]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/scsi/libata-core.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-focal-kernel.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
6aff8f1f 64static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
1da177e4 68static void ata_set_mode(struct ata_port *ap);
83206a29
TH
69static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
70 struct ata_device *dev);
acf356b1 71static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
72
73static unsigned int ata_unique_id = 1;
74static struct workqueue_struct *ata_wq;
75
418dc1f5 76int atapi_enabled = 1;
1623c81e
JG
77module_param(atapi_enabled, int, 0444);
78MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
79
c3c013a2
JG
80int libata_fua = 0;
81module_param_named(fua, libata_fua, int, 0444);
82MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
1da177e4
LT
84MODULE_AUTHOR("Jeff Garzik");
85MODULE_DESCRIPTION("Library module for ATA devices");
86MODULE_LICENSE("GPL");
87MODULE_VERSION(DRV_VERSION);
88
0baab86b 89
1da177e4
LT
90/**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
057ace5e 103void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
104{
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130}
131
132/**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
e12a1be6 137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
057ace5e 143void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
144{
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159}
160
8cbd6df1
AL
161static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 0,
8cbd6df1
AL
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
9a3dccc4
TH
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 189};
1da177e4
LT
190
191/**
8cbd6df1
AL
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
1da177e4 194 *
2e9edbf8 195 * Examine the device configuration and tf->flags to calculate
8cbd6df1 196 * the proper read/write commands and protocol to use.
1da177e4
LT
197 *
198 * LOCKING:
199 * caller.
200 */
9a3dccc4 201int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 202{
8cbd6df1
AL
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
9a3dccc4 205 u8 cmd;
1da177e4 206
9a3dccc4 207 int index, fua, lba48, write;
2e9edbf8 208
9a3dccc4 209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 212
8cbd6df1
AL
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
9a3dccc4 215 index = dev->multi_count ? 0 : 8;
8d238e01
AC
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
0565c26d 219 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
220 } else {
221 tf->protocol = ATA_PROT_DMA;
9a3dccc4 222 index = 16;
8cbd6df1 223 }
1da177e4 224
9a3dccc4
TH
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
1da177e4
LT
231}
232
cb95d562
TH
233/**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251{
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255}
256
c0489e4e
TH
257/**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271{
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278}
279
cb95d562 280static const struct ata_xfer_ent {
be9a50c8 281 int shift, bits;
cb95d562
TH
282 u8 base;
283} ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288};
289
290/**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304{
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312}
313
314/**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327{
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334}
335
336/**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348static int ata_xfer_mode2shift(unsigned int xfer_mode)
349{
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356}
357
1da177e4 358/**
1da7b0d0
TH
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
361 *
362 * Determine string which represents the highest speed
1da7b0d0 363 * (highest bit in @modemask).
1da177e4
LT
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
1da7b0d0 370 * @mode_mask, or the constant C string "<n/a>".
1da177e4 371 */
1da7b0d0 372static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 373{
75f554bc
TH
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
1da7b0d0 392 int highbit;
1da177e4 393
1da7b0d0
TH
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
1da177e4 397 return "<n/a>";
1da177e4
LT
398}
399
0b8efb0a
TH
400static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
401{
402 if (ata_dev_present(dev)) {
403 printk(KERN_WARNING "ata%u: dev %u disabled\n",
404 ap->id, dev->devno);
405 dev->class++;
406 }
407}
408
1da177e4
LT
409/**
410 * ata_pio_devchk - PATA device presence detection
411 * @ap: ATA channel to examine
412 * @device: Device to examine (starting at zero)
413 *
414 * This technique was originally described in
415 * Hale Landis's ATADRVR (www.ata-atapi.com), and
416 * later found its way into the ATA/ATAPI spec.
417 *
418 * Write a pattern to the ATA shadow registers,
419 * and if a device is present, it will respond by
420 * correctly storing and echoing back the
421 * ATA shadow register contents.
422 *
423 * LOCKING:
424 * caller.
425 */
426
427static unsigned int ata_pio_devchk(struct ata_port *ap,
428 unsigned int device)
429{
430 struct ata_ioports *ioaddr = &ap->ioaddr;
431 u8 nsect, lbal;
432
433 ap->ops->dev_select(ap, device);
434
435 outb(0x55, ioaddr->nsect_addr);
436 outb(0xaa, ioaddr->lbal_addr);
437
438 outb(0xaa, ioaddr->nsect_addr);
439 outb(0x55, ioaddr->lbal_addr);
440
441 outb(0x55, ioaddr->nsect_addr);
442 outb(0xaa, ioaddr->lbal_addr);
443
444 nsect = inb(ioaddr->nsect_addr);
445 lbal = inb(ioaddr->lbal_addr);
446
447 if ((nsect == 0x55) && (lbal == 0xaa))
448 return 1; /* we found a device */
449
450 return 0; /* nothing found */
451}
452
453/**
454 * ata_mmio_devchk - PATA device presence detection
455 * @ap: ATA channel to examine
456 * @device: Device to examine (starting at zero)
457 *
458 * This technique was originally described in
459 * Hale Landis's ATADRVR (www.ata-atapi.com), and
460 * later found its way into the ATA/ATAPI spec.
461 *
462 * Write a pattern to the ATA shadow registers,
463 * and if a device is present, it will respond by
464 * correctly storing and echoing back the
465 * ATA shadow register contents.
466 *
467 * LOCKING:
468 * caller.
469 */
470
471static unsigned int ata_mmio_devchk(struct ata_port *ap,
472 unsigned int device)
473{
474 struct ata_ioports *ioaddr = &ap->ioaddr;
475 u8 nsect, lbal;
476
477 ap->ops->dev_select(ap, device);
478
479 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
480 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
481
482 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
483 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
484
485 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
486 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
487
488 nsect = readb((void __iomem *) ioaddr->nsect_addr);
489 lbal = readb((void __iomem *) ioaddr->lbal_addr);
490
491 if ((nsect == 0x55) && (lbal == 0xaa))
492 return 1; /* we found a device */
493
494 return 0; /* nothing found */
495}
496
497/**
498 * ata_devchk - PATA device presence detection
499 * @ap: ATA channel to examine
500 * @device: Device to examine (starting at zero)
501 *
502 * Dispatch ATA device presence detection, depending
503 * on whether we are using PIO or MMIO to talk to the
504 * ATA shadow registers.
505 *
506 * LOCKING:
507 * caller.
508 */
509
510static unsigned int ata_devchk(struct ata_port *ap,
511 unsigned int device)
512{
513 if (ap->flags & ATA_FLAG_MMIO)
514 return ata_mmio_devchk(ap, device);
515 return ata_pio_devchk(ap, device);
516}
517
518/**
519 * ata_dev_classify - determine device type based on ATA-spec signature
520 * @tf: ATA taskfile register set for device to be identified
521 *
522 * Determine from taskfile register contents whether a device is
523 * ATA or ATAPI, as per "Signature and persistence" section
524 * of ATA/PI spec (volume 1, sect 5.14).
525 *
526 * LOCKING:
527 * None.
528 *
529 * RETURNS:
530 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
531 * the event of failure.
532 */
533
057ace5e 534unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
535{
536 /* Apple's open source Darwin code hints that some devices only
537 * put a proper signature into the LBA mid/high registers,
538 * So, we only check those. It's sufficient for uniqueness.
539 */
540
541 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
542 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
543 DPRINTK("found ATA device by sig\n");
544 return ATA_DEV_ATA;
545 }
546
547 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
548 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
549 DPRINTK("found ATAPI device by sig\n");
550 return ATA_DEV_ATAPI;
551 }
552
553 DPRINTK("unknown device\n");
554 return ATA_DEV_UNKNOWN;
555}
556
557/**
558 * ata_dev_try_classify - Parse returned ATA device signature
559 * @ap: ATA channel to examine
560 * @device: Device to examine (starting at zero)
b4dc7623 561 * @r_err: Value of error register on completion
1da177e4
LT
562 *
563 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
564 * an ATA/ATAPI-defined set of values is placed in the ATA
565 * shadow registers, indicating the results of device detection
566 * and diagnostics.
567 *
568 * Select the ATA device, and read the values from the ATA shadow
569 * registers. Then parse according to the Error register value,
570 * and the spec-defined values examined by ata_dev_classify().
571 *
572 * LOCKING:
573 * caller.
b4dc7623
TH
574 *
575 * RETURNS:
576 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
577 */
578
b4dc7623
TH
579static unsigned int
580ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 581{
1da177e4
LT
582 struct ata_taskfile tf;
583 unsigned int class;
584 u8 err;
585
586 ap->ops->dev_select(ap, device);
587
588 memset(&tf, 0, sizeof(tf));
589
1da177e4 590 ap->ops->tf_read(ap, &tf);
0169e284 591 err = tf.feature;
b4dc7623
TH
592 if (r_err)
593 *r_err = err;
1da177e4
LT
594
595 /* see if device passed diags */
596 if (err == 1)
597 /* do nothing */ ;
598 else if ((device == 0) && (err == 0x81))
599 /* do nothing */ ;
600 else
b4dc7623 601 return ATA_DEV_NONE;
1da177e4 602
b4dc7623 603 /* determine if device is ATA or ATAPI */
1da177e4 604 class = ata_dev_classify(&tf);
b4dc7623 605
1da177e4 606 if (class == ATA_DEV_UNKNOWN)
b4dc7623 607 return ATA_DEV_NONE;
1da177e4 608 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
609 return ATA_DEV_NONE;
610 return class;
1da177e4
LT
611}
612
613/**
6a62a04d 614 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
615 * @id: IDENTIFY DEVICE results we will examine
616 * @s: string into which data is output
617 * @ofs: offset into identify device page
618 * @len: length of string to return. must be an even number.
619 *
620 * The strings in the IDENTIFY DEVICE page are broken up into
621 * 16-bit chunks. Run through the string, and output each
622 * 8-bit chunk linearly, regardless of platform.
623 *
624 * LOCKING:
625 * caller.
626 */
627
6a62a04d
TH
628void ata_id_string(const u16 *id, unsigned char *s,
629 unsigned int ofs, unsigned int len)
1da177e4
LT
630{
631 unsigned int c;
632
633 while (len > 0) {
634 c = id[ofs] >> 8;
635 *s = c;
636 s++;
637
638 c = id[ofs] & 0xff;
639 *s = c;
640 s++;
641
642 ofs++;
643 len -= 2;
644 }
645}
646
0e949ff3 647/**
6a62a04d 648 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
649 * @id: IDENTIFY DEVICE results we will examine
650 * @s: string into which data is output
651 * @ofs: offset into identify device page
652 * @len: length of string to return. must be an odd number.
653 *
6a62a04d 654 * This function is identical to ata_id_string except that it
0e949ff3
TH
655 * trims trailing spaces and terminates the resulting string with
656 * null. @len must be actual maximum length (even number) + 1.
657 *
658 * LOCKING:
659 * caller.
660 */
6a62a04d
TH
661void ata_id_c_string(const u16 *id, unsigned char *s,
662 unsigned int ofs, unsigned int len)
0e949ff3
TH
663{
664 unsigned char *p;
665
666 WARN_ON(!(len & 1));
667
6a62a04d 668 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
669
670 p = s + strnlen(s, len - 1);
671 while (p > s && p[-1] == ' ')
672 p--;
673 *p = '\0';
674}
0baab86b 675
2940740b
TH
676static u64 ata_id_n_sectors(const u16 *id)
677{
678 if (ata_id_has_lba(id)) {
679 if (ata_id_has_lba48(id))
680 return ata_id_u64(id, 100);
681 else
682 return ata_id_u32(id, 60);
683 } else {
684 if (ata_id_current_chs_valid(id))
685 return ata_id_u32(id, 57);
686 else
687 return id[1] * id[3] * id[6];
688 }
689}
690
0baab86b
EF
691/**
692 * ata_noop_dev_select - Select device 0/1 on ATA bus
693 * @ap: ATA channel to manipulate
694 * @device: ATA device (numbered from zero) to select
695 *
696 * This function performs no actual function.
697 *
698 * May be used as the dev_select() entry in ata_port_operations.
699 *
700 * LOCKING:
701 * caller.
702 */
1da177e4
LT
703void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
704{
705}
706
0baab86b 707
1da177e4
LT
708/**
709 * ata_std_dev_select - Select device 0/1 on ATA bus
710 * @ap: ATA channel to manipulate
711 * @device: ATA device (numbered from zero) to select
712 *
713 * Use the method defined in the ATA specification to
714 * make either device 0, or device 1, active on the
0baab86b
EF
715 * ATA channel. Works with both PIO and MMIO.
716 *
717 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
718 *
719 * LOCKING:
720 * caller.
721 */
722
723void ata_std_dev_select (struct ata_port *ap, unsigned int device)
724{
725 u8 tmp;
726
727 if (device == 0)
728 tmp = ATA_DEVICE_OBS;
729 else
730 tmp = ATA_DEVICE_OBS | ATA_DEV1;
731
732 if (ap->flags & ATA_FLAG_MMIO) {
733 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
734 } else {
735 outb(tmp, ap->ioaddr.device_addr);
736 }
737 ata_pause(ap); /* needed; also flushes, for mmio */
738}
739
740/**
741 * ata_dev_select - Select device 0/1 on ATA bus
742 * @ap: ATA channel to manipulate
743 * @device: ATA device (numbered from zero) to select
744 * @wait: non-zero to wait for Status register BSY bit to clear
745 * @can_sleep: non-zero if context allows sleeping
746 *
747 * Use the method defined in the ATA specification to
748 * make either device 0, or device 1, active on the
749 * ATA channel.
750 *
751 * This is a high-level version of ata_std_dev_select(),
752 * which additionally provides the services of inserting
753 * the proper pauses and status polling, where needed.
754 *
755 * LOCKING:
756 * caller.
757 */
758
759void ata_dev_select(struct ata_port *ap, unsigned int device,
760 unsigned int wait, unsigned int can_sleep)
761{
762 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
763 ap->id, device, wait);
764
765 if (wait)
766 ata_wait_idle(ap);
767
768 ap->ops->dev_select(ap, device);
769
770 if (wait) {
771 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
772 msleep(150);
773 ata_wait_idle(ap);
774 }
775}
776
777/**
778 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 779 * @id: IDENTIFY DEVICE page to dump
1da177e4 780 *
0bd3300a
TH
781 * Dump selected 16-bit words from the given IDENTIFY DEVICE
782 * page.
1da177e4
LT
783 *
784 * LOCKING:
785 * caller.
786 */
787
0bd3300a 788static inline void ata_dump_id(const u16 *id)
1da177e4
LT
789{
790 DPRINTK("49==0x%04x "
791 "53==0x%04x "
792 "63==0x%04x "
793 "64==0x%04x "
794 "75==0x%04x \n",
0bd3300a
TH
795 id[49],
796 id[53],
797 id[63],
798 id[64],
799 id[75]);
1da177e4
LT
800 DPRINTK("80==0x%04x "
801 "81==0x%04x "
802 "82==0x%04x "
803 "83==0x%04x "
804 "84==0x%04x \n",
0bd3300a
TH
805 id[80],
806 id[81],
807 id[82],
808 id[83],
809 id[84]);
1da177e4
LT
810 DPRINTK("88==0x%04x "
811 "93==0x%04x\n",
0bd3300a
TH
812 id[88],
813 id[93]);
1da177e4
LT
814}
815
cb95d562
TH
816/**
817 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
818 * @id: IDENTIFY data to compute xfer mask from
819 *
820 * Compute the xfermask for this device. This is not as trivial
821 * as it seems if we must consider early devices correctly.
822 *
823 * FIXME: pre IDE drive timing (do we care ?).
824 *
825 * LOCKING:
826 * None.
827 *
828 * RETURNS:
829 * Computed xfermask
830 */
831static unsigned int ata_id_xfermask(const u16 *id)
832{
833 unsigned int pio_mask, mwdma_mask, udma_mask;
834
835 /* Usual case. Word 53 indicates word 64 is valid */
836 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
837 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
838 pio_mask <<= 3;
839 pio_mask |= 0x7;
840 } else {
841 /* If word 64 isn't valid then Word 51 high byte holds
842 * the PIO timing number for the maximum. Turn it into
843 * a mask.
844 */
845 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
846
847 /* But wait.. there's more. Design your standards by
848 * committee and you too can get a free iordy field to
849 * process. However its the speeds not the modes that
850 * are supported... Note drivers using the timing API
851 * will get this right anyway
852 */
853 }
854
855 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
856
857 udma_mask = 0;
858 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
859 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
860
861 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
862}
863
86e45b6b
TH
864/**
865 * ata_port_queue_task - Queue port_task
866 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
867 * @fn: workqueue function to be scheduled
868 * @data: data value to pass to workqueue function
869 * @delay: delay time for workqueue function
86e45b6b
TH
870 *
871 * Schedule @fn(@data) for execution after @delay jiffies using
872 * port_task. There is one port_task per port and it's the
873 * user(low level driver)'s responsibility to make sure that only
874 * one task is active at any given time.
875 *
876 * libata core layer takes care of synchronization between
877 * port_task and EH. ata_port_queue_task() may be ignored for EH
878 * synchronization.
879 *
880 * LOCKING:
881 * Inherited from caller.
882 */
883void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
884 unsigned long delay)
885{
886 int rc;
887
2e755f68 888 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
889 return;
890
891 PREPARE_WORK(&ap->port_task, fn, data);
892
893 if (!delay)
894 rc = queue_work(ata_wq, &ap->port_task);
895 else
896 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
897
898 /* rc == 0 means that another user is using port task */
899 WARN_ON(rc == 0);
900}
901
902/**
903 * ata_port_flush_task - Flush port_task
904 * @ap: The ata_port to flush port_task for
905 *
906 * After this function completes, port_task is guranteed not to
907 * be running or scheduled.
908 *
909 * LOCKING:
910 * Kernel thread context (may sleep)
911 */
912void ata_port_flush_task(struct ata_port *ap)
913{
914 unsigned long flags;
915
916 DPRINTK("ENTER\n");
917
918 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 919 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
920 spin_unlock_irqrestore(&ap->host_set->lock, flags);
921
922 DPRINTK("flush #1\n");
923 flush_workqueue(ata_wq);
924
925 /*
926 * At this point, if a task is running, it's guaranteed to see
927 * the FLUSH flag; thus, it will never queue pio tasks again.
928 * Cancel and flush.
929 */
930 if (!cancel_delayed_work(&ap->port_task)) {
931 DPRINTK("flush #2\n");
932 flush_workqueue(ata_wq);
933 }
934
935 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 936 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
937 spin_unlock_irqrestore(&ap->host_set->lock, flags);
938
939 DPRINTK("EXIT\n");
940}
941
77853bf2 942void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 943{
77853bf2 944 struct completion *waiting = qc->private_data;
a2a7a662 945
77853bf2 946 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 947 complete(waiting);
a2a7a662
TH
948}
949
950/**
951 * ata_exec_internal - execute libata internal command
952 * @ap: Port to which the command is sent
953 * @dev: Device to which the command is sent
954 * @tf: Taskfile registers for the command and the result
955 * @dma_dir: Data tranfer direction of the command
956 * @buf: Data buffer of the command
957 * @buflen: Length of data buffer
958 *
959 * Executes libata internal command with timeout. @tf contains
960 * command on entry and result on return. Timeout and error
961 * conditions are reported via return value. No recovery action
962 * is taken after a command times out. It's caller's duty to
963 * clean up after timeout.
964 *
965 * LOCKING:
966 * None. Should be called with kernel context, might sleep.
967 */
968
969static unsigned
970ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
971 struct ata_taskfile *tf,
972 int dma_dir, void *buf, unsigned int buflen)
973{
974 u8 command = tf->command;
975 struct ata_queued_cmd *qc;
976 DECLARE_COMPLETION(wait);
977 unsigned long flags;
77853bf2 978 unsigned int err_mask;
a2a7a662
TH
979
980 spin_lock_irqsave(&ap->host_set->lock, flags);
981
982 qc = ata_qc_new_init(ap, dev);
983 BUG_ON(qc == NULL);
984
985 qc->tf = *tf;
986 qc->dma_dir = dma_dir;
987 if (dma_dir != DMA_NONE) {
988 ata_sg_init_one(qc, buf, buflen);
989 qc->nsect = buflen / ATA_SECT_SIZE;
990 }
991
77853bf2 992 qc->private_data = &wait;
a2a7a662
TH
993 qc->complete_fn = ata_qc_complete_internal;
994
8e0e694a 995 ata_qc_issue(qc);
a2a7a662
TH
996
997 spin_unlock_irqrestore(&ap->host_set->lock, flags);
998
999 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
41ade50c
AL
1000 ata_port_flush_task(ap);
1001
a2a7a662
TH
1002 spin_lock_irqsave(&ap->host_set->lock, flags);
1003
1004 /* We're racing with irq here. If we lose, the
1005 * following test prevents us from completing the qc
1006 * again. If completion irq occurs after here but
1007 * before the caller cleans up, it will result in a
1008 * spurious interrupt. We can live with that.
1009 */
77853bf2 1010 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 1011 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
1012 ata_qc_complete(qc);
1013 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1014 ap->id, command);
1015 }
1016
1017 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1018 }
1019
77853bf2
TH
1020 *tf = qc->tf;
1021 err_mask = qc->err_mask;
1022
1023 ata_qc_free(qc);
1024
1f7dd3e9
TH
1025 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1026 * Until those drivers are fixed, we detect the condition
1027 * here, fail the command with AC_ERR_SYSTEM and reenable the
1028 * port.
1029 *
1030 * Note that this doesn't change any behavior as internal
1031 * command failure results in disabling the device in the
1032 * higher layer for LLDDs without new reset/EH callbacks.
1033 *
1034 * Kill the following code as soon as those drivers are fixed.
1035 */
1036 if (ap->flags & ATA_FLAG_PORT_DISABLED) {
1037 err_mask |= AC_ERR_SYSTEM;
1038 ata_port_probe(ap);
1039 }
1040
77853bf2 1041 return err_mask;
a2a7a662
TH
1042}
1043
1bc4ccff
AC
1044/**
1045 * ata_pio_need_iordy - check if iordy needed
1046 * @adev: ATA device
1047 *
1048 * Check if the current speed of the device requires IORDY. Used
1049 * by various controllers for chip configuration.
1050 */
1051
1052unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1053{
1054 int pio;
1055 int speed = adev->pio_mode - XFER_PIO_0;
1056
1057 if (speed < 2)
1058 return 0;
1059 if (speed > 2)
1060 return 1;
2e9edbf8 1061
1bc4ccff
AC
1062 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1063
1064 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1065 pio = adev->id[ATA_ID_EIDE_PIO];
1066 /* Is the speed faster than the drive allows non IORDY ? */
1067 if (pio) {
1068 /* This is cycle times not frequency - watch the logic! */
1069 if (pio > 240) /* PIO2 is 240nS per cycle */
1070 return 1;
1071 return 0;
1072 }
1073 }
1074 return 0;
1075}
1076
1da177e4 1077/**
49016aca
TH
1078 * ata_dev_read_id - Read ID data from the specified device
1079 * @ap: port on which target device resides
1080 * @dev: target device
1081 * @p_class: pointer to class of the target device (may be changed)
1082 * @post_reset: is this read ID post-reset?
d9572b1d 1083 * @p_id: read IDENTIFY page (newly allocated)
1da177e4 1084 *
49016aca
TH
1085 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1086 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1087 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1088 * for pre-ATA4 drives.
1da177e4
LT
1089 *
1090 * LOCKING:
49016aca
TH
1091 * Kernel thread context (may sleep)
1092 *
1093 * RETURNS:
1094 * 0 on success, -errno otherwise.
1da177e4 1095 */
49016aca 1096static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
d9572b1d 1097 unsigned int *p_class, int post_reset, u16 **p_id)
1da177e4 1098{
49016aca 1099 unsigned int class = *p_class;
a0123703 1100 struct ata_taskfile tf;
49016aca 1101 unsigned int err_mask = 0;
d9572b1d 1102 u16 *id;
49016aca
TH
1103 const char *reason;
1104 int rc;
1da177e4 1105
49016aca 1106 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1107
49016aca 1108 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1109
d9572b1d
TH
1110 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1111 if (id == NULL) {
1112 rc = -ENOMEM;
1113 reason = "out of memory";
1114 goto err_out;
1115 }
1116
49016aca
TH
1117 retry:
1118 ata_tf_init(ap, &tf, dev->devno);
a0123703 1119
49016aca
TH
1120 switch (class) {
1121 case ATA_DEV_ATA:
a0123703 1122 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1123 break;
1124 case ATA_DEV_ATAPI:
a0123703 1125 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1126 break;
1127 default:
1128 rc = -ENODEV;
1129 reason = "unsupported class";
1130 goto err_out;
1da177e4
LT
1131 }
1132
a0123703 1133 tf.protocol = ATA_PROT_PIO;
1da177e4 1134
a0123703 1135 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
49016aca 1136 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1137 if (err_mask) {
49016aca
TH
1138 rc = -EIO;
1139 reason = "I/O error";
1da177e4
LT
1140 goto err_out;
1141 }
1142
49016aca 1143 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1144
49016aca 1145 /* sanity check */
692785e7 1146 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1147 rc = -EINVAL;
1148 reason = "device reports illegal type";
1149 goto err_out;
1150 }
1151
1152 if (post_reset && class == ATA_DEV_ATA) {
1153 /*
1154 * The exact sequence expected by certain pre-ATA4 drives is:
1155 * SRST RESET
1156 * IDENTIFY
1157 * INITIALIZE DEVICE PARAMETERS
1158 * anything else..
1159 * Some drives were very specific about that exact sequence.
1160 */
1161 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
00b6f5e9 1162 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
49016aca
TH
1163 if (err_mask) {
1164 rc = -EIO;
1165 reason = "INIT_DEV_PARAMS failed";
1166 goto err_out;
1167 }
1168
1169 /* current CHS translation info (id[53-58]) might be
1170 * changed. reread the identify device info.
1171 */
1172 post_reset = 0;
1173 goto retry;
1174 }
1175 }
1176
1177 *p_class = class;
d9572b1d 1178 *p_id = id;
49016aca
TH
1179 return 0;
1180
1181 err_out:
1182 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1183 ap->id, dev->devno, reason);
d9572b1d 1184 kfree(id);
49016aca
TH
1185 return rc;
1186}
1187
4b2f3ede
TH
1188static inline u8 ata_dev_knobble(const struct ata_port *ap,
1189 struct ata_device *dev)
1190{
1191 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1192}
1193
49016aca 1194/**
ffeae418
TH
1195 * ata_dev_configure - Configure the specified ATA/ATAPI device
1196 * @ap: Port on which target device resides
1197 * @dev: Target device to configure
4c2d721a 1198 * @print_info: Enable device info printout
ffeae418
TH
1199 *
1200 * Configure @dev according to @dev->id. Generic and low-level
1201 * driver specific fixups are also applied.
49016aca
TH
1202 *
1203 * LOCKING:
ffeae418
TH
1204 * Kernel thread context (may sleep)
1205 *
1206 * RETURNS:
1207 * 0 on success, -errno otherwise
49016aca 1208 */
4c2d721a
TH
1209static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1210 int print_info)
49016aca 1211{
1148c3a7 1212 const u16 *id = dev->id;
ff8854b2 1213 unsigned int xfer_mask;
49016aca
TH
1214 int i, rc;
1215
1216 if (!ata_dev_present(dev)) {
1217 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1218 ap->id, dev->devno);
1219 return 0;
49016aca
TH
1220 }
1221
ffeae418 1222 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1223
c39f5ebe
TH
1224 /* print device capabilities */
1225 if (print_info)
1226 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1227 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1228 ap->id, dev->devno, id[49], id[82], id[83],
1229 id[84], id[85], id[86], id[87], id[88]);
1230
208a9933
TH
1231 /* initialize to-be-configured parameters */
1232 dev->flags = 0;
1233 dev->max_sectors = 0;
1234 dev->cdb_len = 0;
1235 dev->n_sectors = 0;
1236 dev->cylinders = 0;
1237 dev->heads = 0;
1238 dev->sectors = 0;
1239
1da177e4
LT
1240 /*
1241 * common ATA, ATAPI feature tests
1242 */
1243
ff8854b2 1244 /* find max transfer mode; for printk only */
1148c3a7 1245 xfer_mask = ata_id_xfermask(id);
1da177e4 1246
1148c3a7 1247 ata_dump_id(id);
1da177e4
LT
1248
1249 /* ATA-specific feature tests */
1250 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1251 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1252
1148c3a7 1253 if (ata_id_has_lba(id)) {
4c2d721a 1254 const char *lba_desc;
8bf62ece 1255
4c2d721a
TH
1256 lba_desc = "LBA";
1257 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1258 if (ata_id_has_lba48(id)) {
8bf62ece 1259 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1260 lba_desc = "LBA48";
1261 }
8bf62ece
AL
1262
1263 /* print device info to dmesg */
4c2d721a
TH
1264 if (print_info)
1265 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1266 "max %s, %Lu sectors: %s\n",
1267 ap->id, dev->devno,
1148c3a7 1268 ata_id_major_version(id),
ff8854b2 1269 ata_mode_string(xfer_mask),
4c2d721a
TH
1270 (unsigned long long)dev->n_sectors,
1271 lba_desc);
ffeae418 1272 } else {
8bf62ece
AL
1273 /* CHS */
1274
1275 /* Default translation */
1148c3a7
TH
1276 dev->cylinders = id[1];
1277 dev->heads = id[3];
1278 dev->sectors = id[6];
8bf62ece 1279
1148c3a7 1280 if (ata_id_current_chs_valid(id)) {
8bf62ece 1281 /* Current CHS translation is valid. */
1148c3a7
TH
1282 dev->cylinders = id[54];
1283 dev->heads = id[55];
1284 dev->sectors = id[56];
8bf62ece
AL
1285 }
1286
1287 /* print device info to dmesg */
4c2d721a
TH
1288 if (print_info)
1289 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1290 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1291 ap->id, dev->devno,
1148c3a7 1292 ata_id_major_version(id),
ff8854b2 1293 ata_mode_string(xfer_mask),
4c2d721a
TH
1294 (unsigned long long)dev->n_sectors,
1295 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1296 }
1297
6e7846e9 1298 dev->cdb_len = 16;
1da177e4
LT
1299 }
1300
1301 /* ATAPI-specific feature tests */
2c13b7ce 1302 else if (dev->class == ATA_DEV_ATAPI) {
1148c3a7 1303 rc = atapi_cdb_len(id);
1da177e4
LT
1304 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1305 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
ffeae418 1306 rc = -EINVAL;
1da177e4
LT
1307 goto err_out_nosup;
1308 }
6e7846e9 1309 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1310
1311 /* print device info to dmesg */
4c2d721a
TH
1312 if (print_info)
1313 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
ff8854b2 1314 ap->id, dev->devno, ata_mode_string(xfer_mask));
1da177e4
LT
1315 }
1316
6e7846e9
TH
1317 ap->host->max_cmd_len = 0;
1318 for (i = 0; i < ATA_MAX_DEVICES; i++)
1319 ap->host->max_cmd_len = max_t(unsigned int,
1320 ap->host->max_cmd_len,
1321 ap->device[i].cdb_len);
1322
4b2f3ede
TH
1323 /* limit bridge transfers to udma5, 200 sectors */
1324 if (ata_dev_knobble(ap, dev)) {
4c2d721a
TH
1325 if (print_info)
1326 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1327 ap->id, dev->devno);
5a529139 1328 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1329 dev->max_sectors = ATA_MAX_SECTORS;
1330 }
1331
1332 if (ap->ops->dev_config)
1333 ap->ops->dev_config(ap, dev);
1334
1da177e4 1335 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1336 return 0;
1da177e4
LT
1337
1338err_out_nosup:
1da177e4 1339 DPRINTK("EXIT, err\n");
ffeae418 1340 return rc;
1da177e4
LT
1341}
1342
1343/**
1344 * ata_bus_probe - Reset and probe ATA bus
1345 * @ap: Bus to probe
1346 *
0cba632b
JG
1347 * Master ATA bus probing function. Initiates a hardware-dependent
1348 * bus reset, then attempts to identify any devices found on
1349 * the bus.
1350 *
1da177e4 1351 * LOCKING:
0cba632b 1352 * PCI/etc. bus probe sem.
1da177e4
LT
1353 *
1354 * RETURNS:
1355 * Zero on success, non-zero on error.
1356 */
1357
1358static int ata_bus_probe(struct ata_port *ap)
1359{
28ca5c57
TH
1360 unsigned int classes[ATA_MAX_DEVICES];
1361 unsigned int i, rc, found = 0;
1da177e4 1362
28ca5c57 1363 ata_port_probe(ap);
c19ba8af 1364
2044470c
TH
1365 /* reset and determine device classes */
1366 for (i = 0; i < ATA_MAX_DEVICES; i++)
1367 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1368
2044470c 1369 if (ap->ops->probe_reset) {
c19ba8af 1370 rc = ap->ops->probe_reset(ap, classes);
28ca5c57
TH
1371 if (rc) {
1372 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1373 return rc;
c19ba8af 1374 }
28ca5c57 1375 } else {
c19ba8af
TH
1376 ap->ops->phy_reset(ap);
1377
2044470c
TH
1378 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1379 for (i = 0; i < ATA_MAX_DEVICES; i++)
28ca5c57 1380 classes[i] = ap->device[i].class;
2044470c 1381
28ca5c57
TH
1382 ata_port_probe(ap);
1383 }
1da177e4 1384
2044470c
TH
1385 for (i = 0; i < ATA_MAX_DEVICES; i++)
1386 if (classes[i] == ATA_DEV_UNKNOWN)
1387 classes[i] = ATA_DEV_NONE;
1388
28ca5c57 1389 /* read IDENTIFY page and configure devices */
1da177e4 1390 for (i = 0; i < ATA_MAX_DEVICES; i++) {
ffeae418
TH
1391 struct ata_device *dev = &ap->device[i];
1392
28ca5c57
TH
1393 dev->class = classes[i];
1394
ffeae418
TH
1395 if (!ata_dev_present(dev))
1396 continue;
1397
1398 WARN_ON(dev->id != NULL);
1399 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1400 dev->class = ATA_DEV_NONE;
1401 continue;
1402 }
1403
4c2d721a 1404 if (ata_dev_configure(ap, dev, 1)) {
fcef978f 1405 ata_dev_disable(ap, dev);
ffeae418 1406 continue;
1da177e4 1407 }
ffeae418 1408
ffeae418 1409 found = 1;
1da177e4
LT
1410 }
1411
28ca5c57 1412 if (!found)
1da177e4
LT
1413 goto err_out_disable;
1414
e35a9e01
AC
1415 if (ap->ops->set_mode)
1416 ap->ops->set_mode(ap);
1417 else
1418 ata_set_mode(ap);
1419
1da177e4
LT
1420 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1421 goto err_out_disable;
1422
1423 return 0;
1424
1425err_out_disable:
1426 ap->ops->port_disable(ap);
1da177e4
LT
1427 return -1;
1428}
1429
1430/**
0cba632b
JG
1431 * ata_port_probe - Mark port as enabled
1432 * @ap: Port for which we indicate enablement
1da177e4 1433 *
0cba632b
JG
1434 * Modify @ap data structure such that the system
1435 * thinks that the entire port is enabled.
1436 *
1437 * LOCKING: host_set lock, or some other form of
1438 * serialization.
1da177e4
LT
1439 */
1440
1441void ata_port_probe(struct ata_port *ap)
1442{
1443 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1444}
1445
3be680b7
TH
1446/**
1447 * sata_print_link_status - Print SATA link status
1448 * @ap: SATA port to printk link status about
1449 *
1450 * This function prints link speed and status of a SATA link.
1451 *
1452 * LOCKING:
1453 * None.
1454 */
1455static void sata_print_link_status(struct ata_port *ap)
1456{
1457 u32 sstatus, tmp;
1458 const char *speed;
1459
1460 if (!ap->ops->scr_read)
1461 return;
1462
1463 sstatus = scr_read(ap, SCR_STATUS);
1464
1465 if (sata_dev_present(ap)) {
1466 tmp = (sstatus >> 4) & 0xf;
1467 if (tmp & (1 << 0))
1468 speed = "1.5";
1469 else if (tmp & (1 << 1))
1470 speed = "3.0";
1471 else
1472 speed = "<unknown>";
1473 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1474 ap->id, speed, sstatus);
1475 } else {
1476 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1477 ap->id, sstatus);
1478 }
1479}
1480
1da177e4 1481/**
780a87f7
JG
1482 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1483 * @ap: SATA port associated with target SATA PHY.
1da177e4 1484 *
780a87f7
JG
1485 * This function issues commands to standard SATA Sxxx
1486 * PHY registers, to wake up the phy (and device), and
1487 * clear any reset condition.
1da177e4
LT
1488 *
1489 * LOCKING:
0cba632b 1490 * PCI/etc. bus probe sem.
1da177e4
LT
1491 *
1492 */
1493void __sata_phy_reset(struct ata_port *ap)
1494{
1495 u32 sstatus;
1496 unsigned long timeout = jiffies + (HZ * 5);
1497
1498 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1499 /* issue phy wake/reset */
1500 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1501 /* Couldn't find anything in SATA I/II specs, but
1502 * AHCI-1.1 10.4.2 says at least 1 ms. */
1503 mdelay(1);
1da177e4 1504 }
cdcca89e 1505 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1506
1507 /* wait for phy to become ready, if necessary */
1508 do {
1509 msleep(200);
1510 sstatus = scr_read(ap, SCR_STATUS);
1511 if ((sstatus & 0xf) != 1)
1512 break;
1513 } while (time_before(jiffies, timeout));
1514
3be680b7
TH
1515 /* print link status */
1516 sata_print_link_status(ap);
656563e3 1517
3be680b7
TH
1518 /* TODO: phy layer with polling, timeouts, etc. */
1519 if (sata_dev_present(ap))
1da177e4 1520 ata_port_probe(ap);
3be680b7 1521 else
1da177e4 1522 ata_port_disable(ap);
1da177e4
LT
1523
1524 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1525 return;
1526
1527 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1528 ata_port_disable(ap);
1529 return;
1530 }
1531
1532 ap->cbl = ATA_CBL_SATA;
1533}
1534
1535/**
780a87f7
JG
1536 * sata_phy_reset - Reset SATA bus.
1537 * @ap: SATA port associated with target SATA PHY.
1da177e4 1538 *
780a87f7
JG
1539 * This function resets the SATA bus, and then probes
1540 * the bus for devices.
1da177e4
LT
1541 *
1542 * LOCKING:
0cba632b 1543 * PCI/etc. bus probe sem.
1da177e4
LT
1544 *
1545 */
1546void sata_phy_reset(struct ata_port *ap)
1547{
1548 __sata_phy_reset(ap);
1549 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1550 return;
1551 ata_bus_reset(ap);
1552}
1553
ebdfca6e
AC
1554/**
1555 * ata_dev_pair - return other device on cable
1556 * @ap: port
1557 * @adev: device
1558 *
1559 * Obtain the other device on the same cable, or if none is
1560 * present NULL is returned
1561 */
2e9edbf8 1562
ebdfca6e
AC
1563struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1564{
1565 struct ata_device *pair = &ap->device[1 - adev->devno];
1566 if (!ata_dev_present(pair))
1567 return NULL;
1568 return pair;
1569}
1570
1da177e4 1571/**
780a87f7
JG
1572 * ata_port_disable - Disable port.
1573 * @ap: Port to be disabled.
1da177e4 1574 *
780a87f7
JG
1575 * Modify @ap data structure such that the system
1576 * thinks that the entire port is disabled, and should
1577 * never attempt to probe or communicate with devices
1578 * on this port.
1579 *
1580 * LOCKING: host_set lock, or some other form of
1581 * serialization.
1da177e4
LT
1582 */
1583
1584void ata_port_disable(struct ata_port *ap)
1585{
1586 ap->device[0].class = ATA_DEV_NONE;
1587 ap->device[1].class = ATA_DEV_NONE;
1588 ap->flags |= ATA_FLAG_PORT_DISABLED;
1589}
1590
452503f9
AC
1591/*
1592 * This mode timing computation functionality is ported over from
1593 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1594 */
1595/*
1596 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1597 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1598 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1599 * is currently supported only by Maxtor drives.
452503f9
AC
1600 */
1601
1602static const struct ata_timing ata_timing[] = {
1603
1604 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1605 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1606 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1607 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1608
1609 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1610 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1611 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1612
1613/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1614
452503f9
AC
1615 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1616 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1617 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1618
452503f9
AC
1619 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1620 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1621 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1622
1623/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1624 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1625 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1626
1627 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1628 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1629 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1630
1631/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1632
1633 { 0xFF }
1634};
1635
1636#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1637#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1638
1639static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1640{
1641 q->setup = EZ(t->setup * 1000, T);
1642 q->act8b = EZ(t->act8b * 1000, T);
1643 q->rec8b = EZ(t->rec8b * 1000, T);
1644 q->cyc8b = EZ(t->cyc8b * 1000, T);
1645 q->active = EZ(t->active * 1000, T);
1646 q->recover = EZ(t->recover * 1000, T);
1647 q->cycle = EZ(t->cycle * 1000, T);
1648 q->udma = EZ(t->udma * 1000, UT);
1649}
1650
1651void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1652 struct ata_timing *m, unsigned int what)
1653{
1654 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1655 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1656 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1657 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1658 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1659 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1660 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1661 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1662}
1663
1664static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1665{
1666 const struct ata_timing *t;
1667
1668 for (t = ata_timing; t->mode != speed; t++)
91190758 1669 if (t->mode == 0xFF)
452503f9 1670 return NULL;
2e9edbf8 1671 return t;
452503f9
AC
1672}
1673
1674int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1675 struct ata_timing *t, int T, int UT)
1676{
1677 const struct ata_timing *s;
1678 struct ata_timing p;
1679
1680 /*
2e9edbf8 1681 * Find the mode.
75b1f2f8 1682 */
452503f9
AC
1683
1684 if (!(s = ata_timing_find_mode(speed)))
1685 return -EINVAL;
1686
75b1f2f8
AL
1687 memcpy(t, s, sizeof(*s));
1688
452503f9
AC
1689 /*
1690 * If the drive is an EIDE drive, it can tell us it needs extended
1691 * PIO/MW_DMA cycle timing.
1692 */
1693
1694 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1695 memset(&p, 0, sizeof(p));
1696 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1697 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1698 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1699 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1700 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1701 }
1702 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1703 }
1704
1705 /*
1706 * Convert the timing to bus clock counts.
1707 */
1708
75b1f2f8 1709 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1710
1711 /*
c893a3ae
RD
1712 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1713 * S.M.A.R.T * and some other commands. We have to ensure that the
1714 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1715 */
1716
1717 if (speed > XFER_PIO_4) {
1718 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1719 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1720 }
1721
1722 /*
c893a3ae 1723 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1724 */
1725
1726 if (t->act8b + t->rec8b < t->cyc8b) {
1727 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1728 t->rec8b = t->cyc8b - t->act8b;
1729 }
1730
1731 if (t->active + t->recover < t->cycle) {
1732 t->active += (t->cycle - (t->active + t->recover)) / 2;
1733 t->recover = t->cycle - t->active;
1734 }
1735
1736 return 0;
1737}
1738
83206a29 1739static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1da177e4 1740{
83206a29
TH
1741 unsigned int err_mask;
1742 int rc;
1da177e4
LT
1743
1744 if (dev->xfer_shift == ATA_SHIFT_PIO)
1745 dev->flags |= ATA_DFLAG_PIO;
1746
83206a29
TH
1747 err_mask = ata_dev_set_xfermode(ap, dev);
1748 if (err_mask) {
1749 printk(KERN_ERR
1750 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1751 ap->id, err_mask);
1752 return -EIO;
1753 }
1da177e4 1754
83206a29
TH
1755 rc = ata_dev_revalidate(ap, dev, 0);
1756 if (rc) {
1757 printk(KERN_ERR
1758 "ata%u: failed to revalidate after set xfermode\n",
1759 ap->id);
1760 return rc;
48a8a14f
TH
1761 }
1762
23e71c3d
TH
1763 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1764 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4
LT
1765
1766 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
23e71c3d
TH
1767 ap->id, dev->devno,
1768 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 1769 return 0;
1da177e4
LT
1770}
1771
1772static int ata_host_set_pio(struct ata_port *ap)
1773{
a6d5a51c 1774 int i;
1da177e4
LT
1775
1776 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1777 struct ata_device *dev = &ap->device[i];
a6d5a51c
TH
1778
1779 if (!ata_dev_present(dev))
1780 continue;
1781
1782 if (!dev->pio_mode) {
88f93a31 1783 printk(KERN_WARNING "ata%u: no PIO support for device %d.\n", ap->id, i);
a6d5a51c 1784 return -1;
1da177e4 1785 }
a6d5a51c
TH
1786
1787 dev->xfer_mode = dev->pio_mode;
1788 dev->xfer_shift = ATA_SHIFT_PIO;
1789 if (ap->ops->set_piomode)
1790 ap->ops->set_piomode(ap, dev);
1da177e4
LT
1791 }
1792
1793 return 0;
1794}
1795
a6d5a51c 1796static void ata_host_set_dma(struct ata_port *ap)
1da177e4
LT
1797{
1798 int i;
1799
1800 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1801 struct ata_device *dev = &ap->device[i];
a6d5a51c
TH
1802
1803 if (!ata_dev_present(dev) || !dev->dma_mode)
1804 continue;
1805
1806 dev->xfer_mode = dev->dma_mode;
1807 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
1808 if (ap->ops->set_dmamode)
1809 ap->ops->set_dmamode(ap, dev);
1da177e4
LT
1810 }
1811}
1812
1813/**
1814 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1815 * @ap: port on which timings will be programmed
1816 *
780a87f7
JG
1817 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1818 *
1da177e4 1819 * LOCKING:
0cba632b 1820 * PCI/etc. bus probe sem.
1da177e4
LT
1821 */
1822static void ata_set_mode(struct ata_port *ap)
1823{
5444a6f4 1824 int i, rc, used_dma = 0;
1da177e4 1825
a6d5a51c
TH
1826 /* step 1: calculate xfer_mask */
1827 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1828 struct ata_device *dev = &ap->device[i];
acf356b1 1829 unsigned int pio_mask, dma_mask;
a6d5a51c
TH
1830
1831 if (!ata_dev_present(dev))
1832 continue;
1833
acf356b1 1834 ata_dev_xfermask(ap, dev);
1da177e4 1835
acf356b1
TH
1836 /* TODO: let LLDD filter dev->*_mask here */
1837
1838 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
1839 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
1840 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
1841 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4
AC
1842
1843 if (dev->dma_mode)
1844 used_dma = 1;
a6d5a51c
TH
1845 }
1846
1847 /* step 2: always set host PIO timings */
1848 rc = ata_host_set_pio(ap);
1da177e4
LT
1849 if (rc)
1850 goto err_out;
1851
a6d5a51c
TH
1852 /* step 3: set host DMA timings */
1853 ata_host_set_dma(ap);
1da177e4
LT
1854
1855 /* step 4: update devices' xfer mode */
83206a29
TH
1856 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1857 struct ata_device *dev = &ap->device[i];
1da177e4 1858
83206a29
TH
1859 if (!ata_dev_present(dev))
1860 continue;
1861
1862 if (ata_dev_set_mode(ap, dev))
1863 goto err_out;
1864 }
1da177e4 1865
5444a6f4
AC
1866 /*
1867 * Record simplex status. If we selected DMA then the other
1868 * host channels are not permitted to do so.
1869 */
1870
1871 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
1872 ap->host_set->simplex_claimed = 1;
1873
1874 /*
1875 * Chip specific finalisation
1876 */
1da177e4
LT
1877 if (ap->ops->post_set_mode)
1878 ap->ops->post_set_mode(ap);
1879
1da177e4
LT
1880 return;
1881
1882err_out:
1883 ata_port_disable(ap);
1884}
1885
1fdffbce
JG
1886/**
1887 * ata_tf_to_host - issue ATA taskfile to host controller
1888 * @ap: port to which command is being issued
1889 * @tf: ATA taskfile register set
1890 *
1891 * Issues ATA taskfile register set to ATA host controller,
1892 * with proper synchronization with interrupt handler and
1893 * other threads.
1894 *
1895 * LOCKING:
1896 * spin_lock_irqsave(host_set lock)
1897 */
1898
1899static inline void ata_tf_to_host(struct ata_port *ap,
1900 const struct ata_taskfile *tf)
1901{
1902 ap->ops->tf_load(ap, tf);
1903 ap->ops->exec_command(ap, tf);
1904}
1905
1da177e4
LT
1906/**
1907 * ata_busy_sleep - sleep until BSY clears, or timeout
1908 * @ap: port containing status register to be polled
1909 * @tmout_pat: impatience timeout
1910 * @tmout: overall timeout
1911 *
780a87f7
JG
1912 * Sleep until ATA Status register bit BSY clears,
1913 * or a timeout occurs.
1914 *
1915 * LOCKING: None.
1da177e4
LT
1916 */
1917
6f8b9958
TH
1918unsigned int ata_busy_sleep (struct ata_port *ap,
1919 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
1920{
1921 unsigned long timer_start, timeout;
1922 u8 status;
1923
1924 status = ata_busy_wait(ap, ATA_BUSY, 300);
1925 timer_start = jiffies;
1926 timeout = timer_start + tmout_pat;
1927 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1928 msleep(50);
1929 status = ata_busy_wait(ap, ATA_BUSY, 3);
1930 }
1931
1932 if (status & ATA_BUSY)
1933 printk(KERN_WARNING "ata%u is slow to respond, "
1934 "please be patient\n", ap->id);
1935
1936 timeout = timer_start + tmout;
1937 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1938 msleep(50);
1939 status = ata_chk_status(ap);
1940 }
1941
1942 if (status & ATA_BUSY) {
1943 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1944 ap->id, tmout / HZ);
1945 return 1;
1946 }
1947
1948 return 0;
1949}
1950
1951static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1952{
1953 struct ata_ioports *ioaddr = &ap->ioaddr;
1954 unsigned int dev0 = devmask & (1 << 0);
1955 unsigned int dev1 = devmask & (1 << 1);
1956 unsigned long timeout;
1957
1958 /* if device 0 was found in ata_devchk, wait for its
1959 * BSY bit to clear
1960 */
1961 if (dev0)
1962 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1963
1964 /* if device 1 was found in ata_devchk, wait for
1965 * register access, then wait for BSY to clear
1966 */
1967 timeout = jiffies + ATA_TMOUT_BOOT;
1968 while (dev1) {
1969 u8 nsect, lbal;
1970
1971 ap->ops->dev_select(ap, 1);
1972 if (ap->flags & ATA_FLAG_MMIO) {
1973 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1974 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1975 } else {
1976 nsect = inb(ioaddr->nsect_addr);
1977 lbal = inb(ioaddr->lbal_addr);
1978 }
1979 if ((nsect == 1) && (lbal == 1))
1980 break;
1981 if (time_after(jiffies, timeout)) {
1982 dev1 = 0;
1983 break;
1984 }
1985 msleep(50); /* give drive a breather */
1986 }
1987 if (dev1)
1988 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1989
1990 /* is all this really necessary? */
1991 ap->ops->dev_select(ap, 0);
1992 if (dev1)
1993 ap->ops->dev_select(ap, 1);
1994 if (dev0)
1995 ap->ops->dev_select(ap, 0);
1996}
1997
1da177e4
LT
1998static unsigned int ata_bus_softreset(struct ata_port *ap,
1999 unsigned int devmask)
2000{
2001 struct ata_ioports *ioaddr = &ap->ioaddr;
2002
2003 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2004
2005 /* software reset. causes dev0 to be selected */
2006 if (ap->flags & ATA_FLAG_MMIO) {
2007 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2008 udelay(20); /* FIXME: flush */
2009 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2010 udelay(20); /* FIXME: flush */
2011 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2012 } else {
2013 outb(ap->ctl, ioaddr->ctl_addr);
2014 udelay(10);
2015 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2016 udelay(10);
2017 outb(ap->ctl, ioaddr->ctl_addr);
2018 }
2019
2020 /* spec mandates ">= 2ms" before checking status.
2021 * We wait 150ms, because that was the magic delay used for
2022 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2023 * between when the ATA command register is written, and then
2024 * status is checked. Because waiting for "a while" before
2025 * checking status is fine, post SRST, we perform this magic
2026 * delay here as well.
09c7ad79
AC
2027 *
2028 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2029 */
2030 msleep(150);
2031
2e9edbf8 2032 /* Before we perform post reset processing we want to see if
298a41ca
TH
2033 * the bus shows 0xFF because the odd clown forgets the D7
2034 * pulldown resistor.
2035 */
09c7ad79 2036 if (ata_check_status(ap) == 0xFF)
298a41ca 2037 return AC_ERR_OTHER;
09c7ad79 2038
1da177e4
LT
2039 ata_bus_post_reset(ap, devmask);
2040
2041 return 0;
2042}
2043
2044/**
2045 * ata_bus_reset - reset host port and associated ATA channel
2046 * @ap: port to reset
2047 *
2048 * This is typically the first time we actually start issuing
2049 * commands to the ATA channel. We wait for BSY to clear, then
2050 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2051 * result. Determine what devices, if any, are on the channel
2052 * by looking at the device 0/1 error register. Look at the signature
2053 * stored in each device's taskfile registers, to determine if
2054 * the device is ATA or ATAPI.
2055 *
2056 * LOCKING:
0cba632b
JG
2057 * PCI/etc. bus probe sem.
2058 * Obtains host_set lock.
1da177e4
LT
2059 *
2060 * SIDE EFFECTS:
2061 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2062 */
2063
2064void ata_bus_reset(struct ata_port *ap)
2065{
2066 struct ata_ioports *ioaddr = &ap->ioaddr;
2067 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2068 u8 err;
aec5c3c1 2069 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2070
2071 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2072
2073 /* determine if device 0/1 are present */
2074 if (ap->flags & ATA_FLAG_SATA_RESET)
2075 dev0 = 1;
2076 else {
2077 dev0 = ata_devchk(ap, 0);
2078 if (slave_possible)
2079 dev1 = ata_devchk(ap, 1);
2080 }
2081
2082 if (dev0)
2083 devmask |= (1 << 0);
2084 if (dev1)
2085 devmask |= (1 << 1);
2086
2087 /* select device 0 again */
2088 ap->ops->dev_select(ap, 0);
2089
2090 /* issue bus reset */
2091 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2092 if (ata_bus_softreset(ap, devmask))
2093 goto err_out;
1da177e4
LT
2094
2095 /*
2096 * determine by signature whether we have ATA or ATAPI devices
2097 */
b4dc7623 2098 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2099 if ((slave_possible) && (err != 0x81))
b4dc7623 2100 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2101
2102 /* re-enable interrupts */
2103 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2104 ata_irq_on(ap);
2105
2106 /* is double-select really necessary? */
2107 if (ap->device[1].class != ATA_DEV_NONE)
2108 ap->ops->dev_select(ap, 1);
2109 if (ap->device[0].class != ATA_DEV_NONE)
2110 ap->ops->dev_select(ap, 0);
2111
2112 /* if no devices were detected, disable this port */
2113 if ((ap->device[0].class == ATA_DEV_NONE) &&
2114 (ap->device[1].class == ATA_DEV_NONE))
2115 goto err_out;
2116
2117 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2118 /* set up device control for ATA_FLAG_SATA_RESET */
2119 if (ap->flags & ATA_FLAG_MMIO)
2120 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2121 else
2122 outb(ap->ctl, ioaddr->ctl_addr);
2123 }
2124
2125 DPRINTK("EXIT\n");
2126 return;
2127
2128err_out:
2129 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2130 ap->ops->port_disable(ap);
2131
2132 DPRINTK("EXIT\n");
2133}
2134
7a7921e8
TH
2135static int sata_phy_resume(struct ata_port *ap)
2136{
2137 unsigned long timeout = jiffies + (HZ * 5);
2138 u32 sstatus;
2139
2140 scr_write_flush(ap, SCR_CONTROL, 0x300);
2141
2142 /* Wait for phy to become ready, if necessary. */
2143 do {
2144 msleep(200);
2145 sstatus = scr_read(ap, SCR_STATUS);
2146 if ((sstatus & 0xf) != 1)
2147 return 0;
2148 } while (time_before(jiffies, timeout));
2149
2150 return -1;
2151}
2152
8a19ac89
TH
2153/**
2154 * ata_std_probeinit - initialize probing
2155 * @ap: port to be probed
2156 *
2157 * @ap is about to be probed. Initialize it. This function is
2158 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2159 *
2160 * NOTE!!! Do not use this function as probeinit if a low level
2161 * driver implements only hardreset. Just pass NULL as probeinit
2162 * in that case. Using this function is probably okay but doing
2163 * so makes reset sequence different from the original
2164 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2165 */
17efc5f7 2166void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2167{
17efc5f7 2168 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
8a19ac89 2169 sata_phy_resume(ap);
3a39746a
TH
2170 if (sata_dev_present(ap))
2171 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2172 }
8a19ac89
TH
2173}
2174
c2bd5804
TH
2175/**
2176 * ata_std_softreset - reset host port via ATA SRST
2177 * @ap: port to reset
2178 * @verbose: fail verbosely
2179 * @classes: resulting classes of attached devices
2180 *
2181 * Reset host port using ATA SRST. This function is to be used
2182 * as standard callback for ata_drive_*_reset() functions.
2183 *
2184 * LOCKING:
2185 * Kernel thread context (may sleep)
2186 *
2187 * RETURNS:
2188 * 0 on success, -errno otherwise.
2189 */
2190int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2191{
2192 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2193 unsigned int devmask = 0, err_mask;
2194 u8 err;
2195
2196 DPRINTK("ENTER\n");
2197
3a39746a
TH
2198 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2199 classes[0] = ATA_DEV_NONE;
2200 goto out;
2201 }
2202
c2bd5804
TH
2203 /* determine if device 0/1 are present */
2204 if (ata_devchk(ap, 0))
2205 devmask |= (1 << 0);
2206 if (slave_possible && ata_devchk(ap, 1))
2207 devmask |= (1 << 1);
2208
c2bd5804
TH
2209 /* select device 0 again */
2210 ap->ops->dev_select(ap, 0);
2211
2212 /* issue bus reset */
2213 DPRINTK("about to softreset, devmask=%x\n", devmask);
2214 err_mask = ata_bus_softreset(ap, devmask);
2215 if (err_mask) {
2216 if (verbose)
2217 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2218 ap->id, err_mask);
2219 else
2220 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2221 err_mask);
2222 return -EIO;
2223 }
2224
2225 /* determine by signature whether we have ATA or ATAPI devices */
2226 classes[0] = ata_dev_try_classify(ap, 0, &err);
2227 if (slave_possible && err != 0x81)
2228 classes[1] = ata_dev_try_classify(ap, 1, &err);
2229
3a39746a 2230 out:
c2bd5804
TH
2231 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2232 return 0;
2233}
2234
2235/**
2236 * sata_std_hardreset - reset host port via SATA phy reset
2237 * @ap: port to reset
2238 * @verbose: fail verbosely
2239 * @class: resulting class of attached device
2240 *
2241 * SATA phy-reset host port using DET bits of SControl register.
2242 * This function is to be used as standard callback for
2243 * ata_drive_*_reset().
2244 *
2245 * LOCKING:
2246 * Kernel thread context (may sleep)
2247 *
2248 * RETURNS:
2249 * 0 on success, -errno otherwise.
2250 */
2251int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2252{
c2bd5804
TH
2253 DPRINTK("ENTER\n");
2254
2255 /* Issue phy wake/reset */
2256 scr_write_flush(ap, SCR_CONTROL, 0x301);
2257
2258 /*
2259 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2260 * 10.4.2 says at least 1 ms.
2261 */
2262 msleep(1);
2263
7a7921e8
TH
2264 /* Bring phy back */
2265 sata_phy_resume(ap);
c2bd5804 2266
c2bd5804
TH
2267 /* TODO: phy layer with polling, timeouts, etc. */
2268 if (!sata_dev_present(ap)) {
2269 *class = ATA_DEV_NONE;
2270 DPRINTK("EXIT, link offline\n");
2271 return 0;
2272 }
2273
2274 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2275 if (verbose)
2276 printk(KERN_ERR "ata%u: COMRESET failed "
2277 "(device not ready)\n", ap->id);
2278 else
2279 DPRINTK("EXIT, device not ready\n");
2280 return -EIO;
2281 }
2282
3a39746a
TH
2283 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2284
c2bd5804
TH
2285 *class = ata_dev_try_classify(ap, 0, NULL);
2286
2287 DPRINTK("EXIT, class=%u\n", *class);
2288 return 0;
2289}
2290
2291/**
2292 * ata_std_postreset - standard postreset callback
2293 * @ap: the target ata_port
2294 * @classes: classes of attached devices
2295 *
2296 * This function is invoked after a successful reset. Note that
2297 * the device might have been reset more than once using
2298 * different reset methods before postreset is invoked.
c2bd5804
TH
2299 *
2300 * This function is to be used as standard callback for
2301 * ata_drive_*_reset().
2302 *
2303 * LOCKING:
2304 * Kernel thread context (may sleep)
2305 */
2306void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2307{
2308 DPRINTK("ENTER\n");
2309
56497bd5 2310 /* set cable type if it isn't already set */
c2bd5804
TH
2311 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2312 ap->cbl = ATA_CBL_SATA;
2313
2314 /* print link status */
2315 if (ap->cbl == ATA_CBL_SATA)
2316 sata_print_link_status(ap);
2317
3a39746a
TH
2318 /* re-enable interrupts */
2319 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2320 ata_irq_on(ap);
c2bd5804
TH
2321
2322 /* is double-select really necessary? */
2323 if (classes[0] != ATA_DEV_NONE)
2324 ap->ops->dev_select(ap, 1);
2325 if (classes[1] != ATA_DEV_NONE)
2326 ap->ops->dev_select(ap, 0);
2327
3a39746a
TH
2328 /* bail out if no device is present */
2329 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2330 DPRINTK("EXIT, no device\n");
2331 return;
2332 }
2333
2334 /* set up device control */
2335 if (ap->ioaddr.ctl_addr) {
2336 if (ap->flags & ATA_FLAG_MMIO)
2337 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2338 else
2339 outb(ap->ctl, ap->ioaddr.ctl_addr);
2340 }
c2bd5804
TH
2341
2342 DPRINTK("EXIT\n");
2343}
2344
2345/**
2346 * ata_std_probe_reset - standard probe reset method
2347 * @ap: prot to perform probe-reset
2348 * @classes: resulting classes of attached devices
2349 *
2350 * The stock off-the-shelf ->probe_reset method.
2351 *
2352 * LOCKING:
2353 * Kernel thread context (may sleep)
2354 *
2355 * RETURNS:
2356 * 0 on success, -errno otherwise.
2357 */
2358int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2359{
2360 ata_reset_fn_t hardreset;
2361
2362 hardreset = NULL;
b911fc3a 2363 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
c2bd5804
TH
2364 hardreset = sata_std_hardreset;
2365
8a19ac89 2366 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2367 ata_std_softreset, hardreset,
c2bd5804
TH
2368 ata_std_postreset, classes);
2369}
2370
a62c0fc5
TH
2371static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2372 ata_postreset_fn_t postreset,
2373 unsigned int *classes)
2374{
2375 int i, rc;
2376
2377 for (i = 0; i < ATA_MAX_DEVICES; i++)
2378 classes[i] = ATA_DEV_UNKNOWN;
2379
2380 rc = reset(ap, 0, classes);
2381 if (rc)
2382 return rc;
2383
2384 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2385 * is complete and convert all ATA_DEV_UNKNOWN to
2386 * ATA_DEV_NONE.
2387 */
2388 for (i = 0; i < ATA_MAX_DEVICES; i++)
2389 if (classes[i] != ATA_DEV_UNKNOWN)
2390 break;
2391
2392 if (i < ATA_MAX_DEVICES)
2393 for (i = 0; i < ATA_MAX_DEVICES; i++)
2394 if (classes[i] == ATA_DEV_UNKNOWN)
2395 classes[i] = ATA_DEV_NONE;
2396
2397 if (postreset)
2398 postreset(ap, classes);
2399
2400 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2401}
2402
2403/**
2404 * ata_drive_probe_reset - Perform probe reset with given methods
2405 * @ap: port to reset
7944ea95 2406 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2407 * @softreset: softreset method (can be NULL)
2408 * @hardreset: hardreset method (can be NULL)
2409 * @postreset: postreset method (can be NULL)
2410 * @classes: resulting classes of attached devices
2411 *
2412 * Reset the specified port and classify attached devices using
2413 * given methods. This function prefers softreset but tries all
2414 * possible reset sequences to reset and classify devices. This
2415 * function is intended to be used for constructing ->probe_reset
2416 * callback by low level drivers.
2417 *
2418 * Reset methods should follow the following rules.
2419 *
2420 * - Return 0 on sucess, -errno on failure.
2421 * - If classification is supported, fill classes[] with
2422 * recognized class codes.
2423 * - If classification is not supported, leave classes[] alone.
2424 * - If verbose is non-zero, print error message on failure;
2425 * otherwise, shut up.
2426 *
2427 * LOCKING:
2428 * Kernel thread context (may sleep)
2429 *
2430 * RETURNS:
2431 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2432 * if classification fails, and any error code from reset
2433 * methods.
2434 */
7944ea95 2435int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2436 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2437 ata_postreset_fn_t postreset, unsigned int *classes)
2438{
2439 int rc = -EINVAL;
2440
7944ea95
TH
2441 if (probeinit)
2442 probeinit(ap);
2443
a62c0fc5
TH
2444 if (softreset) {
2445 rc = do_probe_reset(ap, softreset, postreset, classes);
2446 if (rc == 0)
2447 return 0;
2448 }
2449
2450 if (!hardreset)
2451 return rc;
2452
2453 rc = do_probe_reset(ap, hardreset, postreset, classes);
2454 if (rc == 0 || rc != -ENODEV)
2455 return rc;
2456
2457 if (softreset)
2458 rc = do_probe_reset(ap, softreset, postreset, classes);
2459
2460 return rc;
2461}
2462
623a3128
TH
2463/**
2464 * ata_dev_same_device - Determine whether new ID matches configured device
2465 * @ap: port on which the device to compare against resides
2466 * @dev: device to compare against
2467 * @new_class: class of the new device
2468 * @new_id: IDENTIFY page of the new device
2469 *
2470 * Compare @new_class and @new_id against @dev and determine
2471 * whether @dev is the device indicated by @new_class and
2472 * @new_id.
2473 *
2474 * LOCKING:
2475 * None.
2476 *
2477 * RETURNS:
2478 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2479 */
2480static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2481 unsigned int new_class, const u16 *new_id)
2482{
2483 const u16 *old_id = dev->id;
2484 unsigned char model[2][41], serial[2][21];
2485 u64 new_n_sectors;
2486
2487 if (dev->class != new_class) {
2488 printk(KERN_INFO
2489 "ata%u: dev %u class mismatch %d != %d\n",
2490 ap->id, dev->devno, dev->class, new_class);
2491 return 0;
2492 }
2493
2494 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2495 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2496 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2497 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2498 new_n_sectors = ata_id_n_sectors(new_id);
2499
2500 if (strcmp(model[0], model[1])) {
2501 printk(KERN_INFO
2502 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2503 ap->id, dev->devno, model[0], model[1]);
2504 return 0;
2505 }
2506
2507 if (strcmp(serial[0], serial[1])) {
2508 printk(KERN_INFO
2509 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2510 ap->id, dev->devno, serial[0], serial[1]);
2511 return 0;
2512 }
2513
2514 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2515 printk(KERN_INFO
2516 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2517 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2518 (unsigned long long)new_n_sectors);
2519 return 0;
2520 }
2521
2522 return 1;
2523}
2524
2525/**
2526 * ata_dev_revalidate - Revalidate ATA device
2527 * @ap: port on which the device to revalidate resides
2528 * @dev: device to revalidate
2529 * @post_reset: is this revalidation after reset?
2530 *
2531 * Re-read IDENTIFY page and make sure @dev is still attached to
2532 * the port.
2533 *
2534 * LOCKING:
2535 * Kernel thread context (may sleep)
2536 *
2537 * RETURNS:
2538 * 0 on success, negative errno otherwise
2539 */
2540int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2541 int post_reset)
2542{
2543 unsigned int class;
2544 u16 *id;
2545 int rc;
2546
2547 if (!ata_dev_present(dev))
2548 return -ENODEV;
2549
2550 class = dev->class;
2551 id = NULL;
2552
2553 /* allocate & read ID data */
2554 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2555 if (rc)
2556 goto fail;
2557
2558 /* is the device still there? */
2559 if (!ata_dev_same_device(ap, dev, class, id)) {
2560 rc = -ENODEV;
2561 goto fail;
2562 }
2563
2564 kfree(dev->id);
2565 dev->id = id;
2566
2567 /* configure device according to the new ID */
2568 return ata_dev_configure(ap, dev, 0);
2569
2570 fail:
2571 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2572 ap->id, dev->devno, rc);
2573 kfree(id);
2574 return rc;
2575}
2576
98ac62de 2577static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2578 "WDC AC11000H", NULL,
2579 "WDC AC22100H", NULL,
2580 "WDC AC32500H", NULL,
2581 "WDC AC33100H", NULL,
2582 "WDC AC31600H", NULL,
2583 "WDC AC32100H", "24.09P07",
2584 "WDC AC23200L", "21.10N21",
2585 "Compaq CRD-8241B", NULL,
2586 "CRD-8400B", NULL,
2587 "CRD-8480B", NULL,
2588 "CRD-8482B", NULL,
2589 "CRD-84", NULL,
2590 "SanDisk SDP3B", NULL,
2591 "SanDisk SDP3B-64", NULL,
2592 "SANYO CD-ROM CRD", NULL,
2593 "HITACHI CDR-8", NULL,
2e9edbf8 2594 "HITACHI CDR-8335", NULL,
f4b15fef 2595 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2596 "Toshiba CD-ROM XM-6202B", NULL,
2597 "TOSHIBA CD-ROM XM-1702BC", NULL,
2598 "CD-532E-A", NULL,
2599 "E-IDE CD-ROM CR-840", NULL,
2600 "CD-ROM Drive/F5A", NULL,
2601 "WPI CDD-820", NULL,
f4b15fef 2602 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2603 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2604 "SanDisk SDP3B-64", NULL,
2605 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2606 "_NEC DV5800A", NULL,
2607 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2608};
2e9edbf8 2609
f4b15fef
AC
2610static int ata_strim(char *s, size_t len)
2611{
2612 len = strnlen(s, len);
2613
2614 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2615 while ((len > 0) && (s[len - 1] == ' ')) {
2616 len--;
2617 s[len] = 0;
2618 }
2619 return len;
2620}
1da177e4 2621
057ace5e 2622static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2623{
f4b15fef
AC
2624 unsigned char model_num[40];
2625 unsigned char model_rev[16];
2626 unsigned int nlen, rlen;
1da177e4
LT
2627 int i;
2628
f4b15fef
AC
2629 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2630 sizeof(model_num));
2631 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2632 sizeof(model_rev));
2633 nlen = ata_strim(model_num, sizeof(model_num));
2634 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2635
f4b15fef
AC
2636 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2637 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2638 if (ata_dma_blacklist[i+1] == NULL)
2639 return 1;
2640 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2641 return 1;
2642 }
2643 }
1da177e4
LT
2644 return 0;
2645}
2646
a6d5a51c
TH
2647/**
2648 * ata_dev_xfermask - Compute supported xfermask of the given device
2649 * @ap: Port on which the device to compute xfermask for resides
2650 * @dev: Device to compute xfermask for
2651 *
acf356b1
TH
2652 * Compute supported xfermask of @dev and store it in
2653 * dev->*_mask. This function is responsible for applying all
2654 * known limits including host controller limits, device
2655 * blacklist, etc...
a6d5a51c 2656 *
600511e8
TH
2657 * FIXME: The current implementation limits all transfer modes to
2658 * the fastest of the lowested device on the port. This is not
05c8e0ac 2659 * required on most controllers.
600511e8 2660 *
a6d5a51c
TH
2661 * LOCKING:
2662 * None.
a6d5a51c 2663 */
acf356b1 2664static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
1da177e4 2665{
5444a6f4 2666 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2667 unsigned long xfer_mask;
2668 int i;
1da177e4 2669
a6d5a51c
TH
2670 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
2671 ap->udma_mask);
1da177e4 2672
5444a6f4 2673 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2674 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2675 struct ata_device *d = &ap->device[i];
2676 if (!ata_dev_present(d))
2677 continue;
acf356b1
TH
2678 xfer_mask &= ata_pack_xfermask(d->pio_mask, d->mwdma_mask,
2679 d->udma_mask);
a6d5a51c
TH
2680 xfer_mask &= ata_id_xfermask(d->id);
2681 if (ata_dma_blacklisted(d))
2682 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
5444a6f4
AC
2683 /* Apply cable rule here. Don't apply it early because when
2684 we handle hot plug the cable type can itself change */
2685 if (ap->cbl == ATA_CBL_PATA40)
2686 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4
LT
2687 }
2688
a6d5a51c
TH
2689 if (ata_dma_blacklisted(dev))
2690 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2691 "disabling DMA\n", ap->id, dev->devno);
2692
5444a6f4
AC
2693 if (hs->flags & ATA_HOST_SIMPLEX) {
2694 if (hs->simplex_claimed)
2695 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2696 }
2697 if (ap->ops->mode_filter)
2698 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2699
acf356b1
TH
2700 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2701 &dev->udma_mask);
1da177e4
LT
2702}
2703
1da177e4
LT
2704/**
2705 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2706 * @ap: Port associated with device @dev
2707 * @dev: Device to which command will be sent
2708 *
780a87f7
JG
2709 * Issue SET FEATURES - XFER MODE command to device @dev
2710 * on port @ap.
2711 *
1da177e4 2712 * LOCKING:
0cba632b 2713 * PCI/etc. bus probe sem.
83206a29
TH
2714 *
2715 * RETURNS:
2716 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
2717 */
2718
83206a29
TH
2719static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2720 struct ata_device *dev)
1da177e4 2721{
a0123703 2722 struct ata_taskfile tf;
83206a29 2723 unsigned int err_mask;
1da177e4
LT
2724
2725 /* set up set-features taskfile */
2726 DPRINTK("set features - xfer mode\n");
2727
a0123703
TH
2728 ata_tf_init(ap, &tf, dev->devno);
2729 tf.command = ATA_CMD_SET_FEATURES;
2730 tf.feature = SETFEATURES_XFER;
2731 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2732 tf.protocol = ATA_PROT_NODATA;
2733 tf.nsect = dev->xfer_mode;
1da177e4 2734
83206a29 2735 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
1da177e4 2736
83206a29
TH
2737 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2738 return err_mask;
1da177e4
LT
2739}
2740
8bf62ece
AL
2741/**
2742 * ata_dev_init_params - Issue INIT DEV PARAMS command
2743 * @ap: Port associated with device @dev
2744 * @dev: Device to which command will be sent
e2a7f77a
RD
2745 * @heads: Number of heads (taskfile parameter)
2746 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
2747 *
2748 * LOCKING:
6aff8f1f
TH
2749 * Kernel thread context (may sleep)
2750 *
2751 * RETURNS:
2752 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece
AL
2753 */
2754
6aff8f1f 2755static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
2756 struct ata_device *dev,
2757 u16 heads,
2758 u16 sectors)
8bf62ece 2759{
a0123703 2760 struct ata_taskfile tf;
6aff8f1f 2761 unsigned int err_mask;
8bf62ece
AL
2762
2763 /* Number of sectors per track 1-255. Number of heads 1-16 */
2764 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 2765 return AC_ERR_INVALID;
8bf62ece
AL
2766
2767 /* set up init dev params taskfile */
2768 DPRINTK("init dev params \n");
2769
a0123703
TH
2770 ata_tf_init(ap, &tf, dev->devno);
2771 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2772 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2773 tf.protocol = ATA_PROT_NODATA;
2774 tf.nsect = sectors;
2775 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 2776
6aff8f1f 2777 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
8bf62ece 2778
6aff8f1f
TH
2779 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2780 return err_mask;
8bf62ece
AL
2781}
2782
1da177e4 2783/**
0cba632b
JG
2784 * ata_sg_clean - Unmap DMA memory associated with command
2785 * @qc: Command containing DMA memory to be released
2786 *
2787 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2788 *
2789 * LOCKING:
0cba632b 2790 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2791 */
2792
2793static void ata_sg_clean(struct ata_queued_cmd *qc)
2794{
2795 struct ata_port *ap = qc->ap;
cedc9a47 2796 struct scatterlist *sg = qc->__sg;
1da177e4 2797 int dir = qc->dma_dir;
cedc9a47 2798 void *pad_buf = NULL;
1da177e4 2799
a4631474
TH
2800 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2801 WARN_ON(sg == NULL);
1da177e4
LT
2802
2803 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 2804 WARN_ON(qc->n_elem > 1);
1da177e4 2805
2c13b7ce 2806 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 2807
cedc9a47
JG
2808 /* if we padded the buffer out to 32-bit bound, and data
2809 * xfer direction is from-device, we must copy from the
2810 * pad buffer back into the supplied buffer
2811 */
2812 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2813 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2814
2815 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 2816 if (qc->n_elem)
2f1f610b 2817 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
2818 /* restore last sg */
2819 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2820 if (pad_buf) {
2821 struct scatterlist *psg = &qc->pad_sgent;
2822 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2823 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 2824 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2825 }
2826 } else {
2e242fa9 2827 if (qc->n_elem)
2f1f610b 2828 dma_unmap_single(ap->dev,
e1410f2d
JG
2829 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2830 dir);
cedc9a47
JG
2831 /* restore sg */
2832 sg->length += qc->pad_len;
2833 if (pad_buf)
2834 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2835 pad_buf, qc->pad_len);
2836 }
1da177e4
LT
2837
2838 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 2839 qc->__sg = NULL;
1da177e4
LT
2840}
2841
2842/**
2843 * ata_fill_sg - Fill PCI IDE PRD table
2844 * @qc: Metadata associated with taskfile to be transferred
2845 *
780a87f7
JG
2846 * Fill PCI IDE PRD (scatter-gather) table with segments
2847 * associated with the current disk command.
2848 *
1da177e4 2849 * LOCKING:
780a87f7 2850 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2851 *
2852 */
2853static void ata_fill_sg(struct ata_queued_cmd *qc)
2854{
1da177e4 2855 struct ata_port *ap = qc->ap;
cedc9a47
JG
2856 struct scatterlist *sg;
2857 unsigned int idx;
1da177e4 2858
a4631474 2859 WARN_ON(qc->__sg == NULL);
f131883e 2860 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
2861
2862 idx = 0;
cedc9a47 2863 ata_for_each_sg(sg, qc) {
1da177e4
LT
2864 u32 addr, offset;
2865 u32 sg_len, len;
2866
2867 /* determine if physical DMA addr spans 64K boundary.
2868 * Note h/w doesn't support 64-bit, so we unconditionally
2869 * truncate dma_addr_t to u32.
2870 */
2871 addr = (u32) sg_dma_address(sg);
2872 sg_len = sg_dma_len(sg);
2873
2874 while (sg_len) {
2875 offset = addr & 0xffff;
2876 len = sg_len;
2877 if ((offset + sg_len) > 0x10000)
2878 len = 0x10000 - offset;
2879
2880 ap->prd[idx].addr = cpu_to_le32(addr);
2881 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2882 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2883
2884 idx++;
2885 sg_len -= len;
2886 addr += len;
2887 }
2888 }
2889
2890 if (idx)
2891 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2892}
2893/**
2894 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2895 * @qc: Metadata associated with taskfile to check
2896 *
780a87f7
JG
2897 * Allow low-level driver to filter ATA PACKET commands, returning
2898 * a status indicating whether or not it is OK to use DMA for the
2899 * supplied PACKET command.
2900 *
1da177e4 2901 * LOCKING:
0cba632b
JG
2902 * spin_lock_irqsave(host_set lock)
2903 *
1da177e4
LT
2904 * RETURNS: 0 when ATAPI DMA can be used
2905 * nonzero otherwise
2906 */
2907int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2908{
2909 struct ata_port *ap = qc->ap;
2910 int rc = 0; /* Assume ATAPI DMA is OK by default */
2911
2912 if (ap->ops->check_atapi_dma)
2913 rc = ap->ops->check_atapi_dma(qc);
2914
2915 return rc;
2916}
2917/**
2918 * ata_qc_prep - Prepare taskfile for submission
2919 * @qc: Metadata associated with taskfile to be prepared
2920 *
780a87f7
JG
2921 * Prepare ATA taskfile for submission.
2922 *
1da177e4
LT
2923 * LOCKING:
2924 * spin_lock_irqsave(host_set lock)
2925 */
2926void ata_qc_prep(struct ata_queued_cmd *qc)
2927{
2928 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2929 return;
2930
2931 ata_fill_sg(qc);
2932}
2933
e46834cd
BK
2934void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
2935
0cba632b
JG
2936/**
2937 * ata_sg_init_one - Associate command with memory buffer
2938 * @qc: Command to be associated
2939 * @buf: Memory buffer
2940 * @buflen: Length of memory buffer, in bytes.
2941 *
2942 * Initialize the data-related elements of queued_cmd @qc
2943 * to point to a single memory buffer, @buf of byte length @buflen.
2944 *
2945 * LOCKING:
2946 * spin_lock_irqsave(host_set lock)
2947 */
2948
1da177e4
LT
2949void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2950{
2951 struct scatterlist *sg;
2952
2953 qc->flags |= ATA_QCFLAG_SINGLE;
2954
2955 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 2956 qc->__sg = &qc->sgent;
1da177e4 2957 qc->n_elem = 1;
cedc9a47 2958 qc->orig_n_elem = 1;
1da177e4
LT
2959 qc->buf_virt = buf;
2960
cedc9a47 2961 sg = qc->__sg;
f0612bbc 2962 sg_init_one(sg, buf, buflen);
1da177e4
LT
2963}
2964
0cba632b
JG
2965/**
2966 * ata_sg_init - Associate command with scatter-gather table.
2967 * @qc: Command to be associated
2968 * @sg: Scatter-gather table.
2969 * @n_elem: Number of elements in s/g table.
2970 *
2971 * Initialize the data-related elements of queued_cmd @qc
2972 * to point to a scatter-gather table @sg, containing @n_elem
2973 * elements.
2974 *
2975 * LOCKING:
2976 * spin_lock_irqsave(host_set lock)
2977 */
2978
1da177e4
LT
2979void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2980 unsigned int n_elem)
2981{
2982 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 2983 qc->__sg = sg;
1da177e4 2984 qc->n_elem = n_elem;
cedc9a47 2985 qc->orig_n_elem = n_elem;
1da177e4
LT
2986}
2987
2988/**
0cba632b
JG
2989 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2990 * @qc: Command with memory buffer to be mapped.
2991 *
2992 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
2993 *
2994 * LOCKING:
2995 * spin_lock_irqsave(host_set lock)
2996 *
2997 * RETURNS:
0cba632b 2998 * Zero on success, negative on error.
1da177e4
LT
2999 */
3000
3001static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3002{
3003 struct ata_port *ap = qc->ap;
3004 int dir = qc->dma_dir;
cedc9a47 3005 struct scatterlist *sg = qc->__sg;
1da177e4 3006 dma_addr_t dma_address;
2e242fa9 3007 int trim_sg = 0;
1da177e4 3008
cedc9a47
JG
3009 /* we must lengthen transfers to end on a 32-bit boundary */
3010 qc->pad_len = sg->length & 3;
3011 if (qc->pad_len) {
3012 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3013 struct scatterlist *psg = &qc->pad_sgent;
3014
a4631474 3015 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3016
3017 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3018
3019 if (qc->tf.flags & ATA_TFLAG_WRITE)
3020 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3021 qc->pad_len);
3022
3023 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3024 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3025 /* trim sg */
3026 sg->length -= qc->pad_len;
2e242fa9
TH
3027 if (sg->length == 0)
3028 trim_sg = 1;
cedc9a47
JG
3029
3030 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3031 sg->length, qc->pad_len);
3032 }
3033
2e242fa9
TH
3034 if (trim_sg) {
3035 qc->n_elem--;
e1410f2d
JG
3036 goto skip_map;
3037 }
3038
2f1f610b 3039 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3040 sg->length, dir);
537a95d9
TH
3041 if (dma_mapping_error(dma_address)) {
3042 /* restore sg */
3043 sg->length += qc->pad_len;
1da177e4 3044 return -1;
537a95d9 3045 }
1da177e4
LT
3046
3047 sg_dma_address(sg) = dma_address;
32529e01 3048 sg_dma_len(sg) = sg->length;
1da177e4 3049
2e242fa9 3050skip_map:
1da177e4
LT
3051 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3052 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3053
3054 return 0;
3055}
3056
3057/**
0cba632b
JG
3058 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3059 * @qc: Command with scatter-gather table to be mapped.
3060 *
3061 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3062 *
3063 * LOCKING:
3064 * spin_lock_irqsave(host_set lock)
3065 *
3066 * RETURNS:
0cba632b 3067 * Zero on success, negative on error.
1da177e4
LT
3068 *
3069 */
3070
3071static int ata_sg_setup(struct ata_queued_cmd *qc)
3072{
3073 struct ata_port *ap = qc->ap;
cedc9a47
JG
3074 struct scatterlist *sg = qc->__sg;
3075 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3076 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3077
3078 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3079 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3080
cedc9a47
JG
3081 /* we must lengthen transfers to end on a 32-bit boundary */
3082 qc->pad_len = lsg->length & 3;
3083 if (qc->pad_len) {
3084 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3085 struct scatterlist *psg = &qc->pad_sgent;
3086 unsigned int offset;
3087
a4631474 3088 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3089
3090 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3091
3092 /*
3093 * psg->page/offset are used to copy to-be-written
3094 * data in this function or read data in ata_sg_clean.
3095 */
3096 offset = lsg->offset + lsg->length - qc->pad_len;
3097 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3098 psg->offset = offset_in_page(offset);
3099
3100 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3101 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3102 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3103 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3104 }
3105
3106 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3107 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3108 /* trim last sg */
3109 lsg->length -= qc->pad_len;
e1410f2d
JG
3110 if (lsg->length == 0)
3111 trim_sg = 1;
cedc9a47
JG
3112
3113 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3114 qc->n_elem - 1, lsg->length, qc->pad_len);
3115 }
3116
e1410f2d
JG
3117 pre_n_elem = qc->n_elem;
3118 if (trim_sg && pre_n_elem)
3119 pre_n_elem--;
3120
3121 if (!pre_n_elem) {
3122 n_elem = 0;
3123 goto skip_map;
3124 }
3125
1da177e4 3126 dir = qc->dma_dir;
2f1f610b 3127 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3128 if (n_elem < 1) {
3129 /* restore last sg */
3130 lsg->length += qc->pad_len;
1da177e4 3131 return -1;
537a95d9 3132 }
1da177e4
LT
3133
3134 DPRINTK("%d sg elements mapped\n", n_elem);
3135
e1410f2d 3136skip_map:
1da177e4
LT
3137 qc->n_elem = n_elem;
3138
3139 return 0;
3140}
3141
40e8c82c
TH
3142/**
3143 * ata_poll_qc_complete - turn irq back on and finish qc
3144 * @qc: Command to complete
8e8b77dd 3145 * @err_mask: ATA status register content
40e8c82c
TH
3146 *
3147 * LOCKING:
3148 * None. (grabs host lock)
3149 */
3150
a22e2eb0 3151void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3152{
3153 struct ata_port *ap = qc->ap;
b8f6153e 3154 unsigned long flags;
40e8c82c 3155
b8f6153e 3156 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
3157 ap->flags &= ~ATA_FLAG_NOINTR;
3158 ata_irq_on(ap);
a22e2eb0 3159 ata_qc_complete(qc);
b8f6153e 3160 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3161}
3162
1da177e4 3163/**
c893a3ae 3164 * ata_pio_poll - poll using PIO, depending on current state
6f0ef4fa 3165 * @ap: the target ata_port
1da177e4
LT
3166 *
3167 * LOCKING:
0cba632b 3168 * None. (executing in kernel thread context)
1da177e4
LT
3169 *
3170 * RETURNS:
6f0ef4fa 3171 * timeout value to use
1da177e4
LT
3172 */
3173
3174static unsigned long ata_pio_poll(struct ata_port *ap)
3175{
c14b8331 3176 struct ata_queued_cmd *qc;
1da177e4 3177 u8 status;
14be71f4
AL
3178 unsigned int poll_state = HSM_ST_UNKNOWN;
3179 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4 3180
c14b8331 3181 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3182 WARN_ON(qc == NULL);
c14b8331 3183
14be71f4
AL
3184 switch (ap->hsm_task_state) {
3185 case HSM_ST:
3186 case HSM_ST_POLL:
3187 poll_state = HSM_ST_POLL;
3188 reg_state = HSM_ST;
1da177e4 3189 break;
14be71f4
AL
3190 case HSM_ST_LAST:
3191 case HSM_ST_LAST_POLL:
3192 poll_state = HSM_ST_LAST_POLL;
3193 reg_state = HSM_ST_LAST;
1da177e4
LT
3194 break;
3195 default:
3196 BUG();
3197 break;
3198 }
3199
3200 status = ata_chk_status(ap);
3201 if (status & ATA_BUSY) {
3202 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3203 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3204 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3205 return 0;
3206 }
14be71f4 3207 ap->hsm_task_state = poll_state;
1da177e4
LT
3208 return ATA_SHORT_PAUSE;
3209 }
3210
14be71f4 3211 ap->hsm_task_state = reg_state;
1da177e4
LT
3212 return 0;
3213}
3214
3215/**
6f0ef4fa
RD
3216 * ata_pio_complete - check if drive is busy or idle
3217 * @ap: the target ata_port
1da177e4
LT
3218 *
3219 * LOCKING:
0cba632b 3220 * None. (executing in kernel thread context)
7fb6ec28
JG
3221 *
3222 * RETURNS:
3223 * Non-zero if qc completed, zero otherwise.
1da177e4
LT
3224 */
3225
7fb6ec28 3226static int ata_pio_complete (struct ata_port *ap)
1da177e4
LT
3227{
3228 struct ata_queued_cmd *qc;
3229 u8 drv_stat;
3230
3231 /*
31433ea3
AC
3232 * This is purely heuristic. This is a fast path. Sometimes when
3233 * we enter, BSY will be cleared in a chk-status or two. If not,
3234 * the drive is probably seeking or something. Snooze for a couple
3235 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3236 * HSM_ST_POLL state.
1da177e4 3237 */
fe79e683
AL
3238 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3239 if (drv_stat & ATA_BUSY) {
1da177e4 3240 msleep(2);
fe79e683
AL
3241 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3242 if (drv_stat & ATA_BUSY) {
14be71f4 3243 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3244 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3245 return 0;
1da177e4
LT
3246 }
3247 }
3248
c14b8331 3249 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3250 WARN_ON(qc == NULL);
c14b8331 3251
1da177e4
LT
3252 drv_stat = ata_wait_idle(ap);
3253 if (!ata_ok(drv_stat)) {
1c848984 3254 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3255 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3256 return 0;
1da177e4
LT
3257 }
3258
14be71f4 3259 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3260
a4631474 3261 WARN_ON(qc->err_mask);
a22e2eb0 3262 ata_poll_qc_complete(qc);
7fb6ec28
JG
3263
3264 /* another command may start at this point */
3265
3266 return 1;
1da177e4
LT
3267}
3268
0baab86b
EF
3269
3270/**
c893a3ae 3271 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3272 * @buf: Buffer to swap
3273 * @buf_words: Number of 16-bit words in buffer.
3274 *
3275 * Swap halves of 16-bit words if needed to convert from
3276 * little-endian byte order to native cpu byte order, or
3277 * vice-versa.
3278 *
3279 * LOCKING:
6f0ef4fa 3280 * Inherited from caller.
0baab86b 3281 */
1da177e4
LT
3282void swap_buf_le16(u16 *buf, unsigned int buf_words)
3283{
3284#ifdef __BIG_ENDIAN
3285 unsigned int i;
3286
3287 for (i = 0; i < buf_words; i++)
3288 buf[i] = le16_to_cpu(buf[i]);
3289#endif /* __BIG_ENDIAN */
3290}
3291
6ae4cfb5
AL
3292/**
3293 * ata_mmio_data_xfer - Transfer data by MMIO
3294 * @ap: port to read/write
3295 * @buf: data buffer
3296 * @buflen: buffer length
344babaa 3297 * @write_data: read/write
6ae4cfb5
AL
3298 *
3299 * Transfer data from/to the device data register by MMIO.
3300 *
3301 * LOCKING:
3302 * Inherited from caller.
6ae4cfb5
AL
3303 */
3304
1da177e4
LT
3305static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3306 unsigned int buflen, int write_data)
3307{
3308 unsigned int i;
3309 unsigned int words = buflen >> 1;
3310 u16 *buf16 = (u16 *) buf;
3311 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3312
6ae4cfb5 3313 /* Transfer multiple of 2 bytes */
1da177e4
LT
3314 if (write_data) {
3315 for (i = 0; i < words; i++)
3316 writew(le16_to_cpu(buf16[i]), mmio);
3317 } else {
3318 for (i = 0; i < words; i++)
3319 buf16[i] = cpu_to_le16(readw(mmio));
3320 }
6ae4cfb5
AL
3321
3322 /* Transfer trailing 1 byte, if any. */
3323 if (unlikely(buflen & 0x01)) {
3324 u16 align_buf[1] = { 0 };
3325 unsigned char *trailing_buf = buf + buflen - 1;
3326
3327 if (write_data) {
3328 memcpy(align_buf, trailing_buf, 1);
3329 writew(le16_to_cpu(align_buf[0]), mmio);
3330 } else {
3331 align_buf[0] = cpu_to_le16(readw(mmio));
3332 memcpy(trailing_buf, align_buf, 1);
3333 }
3334 }
1da177e4
LT
3335}
3336
6ae4cfb5
AL
3337/**
3338 * ata_pio_data_xfer - Transfer data by PIO
3339 * @ap: port to read/write
3340 * @buf: data buffer
3341 * @buflen: buffer length
344babaa 3342 * @write_data: read/write
6ae4cfb5
AL
3343 *
3344 * Transfer data from/to the device data register by PIO.
3345 *
3346 * LOCKING:
3347 * Inherited from caller.
6ae4cfb5
AL
3348 */
3349
1da177e4
LT
3350static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3351 unsigned int buflen, int write_data)
3352{
6ae4cfb5 3353 unsigned int words = buflen >> 1;
1da177e4 3354
6ae4cfb5 3355 /* Transfer multiple of 2 bytes */
1da177e4 3356 if (write_data)
6ae4cfb5 3357 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3358 else
6ae4cfb5
AL
3359 insw(ap->ioaddr.data_addr, buf, words);
3360
3361 /* Transfer trailing 1 byte, if any. */
3362 if (unlikely(buflen & 0x01)) {
3363 u16 align_buf[1] = { 0 };
3364 unsigned char *trailing_buf = buf + buflen - 1;
3365
3366 if (write_data) {
3367 memcpy(align_buf, trailing_buf, 1);
3368 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3369 } else {
3370 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3371 memcpy(trailing_buf, align_buf, 1);
3372 }
3373 }
1da177e4
LT
3374}
3375
6ae4cfb5
AL
3376/**
3377 * ata_data_xfer - Transfer data from/to the data register.
3378 * @ap: port to read/write
3379 * @buf: data buffer
3380 * @buflen: buffer length
3381 * @do_write: read/write
3382 *
3383 * Transfer data from/to the device data register.
3384 *
3385 * LOCKING:
3386 * Inherited from caller.
6ae4cfb5
AL
3387 */
3388
1da177e4
LT
3389static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3390 unsigned int buflen, int do_write)
3391{
a1bd9e68
AC
3392 /* Make the crap hardware pay the costs not the good stuff */
3393 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3394 unsigned long flags;
3395 local_irq_save(flags);
3396 if (ap->flags & ATA_FLAG_MMIO)
3397 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3398 else
3399 ata_pio_data_xfer(ap, buf, buflen, do_write);
3400 local_irq_restore(flags);
3401 } else {
3402 if (ap->flags & ATA_FLAG_MMIO)
3403 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3404 else
3405 ata_pio_data_xfer(ap, buf, buflen, do_write);
3406 }
1da177e4
LT
3407}
3408
6ae4cfb5
AL
3409/**
3410 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3411 * @qc: Command on going
3412 *
3413 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3414 *
3415 * LOCKING:
3416 * Inherited from caller.
3417 */
3418
1da177e4
LT
3419static void ata_pio_sector(struct ata_queued_cmd *qc)
3420{
3421 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3422 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3423 struct ata_port *ap = qc->ap;
3424 struct page *page;
3425 unsigned int offset;
3426 unsigned char *buf;
3427
3428 if (qc->cursect == (qc->nsect - 1))
14be71f4 3429 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3430
3431 page = sg[qc->cursg].page;
3432 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3433
3434 /* get the current page and offset */
3435 page = nth_page(page, (offset >> PAGE_SHIFT));
3436 offset %= PAGE_SIZE;
3437
3438 buf = kmap(page) + offset;
3439
3440 qc->cursect++;
3441 qc->cursg_ofs++;
3442
32529e01 3443 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3444 qc->cursg++;
3445 qc->cursg_ofs = 0;
3446 }
3447
3448 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3449
3450 /* do the actual data transfer */
3451 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3452 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3453
3454 kunmap(page);
3455}
3456
6ae4cfb5
AL
3457/**
3458 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3459 * @qc: Command on going
3460 * @bytes: number of bytes
3461 *
3462 * Transfer Transfer data from/to the ATAPI device.
3463 *
3464 * LOCKING:
3465 * Inherited from caller.
3466 *
3467 */
3468
1da177e4
LT
3469static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3470{
3471 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3472 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3473 struct ata_port *ap = qc->ap;
3474 struct page *page;
3475 unsigned char *buf;
3476 unsigned int offset, count;
3477
563a6e1f 3478 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3479 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3480
3481next_sg:
563a6e1f 3482 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3483 /*
563a6e1f
AL
3484 * The end of qc->sg is reached and the device expects
3485 * more data to transfer. In order not to overrun qc->sg
3486 * and fulfill length specified in the byte count register,
3487 * - for read case, discard trailing data from the device
3488 * - for write case, padding zero data to the device
3489 */
3490 u16 pad_buf[1] = { 0 };
3491 unsigned int words = bytes >> 1;
3492 unsigned int i;
3493
3494 if (words) /* warning if bytes > 1 */
7fb6ec28 3495 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3496 ap->id, bytes);
3497
3498 for (i = 0; i < words; i++)
3499 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3500
14be71f4 3501 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3502 return;
3503 }
3504
cedc9a47 3505 sg = &qc->__sg[qc->cursg];
1da177e4 3506
1da177e4
LT
3507 page = sg->page;
3508 offset = sg->offset + qc->cursg_ofs;
3509
3510 /* get the current page and offset */
3511 page = nth_page(page, (offset >> PAGE_SHIFT));
3512 offset %= PAGE_SIZE;
3513
6952df03 3514 /* don't overrun current sg */
32529e01 3515 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3516
3517 /* don't cross page boundaries */
3518 count = min(count, (unsigned int)PAGE_SIZE - offset);
3519
3520 buf = kmap(page) + offset;
3521
3522 bytes -= count;
3523 qc->curbytes += count;
3524 qc->cursg_ofs += count;
3525
32529e01 3526 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3527 qc->cursg++;
3528 qc->cursg_ofs = 0;
3529 }
3530
3531 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3532
3533 /* do the actual data transfer */
3534 ata_data_xfer(ap, buf, count, do_write);
3535
3536 kunmap(page);
3537
563a6e1f 3538 if (bytes)
1da177e4 3539 goto next_sg;
1da177e4
LT
3540}
3541
6ae4cfb5
AL
3542/**
3543 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3544 * @qc: Command on going
3545 *
3546 * Transfer Transfer data from/to the ATAPI device.
3547 *
3548 * LOCKING:
3549 * Inherited from caller.
6ae4cfb5
AL
3550 */
3551
1da177e4
LT
3552static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3553{
3554 struct ata_port *ap = qc->ap;
3555 struct ata_device *dev = qc->dev;
3556 unsigned int ireason, bc_lo, bc_hi, bytes;
3557 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3558
3559 ap->ops->tf_read(ap, &qc->tf);
3560 ireason = qc->tf.nsect;
3561 bc_lo = qc->tf.lbam;
3562 bc_hi = qc->tf.lbah;
3563 bytes = (bc_hi << 8) | bc_lo;
3564
3565 /* shall be cleared to zero, indicating xfer of data */
3566 if (ireason & (1 << 0))
3567 goto err_out;
3568
3569 /* make sure transfer direction matches expected */
3570 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3571 if (do_write != i_write)
3572 goto err_out;
3573
3574 __atapi_pio_bytes(qc, bytes);
3575
3576 return;
3577
3578err_out:
3579 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3580 ap->id, dev->devno);
11a56d24 3581 qc->err_mask |= AC_ERR_HSM;
14be71f4 3582 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3583}
3584
3585/**
6f0ef4fa
RD
3586 * ata_pio_block - start PIO on a block
3587 * @ap: the target ata_port
1da177e4
LT
3588 *
3589 * LOCKING:
0cba632b 3590 * None. (executing in kernel thread context)
1da177e4
LT
3591 */
3592
3593static void ata_pio_block(struct ata_port *ap)
3594{
3595 struct ata_queued_cmd *qc;
3596 u8 status;
3597
3598 /*
6f0ef4fa 3599 * This is purely heuristic. This is a fast path.
1da177e4
LT
3600 * Sometimes when we enter, BSY will be cleared in
3601 * a chk-status or two. If not, the drive is probably seeking
3602 * or something. Snooze for a couple msecs, then
3603 * chk-status again. If still busy, fall back to
14be71f4 3604 * HSM_ST_POLL state.
1da177e4
LT
3605 */
3606 status = ata_busy_wait(ap, ATA_BUSY, 5);
3607 if (status & ATA_BUSY) {
3608 msleep(2);
3609 status = ata_busy_wait(ap, ATA_BUSY, 10);
3610 if (status & ATA_BUSY) {
14be71f4 3611 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3612 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3613 return;
3614 }
3615 }
3616
3617 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3618 WARN_ON(qc == NULL);
1da177e4 3619
fe79e683
AL
3620 /* check error */
3621 if (status & (ATA_ERR | ATA_DF)) {
3622 qc->err_mask |= AC_ERR_DEV;
3623 ap->hsm_task_state = HSM_ST_ERR;
3624 return;
3625 }
3626
3627 /* transfer data if any */
1da177e4 3628 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3629 /* DRQ=0 means no more data to transfer */
1da177e4 3630 if ((status & ATA_DRQ) == 0) {
14be71f4 3631 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3632 return;
3633 }
3634
3635 atapi_pio_bytes(qc);
3636 } else {
3637 /* handle BSY=0, DRQ=0 as error */
3638 if ((status & ATA_DRQ) == 0) {
11a56d24 3639 qc->err_mask |= AC_ERR_HSM;
14be71f4 3640 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3641 return;
3642 }
3643
3644 ata_pio_sector(qc);
3645 }
bb31a8fa
AL
3646
3647 ata_altstatus(ap); /* flush */
1da177e4
LT
3648}
3649
3650static void ata_pio_error(struct ata_port *ap)
3651{
3652 struct ata_queued_cmd *qc;
a7dac447 3653
1da177e4 3654 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3655 WARN_ON(qc == NULL);
1da177e4 3656
0565c26d
AL
3657 if (qc->tf.command != ATA_CMD_PACKET)
3658 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3659
2e9edbf8 3660 /* make sure qc->err_mask is available to
1c848984
AL
3661 * know what's wrong and recover
3662 */
a4631474 3663 WARN_ON(qc->err_mask == 0);
1c848984 3664
14be71f4 3665 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3666
a22e2eb0 3667 ata_poll_qc_complete(qc);
1da177e4
LT
3668}
3669
3670static void ata_pio_task(void *_data)
3671{
3672 struct ata_port *ap = _data;
7fb6ec28
JG
3673 unsigned long timeout;
3674 int qc_completed;
3675
3676fsm_start:
3677 timeout = 0;
3678 qc_completed = 0;
1da177e4 3679
14be71f4
AL
3680 switch (ap->hsm_task_state) {
3681 case HSM_ST_IDLE:
1da177e4
LT
3682 return;
3683
14be71f4 3684 case HSM_ST:
1da177e4
LT
3685 ata_pio_block(ap);
3686 break;
3687
14be71f4 3688 case HSM_ST_LAST:
7fb6ec28 3689 qc_completed = ata_pio_complete(ap);
1da177e4
LT
3690 break;
3691
14be71f4
AL
3692 case HSM_ST_POLL:
3693 case HSM_ST_LAST_POLL:
1da177e4
LT
3694 timeout = ata_pio_poll(ap);
3695 break;
3696
14be71f4
AL
3697 case HSM_ST_TMOUT:
3698 case HSM_ST_ERR:
1da177e4
LT
3699 ata_pio_error(ap);
3700 return;
3701 }
3702
3703 if (timeout)
8061f5f0 3704 ata_port_queue_task(ap, ata_pio_task, ap, timeout);
7fb6ec28
JG
3705 else if (!qc_completed)
3706 goto fsm_start;
1da177e4
LT
3707}
3708
8061f5f0
TH
3709/**
3710 * atapi_packet_task - Write CDB bytes to hardware
3711 * @_data: Port to which ATAPI device is attached.
3712 *
3713 * When device has indicated its readiness to accept
3714 * a CDB, this function is called. Send the CDB.
3715 * If DMA is to be performed, exit immediately.
3716 * Otherwise, we are in polling mode, so poll
3717 * status under operation succeeds or fails.
3718 *
3719 * LOCKING:
3720 * Kernel thread context (may sleep)
3721 */
3722
3723static void atapi_packet_task(void *_data)
3724{
3725 struct ata_port *ap = _data;
3726 struct ata_queued_cmd *qc;
3727 u8 status;
3728
3729 qc = ata_qc_from_tag(ap, ap->active_tag);
3730 WARN_ON(qc == NULL);
3731 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3732
3733 /* sleep-wait for BSY to clear */
3734 DPRINTK("busy wait\n");
3735 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3736 qc->err_mask |= AC_ERR_TIMEOUT;
3737 goto err_out;
3738 }
3739
3740 /* make sure DRQ is set */
3741 status = ata_chk_status(ap);
3742 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3743 qc->err_mask |= AC_ERR_HSM;
3744 goto err_out;
3745 }
3746
3747 /* send SCSI cdb */
3748 DPRINTK("send cdb\n");
3749 WARN_ON(qc->dev->cdb_len < 12);
3750
3751 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3752 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3753 unsigned long flags;
3754
3755 /* Once we're done issuing command and kicking bmdma,
3756 * irq handler takes over. To not lose irq, we need
3757 * to clear NOINTR flag before sending cdb, but
3758 * interrupt handler shouldn't be invoked before we're
3759 * finished. Hence, the following locking.
3760 */
3761 spin_lock_irqsave(&ap->host_set->lock, flags);
3762 ap->flags &= ~ATA_FLAG_NOINTR;
3763 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
bb31a8fa
AL
3764 ata_altstatus(ap); /* flush */
3765
8061f5f0
TH
3766 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3767 ap->ops->bmdma_start(qc); /* initiate bmdma */
3768 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3769 } else {
3770 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
bb31a8fa 3771 ata_altstatus(ap); /* flush */
8061f5f0
TH
3772
3773 /* PIO commands are handled by polling */
3774 ap->hsm_task_state = HSM_ST;
3775 ata_port_queue_task(ap, ata_pio_task, ap, 0);
3776 }
3777
3778 return;
3779
3780err_out:
3781 ata_poll_qc_complete(qc);
3782}
3783
1da177e4
LT
3784/**
3785 * ata_qc_timeout - Handle timeout of queued command
3786 * @qc: Command that timed out
3787 *
3788 * Some part of the kernel (currently, only the SCSI layer)
3789 * has noticed that the active command on port @ap has not
3790 * completed after a specified length of time. Handle this
3791 * condition by disabling DMA (if necessary) and completing
3792 * transactions, with error if necessary.
3793 *
3794 * This also handles the case of the "lost interrupt", where
3795 * for some reason (possibly hardware bug, possibly driver bug)
3796 * an interrupt was not delivered to the driver, even though the
3797 * transaction completed successfully.
3798 *
3799 * LOCKING:
0cba632b 3800 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3801 */
3802
3803static void ata_qc_timeout(struct ata_queued_cmd *qc)
3804{
3805 struct ata_port *ap = qc->ap;
b8f6153e 3806 struct ata_host_set *host_set = ap->host_set;
1da177e4 3807 u8 host_stat = 0, drv_stat;
b8f6153e 3808 unsigned long flags;
1da177e4
LT
3809
3810 DPRINTK("ENTER\n");
3811
c18d06f8
TH
3812 ap->hsm_task_state = HSM_ST_IDLE;
3813
b8f6153e
JG
3814 spin_lock_irqsave(&host_set->lock, flags);
3815
1da177e4
LT
3816 switch (qc->tf.protocol) {
3817
3818 case ATA_PROT_DMA:
3819 case ATA_PROT_ATAPI_DMA:
3820 host_stat = ap->ops->bmdma_status(ap);
3821
3822 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3823 ap->ops->bmdma_stop(qc);
1da177e4
LT
3824
3825 /* fall through */
3826
3827 default:
3828 ata_altstatus(ap);
3829 drv_stat = ata_chk_status(ap);
3830
3831 /* ack bmdma irq events */
3832 ap->ops->irq_clear(ap);
3833
3834 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3835 ap->id, qc->tf.command, drv_stat, host_stat);
3836
3837 /* complete taskfile transaction */
a22e2eb0 3838 qc->err_mask |= ac_err_mask(drv_stat);
1da177e4
LT
3839 break;
3840 }
b8f6153e
JG
3841
3842 spin_unlock_irqrestore(&host_set->lock, flags);
3843
a72ec4ce
TH
3844 ata_eh_qc_complete(qc);
3845
1da177e4
LT
3846 DPRINTK("EXIT\n");
3847}
3848
3849/**
3850 * ata_eng_timeout - Handle timeout of queued command
3851 * @ap: Port on which timed-out command is active
3852 *
3853 * Some part of the kernel (currently, only the SCSI layer)
3854 * has noticed that the active command on port @ap has not
3855 * completed after a specified length of time. Handle this
3856 * condition by disabling DMA (if necessary) and completing
3857 * transactions, with error if necessary.
3858 *
3859 * This also handles the case of the "lost interrupt", where
3860 * for some reason (possibly hardware bug, possibly driver bug)
3861 * an interrupt was not delivered to the driver, even though the
3862 * transaction completed successfully.
3863 *
3864 * LOCKING:
3865 * Inherited from SCSI layer (none, can sleep)
3866 */
3867
3868void ata_eng_timeout(struct ata_port *ap)
3869{
1da177e4
LT
3870 DPRINTK("ENTER\n");
3871
f6379020 3872 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
1da177e4 3873
1da177e4
LT
3874 DPRINTK("EXIT\n");
3875}
3876
3877/**
3878 * ata_qc_new - Request an available ATA command, for queueing
3879 * @ap: Port associated with device @dev
3880 * @dev: Device from whom we request an available command structure
3881 *
3882 * LOCKING:
0cba632b 3883 * None.
1da177e4
LT
3884 */
3885
3886static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3887{
3888 struct ata_queued_cmd *qc = NULL;
3889 unsigned int i;
3890
3891 for (i = 0; i < ATA_MAX_QUEUE; i++)
3892 if (!test_and_set_bit(i, &ap->qactive)) {
3893 qc = ata_qc_from_tag(ap, i);
3894 break;
3895 }
3896
3897 if (qc)
3898 qc->tag = i;
3899
3900 return qc;
3901}
3902
3903/**
3904 * ata_qc_new_init - Request an available ATA command, and initialize it
3905 * @ap: Port associated with device @dev
3906 * @dev: Device from whom we request an available command structure
3907 *
3908 * LOCKING:
0cba632b 3909 * None.
1da177e4
LT
3910 */
3911
3912struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3913 struct ata_device *dev)
3914{
3915 struct ata_queued_cmd *qc;
3916
3917 qc = ata_qc_new(ap);
3918 if (qc) {
1da177e4
LT
3919 qc->scsicmd = NULL;
3920 qc->ap = ap;
3921 qc->dev = dev;
1da177e4 3922
2c13b7ce 3923 ata_qc_reinit(qc);
1da177e4
LT
3924 }
3925
3926 return qc;
3927}
3928
1da177e4
LT
3929/**
3930 * ata_qc_free - free unused ata_queued_cmd
3931 * @qc: Command to complete
3932 *
3933 * Designed to free unused ata_queued_cmd object
3934 * in case something prevents using it.
3935 *
3936 * LOCKING:
0cba632b 3937 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3938 */
3939void ata_qc_free(struct ata_queued_cmd *qc)
3940{
4ba946e9
TH
3941 struct ata_port *ap = qc->ap;
3942 unsigned int tag;
3943
a4631474 3944 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 3945
4ba946e9
TH
3946 qc->flags = 0;
3947 tag = qc->tag;
3948 if (likely(ata_tag_valid(tag))) {
3949 if (tag == ap->active_tag)
3950 ap->active_tag = ATA_TAG_POISON;
3951 qc->tag = ATA_TAG_POISON;
3952 clear_bit(tag, &ap->qactive);
3953 }
1da177e4
LT
3954}
3955
76014427 3956void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 3957{
a4631474
TH
3958 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3959 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
3960
3961 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3962 ata_sg_clean(qc);
3963
3f3791d3
AL
3964 /* atapi: mark qc as inactive to prevent the interrupt handler
3965 * from completing the command twice later, before the error handler
3966 * is called. (when rc != 0 and atapi request sense is needed)
3967 */
3968 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3969
1da177e4 3970 /* call completion callback */
77853bf2 3971 qc->complete_fn(qc);
1da177e4
LT
3972}
3973
3974static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3975{
3976 struct ata_port *ap = qc->ap;
3977
3978 switch (qc->tf.protocol) {
3979 case ATA_PROT_DMA:
3980 case ATA_PROT_ATAPI_DMA:
3981 return 1;
3982
3983 case ATA_PROT_ATAPI:
3984 case ATA_PROT_PIO:
1da177e4
LT
3985 if (ap->flags & ATA_FLAG_PIO_DMA)
3986 return 1;
3987
3988 /* fall through */
3989
3990 default:
3991 return 0;
3992 }
3993
3994 /* never reached */
3995}
3996
3997/**
3998 * ata_qc_issue - issue taskfile to device
3999 * @qc: command to issue to device
4000 *
4001 * Prepare an ATA command to submission to device.
4002 * This includes mapping the data into a DMA-able
4003 * area, filling in the S/G table, and finally
4004 * writing the taskfile to hardware, starting the command.
4005 *
4006 * LOCKING:
4007 * spin_lock_irqsave(host_set lock)
1da177e4 4008 */
8e0e694a 4009void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4010{
4011 struct ata_port *ap = qc->ap;
4012
e4a70e76
TH
4013 qc->ap->active_tag = qc->tag;
4014 qc->flags |= ATA_QCFLAG_ACTIVE;
4015
1da177e4
LT
4016 if (ata_should_dma_map(qc)) {
4017 if (qc->flags & ATA_QCFLAG_SG) {
4018 if (ata_sg_setup(qc))
8e436af9 4019 goto sg_err;
1da177e4
LT
4020 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4021 if (ata_sg_setup_one(qc))
8e436af9 4022 goto sg_err;
1da177e4
LT
4023 }
4024 } else {
4025 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4026 }
4027
4028 ap->ops->qc_prep(qc);
4029
8e0e694a
TH
4030 qc->err_mask |= ap->ops->qc_issue(qc);
4031 if (unlikely(qc->err_mask))
4032 goto err;
4033 return;
1da177e4 4034
8e436af9
TH
4035sg_err:
4036 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4037 qc->err_mask |= AC_ERR_SYSTEM;
4038err:
4039 ata_qc_complete(qc);
1da177e4
LT
4040}
4041
4042/**
4043 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4044 * @qc: command to issue to device
4045 *
4046 * Using various libata functions and hooks, this function
4047 * starts an ATA command. ATA commands are grouped into
4048 * classes called "protocols", and issuing each type of protocol
4049 * is slightly different.
4050 *
0baab86b
EF
4051 * May be used as the qc_issue() entry in ata_port_operations.
4052 *
1da177e4
LT
4053 * LOCKING:
4054 * spin_lock_irqsave(host_set lock)
4055 *
4056 * RETURNS:
9a3d9eb0 4057 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4058 */
4059
9a3d9eb0 4060unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4061{
4062 struct ata_port *ap = qc->ap;
4063
4064 ata_dev_select(ap, qc->dev->devno, 1, 0);
4065
4066 switch (qc->tf.protocol) {
4067 case ATA_PROT_NODATA:
e5338254 4068 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
4069 break;
4070
4071 case ATA_PROT_DMA:
4072 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4073 ap->ops->bmdma_setup(qc); /* set up bmdma */
4074 ap->ops->bmdma_start(qc); /* initiate bmdma */
4075 break;
4076
4077 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4078 ata_qc_set_polling(qc);
e5338254 4079 ata_tf_to_host(ap, &qc->tf);
14be71f4 4080 ap->hsm_task_state = HSM_ST;
8061f5f0 4081 ata_port_queue_task(ap, ata_pio_task, ap, 0);
1da177e4
LT
4082 break;
4083
4084 case ATA_PROT_ATAPI:
4085 ata_qc_set_polling(qc);
e5338254 4086 ata_tf_to_host(ap, &qc->tf);
8061f5f0 4087 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4088 break;
4089
4090 case ATA_PROT_ATAPI_NODATA:
c1389503 4091 ap->flags |= ATA_FLAG_NOINTR;
e5338254 4092 ata_tf_to_host(ap, &qc->tf);
8061f5f0 4093 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4094 break;
4095
4096 case ATA_PROT_ATAPI_DMA:
c1389503 4097 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
4098 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4099 ap->ops->bmdma_setup(qc); /* set up bmdma */
8061f5f0 4100 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4101 break;
4102
4103 default:
4104 WARN_ON(1);
9a3d9eb0 4105 return AC_ERR_SYSTEM;
1da177e4
LT
4106 }
4107
4108 return 0;
4109}
4110
1da177e4
LT
4111/**
4112 * ata_host_intr - Handle host interrupt for given (port, task)
4113 * @ap: Port on which interrupt arrived (possibly...)
4114 * @qc: Taskfile currently active in engine
4115 *
4116 * Handle host interrupt for given queued command. Currently,
4117 * only DMA interrupts are handled. All other commands are
4118 * handled via polling with interrupts disabled (nIEN bit).
4119 *
4120 * LOCKING:
4121 * spin_lock_irqsave(host_set lock)
4122 *
4123 * RETURNS:
4124 * One if interrupt was handled, zero if not (shared irq).
4125 */
4126
4127inline unsigned int ata_host_intr (struct ata_port *ap,
4128 struct ata_queued_cmd *qc)
4129{
4130 u8 status, host_stat;
4131
4132 switch (qc->tf.protocol) {
4133
4134 case ATA_PROT_DMA:
4135 case ATA_PROT_ATAPI_DMA:
4136 case ATA_PROT_ATAPI:
4137 /* check status of DMA engine */
4138 host_stat = ap->ops->bmdma_status(ap);
4139 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4140
4141 /* if it's not our irq... */
4142 if (!(host_stat & ATA_DMA_INTR))
4143 goto idle_irq;
4144
4145 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4146 ap->ops->bmdma_stop(qc);
1da177e4
LT
4147
4148 /* fall through */
4149
4150 case ATA_PROT_ATAPI_NODATA:
4151 case ATA_PROT_NODATA:
4152 /* check altstatus */
4153 status = ata_altstatus(ap);
4154 if (status & ATA_BUSY)
4155 goto idle_irq;
4156
4157 /* check main status, clearing INTRQ */
4158 status = ata_chk_status(ap);
4159 if (unlikely(status & ATA_BUSY))
4160 goto idle_irq;
4161 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4162 ap->id, qc->tf.protocol, status);
4163
4164 /* ack bmdma irq events */
4165 ap->ops->irq_clear(ap);
4166
4167 /* complete taskfile transaction */
a22e2eb0
AL
4168 qc->err_mask |= ac_err_mask(status);
4169 ata_qc_complete(qc);
1da177e4
LT
4170 break;
4171
4172 default:
4173 goto idle_irq;
4174 }
4175
4176 return 1; /* irq handled */
4177
4178idle_irq:
4179 ap->stats.idle_irq++;
4180
4181#ifdef ATA_IRQ_TRAP
4182 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4
LT
4183 ata_irq_ack(ap, 0); /* debug trap */
4184 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
23cfce89 4185 return 1;
1da177e4
LT
4186 }
4187#endif
4188 return 0; /* irq not handled */
4189}
4190
4191/**
4192 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4193 * @irq: irq line (unused)
4194 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4195 * @regs: unused
4196 *
0cba632b
JG
4197 * Default interrupt handler for PCI IDE devices. Calls
4198 * ata_host_intr() for each port that is not disabled.
4199 *
1da177e4 4200 * LOCKING:
0cba632b 4201 * Obtains host_set lock during operation.
1da177e4
LT
4202 *
4203 * RETURNS:
0cba632b 4204 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4205 */
4206
4207irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4208{
4209 struct ata_host_set *host_set = dev_instance;
4210 unsigned int i;
4211 unsigned int handled = 0;
4212 unsigned long flags;
4213
4214 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4215 spin_lock_irqsave(&host_set->lock, flags);
4216
4217 for (i = 0; i < host_set->n_ports; i++) {
4218 struct ata_port *ap;
4219
4220 ap = host_set->ports[i];
c1389503
TH
4221 if (ap &&
4222 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4223 struct ata_queued_cmd *qc;
4224
4225 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4226 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4227 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4228 handled |= ata_host_intr(ap, qc);
4229 }
4230 }
4231
4232 spin_unlock_irqrestore(&host_set->lock, flags);
4233
4234 return IRQ_RETVAL(handled);
4235}
4236
0baab86b 4237
9b847548
JA
4238/*
4239 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4240 * without filling any other registers
4241 */
4242static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4243 u8 cmd)
4244{
4245 struct ata_taskfile tf;
4246 int err;
4247
4248 ata_tf_init(ap, &tf, dev->devno);
4249
4250 tf.command = cmd;
4251 tf.flags |= ATA_TFLAG_DEVICE;
4252 tf.protocol = ATA_PROT_NODATA;
4253
4254 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4255 if (err)
4256 printk(KERN_ERR "%s: ata command failed: %d\n",
4257 __FUNCTION__, err);
4258
4259 return err;
4260}
4261
4262static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4263{
4264 u8 cmd;
4265
4266 if (!ata_try_flush_cache(dev))
4267 return 0;
4268
4269 if (ata_id_has_flush_ext(dev->id))
4270 cmd = ATA_CMD_FLUSH_EXT;
4271 else
4272 cmd = ATA_CMD_FLUSH;
4273
4274 return ata_do_simple_cmd(ap, dev, cmd);
4275}
4276
4277static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4278{
4279 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4280}
4281
4282static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4283{
4284 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4285}
4286
4287/**
4288 * ata_device_resume - wakeup a previously suspended devices
c893a3ae
RD
4289 * @ap: port the device is connected to
4290 * @dev: the device to resume
9b847548
JA
4291 *
4292 * Kick the drive back into action, by sending it an idle immediate
4293 * command and making sure its transfer mode matches between drive
4294 * and host.
4295 *
4296 */
4297int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4298{
4299 if (ap->flags & ATA_FLAG_SUSPENDED) {
4300 ap->flags &= ~ATA_FLAG_SUSPENDED;
4301 ata_set_mode(ap);
4302 }
4303 if (!ata_dev_present(dev))
4304 return 0;
4305 if (dev->class == ATA_DEV_ATA)
4306 ata_start_drive(ap, dev);
4307
4308 return 0;
4309}
4310
4311/**
4312 * ata_device_suspend - prepare a device for suspend
c893a3ae
RD
4313 * @ap: port the device is connected to
4314 * @dev: the device to suspend
e2a7f77a 4315 * @state: target power management state
9b847548
JA
4316 *
4317 * Flush the cache on the drive, if appropriate, then issue a
4318 * standbynow command.
9b847548 4319 */
082776e4 4320int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
9b847548
JA
4321{
4322 if (!ata_dev_present(dev))
4323 return 0;
4324 if (dev->class == ATA_DEV_ATA)
4325 ata_flush_cache(ap, dev);
4326
082776e4
NC
4327 if (state.event != PM_EVENT_FREEZE)
4328 ata_standby_drive(ap, dev);
9b847548
JA
4329 ap->flags |= ATA_FLAG_SUSPENDED;
4330 return 0;
4331}
4332
c893a3ae
RD
4333/**
4334 * ata_port_start - Set port up for dma.
4335 * @ap: Port to initialize
4336 *
4337 * Called just after data structures for each port are
4338 * initialized. Allocates space for PRD table.
4339 *
4340 * May be used as the port_start() entry in ata_port_operations.
4341 *
4342 * LOCKING:
4343 * Inherited from caller.
4344 */
4345
1da177e4
LT
4346int ata_port_start (struct ata_port *ap)
4347{
2f1f610b 4348 struct device *dev = ap->dev;
6037d6bb 4349 int rc;
1da177e4
LT
4350
4351 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4352 if (!ap->prd)
4353 return -ENOMEM;
4354
6037d6bb
JG
4355 rc = ata_pad_alloc(ap, dev);
4356 if (rc) {
cedc9a47 4357 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4358 return rc;
cedc9a47
JG
4359 }
4360
1da177e4
LT
4361 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4362
4363 return 0;
4364}
4365
0baab86b
EF
4366
4367/**
4368 * ata_port_stop - Undo ata_port_start()
4369 * @ap: Port to shut down
4370 *
4371 * Frees the PRD table.
4372 *
4373 * May be used as the port_stop() entry in ata_port_operations.
4374 *
4375 * LOCKING:
6f0ef4fa 4376 * Inherited from caller.
0baab86b
EF
4377 */
4378
1da177e4
LT
4379void ata_port_stop (struct ata_port *ap)
4380{
2f1f610b 4381 struct device *dev = ap->dev;
1da177e4
LT
4382
4383 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4384 ata_pad_free(ap, dev);
1da177e4
LT
4385}
4386
aa8f0dc6
JG
4387void ata_host_stop (struct ata_host_set *host_set)
4388{
4389 if (host_set->mmio_base)
4390 iounmap(host_set->mmio_base);
4391}
4392
4393
1da177e4
LT
4394/**
4395 * ata_host_remove - Unregister SCSI host structure with upper layers
4396 * @ap: Port to unregister
4397 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4398 *
4399 * LOCKING:
6f0ef4fa 4400 * Inherited from caller.
1da177e4
LT
4401 */
4402
4403static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4404{
4405 struct Scsi_Host *sh = ap->host;
4406
4407 DPRINTK("ENTER\n");
4408
4409 if (do_unregister)
4410 scsi_remove_host(sh);
4411
4412 ap->ops->port_stop(ap);
4413}
4414
4415/**
4416 * ata_host_init - Initialize an ata_port structure
4417 * @ap: Structure to initialize
4418 * @host: associated SCSI mid-layer structure
4419 * @host_set: Collection of hosts to which @ap belongs
4420 * @ent: Probe information provided by low-level driver
4421 * @port_no: Port number associated with this ata_port
4422 *
0cba632b
JG
4423 * Initialize a new ata_port structure, and its associated
4424 * scsi_host.
4425 *
1da177e4 4426 * LOCKING:
0cba632b 4427 * Inherited from caller.
1da177e4
LT
4428 */
4429
4430static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4431 struct ata_host_set *host_set,
057ace5e 4432 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4433{
4434 unsigned int i;
4435
4436 host->max_id = 16;
4437 host->max_lun = 1;
4438 host->max_channel = 1;
4439 host->unique_id = ata_unique_id++;
4440 host->max_cmd_len = 12;
12413197 4441
1da177e4
LT
4442 ap->flags = ATA_FLAG_PORT_DISABLED;
4443 ap->id = host->unique_id;
4444 ap->host = host;
4445 ap->ctl = ATA_DEVCTL_OBS;
4446 ap->host_set = host_set;
2f1f610b 4447 ap->dev = ent->dev;
1da177e4
LT
4448 ap->port_no = port_no;
4449 ap->hard_port_no =
4450 ent->legacy_mode ? ent->hard_port_no : port_no;
4451 ap->pio_mask = ent->pio_mask;
4452 ap->mwdma_mask = ent->mwdma_mask;
4453 ap->udma_mask = ent->udma_mask;
4454 ap->flags |= ent->host_flags;
4455 ap->ops = ent->port_ops;
4456 ap->cbl = ATA_CBL_NONE;
4457 ap->active_tag = ATA_TAG_POISON;
4458 ap->last_ctl = 0xFF;
4459
86e45b6b 4460 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4461 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 4462
acf356b1
TH
4463 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4464 struct ata_device *dev = &ap->device[i];
4465 dev->devno = i;
4466 dev->pio_mask = UINT_MAX;
4467 dev->mwdma_mask = UINT_MAX;
4468 dev->udma_mask = UINT_MAX;
4469 }
1da177e4
LT
4470
4471#ifdef ATA_IRQ_TRAP
4472 ap->stats.unhandled_irq = 1;
4473 ap->stats.idle_irq = 1;
4474#endif
4475
4476 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4477}
4478
4479/**
4480 * ata_host_add - Attach low-level ATA driver to system
4481 * @ent: Information provided by low-level driver
4482 * @host_set: Collections of ports to which we add
4483 * @port_no: Port number associated with this host
4484 *
0cba632b
JG
4485 * Attach low-level ATA driver to system.
4486 *
1da177e4 4487 * LOCKING:
0cba632b 4488 * PCI/etc. bus probe sem.
1da177e4
LT
4489 *
4490 * RETURNS:
0cba632b 4491 * New ata_port on success, for NULL on error.
1da177e4
LT
4492 */
4493
057ace5e 4494static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4495 struct ata_host_set *host_set,
4496 unsigned int port_no)
4497{
4498 struct Scsi_Host *host;
4499 struct ata_port *ap;
4500 int rc;
4501
4502 DPRINTK("ENTER\n");
aec5c3c1
TH
4503
4504 if (!ent->port_ops->probe_reset &&
4505 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4506 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4507 port_no);
4508 return NULL;
4509 }
4510
1da177e4
LT
4511 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4512 if (!host)
4513 return NULL;
4514
30afc84c
TH
4515 host->transportt = &ata_scsi_transport_template;
4516
1da177e4
LT
4517 ap = (struct ata_port *) &host->hostdata[0];
4518
4519 ata_host_init(ap, host, host_set, ent, port_no);
4520
4521 rc = ap->ops->port_start(ap);
4522 if (rc)
4523 goto err_out;
4524
4525 return ap;
4526
4527err_out:
4528 scsi_host_put(host);
4529 return NULL;
4530}
4531
4532/**
0cba632b
JG
4533 * ata_device_add - Register hardware device with ATA and SCSI layers
4534 * @ent: Probe information describing hardware device to be registered
4535 *
4536 * This function processes the information provided in the probe
4537 * information struct @ent, allocates the necessary ATA and SCSI
4538 * host information structures, initializes them, and registers
4539 * everything with requisite kernel subsystems.
4540 *
4541 * This function requests irqs, probes the ATA bus, and probes
4542 * the SCSI bus.
1da177e4
LT
4543 *
4544 * LOCKING:
0cba632b 4545 * PCI/etc. bus probe sem.
1da177e4
LT
4546 *
4547 * RETURNS:
0cba632b 4548 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4549 */
4550
057ace5e 4551int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4552{
4553 unsigned int count = 0, i;
4554 struct device *dev = ent->dev;
4555 struct ata_host_set *host_set;
4556
4557 DPRINTK("ENTER\n");
4558 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4559 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4560 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4561 if (!host_set)
4562 return 0;
1da177e4
LT
4563 spin_lock_init(&host_set->lock);
4564
4565 host_set->dev = dev;
4566 host_set->n_ports = ent->n_ports;
4567 host_set->irq = ent->irq;
4568 host_set->mmio_base = ent->mmio_base;
4569 host_set->private_data = ent->private_data;
4570 host_set->ops = ent->port_ops;
5444a6f4 4571 host_set->flags = ent->host_set_flags;
1da177e4
LT
4572
4573 /* register each port bound to this device */
4574 for (i = 0; i < ent->n_ports; i++) {
4575 struct ata_port *ap;
4576 unsigned long xfer_mode_mask;
4577
4578 ap = ata_host_add(ent, host_set, i);
4579 if (!ap)
4580 goto err_out;
4581
4582 host_set->ports[i] = ap;
4583 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4584 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4585 (ap->pio_mask << ATA_SHIFT_PIO);
4586
4587 /* print per-port info to dmesg */
4588 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4589 "bmdma 0x%lX irq %lu\n",
4590 ap->id,
4591 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4592 ata_mode_string(xfer_mode_mask),
4593 ap->ioaddr.cmd_addr,
4594 ap->ioaddr.ctl_addr,
4595 ap->ioaddr.bmdma_addr,
4596 ent->irq);
4597
4598 ata_chk_status(ap);
4599 host_set->ops->irq_clear(ap);
4600 count++;
4601 }
4602
57f3bda8
RD
4603 if (!count)
4604 goto err_free_ret;
1da177e4
LT
4605
4606 /* obtain irq, that is shared between channels */
4607 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4608 DRV_NAME, host_set))
4609 goto err_out;
4610
4611 /* perform each probe synchronously */
4612 DPRINTK("probe begin\n");
4613 for (i = 0; i < count; i++) {
4614 struct ata_port *ap;
4615 int rc;
4616
4617 ap = host_set->ports[i];
4618
c893a3ae 4619 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4620 rc = ata_bus_probe(ap);
c893a3ae 4621 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4622
4623 if (rc) {
4624 /* FIXME: do something useful here?
4625 * Current libata behavior will
4626 * tear down everything when
4627 * the module is removed
4628 * or the h/w is unplugged.
4629 */
4630 }
4631
4632 rc = scsi_add_host(ap->host, dev);
4633 if (rc) {
4634 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4635 ap->id);
4636 /* FIXME: do something useful here */
4637 /* FIXME: handle unconditional calls to
4638 * scsi_scan_host and ata_host_remove, below,
4639 * at the very least
4640 */
4641 }
4642 }
4643
4644 /* probes are done, now scan each port's disk(s) */
c893a3ae 4645 DPRINTK("host probe begin\n");
1da177e4
LT
4646 for (i = 0; i < count; i++) {
4647 struct ata_port *ap = host_set->ports[i];
4648
644dd0cc 4649 ata_scsi_scan_host(ap);
1da177e4
LT
4650 }
4651
4652 dev_set_drvdata(dev, host_set);
4653
4654 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4655 return ent->n_ports; /* success */
4656
4657err_out:
4658 for (i = 0; i < count; i++) {
4659 ata_host_remove(host_set->ports[i], 1);
4660 scsi_host_put(host_set->ports[i]->host);
4661 }
57f3bda8 4662err_free_ret:
1da177e4
LT
4663 kfree(host_set);
4664 VPRINTK("EXIT, returning 0\n");
4665 return 0;
4666}
4667
17b14451
AC
4668/**
4669 * ata_host_set_remove - PCI layer callback for device removal
4670 * @host_set: ATA host set that was removed
4671 *
2e9edbf8 4672 * Unregister all objects associated with this host set. Free those
17b14451
AC
4673 * objects.
4674 *
4675 * LOCKING:
4676 * Inherited from calling layer (may sleep).
4677 */
4678
17b14451
AC
4679void ata_host_set_remove(struct ata_host_set *host_set)
4680{
4681 struct ata_port *ap;
4682 unsigned int i;
4683
4684 for (i = 0; i < host_set->n_ports; i++) {
4685 ap = host_set->ports[i];
4686 scsi_remove_host(ap->host);
4687 }
4688
4689 free_irq(host_set->irq, host_set);
4690
4691 for (i = 0; i < host_set->n_ports; i++) {
4692 ap = host_set->ports[i];
4693
4694 ata_scsi_release(ap->host);
4695
4696 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4697 struct ata_ioports *ioaddr = &ap->ioaddr;
4698
4699 if (ioaddr->cmd_addr == 0x1f0)
4700 release_region(0x1f0, 8);
4701 else if (ioaddr->cmd_addr == 0x170)
4702 release_region(0x170, 8);
4703 }
4704
4705 scsi_host_put(ap->host);
4706 }
4707
4708 if (host_set->ops->host_stop)
4709 host_set->ops->host_stop(host_set);
4710
4711 kfree(host_set);
4712}
4713
1da177e4
LT
4714/**
4715 * ata_scsi_release - SCSI layer callback hook for host unload
4716 * @host: libata host to be unloaded
4717 *
4718 * Performs all duties necessary to shut down a libata port...
4719 * Kill port kthread, disable port, and release resources.
4720 *
4721 * LOCKING:
4722 * Inherited from SCSI layer.
4723 *
4724 * RETURNS:
4725 * One.
4726 */
4727
4728int ata_scsi_release(struct Scsi_Host *host)
4729{
4730 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
d9572b1d 4731 int i;
1da177e4
LT
4732
4733 DPRINTK("ENTER\n");
4734
4735 ap->ops->port_disable(ap);
4736 ata_host_remove(ap, 0);
d9572b1d
TH
4737 for (i = 0; i < ATA_MAX_DEVICES; i++)
4738 kfree(ap->device[i].id);
1da177e4
LT
4739
4740 DPRINTK("EXIT\n");
4741 return 1;
4742}
4743
4744/**
4745 * ata_std_ports - initialize ioaddr with standard port offsets.
4746 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4747 *
4748 * Utility function which initializes data_addr, error_addr,
4749 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4750 * device_addr, status_addr, and command_addr to standard offsets
4751 * relative to cmd_addr.
4752 *
4753 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4754 */
0baab86b 4755
1da177e4
LT
4756void ata_std_ports(struct ata_ioports *ioaddr)
4757{
4758 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4759 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4760 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4761 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4762 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4763 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4764 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4765 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4766 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4767 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4768}
4769
0baab86b 4770
374b1873
JG
4771#ifdef CONFIG_PCI
4772
4773void ata_pci_host_stop (struct ata_host_set *host_set)
4774{
4775 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4776
4777 pci_iounmap(pdev, host_set->mmio_base);
4778}
4779
1da177e4
LT
4780/**
4781 * ata_pci_remove_one - PCI layer callback for device removal
4782 * @pdev: PCI device that was removed
4783 *
4784 * PCI layer indicates to libata via this hook that
6f0ef4fa 4785 * hot-unplug or module unload event has occurred.
1da177e4
LT
4786 * Handle this by unregistering all objects associated
4787 * with this PCI device. Free those objects. Then finally
4788 * release PCI resources and disable device.
4789 *
4790 * LOCKING:
4791 * Inherited from PCI layer (may sleep).
4792 */
4793
4794void ata_pci_remove_one (struct pci_dev *pdev)
4795{
4796 struct device *dev = pci_dev_to_dev(pdev);
4797 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4798
17b14451 4799 ata_host_set_remove(host_set);
1da177e4
LT
4800 pci_release_regions(pdev);
4801 pci_disable_device(pdev);
4802 dev_set_drvdata(dev, NULL);
4803}
4804
4805/* move to PCI subsystem */
057ace5e 4806int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4807{
4808 unsigned long tmp = 0;
4809
4810 switch (bits->width) {
4811 case 1: {
4812 u8 tmp8 = 0;
4813 pci_read_config_byte(pdev, bits->reg, &tmp8);
4814 tmp = tmp8;
4815 break;
4816 }
4817 case 2: {
4818 u16 tmp16 = 0;
4819 pci_read_config_word(pdev, bits->reg, &tmp16);
4820 tmp = tmp16;
4821 break;
4822 }
4823 case 4: {
4824 u32 tmp32 = 0;
4825 pci_read_config_dword(pdev, bits->reg, &tmp32);
4826 tmp = tmp32;
4827 break;
4828 }
4829
4830 default:
4831 return -EINVAL;
4832 }
4833
4834 tmp &= bits->mask;
4835
4836 return (tmp == bits->val) ? 1 : 0;
4837}
9b847548
JA
4838
4839int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4840{
4841 pci_save_state(pdev);
4842 pci_disable_device(pdev);
4843 pci_set_power_state(pdev, PCI_D3hot);
4844 return 0;
4845}
4846
4847int ata_pci_device_resume(struct pci_dev *pdev)
4848{
4849 pci_set_power_state(pdev, PCI_D0);
4850 pci_restore_state(pdev);
4851 pci_enable_device(pdev);
4852 pci_set_master(pdev);
4853 return 0;
4854}
1da177e4
LT
4855#endif /* CONFIG_PCI */
4856
4857
1da177e4
LT
4858static int __init ata_init(void)
4859{
4860 ata_wq = create_workqueue("ata");
4861 if (!ata_wq)
4862 return -ENOMEM;
4863
4864 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4865 return 0;
4866}
4867
4868static void __exit ata_exit(void)
4869{
4870 destroy_workqueue(ata_wq);
4871}
4872
4873module_init(ata_init);
4874module_exit(ata_exit);
4875
67846b30
JG
4876static unsigned long ratelimit_time;
4877static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4878
4879int ata_ratelimit(void)
4880{
4881 int rc;
4882 unsigned long flags;
4883
4884 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4885
4886 if (time_after(jiffies, ratelimit_time)) {
4887 rc = 1;
4888 ratelimit_time = jiffies + (HZ/5);
4889 } else
4890 rc = 0;
4891
4892 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4893
4894 return rc;
4895}
4896
1da177e4
LT
4897/*
4898 * libata is essentially a library of internal helper functions for
4899 * low-level ATA host controller drivers. As such, the API/ABI is
4900 * likely to change as new drivers are added and updated.
4901 * Do not depend on ABI/API stability.
4902 */
4903
4904EXPORT_SYMBOL_GPL(ata_std_bios_param);
4905EXPORT_SYMBOL_GPL(ata_std_ports);
4906EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 4907EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
4908EXPORT_SYMBOL_GPL(ata_sg_init);
4909EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 4910EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4
LT
4911EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4912EXPORT_SYMBOL_GPL(ata_eng_timeout);
4913EXPORT_SYMBOL_GPL(ata_tf_load);
4914EXPORT_SYMBOL_GPL(ata_tf_read);
4915EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4916EXPORT_SYMBOL_GPL(ata_std_dev_select);
4917EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4918EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4919EXPORT_SYMBOL_GPL(ata_check_status);
4920EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
4921EXPORT_SYMBOL_GPL(ata_exec_command);
4922EXPORT_SYMBOL_GPL(ata_port_start);
4923EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 4924EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
4925EXPORT_SYMBOL_GPL(ata_interrupt);
4926EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 4927EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
4928EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4929EXPORT_SYMBOL_GPL(ata_bmdma_start);
4930EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4931EXPORT_SYMBOL_GPL(ata_bmdma_status);
4932EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4933EXPORT_SYMBOL_GPL(ata_port_probe);
4934EXPORT_SYMBOL_GPL(sata_phy_reset);
4935EXPORT_SYMBOL_GPL(__sata_phy_reset);
4936EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 4937EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
4938EXPORT_SYMBOL_GPL(ata_std_softreset);
4939EXPORT_SYMBOL_GPL(sata_std_hardreset);
4940EXPORT_SYMBOL_GPL(ata_std_postreset);
4941EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 4942EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 4943EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
4944EXPORT_SYMBOL_GPL(ata_dev_classify);
4945EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 4946EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 4947EXPORT_SYMBOL_GPL(ata_ratelimit);
6f8b9958 4948EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 4949EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
4950EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4951EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4
LT
4952EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4953EXPORT_SYMBOL_GPL(ata_scsi_release);
4954EXPORT_SYMBOL_GPL(ata_host_intr);
6a62a04d
TH
4955EXPORT_SYMBOL_GPL(ata_id_string);
4956EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4 4957EXPORT_SYMBOL_GPL(ata_scsi_simulate);
a72ec4ce
TH
4958EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
4959EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
1da177e4 4960
1bc4ccff 4961EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
4962EXPORT_SYMBOL_GPL(ata_timing_compute);
4963EXPORT_SYMBOL_GPL(ata_timing_merge);
4964
1da177e4
LT
4965#ifdef CONFIG_PCI
4966EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 4967EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
4968EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4969EXPORT_SYMBOL_GPL(ata_pci_init_one);
4970EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
4971EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
4972EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
4973EXPORT_SYMBOL_GPL(ata_pci_default_filter);
4974EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 4975#endif /* CONFIG_PCI */
9b847548
JA
4976
4977EXPORT_SYMBOL_GPL(ata_device_suspend);
4978EXPORT_SYMBOL_GPL(ata_device_resume);
4979EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
4980EXPORT_SYMBOL_GPL(ata_scsi_device_resume);