to reconfigure
2471 * spd. To be on the safe side, turn off phy during
2472 * reconfiguration. This works for at least ICH7 AHCI
2473 * and Sil3124.
2474 */
2475 scontrol = scr_read(ap, SCR_CONTROL);
2476 scontrol = (scontrol & 0x0f0) | 0x302;
2477 scr_write_flush(ap, SCR_CONTROL, scontrol);
2478
2479 ata_set_sata_spd(ap);
2480 }
2481
2482 /* issue phy wake/reset */
852ee16a
TH
2483 scontrol = scr_read(ap, SCR_CONTROL);
2484 scontrol = (scontrol & 0x0f0) | 0x301;
2485 scr_write_flush(ap, SCR_CONTROL, scontrol);
c2bd5804 2486
1c3fae4d 2487 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2488 * 10.4.2 says at least 1 ms.
2489 */
2490 msleep(1);
2491
1c3fae4d 2492 /* bring phy back */
7a7921e8 2493 sata_phy_resume(ap);
c2bd5804 2494
c2bd5804
TH
2495 /* TODO: phy layer with polling, timeouts, etc. */
2496 if (!sata_dev_present(ap)) {
2497 *class = ATA_DEV_NONE;
2498 DPRINTK("EXIT, link offline\n");
2499 return 0;
2500 }
2501
2502 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2503 if (verbose)
2504 printk(KERN_ERR "ata%u: COMRESET failed "
2505 "(device not ready)\n", ap->id);
2506 else
2507 DPRINTK("EXIT, device not ready\n");
2508 return -EIO;
2509 }
2510
3a39746a
TH
2511 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2512
c2bd5804
TH
2513 *class = ata_dev_try_classify(ap, 0, NULL);
2514
2515 DPRINTK("EXIT, class=%u\n", *class);
2516 return 0;
2517}
2518
2519/**
2520 * ata_std_postreset - standard postreset callback
2521 * @ap: the target ata_port
2522 * @classes: classes of attached devices
2523 *
2524 * This function is invoked after a successful reset. Note that
2525 * the device might have been reset more than once using
2526 * different reset methods before postreset is invoked.
c2bd5804
TH
2527 *
2528 * This function is to be used as standard callback for
2529 * ata_drive_*_reset().
2530 *
2531 * LOCKING:
2532 * Kernel thread context (may sleep)
2533 */
2534void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2535{
2536 DPRINTK("ENTER\n");
2537
c2bd5804
TH
2538 /* print link status */
2539 if (ap->cbl == ATA_CBL_SATA)
2540 sata_print_link_status(ap);
2541
3a39746a
TH
2542 /* re-enable interrupts */
2543 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2544 ata_irq_on(ap);
c2bd5804
TH
2545
2546 /* is double-select really necessary? */
2547 if (classes[0] != ATA_DEV_NONE)
2548 ap->ops->dev_select(ap, 1);
2549 if (classes[1] != ATA_DEV_NONE)
2550 ap->ops->dev_select(ap, 0);
2551
3a39746a
TH
2552 /* bail out if no device is present */
2553 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2554 DPRINTK("EXIT, no device\n");
2555 return;
2556 }
2557
2558 /* set up device control */
2559 if (ap->ioaddr.ctl_addr) {
2560 if (ap->flags & ATA_FLAG_MMIO)
2561 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2562 else
2563 outb(ap->ctl, ap->ioaddr.ctl_addr);
2564 }
c2bd5804
TH
2565
2566 DPRINTK("EXIT\n");
2567}
2568
2569/**
2570 * ata_std_probe_reset - standard probe reset method
2571 * @ap: prot to perform probe-reset
2572 * @classes: resulting classes of attached devices
2573 *
2574 * The stock off-the-shelf ->probe_reset method.
2575 *
2576 * LOCKING:
2577 * Kernel thread context (may sleep)
2578 *
2579 * RETURNS:
2580 * 0 on success, -errno otherwise.
2581 */
2582int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2583{
2584 ata_reset_fn_t hardreset;
2585
2586 hardreset = NULL;
db70fef0 2587 if (ap->cbl == ATA_CBL_SATA && ap->ops->scr_read)
c2bd5804
TH
2588 hardreset = sata_std_hardreset;
2589
8a19ac89 2590 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2591 ata_std_softreset, hardreset,
c2bd5804
TH
2592 ata_std_postreset, classes);
2593}
2594
1ad8e7f9
TH
2595int ata_do_reset(struct ata_port *ap,
2596 ata_reset_fn_t reset, ata_postreset_fn_t postreset,
2597 int verbose, unsigned int *classes)
a62c0fc5
TH
2598{
2599 int i, rc;
2600
2601 for (i = 0; i < ATA_MAX_DEVICES; i++)
2602 classes[i] = ATA_DEV_UNKNOWN;
2603
9974e7cc 2604 rc = reset(ap, verbose, classes);
a62c0fc5
TH
2605 if (rc)
2606 return rc;
2607
2608 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2609 * is complete and convert all ATA_DEV_UNKNOWN to
2610 * ATA_DEV_NONE.
2611 */
2612 for (i = 0; i < ATA_MAX_DEVICES; i++)
2613 if (classes[i] != ATA_DEV_UNKNOWN)
2614 break;
2615
2616 if (i < ATA_MAX_DEVICES)
2617 for (i = 0; i < ATA_MAX_DEVICES; i++)
2618 if (classes[i] == ATA_DEV_UNKNOWN)
2619 classes[i] = ATA_DEV_NONE;
2620
2621 if (postreset)
2622 postreset(ap, classes);
2623
9974e7cc 2624 return 0;
a62c0fc5
TH
2625}
2626
2627/**
2628 * ata_drive_probe_reset - Perform probe reset with given methods
2629 * @ap: port to reset
7944ea95 2630 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2631 * @softreset: softreset method (can be NULL)
2632 * @hardreset: hardreset method (can be NULL)
2633 * @postreset: postreset method (can be NULL)
2634 * @classes: resulting classes of attached devices
2635 *
2636 * Reset the specified port and classify attached devices using
2637 * given methods. This function prefers softreset but tries all
2638 * possible reset sequences to reset and classify devices. This
2639 * function is intended to be used for constructing ->probe_reset
2640 * callback by low level drivers.
2641 *
2642 * Reset methods should follow the following rules.
2643 *
2644 * - Return 0 on sucess, -errno on failure.
2645 * - If classification is supported, fill classes[] with
2646 * recognized class codes.
2647 * - If classification is not supported, leave classes[] alone.
2648 * - If verbose is non-zero, print error message on failure;
2649 * otherwise, shut up.
2650 *
2651 * LOCKING:
2652 * Kernel thread context (may sleep)
2653 *
2654 * RETURNS:
2655 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2656 * if classification fails, and any error code from reset
2657 * methods.
2658 */
7944ea95 2659int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2660 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2661 ata_postreset_fn_t postreset, unsigned int *classes)
2662{
2663 int rc = -EINVAL;
2664
7944ea95
TH
2665 if (probeinit)
2666 probeinit(ap);
2667
90dac02c 2668 if (softreset && !ata_set_sata_spd_needed(ap)) {
9974e7cc
TH
2669 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2670 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2671 goto done;
edbabd86
TH
2672 printk(KERN_INFO "ata%u: softreset failed, will try "
2673 "hardreset in 5 secs\n", ap->id);
2674 ssleep(5);
a62c0fc5
TH
2675 }
2676
2677 if (!hardreset)
9974e7cc 2678 goto done;
a62c0fc5 2679
90dac02c
TH
2680 while (1) {
2681 rc = ata_do_reset(ap, hardreset, postreset, 0, classes);
2682 if (rc == 0) {
2683 if (classes[0] != ATA_DEV_UNKNOWN)
2684 goto done;
2685 break;
2686 }
2687
2688 if (ata_down_sata_spd_limit(ap))
2689 goto done;
edbabd86
TH
2690
2691 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2692 "in 5 secs\n", ap->id);
2693 ssleep(5);
90dac02c 2694 }
a62c0fc5 2695
edbabd86
TH
2696 if (softreset) {
2697 printk(KERN_INFO "ata%u: hardreset succeeded without "
2698 "classification, will retry softreset in 5 secs\n",
2699 ap->id);
2700 ssleep(5);
2701
9974e7cc 2702 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
edbabd86 2703 }
a62c0fc5 2704
9974e7cc
TH
2705 done:
2706 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2707 rc = -ENODEV;
a62c0fc5
TH
2708 return rc;
2709}
2710
623a3128
TH
2711/**
2712 * ata_dev_same_device - Determine whether new ID matches configured device
2713 * @ap: port on which the device to compare against resides
2714 * @dev: device to compare against
2715 * @new_class: class of the new device
2716 * @new_id: IDENTIFY page of the new device
2717 *
2718 * Compare @new_class and @new_id against @dev and determine
2719 * whether @dev is the device indicated by @new_class and
2720 * @new_id.
2721 *
2722 * LOCKING:
2723 * None.
2724 *
2725 * RETURNS:
2726 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2727 */
2728static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2729 unsigned int new_class, const u16 *new_id)
2730{
2731 const u16 *old_id = dev->id;
2732 unsigned char model[2][41], serial[2][21];
2733 u64 new_n_sectors;
2734
2735 if (dev->class != new_class) {
2736 printk(KERN_INFO
2737 "ata%u: dev %u class mismatch %d != %d\n",
2738 ap->id, dev->devno, dev->class, new_class);
2739 return 0;
2740 }
2741
2742 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2743 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2744 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2745 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2746 new_n_sectors = ata_id_n_sectors(new_id);
2747
2748 if (strcmp(model[0], model[1])) {
2749 printk(KERN_INFO
2750 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2751 ap->id, dev->devno, model[0], model[1]);
2752 return 0;
2753 }
2754
2755 if (strcmp(serial[0], serial[1])) {
2756 printk(KERN_INFO
2757 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2758 ap->id, dev->devno, serial[0], serial[1]);
2759 return 0;
2760 }
2761
2762 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2763 printk(KERN_INFO
2764 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2765 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2766 (unsigned long long)new_n_sectors);
2767 return 0;
2768 }
2769
2770 return 1;
2771}
2772
2773/**
2774 * ata_dev_revalidate - Revalidate ATA device
2775 * @ap: port on which the device to revalidate resides
2776 * @dev: device to revalidate
2777 * @post_reset: is this revalidation after reset?
2778 *
2779 * Re-read IDENTIFY page and make sure @dev is still attached to
2780 * the port.
2781 *
2782 * LOCKING:
2783 * Kernel thread context (may sleep)
2784 *
2785 * RETURNS:
2786 * 0 on success, negative errno otherwise
2787 */
2788int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2789 int post_reset)
2790{
5eb45c02
TH
2791 unsigned int class = dev->class;
2792 u16 *id = NULL;
623a3128
TH
2793 int rc;
2794
5eb45c02
TH
2795 if (!ata_dev_enabled(dev)) {
2796 rc = -ENODEV;
2797 goto fail;
2798 }
623a3128
TH
2799
2800 /* allocate & read ID data */
2801 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2802 if (rc)
2803 goto fail;
2804
2805 /* is the device still there? */
2806 if (!ata_dev_same_device(ap, dev, class, id)) {
2807 rc = -ENODEV;
2808 goto fail;
2809 }
2810
2811 kfree(dev->id);
2812 dev->id = id;
2813
2814 /* configure device according to the new ID */
5eb45c02
TH
2815 rc = ata_dev_configure(ap, dev, 0);
2816 if (rc == 0)
2817 return 0;
623a3128
TH
2818
2819 fail:
2820 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2821 ap->id, dev->devno, rc);
2822 kfree(id);
2823 return rc;
2824}
2825
98ac62de 2826static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2827 "WDC AC11000H", NULL,
2828 "WDC AC22100H", NULL,
2829 "WDC AC32500H", NULL,
2830 "WDC AC33100H", NULL,
2831 "WDC AC31600H", NULL,
2832 "WDC AC32100H", "24.09P07",
2833 "WDC AC23200L", "21.10N21",
2834 "Compaq CRD-8241B", NULL,
2835 "CRD-8400B", NULL,
2836 "CRD-8480B", NULL,
2837 "CRD-8482B", NULL,
2838 "CRD-84", NULL,
2839 "SanDisk SDP3B", NULL,
2840 "SanDisk SDP3B-64", NULL,
2841 "SANYO CD-ROM CRD", NULL,
2842 "HITACHI CDR-8", NULL,
2e9edbf8 2843 "HITACHI CDR-8335", NULL,
f4b15fef 2844 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2845 "Toshiba CD-ROM XM-6202B", NULL,
2846 "TOSHIBA CD-ROM XM-1702BC", NULL,
2847 "CD-532E-A", NULL,
2848 "E-IDE CD-ROM CR-840", NULL,
2849 "CD-ROM Drive/F5A", NULL,
2850 "WPI CDD-820", NULL,
f4b15fef 2851 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2852 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2853 "SanDisk SDP3B-64", NULL,
2854 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2855 "_NEC DV5800A", NULL,
2856 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2857};
2e9edbf8 2858
f4b15fef
AC
2859static int ata_strim(char *s, size_t len)
2860{
2861 len = strnlen(s, len);
2862
2863 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2864 while ((len > 0) && (s[len - 1] == ' ')) {
2865 len--;
2866 s[len] = 0;
2867 }
2868 return len;
2869}
1da177e4 2870
057ace5e 2871static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2872{
f4b15fef
AC
2873 unsigned char model_num[40];
2874 unsigned char model_rev[16];
2875 unsigned int nlen, rlen;
1da177e4
LT
2876 int i;
2877
f4b15fef
AC
2878 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2879 sizeof(model_num));
2880 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2881 sizeof(model_rev));
2882 nlen = ata_strim(model_num, sizeof(model_num));
2883 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2884
f4b15fef
AC
2885 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2886 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2887 if (ata_dma_blacklist[i+1] == NULL)
2888 return 1;
2889 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2890 return 1;
2891 }
2892 }
1da177e4
LT
2893 return 0;
2894}
2895
a6d5a51c
TH
2896/**
2897 * ata_dev_xfermask - Compute supported xfermask of the given device
2898 * @ap: Port on which the device to compute xfermask for resides
2899 * @dev: Device to compute xfermask for
2900 *
acf356b1
TH
2901 * Compute supported xfermask of @dev and store it in
2902 * dev->*_mask. This function is responsible for applying all
2903 * known limits including host controller limits, device
2904 * blacklist, etc...
a6d5a51c 2905 *
600511e8
TH
2906 * FIXME: The current implementation limits all transfer modes to
2907 * the fastest of the lowested device on the port. This is not
05c8e0ac 2908 * required on most controllers.
600511e8 2909 *
a6d5a51c
TH
2910 * LOCKING:
2911 * None.
a6d5a51c 2912 */
acf356b1 2913static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
1da177e4 2914{
5444a6f4 2915 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2916 unsigned long xfer_mask;
2917 int i;
1da177e4 2918
565083e1
TH
2919 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2920 ap->mwdma_mask, ap->udma_mask);
2921
2922 /* Apply cable rule here. Don't apply it early because when
2923 * we handle hot plug the cable type can itself change.
2924 */
2925 if (ap->cbl == ATA_CBL_PATA40)
2926 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 2927
5444a6f4 2928 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2929 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2930 struct ata_device *d = &ap->device[i];
565083e1
TH
2931
2932 if (ata_dev_absent(d))
2933 continue;
2934
2935 if (ata_dev_disabled(d)) {
2936 /* to avoid violating device selection timing */
2937 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2938 UINT_MAX, UINT_MAX);
a6d5a51c 2939 continue;
565083e1
TH
2940 }
2941
2942 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2943 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
2944 xfer_mask &= ata_id_xfermask(d->id);
2945 if (ata_dma_blacklisted(d))
2946 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
2947 }
2948
a6d5a51c
TH
2949 if (ata_dma_blacklisted(dev))
2950 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2951 "disabling DMA\n", ap->id, dev->devno);
2952
5444a6f4
AC
2953 if (hs->flags & ATA_HOST_SIMPLEX) {
2954 if (hs->simplex_claimed)
2955 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2956 }
565083e1 2957
5444a6f4
AC
2958 if (ap->ops->mode_filter)
2959 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2960
565083e1
TH
2961 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2962 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
2963}
2964
1da177e4
LT
2965/**
2966 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2967 * @ap: Port associated with device @dev
2968 * @dev: Device to which command will be sent
2969 *
780a87f7
JG
2970 * Issue SET FEATURES - XFER MODE command to device @dev
2971 * on port @ap.
2972 *
1da177e4 2973 * LOCKING:
0cba632b 2974 * PCI/etc. bus probe sem.
83206a29
TH
2975 *
2976 * RETURNS:
2977 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
2978 */
2979
83206a29
TH
2980static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2981 struct ata_device *dev)
1da177e4 2982{
a0123703 2983 struct ata_taskfile tf;
83206a29 2984 unsigned int err_mask;
1da177e4
LT
2985
2986 /* set up set-features taskfile */
2987 DPRINTK("set features - xfer mode\n");
2988
a0123703
TH
2989 ata_tf_init(ap, &tf, dev->devno);
2990 tf.command = ATA_CMD_SET_FEATURES;
2991 tf.feature = SETFEATURES_XFER;
2992 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2993 tf.protocol = ATA_PROT_NODATA;
2994 tf.nsect = dev->xfer_mode;
1da177e4 2995
d69cf37d 2996 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 2997
83206a29
TH
2998 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2999 return err_mask;
1da177e4
LT
3000}
3001
8bf62ece
AL
3002/**
3003 * ata_dev_init_params - Issue INIT DEV PARAMS command
3004 * @ap: Port associated with device @dev
3005 * @dev: Device to which command will be sent
3006 *
3007 * LOCKING:
6aff8f1f
TH
3008 * Kernel thread context (may sleep)
3009 *
3010 * RETURNS:
3011 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece
AL
3012 */
3013
6aff8f1f 3014static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
3015 struct ata_device *dev,
3016 u16 heads,
3017 u16 sectors)
8bf62ece 3018{
a0123703 3019 struct ata_taskfile tf;
6aff8f1f 3020 unsigned int err_mask;
8bf62ece
AL
3021
3022 /* Number of sectors per track 1-255. Number of heads 1-16 */
3023 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3024 return AC_ERR_INVALID;
8bf62ece
AL
3025
3026 /* set up init dev params taskfile */
3027 DPRINTK("init dev params \n");
3028
a0123703
TH
3029 ata_tf_init(ap, &tf, dev->devno);
3030 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3031 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3032 tf.protocol = ATA_PROT_NODATA;
3033 tf.nsect = sectors;
3034 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3035
d69cf37d 3036 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3037
6aff8f1f
TH
3038 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3039 return err_mask;
8bf62ece
AL
3040}
3041
1da177e4 3042/**
0cba632b
JG
3043 * ata_sg_clean - Unmap DMA memory associated with command
3044 * @qc: Command containing DMA memory to be released
3045 *
3046 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3047 *
3048 * LOCKING:
0cba632b 3049 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3050 */
3051
3052static void ata_sg_clean(struct ata_queued_cmd *qc)
3053{
3054 struct ata_port *ap = qc->ap;
cedc9a47 3055 struct scatterlist *sg = qc->__sg;
1da177e4 3056 int dir = qc->dma_dir;
cedc9a47 3057 void *pad_buf = NULL;
1da177e4 3058
a4631474
TH
3059 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3060 WARN_ON(sg == NULL);
1da177e4
LT
3061
3062 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3063 WARN_ON(qc->n_elem > 1);
1da177e4 3064
2c13b7ce 3065 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3066
cedc9a47
JG
3067 /* if we padded the buffer out to 32-bit bound, and data
3068 * xfer direction is from-device, we must copy from the
3069 * pad buffer back into the supplied buffer
3070 */
3071 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3072 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3073
3074 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3075 if (qc->n_elem)
2f1f610b 3076 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3077 /* restore last sg */
3078 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3079 if (pad_buf) {
3080 struct scatterlist *psg = &qc->pad_sgent;
3081 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3082 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3083 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3084 }
3085 } else {
2e242fa9 3086 if (qc->n_elem)
2f1f610b 3087 dma_unmap_single(ap->dev,
e1410f2d
JG
3088 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3089 dir);
cedc9a47
JG
3090 /* restore sg */
3091 sg->length += qc->pad_len;
3092 if (pad_buf)
3093 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3094 pad_buf, qc->pad_len);
3095 }
1da177e4
LT
3096
3097 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3098 qc->__sg = NULL;
1da177e4
LT
3099}
3100
3101/**
3102 * ata_fill_sg - Fill PCI IDE PRD table
3103 * @qc: Metadata associated with taskfile to be transferred
3104 *
780a87f7
JG
3105 * Fill PCI IDE PRD (scatter-gather) table with segments
3106 * associated with the current disk command.
3107 *
1da177e4 3108 * LOCKING:
780a87f7 3109 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3110 *
3111 */
3112static void ata_fill_sg(struct ata_queued_cmd *qc)
3113{
1da177e4 3114 struct ata_port *ap = qc->ap;
cedc9a47
JG
3115 struct scatterlist *sg;
3116 unsigned int idx;
1da177e4 3117
a4631474 3118 WARN_ON(qc->__sg == NULL);
f131883e 3119 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3120
3121 idx = 0;
cedc9a47 3122 ata_for_each_sg(sg, qc) {
1da177e4
LT
3123 u32 addr, offset;
3124 u32 sg_len, len;
3125
3126 /* determine if physical DMA addr spans 64K boundary.
3127 * Note h/w doesn't support 64-bit, so we unconditionally
3128 * truncate dma_addr_t to u32.
3129 */
3130 addr = (u32) sg_dma_address(sg);
3131 sg_len = sg_dma_len(sg);
3132
3133 while (sg_len) {
3134 offset = addr & 0xffff;
3135 len = sg_len;
3136 if ((offset + sg_len) > 0x10000)
3137 len = 0x10000 - offset;
3138
3139 ap->prd[idx].addr = cpu_to_le32(addr);
3140 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3141 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3142
3143 idx++;
3144 sg_len -= len;
3145 addr += len;
3146 }
3147 }
3148
3149 if (idx)
3150 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3151}
3152/**
3153 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3154 * @qc: Metadata associated with taskfile to check
3155 *
780a87f7
JG
3156 * Allow low-level driver to filter ATA PACKET commands, returning
3157 * a status indicating whether or not it is OK to use DMA for the
3158 * supplied PACKET command.
3159 *
1da177e4 3160 * LOCKING:
0cba632b
JG
3161 * spin_lock_irqsave(host_set lock)
3162 *
1da177e4
LT
3163 * RETURNS: 0 when ATAPI DMA can be used
3164 * nonzero otherwise
3165 */
3166int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3167{
3168 struct ata_port *ap = qc->ap;
3169 int rc = 0; /* Assume ATAPI DMA is OK by default */
3170
3171 if (ap->ops->check_atapi_dma)
3172 rc = ap->ops->check_atapi_dma(qc);
3173
3174 return rc;
3175}
3176/**
3177 * ata_qc_prep - Prepare taskfile for submission
3178 * @qc: Metadata associated with taskfile to be prepared
3179 *
780a87f7
JG
3180 * Prepare ATA taskfile for submission.
3181 *
1da177e4
LT
3182 * LOCKING:
3183 * spin_lock_irqsave(host_set lock)
3184 */
3185void ata_qc_prep(struct ata_queued_cmd *qc)
3186{
3187 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3188 return;
3189
3190 ata_fill_sg(qc);
3191}
3192
e46834cd
BK
3193void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3194
0cba632b
JG
3195/**
3196 * ata_sg_init_one - Associate command with memory buffer
3197 * @qc: Command to be associated
3198 * @buf: Memory buffer
3199 * @buflen: Length of memory buffer, in bytes.
3200 *
3201 * Initialize the data-related elements of queued_cmd @qc
3202 * to point to a single memory buffer, @buf of byte length @buflen.
3203 *
3204 * LOCKING:
3205 * spin_lock_irqsave(host_set lock)
3206 */
3207
1da177e4
LT
3208void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3209{
3210 struct scatterlist *sg;
3211
3212 qc->flags |= ATA_QCFLAG_SINGLE;
3213
3214 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3215 qc->__sg = &qc->sgent;
1da177e4 3216 qc->n_elem = 1;
cedc9a47 3217 qc->orig_n_elem = 1;
1da177e4
LT
3218 qc->buf_virt = buf;
3219
cedc9a47 3220 sg = qc->__sg;
f0612bbc 3221 sg_init_one(sg, buf, buflen);
1da177e4
LT
3222}
3223
0cba632b
JG
3224/**
3225 * ata_sg_init - Associate command with scatter-gather table.
3226 * @qc: Command to be associated
3227 * @sg: Scatter-gather table.
3228 * @n_elem: Number of elements in s/g table.
3229 *
3230 * Initialize the data-related elements of queued_cmd @qc
3231 * to point to a scatter-gather table @sg, containing @n_elem
3232 * elements.
3233 *
3234 * LOCKING:
3235 * spin_lock_irqsave(host_set lock)
3236 */
3237
1da177e4
LT
3238void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3239 unsigned int n_elem)
3240{
3241 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3242 qc->__sg = sg;
1da177e4 3243 qc->n_elem = n_elem;
cedc9a47 3244 qc->orig_n_elem = n_elem;
1da177e4
LT
3245}
3246
3247/**
0cba632b
JG
3248 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3249 * @qc: Command with memory buffer to be mapped.
3250 *
3251 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3252 *
3253 * LOCKING:
3254 * spin_lock_irqsave(host_set lock)
3255 *
3256 * RETURNS:
0cba632b 3257 * Zero on success, negative on error.
1da177e4
LT
3258 */
3259
3260static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3261{
3262 struct ata_port *ap = qc->ap;
3263 int dir = qc->dma_dir;
cedc9a47 3264 struct scatterlist *sg = qc->__sg;
1da177e4 3265 dma_addr_t dma_address;
2e242fa9 3266 int trim_sg = 0;
1da177e4 3267
cedc9a47
JG
3268 /* we must lengthen transfers to end on a 32-bit boundary */
3269 qc->pad_len = sg->length & 3;
3270 if (qc->pad_len) {
3271 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3272 struct scatterlist *psg = &qc->pad_sgent;
3273
a4631474 3274 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3275
3276 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3277
3278 if (qc->tf.flags & ATA_TFLAG_WRITE)
3279 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3280 qc->pad_len);
3281
3282 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3283 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3284 /* trim sg */
3285 sg->length -= qc->pad_len;
2e242fa9
TH
3286 if (sg->length == 0)
3287 trim_sg = 1;
cedc9a47
JG
3288
3289 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3290 sg->length, qc->pad_len);
3291 }
3292
2e242fa9
TH
3293 if (trim_sg) {
3294 qc->n_elem--;
e1410f2d
JG
3295 goto skip_map;
3296 }
3297
2f1f610b 3298 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3299 sg->length, dir);
537a95d9
TH
3300 if (dma_mapping_error(dma_address)) {
3301 /* restore sg */
3302 sg->length += qc->pad_len;
1da177e4 3303 return -1;
537a95d9 3304 }
1da177e4
LT
3305
3306 sg_dma_address(sg) = dma_address;
32529e01 3307 sg_dma_len(sg) = sg->length;
1da177e4 3308
2e242fa9 3309skip_map:
1da177e4
LT
3310 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3311 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3312
3313 return 0;
3314}
3315
3316/**
0cba632b
JG
3317 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3318 * @qc: Command with scatter-gather table to be mapped.
3319 *
3320 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3321 *
3322 * LOCKING:
3323 * spin_lock_irqsave(host_set lock)
3324 *
3325 * RETURNS:
0cba632b 3326 * Zero on success, negative on error.
1da177e4
LT
3327 *
3328 */
3329
3330static int ata_sg_setup(struct ata_queued_cmd *qc)
3331{
3332 struct ata_port *ap = qc->ap;
cedc9a47
JG
3333 struct scatterlist *sg = qc->__sg;
3334 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3335 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3336
3337 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3338 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3339
cedc9a47
JG
3340 /* we must lengthen transfers to end on a 32-bit boundary */
3341 qc->pad_len = lsg->length & 3;
3342 if (qc->pad_len) {
3343 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3344 struct scatterlist *psg = &qc->pad_sgent;
3345 unsigned int offset;
3346
a4631474 3347 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3348
3349 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3350
3351 /*
3352 * psg->page/offset are used to copy to-be-written
3353 * data in this function or read data in ata_sg_clean.
3354 */
3355 offset = lsg->offset + lsg->length - qc->pad_len;
3356 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3357 psg->offset = offset_in_page(offset);
3358
3359 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3360 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3361 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3362 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3363 }
3364
3365 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3366 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3367 /* trim last sg */
3368 lsg->length -= qc->pad_len;
e1410f2d
JG
3369 if (lsg->length == 0)
3370 trim_sg = 1;
cedc9a47
JG
3371
3372 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3373 qc->n_elem - 1, lsg->length, qc->pad_len);
3374 }
3375
e1410f2d
JG
3376 pre_n_elem = qc->n_elem;
3377 if (trim_sg && pre_n_elem)
3378 pre_n_elem--;
3379
3380 if (!pre_n_elem) {
3381 n_elem = 0;
3382 goto skip_map;
3383 }
3384
1da177e4 3385 dir = qc->dma_dir;
2f1f610b 3386 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3387 if (n_elem < 1) {
3388 /* restore last sg */
3389 lsg->length += qc->pad_len;
1da177e4 3390 return -1;
537a95d9 3391 }
1da177e4
LT
3392
3393 DPRINTK("%d sg elements mapped\n", n_elem);
3394
e1410f2d 3395skip_map:
1da177e4
LT
3396 qc->n_elem = n_elem;
3397
3398 return 0;
3399}
3400
40e8c82c
TH
3401/**
3402 * ata_poll_qc_complete - turn irq back on and finish qc
3403 * @qc: Command to complete
8e8b77dd 3404 * @err_mask: ATA status register content
40e8c82c
TH
3405 *
3406 * LOCKING:
3407 * None. (grabs host lock)
3408 */
3409
a22e2eb0 3410void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3411{
3412 struct ata_port *ap = qc->ap;
b8f6153e 3413 unsigned long flags;
40e8c82c 3414
b8f6153e 3415 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
3416 ap->flags &= ~ATA_FLAG_NOINTR;
3417 ata_irq_on(ap);
a22e2eb0 3418 ata_qc_complete(qc);
b8f6153e 3419 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3420}
3421
1da177e4 3422/**
c893a3ae 3423 * ata_pio_poll - poll using PIO, depending on current state
c91af2c8 3424 * @qc: qc in progress
1da177e4
LT
3425 *
3426 * LOCKING:
0cba632b 3427 * None. (executing in kernel thread context)
1da177e4
LT
3428 *
3429 * RETURNS:
6f0ef4fa 3430 * timeout value to use
1da177e4 3431 */
c91af2c8 3432static unsigned long ata_pio_poll(struct ata_queued_cmd *qc)
1da177e4 3433{
c91af2c8 3434 struct ata_port *ap = qc->ap;
1da177e4 3435 u8 status;
14be71f4
AL
3436 unsigned int poll_state = HSM_ST_UNKNOWN;
3437 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4
AL
3438
3439 switch (ap->hsm_task_state) {
3440 case HSM_ST:
3441 case HSM_ST_POLL:
3442 poll_state = HSM_ST_POLL;
3443 reg_state = HSM_ST;
1da177e4 3444 break;
14be71f4
AL
3445 case HSM_ST_LAST:
3446 case HSM_ST_LAST_POLL:
3447 poll_state = HSM_ST_LAST_POLL;
3448 reg_state = HSM_ST_LAST;
1da177e4
LT
3449 break;
3450 default:
3451 BUG();
3452 break;
3453 }
3454
3455 status = ata_chk_status(ap);
3456 if (status & ATA_BUSY) {
3457 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3458 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3459 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3460 return 0;
3461 }
14be71f4 3462 ap->hsm_task_state = poll_state;
1da177e4
LT
3463 return ATA_SHORT_PAUSE;
3464 }
3465
14be71f4 3466 ap->hsm_task_state = reg_state;
1da177e4
LT
3467 return 0;
3468}
3469
3470/**
6f0ef4fa 3471 * ata_pio_complete - check if drive is busy or idle
c91af2c8 3472 * @qc: qc to complete
1da177e4
LT
3473 *
3474 * LOCKING:
0cba632b 3475 * None. (executing in kernel thread context)
7fb6ec28
JG
3476 *
3477 * RETURNS:
3478 * Non-zero if qc completed, zero otherwise.
1da177e4 3479 */
c91af2c8 3480static int ata_pio_complete(struct ata_queued_cmd *qc)
1da177e4 3481{
c91af2c8 3482 struct ata_port *ap = qc->ap;
1da177e4
LT
3483 u8 drv_stat;
3484
3485 /*
31433ea3
AC
3486 * This is purely heuristic. This is a fast path. Sometimes when
3487 * we enter, BSY will be cleared in a chk-status or two. If not,
3488 * the drive is probably seeking or something. Snooze for a couple
3489 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3490 * HSM_ST_POLL state.
1da177e4 3491 */
fe79e683
AL
3492 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3493 if (drv_stat & ATA_BUSY) {
1da177e4 3494 msleep(2);
fe79e683
AL
3495 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3496 if (drv_stat & ATA_BUSY) {
14be71f4 3497 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3498 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3499 return 0;
1da177e4
LT
3500 }
3501 }
3502
3503 drv_stat = ata_wait_idle(ap);
3504 if (!ata_ok(drv_stat)) {
1c848984 3505 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3506 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3507 return 0;
1da177e4
LT
3508 }
3509
14be71f4 3510 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3511
a4631474 3512 WARN_ON(qc->err_mask);
a22e2eb0 3513 ata_poll_qc_complete(qc);
7fb6ec28
JG
3514
3515 /* another command may start at this point */
3516
3517 return 1;
1da177e4
LT
3518}
3519
0baab86b
EF
3520
3521/**
c893a3ae 3522 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3523 * @buf: Buffer to swap
3524 * @buf_words: Number of 16-bit words in buffer.
3525 *
3526 * Swap halves of 16-bit words if needed to convert from
3527 * little-endian byte order to native cpu byte order, or
3528 * vice-versa.
3529 *
3530 * LOCKING:
6f0ef4fa 3531 * Inherited from caller.
0baab86b 3532 */
1da177e4
LT
3533void swap_buf_le16(u16 *buf, unsigned int buf_words)
3534{
3535#ifdef __BIG_ENDIAN
3536 unsigned int i;
3537
3538 for (i = 0; i < buf_words; i++)
3539 buf[i] = le16_to_cpu(buf[i]);
3540#endif /* __BIG_ENDIAN */
3541}
3542
6ae4cfb5
AL
3543/**
3544 * ata_mmio_data_xfer - Transfer data by MMIO
3545 * @ap: port to read/write
3546 * @buf: data buffer
3547 * @buflen: buffer length
344babaa 3548 * @write_data: read/write
6ae4cfb5
AL
3549 *
3550 * Transfer data from/to the device data register by MMIO.
3551 *
3552 * LOCKING:
3553 * Inherited from caller.
6ae4cfb5
AL
3554 */
3555
1da177e4
LT
3556static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3557 unsigned int buflen, int write_data)
3558{
3559 unsigned int i;
3560 unsigned int words = buflen >> 1;
3561 u16 *buf16 = (u16 *) buf;
3562 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3563
6ae4cfb5 3564 /* Transfer multiple of 2 bytes */
1da177e4
LT
3565 if (write_data) {
3566 for (i = 0; i < words; i++)
3567 writew(le16_to_cpu(buf16[i]), mmio);
3568 } else {
3569 for (i = 0; i < words; i++)
3570 buf16[i] = cpu_to_le16(readw(mmio));
3571 }
6ae4cfb5
AL
3572
3573 /* Transfer trailing 1 byte, if any. */
3574 if (unlikely(buflen & 0x01)) {
3575 u16 align_buf[1] = { 0 };
3576 unsigned char *trailing_buf = buf + buflen - 1;
3577
3578 if (write_data) {
3579 memcpy(align_buf, trailing_buf, 1);
3580 writew(le16_to_cpu(align_buf[0]), mmio);
3581 } else {
3582 align_buf[0] = cpu_to_le16(readw(mmio));
3583 memcpy(trailing_buf, align_buf, 1);
3584 }
3585 }
1da177e4
LT
3586}
3587
6ae4cfb5
AL
3588/**
3589 * ata_pio_data_xfer - Transfer data by PIO
3590 * @ap: port to read/write
3591 * @buf: data buffer
3592 * @buflen: buffer length
344babaa 3593 * @write_data: read/write
6ae4cfb5
AL
3594 *
3595 * Transfer data from/to the device data register by PIO.
3596 *
3597 * LOCKING:
3598 * Inherited from caller.
6ae4cfb5
AL
3599 */
3600
1da177e4
LT
3601static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3602 unsigned int buflen, int write_data)
3603{
6ae4cfb5 3604 unsigned int words = buflen >> 1;
1da177e4 3605
6ae4cfb5 3606 /* Transfer multiple of 2 bytes */
1da177e4 3607 if (write_data)
6ae4cfb5 3608 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3609 else
6ae4cfb5
AL
3610 insw(ap->ioaddr.data_addr, buf, words);
3611
3612 /* Transfer trailing 1 byte, if any. */
3613 if (unlikely(buflen & 0x01)) {
3614 u16 align_buf[1] = { 0 };
3615 unsigned char *trailing_buf = buf + buflen - 1;
3616
3617 if (write_data) {
3618 memcpy(align_buf, trailing_buf, 1);
3619 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3620 } else {
3621 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3622 memcpy(trailing_buf, align_buf, 1);
3623 }
3624 }
1da177e4
LT
3625}
3626
6ae4cfb5
AL
3627/**
3628 * ata_data_xfer - Transfer data from/to the data register.
3629 * @ap: port to read/write
3630 * @buf: data buffer
3631 * @buflen: buffer length
3632 * @do_write: read/write
3633 *
3634 * Transfer data from/to the device data register.
3635 *
3636 * LOCKING:
3637 * Inherited from caller.
6ae4cfb5
AL
3638 */
3639
1da177e4
LT
3640static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3641 unsigned int buflen, int do_write)
3642{
a1bd9e68
AC
3643 /* Make the crap hardware pay the costs not the good stuff */
3644 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3645 unsigned long flags;
3646 local_irq_save(flags);
3647 if (ap->flags & ATA_FLAG_MMIO)
3648 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3649 else
3650 ata_pio_data_xfer(ap, buf, buflen, do_write);
3651 local_irq_restore(flags);
3652 } else {
3653 if (ap->flags & ATA_FLAG_MMIO)
3654 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3655 else
3656 ata_pio_data_xfer(ap, buf, buflen, do_write);
3657 }
1da177e4
LT
3658}
3659
6ae4cfb5
AL
3660/**
3661 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3662 * @qc: Command on going
3663 *
3664 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3665 *
3666 * LOCKING:
3667 * Inherited from caller.
3668 */
3669
1da177e4
LT
3670static void ata_pio_sector(struct ata_queued_cmd *qc)
3671{
3672 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3673 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3674 struct ata_port *ap = qc->ap;
3675 struct page *page;
3676 unsigned int offset;
3677 unsigned char *buf;
3678
3679 if (qc->cursect == (qc->nsect - 1))
14be71f4 3680 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3681
3682 page = sg[qc->cursg].page;
3683 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3684
3685 /* get the current page and offset */
3686 page = nth_page(page, (offset >> PAGE_SHIFT));
3687 offset %= PAGE_SIZE;
3688
3689 buf = kmap(page) + offset;
3690
3691 qc->cursect++;
3692 qc->cursg_ofs++;
3693
32529e01 3694 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3695 qc->cursg++;
3696 qc->cursg_ofs = 0;
3697 }
3698
3699 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3700
3701 /* do the actual data transfer */
3702 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3703 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3704
3705 kunmap(page);
3706}
3707
6ae4cfb5
AL
3708/**
3709 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3710 * @qc: Command on going
3711 * @bytes: number of bytes
3712 *
3713 * Transfer Transfer data from/to the ATAPI device.
3714 *
3715 * LOCKING:
3716 * Inherited from caller.
3717 *
3718 */
3719
1da177e4
LT
3720static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3721{
3722 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3723 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3724 struct ata_port *ap = qc->ap;
3725 struct page *page;
3726 unsigned char *buf;
3727 unsigned int offset, count;
3728
563a6e1f 3729 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3730 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3731
3732next_sg:
563a6e1f 3733 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3734 /*
563a6e1f
AL
3735 * The end of qc->sg is reached and the device expects
3736 * more data to transfer. In order not to overrun qc->sg
3737 * and fulfill length specified in the byte count register,
3738 * - for read case, discard trailing data from the device
3739 * - for write case, padding zero data to the device
3740 */
3741 u16 pad_buf[1] = { 0 };
3742 unsigned int words = bytes >> 1;
3743 unsigned int i;
3744
3745 if (words) /* warning if bytes > 1 */
7fb6ec28 3746 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3747 ap->id, bytes);
3748
3749 for (i = 0; i < words; i++)
3750 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3751
14be71f4 3752 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3753 return;
3754 }
3755
cedc9a47 3756 sg = &qc->__sg[qc->cursg];
1da177e4 3757
1da177e4
LT
3758 page = sg->page;
3759 offset = sg->offset + qc->cursg_ofs;
3760
3761 /* get the current page and offset */
3762 page = nth_page(page, (offset >> PAGE_SHIFT));
3763 offset %= PAGE_SIZE;
3764
6952df03 3765 /* don't overrun current sg */
32529e01 3766 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3767
3768 /* don't cross page boundaries */
3769 count = min(count, (unsigned int)PAGE_SIZE - offset);
3770
3771 buf = kmap(page) + offset;
3772
3773 bytes -= count;
3774 qc->curbytes += count;
3775 qc->cursg_ofs += count;
3776
32529e01 3777 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3778 qc->cursg++;
3779 qc->cursg_ofs = 0;
3780 }
3781
3782 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3783
3784 /* do the actual data transfer */
3785 ata_data_xfer(ap, buf, count, do_write);
3786
3787 kunmap(page);
3788
563a6e1f 3789 if (bytes)
1da177e4 3790 goto next_sg;
1da177e4
LT
3791}
3792
6ae4cfb5
AL
3793/**
3794 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3795 * @qc: Command on going
3796 *
3797 * Transfer Transfer data from/to the ATAPI device.
3798 *
3799 * LOCKING:
3800 * Inherited from caller.
6ae4cfb5
AL
3801 */
3802
1da177e4
LT
3803static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3804{
3805 struct ata_port *ap = qc->ap;
3806 struct ata_device *dev = qc->dev;
3807 unsigned int ireason, bc_lo, bc_hi, bytes;
3808 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3809
3810 ap->ops->tf_read(ap, &qc->tf);
3811 ireason = qc->tf.nsect;
3812 bc_lo = qc->tf.lbam;
3813 bc_hi = qc->tf.lbah;
3814 bytes = (bc_hi << 8) | bc_lo;
3815
3816 /* shall be cleared to zero, indicating xfer of data */
3817 if (ireason & (1 << 0))
3818 goto err_out;
3819
3820 /* make sure transfer direction matches expected */
3821 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3822 if (do_write != i_write)
3823 goto err_out;
3824
3825 __atapi_pio_bytes(qc, bytes);
3826
3827 return;
3828
3829err_out:
3830 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3831 ap->id, dev->devno);
11a56d24 3832 qc->err_mask |= AC_ERR_HSM;
14be71f4 3833 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3834}
3835
3836/**
6f0ef4fa 3837 * ata_pio_block - start PIO on a block
c91af2c8 3838 * @qc: qc to transfer block for
1da177e4
LT
3839 *
3840 * LOCKING:
0cba632b 3841 * None. (executing in kernel thread context)
1da177e4 3842 */
c91af2c8 3843static void ata_pio_block(struct ata_queued_cmd *qc)
1da177e4 3844{
c91af2c8 3845 struct ata_port *ap = qc->ap;
1da177e4
LT
3846 u8 status;
3847
3848 /*
6f0ef4fa 3849 * This is purely heuristic. This is a fast path.
1da177e4
LT
3850 * Sometimes when we enter, BSY will be cleared in
3851 * a chk-status or two. If not, the drive is probably seeking
3852 * or something. Snooze for a couple msecs, then
3853 * chk-status again. If still busy, fall back to
14be71f4 3854 * HSM_ST_POLL state.
1da177e4
LT
3855 */
3856 status = ata_busy_wait(ap, ATA_BUSY, 5);
3857 if (status & ATA_BUSY) {
3858 msleep(2);
3859 status = ata_busy_wait(ap, ATA_BUSY, 10);
3860 if (status & ATA_BUSY) {
14be71f4 3861 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3862 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3863 return;
3864 }
3865 }
3866
fe79e683
AL
3867 /* check error */
3868 if (status & (ATA_ERR | ATA_DF)) {
3869 qc->err_mask |= AC_ERR_DEV;
3870 ap->hsm_task_state = HSM_ST_ERR;
3871 return;
3872 }
3873
3874 /* transfer data if any */
1da177e4 3875 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3876 /* DRQ=0 means no more data to transfer */
1da177e4 3877 if ((status & ATA_DRQ) == 0) {
14be71f4 3878 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3879 return;
3880 }
3881
3882 atapi_pio_bytes(qc);
3883 } else {
3884 /* handle BSY=0, DRQ=0 as error */
3885 if ((status & ATA_DRQ) == 0) {
11a56d24 3886 qc->err_mask |= AC_ERR_HSM;
14be71f4 3887 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3888 return;
3889 }
3890
3891 ata_pio_sector(qc);
3892 }
3893}
3894
c91af2c8 3895static void ata_pio_error(struct ata_queued_cmd *qc)
1da177e4 3896{
c91af2c8 3897 struct ata_port *ap = qc->ap;
1da177e4 3898
0565c26d 3899 if (qc->tf.command != ATA_CMD_PACKET)
d63cb4a6
TH
3900 printk(KERN_WARNING "ata%u: dev %u PIO error\n",
3901 ap->id, qc->dev->devno);
0565c26d 3902
2e9edbf8 3903 /* make sure qc->err_mask is available to
1c848984
AL
3904 * know what's wrong and recover
3905 */
a4631474 3906 WARN_ON(qc->err_mask == 0);
1c848984 3907
14be71f4 3908 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3909
a22e2eb0 3910 ata_poll_qc_complete(qc);
1da177e4
LT
3911}
3912
3913static void ata_pio_task(void *_data)
3914{
c91af2c8
TH
3915 struct ata_queued_cmd *qc = _data;
3916 struct ata_port *ap = qc->ap;
7fb6ec28
JG
3917 unsigned long timeout;
3918 int qc_completed;
3919
3920fsm_start:
3921 timeout = 0;
3922 qc_completed = 0;
1da177e4 3923
14be71f4
AL
3924 switch (ap->hsm_task_state) {
3925 case HSM_ST_IDLE:
1da177e4
LT
3926 return;
3927
14be71f4 3928 case HSM_ST:
c91af2c8 3929 ata_pio_block(qc);
1da177e4
LT
3930 break;
3931
14be71f4 3932 case HSM_ST_LAST:
c91af2c8 3933 qc_completed = ata_pio_complete(qc);
1da177e4
LT
3934 break;
3935
14be71f4
AL
3936 case HSM_ST_POLL:
3937 case HSM_ST_LAST_POLL:
c91af2c8 3938 timeout = ata_pio_poll(qc);
1da177e4
LT
3939 break;
3940
14be71f4
AL
3941 case HSM_ST_TMOUT:
3942 case HSM_ST_ERR:
c91af2c8 3943 ata_pio_error(qc);
1da177e4
LT
3944 return;
3945 }
3946
3947 if (timeout)
c91af2c8 3948 ata_port_queue_task(ap, ata_pio_task, qc, timeout);
7fb6ec28
JG
3949 else if (!qc_completed)
3950 goto fsm_start;
1da177e4
LT
3951}
3952
8061f5f0
TH
3953/**
3954 * atapi_packet_task - Write CDB bytes to hardware
c91af2c8 3955 * @_data: qc in progress
8061f5f0
TH
3956 *
3957 * When device has indicated its readiness to accept
3958 * a CDB, this function is called. Send the CDB.
3959 * If DMA is to be performed, exit immediately.
3960 * Otherwise, we are in polling mode, so poll
3961 * status under operation succeeds or fails.
3962 *
3963 * LOCKING:
3964 * Kernel thread context (may sleep)
3965 */
8061f5f0
TH
3966static void atapi_packet_task(void *_data)
3967{
c91af2c8
TH
3968 struct ata_queued_cmd *qc = _data;
3969 struct ata_port *ap = qc->ap;
8061f5f0
TH
3970 u8 status;
3971
8061f5f0
TH
3972 /* sleep-wait for BSY to clear */
3973 DPRINTK("busy wait\n");
3974 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3975 qc->err_mask |= AC_ERR_TIMEOUT;
3976 goto err_out;
3977 }
3978
3979 /* make sure DRQ is set */
3980 status = ata_chk_status(ap);
3981 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3982 qc->err_mask |= AC_ERR_HSM;
3983 goto err_out;
3984 }
3985
3986 /* send SCSI cdb */
3987 DPRINTK("send cdb\n");
3988 WARN_ON(qc->dev->cdb_len < 12);
3989
3990 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3991 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3992 unsigned long flags;
3993
3994 /* Once we're done issuing command and kicking bmdma,
3995 * irq handler takes over. To not lose irq, we need
3996 * to clear NOINTR flag before sending cdb, but
3997 * interrupt handler shouldn't be invoked before we're
3998 * finished. Hence, the following locking.
3999 */
4000 spin_lock_irqsave(&ap->host_set->lock, flags);
4001 ap->flags &= ~ATA_FLAG_NOINTR;
4002 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4003 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4004 ap->ops->bmdma_start(qc); /* initiate bmdma */
4005 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4006 } else {
4007 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4008
4009 /* PIO commands are handled by polling */
4010 ap->hsm_task_state = HSM_ST;
c91af2c8 4011 ata_port_queue_task(ap, ata_pio_task, qc, 0);
8061f5f0
TH
4012 }
4013
4014 return;
4015
4016err_out:
4017 ata_poll_qc_complete(qc);
4018}
4019
1da177e4
LT
4020/**
4021 * ata_qc_new - Request an available ATA command, for queueing
4022 * @ap: Port associated with device @dev
4023 * @dev: Device from whom we request an available command structure
4024 *
4025 * LOCKING:
0cba632b 4026 * None.
1da177e4
LT
4027 */
4028
4029static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4030{
4031 struct ata_queued_cmd *qc = NULL;
4032 unsigned int i;
4033
4034 for (i = 0; i < ATA_MAX_QUEUE; i++)
4035 if (!test_and_set_bit(i, &ap->qactive)) {
4036 qc = ata_qc_from_tag(ap, i);
4037 break;
4038 }
4039
4040 if (qc)
4041 qc->tag = i;
4042
4043 return qc;
4044}
4045
4046/**
4047 * ata_qc_new_init - Request an available ATA command, and initialize it
4048 * @ap: Port associated with device @dev
4049 * @dev: Device from whom we request an available command structure
4050 *
4051 * LOCKING:
0cba632b 4052 * None.
1da177e4
LT
4053 */
4054
4055struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4056 struct ata_device *dev)
4057{
4058 struct ata_queued_cmd *qc;
4059
4060 qc = ata_qc_new(ap);
4061 if (qc) {
1da177e4
LT
4062 qc->scsicmd = NULL;
4063 qc->ap = ap;
4064 qc->dev = dev;
1da177e4 4065
2c13b7ce 4066 ata_qc_reinit(qc);
1da177e4
LT
4067 }
4068
4069 return qc;
4070}
4071
1da177e4
LT
4072/**
4073 * ata_qc_free - free unused ata_queued_cmd
4074 * @qc: Command to complete
4075 *
4076 * Designed to free unused ata_queued_cmd object
4077 * in case something prevents using it.
4078 *
4079 * LOCKING:
0cba632b 4080 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4081 */
4082void ata_qc_free(struct ata_queued_cmd *qc)
4083{
4ba946e9
TH
4084 struct ata_port *ap = qc->ap;
4085 unsigned int tag;
4086
a4631474 4087 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4088
4ba946e9
TH
4089 qc->flags = 0;
4090 tag = qc->tag;
4091 if (likely(ata_tag_valid(tag))) {
4092 if (tag == ap->active_tag)
4093 ap->active_tag = ATA_TAG_POISON;
4094 qc->tag = ATA_TAG_POISON;
4095 clear_bit(tag, &ap->qactive);
4096 }
1da177e4
LT
4097}
4098
76014427 4099void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4100{
a4631474
TH
4101 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4102 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4103
4104 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4105 ata_sg_clean(qc);
4106
3f3791d3
AL
4107 /* atapi: mark qc as inactive to prevent the interrupt handler
4108 * from completing the command twice later, before the error handler
4109 * is called. (when rc != 0 and atapi request sense is needed)
4110 */
4111 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4112
1da177e4 4113 /* call completion callback */
77853bf2 4114 qc->complete_fn(qc);
1da177e4
LT
4115}
4116
4117static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4118{
4119 struct ata_port *ap = qc->ap;
4120
4121 switch (qc->tf.protocol) {
4122 case ATA_PROT_DMA:
4123 case ATA_PROT_ATAPI_DMA:
4124 return 1;
4125
4126 case ATA_PROT_ATAPI:
4127 case ATA_PROT_PIO:
1da177e4
LT
4128 if (ap->flags & ATA_FLAG_PIO_DMA)
4129 return 1;
4130
4131 /* fall through */
4132
4133 default:
4134 return 0;
4135 }
4136
4137 /* never reached */
4138}
4139
4140/**
4141 * ata_qc_issue - issue taskfile to device
4142 * @qc: command to issue to device
4143 *
4144 * Prepare an ATA command to submission to device.
4145 * This includes mapping the data into a DMA-able
4146 * area, filling in the S/G table, and finally
4147 * writing the taskfile to hardware, starting the command.
4148 *
4149 * LOCKING:
4150 * spin_lock_irqsave(host_set lock)
1da177e4 4151 */
8e0e694a 4152void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4153{
4154 struct ata_port *ap = qc->ap;
4155
e4a70e76
TH
4156 qc->ap->active_tag = qc->tag;
4157 qc->flags |= ATA_QCFLAG_ACTIVE;
4158
1da177e4
LT
4159 if (ata_should_dma_map(qc)) {
4160 if (qc->flags & ATA_QCFLAG_SG) {
4161 if (ata_sg_setup(qc))
8e436af9 4162 goto sg_err;
1da177e4
LT
4163 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4164 if (ata_sg_setup_one(qc))
8e436af9 4165 goto sg_err;
1da177e4
LT
4166 }
4167 } else {
4168 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4169 }
4170
4171 ap->ops->qc_prep(qc);
4172
8e0e694a
TH
4173 qc->err_mask |= ap->ops->qc_issue(qc);
4174 if (unlikely(qc->err_mask))
4175 goto err;
4176 return;
1da177e4 4177
8e436af9
TH
4178sg_err:
4179 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4180 qc->err_mask |= AC_ERR_SYSTEM;
4181err:
4182 ata_qc_complete(qc);
1da177e4
LT
4183}
4184
4185/**
4186 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4187 * @qc: command to issue to device
4188 *
4189 * Using various libata functions and hooks, this function
4190 * starts an ATA command. ATA commands are grouped into
4191 * classes called "protocols", and issuing each type of protocol
4192 * is slightly different.
4193 *
0baab86b
EF
4194 * May be used as the qc_issue() entry in ata_port_operations.
4195 *
1da177e4
LT
4196 * LOCKING:
4197 * spin_lock_irqsave(host_set lock)
4198 *
4199 * RETURNS:
9a3d9eb0 4200 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4201 */
4202
9a3d9eb0 4203unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4204{
4205 struct ata_port *ap = qc->ap;
4206
4207 ata_dev_select(ap, qc->dev->devno, 1, 0);
4208
4209 switch (qc->tf.protocol) {
4210 case ATA_PROT_NODATA:
e5338254 4211 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
4212 break;
4213
4214 case ATA_PROT_DMA:
4215 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4216 ap->ops->bmdma_setup(qc); /* set up bmdma */
4217 ap->ops->bmdma_start(qc); /* initiate bmdma */
4218 break;
4219
4220 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4221 ata_qc_set_polling(qc);
e5338254 4222 ata_tf_to_host(ap, &qc->tf);
14be71f4 4223 ap->hsm_task_state = HSM_ST;
c91af2c8 4224 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4225 break;
4226
4227 case ATA_PROT_ATAPI:
4228 ata_qc_set_polling(qc);
e5338254 4229 ata_tf_to_host(ap, &qc->tf);
c91af2c8 4230 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4231 break;
4232
4233 case ATA_PROT_ATAPI_NODATA:
c1389503 4234 ap->flags |= ATA_FLAG_NOINTR;
e5338254 4235 ata_tf_to_host(ap, &qc->tf);
c91af2c8 4236 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4237 break;
4238
4239 case ATA_PROT_ATAPI_DMA:
c1389503 4240 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
4241 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4242 ap->ops->bmdma_setup(qc); /* set up bmdma */
c91af2c8 4243 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4244 break;
4245
4246 default:
4247 WARN_ON(1);
9a3d9eb0 4248 return AC_ERR_SYSTEM;
1da177e4
LT
4249 }
4250
4251 return 0;
4252}
4253
1da177e4
LT
4254/**
4255 * ata_host_intr - Handle host interrupt for given (port, task)
4256 * @ap: Port on which interrupt arrived (possibly...)
4257 * @qc: Taskfile currently active in engine
4258 *
4259 * Handle host interrupt for given queued command. Currently,
4260 * only DMA interrupts are handled. All other commands are
4261 * handled via polling with interrupts disabled (nIEN bit).
4262 *
4263 * LOCKING:
4264 * spin_lock_irqsave(host_set lock)
4265 *
4266 * RETURNS:
4267 * One if interrupt was handled, zero if not (shared irq).
4268 */
4269
4270inline unsigned int ata_host_intr (struct ata_port *ap,
4271 struct ata_queued_cmd *qc)
4272{
4273 u8 status, host_stat;
4274
4275 switch (qc->tf.protocol) {
4276
4277 case ATA_PROT_DMA:
4278 case ATA_PROT_ATAPI_DMA:
4279 case ATA_PROT_ATAPI:
4280 /* check status of DMA engine */
4281 host_stat = ap->ops->bmdma_status(ap);
4282 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4283
4284 /* if it's not our irq... */
4285 if (!(host_stat & ATA_DMA_INTR))
4286 goto idle_irq;
4287
4288 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4289 ap->ops->bmdma_stop(qc);
1da177e4
LT
4290
4291 /* fall through */
4292
4293 case ATA_PROT_ATAPI_NODATA:
4294 case ATA_PROT_NODATA:
4295 /* check altstatus */
4296 status = ata_altstatus(ap);
4297 if (status & ATA_BUSY)
4298 goto idle_irq;
4299
4300 /* check main status, clearing INTRQ */
4301 status = ata_chk_status(ap);
4302 if (unlikely(status & ATA_BUSY))
4303 goto idle_irq;
4304 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4305 ap->id, qc->tf.protocol, status);
4306
4307 /* ack bmdma irq events */
4308 ap->ops->irq_clear(ap);
4309
4310 /* complete taskfile transaction */
a22e2eb0
AL
4311 qc->err_mask |= ac_err_mask(status);
4312 ata_qc_complete(qc);
1da177e4
LT
4313 break;
4314
4315 default:
4316 goto idle_irq;
4317 }
4318
4319 return 1; /* irq handled */
4320
4321idle_irq:
4322 ap->stats.idle_irq++;
4323
4324#ifdef ATA_IRQ_TRAP
4325 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4
LT
4326 ata_irq_ack(ap, 0); /* debug trap */
4327 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
23cfce89 4328 return 1;
1da177e4
LT
4329 }
4330#endif
4331 return 0; /* irq not handled */
4332}
4333
4334/**
4335 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4336 * @irq: irq line (unused)
4337 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4338 * @regs: unused
4339 *
0cba632b
JG
4340 * Default interrupt handler for PCI IDE devices. Calls
4341 * ata_host_intr() for each port that is not disabled.
4342 *
1da177e4 4343 * LOCKING:
0cba632b 4344 * Obtains host_set lock during operation.
1da177e4
LT
4345 *
4346 * RETURNS:
0cba632b 4347 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4348 */
4349
4350irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4351{
4352 struct ata_host_set *host_set = dev_instance;
4353 unsigned int i;
4354 unsigned int handled = 0;
4355 unsigned long flags;
4356
4357 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4358 spin_lock_irqsave(&host_set->lock, flags);
4359
4360 for (i = 0; i < host_set->n_ports; i++) {
4361 struct ata_port *ap;
4362
4363 ap = host_set->ports[i];
c1389503 4364 if (ap &&
198e0fed 4365 !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4366 struct ata_queued_cmd *qc;
4367
4368 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4369 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4370 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4371 handled |= ata_host_intr(ap, qc);
4372 }
4373 }
4374
4375 spin_unlock_irqrestore(&host_set->lock, flags);
4376
4377 return IRQ_RETVAL(handled);
4378}
4379
0baab86b 4380
9b847548
JA
4381/*
4382 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4383 * without filling any other registers
4384 */
4385static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4386 u8 cmd)
4387{
4388 struct ata_taskfile tf;
4389 int err;
4390
4391 ata_tf_init(ap, &tf, dev->devno);
4392
4393 tf.command = cmd;
4394 tf.flags |= ATA_TFLAG_DEVICE;
4395 tf.protocol = ATA_PROT_NODATA;
4396
d69cf37d 4397 err = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
9b847548
JA
4398 if (err)
4399 printk(KERN_ERR "%s: ata command failed: %d\n",
4400 __FUNCTION__, err);
4401
4402 return err;
4403}
4404
4405static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4406{
4407 u8 cmd;
4408
4409 if (!ata_try_flush_cache(dev))
4410 return 0;
4411
4412 if (ata_id_has_flush_ext(dev->id))
4413 cmd = ATA_CMD_FLUSH_EXT;
4414 else
4415 cmd = ATA_CMD_FLUSH;
4416
4417 return ata_do_simple_cmd(ap, dev, cmd);
4418}
4419
4420static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4421{
4422 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4423}
4424
4425static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4426{
4427 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4428}
4429
4430/**
4431 * ata_device_resume - wakeup a previously suspended devices
c893a3ae
RD
4432 * @ap: port the device is connected to
4433 * @dev: the device to resume
9b847548
JA
4434 *
4435 * Kick the drive back into action, by sending it an idle immediate
4436 * command and making sure its transfer mode matches between drive
4437 * and host.
4438 *
4439 */
4440int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4441{
4442 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 4443 struct ata_device *failed_dev;
9b847548 4444 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9
TH
4445 while (ata_set_mode(ap, &failed_dev))
4446 ata_dev_disable(ap, failed_dev);
9b847548 4447 }
e1211e3f 4448 if (!ata_dev_enabled(dev))
9b847548
JA
4449 return 0;
4450 if (dev->class == ATA_DEV_ATA)
4451 ata_start_drive(ap, dev);
4452
4453 return 0;
4454}
4455
4456/**
4457 * ata_device_suspend - prepare a device for suspend
c893a3ae
RD
4458 * @ap: port the device is connected to
4459 * @dev: the device to suspend
9b847548
JA
4460 *
4461 * Flush the cache on the drive, if appropriate, then issue a
4462 * standbynow command.
9b847548 4463 */
082776e4 4464int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
9b847548 4465{
e1211e3f 4466 if (!ata_dev_enabled(dev))
9b847548
JA
4467 return 0;
4468 if (dev->class == ATA_DEV_ATA)
4469 ata_flush_cache(ap, dev);
4470
082776e4
NC
4471 if (state.event != PM_EVENT_FREEZE)
4472 ata_standby_drive(ap, dev);
9b847548
JA
4473 ap->flags |= ATA_FLAG_SUSPENDED;
4474 return 0;
4475}
4476
c893a3ae
RD
4477/**
4478 * ata_port_start - Set port up for dma.
4479 * @ap: Port to initialize
4480 *
4481 * Called just after data structures for each port are
4482 * initialized. Allocates space for PRD table.
4483 *
4484 * May be used as the port_start() entry in ata_port_operations.
4485 *
4486 * LOCKING:
4487 * Inherited from caller.
4488 */
4489
1da177e4
LT
4490int ata_port_start (struct ata_port *ap)
4491{
2f1f610b 4492 struct device *dev = ap->dev;
6037d6bb 4493 int rc;
1da177e4
LT
4494
4495 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4496 if (!ap->prd)
4497 return -ENOMEM;
4498
6037d6bb
JG
4499 rc = ata_pad_alloc(ap, dev);
4500 if (rc) {
cedc9a47 4501 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4502 return rc;
cedc9a47
JG
4503 }
4504
1da177e4
LT
4505 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4506
4507 return 0;
4508}
4509
0baab86b
EF
4510
4511/**
4512 * ata_port_stop - Undo ata_port_start()
4513 * @ap: Port to shut down
4514 *
4515 * Frees the PRD table.
4516 *
4517 * May be used as the port_stop() entry in ata_port_operations.
4518 *
4519 * LOCKING:
6f0ef4fa 4520 * Inherited from caller.
0baab86b
EF
4521 */
4522
1da177e4
LT
4523void ata_port_stop (struct ata_port *ap)
4524{
2f1f610b 4525 struct device *dev = ap->dev;
1da177e4
LT
4526
4527 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4528 ata_pad_free(ap, dev);
1da177e4
LT
4529}
4530
aa8f0dc6
JG
4531void ata_host_stop (struct ata_host_set *host_set)
4532{
4533 if (host_set->mmio_base)
4534 iounmap(host_set->mmio_base);
4535}
4536
4537
1da177e4
LT
4538/**
4539 * ata_host_remove - Unregister SCSI host structure with upper layers
4540 * @ap: Port to unregister
4541 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4542 *
4543 * LOCKING:
6f0ef4fa 4544 * Inherited from caller.
1da177e4
LT
4545 */
4546
4547static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4548{
4549 struct Scsi_Host *sh = ap->host;
4550
4551 DPRINTK("ENTER\n");
4552
4553 if (do_unregister)
4554 scsi_remove_host(sh);
4555
4556 ap->ops->port_stop(ap);
4557}
4558
4559/**
4560 * ata_host_init - Initialize an ata_port structure
4561 * @ap: Structure to initialize
4562 * @host: associated SCSI mid-layer structure
4563 * @host_set: Collection of hosts to which @ap belongs
4564 * @ent: Probe information provided by low-level driver
4565 * @port_no: Port number associated with this ata_port
4566 *
0cba632b
JG
4567 * Initialize a new ata_port structure, and its associated
4568 * scsi_host.
4569 *
1da177e4 4570 * LOCKING:
0cba632b 4571 * Inherited from caller.
1da177e4
LT
4572 */
4573
4574static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4575 struct ata_host_set *host_set,
057ace5e 4576 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4577{
4578 unsigned int i;
4579
4580 host->max_id = 16;
4581 host->max_lun = 1;
4582 host->max_channel = 1;
4583 host->unique_id = ata_unique_id++;
4584 host->max_cmd_len = 12;
12413197 4585
198e0fed 4586 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
4587 ap->id = host->unique_id;
4588 ap->host = host;
4589 ap->ctl = ATA_DEVCTL_OBS;
4590 ap->host_set = host_set;
2f1f610b 4591 ap->dev = ent->dev;
1da177e4
LT
4592 ap->port_no = port_no;
4593 ap->hard_port_no =
4594 ent->legacy_mode ? ent->hard_port_no : port_no;
4595 ap->pio_mask = ent->pio_mask;
4596 ap->mwdma_mask = ent->mwdma_mask;
4597 ap->udma_mask = ent->udma_mask;
4598 ap->flags |= ent->host_flags;
4599 ap->ops = ent->port_ops;
4600 ap->cbl = ATA_CBL_NONE;
1c3fae4d 4601 ap->sata_spd_limit = UINT_MAX;
1da177e4
LT
4602 ap->active_tag = ATA_TAG_POISON;
4603 ap->last_ctl = 0xFF;
4604
86e45b6b 4605 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4606 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 4607
acf356b1
TH
4608 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4609 struct ata_device *dev = &ap->device[i];
4610 dev->devno = i;
4611 dev->pio_mask = UINT_MAX;
4612 dev->mwdma_mask = UINT_MAX;
4613 dev->udma_mask = UINT_MAX;
4614 }
1da177e4
LT
4615
4616#ifdef ATA_IRQ_TRAP
4617 ap->stats.unhandled_irq = 1;
4618 ap->stats.idle_irq = 1;
4619#endif
4620
4621 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4622}
4623
4624/**
4625 * ata_host_add - Attach low-level ATA driver to system
4626 * @ent: Information provided by low-level driver
4627 * @host_set: Collections of ports to which we add
4628 * @port_no: Port number associated with this host
4629 *
0cba632b
JG
4630 * Attach low-level ATA driver to system.
4631 *
1da177e4 4632 * LOCKING:
0cba632b 4633 * PCI/etc. bus probe sem.
1da177e4
LT
4634 *
4635 * RETURNS:
0cba632b 4636 * New ata_port on success, for NULL on error.
1da177e4
LT
4637 */
4638
057ace5e 4639static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4640 struct ata_host_set *host_set,
4641 unsigned int port_no)
4642{
4643 struct Scsi_Host *host;
4644 struct ata_port *ap;
4645 int rc;
4646
4647 DPRINTK("ENTER\n");
aec5c3c1
TH
4648
4649 if (!ent->port_ops->probe_reset &&
4650 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4651 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4652 port_no);
4653 return NULL;
4654 }
4655
1da177e4
LT
4656 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4657 if (!host)
4658 return NULL;
4659
30afc84c
TH
4660 host->transportt = &ata_scsi_transport_template;
4661
35bb94b1 4662 ap = ata_shost_to_port(host);
1da177e4
LT
4663
4664 ata_host_init(ap, host, host_set, ent, port_no);
4665
4666 rc = ap->ops->port_start(ap);
4667 if (rc)
4668 goto err_out;
4669
4670 return ap;
4671
4672err_out:
4673 scsi_host_put(host);
4674 return NULL;
4675}
4676
4677/**
0cba632b
JG
4678 * ata_device_add - Register hardware device with ATA and SCSI layers
4679 * @ent: Probe information describing hardware device to be registered
4680 *
4681 * This function processes the information provided in the probe
4682 * information struct @ent, allocates the necessary ATA and SCSI
4683 * host information structures, initializes them, and registers
4684 * everything with requisite kernel subsystems.
4685 *
4686 * This function requests irqs, probes the ATA bus, and probes
4687 * the SCSI bus.
1da177e4
LT
4688 *
4689 * LOCKING:
0cba632b 4690 * PCI/etc. bus probe sem.
1da177e4
LT
4691 *
4692 * RETURNS:
0cba632b 4693 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4694 */
4695
057ace5e 4696int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4697{
4698 unsigned int count = 0, i;
4699 struct device *dev = ent->dev;
4700 struct ata_host_set *host_set;
4701
4702 DPRINTK("ENTER\n");
4703 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4704 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4705 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4706 if (!host_set)
4707 return 0;
1da177e4
LT
4708 spin_lock_init(&host_set->lock);
4709
4710 host_set->dev = dev;
4711 host_set->n_ports = ent->n_ports;
4712 host_set->irq = ent->irq;
4713 host_set->mmio_base = ent->mmio_base;
4714 host_set->private_data = ent->private_data;
4715 host_set->ops = ent->port_ops;
5444a6f4 4716 host_set->flags = ent->host_set_flags;
1da177e4
LT
4717
4718 /* register each port bound to this device */
4719 for (i = 0; i < ent->n_ports; i++) {
4720 struct ata_port *ap;
4721 unsigned long xfer_mode_mask;
4722
4723 ap = ata_host_add(ent, host_set, i);
4724 if (!ap)
4725 goto err_out;
4726
4727 host_set->ports[i] = ap;
4728 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4729 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4730 (ap->pio_mask << ATA_SHIFT_PIO);
4731
4732 /* print per-port info to dmesg */
4733 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4734 "bmdma 0x%lX irq %lu\n",
4735 ap->id,
4736 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4737 ata_mode_string(xfer_mode_mask),
4738 ap->ioaddr.cmd_addr,
4739 ap->ioaddr.ctl_addr,
4740 ap->ioaddr.bmdma_addr,
4741 ent->irq);
4742
4743 ata_chk_status(ap);
4744 host_set->ops->irq_clear(ap);
4745 count++;
4746 }
4747
57f3bda8
RD
4748 if (!count)
4749 goto err_free_ret;
1da177e4
LT
4750
4751 /* obtain irq, that is shared between channels */
4752 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4753 DRV_NAME, host_set))
4754 goto err_out;
4755
4756 /* perform each probe synchronously */
4757 DPRINTK("probe begin\n");
4758 for (i = 0; i < count; i++) {
4759 struct ata_port *ap;
4760 int rc;
4761
4762 ap = host_set->ports[i];
4763
c893a3ae 4764 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4765 rc = ata_bus_probe(ap);
c893a3ae 4766 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4767
4768 if (rc) {
4769 /* FIXME: do something useful here?
4770 * Current libata behavior will
4771 * tear down everything when
4772 * the module is removed
4773 * or the h/w is unplugged.
4774 */
4775 }
4776
4777 rc = scsi_add_host(ap->host, dev);
4778 if (rc) {
4779 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4780 ap->id);
4781 /* FIXME: do something useful here */
4782 /* FIXME: handle unconditional calls to
4783 * scsi_scan_host and ata_host_remove, below,
4784 * at the very least
4785 */
4786 }
4787 }
4788
4789 /* probes are done, now scan each port's disk(s) */
c893a3ae 4790 DPRINTK("host probe begin\n");
1da177e4
LT
4791 for (i = 0; i < count; i++) {
4792 struct ata_port *ap = host_set->ports[i];
4793
644dd0cc 4794 ata_scsi_scan_host(ap);
1da177e4
LT
4795 }
4796
4797 dev_set_drvdata(dev, host_set);
4798
4799 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4800 return ent->n_ports; /* success */
4801
4802err_out:
4803 for (i = 0; i < count; i++) {
4804 ata_host_remove(host_set->ports[i], 1);
4805 scsi_host_put(host_set->ports[i]->host);
4806 }
57f3bda8 4807err_free_ret:
1da177e4
LT
4808 kfree(host_set);
4809 VPRINTK("EXIT, returning 0\n");
4810 return 0;
4811}
4812
17b14451
AC
4813/**
4814 * ata_host_set_remove - PCI layer callback for device removal
4815 * @host_set: ATA host set that was removed
4816 *
2e9edbf8 4817 * Unregister all objects associated with this host set. Free those
17b14451
AC
4818 * objects.
4819 *
4820 * LOCKING:
4821 * Inherited from calling layer (may sleep).
4822 */
4823
17b14451
AC
4824void ata_host_set_remove(struct ata_host_set *host_set)
4825{
4826 struct ata_port *ap;
4827 unsigned int i;
4828
4829 for (i = 0; i < host_set->n_ports; i++) {
4830 ap = host_set->ports[i];
4831 scsi_remove_host(ap->host);
4832 }
4833
4834 free_irq(host_set->irq, host_set);
4835
4836 for (i = 0; i < host_set->n_ports; i++) {
4837 ap = host_set->ports[i];
4838
4839 ata_scsi_release(ap->host);
4840
4841 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4842 struct ata_ioports *ioaddr = &ap->ioaddr;
4843
4844 if (ioaddr->cmd_addr == 0x1f0)
4845 release_region(0x1f0, 8);
4846 else if (ioaddr->cmd_addr == 0x170)
4847 release_region(0x170, 8);
4848 }
4849
4850 scsi_host_put(ap->host);
4851 }
4852
4853 if (host_set->ops->host_stop)
4854 host_set->ops->host_stop(host_set);
4855
4856 kfree(host_set);
4857}
4858
1da177e4
LT
4859/**
4860 * ata_scsi_release - SCSI layer callback hook for host unload
4861 * @host: libata host to be unloaded
4862 *
4863 * Performs all duties necessary to shut down a libata port...
4864 * Kill port kthread, disable port, and release resources.
4865 *
4866 * LOCKING:
4867 * Inherited from SCSI layer.
4868 *
4869 * RETURNS:
4870 * One.
4871 */
4872
4873int ata_scsi_release(struct Scsi_Host *host)
4874{
35bb94b1 4875 struct ata_port *ap = ata_shost_to_port(host);
d9572b1d 4876 int i;
1da177e4
LT
4877
4878 DPRINTK("ENTER\n");
4879
4880 ap->ops->port_disable(ap);
4881 ata_host_remove(ap, 0);
d9572b1d
TH
4882 for (i = 0; i < ATA_MAX_DEVICES; i++)
4883 kfree(ap->device[i].id);
1da177e4
LT
4884
4885 DPRINTK("EXIT\n");
4886 return 1;
4887}
4888
4889/**
4890 * ata_std_ports - initialize ioaddr with standard port offsets.
4891 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4892 *
4893 * Utility function which initializes data_addr, error_addr,
4894 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4895 * device_addr, status_addr, and command_addr to standard offsets
4896 * relative to cmd_addr.
4897 *
4898 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4899 */
0baab86b 4900
1da177e4
LT
4901void ata_std_ports(struct ata_ioports *ioaddr)
4902{
4903 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4904 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4905 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4906 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4907 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4908 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4909 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4910 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4911 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4912 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4913}
4914
0baab86b 4915
374b1873
JG
4916#ifdef CONFIG_PCI
4917
4918void ata_pci_host_stop (struct ata_host_set *host_set)
4919{
4920 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4921
4922 pci_iounmap(pdev, host_set->mmio_base);
4923}
4924
1da177e4
LT
4925/**
4926 * ata_pci_remove_one - PCI layer callback for device removal
4927 * @pdev: PCI device that was removed
4928 *
4929 * PCI layer indicates to libata via this hook that
6f0ef4fa 4930 * hot-unplug or module unload event has occurred.
1da177e4
LT
4931 * Handle this by unregistering all objects associated
4932 * with this PCI device. Free those objects. Then finally
4933 * release PCI resources and disable device.
4934 *
4935 * LOCKING:
4936 * Inherited from PCI layer (may sleep).
4937 */
4938
4939void ata_pci_remove_one (struct pci_dev *pdev)
4940{
4941 struct device *dev = pci_dev_to_dev(pdev);
4942 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4943
17b14451 4944 ata_host_set_remove(host_set);
1da177e4
LT
4945 pci_release_regions(pdev);
4946 pci_disable_device(pdev);
4947 dev_set_drvdata(dev, NULL);
4948}
4949
4950/* move to PCI subsystem */
057ace5e 4951int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4952{
4953 unsigned long tmp = 0;
4954
4955 switch (bits->width) {
4956 case 1: {
4957 u8 tmp8 = 0;
4958 pci_read_config_byte(pdev, bits->reg, &tmp8);
4959 tmp = tmp8;
4960 break;
4961 }
4962 case 2: {
4963 u16 tmp16 = 0;
4964 pci_read_config_word(pdev, bits->reg, &tmp16);
4965 tmp = tmp16;
4966 break;
4967 }
4968 case 4: {
4969 u32 tmp32 = 0;
4970 pci_read_config_dword(pdev, bits->reg, &tmp32);
4971 tmp = tmp32;
4972 break;
4973 }
4974
4975 default:
4976 return -EINVAL;
4977 }
4978
4979 tmp &= bits->mask;
4980
4981 return (tmp == bits->val) ? 1 : 0;
4982}
9b847548
JA
4983
4984int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4985{
4986 pci_save_state(pdev);
4987 pci_disable_device(pdev);
4988 pci_set_power_state(pdev, PCI_D3hot);
4989 return 0;
4990}
4991
4992int ata_pci_device_resume(struct pci_dev *pdev)
4993{
4994 pci_set_power_state(pdev, PCI_D0);
4995 pci_restore_state(pdev);
4996 pci_enable_device(pdev);
4997 pci_set_master(pdev);
4998 return 0;
4999}
1da177e4
LT
5000#endif /* CONFIG_PCI */
5001
5002
1da177e4
LT
5003static int __init ata_init(void)
5004{
5005 ata_wq = create_workqueue("ata");
5006 if (!ata_wq)
5007 return -ENOMEM;
5008
5009 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5010 return 0;
5011}
5012
5013static void __exit ata_exit(void)
5014{
5015 destroy_workqueue(ata_wq);
5016}
5017
5018module_init(ata_init);
5019module_exit(ata_exit);
5020
67846b30
JG
5021static unsigned long ratelimit_time;
5022static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5023
5024int ata_ratelimit(void)
5025{
5026 int rc;
5027 unsigned long flags;
5028
5029 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5030
5031 if (time_after(jiffies, ratelimit_time)) {
5032 rc = 1;
5033 ratelimit_time = jiffies + (HZ/5);
5034 } else
5035 rc = 0;
5036
5037 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5038
5039 return rc;
5040}
5041
1da177e4
LT
5042/*
5043 * libata is essentially a library of internal helper functions for
5044 * low-level ATA host controller drivers. As such, the API/ABI is
5045 * likely to change as new drivers are added and updated.
5046 * Do not depend on ABI/API stability.
5047 */
5048
5049EXPORT_SYMBOL_GPL(ata_std_bios_param);
5050EXPORT_SYMBOL_GPL(ata_std_ports);
5051EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5052EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5053EXPORT_SYMBOL_GPL(ata_sg_init);
5054EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 5055EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4 5056EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5057EXPORT_SYMBOL_GPL(ata_tf_load);
5058EXPORT_SYMBOL_GPL(ata_tf_read);
5059EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5060EXPORT_SYMBOL_GPL(ata_std_dev_select);
5061EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5062EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5063EXPORT_SYMBOL_GPL(ata_check_status);
5064EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5065EXPORT_SYMBOL_GPL(ata_exec_command);
5066EXPORT_SYMBOL_GPL(ata_port_start);
5067EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5068EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5069EXPORT_SYMBOL_GPL(ata_interrupt);
5070EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5071EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5072EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5073EXPORT_SYMBOL_GPL(ata_bmdma_start);
5074EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5075EXPORT_SYMBOL_GPL(ata_bmdma_status);
5076EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5077EXPORT_SYMBOL_GPL(ata_port_probe);
5078EXPORT_SYMBOL_GPL(sata_phy_reset);
5079EXPORT_SYMBOL_GPL(__sata_phy_reset);
5080EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5081EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
5082EXPORT_SYMBOL_GPL(ata_std_softreset);
5083EXPORT_SYMBOL_GPL(sata_std_hardreset);
5084EXPORT_SYMBOL_GPL(ata_std_postreset);
5085EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5086EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5087EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5088EXPORT_SYMBOL_GPL(ata_dev_classify);
5089EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5090EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5091EXPORT_SYMBOL_GPL(ata_ratelimit);
6f8b9958 5092EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5093EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5094EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5095EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4
LT
5096EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5097EXPORT_SYMBOL_GPL(ata_scsi_release);
5098EXPORT_SYMBOL_GPL(ata_host_intr);
6a62a04d
TH
5099EXPORT_SYMBOL_GPL(ata_id_string);
5100EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5101EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5102
1bc4ccff 5103EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5104EXPORT_SYMBOL_GPL(ata_timing_compute);
5105EXPORT_SYMBOL_GPL(ata_timing_merge);
5106
1da177e4
LT
5107#ifdef CONFIG_PCI
5108EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5109EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5110EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5111EXPORT_SYMBOL_GPL(ata_pci_init_one);
5112EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5113EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5114EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5115EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5116EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5117#endif /* CONFIG_PCI */
9b847548
JA
5118
5119EXPORT_SYMBOL_GPL(ata_device_suspend);
5120EXPORT_SYMBOL_GPL(ata_device_resume);
5121EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5122EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636
TH
5123
5124EXPORT_SYMBOL_GPL(ata_scsi_error);
5125EXPORT_SYMBOL_GPL(ata_eng_timeout);
5126EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5127EXPORT_SYMBOL_GPL(ata_eh_qc_retry);