]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/scsi/libata-core.c
Merge branch 'master'
[mirror_ubuntu-focal-kernel.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
64static unsigned int ata_busy_sleep (struct ata_port *ap,
65 unsigned long tmout_pat,
66 unsigned long tmout);
59a10b17 67static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
8bf62ece 68static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
69static void ata_set_mode(struct ata_port *ap);
70static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
057ace5e 71static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
1da177e4 72static int fgb(u32 bitmap);
057ace5e 73static int ata_choose_xfer_mode(const struct ata_port *ap,
1da177e4
LT
74 u8 *xfer_mode_out,
75 unsigned int *xfer_shift_out);
1da177e4
LT
76static void __ata_qc_complete(struct ata_queued_cmd *qc);
77
78static unsigned int ata_unique_id = 1;
79static struct workqueue_struct *ata_wq;
80
1623c81e
JG
81int atapi_enabled = 0;
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
1da177e4
LT
85MODULE_AUTHOR("Jeff Garzik");
86MODULE_DESCRIPTION("Library module for ATA devices");
87MODULE_LICENSE("GPL");
88MODULE_VERSION(DRV_VERSION);
89
90/**
6f0ef4fa 91 * ata_tf_load_pio - send taskfile registers to host controller
1da177e4
LT
92 * @ap: Port to which output is sent
93 * @tf: ATA taskfile register set
94 *
95 * Outputs ATA taskfile to standard ATA host controller.
96 *
97 * LOCKING:
98 * Inherited from caller.
99 */
100
057ace5e 101static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
102{
103 struct ata_ioports *ioaddr = &ap->ioaddr;
104 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
105
106 if (tf->ctl != ap->last_ctl) {
107 outb(tf->ctl, ioaddr->ctl_addr);
108 ap->last_ctl = tf->ctl;
109 ata_wait_idle(ap);
110 }
111
112 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
113 outb(tf->hob_feature, ioaddr->feature_addr);
114 outb(tf->hob_nsect, ioaddr->nsect_addr);
115 outb(tf->hob_lbal, ioaddr->lbal_addr);
116 outb(tf->hob_lbam, ioaddr->lbam_addr);
117 outb(tf->hob_lbah, ioaddr->lbah_addr);
118 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
119 tf->hob_feature,
120 tf->hob_nsect,
121 tf->hob_lbal,
122 tf->hob_lbam,
123 tf->hob_lbah);
124 }
125
126 if (is_addr) {
127 outb(tf->feature, ioaddr->feature_addr);
128 outb(tf->nsect, ioaddr->nsect_addr);
129 outb(tf->lbal, ioaddr->lbal_addr);
130 outb(tf->lbam, ioaddr->lbam_addr);
131 outb(tf->lbah, ioaddr->lbah_addr);
132 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
133 tf->feature,
134 tf->nsect,
135 tf->lbal,
136 tf->lbam,
137 tf->lbah);
138 }
139
140 if (tf->flags & ATA_TFLAG_DEVICE) {
141 outb(tf->device, ioaddr->device_addr);
142 VPRINTK("device 0x%X\n", tf->device);
143 }
144
145 ata_wait_idle(ap);
146}
147
148/**
149 * ata_tf_load_mmio - send taskfile registers to host controller
150 * @ap: Port to which output is sent
151 * @tf: ATA taskfile register set
152 *
153 * Outputs ATA taskfile to standard ATA host controller using MMIO.
154 *
155 * LOCKING:
156 * Inherited from caller.
157 */
158
057ace5e 159static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
160{
161 struct ata_ioports *ioaddr = &ap->ioaddr;
162 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
163
164 if (tf->ctl != ap->last_ctl) {
165 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
166 ap->last_ctl = tf->ctl;
167 ata_wait_idle(ap);
168 }
169
170 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
171 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
172 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
173 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
174 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
175 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
176 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
177 tf->hob_feature,
178 tf->hob_nsect,
179 tf->hob_lbal,
180 tf->hob_lbam,
181 tf->hob_lbah);
182 }
183
184 if (is_addr) {
185 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
186 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
187 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
188 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
189 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
190 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
191 tf->feature,
192 tf->nsect,
193 tf->lbal,
194 tf->lbam,
195 tf->lbah);
196 }
197
198 if (tf->flags & ATA_TFLAG_DEVICE) {
199 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
200 VPRINTK("device 0x%X\n", tf->device);
201 }
202
203 ata_wait_idle(ap);
204}
205
0baab86b
EF
206
207/**
208 * ata_tf_load - send taskfile registers to host controller
209 * @ap: Port to which output is sent
210 * @tf: ATA taskfile register set
211 *
212 * Outputs ATA taskfile to standard ATA host controller using MMIO
213 * or PIO as indicated by the ATA_FLAG_MMIO flag.
214 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
215 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
216 * hob_lbal, hob_lbam, and hob_lbah.
217 *
218 * This function waits for idle (!BUSY and !DRQ) after writing
219 * registers. If the control register has a new value, this
220 * function also waits for idle after writing control and before
221 * writing the remaining registers.
222 *
223 * May be used as the tf_load() entry in ata_port_operations.
224 *
225 * LOCKING:
226 * Inherited from caller.
227 */
057ace5e 228void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
229{
230 if (ap->flags & ATA_FLAG_MMIO)
231 ata_tf_load_mmio(ap, tf);
232 else
233 ata_tf_load_pio(ap, tf);
234}
235
236/**
0baab86b 237 * ata_exec_command_pio - issue ATA command to host controller
1da177e4
LT
238 * @ap: port to which command is being issued
239 * @tf: ATA taskfile register set
240 *
0baab86b 241 * Issues PIO write to ATA command register, with proper
1da177e4
LT
242 * synchronization with interrupt handler / other threads.
243 *
244 * LOCKING:
245 * spin_lock_irqsave(host_set lock)
246 */
247
057ace5e 248static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
249{
250 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
251
252 outb(tf->command, ap->ioaddr.command_addr);
253 ata_pause(ap);
254}
255
256
257/**
258 * ata_exec_command_mmio - issue ATA command to host controller
259 * @ap: port to which command is being issued
260 * @tf: ATA taskfile register set
261 *
262 * Issues MMIO write to ATA command register, with proper
263 * synchronization with interrupt handler / other threads.
264 *
265 * LOCKING:
266 * spin_lock_irqsave(host_set lock)
267 */
268
057ace5e 269static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
270{
271 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
272
273 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
274 ata_pause(ap);
275}
276
0baab86b
EF
277
278/**
279 * ata_exec_command - issue ATA command to host controller
280 * @ap: port to which command is being issued
281 * @tf: ATA taskfile register set
282 *
283 * Issues PIO/MMIO write to ATA command register, with proper
284 * synchronization with interrupt handler / other threads.
285 *
286 * LOCKING:
287 * spin_lock_irqsave(host_set lock)
288 */
057ace5e 289void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
290{
291 if (ap->flags & ATA_FLAG_MMIO)
292 ata_exec_command_mmio(ap, tf);
293 else
294 ata_exec_command_pio(ap, tf);
295}
296
1da177e4
LT
297/**
298 * ata_tf_to_host - issue ATA taskfile to host controller
299 * @ap: port to which command is being issued
300 * @tf: ATA taskfile register set
301 *
302 * Issues ATA taskfile register set to ATA host controller,
303 * with proper synchronization with interrupt handler and
304 * other threads.
305 *
306 * LOCKING:
1da177e4
LT
307 * spin_lock_irqsave(host_set lock)
308 */
309
e5338254
JG
310static inline void ata_tf_to_host(struct ata_port *ap,
311 const struct ata_taskfile *tf)
1da177e4
LT
312{
313 ap->ops->tf_load(ap, tf);
314 ap->ops->exec_command(ap, tf);
315}
316
317/**
0baab86b 318 * ata_tf_read_pio - input device's ATA taskfile shadow registers
1da177e4
LT
319 * @ap: Port from which input is read
320 * @tf: ATA taskfile register set for storing input
321 *
322 * Reads ATA taskfile registers for currently-selected device
323 * into @tf.
324 *
325 * LOCKING:
326 * Inherited from caller.
327 */
328
329static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
330{
331 struct ata_ioports *ioaddr = &ap->ioaddr;
332
ac19bff2 333 tf->command = ata_check_status(ap);
0169e284 334 tf->feature = inb(ioaddr->error_addr);
1da177e4
LT
335 tf->nsect = inb(ioaddr->nsect_addr);
336 tf->lbal = inb(ioaddr->lbal_addr);
337 tf->lbam = inb(ioaddr->lbam_addr);
338 tf->lbah = inb(ioaddr->lbah_addr);
339 tf->device = inb(ioaddr->device_addr);
340
341 if (tf->flags & ATA_TFLAG_LBA48) {
342 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
343 tf->hob_feature = inb(ioaddr->error_addr);
344 tf->hob_nsect = inb(ioaddr->nsect_addr);
345 tf->hob_lbal = inb(ioaddr->lbal_addr);
346 tf->hob_lbam = inb(ioaddr->lbam_addr);
347 tf->hob_lbah = inb(ioaddr->lbah_addr);
348 }
349}
350
351/**
352 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
353 * @ap: Port from which input is read
354 * @tf: ATA taskfile register set for storing input
355 *
356 * Reads ATA taskfile registers for currently-selected device
357 * into @tf via MMIO.
358 *
359 * LOCKING:
360 * Inherited from caller.
361 */
362
363static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
364{
365 struct ata_ioports *ioaddr = &ap->ioaddr;
366
ac19bff2 367 tf->command = ata_check_status(ap);
0169e284 368 tf->feature = readb((void __iomem *)ioaddr->error_addr);
1da177e4
LT
369 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
370 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
371 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
372 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
373 tf->device = readb((void __iomem *)ioaddr->device_addr);
374
375 if (tf->flags & ATA_TFLAG_LBA48) {
376 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
377 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
378 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
379 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
380 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
381 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
382 }
383}
384
0baab86b
EF
385
386/**
387 * ata_tf_read - input device's ATA taskfile shadow registers
388 * @ap: Port from which input is read
389 * @tf: ATA taskfile register set for storing input
390 *
391 * Reads ATA taskfile registers for currently-selected device
392 * into @tf.
393 *
394 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
395 * is set, also reads the hob registers.
396 *
397 * May be used as the tf_read() entry in ata_port_operations.
398 *
399 * LOCKING:
400 * Inherited from caller.
401 */
1da177e4
LT
402void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
403{
404 if (ap->flags & ATA_FLAG_MMIO)
405 ata_tf_read_mmio(ap, tf);
406 else
407 ata_tf_read_pio(ap, tf);
408}
409
410/**
411 * ata_check_status_pio - Read device status reg & clear interrupt
412 * @ap: port where the device is
413 *
414 * Reads ATA taskfile status register for currently-selected device
0baab86b 415 * and return its value. This also clears pending interrupts
1da177e4
LT
416 * from this device
417 *
418 * LOCKING:
419 * Inherited from caller.
420 */
421static u8 ata_check_status_pio(struct ata_port *ap)
422{
423 return inb(ap->ioaddr.status_addr);
424}
425
426/**
427 * ata_check_status_mmio - Read device status reg & clear interrupt
428 * @ap: port where the device is
429 *
430 * Reads ATA taskfile status register for currently-selected device
0baab86b 431 * via MMIO and return its value. This also clears pending interrupts
1da177e4
LT
432 * from this device
433 *
434 * LOCKING:
435 * Inherited from caller.
436 */
437static u8 ata_check_status_mmio(struct ata_port *ap)
438{
439 return readb((void __iomem *) ap->ioaddr.status_addr);
440}
441
0baab86b
EF
442
443/**
444 * ata_check_status - Read device status reg & clear interrupt
445 * @ap: port where the device is
446 *
447 * Reads ATA taskfile status register for currently-selected device
448 * and return its value. This also clears pending interrupts
449 * from this device
450 *
451 * May be used as the check_status() entry in ata_port_operations.
452 *
453 * LOCKING:
454 * Inherited from caller.
455 */
1da177e4
LT
456u8 ata_check_status(struct ata_port *ap)
457{
458 if (ap->flags & ATA_FLAG_MMIO)
459 return ata_check_status_mmio(ap);
460 return ata_check_status_pio(ap);
461}
462
0baab86b
EF
463
464/**
465 * ata_altstatus - Read device alternate status reg
466 * @ap: port where the device is
467 *
468 * Reads ATA taskfile alternate status register for
469 * currently-selected device and return its value.
470 *
471 * Note: may NOT be used as the check_altstatus() entry in
472 * ata_port_operations.
473 *
474 * LOCKING:
475 * Inherited from caller.
476 */
1da177e4
LT
477u8 ata_altstatus(struct ata_port *ap)
478{
479 if (ap->ops->check_altstatus)
480 return ap->ops->check_altstatus(ap);
481
482 if (ap->flags & ATA_FLAG_MMIO)
483 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
484 return inb(ap->ioaddr.altstatus_addr);
485}
486
0baab86b 487
1da177e4
LT
488/**
489 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
490 * @tf: Taskfile to convert
491 * @fis: Buffer into which data will output
492 * @pmp: Port multiplier port
493 *
494 * Converts a standard ATA taskfile to a Serial ATA
495 * FIS structure (Register - Host to Device).
496 *
497 * LOCKING:
498 * Inherited from caller.
499 */
500
057ace5e 501void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
502{
503 fis[0] = 0x27; /* Register - Host to Device FIS */
504 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
505 bit 7 indicates Command FIS */
506 fis[2] = tf->command;
507 fis[3] = tf->feature;
508
509 fis[4] = tf->lbal;
510 fis[5] = tf->lbam;
511 fis[6] = tf->lbah;
512 fis[7] = tf->device;
513
514 fis[8] = tf->hob_lbal;
515 fis[9] = tf->hob_lbam;
516 fis[10] = tf->hob_lbah;
517 fis[11] = tf->hob_feature;
518
519 fis[12] = tf->nsect;
520 fis[13] = tf->hob_nsect;
521 fis[14] = 0;
522 fis[15] = tf->ctl;
523
524 fis[16] = 0;
525 fis[17] = 0;
526 fis[18] = 0;
527 fis[19] = 0;
528}
529
530/**
531 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
532 * @fis: Buffer from which data will be input
533 * @tf: Taskfile to output
534 *
e12a1be6 535 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
536 *
537 * LOCKING:
538 * Inherited from caller.
539 */
540
057ace5e 541void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
542{
543 tf->command = fis[2]; /* status */
544 tf->feature = fis[3]; /* error */
545
546 tf->lbal = fis[4];
547 tf->lbam = fis[5];
548 tf->lbah = fis[6];
549 tf->device = fis[7];
550
551 tf->hob_lbal = fis[8];
552 tf->hob_lbam = fis[9];
553 tf->hob_lbah = fis[10];
554
555 tf->nsect = fis[12];
556 tf->hob_nsect = fis[13];
557}
558
8cbd6df1
AL
559static const u8 ata_rw_cmds[] = {
560 /* pio multi */
561 ATA_CMD_READ_MULTI,
562 ATA_CMD_WRITE_MULTI,
563 ATA_CMD_READ_MULTI_EXT,
564 ATA_CMD_WRITE_MULTI_EXT,
565 /* pio */
566 ATA_CMD_PIO_READ,
567 ATA_CMD_PIO_WRITE,
568 ATA_CMD_PIO_READ_EXT,
569 ATA_CMD_PIO_WRITE_EXT,
570 /* dma */
571 ATA_CMD_READ,
572 ATA_CMD_WRITE,
573 ATA_CMD_READ_EXT,
574 ATA_CMD_WRITE_EXT
575};
1da177e4
LT
576
577/**
8cbd6df1
AL
578 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
579 * @qc: command to examine and configure
1da177e4 580 *
8cbd6df1
AL
581 * Examine the device configuration and tf->flags to calculate
582 * the proper read/write commands and protocol to use.
1da177e4
LT
583 *
584 * LOCKING:
585 * caller.
586 */
8cbd6df1 587void ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 588{
8cbd6df1
AL
589 struct ata_taskfile *tf = &qc->tf;
590 struct ata_device *dev = qc->dev;
1da177e4 591
8cbd6df1
AL
592 int index, lba48, write;
593
594 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
595 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 596
8cbd6df1
AL
597 if (dev->flags & ATA_DFLAG_PIO) {
598 tf->protocol = ATA_PROT_PIO;
599 index = dev->multi_count ? 0 : 4;
600 } else {
601 tf->protocol = ATA_PROT_DMA;
602 index = 8;
603 }
1da177e4 604
8cbd6df1 605 tf->command = ata_rw_cmds[index + lba48 + write];
1da177e4
LT
606}
607
98ac62de 608static const char * const xfer_mode_str[] = {
1da177e4
LT
609 "UDMA/16",
610 "UDMA/25",
611 "UDMA/33",
612 "UDMA/44",
613 "UDMA/66",
614 "UDMA/100",
615 "UDMA/133",
616 "UDMA7",
617 "MWDMA0",
618 "MWDMA1",
619 "MWDMA2",
620 "PIO0",
621 "PIO1",
622 "PIO2",
623 "PIO3",
624 "PIO4",
625};
626
627/**
628 * ata_udma_string - convert UDMA bit offset to string
629 * @mask: mask of bits supported; only highest bit counts.
630 *
631 * Determine string which represents the highest speed
632 * (highest bit in @udma_mask).
633 *
634 * LOCKING:
635 * None.
636 *
637 * RETURNS:
638 * Constant C string representing highest speed listed in
639 * @udma_mask, or the constant C string "<n/a>".
640 */
641
642static const char *ata_mode_string(unsigned int mask)
643{
644 int i;
645
646 for (i = 7; i >= 0; i--)
647 if (mask & (1 << i))
648 goto out;
649 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
650 if (mask & (1 << i))
651 goto out;
652 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
653 if (mask & (1 << i))
654 goto out;
655
656 return "<n/a>";
657
658out:
659 return xfer_mode_str[i];
660}
661
662/**
663 * ata_pio_devchk - PATA device presence detection
664 * @ap: ATA channel to examine
665 * @device: Device to examine (starting at zero)
666 *
667 * This technique was originally described in
668 * Hale Landis's ATADRVR (www.ata-atapi.com), and
669 * later found its way into the ATA/ATAPI spec.
670 *
671 * Write a pattern to the ATA shadow registers,
672 * and if a device is present, it will respond by
673 * correctly storing and echoing back the
674 * ATA shadow register contents.
675 *
676 * LOCKING:
677 * caller.
678 */
679
680static unsigned int ata_pio_devchk(struct ata_port *ap,
681 unsigned int device)
682{
683 struct ata_ioports *ioaddr = &ap->ioaddr;
684 u8 nsect, lbal;
685
686 ap->ops->dev_select(ap, device);
687
688 outb(0x55, ioaddr->nsect_addr);
689 outb(0xaa, ioaddr->lbal_addr);
690
691 outb(0xaa, ioaddr->nsect_addr);
692 outb(0x55, ioaddr->lbal_addr);
693
694 outb(0x55, ioaddr->nsect_addr);
695 outb(0xaa, ioaddr->lbal_addr);
696
697 nsect = inb(ioaddr->nsect_addr);
698 lbal = inb(ioaddr->lbal_addr);
699
700 if ((nsect == 0x55) && (lbal == 0xaa))
701 return 1; /* we found a device */
702
703 return 0; /* nothing found */
704}
705
706/**
707 * ata_mmio_devchk - PATA device presence detection
708 * @ap: ATA channel to examine
709 * @device: Device to examine (starting at zero)
710 *
711 * This technique was originally described in
712 * Hale Landis's ATADRVR (www.ata-atapi.com), and
713 * later found its way into the ATA/ATAPI spec.
714 *
715 * Write a pattern to the ATA shadow registers,
716 * and if a device is present, it will respond by
717 * correctly storing and echoing back the
718 * ATA shadow register contents.
719 *
720 * LOCKING:
721 * caller.
722 */
723
724static unsigned int ata_mmio_devchk(struct ata_port *ap,
725 unsigned int device)
726{
727 struct ata_ioports *ioaddr = &ap->ioaddr;
728 u8 nsect, lbal;
729
730 ap->ops->dev_select(ap, device);
731
732 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
733 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
734
735 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
736 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
737
738 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
739 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
740
741 nsect = readb((void __iomem *) ioaddr->nsect_addr);
742 lbal = readb((void __iomem *) ioaddr->lbal_addr);
743
744 if ((nsect == 0x55) && (lbal == 0xaa))
745 return 1; /* we found a device */
746
747 return 0; /* nothing found */
748}
749
750/**
751 * ata_devchk - PATA device presence detection
752 * @ap: ATA channel to examine
753 * @device: Device to examine (starting at zero)
754 *
755 * Dispatch ATA device presence detection, depending
756 * on whether we are using PIO or MMIO to talk to the
757 * ATA shadow registers.
758 *
759 * LOCKING:
760 * caller.
761 */
762
763static unsigned int ata_devchk(struct ata_port *ap,
764 unsigned int device)
765{
766 if (ap->flags & ATA_FLAG_MMIO)
767 return ata_mmio_devchk(ap, device);
768 return ata_pio_devchk(ap, device);
769}
770
771/**
772 * ata_dev_classify - determine device type based on ATA-spec signature
773 * @tf: ATA taskfile register set for device to be identified
774 *
775 * Determine from taskfile register contents whether a device is
776 * ATA or ATAPI, as per "Signature and persistence" section
777 * of ATA/PI spec (volume 1, sect 5.14).
778 *
779 * LOCKING:
780 * None.
781 *
782 * RETURNS:
783 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
784 * the event of failure.
785 */
786
057ace5e 787unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
788{
789 /* Apple's open source Darwin code hints that some devices only
790 * put a proper signature into the LBA mid/high registers,
791 * So, we only check those. It's sufficient for uniqueness.
792 */
793
794 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
795 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
796 DPRINTK("found ATA device by sig\n");
797 return ATA_DEV_ATA;
798 }
799
800 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
801 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
802 DPRINTK("found ATAPI device by sig\n");
803 return ATA_DEV_ATAPI;
804 }
805
806 DPRINTK("unknown device\n");
807 return ATA_DEV_UNKNOWN;
808}
809
810/**
811 * ata_dev_try_classify - Parse returned ATA device signature
812 * @ap: ATA channel to examine
813 * @device: Device to examine (starting at zero)
814 *
815 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
816 * an ATA/ATAPI-defined set of values is placed in the ATA
817 * shadow registers, indicating the results of device detection
818 * and diagnostics.
819 *
820 * Select the ATA device, and read the values from the ATA shadow
821 * registers. Then parse according to the Error register value,
822 * and the spec-defined values examined by ata_dev_classify().
823 *
824 * LOCKING:
825 * caller.
826 */
827
828static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
829{
830 struct ata_device *dev = &ap->device[device];
831 struct ata_taskfile tf;
832 unsigned int class;
833 u8 err;
834
835 ap->ops->dev_select(ap, device);
836
837 memset(&tf, 0, sizeof(tf));
838
1da177e4 839 ap->ops->tf_read(ap, &tf);
0169e284 840 err = tf.feature;
1da177e4
LT
841
842 dev->class = ATA_DEV_NONE;
843
844 /* see if device passed diags */
845 if (err == 1)
846 /* do nothing */ ;
847 else if ((device == 0) && (err == 0x81))
848 /* do nothing */ ;
849 else
850 return err;
851
852 /* determine if device if ATA or ATAPI */
853 class = ata_dev_classify(&tf);
854 if (class == ATA_DEV_UNKNOWN)
855 return err;
856 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
857 return err;
858
859 dev->class = class;
860
861 return err;
862}
863
864/**
865 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
866 * @id: IDENTIFY DEVICE results we will examine
867 * @s: string into which data is output
868 * @ofs: offset into identify device page
869 * @len: length of string to return. must be an even number.
870 *
871 * The strings in the IDENTIFY DEVICE page are broken up into
872 * 16-bit chunks. Run through the string, and output each
873 * 8-bit chunk linearly, regardless of platform.
874 *
875 * LOCKING:
876 * caller.
877 */
878
057ace5e 879void ata_dev_id_string(const u16 *id, unsigned char *s,
1da177e4
LT
880 unsigned int ofs, unsigned int len)
881{
882 unsigned int c;
883
884 while (len > 0) {
885 c = id[ofs] >> 8;
886 *s = c;
887 s++;
888
889 c = id[ofs] & 0xff;
890 *s = c;
891 s++;
892
893 ofs++;
894 len -= 2;
895 }
896}
897
0baab86b
EF
898
899/**
900 * ata_noop_dev_select - Select device 0/1 on ATA bus
901 * @ap: ATA channel to manipulate
902 * @device: ATA device (numbered from zero) to select
903 *
904 * This function performs no actual function.
905 *
906 * May be used as the dev_select() entry in ata_port_operations.
907 *
908 * LOCKING:
909 * caller.
910 */
1da177e4
LT
911void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
912{
913}
914
0baab86b 915
1da177e4
LT
916/**
917 * ata_std_dev_select - Select device 0/1 on ATA bus
918 * @ap: ATA channel to manipulate
919 * @device: ATA device (numbered from zero) to select
920 *
921 * Use the method defined in the ATA specification to
922 * make either device 0, or device 1, active on the
0baab86b
EF
923 * ATA channel. Works with both PIO and MMIO.
924 *
925 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
926 *
927 * LOCKING:
928 * caller.
929 */
930
931void ata_std_dev_select (struct ata_port *ap, unsigned int device)
932{
933 u8 tmp;
934
935 if (device == 0)
936 tmp = ATA_DEVICE_OBS;
937 else
938 tmp = ATA_DEVICE_OBS | ATA_DEV1;
939
940 if (ap->flags & ATA_FLAG_MMIO) {
941 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
942 } else {
943 outb(tmp, ap->ioaddr.device_addr);
944 }
945 ata_pause(ap); /* needed; also flushes, for mmio */
946}
947
948/**
949 * ata_dev_select - Select device 0/1 on ATA bus
950 * @ap: ATA channel to manipulate
951 * @device: ATA device (numbered from zero) to select
952 * @wait: non-zero to wait for Status register BSY bit to clear
953 * @can_sleep: non-zero if context allows sleeping
954 *
955 * Use the method defined in the ATA specification to
956 * make either device 0, or device 1, active on the
957 * ATA channel.
958 *
959 * This is a high-level version of ata_std_dev_select(),
960 * which additionally provides the services of inserting
961 * the proper pauses and status polling, where needed.
962 *
963 * LOCKING:
964 * caller.
965 */
966
967void ata_dev_select(struct ata_port *ap, unsigned int device,
968 unsigned int wait, unsigned int can_sleep)
969{
970 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
971 ap->id, device, wait);
972
973 if (wait)
974 ata_wait_idle(ap);
975
976 ap->ops->dev_select(ap, device);
977
978 if (wait) {
979 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
980 msleep(150);
981 ata_wait_idle(ap);
982 }
983}
984
985/**
986 * ata_dump_id - IDENTIFY DEVICE info debugging output
987 * @dev: Device whose IDENTIFY DEVICE page we will dump
988 *
989 * Dump selected 16-bit words from a detected device's
990 * IDENTIFY PAGE page.
991 *
992 * LOCKING:
993 * caller.
994 */
995
057ace5e 996static inline void ata_dump_id(const struct ata_device *dev)
1da177e4
LT
997{
998 DPRINTK("49==0x%04x "
999 "53==0x%04x "
1000 "63==0x%04x "
1001 "64==0x%04x "
1002 "75==0x%04x \n",
1003 dev->id[49],
1004 dev->id[53],
1005 dev->id[63],
1006 dev->id[64],
1007 dev->id[75]);
1008 DPRINTK("80==0x%04x "
1009 "81==0x%04x "
1010 "82==0x%04x "
1011 "83==0x%04x "
1012 "84==0x%04x \n",
1013 dev->id[80],
1014 dev->id[81],
1015 dev->id[82],
1016 dev->id[83],
1017 dev->id[84]);
1018 DPRINTK("88==0x%04x "
1019 "93==0x%04x\n",
1020 dev->id[88],
1021 dev->id[93]);
1022}
1023
11e29e21
AC
1024/*
1025 * Compute the PIO modes available for this device. This is not as
1026 * trivial as it seems if we must consider early devices correctly.
1027 *
1028 * FIXME: pre IDE drive timing (do we care ?).
1029 */
1030
057ace5e 1031static unsigned int ata_pio_modes(const struct ata_device *adev)
11e29e21
AC
1032{
1033 u16 modes;
1034
1035 /* Usual case. Word 53 indicates word 88 is valid */
1036 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 2)) {
1037 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1038 modes <<= 3;
1039 modes |= 0x7;
1040 return modes;
1041 }
1042
1043 /* If word 88 isn't valid then Word 51 holds the PIO timing number
1044 for the maximum. Turn it into a mask and return it */
1045 modes = (2 << (adev->id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
1046 return modes;
1047}
1048
64f043d8
JG
1049static int ata_qc_wait_err(struct ata_queued_cmd *qc,
1050 struct completion *wait)
1051{
1052 int rc = 0;
1053
1054 if (wait_for_completion_timeout(wait, 30 * HZ) < 1) {
1055 /* timeout handling */
1056 unsigned int err_mask = ac_err_mask(ata_chk_status(qc->ap));
1057
1058 if (!err_mask) {
1059 printk(KERN_WARNING "ata%u: slow completion (cmd %x)\n",
1060 qc->ap->id, qc->tf.command);
1061 } else {
1062 printk(KERN_WARNING "ata%u: qc timeout (cmd %x)\n",
1063 qc->ap->id, qc->tf.command);
1064 rc = -EIO;
1065 }
1066
1067 ata_qc_complete(qc, err_mask);
1068 }
1069
1070 return rc;
1071}
1072
1da177e4
LT
1073/**
1074 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1075 * @ap: port on which device we wish to probe resides
1076 * @device: device bus address, starting at zero
1077 *
1078 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1079 * command, and read back the 512-byte device information page.
1080 * The device information page is fed to us via the standard
1081 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1082 * using standard PIO-IN paths)
1083 *
1084 * After reading the device information page, we use several
1085 * bits of information from it to initialize data structures
1086 * that will be used during the lifetime of the ata_device.
1087 * Other data from the info page is used to disqualify certain
1088 * older ATA devices we do not wish to support.
1089 *
1090 * LOCKING:
1091 * Inherited from caller. Some functions called by this function
1092 * obtain the host_set lock.
1093 */
1094
1095static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1096{
1097 struct ata_device *dev = &ap->device[device];
8bf62ece 1098 unsigned int major_version;
1da177e4
LT
1099 u16 tmp;
1100 unsigned long xfer_modes;
1da177e4
LT
1101 unsigned int using_edd;
1102 DECLARE_COMPLETION(wait);
1103 struct ata_queued_cmd *qc;
1104 unsigned long flags;
1105 int rc;
1106
1107 if (!ata_dev_present(dev)) {
1108 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1109 ap->id, device);
1110 return;
1111 }
1112
1113 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1114 using_edd = 0;
1115 else
1116 using_edd = 1;
1117
1118 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1119
1120 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1121 dev->class == ATA_DEV_NONE);
1122
1123 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1124
1125 qc = ata_qc_new_init(ap, dev);
1126 BUG_ON(qc == NULL);
1127
1128 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
1129 qc->dma_dir = DMA_FROM_DEVICE;
1130 qc->tf.protocol = ATA_PROT_PIO;
1131 qc->nsect = 1;
1132
1133retry:
1134 if (dev->class == ATA_DEV_ATA) {
1135 qc->tf.command = ATA_CMD_ID_ATA;
1136 DPRINTK("do ATA identify\n");
1137 } else {
1138 qc->tf.command = ATA_CMD_ID_ATAPI;
1139 DPRINTK("do ATAPI identify\n");
1140 }
1141
1142 qc->waiting = &wait;
1143 qc->complete_fn = ata_qc_complete_noop;
1144
1145 spin_lock_irqsave(&ap->host_set->lock, flags);
1146 rc = ata_qc_issue(qc);
1147 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1148
1149 if (rc)
1150 goto err_out;
1151 else
64f043d8 1152 ata_qc_wait_err(qc, &wait);
1da177e4 1153
0169e284
JG
1154 spin_lock_irqsave(&ap->host_set->lock, flags);
1155 ap->ops->tf_read(ap, &qc->tf);
1156 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1157
1158 if (qc->tf.command & ATA_ERR) {
1da177e4
LT
1159 /*
1160 * arg! EDD works for all test cases, but seems to return
1161 * the ATA signature for some ATAPI devices. Until the
1162 * reason for this is found and fixed, we fix up the mess
1163 * here. If IDENTIFY DEVICE returns command aborted
1164 * (as ATAPI devices do), then we issue an
1165 * IDENTIFY PACKET DEVICE.
1166 *
1167 * ATA software reset (SRST, the default) does not appear
1168 * to have this problem.
1169 */
7c398335 1170 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
0169e284 1171 u8 err = qc->tf.feature;
1da177e4
LT
1172 if (err & ATA_ABORTED) {
1173 dev->class = ATA_DEV_ATAPI;
1174 qc->cursg = 0;
1175 qc->cursg_ofs = 0;
1176 qc->cursect = 0;
1177 qc->nsect = 1;
1178 goto retry;
1179 }
1180 }
1181 goto err_out;
1182 }
1183
1184 swap_buf_le16(dev->id, ATA_ID_WORDS);
1185
1186 /* print device capabilities */
1187 printk(KERN_DEBUG "ata%u: dev %u cfg "
1188 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1189 ap->id, device, dev->id[49],
1190 dev->id[82], dev->id[83], dev->id[84],
1191 dev->id[85], dev->id[86], dev->id[87],
1192 dev->id[88]);
1193
1194 /*
1195 * common ATA, ATAPI feature tests
1196 */
1197
8bf62ece
AL
1198 /* we require DMA support (bits 8 of word 49) */
1199 if (!ata_id_has_dma(dev->id)) {
1200 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1da177e4
LT
1201 goto err_out_nosup;
1202 }
1203
1204 /* quick-n-dirty find max transfer mode; for printk only */
1205 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1206 if (!xfer_modes)
1207 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
11e29e21
AC
1208 if (!xfer_modes)
1209 xfer_modes = ata_pio_modes(dev);
1da177e4
LT
1210
1211 ata_dump_id(dev);
1212
1213 /* ATA-specific feature tests */
1214 if (dev->class == ATA_DEV_ATA) {
1215 if (!ata_id_is_ata(dev->id)) /* sanity check */
1216 goto err_out_nosup;
1217
8bf62ece 1218 /* get major version */
1da177e4 1219 tmp = dev->id[ATA_ID_MAJOR_VER];
8bf62ece
AL
1220 for (major_version = 14; major_version >= 1; major_version--)
1221 if (tmp & (1 << major_version))
1da177e4
LT
1222 break;
1223
8bf62ece
AL
1224 /*
1225 * The exact sequence expected by certain pre-ATA4 drives is:
1226 * SRST RESET
1227 * IDENTIFY
1228 * INITIALIZE DEVICE PARAMETERS
1229 * anything else..
1230 * Some drives were very specific about that exact sequence.
1231 */
59a10b17 1232 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
8bf62ece
AL
1233 ata_dev_init_params(ap, dev);
1234
59a10b17
AL
1235 /* current CHS translation info (id[53-58]) might be
1236 * changed. reread the identify device info.
1237 */
1238 ata_dev_reread_id(ap, dev);
1239 }
1240
8bf62ece
AL
1241 if (ata_id_has_lba(dev->id)) {
1242 dev->flags |= ATA_DFLAG_LBA;
1243
1244 if (ata_id_has_lba48(dev->id)) {
1245 dev->flags |= ATA_DFLAG_LBA48;
1246 dev->n_sectors = ata_id_u64(dev->id, 100);
1247 } else {
1248 dev->n_sectors = ata_id_u32(dev->id, 60);
1249 }
1250
1251 /* print device info to dmesg */
1252 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1253 ap->id, device,
1254 major_version,
1255 ata_mode_string(xfer_modes),
1256 (unsigned long long)dev->n_sectors,
1257 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1258 } else {
1259 /* CHS */
1260
1261 /* Default translation */
1262 dev->cylinders = dev->id[1];
1263 dev->heads = dev->id[3];
1264 dev->sectors = dev->id[6];
1265 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1266
1267 if (ata_id_current_chs_valid(dev->id)) {
1268 /* Current CHS translation is valid. */
1269 dev->cylinders = dev->id[54];
1270 dev->heads = dev->id[55];
1271 dev->sectors = dev->id[56];
1272
1273 dev->n_sectors = ata_id_u32(dev->id, 57);
1274 }
1275
1276 /* print device info to dmesg */
1277 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1278 ap->id, device,
1279 major_version,
1280 ata_mode_string(xfer_modes),
1281 (unsigned long long)dev->n_sectors,
1282 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1da177e4 1283
1da177e4
LT
1284 }
1285
1286 ap->host->max_cmd_len = 16;
1da177e4
LT
1287 }
1288
1289 /* ATAPI-specific feature tests */
2c13b7ce 1290 else if (dev->class == ATA_DEV_ATAPI) {
1da177e4
LT
1291 if (ata_id_is_ata(dev->id)) /* sanity check */
1292 goto err_out_nosup;
1293
1294 rc = atapi_cdb_len(dev->id);
1295 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1296 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1297 goto err_out_nosup;
1298 }
1299 ap->cdb_len = (unsigned int) rc;
1300 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1301
1302 /* print device info to dmesg */
1303 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1304 ap->id, device,
1305 ata_mode_string(xfer_modes));
1306 }
1307
1308 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1309 return;
1310
1311err_out_nosup:
1312 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1313 ap->id, device);
1314err_out:
1315 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1316 DPRINTK("EXIT, err\n");
1317}
1318
6f2f3812 1319
057ace5e 1320static inline u8 ata_dev_knobble(const struct ata_port *ap)
6f2f3812
BC
1321{
1322 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1323}
1324
1325/**
1326 * ata_dev_config - Run device specific handlers and check for
1327 * SATA->PATA bridges
8a60a071 1328 * @ap: Bus
6f2f3812
BC
1329 * @i: Device
1330 *
1331 * LOCKING:
1332 */
8a60a071 1333
6f2f3812
BC
1334void ata_dev_config(struct ata_port *ap, unsigned int i)
1335{
1336 /* limit bridge transfers to udma5, 200 sectors */
1337 if (ata_dev_knobble(ap)) {
1338 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1339 ap->id, ap->device->devno);
1340 ap->udma_mask &= ATA_UDMA5;
1341 ap->host->max_sectors = ATA_MAX_SECTORS;
1342 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1343 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1344 }
1345
1346 if (ap->ops->dev_config)
1347 ap->ops->dev_config(ap, &ap->device[i]);
1348}
1349
1da177e4
LT
1350/**
1351 * ata_bus_probe - Reset and probe ATA bus
1352 * @ap: Bus to probe
1353 *
0cba632b
JG
1354 * Master ATA bus probing function. Initiates a hardware-dependent
1355 * bus reset, then attempts to identify any devices found on
1356 * the bus.
1357 *
1da177e4 1358 * LOCKING:
0cba632b 1359 * PCI/etc. bus probe sem.
1da177e4
LT
1360 *
1361 * RETURNS:
1362 * Zero on success, non-zero on error.
1363 */
1364
1365static int ata_bus_probe(struct ata_port *ap)
1366{
1367 unsigned int i, found = 0;
1368
1369 ap->ops->phy_reset(ap);
1370 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1371 goto err_out;
1372
1373 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1374 ata_dev_identify(ap, i);
1375 if (ata_dev_present(&ap->device[i])) {
1376 found = 1;
6f2f3812 1377 ata_dev_config(ap,i);
1da177e4
LT
1378 }
1379 }
1380
1381 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1382 goto err_out_disable;
1383
1384 ata_set_mode(ap);
1385 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1386 goto err_out_disable;
1387
1388 return 0;
1389
1390err_out_disable:
1391 ap->ops->port_disable(ap);
1392err_out:
1393 return -1;
1394}
1395
1396/**
0cba632b
JG
1397 * ata_port_probe - Mark port as enabled
1398 * @ap: Port for which we indicate enablement
1da177e4 1399 *
0cba632b
JG
1400 * Modify @ap data structure such that the system
1401 * thinks that the entire port is enabled.
1402 *
1403 * LOCKING: host_set lock, or some other form of
1404 * serialization.
1da177e4
LT
1405 */
1406
1407void ata_port_probe(struct ata_port *ap)
1408{
1409 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1410}
1411
1412/**
780a87f7
JG
1413 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1414 * @ap: SATA port associated with target SATA PHY.
1da177e4 1415 *
780a87f7
JG
1416 * This function issues commands to standard SATA Sxxx
1417 * PHY registers, to wake up the phy (and device), and
1418 * clear any reset condition.
1da177e4
LT
1419 *
1420 * LOCKING:
0cba632b 1421 * PCI/etc. bus probe sem.
1da177e4
LT
1422 *
1423 */
1424void __sata_phy_reset(struct ata_port *ap)
1425{
1426 u32 sstatus;
1427 unsigned long timeout = jiffies + (HZ * 5);
1428
1429 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1430 /* issue phy wake/reset */
1431 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1432 /* Couldn't find anything in SATA I/II specs, but
1433 * AHCI-1.1 10.4.2 says at least 1 ms. */
1434 mdelay(1);
1da177e4 1435 }
cdcca89e 1436 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1437
1438 /* wait for phy to become ready, if necessary */
1439 do {
1440 msleep(200);
1441 sstatus = scr_read(ap, SCR_STATUS);
1442 if ((sstatus & 0xf) != 1)
1443 break;
1444 } while (time_before(jiffies, timeout));
1445
1446 /* TODO: phy layer with polling, timeouts, etc. */
656563e3
JG
1447 sstatus = scr_read(ap, SCR_STATUS);
1448 if (sata_dev_present(ap)) {
1449 const char *speed;
1450 u32 tmp;
1451
1452 tmp = (sstatus >> 4) & 0xf;
1453 if (tmp & (1 << 0))
1454 speed = "1.5";
1455 else if (tmp & (1 << 1))
1456 speed = "3.0";
1457 else
1458 speed = "<unknown>";
1459 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1460 ap->id, speed, sstatus);
1da177e4 1461 ata_port_probe(ap);
656563e3
JG
1462 } else {
1463 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1da177e4
LT
1464 ap->id, sstatus);
1465 ata_port_disable(ap);
1466 }
1467
1468 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1469 return;
1470
1471 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1472 ata_port_disable(ap);
1473 return;
1474 }
1475
1476 ap->cbl = ATA_CBL_SATA;
1477}
1478
1479/**
780a87f7
JG
1480 * sata_phy_reset - Reset SATA bus.
1481 * @ap: SATA port associated with target SATA PHY.
1da177e4 1482 *
780a87f7
JG
1483 * This function resets the SATA bus, and then probes
1484 * the bus for devices.
1da177e4
LT
1485 *
1486 * LOCKING:
0cba632b 1487 * PCI/etc. bus probe sem.
1da177e4
LT
1488 *
1489 */
1490void sata_phy_reset(struct ata_port *ap)
1491{
1492 __sata_phy_reset(ap);
1493 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1494 return;
1495 ata_bus_reset(ap);
1496}
1497
1498/**
780a87f7
JG
1499 * ata_port_disable - Disable port.
1500 * @ap: Port to be disabled.
1da177e4 1501 *
780a87f7
JG
1502 * Modify @ap data structure such that the system
1503 * thinks that the entire port is disabled, and should
1504 * never attempt to probe or communicate with devices
1505 * on this port.
1506 *
1507 * LOCKING: host_set lock, or some other form of
1508 * serialization.
1da177e4
LT
1509 */
1510
1511void ata_port_disable(struct ata_port *ap)
1512{
1513 ap->device[0].class = ATA_DEV_NONE;
1514 ap->device[1].class = ATA_DEV_NONE;
1515 ap->flags |= ATA_FLAG_PORT_DISABLED;
1516}
1517
452503f9
AC
1518/*
1519 * This mode timing computation functionality is ported over from
1520 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1521 */
1522/*
1523 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1524 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1525 * for PIO 5, which is a nonstandard extension and UDMA6, which
1526 * is currently supported only by Maxtor drives.
1527 */
1528
1529static const struct ata_timing ata_timing[] = {
1530
1531 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1532 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1533 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1534 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1535
1536 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1537 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1538 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1539
1540/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1541
1542 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1543 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1544 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1545
1546 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1547 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1548 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1549
1550/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1551 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1552 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1553
1554 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1555 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1556 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1557
1558/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1559
1560 { 0xFF }
1561};
1562
1563#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1564#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1565
1566static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1567{
1568 q->setup = EZ(t->setup * 1000, T);
1569 q->act8b = EZ(t->act8b * 1000, T);
1570 q->rec8b = EZ(t->rec8b * 1000, T);
1571 q->cyc8b = EZ(t->cyc8b * 1000, T);
1572 q->active = EZ(t->active * 1000, T);
1573 q->recover = EZ(t->recover * 1000, T);
1574 q->cycle = EZ(t->cycle * 1000, T);
1575 q->udma = EZ(t->udma * 1000, UT);
1576}
1577
1578void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1579 struct ata_timing *m, unsigned int what)
1580{
1581 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1582 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1583 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1584 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1585 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1586 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1587 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1588 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1589}
1590
1591static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1592{
1593 const struct ata_timing *t;
1594
1595 for (t = ata_timing; t->mode != speed; t++)
91190758 1596 if (t->mode == 0xFF)
452503f9
AC
1597 return NULL;
1598 return t;
1599}
1600
1601int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1602 struct ata_timing *t, int T, int UT)
1603{
1604 const struct ata_timing *s;
1605 struct ata_timing p;
1606
1607 /*
1608 * Find the mode.
75b1f2f8 1609 */
452503f9
AC
1610
1611 if (!(s = ata_timing_find_mode(speed)))
1612 return -EINVAL;
1613
75b1f2f8
AL
1614 memcpy(t, s, sizeof(*s));
1615
452503f9
AC
1616 /*
1617 * If the drive is an EIDE drive, it can tell us it needs extended
1618 * PIO/MW_DMA cycle timing.
1619 */
1620
1621 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1622 memset(&p, 0, sizeof(p));
1623 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1624 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1625 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1626 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1627 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1628 }
1629 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1630 }
1631
1632 /*
1633 * Convert the timing to bus clock counts.
1634 */
1635
75b1f2f8 1636 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1637
1638 /*
1639 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
1640 * and some other commands. We have to ensure that the DMA cycle timing is
1641 * slower/equal than the fastest PIO timing.
1642 */
1643
1644 if (speed > XFER_PIO_4) {
1645 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1646 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1647 }
1648
1649 /*
1650 * Lenghten active & recovery time so that cycle time is correct.
1651 */
1652
1653 if (t->act8b + t->rec8b < t->cyc8b) {
1654 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1655 t->rec8b = t->cyc8b - t->act8b;
1656 }
1657
1658 if (t->active + t->recover < t->cycle) {
1659 t->active += (t->cycle - (t->active + t->recover)) / 2;
1660 t->recover = t->cycle - t->active;
1661 }
1662
1663 return 0;
1664}
1665
057ace5e 1666static const struct {
1da177e4
LT
1667 unsigned int shift;
1668 u8 base;
1669} xfer_mode_classes[] = {
1670 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1671 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1672 { ATA_SHIFT_PIO, XFER_PIO_0 },
1673};
1674
1675static inline u8 base_from_shift(unsigned int shift)
1676{
1677 int i;
1678
1679 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1680 if (xfer_mode_classes[i].shift == shift)
1681 return xfer_mode_classes[i].base;
1682
1683 return 0xff;
1684}
1685
1686static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1687{
1688 int ofs, idx;
1689 u8 base;
1690
1691 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1692 return;
1693
1694 if (dev->xfer_shift == ATA_SHIFT_PIO)
1695 dev->flags |= ATA_DFLAG_PIO;
1696
1697 ata_dev_set_xfermode(ap, dev);
1698
1699 base = base_from_shift(dev->xfer_shift);
1700 ofs = dev->xfer_mode - base;
1701 idx = ofs + dev->xfer_shift;
1702 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1703
1704 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1705 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1706
1707 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1708 ap->id, dev->devno, xfer_mode_str[idx]);
1709}
1710
1711static int ata_host_set_pio(struct ata_port *ap)
1712{
1713 unsigned int mask;
1714 int x, i;
1715 u8 base, xfer_mode;
1716
1717 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1718 x = fgb(mask);
1719 if (x < 0) {
1720 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1721 return -1;
1722 }
1723
1724 base = base_from_shift(ATA_SHIFT_PIO);
1725 xfer_mode = base + x;
1726
1727 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1728 (int)base, (int)xfer_mode, mask, x);
1729
1730 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1731 struct ata_device *dev = &ap->device[i];
1732 if (ata_dev_present(dev)) {
1733 dev->pio_mode = xfer_mode;
1734 dev->xfer_mode = xfer_mode;
1735 dev->xfer_shift = ATA_SHIFT_PIO;
1736 if (ap->ops->set_piomode)
1737 ap->ops->set_piomode(ap, dev);
1738 }
1739 }
1740
1741 return 0;
1742}
1743
1744static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1745 unsigned int xfer_shift)
1746{
1747 int i;
1748
1749 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1750 struct ata_device *dev = &ap->device[i];
1751 if (ata_dev_present(dev)) {
1752 dev->dma_mode = xfer_mode;
1753 dev->xfer_mode = xfer_mode;
1754 dev->xfer_shift = xfer_shift;
1755 if (ap->ops->set_dmamode)
1756 ap->ops->set_dmamode(ap, dev);
1757 }
1758 }
1759}
1760
1761/**
1762 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1763 * @ap: port on which timings will be programmed
1764 *
780a87f7
JG
1765 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1766 *
1da177e4 1767 * LOCKING:
0cba632b 1768 * PCI/etc. bus probe sem.
1da177e4
LT
1769 *
1770 */
1771static void ata_set_mode(struct ata_port *ap)
1772{
8cbd6df1 1773 unsigned int xfer_shift;
1da177e4
LT
1774 u8 xfer_mode;
1775 int rc;
1776
1777 /* step 1: always set host PIO timings */
1778 rc = ata_host_set_pio(ap);
1779 if (rc)
1780 goto err_out;
1781
1782 /* step 2: choose the best data xfer mode */
1783 xfer_mode = xfer_shift = 0;
1784 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1785 if (rc)
1786 goto err_out;
1787
1788 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1789 if (xfer_shift != ATA_SHIFT_PIO)
1790 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1791
1792 /* step 4: update devices' xfer mode */
1793 ata_dev_set_mode(ap, &ap->device[0]);
1794 ata_dev_set_mode(ap, &ap->device[1]);
1795
1796 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1797 return;
1798
1799 if (ap->ops->post_set_mode)
1800 ap->ops->post_set_mode(ap);
1801
1da177e4
LT
1802 return;
1803
1804err_out:
1805 ata_port_disable(ap);
1806}
1807
1808/**
1809 * ata_busy_sleep - sleep until BSY clears, or timeout
1810 * @ap: port containing status register to be polled
1811 * @tmout_pat: impatience timeout
1812 * @tmout: overall timeout
1813 *
780a87f7
JG
1814 * Sleep until ATA Status register bit BSY clears,
1815 * or a timeout occurs.
1816 *
1817 * LOCKING: None.
1da177e4
LT
1818 *
1819 */
1820
1821static unsigned int ata_busy_sleep (struct ata_port *ap,
1822 unsigned long tmout_pat,
1823 unsigned long tmout)
1824{
1825 unsigned long timer_start, timeout;
1826 u8 status;
1827
1828 status = ata_busy_wait(ap, ATA_BUSY, 300);
1829 timer_start = jiffies;
1830 timeout = timer_start + tmout_pat;
1831 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1832 msleep(50);
1833 status = ata_busy_wait(ap, ATA_BUSY, 3);
1834 }
1835
1836 if (status & ATA_BUSY)
1837 printk(KERN_WARNING "ata%u is slow to respond, "
1838 "please be patient\n", ap->id);
1839
1840 timeout = timer_start + tmout;
1841 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1842 msleep(50);
1843 status = ata_chk_status(ap);
1844 }
1845
1846 if (status & ATA_BUSY) {
1847 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1848 ap->id, tmout / HZ);
1849 return 1;
1850 }
1851
1852 return 0;
1853}
1854
1855static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1856{
1857 struct ata_ioports *ioaddr = &ap->ioaddr;
1858 unsigned int dev0 = devmask & (1 << 0);
1859 unsigned int dev1 = devmask & (1 << 1);
1860 unsigned long timeout;
1861
1862 /* if device 0 was found in ata_devchk, wait for its
1863 * BSY bit to clear
1864 */
1865 if (dev0)
1866 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1867
1868 /* if device 1 was found in ata_devchk, wait for
1869 * register access, then wait for BSY to clear
1870 */
1871 timeout = jiffies + ATA_TMOUT_BOOT;
1872 while (dev1) {
1873 u8 nsect, lbal;
1874
1875 ap->ops->dev_select(ap, 1);
1876 if (ap->flags & ATA_FLAG_MMIO) {
1877 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1878 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1879 } else {
1880 nsect = inb(ioaddr->nsect_addr);
1881 lbal = inb(ioaddr->lbal_addr);
1882 }
1883 if ((nsect == 1) && (lbal == 1))
1884 break;
1885 if (time_after(jiffies, timeout)) {
1886 dev1 = 0;
1887 break;
1888 }
1889 msleep(50); /* give drive a breather */
1890 }
1891 if (dev1)
1892 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1893
1894 /* is all this really necessary? */
1895 ap->ops->dev_select(ap, 0);
1896 if (dev1)
1897 ap->ops->dev_select(ap, 1);
1898 if (dev0)
1899 ap->ops->dev_select(ap, 0);
1900}
1901
1902/**
0cba632b
JG
1903 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1904 * @ap: Port to reset and probe
1905 *
1906 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1907 * probe the bus. Not often used these days.
1da177e4
LT
1908 *
1909 * LOCKING:
0cba632b 1910 * PCI/etc. bus probe sem.
e5338254 1911 * Obtains host_set lock.
1da177e4
LT
1912 *
1913 */
1914
1915static unsigned int ata_bus_edd(struct ata_port *ap)
1916{
1917 struct ata_taskfile tf;
e5338254 1918 unsigned long flags;
1da177e4
LT
1919
1920 /* set up execute-device-diag (bus reset) taskfile */
1921 /* also, take interrupts to a known state (disabled) */
1922 DPRINTK("execute-device-diag\n");
1923 ata_tf_init(ap, &tf, 0);
1924 tf.ctl |= ATA_NIEN;
1925 tf.command = ATA_CMD_EDD;
1926 tf.protocol = ATA_PROT_NODATA;
1927
1928 /* do bus reset */
e5338254 1929 spin_lock_irqsave(&ap->host_set->lock, flags);
1da177e4 1930 ata_tf_to_host(ap, &tf);
e5338254 1931 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1da177e4
LT
1932
1933 /* spec says at least 2ms. but who knows with those
1934 * crazy ATAPI devices...
1935 */
1936 msleep(150);
1937
1938 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1939}
1940
1941static unsigned int ata_bus_softreset(struct ata_port *ap,
1942 unsigned int devmask)
1943{
1944 struct ata_ioports *ioaddr = &ap->ioaddr;
1945
1946 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1947
1948 /* software reset. causes dev0 to be selected */
1949 if (ap->flags & ATA_FLAG_MMIO) {
1950 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1951 udelay(20); /* FIXME: flush */
1952 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1953 udelay(20); /* FIXME: flush */
1954 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1955 } else {
1956 outb(ap->ctl, ioaddr->ctl_addr);
1957 udelay(10);
1958 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1959 udelay(10);
1960 outb(ap->ctl, ioaddr->ctl_addr);
1961 }
1962
1963 /* spec mandates ">= 2ms" before checking status.
1964 * We wait 150ms, because that was the magic delay used for
1965 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1966 * between when the ATA command register is written, and then
1967 * status is checked. Because waiting for "a while" before
1968 * checking status is fine, post SRST, we perform this magic
1969 * delay here as well.
1970 */
1971 msleep(150);
1972
1973 ata_bus_post_reset(ap, devmask);
1974
1975 return 0;
1976}
1977
1978/**
1979 * ata_bus_reset - reset host port and associated ATA channel
1980 * @ap: port to reset
1981 *
1982 * This is typically the first time we actually start issuing
1983 * commands to the ATA channel. We wait for BSY to clear, then
1984 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1985 * result. Determine what devices, if any, are on the channel
1986 * by looking at the device 0/1 error register. Look at the signature
1987 * stored in each device's taskfile registers, to determine if
1988 * the device is ATA or ATAPI.
1989 *
1990 * LOCKING:
0cba632b
JG
1991 * PCI/etc. bus probe sem.
1992 * Obtains host_set lock.
1da177e4
LT
1993 *
1994 * SIDE EFFECTS:
1995 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1996 */
1997
1998void ata_bus_reset(struct ata_port *ap)
1999{
2000 struct ata_ioports *ioaddr = &ap->ioaddr;
2001 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2002 u8 err;
2003 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2004
2005 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2006
2007 /* determine if device 0/1 are present */
2008 if (ap->flags & ATA_FLAG_SATA_RESET)
2009 dev0 = 1;
2010 else {
2011 dev0 = ata_devchk(ap, 0);
2012 if (slave_possible)
2013 dev1 = ata_devchk(ap, 1);
2014 }
2015
2016 if (dev0)
2017 devmask |= (1 << 0);
2018 if (dev1)
2019 devmask |= (1 << 1);
2020
2021 /* select device 0 again */
2022 ap->ops->dev_select(ap, 0);
2023
2024 /* issue bus reset */
2025 if (ap->flags & ATA_FLAG_SRST)
2026 rc = ata_bus_softreset(ap, devmask);
2027 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2028 /* set up device control */
2029 if (ap->flags & ATA_FLAG_MMIO)
2030 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2031 else
2032 outb(ap->ctl, ioaddr->ctl_addr);
2033 rc = ata_bus_edd(ap);
2034 }
2035
2036 if (rc)
2037 goto err_out;
2038
2039 /*
2040 * determine by signature whether we have ATA or ATAPI devices
2041 */
2042 err = ata_dev_try_classify(ap, 0);
2043 if ((slave_possible) && (err != 0x81))
2044 ata_dev_try_classify(ap, 1);
2045
2046 /* re-enable interrupts */
2047 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2048 ata_irq_on(ap);
2049
2050 /* is double-select really necessary? */
2051 if (ap->device[1].class != ATA_DEV_NONE)
2052 ap->ops->dev_select(ap, 1);
2053 if (ap->device[0].class != ATA_DEV_NONE)
2054 ap->ops->dev_select(ap, 0);
2055
2056 /* if no devices were detected, disable this port */
2057 if ((ap->device[0].class == ATA_DEV_NONE) &&
2058 (ap->device[1].class == ATA_DEV_NONE))
2059 goto err_out;
2060
2061 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2062 /* set up device control for ATA_FLAG_SATA_RESET */
2063 if (ap->flags & ATA_FLAG_MMIO)
2064 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2065 else
2066 outb(ap->ctl, ioaddr->ctl_addr);
2067 }
2068
2069 DPRINTK("EXIT\n");
2070 return;
2071
2072err_out:
2073 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2074 ap->ops->port_disable(ap);
2075
2076 DPRINTK("EXIT\n");
2077}
2078
057ace5e
JG
2079static void ata_pr_blacklisted(const struct ata_port *ap,
2080 const struct ata_device *dev)
1da177e4
LT
2081{
2082 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2083 ap->id, dev->devno);
2084}
2085
98ac62de 2086static const char * const ata_dma_blacklist [] = {
1da177e4
LT
2087 "WDC AC11000H",
2088 "WDC AC22100H",
2089 "WDC AC32500H",
2090 "WDC AC33100H",
2091 "WDC AC31600H",
2092 "WDC AC32100H",
2093 "WDC AC23200L",
2094 "Compaq CRD-8241B",
2095 "CRD-8400B",
2096 "CRD-8480B",
2097 "CRD-8482B",
2098 "CRD-84",
2099 "SanDisk SDP3B",
2100 "SanDisk SDP3B-64",
2101 "SANYO CD-ROM CRD",
2102 "HITACHI CDR-8",
2103 "HITACHI CDR-8335",
2104 "HITACHI CDR-8435",
2105 "Toshiba CD-ROM XM-6202B",
e922256a 2106 "TOSHIBA CD-ROM XM-1702BC",
1da177e4
LT
2107 "CD-532E-A",
2108 "E-IDE CD-ROM CR-840",
2109 "CD-ROM Drive/F5A",
2110 "WPI CDD-820",
2111 "SAMSUNG CD-ROM SC-148C",
2112 "SAMSUNG CD-ROM SC",
2113 "SanDisk SDP3B-64",
1da177e4
LT
2114 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2115 "_NEC DV5800A",
2116};
2117
057ace5e 2118static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4
LT
2119{
2120 unsigned char model_num[40];
2121 char *s;
2122 unsigned int len;
2123 int i;
2124
2125 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2126 sizeof(model_num));
2127 s = &model_num[0];
2128 len = strnlen(s, sizeof(model_num));
2129
2130 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2131 while ((len > 0) && (s[len - 1] == ' ')) {
2132 len--;
2133 s[len] = 0;
2134 }
2135
2136 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2137 if (!strncmp(ata_dma_blacklist[i], s, len))
2138 return 1;
2139
2140 return 0;
2141}
2142
057ace5e 2143static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
1da177e4 2144{
057ace5e 2145 const struct ata_device *master, *slave;
1da177e4
LT
2146 unsigned int mask;
2147
2148 master = &ap->device[0];
2149 slave = &ap->device[1];
2150
2151 assert (ata_dev_present(master) || ata_dev_present(slave));
2152
2153 if (shift == ATA_SHIFT_UDMA) {
2154 mask = ap->udma_mask;
2155 if (ata_dev_present(master)) {
2156 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
057ace5e 2157 if (ata_dma_blacklisted(master)) {
1da177e4
LT
2158 mask = 0;
2159 ata_pr_blacklisted(ap, master);
2160 }
2161 }
2162 if (ata_dev_present(slave)) {
2163 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
057ace5e 2164 if (ata_dma_blacklisted(slave)) {
1da177e4
LT
2165 mask = 0;
2166 ata_pr_blacklisted(ap, slave);
2167 }
2168 }
2169 }
2170 else if (shift == ATA_SHIFT_MWDMA) {
2171 mask = ap->mwdma_mask;
2172 if (ata_dev_present(master)) {
2173 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
057ace5e 2174 if (ata_dma_blacklisted(master)) {
1da177e4
LT
2175 mask = 0;
2176 ata_pr_blacklisted(ap, master);
2177 }
2178 }
2179 if (ata_dev_present(slave)) {
2180 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
057ace5e 2181 if (ata_dma_blacklisted(slave)) {
1da177e4
LT
2182 mask = 0;
2183 ata_pr_blacklisted(ap, slave);
2184 }
2185 }
2186 }
2187 else if (shift == ATA_SHIFT_PIO) {
2188 mask = ap->pio_mask;
2189 if (ata_dev_present(master)) {
2190 /* spec doesn't return explicit support for
2191 * PIO0-2, so we fake it
2192 */
2193 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2194 tmp_mode <<= 3;
2195 tmp_mode |= 0x7;
2196 mask &= tmp_mode;
2197 }
2198 if (ata_dev_present(slave)) {
2199 /* spec doesn't return explicit support for
2200 * PIO0-2, so we fake it
2201 */
2202 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2203 tmp_mode <<= 3;
2204 tmp_mode |= 0x7;
2205 mask &= tmp_mode;
2206 }
2207 }
2208 else {
2209 mask = 0xffffffff; /* shut up compiler warning */
2210 BUG();
2211 }
2212
2213 return mask;
2214}
2215
2216/* find greatest bit */
2217static int fgb(u32 bitmap)
2218{
2219 unsigned int i;
2220 int x = -1;
2221
2222 for (i = 0; i < 32; i++)
2223 if (bitmap & (1 << i))
2224 x = i;
2225
2226 return x;
2227}
2228
2229/**
2230 * ata_choose_xfer_mode - attempt to find best transfer mode
2231 * @ap: Port for which an xfer mode will be selected
2232 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2233 * @xfer_shift_out: (output) bit shift that selects this mode
2234 *
0cba632b
JG
2235 * Based on host and device capabilities, determine the
2236 * maximum transfer mode that is amenable to all.
2237 *
1da177e4 2238 * LOCKING:
0cba632b 2239 * PCI/etc. bus probe sem.
1da177e4
LT
2240 *
2241 * RETURNS:
2242 * Zero on success, negative on error.
2243 */
2244
057ace5e 2245static int ata_choose_xfer_mode(const struct ata_port *ap,
1da177e4
LT
2246 u8 *xfer_mode_out,
2247 unsigned int *xfer_shift_out)
2248{
2249 unsigned int mask, shift;
2250 int x, i;
2251
2252 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2253 shift = xfer_mode_classes[i].shift;
2254 mask = ata_get_mode_mask(ap, shift);
2255
2256 x = fgb(mask);
2257 if (x >= 0) {
2258 *xfer_mode_out = xfer_mode_classes[i].base + x;
2259 *xfer_shift_out = shift;
2260 return 0;
2261 }
2262 }
2263
2264 return -1;
2265}
2266
2267/**
2268 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2269 * @ap: Port associated with device @dev
2270 * @dev: Device to which command will be sent
2271 *
780a87f7
JG
2272 * Issue SET FEATURES - XFER MODE command to device @dev
2273 * on port @ap.
2274 *
1da177e4 2275 * LOCKING:
0cba632b 2276 * PCI/etc. bus probe sem.
1da177e4
LT
2277 */
2278
2279static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2280{
2281 DECLARE_COMPLETION(wait);
2282 struct ata_queued_cmd *qc;
2283 int rc;
2284 unsigned long flags;
2285
2286 /* set up set-features taskfile */
2287 DPRINTK("set features - xfer mode\n");
2288
2289 qc = ata_qc_new_init(ap, dev);
2290 BUG_ON(qc == NULL);
2291
2292 qc->tf.command = ATA_CMD_SET_FEATURES;
2293 qc->tf.feature = SETFEATURES_XFER;
2294 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2295 qc->tf.protocol = ATA_PROT_NODATA;
2296 qc->tf.nsect = dev->xfer_mode;
2297
2298 qc->waiting = &wait;
2299 qc->complete_fn = ata_qc_complete_noop;
2300
2301 spin_lock_irqsave(&ap->host_set->lock, flags);
2302 rc = ata_qc_issue(qc);
2303 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2304
2305 if (rc)
2306 ata_port_disable(ap);
2307 else
64f043d8 2308 ata_qc_wait_err(qc, &wait);
1da177e4
LT
2309
2310 DPRINTK("EXIT\n");
2311}
2312
59a10b17
AL
2313/**
2314 * ata_dev_reread_id - Reread the device identify device info
2315 * @ap: port where the device is
2316 * @dev: device to reread the identify device info
2317 *
2318 * LOCKING:
2319 */
2320
2321static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2322{
2323 DECLARE_COMPLETION(wait);
2324 struct ata_queued_cmd *qc;
2325 unsigned long flags;
2326 int rc;
2327
2328 qc = ata_qc_new_init(ap, dev);
2329 BUG_ON(qc == NULL);
2330
2331 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
2332 qc->dma_dir = DMA_FROM_DEVICE;
2333
2334 if (dev->class == ATA_DEV_ATA) {
2335 qc->tf.command = ATA_CMD_ID_ATA;
2336 DPRINTK("do ATA identify\n");
2337 } else {
2338 qc->tf.command = ATA_CMD_ID_ATAPI;
2339 DPRINTK("do ATAPI identify\n");
2340 }
2341
2342 qc->tf.flags |= ATA_TFLAG_DEVICE;
2343 qc->tf.protocol = ATA_PROT_PIO;
2344 qc->nsect = 1;
2345
2346 qc->waiting = &wait;
2347 qc->complete_fn = ata_qc_complete_noop;
2348
2349 spin_lock_irqsave(&ap->host_set->lock, flags);
2350 rc = ata_qc_issue(qc);
2351 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2352
2353 if (rc)
2354 goto err_out;
2355
64f043d8 2356 ata_qc_wait_err(qc, &wait);
59a10b17
AL
2357
2358 swap_buf_le16(dev->id, ATA_ID_WORDS);
2359
2360 ata_dump_id(dev);
2361
2362 DPRINTK("EXIT\n");
2363
2364 return;
2365err_out:
2366 ata_port_disable(ap);
2367}
2368
8bf62ece
AL
2369/**
2370 * ata_dev_init_params - Issue INIT DEV PARAMS command
2371 * @ap: Port associated with device @dev
2372 * @dev: Device to which command will be sent
2373 *
2374 * LOCKING:
2375 */
2376
2377static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2378{
2379 DECLARE_COMPLETION(wait);
2380 struct ata_queued_cmd *qc;
2381 int rc;
2382 unsigned long flags;
2383 u16 sectors = dev->id[6];
2384 u16 heads = dev->id[3];
2385
2386 /* Number of sectors per track 1-255. Number of heads 1-16 */
2387 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2388 return;
2389
2390 /* set up init dev params taskfile */
2391 DPRINTK("init dev params \n");
2392
2393 qc = ata_qc_new_init(ap, dev);
2394 BUG_ON(qc == NULL);
2395
2396 qc->tf.command = ATA_CMD_INIT_DEV_PARAMS;
2397 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2398 qc->tf.protocol = ATA_PROT_NODATA;
2399 qc->tf.nsect = sectors;
2400 qc->tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2401
2402 qc->waiting = &wait;
2403 qc->complete_fn = ata_qc_complete_noop;
2404
2405 spin_lock_irqsave(&ap->host_set->lock, flags);
2406 rc = ata_qc_issue(qc);
2407 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2408
2409 if (rc)
2410 ata_port_disable(ap);
2411 else
64f043d8 2412 ata_qc_wait_err(qc, &wait);
8bf62ece
AL
2413
2414 DPRINTK("EXIT\n");
2415}
2416
1da177e4 2417/**
0cba632b
JG
2418 * ata_sg_clean - Unmap DMA memory associated with command
2419 * @qc: Command containing DMA memory to be released
2420 *
2421 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2422 *
2423 * LOCKING:
0cba632b 2424 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2425 */
2426
2427static void ata_sg_clean(struct ata_queued_cmd *qc)
2428{
2429 struct ata_port *ap = qc->ap;
cedc9a47 2430 struct scatterlist *sg = qc->__sg;
1da177e4 2431 int dir = qc->dma_dir;
cedc9a47 2432 void *pad_buf = NULL;
1da177e4
LT
2433
2434 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2435 assert(sg != NULL);
2436
2437 if (qc->flags & ATA_QCFLAG_SINGLE)
2438 assert(qc->n_elem == 1);
2439
2c13b7ce 2440 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 2441
cedc9a47
JG
2442 /* if we padded the buffer out to 32-bit bound, and data
2443 * xfer direction is from-device, we must copy from the
2444 * pad buffer back into the supplied buffer
2445 */
2446 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2447 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2448
2449 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d
JG
2450 if (qc->n_elem)
2451 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
cedc9a47
JG
2452 /* restore last sg */
2453 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2454 if (pad_buf) {
2455 struct scatterlist *psg = &qc->pad_sgent;
2456 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2457 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2458 kunmap_atomic(psg->page, KM_IRQ0);
2459 }
2460 } else {
e1410f2d
JG
2461 if (sg_dma_len(&sg[0]) > 0)
2462 dma_unmap_single(ap->host_set->dev,
2463 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2464 dir);
cedc9a47
JG
2465 /* restore sg */
2466 sg->length += qc->pad_len;
2467 if (pad_buf)
2468 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2469 pad_buf, qc->pad_len);
2470 }
1da177e4
LT
2471
2472 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 2473 qc->__sg = NULL;
1da177e4
LT
2474}
2475
2476/**
2477 * ata_fill_sg - Fill PCI IDE PRD table
2478 * @qc: Metadata associated with taskfile to be transferred
2479 *
780a87f7
JG
2480 * Fill PCI IDE PRD (scatter-gather) table with segments
2481 * associated with the current disk command.
2482 *
1da177e4 2483 * LOCKING:
780a87f7 2484 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2485 *
2486 */
2487static void ata_fill_sg(struct ata_queued_cmd *qc)
2488{
1da177e4 2489 struct ata_port *ap = qc->ap;
cedc9a47
JG
2490 struct scatterlist *sg;
2491 unsigned int idx;
1da177e4 2492
cedc9a47 2493 assert(qc->__sg != NULL);
1da177e4
LT
2494 assert(qc->n_elem > 0);
2495
2496 idx = 0;
cedc9a47 2497 ata_for_each_sg(sg, qc) {
1da177e4
LT
2498 u32 addr, offset;
2499 u32 sg_len, len;
2500
2501 /* determine if physical DMA addr spans 64K boundary.
2502 * Note h/w doesn't support 64-bit, so we unconditionally
2503 * truncate dma_addr_t to u32.
2504 */
2505 addr = (u32) sg_dma_address(sg);
2506 sg_len = sg_dma_len(sg);
2507
2508 while (sg_len) {
2509 offset = addr & 0xffff;
2510 len = sg_len;
2511 if ((offset + sg_len) > 0x10000)
2512 len = 0x10000 - offset;
2513
2514 ap->prd[idx].addr = cpu_to_le32(addr);
2515 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2516 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2517
2518 idx++;
2519 sg_len -= len;
2520 addr += len;
2521 }
2522 }
2523
2524 if (idx)
2525 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2526}
2527/**
2528 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2529 * @qc: Metadata associated with taskfile to check
2530 *
780a87f7
JG
2531 * Allow low-level driver to filter ATA PACKET commands, returning
2532 * a status indicating whether or not it is OK to use DMA for the
2533 * supplied PACKET command.
2534 *
1da177e4 2535 * LOCKING:
0cba632b
JG
2536 * spin_lock_irqsave(host_set lock)
2537 *
1da177e4
LT
2538 * RETURNS: 0 when ATAPI DMA can be used
2539 * nonzero otherwise
2540 */
2541int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2542{
2543 struct ata_port *ap = qc->ap;
2544 int rc = 0; /* Assume ATAPI DMA is OK by default */
2545
2546 if (ap->ops->check_atapi_dma)
2547 rc = ap->ops->check_atapi_dma(qc);
2548
2549 return rc;
2550}
2551/**
2552 * ata_qc_prep - Prepare taskfile for submission
2553 * @qc: Metadata associated with taskfile to be prepared
2554 *
780a87f7
JG
2555 * Prepare ATA taskfile for submission.
2556 *
1da177e4
LT
2557 * LOCKING:
2558 * spin_lock_irqsave(host_set lock)
2559 */
2560void ata_qc_prep(struct ata_queued_cmd *qc)
2561{
2562 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2563 return;
2564
2565 ata_fill_sg(qc);
2566}
2567
0cba632b
JG
2568/**
2569 * ata_sg_init_one - Associate command with memory buffer
2570 * @qc: Command to be associated
2571 * @buf: Memory buffer
2572 * @buflen: Length of memory buffer, in bytes.
2573 *
2574 * Initialize the data-related elements of queued_cmd @qc
2575 * to point to a single memory buffer, @buf of byte length @buflen.
2576 *
2577 * LOCKING:
2578 * spin_lock_irqsave(host_set lock)
2579 */
2580
1da177e4
LT
2581void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2582{
2583 struct scatterlist *sg;
2584
2585 qc->flags |= ATA_QCFLAG_SINGLE;
2586
2587 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 2588 qc->__sg = &qc->sgent;
1da177e4 2589 qc->n_elem = 1;
cedc9a47 2590 qc->orig_n_elem = 1;
1da177e4
LT
2591 qc->buf_virt = buf;
2592
cedc9a47 2593 sg = qc->__sg;
f0612bbc 2594 sg_init_one(sg, buf, buflen);
1da177e4
LT
2595}
2596
0cba632b
JG
2597/**
2598 * ata_sg_init - Associate command with scatter-gather table.
2599 * @qc: Command to be associated
2600 * @sg: Scatter-gather table.
2601 * @n_elem: Number of elements in s/g table.
2602 *
2603 * Initialize the data-related elements of queued_cmd @qc
2604 * to point to a scatter-gather table @sg, containing @n_elem
2605 * elements.
2606 *
2607 * LOCKING:
2608 * spin_lock_irqsave(host_set lock)
2609 */
2610
1da177e4
LT
2611void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2612 unsigned int n_elem)
2613{
2614 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 2615 qc->__sg = sg;
1da177e4 2616 qc->n_elem = n_elem;
cedc9a47 2617 qc->orig_n_elem = n_elem;
1da177e4
LT
2618}
2619
2620/**
0cba632b
JG
2621 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2622 * @qc: Command with memory buffer to be mapped.
2623 *
2624 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
2625 *
2626 * LOCKING:
2627 * spin_lock_irqsave(host_set lock)
2628 *
2629 * RETURNS:
0cba632b 2630 * Zero on success, negative on error.
1da177e4
LT
2631 */
2632
2633static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2634{
2635 struct ata_port *ap = qc->ap;
2636 int dir = qc->dma_dir;
cedc9a47 2637 struct scatterlist *sg = qc->__sg;
1da177e4
LT
2638 dma_addr_t dma_address;
2639
cedc9a47
JG
2640 /* we must lengthen transfers to end on a 32-bit boundary */
2641 qc->pad_len = sg->length & 3;
2642 if (qc->pad_len) {
2643 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2644 struct scatterlist *psg = &qc->pad_sgent;
2645
2646 assert(qc->dev->class == ATA_DEV_ATAPI);
2647
2648 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2649
2650 if (qc->tf.flags & ATA_TFLAG_WRITE)
2651 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2652 qc->pad_len);
2653
2654 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2655 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2656 /* trim sg */
2657 sg->length -= qc->pad_len;
2658
2659 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2660 sg->length, qc->pad_len);
2661 }
2662
e1410f2d
JG
2663 if (!sg->length) {
2664 sg_dma_address(sg) = 0;
2665 goto skip_map;
2666 }
2667
1da177e4 2668 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
32529e01 2669 sg->length, dir);
537a95d9
TH
2670 if (dma_mapping_error(dma_address)) {
2671 /* restore sg */
2672 sg->length += qc->pad_len;
1da177e4 2673 return -1;
537a95d9 2674 }
1da177e4
LT
2675
2676 sg_dma_address(sg) = dma_address;
e1410f2d 2677skip_map:
32529e01 2678 sg_dma_len(sg) = sg->length;
1da177e4
LT
2679
2680 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2681 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2682
2683 return 0;
2684}
2685
2686/**
0cba632b
JG
2687 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2688 * @qc: Command with scatter-gather table to be mapped.
2689 *
2690 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
2691 *
2692 * LOCKING:
2693 * spin_lock_irqsave(host_set lock)
2694 *
2695 * RETURNS:
0cba632b 2696 * Zero on success, negative on error.
1da177e4
LT
2697 *
2698 */
2699
2700static int ata_sg_setup(struct ata_queued_cmd *qc)
2701{
2702 struct ata_port *ap = qc->ap;
cedc9a47
JG
2703 struct scatterlist *sg = qc->__sg;
2704 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 2705 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
2706
2707 VPRINTK("ENTER, ata%u\n", ap->id);
2708 assert(qc->flags & ATA_QCFLAG_SG);
2709
cedc9a47
JG
2710 /* we must lengthen transfers to end on a 32-bit boundary */
2711 qc->pad_len = lsg->length & 3;
2712 if (qc->pad_len) {
2713 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2714 struct scatterlist *psg = &qc->pad_sgent;
2715 unsigned int offset;
2716
2717 assert(qc->dev->class == ATA_DEV_ATAPI);
2718
2719 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2720
2721 /*
2722 * psg->page/offset are used to copy to-be-written
2723 * data in this function or read data in ata_sg_clean.
2724 */
2725 offset = lsg->offset + lsg->length - qc->pad_len;
2726 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2727 psg->offset = offset_in_page(offset);
2728
2729 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2730 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2731 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
2732 kunmap_atomic(psg->page, KM_IRQ0);
2733 }
2734
2735 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2736 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2737 /* trim last sg */
2738 lsg->length -= qc->pad_len;
e1410f2d
JG
2739 if (lsg->length == 0)
2740 trim_sg = 1;
cedc9a47
JG
2741
2742 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2743 qc->n_elem - 1, lsg->length, qc->pad_len);
2744 }
2745
e1410f2d
JG
2746 pre_n_elem = qc->n_elem;
2747 if (trim_sg && pre_n_elem)
2748 pre_n_elem--;
2749
2750 if (!pre_n_elem) {
2751 n_elem = 0;
2752 goto skip_map;
2753 }
2754
1da177e4 2755 dir = qc->dma_dir;
e1410f2d 2756 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
537a95d9
TH
2757 if (n_elem < 1) {
2758 /* restore last sg */
2759 lsg->length += qc->pad_len;
1da177e4 2760 return -1;
537a95d9 2761 }
1da177e4
LT
2762
2763 DPRINTK("%d sg elements mapped\n", n_elem);
2764
e1410f2d 2765skip_map:
1da177e4
LT
2766 qc->n_elem = n_elem;
2767
2768 return 0;
2769}
2770
40e8c82c
TH
2771/**
2772 * ata_poll_qc_complete - turn irq back on and finish qc
2773 * @qc: Command to complete
8e8b77dd 2774 * @err_mask: ATA status register content
40e8c82c
TH
2775 *
2776 * LOCKING:
2777 * None. (grabs host lock)
2778 */
2779
a7dac447 2780void ata_poll_qc_complete(struct ata_queued_cmd *qc, unsigned int err_mask)
40e8c82c
TH
2781{
2782 struct ata_port *ap = qc->ap;
b8f6153e 2783 unsigned long flags;
40e8c82c 2784
b8f6153e 2785 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
2786 ap->flags &= ~ATA_FLAG_NOINTR;
2787 ata_irq_on(ap);
a7dac447 2788 ata_qc_complete(qc, err_mask);
b8f6153e 2789 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
2790}
2791
1da177e4
LT
2792/**
2793 * ata_pio_poll -
6f0ef4fa 2794 * @ap: the target ata_port
1da177e4
LT
2795 *
2796 * LOCKING:
0cba632b 2797 * None. (executing in kernel thread context)
1da177e4
LT
2798 *
2799 * RETURNS:
6f0ef4fa 2800 * timeout value to use
1da177e4
LT
2801 */
2802
2803static unsigned long ata_pio_poll(struct ata_port *ap)
2804{
2805 u8 status;
14be71f4
AL
2806 unsigned int poll_state = HSM_ST_UNKNOWN;
2807 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4
AL
2808
2809 switch (ap->hsm_task_state) {
2810 case HSM_ST:
2811 case HSM_ST_POLL:
2812 poll_state = HSM_ST_POLL;
2813 reg_state = HSM_ST;
1da177e4 2814 break;
14be71f4
AL
2815 case HSM_ST_LAST:
2816 case HSM_ST_LAST_POLL:
2817 poll_state = HSM_ST_LAST_POLL;
2818 reg_state = HSM_ST_LAST;
1da177e4
LT
2819 break;
2820 default:
2821 BUG();
2822 break;
2823 }
2824
2825 status = ata_chk_status(ap);
2826 if (status & ATA_BUSY) {
2827 if (time_after(jiffies, ap->pio_task_timeout)) {
7c398335 2828 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
2829 return 0;
2830 }
14be71f4 2831 ap->hsm_task_state = poll_state;
1da177e4
LT
2832 return ATA_SHORT_PAUSE;
2833 }
2834
14be71f4 2835 ap->hsm_task_state = reg_state;
1da177e4
LT
2836 return 0;
2837}
2838
2839/**
6f0ef4fa
RD
2840 * ata_pio_complete - check if drive is busy or idle
2841 * @ap: the target ata_port
1da177e4
LT
2842 *
2843 * LOCKING:
0cba632b 2844 * None. (executing in kernel thread context)
7fb6ec28
JG
2845 *
2846 * RETURNS:
2847 * Non-zero if qc completed, zero otherwise.
1da177e4
LT
2848 */
2849
7fb6ec28 2850static int ata_pio_complete (struct ata_port *ap)
1da177e4
LT
2851{
2852 struct ata_queued_cmd *qc;
2853 u8 drv_stat;
2854
2855 /*
31433ea3
AC
2856 * This is purely heuristic. This is a fast path. Sometimes when
2857 * we enter, BSY will be cleared in a chk-status or two. If not,
2858 * the drive is probably seeking or something. Snooze for a couple
2859 * msecs, then chk-status again. If still busy, fall back to
14be71f4 2860 * HSM_ST_POLL state.
1da177e4
LT
2861 */
2862 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2863 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2864 msleep(2);
2865 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2866 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
14be71f4 2867 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 2868 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 2869 return 0;
1da177e4
LT
2870 }
2871 }
2872
2873 drv_stat = ata_wait_idle(ap);
2874 if (!ata_ok(drv_stat)) {
14be71f4 2875 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 2876 return 0;
1da177e4
LT
2877 }
2878
2879 qc = ata_qc_from_tag(ap, ap->active_tag);
2880 assert(qc != NULL);
2881
14be71f4 2882 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 2883
a7dac447 2884 ata_poll_qc_complete(qc, 0);
7fb6ec28
JG
2885
2886 /* another command may start at this point */
2887
2888 return 1;
1da177e4
LT
2889}
2890
0baab86b
EF
2891
2892/**
6f0ef4fa 2893 * swap_buf_le16 - swap halves of 16-words in place
0baab86b
EF
2894 * @buf: Buffer to swap
2895 * @buf_words: Number of 16-bit words in buffer.
2896 *
2897 * Swap halves of 16-bit words if needed to convert from
2898 * little-endian byte order to native cpu byte order, or
2899 * vice-versa.
2900 *
2901 * LOCKING:
6f0ef4fa 2902 * Inherited from caller.
0baab86b 2903 */
1da177e4
LT
2904void swap_buf_le16(u16 *buf, unsigned int buf_words)
2905{
2906#ifdef __BIG_ENDIAN
2907 unsigned int i;
2908
2909 for (i = 0; i < buf_words; i++)
2910 buf[i] = le16_to_cpu(buf[i]);
2911#endif /* __BIG_ENDIAN */
2912}
2913
6ae4cfb5
AL
2914/**
2915 * ata_mmio_data_xfer - Transfer data by MMIO
2916 * @ap: port to read/write
2917 * @buf: data buffer
2918 * @buflen: buffer length
344babaa 2919 * @write_data: read/write
6ae4cfb5
AL
2920 *
2921 * Transfer data from/to the device data register by MMIO.
2922 *
2923 * LOCKING:
2924 * Inherited from caller.
6ae4cfb5
AL
2925 */
2926
1da177e4
LT
2927static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
2928 unsigned int buflen, int write_data)
2929{
2930 unsigned int i;
2931 unsigned int words = buflen >> 1;
2932 u16 *buf16 = (u16 *) buf;
2933 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
2934
6ae4cfb5 2935 /* Transfer multiple of 2 bytes */
1da177e4
LT
2936 if (write_data) {
2937 for (i = 0; i < words; i++)
2938 writew(le16_to_cpu(buf16[i]), mmio);
2939 } else {
2940 for (i = 0; i < words; i++)
2941 buf16[i] = cpu_to_le16(readw(mmio));
2942 }
6ae4cfb5
AL
2943
2944 /* Transfer trailing 1 byte, if any. */
2945 if (unlikely(buflen & 0x01)) {
2946 u16 align_buf[1] = { 0 };
2947 unsigned char *trailing_buf = buf + buflen - 1;
2948
2949 if (write_data) {
2950 memcpy(align_buf, trailing_buf, 1);
2951 writew(le16_to_cpu(align_buf[0]), mmio);
2952 } else {
2953 align_buf[0] = cpu_to_le16(readw(mmio));
2954 memcpy(trailing_buf, align_buf, 1);
2955 }
2956 }
1da177e4
LT
2957}
2958
6ae4cfb5
AL
2959/**
2960 * ata_pio_data_xfer - Transfer data by PIO
2961 * @ap: port to read/write
2962 * @buf: data buffer
2963 * @buflen: buffer length
344babaa 2964 * @write_data: read/write
6ae4cfb5
AL
2965 *
2966 * Transfer data from/to the device data register by PIO.
2967 *
2968 * LOCKING:
2969 * Inherited from caller.
6ae4cfb5
AL
2970 */
2971
1da177e4
LT
2972static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
2973 unsigned int buflen, int write_data)
2974{
6ae4cfb5 2975 unsigned int words = buflen >> 1;
1da177e4 2976
6ae4cfb5 2977 /* Transfer multiple of 2 bytes */
1da177e4 2978 if (write_data)
6ae4cfb5 2979 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 2980 else
6ae4cfb5
AL
2981 insw(ap->ioaddr.data_addr, buf, words);
2982
2983 /* Transfer trailing 1 byte, if any. */
2984 if (unlikely(buflen & 0x01)) {
2985 u16 align_buf[1] = { 0 };
2986 unsigned char *trailing_buf = buf + buflen - 1;
2987
2988 if (write_data) {
2989 memcpy(align_buf, trailing_buf, 1);
2990 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
2991 } else {
2992 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
2993 memcpy(trailing_buf, align_buf, 1);
2994 }
2995 }
1da177e4
LT
2996}
2997
6ae4cfb5
AL
2998/**
2999 * ata_data_xfer - Transfer data from/to the data register.
3000 * @ap: port to read/write
3001 * @buf: data buffer
3002 * @buflen: buffer length
3003 * @do_write: read/write
3004 *
3005 * Transfer data from/to the device data register.
3006 *
3007 * LOCKING:
3008 * Inherited from caller.
6ae4cfb5
AL
3009 */
3010
1da177e4
LT
3011static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3012 unsigned int buflen, int do_write)
3013{
3014 if (ap->flags & ATA_FLAG_MMIO)
3015 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3016 else
3017 ata_pio_data_xfer(ap, buf, buflen, do_write);
3018}
3019
6ae4cfb5
AL
3020/**
3021 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3022 * @qc: Command on going
3023 *
3024 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3025 *
3026 * LOCKING:
3027 * Inherited from caller.
3028 */
3029
1da177e4
LT
3030static void ata_pio_sector(struct ata_queued_cmd *qc)
3031{
3032 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3033 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3034 struct ata_port *ap = qc->ap;
3035 struct page *page;
3036 unsigned int offset;
3037 unsigned char *buf;
3038
3039 if (qc->cursect == (qc->nsect - 1))
14be71f4 3040 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3041
3042 page = sg[qc->cursg].page;
3043 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3044
3045 /* get the current page and offset */
3046 page = nth_page(page, (offset >> PAGE_SHIFT));
3047 offset %= PAGE_SIZE;
3048
3049 buf = kmap(page) + offset;
3050
3051 qc->cursect++;
3052 qc->cursg_ofs++;
3053
32529e01 3054 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3055 qc->cursg++;
3056 qc->cursg_ofs = 0;
3057 }
3058
3059 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3060
3061 /* do the actual data transfer */
3062 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3063 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3064
3065 kunmap(page);
3066}
3067
6ae4cfb5
AL
3068/**
3069 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3070 * @qc: Command on going
3071 * @bytes: number of bytes
3072 *
3073 * Transfer Transfer data from/to the ATAPI device.
3074 *
3075 * LOCKING:
3076 * Inherited from caller.
3077 *
3078 */
3079
1da177e4
LT
3080static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3081{
3082 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3083 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3084 struct ata_port *ap = qc->ap;
3085 struct page *page;
3086 unsigned char *buf;
3087 unsigned int offset, count;
3088
563a6e1f 3089 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3090 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3091
3092next_sg:
563a6e1f 3093 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3094 /*
563a6e1f
AL
3095 * The end of qc->sg is reached and the device expects
3096 * more data to transfer. In order not to overrun qc->sg
3097 * and fulfill length specified in the byte count register,
3098 * - for read case, discard trailing data from the device
3099 * - for write case, padding zero data to the device
3100 */
3101 u16 pad_buf[1] = { 0 };
3102 unsigned int words = bytes >> 1;
3103 unsigned int i;
3104
3105 if (words) /* warning if bytes > 1 */
7fb6ec28 3106 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3107 ap->id, bytes);
3108
3109 for (i = 0; i < words; i++)
3110 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3111
14be71f4 3112 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3113 return;
3114 }
3115
cedc9a47 3116 sg = &qc->__sg[qc->cursg];
1da177e4 3117
1da177e4
LT
3118 page = sg->page;
3119 offset = sg->offset + qc->cursg_ofs;
3120
3121 /* get the current page and offset */
3122 page = nth_page(page, (offset >> PAGE_SHIFT));
3123 offset %= PAGE_SIZE;
3124
6952df03 3125 /* don't overrun current sg */
32529e01 3126 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3127
3128 /* don't cross page boundaries */
3129 count = min(count, (unsigned int)PAGE_SIZE - offset);
3130
3131 buf = kmap(page) + offset;
3132
3133 bytes -= count;
3134 qc->curbytes += count;
3135 qc->cursg_ofs += count;
3136
32529e01 3137 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3138 qc->cursg++;
3139 qc->cursg_ofs = 0;
3140 }
3141
3142 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3143
3144 /* do the actual data transfer */
3145 ata_data_xfer(ap, buf, count, do_write);
3146
3147 kunmap(page);
3148
563a6e1f 3149 if (bytes)
1da177e4 3150 goto next_sg;
1da177e4
LT
3151}
3152
6ae4cfb5
AL
3153/**
3154 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3155 * @qc: Command on going
3156 *
3157 * Transfer Transfer data from/to the ATAPI device.
3158 *
3159 * LOCKING:
3160 * Inherited from caller.
6ae4cfb5
AL
3161 */
3162
1da177e4
LT
3163static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3164{
3165 struct ata_port *ap = qc->ap;
3166 struct ata_device *dev = qc->dev;
3167 unsigned int ireason, bc_lo, bc_hi, bytes;
3168 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3169
3170 ap->ops->tf_read(ap, &qc->tf);
3171 ireason = qc->tf.nsect;
3172 bc_lo = qc->tf.lbam;
3173 bc_hi = qc->tf.lbah;
3174 bytes = (bc_hi << 8) | bc_lo;
3175
3176 /* shall be cleared to zero, indicating xfer of data */
3177 if (ireason & (1 << 0))
3178 goto err_out;
3179
3180 /* make sure transfer direction matches expected */
3181 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3182 if (do_write != i_write)
3183 goto err_out;
3184
3185 __atapi_pio_bytes(qc, bytes);
3186
3187 return;
3188
3189err_out:
3190 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3191 ap->id, dev->devno);
14be71f4 3192 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3193}
3194
3195/**
6f0ef4fa
RD
3196 * ata_pio_block - start PIO on a block
3197 * @ap: the target ata_port
1da177e4
LT
3198 *
3199 * LOCKING:
0cba632b 3200 * None. (executing in kernel thread context)
1da177e4
LT
3201 */
3202
3203static void ata_pio_block(struct ata_port *ap)
3204{
3205 struct ata_queued_cmd *qc;
3206 u8 status;
3207
3208 /*
6f0ef4fa 3209 * This is purely heuristic. This is a fast path.
1da177e4
LT
3210 * Sometimes when we enter, BSY will be cleared in
3211 * a chk-status or two. If not, the drive is probably seeking
3212 * or something. Snooze for a couple msecs, then
3213 * chk-status again. If still busy, fall back to
14be71f4 3214 * HSM_ST_POLL state.
1da177e4
LT
3215 */
3216 status = ata_busy_wait(ap, ATA_BUSY, 5);
3217 if (status & ATA_BUSY) {
3218 msleep(2);
3219 status = ata_busy_wait(ap, ATA_BUSY, 10);
3220 if (status & ATA_BUSY) {
14be71f4 3221 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3222 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3223 return;
3224 }
3225 }
3226
3227 qc = ata_qc_from_tag(ap, ap->active_tag);
3228 assert(qc != NULL);
3229
3230 if (is_atapi_taskfile(&qc->tf)) {
3231 /* no more data to transfer or unsupported ATAPI command */
3232 if ((status & ATA_DRQ) == 0) {
14be71f4 3233 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3234 return;
3235 }
3236
3237 atapi_pio_bytes(qc);
3238 } else {
3239 /* handle BSY=0, DRQ=0 as error */
3240 if ((status & ATA_DRQ) == 0) {
14be71f4 3241 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3242 return;
3243 }
3244
3245 ata_pio_sector(qc);
3246 }
3247}
3248
3249static void ata_pio_error(struct ata_port *ap)
3250{
3251 struct ata_queued_cmd *qc;
a7dac447
JG
3252
3253 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
1da177e4
LT
3254
3255 qc = ata_qc_from_tag(ap, ap->active_tag);
3256 assert(qc != NULL);
3257
14be71f4 3258 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3259
a7dac447 3260 ata_poll_qc_complete(qc, AC_ERR_ATA_BUS);
1da177e4
LT
3261}
3262
3263static void ata_pio_task(void *_data)
3264{
3265 struct ata_port *ap = _data;
7fb6ec28
JG
3266 unsigned long timeout;
3267 int qc_completed;
3268
3269fsm_start:
3270 timeout = 0;
3271 qc_completed = 0;
1da177e4 3272
14be71f4
AL
3273 switch (ap->hsm_task_state) {
3274 case HSM_ST_IDLE:
1da177e4
LT
3275 return;
3276
14be71f4 3277 case HSM_ST:
1da177e4
LT
3278 ata_pio_block(ap);
3279 break;
3280
14be71f4 3281 case HSM_ST_LAST:
7fb6ec28 3282 qc_completed = ata_pio_complete(ap);
1da177e4
LT
3283 break;
3284
14be71f4
AL
3285 case HSM_ST_POLL:
3286 case HSM_ST_LAST_POLL:
1da177e4
LT
3287 timeout = ata_pio_poll(ap);
3288 break;
3289
14be71f4
AL
3290 case HSM_ST_TMOUT:
3291 case HSM_ST_ERR:
1da177e4
LT
3292 ata_pio_error(ap);
3293 return;
3294 }
3295
3296 if (timeout)
7fb6ec28
JG
3297 queue_delayed_work(ata_wq, &ap->pio_task, timeout);
3298 else if (!qc_completed)
3299 goto fsm_start;
1da177e4
LT
3300}
3301
1da177e4
LT
3302/**
3303 * ata_qc_timeout - Handle timeout of queued command
3304 * @qc: Command that timed out
3305 *
3306 * Some part of the kernel (currently, only the SCSI layer)
3307 * has noticed that the active command on port @ap has not
3308 * completed after a specified length of time. Handle this
3309 * condition by disabling DMA (if necessary) and completing
3310 * transactions, with error if necessary.
3311 *
3312 * This also handles the case of the "lost interrupt", where
3313 * for some reason (possibly hardware bug, possibly driver bug)
3314 * an interrupt was not delivered to the driver, even though the
3315 * transaction completed successfully.
3316 *
3317 * LOCKING:
0cba632b 3318 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3319 */
3320
3321static void ata_qc_timeout(struct ata_queued_cmd *qc)
3322{
3323 struct ata_port *ap = qc->ap;
b8f6153e 3324 struct ata_host_set *host_set = ap->host_set;
1da177e4 3325 u8 host_stat = 0, drv_stat;
b8f6153e 3326 unsigned long flags;
1da177e4
LT
3327
3328 DPRINTK("ENTER\n");
3329
b8f6153e
JG
3330 spin_lock_irqsave(&host_set->lock, flags);
3331
1da177e4
LT
3332 /* hack alert! We cannot use the supplied completion
3333 * function from inside the ->eh_strategy_handler() thread.
3334 * libata is the only user of ->eh_strategy_handler() in
3335 * any kernel, so the default scsi_done() assumes it is
3336 * not being called from the SCSI EH.
3337 */
3338 qc->scsidone = scsi_finish_command;
3339
3340 switch (qc->tf.protocol) {
3341
3342 case ATA_PROT_DMA:
3343 case ATA_PROT_ATAPI_DMA:
3344 host_stat = ap->ops->bmdma_status(ap);
3345
3346 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3347 ap->ops->bmdma_stop(qc);
1da177e4
LT
3348
3349 /* fall through */
3350
3351 default:
3352 ata_altstatus(ap);
3353 drv_stat = ata_chk_status(ap);
3354
3355 /* ack bmdma irq events */
3356 ap->ops->irq_clear(ap);
3357
3358 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3359 ap->id, qc->tf.command, drv_stat, host_stat);
3360
3361 /* complete taskfile transaction */
a7dac447 3362 ata_qc_complete(qc, ac_err_mask(drv_stat));
1da177e4
LT
3363 break;
3364 }
b8f6153e
JG
3365
3366 spin_unlock_irqrestore(&host_set->lock, flags);
3367
1da177e4
LT
3368 DPRINTK("EXIT\n");
3369}
3370
3371/**
3372 * ata_eng_timeout - Handle timeout of queued command
3373 * @ap: Port on which timed-out command is active
3374 *
3375 * Some part of the kernel (currently, only the SCSI layer)
3376 * has noticed that the active command on port @ap has not
3377 * completed after a specified length of time. Handle this
3378 * condition by disabling DMA (if necessary) and completing
3379 * transactions, with error if necessary.
3380 *
3381 * This also handles the case of the "lost interrupt", where
3382 * for some reason (possibly hardware bug, possibly driver bug)
3383 * an interrupt was not delivered to the driver, even though the
3384 * transaction completed successfully.
3385 *
3386 * LOCKING:
3387 * Inherited from SCSI layer (none, can sleep)
3388 */
3389
3390void ata_eng_timeout(struct ata_port *ap)
3391{
3392 struct ata_queued_cmd *qc;
3393
3394 DPRINTK("ENTER\n");
3395
3396 qc = ata_qc_from_tag(ap, ap->active_tag);
e12669e7
JG
3397 if (qc)
3398 ata_qc_timeout(qc);
3399 else {
1da177e4
LT
3400 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3401 ap->id);
3402 goto out;
3403 }
3404
1da177e4
LT
3405out:
3406 DPRINTK("EXIT\n");
3407}
3408
3409/**
3410 * ata_qc_new - Request an available ATA command, for queueing
3411 * @ap: Port associated with device @dev
3412 * @dev: Device from whom we request an available command structure
3413 *
3414 * LOCKING:
0cba632b 3415 * None.
1da177e4
LT
3416 */
3417
3418static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3419{
3420 struct ata_queued_cmd *qc = NULL;
3421 unsigned int i;
3422
3423 for (i = 0; i < ATA_MAX_QUEUE; i++)
3424 if (!test_and_set_bit(i, &ap->qactive)) {
3425 qc = ata_qc_from_tag(ap, i);
3426 break;
3427 }
3428
3429 if (qc)
3430 qc->tag = i;
3431
3432 return qc;
3433}
3434
3435/**
3436 * ata_qc_new_init - Request an available ATA command, and initialize it
3437 * @ap: Port associated with device @dev
3438 * @dev: Device from whom we request an available command structure
3439 *
3440 * LOCKING:
0cba632b 3441 * None.
1da177e4
LT
3442 */
3443
3444struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3445 struct ata_device *dev)
3446{
3447 struct ata_queued_cmd *qc;
3448
3449 qc = ata_qc_new(ap);
3450 if (qc) {
1da177e4
LT
3451 qc->scsicmd = NULL;
3452 qc->ap = ap;
3453 qc->dev = dev;
1da177e4 3454
2c13b7ce 3455 ata_qc_reinit(qc);
1da177e4
LT
3456 }
3457
3458 return qc;
3459}
3460
a7dac447 3461int ata_qc_complete_noop(struct ata_queued_cmd *qc, unsigned int err_mask)
1da177e4
LT
3462{
3463 return 0;
3464}
3465
3466static void __ata_qc_complete(struct ata_queued_cmd *qc)
3467{
3468 struct ata_port *ap = qc->ap;
3469 unsigned int tag, do_clear = 0;
3470
3471 qc->flags = 0;
3472 tag = qc->tag;
3473 if (likely(ata_tag_valid(tag))) {
3474 if (tag == ap->active_tag)
3475 ap->active_tag = ATA_TAG_POISON;
3476 qc->tag = ATA_TAG_POISON;
3477 do_clear = 1;
3478 }
3479
3480 if (qc->waiting) {
3481 struct completion *waiting = qc->waiting;
3482 qc->waiting = NULL;
3483 complete(waiting);
3484 }
3485
3486 if (likely(do_clear))
3487 clear_bit(tag, &ap->qactive);
3488}
3489
3490/**
3491 * ata_qc_free - free unused ata_queued_cmd
3492 * @qc: Command to complete
3493 *
3494 * Designed to free unused ata_queued_cmd object
3495 * in case something prevents using it.
3496 *
3497 * LOCKING:
0cba632b 3498 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3499 */
3500void ata_qc_free(struct ata_queued_cmd *qc)
3501{
3502 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3503 assert(qc->waiting == NULL); /* nothing should be waiting */
3504
3505 __ata_qc_complete(qc);
3506}
3507
3508/**
3509 * ata_qc_complete - Complete an active ATA command
3510 * @qc: Command to complete
8e8b77dd 3511 * @err_mask: ATA Status register contents
0cba632b
JG
3512 *
3513 * Indicate to the mid and upper layers that an ATA
3514 * command has completed, with either an ok or not-ok status.
1da177e4
LT
3515 *
3516 * LOCKING:
0cba632b 3517 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3518 */
3519
a7dac447 3520void ata_qc_complete(struct ata_queued_cmd *qc, unsigned int err_mask)
1da177e4
LT
3521{
3522 int rc;
3523
3524 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3525 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3526
3527 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3528 ata_sg_clean(qc);
3529
3f3791d3
AL
3530 /* atapi: mark qc as inactive to prevent the interrupt handler
3531 * from completing the command twice later, before the error handler
3532 * is called. (when rc != 0 and atapi request sense is needed)
3533 */
3534 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3535
1da177e4 3536 /* call completion callback */
a7dac447 3537 rc = qc->complete_fn(qc, err_mask);
1da177e4
LT
3538
3539 /* if callback indicates not to complete command (non-zero),
3540 * return immediately
3541 */
3542 if (rc != 0)
3543 return;
3544
3545 __ata_qc_complete(qc);
3546
3547 VPRINTK("EXIT\n");
3548}
3549
3550static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3551{
3552 struct ata_port *ap = qc->ap;
3553
3554 switch (qc->tf.protocol) {
3555 case ATA_PROT_DMA:
3556 case ATA_PROT_ATAPI_DMA:
3557 return 1;
3558
3559 case ATA_PROT_ATAPI:
3560 case ATA_PROT_PIO:
3561 case ATA_PROT_PIO_MULT:
3562 if (ap->flags & ATA_FLAG_PIO_DMA)
3563 return 1;
3564
3565 /* fall through */
3566
3567 default:
3568 return 0;
3569 }
3570
3571 /* never reached */
3572}
3573
3574/**
3575 * ata_qc_issue - issue taskfile to device
3576 * @qc: command to issue to device
3577 *
3578 * Prepare an ATA command to submission to device.
3579 * This includes mapping the data into a DMA-able
3580 * area, filling in the S/G table, and finally
3581 * writing the taskfile to hardware, starting the command.
3582 *
3583 * LOCKING:
3584 * spin_lock_irqsave(host_set lock)
3585 *
3586 * RETURNS:
3587 * Zero on success, negative on error.
3588 */
3589
3590int ata_qc_issue(struct ata_queued_cmd *qc)
3591{
3592 struct ata_port *ap = qc->ap;
3593
3594 if (ata_should_dma_map(qc)) {
3595 if (qc->flags & ATA_QCFLAG_SG) {
3596 if (ata_sg_setup(qc))
3597 goto err_out;
3598 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3599 if (ata_sg_setup_one(qc))
3600 goto err_out;
3601 }
3602 } else {
3603 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3604 }
3605
3606 ap->ops->qc_prep(qc);
3607
3608 qc->ap->active_tag = qc->tag;
3609 qc->flags |= ATA_QCFLAG_ACTIVE;
3610
3611 return ap->ops->qc_issue(qc);
3612
3613err_out:
3614 return -1;
3615}
3616
0baab86b 3617
1da177e4
LT
3618/**
3619 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3620 * @qc: command to issue to device
3621 *
3622 * Using various libata functions and hooks, this function
3623 * starts an ATA command. ATA commands are grouped into
3624 * classes called "protocols", and issuing each type of protocol
3625 * is slightly different.
3626 *
0baab86b
EF
3627 * May be used as the qc_issue() entry in ata_port_operations.
3628 *
1da177e4
LT
3629 * LOCKING:
3630 * spin_lock_irqsave(host_set lock)
3631 *
3632 * RETURNS:
3633 * Zero on success, negative on error.
3634 */
3635
3636int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3637{
3638 struct ata_port *ap = qc->ap;
3639
3640 ata_dev_select(ap, qc->dev->devno, 1, 0);
3641
3642 switch (qc->tf.protocol) {
3643 case ATA_PROT_NODATA:
e5338254 3644 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
3645 break;
3646
3647 case ATA_PROT_DMA:
3648 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3649 ap->ops->bmdma_setup(qc); /* set up bmdma */
3650 ap->ops->bmdma_start(qc); /* initiate bmdma */
3651 break;
3652
3653 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3654 ata_qc_set_polling(qc);
e5338254 3655 ata_tf_to_host(ap, &qc->tf);
14be71f4 3656 ap->hsm_task_state = HSM_ST;
1da177e4
LT
3657 queue_work(ata_wq, &ap->pio_task);
3658 break;
3659
3660 case ATA_PROT_ATAPI:
3661 ata_qc_set_polling(qc);
e5338254 3662 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
3663 queue_work(ata_wq, &ap->packet_task);
3664 break;
3665
3666 case ATA_PROT_ATAPI_NODATA:
c1389503 3667 ap->flags |= ATA_FLAG_NOINTR;
e5338254 3668 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
3669 queue_work(ata_wq, &ap->packet_task);
3670 break;
3671
3672 case ATA_PROT_ATAPI_DMA:
c1389503 3673 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
3674 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3675 ap->ops->bmdma_setup(qc); /* set up bmdma */
3676 queue_work(ata_wq, &ap->packet_task);
3677 break;
3678
3679 default:
3680 WARN_ON(1);
3681 return -1;
3682 }
3683
3684 return 0;
3685}
3686
3687/**
0baab86b 3688 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
1da177e4
LT
3689 * @qc: Info associated with this ATA transaction.
3690 *
3691 * LOCKING:
3692 * spin_lock_irqsave(host_set lock)
3693 */
3694
3695static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3696{
3697 struct ata_port *ap = qc->ap;
3698 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3699 u8 dmactl;
3700 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3701
3702 /* load PRD table addr. */
3703 mb(); /* make sure PRD table writes are visible to controller */
3704 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3705
3706 /* specify data direction, triple-check start bit is clear */
3707 dmactl = readb(mmio + ATA_DMA_CMD);
3708 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3709 if (!rw)
3710 dmactl |= ATA_DMA_WR;
3711 writeb(dmactl, mmio + ATA_DMA_CMD);
3712
3713 /* issue r/w command */
3714 ap->ops->exec_command(ap, &qc->tf);
3715}
3716
3717/**
b73fc89f 3718 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
1da177e4
LT
3719 * @qc: Info associated with this ATA transaction.
3720 *
3721 * LOCKING:
3722 * spin_lock_irqsave(host_set lock)
3723 */
3724
3725static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3726{
3727 struct ata_port *ap = qc->ap;
3728 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3729 u8 dmactl;
3730
3731 /* start host DMA transaction */
3732 dmactl = readb(mmio + ATA_DMA_CMD);
3733 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3734
3735 /* Strictly, one may wish to issue a readb() here, to
3736 * flush the mmio write. However, control also passes
3737 * to the hardware at this point, and it will interrupt
3738 * us when we are to resume control. So, in effect,
3739 * we don't care when the mmio write flushes.
3740 * Further, a read of the DMA status register _immediately_
3741 * following the write may not be what certain flaky hardware
3742 * is expected, so I think it is best to not add a readb()
3743 * without first all the MMIO ATA cards/mobos.
3744 * Or maybe I'm just being paranoid.
3745 */
3746}
3747
3748/**
3749 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3750 * @qc: Info associated with this ATA transaction.
3751 *
3752 * LOCKING:
3753 * spin_lock_irqsave(host_set lock)
3754 */
3755
3756static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3757{
3758 struct ata_port *ap = qc->ap;
3759 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3760 u8 dmactl;
3761
3762 /* load PRD table addr. */
3763 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3764
3765 /* specify data direction, triple-check start bit is clear */
3766 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3767 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3768 if (!rw)
3769 dmactl |= ATA_DMA_WR;
3770 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3771
3772 /* issue r/w command */
3773 ap->ops->exec_command(ap, &qc->tf);
3774}
3775
3776/**
3777 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3778 * @qc: Info associated with this ATA transaction.
3779 *
3780 * LOCKING:
3781 * spin_lock_irqsave(host_set lock)
3782 */
3783
3784static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3785{
3786 struct ata_port *ap = qc->ap;
3787 u8 dmactl;
3788
3789 /* start host DMA transaction */
3790 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3791 outb(dmactl | ATA_DMA_START,
3792 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3793}
3794
0baab86b
EF
3795
3796/**
3797 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3798 * @qc: Info associated with this ATA transaction.
3799 *
3800 * Writes the ATA_DMA_START flag to the DMA command register.
3801 *
3802 * May be used as the bmdma_start() entry in ata_port_operations.
3803 *
3804 * LOCKING:
3805 * spin_lock_irqsave(host_set lock)
3806 */
1da177e4
LT
3807void ata_bmdma_start(struct ata_queued_cmd *qc)
3808{
3809 if (qc->ap->flags & ATA_FLAG_MMIO)
3810 ata_bmdma_start_mmio(qc);
3811 else
3812 ata_bmdma_start_pio(qc);
3813}
3814
0baab86b
EF
3815
3816/**
3817 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3818 * @qc: Info associated with this ATA transaction.
3819 *
3820 * Writes address of PRD table to device's PRD Table Address
3821 * register, sets the DMA control register, and calls
3822 * ops->exec_command() to start the transfer.
3823 *
3824 * May be used as the bmdma_setup() entry in ata_port_operations.
3825 *
3826 * LOCKING:
3827 * spin_lock_irqsave(host_set lock)
3828 */
1da177e4
LT
3829void ata_bmdma_setup(struct ata_queued_cmd *qc)
3830{
3831 if (qc->ap->flags & ATA_FLAG_MMIO)
3832 ata_bmdma_setup_mmio(qc);
3833 else
3834 ata_bmdma_setup_pio(qc);
3835}
3836
0baab86b
EF
3837
3838/**
3839 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
decc6d0b 3840 * @ap: Port associated with this ATA transaction.
0baab86b
EF
3841 *
3842 * Clear interrupt and error flags in DMA status register.
3843 *
3844 * May be used as the irq_clear() entry in ata_port_operations.
3845 *
3846 * LOCKING:
3847 * spin_lock_irqsave(host_set lock)
3848 */
3849
1da177e4
LT
3850void ata_bmdma_irq_clear(struct ata_port *ap)
3851{
3852 if (ap->flags & ATA_FLAG_MMIO) {
3853 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3854 writeb(readb(mmio), mmio);
3855 } else {
3856 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3857 outb(inb(addr), addr);
3858 }
3859
3860}
3861
0baab86b
EF
3862
3863/**
3864 * ata_bmdma_status - Read PCI IDE BMDMA status
decc6d0b 3865 * @ap: Port associated with this ATA transaction.
0baab86b
EF
3866 *
3867 * Read and return BMDMA status register.
3868 *
3869 * May be used as the bmdma_status() entry in ata_port_operations.
3870 *
3871 * LOCKING:
3872 * spin_lock_irqsave(host_set lock)
3873 */
3874
1da177e4
LT
3875u8 ata_bmdma_status(struct ata_port *ap)
3876{
3877 u8 host_stat;
3878 if (ap->flags & ATA_FLAG_MMIO) {
3879 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3880 host_stat = readb(mmio + ATA_DMA_STATUS);
3881 } else
ee500aab 3882 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
1da177e4
LT
3883 return host_stat;
3884}
3885
0baab86b
EF
3886
3887/**
3888 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
b73fc89f 3889 * @qc: Command we are ending DMA for
0baab86b
EF
3890 *
3891 * Clears the ATA_DMA_START flag in the dma control register
3892 *
3893 * May be used as the bmdma_stop() entry in ata_port_operations.
3894 *
3895 * LOCKING:
3896 * spin_lock_irqsave(host_set lock)
3897 */
3898
b73fc89f 3899void ata_bmdma_stop(struct ata_queued_cmd *qc)
1da177e4 3900{
b73fc89f 3901 struct ata_port *ap = qc->ap;
1da177e4
LT
3902 if (ap->flags & ATA_FLAG_MMIO) {
3903 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3904
3905 /* clear start/stop bit */
3906 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3907 mmio + ATA_DMA_CMD);
3908 } else {
3909 /* clear start/stop bit */
3910 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
3911 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3912 }
3913
3914 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3915 ata_altstatus(ap); /* dummy read */
3916}
3917
3918/**
3919 * ata_host_intr - Handle host interrupt for given (port, task)
3920 * @ap: Port on which interrupt arrived (possibly...)
3921 * @qc: Taskfile currently active in engine
3922 *
3923 * Handle host interrupt for given queued command. Currently,
3924 * only DMA interrupts are handled. All other commands are
3925 * handled via polling with interrupts disabled (nIEN bit).
3926 *
3927 * LOCKING:
3928 * spin_lock_irqsave(host_set lock)
3929 *
3930 * RETURNS:
3931 * One if interrupt was handled, zero if not (shared irq).
3932 */
3933
3934inline unsigned int ata_host_intr (struct ata_port *ap,
3935 struct ata_queued_cmd *qc)
3936{
3937 u8 status, host_stat;
3938
3939 switch (qc->tf.protocol) {
3940
3941 case ATA_PROT_DMA:
3942 case ATA_PROT_ATAPI_DMA:
3943 case ATA_PROT_ATAPI:
3944 /* check status of DMA engine */
3945 host_stat = ap->ops->bmdma_status(ap);
3946 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
3947
3948 /* if it's not our irq... */
3949 if (!(host_stat & ATA_DMA_INTR))
3950 goto idle_irq;
3951
3952 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3953 ap->ops->bmdma_stop(qc);
1da177e4
LT
3954
3955 /* fall through */
3956
3957 case ATA_PROT_ATAPI_NODATA:
3958 case ATA_PROT_NODATA:
3959 /* check altstatus */
3960 status = ata_altstatus(ap);
3961 if (status & ATA_BUSY)
3962 goto idle_irq;
3963
3964 /* check main status, clearing INTRQ */
3965 status = ata_chk_status(ap);
3966 if (unlikely(status & ATA_BUSY))
3967 goto idle_irq;
3968 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
3969 ap->id, qc->tf.protocol, status);
3970
3971 /* ack bmdma irq events */
3972 ap->ops->irq_clear(ap);
3973
3974 /* complete taskfile transaction */
a7dac447 3975 ata_qc_complete(qc, ac_err_mask(status));
1da177e4
LT
3976 break;
3977
3978 default:
3979 goto idle_irq;
3980 }
3981
3982 return 1; /* irq handled */
3983
3984idle_irq:
3985 ap->stats.idle_irq++;
3986
3987#ifdef ATA_IRQ_TRAP
3988 if ((ap->stats.idle_irq % 1000) == 0) {
3989 handled = 1;
3990 ata_irq_ack(ap, 0); /* debug trap */
3991 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
3992 }
3993#endif
3994 return 0; /* irq not handled */
3995}
3996
3997/**
3998 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
3999 * @irq: irq line (unused)
4000 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4001 * @regs: unused
4002 *
0cba632b
JG
4003 * Default interrupt handler for PCI IDE devices. Calls
4004 * ata_host_intr() for each port that is not disabled.
4005 *
1da177e4 4006 * LOCKING:
0cba632b 4007 * Obtains host_set lock during operation.
1da177e4
LT
4008 *
4009 * RETURNS:
0cba632b 4010 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4011 */
4012
4013irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4014{
4015 struct ata_host_set *host_set = dev_instance;
4016 unsigned int i;
4017 unsigned int handled = 0;
4018 unsigned long flags;
4019
4020 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4021 spin_lock_irqsave(&host_set->lock, flags);
4022
4023 for (i = 0; i < host_set->n_ports; i++) {
4024 struct ata_port *ap;
4025
4026 ap = host_set->ports[i];
c1389503
TH
4027 if (ap &&
4028 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4029 struct ata_queued_cmd *qc;
4030
4031 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4032 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4033 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4034 handled |= ata_host_intr(ap, qc);
4035 }
4036 }
4037
4038 spin_unlock_irqrestore(&host_set->lock, flags);
4039
4040 return IRQ_RETVAL(handled);
4041}
4042
4043/**
4044 * atapi_packet_task - Write CDB bytes to hardware
4045 * @_data: Port to which ATAPI device is attached.
4046 *
4047 * When device has indicated its readiness to accept
4048 * a CDB, this function is called. Send the CDB.
4049 * If DMA is to be performed, exit immediately.
4050 * Otherwise, we are in polling mode, so poll
4051 * status under operation succeeds or fails.
4052 *
4053 * LOCKING:
4054 * Kernel thread context (may sleep)
4055 */
4056
4057static void atapi_packet_task(void *_data)
4058{
4059 struct ata_port *ap = _data;
4060 struct ata_queued_cmd *qc;
4061 u8 status;
4062
4063 qc = ata_qc_from_tag(ap, ap->active_tag);
4064 assert(qc != NULL);
4065 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4066
4067 /* sleep-wait for BSY to clear */
4068 DPRINTK("busy wait\n");
4069 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB))
a7dac447 4070 goto err_out_status;
1da177e4
LT
4071
4072 /* make sure DRQ is set */
4073 status = ata_chk_status(ap);
4074 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)
4075 goto err_out;
4076
4077 /* send SCSI cdb */
4078 DPRINTK("send cdb\n");
4079 assert(ap->cdb_len >= 12);
1da177e4 4080
c1389503
TH
4081 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4082 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4083 unsigned long flags;
1da177e4 4084
c1389503
TH
4085 /* Once we're done issuing command and kicking bmdma,
4086 * irq handler takes over. To not lose irq, we need
4087 * to clear NOINTR flag before sending cdb, but
4088 * interrupt handler shouldn't be invoked before we're
4089 * finished. Hence, the following locking.
4090 */
4091 spin_lock_irqsave(&ap->host_set->lock, flags);
4092 ap->flags &= ~ATA_FLAG_NOINTR;
4093 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4094 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4095 ap->ops->bmdma_start(qc); /* initiate bmdma */
4096 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4097 } else {
4098 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
1da177e4 4099
c1389503 4100 /* PIO commands are handled by polling */
14be71f4 4101 ap->hsm_task_state = HSM_ST;
1da177e4
LT
4102 queue_work(ata_wq, &ap->pio_task);
4103 }
4104
4105 return;
4106
a7dac447
JG
4107err_out_status:
4108 status = ata_chk_status(ap);
1da177e4 4109err_out:
a7dac447 4110 ata_poll_qc_complete(qc, __ac_err_mask(status));
1da177e4
LT
4111}
4112
0baab86b
EF
4113
4114/**
4115 * ata_port_start - Set port up for dma.
4116 * @ap: Port to initialize
4117 *
4118 * Called just after data structures for each port are
4119 * initialized. Allocates space for PRD table.
4120 *
4121 * May be used as the port_start() entry in ata_port_operations.
4122 *
4123 * LOCKING:
6f0ef4fa 4124 * Inherited from caller.
0baab86b
EF
4125 */
4126
1da177e4
LT
4127int ata_port_start (struct ata_port *ap)
4128{
4129 struct device *dev = ap->host_set->dev;
6037d6bb 4130 int rc;
1da177e4
LT
4131
4132 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4133 if (!ap->prd)
4134 return -ENOMEM;
4135
6037d6bb
JG
4136 rc = ata_pad_alloc(ap, dev);
4137 if (rc) {
cedc9a47 4138 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4139 return rc;
cedc9a47
JG
4140 }
4141
1da177e4
LT
4142 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4143
4144 return 0;
4145}
4146
0baab86b
EF
4147
4148/**
4149 * ata_port_stop - Undo ata_port_start()
4150 * @ap: Port to shut down
4151 *
4152 * Frees the PRD table.
4153 *
4154 * May be used as the port_stop() entry in ata_port_operations.
4155 *
4156 * LOCKING:
6f0ef4fa 4157 * Inherited from caller.
0baab86b
EF
4158 */
4159
1da177e4
LT
4160void ata_port_stop (struct ata_port *ap)
4161{
4162 struct device *dev = ap->host_set->dev;
4163
4164 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4165 ata_pad_free(ap, dev);
1da177e4
LT
4166}
4167
aa8f0dc6
JG
4168void ata_host_stop (struct ata_host_set *host_set)
4169{
4170 if (host_set->mmio_base)
4171 iounmap(host_set->mmio_base);
4172}
4173
4174
1da177e4
LT
4175/**
4176 * ata_host_remove - Unregister SCSI host structure with upper layers
4177 * @ap: Port to unregister
4178 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4179 *
4180 * LOCKING:
6f0ef4fa 4181 * Inherited from caller.
1da177e4
LT
4182 */
4183
4184static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4185{
4186 struct Scsi_Host *sh = ap->host;
4187
4188 DPRINTK("ENTER\n");
4189
4190 if (do_unregister)
4191 scsi_remove_host(sh);
4192
4193 ap->ops->port_stop(ap);
4194}
4195
4196/**
4197 * ata_host_init - Initialize an ata_port structure
4198 * @ap: Structure to initialize
4199 * @host: associated SCSI mid-layer structure
4200 * @host_set: Collection of hosts to which @ap belongs
4201 * @ent: Probe information provided by low-level driver
4202 * @port_no: Port number associated with this ata_port
4203 *
0cba632b
JG
4204 * Initialize a new ata_port structure, and its associated
4205 * scsi_host.
4206 *
1da177e4 4207 * LOCKING:
0cba632b 4208 * Inherited from caller.
1da177e4
LT
4209 */
4210
4211static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4212 struct ata_host_set *host_set,
057ace5e 4213 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4214{
4215 unsigned int i;
4216
4217 host->max_id = 16;
4218 host->max_lun = 1;
4219 host->max_channel = 1;
4220 host->unique_id = ata_unique_id++;
4221 host->max_cmd_len = 12;
12413197 4222
1da177e4
LT
4223 ap->flags = ATA_FLAG_PORT_DISABLED;
4224 ap->id = host->unique_id;
4225 ap->host = host;
4226 ap->ctl = ATA_DEVCTL_OBS;
4227 ap->host_set = host_set;
4228 ap->port_no = port_no;
4229 ap->hard_port_no =
4230 ent->legacy_mode ? ent->hard_port_no : port_no;
4231 ap->pio_mask = ent->pio_mask;
4232 ap->mwdma_mask = ent->mwdma_mask;
4233 ap->udma_mask = ent->udma_mask;
4234 ap->flags |= ent->host_flags;
4235 ap->ops = ent->port_ops;
4236 ap->cbl = ATA_CBL_NONE;
4237 ap->active_tag = ATA_TAG_POISON;
4238 ap->last_ctl = 0xFF;
4239
4240 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4241 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4242
4243 for (i = 0; i < ATA_MAX_DEVICES; i++)
4244 ap->device[i].devno = i;
4245
4246#ifdef ATA_IRQ_TRAP
4247 ap->stats.unhandled_irq = 1;
4248 ap->stats.idle_irq = 1;
4249#endif
4250
4251 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4252}
4253
4254/**
4255 * ata_host_add - Attach low-level ATA driver to system
4256 * @ent: Information provided by low-level driver
4257 * @host_set: Collections of ports to which we add
4258 * @port_no: Port number associated with this host
4259 *
0cba632b
JG
4260 * Attach low-level ATA driver to system.
4261 *
1da177e4 4262 * LOCKING:
0cba632b 4263 * PCI/etc. bus probe sem.
1da177e4
LT
4264 *
4265 * RETURNS:
0cba632b 4266 * New ata_port on success, for NULL on error.
1da177e4
LT
4267 */
4268
057ace5e 4269static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4270 struct ata_host_set *host_set,
4271 unsigned int port_no)
4272{
4273 struct Scsi_Host *host;
4274 struct ata_port *ap;
4275 int rc;
4276
4277 DPRINTK("ENTER\n");
4278 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4279 if (!host)
4280 return NULL;
4281
4282 ap = (struct ata_port *) &host->hostdata[0];
4283
4284 ata_host_init(ap, host, host_set, ent, port_no);
4285
4286 rc = ap->ops->port_start(ap);
4287 if (rc)
4288 goto err_out;
4289
4290 return ap;
4291
4292err_out:
4293 scsi_host_put(host);
4294 return NULL;
4295}
4296
4297/**
0cba632b
JG
4298 * ata_device_add - Register hardware device with ATA and SCSI layers
4299 * @ent: Probe information describing hardware device to be registered
4300 *
4301 * This function processes the information provided in the probe
4302 * information struct @ent, allocates the necessary ATA and SCSI
4303 * host information structures, initializes them, and registers
4304 * everything with requisite kernel subsystems.
4305 *
4306 * This function requests irqs, probes the ATA bus, and probes
4307 * the SCSI bus.
1da177e4
LT
4308 *
4309 * LOCKING:
0cba632b 4310 * PCI/etc. bus probe sem.
1da177e4
LT
4311 *
4312 * RETURNS:
0cba632b 4313 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4314 */
4315
057ace5e 4316int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4317{
4318 unsigned int count = 0, i;
4319 struct device *dev = ent->dev;
4320 struct ata_host_set *host_set;
4321
4322 DPRINTK("ENTER\n");
4323 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4324 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4325 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4326 if (!host_set)
4327 return 0;
1da177e4
LT
4328 spin_lock_init(&host_set->lock);
4329
4330 host_set->dev = dev;
4331 host_set->n_ports = ent->n_ports;
4332 host_set->irq = ent->irq;
4333 host_set->mmio_base = ent->mmio_base;
4334 host_set->private_data = ent->private_data;
4335 host_set->ops = ent->port_ops;
4336
4337 /* register each port bound to this device */
4338 for (i = 0; i < ent->n_ports; i++) {
4339 struct ata_port *ap;
4340 unsigned long xfer_mode_mask;
4341
4342 ap = ata_host_add(ent, host_set, i);
4343 if (!ap)
4344 goto err_out;
4345
4346 host_set->ports[i] = ap;
4347 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4348 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4349 (ap->pio_mask << ATA_SHIFT_PIO);
4350
4351 /* print per-port info to dmesg */
4352 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4353 "bmdma 0x%lX irq %lu\n",
4354 ap->id,
4355 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4356 ata_mode_string(xfer_mode_mask),
4357 ap->ioaddr.cmd_addr,
4358 ap->ioaddr.ctl_addr,
4359 ap->ioaddr.bmdma_addr,
4360 ent->irq);
4361
4362 ata_chk_status(ap);
4363 host_set->ops->irq_clear(ap);
4364 count++;
4365 }
4366
57f3bda8
RD
4367 if (!count)
4368 goto err_free_ret;
1da177e4
LT
4369
4370 /* obtain irq, that is shared between channels */
4371 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4372 DRV_NAME, host_set))
4373 goto err_out;
4374
4375 /* perform each probe synchronously */
4376 DPRINTK("probe begin\n");
4377 for (i = 0; i < count; i++) {
4378 struct ata_port *ap;
4379 int rc;
4380
4381 ap = host_set->ports[i];
4382
4383 DPRINTK("ata%u: probe begin\n", ap->id);
4384 rc = ata_bus_probe(ap);
4385 DPRINTK("ata%u: probe end\n", ap->id);
4386
4387 if (rc) {
4388 /* FIXME: do something useful here?
4389 * Current libata behavior will
4390 * tear down everything when
4391 * the module is removed
4392 * or the h/w is unplugged.
4393 */
4394 }
4395
4396 rc = scsi_add_host(ap->host, dev);
4397 if (rc) {
4398 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4399 ap->id);
4400 /* FIXME: do something useful here */
4401 /* FIXME: handle unconditional calls to
4402 * scsi_scan_host and ata_host_remove, below,
4403 * at the very least
4404 */
4405 }
4406 }
4407
4408 /* probes are done, now scan each port's disk(s) */
4409 DPRINTK("probe begin\n");
4410 for (i = 0; i < count; i++) {
4411 struct ata_port *ap = host_set->ports[i];
4412
644dd0cc 4413 ata_scsi_scan_host(ap);
1da177e4
LT
4414 }
4415
4416 dev_set_drvdata(dev, host_set);
4417
4418 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4419 return ent->n_ports; /* success */
4420
4421err_out:
4422 for (i = 0; i < count; i++) {
4423 ata_host_remove(host_set->ports[i], 1);
4424 scsi_host_put(host_set->ports[i]->host);
4425 }
57f3bda8 4426err_free_ret:
1da177e4
LT
4427 kfree(host_set);
4428 VPRINTK("EXIT, returning 0\n");
4429 return 0;
4430}
4431
17b14451
AC
4432/**
4433 * ata_host_set_remove - PCI layer callback for device removal
4434 * @host_set: ATA host set that was removed
4435 *
4436 * Unregister all objects associated with this host set. Free those
4437 * objects.
4438 *
4439 * LOCKING:
4440 * Inherited from calling layer (may sleep).
4441 */
4442
17b14451
AC
4443void ata_host_set_remove(struct ata_host_set *host_set)
4444{
4445 struct ata_port *ap;
4446 unsigned int i;
4447
4448 for (i = 0; i < host_set->n_ports; i++) {
4449 ap = host_set->ports[i];
4450 scsi_remove_host(ap->host);
4451 }
4452
4453 free_irq(host_set->irq, host_set);
4454
4455 for (i = 0; i < host_set->n_ports; i++) {
4456 ap = host_set->ports[i];
4457
4458 ata_scsi_release(ap->host);
4459
4460 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4461 struct ata_ioports *ioaddr = &ap->ioaddr;
4462
4463 if (ioaddr->cmd_addr == 0x1f0)
4464 release_region(0x1f0, 8);
4465 else if (ioaddr->cmd_addr == 0x170)
4466 release_region(0x170, 8);
4467 }
4468
4469 scsi_host_put(ap->host);
4470 }
4471
4472 if (host_set->ops->host_stop)
4473 host_set->ops->host_stop(host_set);
4474
4475 kfree(host_set);
4476}
4477
1da177e4
LT
4478/**
4479 * ata_scsi_release - SCSI layer callback hook for host unload
4480 * @host: libata host to be unloaded
4481 *
4482 * Performs all duties necessary to shut down a libata port...
4483 * Kill port kthread, disable port, and release resources.
4484 *
4485 * LOCKING:
4486 * Inherited from SCSI layer.
4487 *
4488 * RETURNS:
4489 * One.
4490 */
4491
4492int ata_scsi_release(struct Scsi_Host *host)
4493{
4494 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4495
4496 DPRINTK("ENTER\n");
4497
4498 ap->ops->port_disable(ap);
4499 ata_host_remove(ap, 0);
4500
4501 DPRINTK("EXIT\n");
4502 return 1;
4503}
4504
4505/**
4506 * ata_std_ports - initialize ioaddr with standard port offsets.
4507 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4508 *
4509 * Utility function which initializes data_addr, error_addr,
4510 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4511 * device_addr, status_addr, and command_addr to standard offsets
4512 * relative to cmd_addr.
4513 *
4514 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4515 */
0baab86b 4516
1da177e4
LT
4517void ata_std_ports(struct ata_ioports *ioaddr)
4518{
4519 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4520 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4521 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4522 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4523 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4524 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4525 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4526 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4527 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4528 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4529}
4530
4531static struct ata_probe_ent *
057ace5e 4532ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
1da177e4
LT
4533{
4534 struct ata_probe_ent *probe_ent;
4535
57f3bda8 4536 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
1da177e4
LT
4537 if (!probe_ent) {
4538 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4539 kobject_name(&(dev->kobj)));
4540 return NULL;
4541 }
4542
1da177e4
LT
4543 INIT_LIST_HEAD(&probe_ent->node);
4544 probe_ent->dev = dev;
4545
4546 probe_ent->sht = port->sht;
4547 probe_ent->host_flags = port->host_flags;
4548 probe_ent->pio_mask = port->pio_mask;
4549 probe_ent->mwdma_mask = port->mwdma_mask;
4550 probe_ent->udma_mask = port->udma_mask;
4551 probe_ent->port_ops = port->port_ops;
4552
4553 return probe_ent;
4554}
4555
0baab86b
EF
4556
4557
374b1873
JG
4558#ifdef CONFIG_PCI
4559
4560void ata_pci_host_stop (struct ata_host_set *host_set)
4561{
4562 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4563
4564 pci_iounmap(pdev, host_set->mmio_base);
4565}
4566
0baab86b
EF
4567/**
4568 * ata_pci_init_native_mode - Initialize native-mode driver
4569 * @pdev: pci device to be initialized
4570 * @port: array[2] of pointers to port info structures.
47a86593 4571 * @ports: bitmap of ports present
0baab86b
EF
4572 *
4573 * Utility function which allocates and initializes an
4574 * ata_probe_ent structure for a standard dual-port
4575 * PIO-based IDE controller. The returned ata_probe_ent
4576 * structure can be passed to ata_device_add(). The returned
4577 * ata_probe_ent structure should then be freed with kfree().
47a86593
AC
4578 *
4579 * The caller need only pass the address of the primary port, the
4580 * secondary will be deduced automatically. If the device has non
4581 * standard secondary port mappings this function can be called twice,
4582 * once for each interface.
0baab86b
EF
4583 */
4584
1da177e4 4585struct ata_probe_ent *
47a86593 4586ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
1da177e4
LT
4587{
4588 struct ata_probe_ent *probe_ent =
4589 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
47a86593
AC
4590 int p = 0;
4591
1da177e4
LT
4592 if (!probe_ent)
4593 return NULL;
4594
1da177e4
LT
4595 probe_ent->irq = pdev->irq;
4596 probe_ent->irq_flags = SA_SHIRQ;
e99f8b5e 4597 probe_ent->private_data = port[0]->private_data;
1da177e4 4598
47a86593
AC
4599 if (ports & ATA_PORT_PRIMARY) {
4600 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
4601 probe_ent->port[p].altstatus_addr =
4602 probe_ent->port[p].ctl_addr =
4603 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4604 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
4605 ata_std_ports(&probe_ent->port[p]);
4606 p++;
4607 }
1da177e4 4608
47a86593
AC
4609 if (ports & ATA_PORT_SECONDARY) {
4610 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
4611 probe_ent->port[p].altstatus_addr =
4612 probe_ent->port[p].ctl_addr =
4613 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4614 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4615 ata_std_ports(&probe_ent->port[p]);
4616 p++;
4617 }
1da177e4 4618
47a86593 4619 probe_ent->n_ports = p;
1da177e4
LT
4620 return probe_ent;
4621}
4622
0f0d5192 4623static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
1da177e4 4624{
47a86593 4625 struct ata_probe_ent *probe_ent;
1da177e4 4626
0f0d5192 4627 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
1da177e4
LT
4628 if (!probe_ent)
4629 return NULL;
1da177e4 4630
1da177e4 4631 probe_ent->legacy_mode = 1;
47a86593
AC
4632 probe_ent->n_ports = 1;
4633 probe_ent->hard_port_no = port_num;
e99f8b5e 4634 probe_ent->private_data = port->private_data;
47a86593
AC
4635
4636 switch(port_num)
4637 {
4638 case 0:
4639 probe_ent->irq = 14;
4640 probe_ent->port[0].cmd_addr = 0x1f0;
4641 probe_ent->port[0].altstatus_addr =
4642 probe_ent->port[0].ctl_addr = 0x3f6;
4643 break;
4644 case 1:
4645 probe_ent->irq = 15;
4646 probe_ent->port[0].cmd_addr = 0x170;
4647 probe_ent->port[0].altstatus_addr =
4648 probe_ent->port[0].ctl_addr = 0x376;
4649 break;
4650 }
4651 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
1da177e4 4652 ata_std_ports(&probe_ent->port[0]);
1da177e4
LT
4653 return probe_ent;
4654}
4655
4656/**
4657 * ata_pci_init_one - Initialize/register PCI IDE host controller
4658 * @pdev: Controller to be initialized
4659 * @port_info: Information from low-level host driver
4660 * @n_ports: Number of ports attached to host controller
4661 *
0baab86b
EF
4662 * This is a helper function which can be called from a driver's
4663 * xxx_init_one() probe function if the hardware uses traditional
4664 * IDE taskfile registers.
4665 *
4666 * This function calls pci_enable_device(), reserves its register
4667 * regions, sets the dma mask, enables bus master mode, and calls
4668 * ata_device_add()
4669 *
1da177e4
LT
4670 * LOCKING:
4671 * Inherited from PCI layer (may sleep).
4672 *
4673 * RETURNS:
0cba632b 4674 * Zero on success, negative on errno-based value on error.
1da177e4
LT
4675 */
4676
4677int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4678 unsigned int n_ports)
4679{
47a86593 4680 struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
1da177e4
LT
4681 struct ata_port_info *port[2];
4682 u8 tmp8, mask;
4683 unsigned int legacy_mode = 0;
4684 int disable_dev_on_err = 1;
4685 int rc;
4686
4687 DPRINTK("ENTER\n");
4688
4689 port[0] = port_info[0];
4690 if (n_ports > 1)
4691 port[1] = port_info[1];
4692 else
4693 port[1] = port[0];
4694
4695 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4696 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
47a86593 4697 /* TODO: What if one channel is in native mode ... */
1da177e4
LT
4698 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4699 mask = (1 << 2) | (1 << 0);
4700 if ((tmp8 & mask) != mask)
4701 legacy_mode = (1 << 3);
4702 }
4703
4704 /* FIXME... */
47a86593
AC
4705 if ((!legacy_mode) && (n_ports > 2)) {
4706 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
4707 n_ports = 2;
4708 /* For now */
1da177e4
LT
4709 }
4710
47a86593
AC
4711 /* FIXME: Really for ATA it isn't safe because the device may be
4712 multi-purpose and we want to leave it alone if it was already
4713 enabled. Secondly for shared use as Arjan says we want refcounting
4714
4715 Checking dev->is_enabled is insufficient as this is not set at
4716 boot for the primary video which is BIOS enabled
4717 */
4718
1da177e4
LT
4719 rc = pci_enable_device(pdev);
4720 if (rc)
4721 return rc;
4722
4723 rc = pci_request_regions(pdev, DRV_NAME);
4724 if (rc) {
4725 disable_dev_on_err = 0;
4726 goto err_out;
4727 }
4728
47a86593 4729 /* FIXME: Should use platform specific mappers for legacy port ranges */
1da177e4
LT
4730 if (legacy_mode) {
4731 if (!request_region(0x1f0, 8, "libata")) {
4732 struct resource *conflict, res;
4733 res.start = 0x1f0;
4734 res.end = 0x1f0 + 8 - 1;
4735 conflict = ____request_resource(&ioport_resource, &res);
4736 if (!strcmp(conflict->name, "libata"))
4737 legacy_mode |= (1 << 0);
4738 else {
4739 disable_dev_on_err = 0;
4740 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4741 }
4742 } else
4743 legacy_mode |= (1 << 0);
4744
4745 if (!request_region(0x170, 8, "libata")) {
4746 struct resource *conflict, res;
4747 res.start = 0x170;
4748 res.end = 0x170 + 8 - 1;
4749 conflict = ____request_resource(&ioport_resource, &res);
4750 if (!strcmp(conflict->name, "libata"))
4751 legacy_mode |= (1 << 1);
4752 else {
4753 disable_dev_on_err = 0;
4754 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4755 }
4756 } else
4757 legacy_mode |= (1 << 1);
4758 }
4759
4760 /* we have legacy mode, but all ports are unavailable */
4761 if (legacy_mode == (1 << 3)) {
4762 rc = -EBUSY;
4763 goto err_out_regions;
4764 }
4765
4766 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4767 if (rc)
4768 goto err_out_regions;
4769 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4770 if (rc)
4771 goto err_out_regions;
4772
4773 if (legacy_mode) {
47a86593 4774 if (legacy_mode & (1 << 0))
0f0d5192 4775 probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
47a86593 4776 if (legacy_mode & (1 << 1))
0f0d5192 4777 probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
47a86593
AC
4778 } else {
4779 if (n_ports == 2)
4780 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
4781 else
4782 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
4783 }
4784 if (!probe_ent && !probe_ent2) {
1da177e4
LT
4785 rc = -ENOMEM;
4786 goto err_out_regions;
4787 }
4788
4789 pci_set_master(pdev);
4790
4791 /* FIXME: check ata_device_add return */
4792 if (legacy_mode) {
4793 if (legacy_mode & (1 << 0))
4794 ata_device_add(probe_ent);
4795 if (legacy_mode & (1 << 1))
4796 ata_device_add(probe_ent2);
4797 } else
4798 ata_device_add(probe_ent);
4799
4800 kfree(probe_ent);
4801 kfree(probe_ent2);
4802
4803 return 0;
4804
4805err_out_regions:
4806 if (legacy_mode & (1 << 0))
4807 release_region(0x1f0, 8);
4808 if (legacy_mode & (1 << 1))
4809 release_region(0x170, 8);
4810 pci_release_regions(pdev);
4811err_out:
4812 if (disable_dev_on_err)
4813 pci_disable_device(pdev);
4814 return rc;
4815}
4816
4817/**
4818 * ata_pci_remove_one - PCI layer callback for device removal
4819 * @pdev: PCI device that was removed
4820 *
4821 * PCI layer indicates to libata via this hook that
6f0ef4fa 4822 * hot-unplug or module unload event has occurred.
1da177e4
LT
4823 * Handle this by unregistering all objects associated
4824 * with this PCI device. Free those objects. Then finally
4825 * release PCI resources and disable device.
4826 *
4827 * LOCKING:
4828 * Inherited from PCI layer (may sleep).
4829 */
4830
4831void ata_pci_remove_one (struct pci_dev *pdev)
4832{
4833 struct device *dev = pci_dev_to_dev(pdev);
4834 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4835
17b14451 4836 ata_host_set_remove(host_set);
1da177e4
LT
4837 pci_release_regions(pdev);
4838 pci_disable_device(pdev);
4839 dev_set_drvdata(dev, NULL);
4840}
4841
4842/* move to PCI subsystem */
057ace5e 4843int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4844{
4845 unsigned long tmp = 0;
4846
4847 switch (bits->width) {
4848 case 1: {
4849 u8 tmp8 = 0;
4850 pci_read_config_byte(pdev, bits->reg, &tmp8);
4851 tmp = tmp8;
4852 break;
4853 }
4854 case 2: {
4855 u16 tmp16 = 0;
4856 pci_read_config_word(pdev, bits->reg, &tmp16);
4857 tmp = tmp16;
4858 break;
4859 }
4860 case 4: {
4861 u32 tmp32 = 0;
4862 pci_read_config_dword(pdev, bits->reg, &tmp32);
4863 tmp = tmp32;
4864 break;
4865 }
4866
4867 default:
4868 return -EINVAL;
4869 }
4870
4871 tmp &= bits->mask;
4872
4873 return (tmp == bits->val) ? 1 : 0;
4874}
4875#endif /* CONFIG_PCI */
4876
4877
1da177e4
LT
4878static int __init ata_init(void)
4879{
4880 ata_wq = create_workqueue("ata");
4881 if (!ata_wq)
4882 return -ENOMEM;
4883
4884 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4885 return 0;
4886}
4887
4888static void __exit ata_exit(void)
4889{
4890 destroy_workqueue(ata_wq);
4891}
4892
4893module_init(ata_init);
4894module_exit(ata_exit);
4895
67846b30
JG
4896static unsigned long ratelimit_time;
4897static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4898
4899int ata_ratelimit(void)
4900{
4901 int rc;
4902 unsigned long flags;
4903
4904 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4905
4906 if (time_after(jiffies, ratelimit_time)) {
4907 rc = 1;
4908 ratelimit_time = jiffies + (HZ/5);
4909 } else
4910 rc = 0;
4911
4912 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4913
4914 return rc;
4915}
4916
1da177e4
LT
4917/*
4918 * libata is essentially a library of internal helper functions for
4919 * low-level ATA host controller drivers. As such, the API/ABI is
4920 * likely to change as new drivers are added and updated.
4921 * Do not depend on ABI/API stability.
4922 */
4923
4924EXPORT_SYMBOL_GPL(ata_std_bios_param);
4925EXPORT_SYMBOL_GPL(ata_std_ports);
4926EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 4927EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
4928EXPORT_SYMBOL_GPL(ata_sg_init);
4929EXPORT_SYMBOL_GPL(ata_sg_init_one);
4930EXPORT_SYMBOL_GPL(ata_qc_complete);
4931EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4932EXPORT_SYMBOL_GPL(ata_eng_timeout);
4933EXPORT_SYMBOL_GPL(ata_tf_load);
4934EXPORT_SYMBOL_GPL(ata_tf_read);
4935EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4936EXPORT_SYMBOL_GPL(ata_std_dev_select);
4937EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4938EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4939EXPORT_SYMBOL_GPL(ata_check_status);
4940EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
4941EXPORT_SYMBOL_GPL(ata_exec_command);
4942EXPORT_SYMBOL_GPL(ata_port_start);
4943EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 4944EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
4945EXPORT_SYMBOL_GPL(ata_interrupt);
4946EXPORT_SYMBOL_GPL(ata_qc_prep);
4947EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4948EXPORT_SYMBOL_GPL(ata_bmdma_start);
4949EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4950EXPORT_SYMBOL_GPL(ata_bmdma_status);
4951EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4952EXPORT_SYMBOL_GPL(ata_port_probe);
4953EXPORT_SYMBOL_GPL(sata_phy_reset);
4954EXPORT_SYMBOL_GPL(__sata_phy_reset);
4955EXPORT_SYMBOL_GPL(ata_bus_reset);
4956EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 4957EXPORT_SYMBOL_GPL(ata_ratelimit);
1da177e4
LT
4958EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4959EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4960EXPORT_SYMBOL_GPL(ata_scsi_error);
4961EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4962EXPORT_SYMBOL_GPL(ata_scsi_release);
4963EXPORT_SYMBOL_GPL(ata_host_intr);
4964EXPORT_SYMBOL_GPL(ata_dev_classify);
4965EXPORT_SYMBOL_GPL(ata_dev_id_string);
6f2f3812 4966EXPORT_SYMBOL_GPL(ata_dev_config);
1da177e4
LT
4967EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4968
452503f9
AC
4969EXPORT_SYMBOL_GPL(ata_timing_compute);
4970EXPORT_SYMBOL_GPL(ata_timing_merge);
4971
1da177e4
LT
4972#ifdef CONFIG_PCI
4973EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 4974EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
4975EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4976EXPORT_SYMBOL_GPL(ata_pci_init_one);
4977EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4978#endif /* CONFIG_PCI */