]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/scsi/libata-core.c
[PATCH] libata-hp-prep: add prereset() method and implement ata_std_prereset()
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
d7bb4cc7
TH
64/* debounce timing parameters in msecs { interval, duration, timeout } */
65const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
66const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
67const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
68
3373efd8
TH
69static unsigned int ata_dev_init_params(struct ata_device *dev,
70 u16 heads, u16 sectors);
71static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
72static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
73
74static unsigned int ata_unique_id = 1;
75static struct workqueue_struct *ata_wq;
76
453b07ac
TH
77struct workqueue_struct *ata_aux_wq;
78
418dc1f5 79int atapi_enabled = 1;
1623c81e
JG
80module_param(atapi_enabled, int, 0444);
81MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82
95de719a
AL
83int atapi_dmadir = 0;
84module_param(atapi_dmadir, int, 0444);
85MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86
c3c013a2
JG
87int libata_fua = 0;
88module_param_named(fua, libata_fua, int, 0444);
89MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
90
1da177e4
LT
91MODULE_AUTHOR("Jeff Garzik");
92MODULE_DESCRIPTION("Library module for ATA devices");
93MODULE_LICENSE("GPL");
94MODULE_VERSION(DRV_VERSION);
95
0baab86b 96
1da177e4
LT
97/**
98 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
99 * @tf: Taskfile to convert
100 * @fis: Buffer into which data will output
101 * @pmp: Port multiplier port
102 *
103 * Converts a standard ATA taskfile to a Serial ATA
104 * FIS structure (Register - Host to Device).
105 *
106 * LOCKING:
107 * Inherited from caller.
108 */
109
057ace5e 110void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
111{
112 fis[0] = 0x27; /* Register - Host to Device FIS */
113 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
114 bit 7 indicates Command FIS */
115 fis[2] = tf->command;
116 fis[3] = tf->feature;
117
118 fis[4] = tf->lbal;
119 fis[5] = tf->lbam;
120 fis[6] = tf->lbah;
121 fis[7] = tf->device;
122
123 fis[8] = tf->hob_lbal;
124 fis[9] = tf->hob_lbam;
125 fis[10] = tf->hob_lbah;
126 fis[11] = tf->hob_feature;
127
128 fis[12] = tf->nsect;
129 fis[13] = tf->hob_nsect;
130 fis[14] = 0;
131 fis[15] = tf->ctl;
132
133 fis[16] = 0;
134 fis[17] = 0;
135 fis[18] = 0;
136 fis[19] = 0;
137}
138
139/**
140 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
141 * @fis: Buffer from which data will be input
142 * @tf: Taskfile to output
143 *
e12a1be6 144 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
057ace5e 150void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
151{
152 tf->command = fis[2]; /* status */
153 tf->feature = fis[3]; /* error */
154
155 tf->lbal = fis[4];
156 tf->lbam = fis[5];
157 tf->lbah = fis[6];
158 tf->device = fis[7];
159
160 tf->hob_lbal = fis[8];
161 tf->hob_lbam = fis[9];
162 tf->hob_lbah = fis[10];
163
164 tf->nsect = fis[12];
165 tf->hob_nsect = fis[13];
166}
167
8cbd6df1
AL
168static const u8 ata_rw_cmds[] = {
169 /* pio multi */
170 ATA_CMD_READ_MULTI,
171 ATA_CMD_WRITE_MULTI,
172 ATA_CMD_READ_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
174 0,
175 0,
176 0,
177 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
178 /* pio */
179 ATA_CMD_PIO_READ,
180 ATA_CMD_PIO_WRITE,
181 ATA_CMD_PIO_READ_EXT,
182 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
183 0,
184 0,
185 0,
186 0,
8cbd6df1
AL
187 /* dma */
188 ATA_CMD_READ,
189 ATA_CMD_WRITE,
190 ATA_CMD_READ_EXT,
9a3dccc4
TH
191 ATA_CMD_WRITE_EXT,
192 0,
193 0,
194 0,
195 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 196};
1da177e4
LT
197
198/**
8cbd6df1
AL
199 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
200 * @qc: command to examine and configure
1da177e4 201 *
2e9edbf8 202 * Examine the device configuration and tf->flags to calculate
8cbd6df1 203 * the proper read/write commands and protocol to use.
1da177e4
LT
204 *
205 * LOCKING:
206 * caller.
207 */
9a3dccc4 208int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 209{
8cbd6df1
AL
210 struct ata_taskfile *tf = &qc->tf;
211 struct ata_device *dev = qc->dev;
9a3dccc4 212 u8 cmd;
1da177e4 213
9a3dccc4 214 int index, fua, lba48, write;
2e9edbf8 215
9a3dccc4 216 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
217 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
218 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 219
8cbd6df1
AL
220 if (dev->flags & ATA_DFLAG_PIO) {
221 tf->protocol = ATA_PROT_PIO;
9a3dccc4 222 index = dev->multi_count ? 0 : 8;
8d238e01
AC
223 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
224 /* Unable to use DMA due to host limitation */
225 tf->protocol = ATA_PROT_PIO;
0565c26d 226 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
227 } else {
228 tf->protocol = ATA_PROT_DMA;
9a3dccc4 229 index = 16;
8cbd6df1 230 }
1da177e4 231
9a3dccc4
TH
232 cmd = ata_rw_cmds[index + fua + lba48 + write];
233 if (cmd) {
234 tf->command = cmd;
235 return 0;
236 }
237 return -1;
1da177e4
LT
238}
239
cb95d562
TH
240/**
241 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
242 * @pio_mask: pio_mask
243 * @mwdma_mask: mwdma_mask
244 * @udma_mask: udma_mask
245 *
246 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
247 * unsigned int xfer_mask.
248 *
249 * LOCKING:
250 * None.
251 *
252 * RETURNS:
253 * Packed xfer_mask.
254 */
255static unsigned int ata_pack_xfermask(unsigned int pio_mask,
256 unsigned int mwdma_mask,
257 unsigned int udma_mask)
258{
259 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
260 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
261 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
262}
263
c0489e4e
TH
264/**
265 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
266 * @xfer_mask: xfer_mask to unpack
267 * @pio_mask: resulting pio_mask
268 * @mwdma_mask: resulting mwdma_mask
269 * @udma_mask: resulting udma_mask
270 *
271 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
272 * Any NULL distination masks will be ignored.
273 */
274static void ata_unpack_xfermask(unsigned int xfer_mask,
275 unsigned int *pio_mask,
276 unsigned int *mwdma_mask,
277 unsigned int *udma_mask)
278{
279 if (pio_mask)
280 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
281 if (mwdma_mask)
282 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
283 if (udma_mask)
284 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
285}
286
cb95d562 287static const struct ata_xfer_ent {
be9a50c8 288 int shift, bits;
cb95d562
TH
289 u8 base;
290} ata_xfer_tbl[] = {
291 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
292 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
293 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
294 { -1, },
295};
296
297/**
298 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
299 * @xfer_mask: xfer_mask of interest
300 *
301 * Return matching XFER_* value for @xfer_mask. Only the highest
302 * bit of @xfer_mask is considered.
303 *
304 * LOCKING:
305 * None.
306 *
307 * RETURNS:
308 * Matching XFER_* value, 0 if no match found.
309 */
310static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
311{
312 int highbit = fls(xfer_mask) - 1;
313 const struct ata_xfer_ent *ent;
314
315 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
316 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
317 return ent->base + highbit - ent->shift;
318 return 0;
319}
320
321/**
322 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
323 * @xfer_mode: XFER_* of interest
324 *
325 * Return matching xfer_mask for @xfer_mode.
326 *
327 * LOCKING:
328 * None.
329 *
330 * RETURNS:
331 * Matching xfer_mask, 0 if no match found.
332 */
333static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
334{
335 const struct ata_xfer_ent *ent;
336
337 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
338 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
339 return 1 << (ent->shift + xfer_mode - ent->base);
340 return 0;
341}
342
343/**
344 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
345 * @xfer_mode: XFER_* of interest
346 *
347 * Return matching xfer_shift for @xfer_mode.
348 *
349 * LOCKING:
350 * None.
351 *
352 * RETURNS:
353 * Matching xfer_shift, -1 if no match found.
354 */
355static int ata_xfer_mode2shift(unsigned int xfer_mode)
356{
357 const struct ata_xfer_ent *ent;
358
359 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
360 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
361 return ent->shift;
362 return -1;
363}
364
1da177e4 365/**
1da7b0d0
TH
366 * ata_mode_string - convert xfer_mask to string
367 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
368 *
369 * Determine string which represents the highest speed
1da7b0d0 370 * (highest bit in @modemask).
1da177e4
LT
371 *
372 * LOCKING:
373 * None.
374 *
375 * RETURNS:
376 * Constant C string representing highest speed listed in
1da7b0d0 377 * @mode_mask, or the constant C string "<n/a>".
1da177e4 378 */
1da7b0d0 379static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 380{
75f554bc
TH
381 static const char * const xfer_mode_str[] = {
382 "PIO0",
383 "PIO1",
384 "PIO2",
385 "PIO3",
386 "PIO4",
387 "MWDMA0",
388 "MWDMA1",
389 "MWDMA2",
390 "UDMA/16",
391 "UDMA/25",
392 "UDMA/33",
393 "UDMA/44",
394 "UDMA/66",
395 "UDMA/100",
396 "UDMA/133",
397 "UDMA7",
398 };
1da7b0d0 399 int highbit;
1da177e4 400
1da7b0d0
TH
401 highbit = fls(xfer_mask) - 1;
402 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
403 return xfer_mode_str[highbit];
1da177e4 404 return "<n/a>";
1da177e4
LT
405}
406
4c360c81
TH
407static const char *sata_spd_string(unsigned int spd)
408{
409 static const char * const spd_str[] = {
410 "1.5 Gbps",
411 "3.0 Gbps",
412 };
413
414 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
415 return "<unknown>";
416 return spd_str[spd - 1];
417}
418
3373efd8 419void ata_dev_disable(struct ata_device *dev)
0b8efb0a 420{
e1211e3f 421 if (ata_dev_enabled(dev)) {
f15a1daf 422 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
423 dev->class++;
424 }
425}
426
1da177e4
LT
427/**
428 * ata_pio_devchk - PATA device presence detection
429 * @ap: ATA channel to examine
430 * @device: Device to examine (starting at zero)
431 *
432 * This technique was originally described in
433 * Hale Landis's ATADRVR (www.ata-atapi.com), and
434 * later found its way into the ATA/ATAPI spec.
435 *
436 * Write a pattern to the ATA shadow registers,
437 * and if a device is present, it will respond by
438 * correctly storing and echoing back the
439 * ATA shadow register contents.
440 *
441 * LOCKING:
442 * caller.
443 */
444
445static unsigned int ata_pio_devchk(struct ata_port *ap,
446 unsigned int device)
447{
448 struct ata_ioports *ioaddr = &ap->ioaddr;
449 u8 nsect, lbal;
450
451 ap->ops->dev_select(ap, device);
452
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
455
456 outb(0xaa, ioaddr->nsect_addr);
457 outb(0x55, ioaddr->lbal_addr);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 nsect = inb(ioaddr->nsect_addr);
463 lbal = inb(ioaddr->lbal_addr);
464
465 if ((nsect == 0x55) && (lbal == 0xaa))
466 return 1; /* we found a device */
467
468 return 0; /* nothing found */
469}
470
471/**
472 * ata_mmio_devchk - PATA device presence detection
473 * @ap: ATA channel to examine
474 * @device: Device to examine (starting at zero)
475 *
476 * This technique was originally described in
477 * Hale Landis's ATADRVR (www.ata-atapi.com), and
478 * later found its way into the ATA/ATAPI spec.
479 *
480 * Write a pattern to the ATA shadow registers,
481 * and if a device is present, it will respond by
482 * correctly storing and echoing back the
483 * ATA shadow register contents.
484 *
485 * LOCKING:
486 * caller.
487 */
488
489static unsigned int ata_mmio_devchk(struct ata_port *ap,
490 unsigned int device)
491{
492 struct ata_ioports *ioaddr = &ap->ioaddr;
493 u8 nsect, lbal;
494
495 ap->ops->dev_select(ap, device);
496
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 nsect = readb((void __iomem *) ioaddr->nsect_addr);
507 lbal = readb((void __iomem *) ioaddr->lbal_addr);
508
509 if ((nsect == 0x55) && (lbal == 0xaa))
510 return 1; /* we found a device */
511
512 return 0; /* nothing found */
513}
514
515/**
516 * ata_devchk - PATA device presence detection
517 * @ap: ATA channel to examine
518 * @device: Device to examine (starting at zero)
519 *
520 * Dispatch ATA device presence detection, depending
521 * on whether we are using PIO or MMIO to talk to the
522 * ATA shadow registers.
523 *
524 * LOCKING:
525 * caller.
526 */
527
528static unsigned int ata_devchk(struct ata_port *ap,
529 unsigned int device)
530{
531 if (ap->flags & ATA_FLAG_MMIO)
532 return ata_mmio_devchk(ap, device);
533 return ata_pio_devchk(ap, device);
534}
535
536/**
537 * ata_dev_classify - determine device type based on ATA-spec signature
538 * @tf: ATA taskfile register set for device to be identified
539 *
540 * Determine from taskfile register contents whether a device is
541 * ATA or ATAPI, as per "Signature and persistence" section
542 * of ATA/PI spec (volume 1, sect 5.14).
543 *
544 * LOCKING:
545 * None.
546 *
547 * RETURNS:
548 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
549 * the event of failure.
550 */
551
057ace5e 552unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
553{
554 /* Apple's open source Darwin code hints that some devices only
555 * put a proper signature into the LBA mid/high registers,
556 * So, we only check those. It's sufficient for uniqueness.
557 */
558
559 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
560 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
561 DPRINTK("found ATA device by sig\n");
562 return ATA_DEV_ATA;
563 }
564
565 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
566 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
567 DPRINTK("found ATAPI device by sig\n");
568 return ATA_DEV_ATAPI;
569 }
570
571 DPRINTK("unknown device\n");
572 return ATA_DEV_UNKNOWN;
573}
574
575/**
576 * ata_dev_try_classify - Parse returned ATA device signature
577 * @ap: ATA channel to examine
578 * @device: Device to examine (starting at zero)
b4dc7623 579 * @r_err: Value of error register on completion
1da177e4
LT
580 *
581 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
582 * an ATA/ATAPI-defined set of values is placed in the ATA
583 * shadow registers, indicating the results of device detection
584 * and diagnostics.
585 *
586 * Select the ATA device, and read the values from the ATA shadow
587 * registers. Then parse according to the Error register value,
588 * and the spec-defined values examined by ata_dev_classify().
589 *
590 * LOCKING:
591 * caller.
b4dc7623
TH
592 *
593 * RETURNS:
594 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
595 */
596
b4dc7623
TH
597static unsigned int
598ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 599{
1da177e4
LT
600 struct ata_taskfile tf;
601 unsigned int class;
602 u8 err;
603
604 ap->ops->dev_select(ap, device);
605
606 memset(&tf, 0, sizeof(tf));
607
1da177e4 608 ap->ops->tf_read(ap, &tf);
0169e284 609 err = tf.feature;
b4dc7623
TH
610 if (r_err)
611 *r_err = err;
1da177e4
LT
612
613 /* see if device passed diags */
614 if (err == 1)
615 /* do nothing */ ;
616 else if ((device == 0) && (err == 0x81))
617 /* do nothing */ ;
618 else
b4dc7623 619 return ATA_DEV_NONE;
1da177e4 620
b4dc7623 621 /* determine if device is ATA or ATAPI */
1da177e4 622 class = ata_dev_classify(&tf);
b4dc7623 623
1da177e4 624 if (class == ATA_DEV_UNKNOWN)
b4dc7623 625 return ATA_DEV_NONE;
1da177e4 626 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
627 return ATA_DEV_NONE;
628 return class;
1da177e4
LT
629}
630
631/**
6a62a04d 632 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
633 * @id: IDENTIFY DEVICE results we will examine
634 * @s: string into which data is output
635 * @ofs: offset into identify device page
636 * @len: length of string to return. must be an even number.
637 *
638 * The strings in the IDENTIFY DEVICE page are broken up into
639 * 16-bit chunks. Run through the string, and output each
640 * 8-bit chunk linearly, regardless of platform.
641 *
642 * LOCKING:
643 * caller.
644 */
645
6a62a04d
TH
646void ata_id_string(const u16 *id, unsigned char *s,
647 unsigned int ofs, unsigned int len)
1da177e4
LT
648{
649 unsigned int c;
650
651 while (len > 0) {
652 c = id[ofs] >> 8;
653 *s = c;
654 s++;
655
656 c = id[ofs] & 0xff;
657 *s = c;
658 s++;
659
660 ofs++;
661 len -= 2;
662 }
663}
664
0e949ff3 665/**
6a62a04d 666 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
667 * @id: IDENTIFY DEVICE results we will examine
668 * @s: string into which data is output
669 * @ofs: offset into identify device page
670 * @len: length of string to return. must be an odd number.
671 *
6a62a04d 672 * This function is identical to ata_id_string except that it
0e949ff3
TH
673 * trims trailing spaces and terminates the resulting string with
674 * null. @len must be actual maximum length (even number) + 1.
675 *
676 * LOCKING:
677 * caller.
678 */
6a62a04d
TH
679void ata_id_c_string(const u16 *id, unsigned char *s,
680 unsigned int ofs, unsigned int len)
0e949ff3
TH
681{
682 unsigned char *p;
683
684 WARN_ON(!(len & 1));
685
6a62a04d 686 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
687
688 p = s + strnlen(s, len - 1);
689 while (p > s && p[-1] == ' ')
690 p--;
691 *p = '\0';
692}
0baab86b 693
2940740b
TH
694static u64 ata_id_n_sectors(const u16 *id)
695{
696 if (ata_id_has_lba(id)) {
697 if (ata_id_has_lba48(id))
698 return ata_id_u64(id, 100);
699 else
700 return ata_id_u32(id, 60);
701 } else {
702 if (ata_id_current_chs_valid(id))
703 return ata_id_u32(id, 57);
704 else
705 return id[1] * id[3] * id[6];
706 }
707}
708
0baab86b
EF
709/**
710 * ata_noop_dev_select - Select device 0/1 on ATA bus
711 * @ap: ATA channel to manipulate
712 * @device: ATA device (numbered from zero) to select
713 *
714 * This function performs no actual function.
715 *
716 * May be used as the dev_select() entry in ata_port_operations.
717 *
718 * LOCKING:
719 * caller.
720 */
1da177e4
LT
721void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
722{
723}
724
0baab86b 725
1da177e4
LT
726/**
727 * ata_std_dev_select - Select device 0/1 on ATA bus
728 * @ap: ATA channel to manipulate
729 * @device: ATA device (numbered from zero) to select
730 *
731 * Use the method defined in the ATA specification to
732 * make either device 0, or device 1, active on the
0baab86b
EF
733 * ATA channel. Works with both PIO and MMIO.
734 *
735 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
736 *
737 * LOCKING:
738 * caller.
739 */
740
741void ata_std_dev_select (struct ata_port *ap, unsigned int device)
742{
743 u8 tmp;
744
745 if (device == 0)
746 tmp = ATA_DEVICE_OBS;
747 else
748 tmp = ATA_DEVICE_OBS | ATA_DEV1;
749
750 if (ap->flags & ATA_FLAG_MMIO) {
751 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
752 } else {
753 outb(tmp, ap->ioaddr.device_addr);
754 }
755 ata_pause(ap); /* needed; also flushes, for mmio */
756}
757
758/**
759 * ata_dev_select - Select device 0/1 on ATA bus
760 * @ap: ATA channel to manipulate
761 * @device: ATA device (numbered from zero) to select
762 * @wait: non-zero to wait for Status register BSY bit to clear
763 * @can_sleep: non-zero if context allows sleeping
764 *
765 * Use the method defined in the ATA specification to
766 * make either device 0, or device 1, active on the
767 * ATA channel.
768 *
769 * This is a high-level version of ata_std_dev_select(),
770 * which additionally provides the services of inserting
771 * the proper pauses and status polling, where needed.
772 *
773 * LOCKING:
774 * caller.
775 */
776
777void ata_dev_select(struct ata_port *ap, unsigned int device,
778 unsigned int wait, unsigned int can_sleep)
779{
780 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
781 ap->id, device, wait);
782
783 if (wait)
784 ata_wait_idle(ap);
785
786 ap->ops->dev_select(ap, device);
787
788 if (wait) {
789 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
790 msleep(150);
791 ata_wait_idle(ap);
792 }
793}
794
795/**
796 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 797 * @id: IDENTIFY DEVICE page to dump
1da177e4 798 *
0bd3300a
TH
799 * Dump selected 16-bit words from the given IDENTIFY DEVICE
800 * page.
1da177e4
LT
801 *
802 * LOCKING:
803 * caller.
804 */
805
0bd3300a 806static inline void ata_dump_id(const u16 *id)
1da177e4
LT
807{
808 DPRINTK("49==0x%04x "
809 "53==0x%04x "
810 "63==0x%04x "
811 "64==0x%04x "
812 "75==0x%04x \n",
0bd3300a
TH
813 id[49],
814 id[53],
815 id[63],
816 id[64],
817 id[75]);
1da177e4
LT
818 DPRINTK("80==0x%04x "
819 "81==0x%04x "
820 "82==0x%04x "
821 "83==0x%04x "
822 "84==0x%04x \n",
0bd3300a
TH
823 id[80],
824 id[81],
825 id[82],
826 id[83],
827 id[84]);
1da177e4
LT
828 DPRINTK("88==0x%04x "
829 "93==0x%04x\n",
0bd3300a
TH
830 id[88],
831 id[93]);
1da177e4
LT
832}
833
cb95d562
TH
834/**
835 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
836 * @id: IDENTIFY data to compute xfer mask from
837 *
838 * Compute the xfermask for this device. This is not as trivial
839 * as it seems if we must consider early devices correctly.
840 *
841 * FIXME: pre IDE drive timing (do we care ?).
842 *
843 * LOCKING:
844 * None.
845 *
846 * RETURNS:
847 * Computed xfermask
848 */
849static unsigned int ata_id_xfermask(const u16 *id)
850{
851 unsigned int pio_mask, mwdma_mask, udma_mask;
852
853 /* Usual case. Word 53 indicates word 64 is valid */
854 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
855 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
856 pio_mask <<= 3;
857 pio_mask |= 0x7;
858 } else {
859 /* If word 64 isn't valid then Word 51 high byte holds
860 * the PIO timing number for the maximum. Turn it into
861 * a mask.
862 */
863 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
864
865 /* But wait.. there's more. Design your standards by
866 * committee and you too can get a free iordy field to
867 * process. However its the speeds not the modes that
868 * are supported... Note drivers using the timing API
869 * will get this right anyway
870 */
871 }
872
873 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
874
875 udma_mask = 0;
876 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
877 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
878
879 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
880}
881
86e45b6b
TH
882/**
883 * ata_port_queue_task - Queue port_task
884 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
885 * @fn: workqueue function to be scheduled
886 * @data: data value to pass to workqueue function
887 * @delay: delay time for workqueue function
86e45b6b
TH
888 *
889 * Schedule @fn(@data) for execution after @delay jiffies using
890 * port_task. There is one port_task per port and it's the
891 * user(low level driver)'s responsibility to make sure that only
892 * one task is active at any given time.
893 *
894 * libata core layer takes care of synchronization between
895 * port_task and EH. ata_port_queue_task() may be ignored for EH
896 * synchronization.
897 *
898 * LOCKING:
899 * Inherited from caller.
900 */
901void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
902 unsigned long delay)
903{
904 int rc;
905
2e755f68 906 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
907 return;
908
909 PREPARE_WORK(&ap->port_task, fn, data);
910
911 if (!delay)
912 rc = queue_work(ata_wq, &ap->port_task);
913 else
914 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
915
916 /* rc == 0 means that another user is using port task */
917 WARN_ON(rc == 0);
918}
919
920/**
921 * ata_port_flush_task - Flush port_task
922 * @ap: The ata_port to flush port_task for
923 *
924 * After this function completes, port_task is guranteed not to
925 * be running or scheduled.
926 *
927 * LOCKING:
928 * Kernel thread context (may sleep)
929 */
930void ata_port_flush_task(struct ata_port *ap)
931{
932 unsigned long flags;
933
934 DPRINTK("ENTER\n");
935
936 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 937 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
938 spin_unlock_irqrestore(&ap->host_set->lock, flags);
939
940 DPRINTK("flush #1\n");
941 flush_workqueue(ata_wq);
942
943 /*
944 * At this point, if a task is running, it's guaranteed to see
945 * the FLUSH flag; thus, it will never queue pio tasks again.
946 * Cancel and flush.
947 */
948 if (!cancel_delayed_work(&ap->port_task)) {
949 DPRINTK("flush #2\n");
950 flush_workqueue(ata_wq);
951 }
952
953 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 954 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
955 spin_unlock_irqrestore(&ap->host_set->lock, flags);
956
957 DPRINTK("EXIT\n");
958}
959
77853bf2 960void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 961{
77853bf2 962 struct completion *waiting = qc->private_data;
a2a7a662 963
a2a7a662 964 complete(waiting);
a2a7a662
TH
965}
966
967/**
968 * ata_exec_internal - execute libata internal command
a2a7a662
TH
969 * @dev: Device to which the command is sent
970 * @tf: Taskfile registers for the command and the result
d69cf37d 971 * @cdb: CDB for packet command
a2a7a662
TH
972 * @dma_dir: Data tranfer direction of the command
973 * @buf: Data buffer of the command
974 * @buflen: Length of data buffer
975 *
976 * Executes libata internal command with timeout. @tf contains
977 * command on entry and result on return. Timeout and error
978 * conditions are reported via return value. No recovery action
979 * is taken after a command times out. It's caller's duty to
980 * clean up after timeout.
981 *
982 * LOCKING:
983 * None. Should be called with kernel context, might sleep.
984 */
985
3373efd8 986unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
987 struct ata_taskfile *tf, const u8 *cdb,
988 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 989{
3373efd8 990 struct ata_port *ap = dev->ap;
a2a7a662
TH
991 u8 command = tf->command;
992 struct ata_queued_cmd *qc;
2ab7db1f 993 unsigned int tag, preempted_tag;
dedaf2b0 994 u32 preempted_sactive, preempted_qc_active;
a2a7a662
TH
995 DECLARE_COMPLETION(wait);
996 unsigned long flags;
77853bf2 997 unsigned int err_mask;
d95a717f 998 int rc;
a2a7a662
TH
999
1000 spin_lock_irqsave(&ap->host_set->lock, flags);
1001
e3180499
TH
1002 /* no internal command while frozen */
1003 if (ap->flags & ATA_FLAG_FROZEN) {
1004 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1005 return AC_ERR_SYSTEM;
1006 }
1007
2ab7db1f 1008 /* initialize internal qc */
a2a7a662 1009
2ab7db1f
TH
1010 /* XXX: Tag 0 is used for drivers with legacy EH as some
1011 * drivers choke if any other tag is given. This breaks
1012 * ata_tag_internal() test for those drivers. Don't use new
1013 * EH stuff without converting to it.
1014 */
1015 if (ap->ops->error_handler)
1016 tag = ATA_TAG_INTERNAL;
1017 else
1018 tag = 0;
1019
6cec4a39 1020 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1021 BUG();
f69499f4 1022 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1023
1024 qc->tag = tag;
1025 qc->scsicmd = NULL;
1026 qc->ap = ap;
1027 qc->dev = dev;
1028 ata_qc_reinit(qc);
1029
1030 preempted_tag = ap->active_tag;
dedaf2b0
TH
1031 preempted_sactive = ap->sactive;
1032 preempted_qc_active = ap->qc_active;
2ab7db1f 1033 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1034 ap->sactive = 0;
1035 ap->qc_active = 0;
2ab7db1f
TH
1036
1037 /* prepare & issue qc */
a2a7a662 1038 qc->tf = *tf;
d69cf37d
TH
1039 if (cdb)
1040 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1041 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1042 qc->dma_dir = dma_dir;
1043 if (dma_dir != DMA_NONE) {
1044 ata_sg_init_one(qc, buf, buflen);
1045 qc->nsect = buflen / ATA_SECT_SIZE;
1046 }
1047
77853bf2 1048 qc->private_data = &wait;
a2a7a662
TH
1049 qc->complete_fn = ata_qc_complete_internal;
1050
8e0e694a 1051 ata_qc_issue(qc);
a2a7a662
TH
1052
1053 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1054
d95a717f
TH
1055 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1056
1057 ata_port_flush_task(ap);
41ade50c 1058
d95a717f 1059 if (!rc) {
a2a7a662
TH
1060 spin_lock_irqsave(&ap->host_set->lock, flags);
1061
1062 /* We're racing with irq here. If we lose, the
1063 * following test prevents us from completing the qc
d95a717f
TH
1064 * twice. If we win, the port is frozen and will be
1065 * cleaned up by ->post_internal_cmd().
a2a7a662 1066 */
77853bf2 1067 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1068 qc->err_mask |= AC_ERR_TIMEOUT;
1069
1070 if (ap->ops->error_handler)
1071 ata_port_freeze(ap);
1072 else
1073 ata_qc_complete(qc);
f15a1daf
TH
1074
1075 ata_dev_printk(dev, KERN_WARNING,
1076 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1077 }
1078
1079 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1080 }
1081
d95a717f
TH
1082 /* do post_internal_cmd */
1083 if (ap->ops->post_internal_cmd)
1084 ap->ops->post_internal_cmd(qc);
1085
1086 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1087 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1088 "internal command, assuming AC_ERR_OTHER\n");
1089 qc->err_mask |= AC_ERR_OTHER;
1090 }
1091
15869303
TH
1092 /* finish up */
1093 spin_lock_irqsave(&ap->host_set->lock, flags);
1094
e61e0672 1095 *tf = qc->result_tf;
77853bf2
TH
1096 err_mask = qc->err_mask;
1097
1098 ata_qc_free(qc);
2ab7db1f 1099 ap->active_tag = preempted_tag;
dedaf2b0
TH
1100 ap->sactive = preempted_sactive;
1101 ap->qc_active = preempted_qc_active;
77853bf2 1102
1f7dd3e9
TH
1103 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1104 * Until those drivers are fixed, we detect the condition
1105 * here, fail the command with AC_ERR_SYSTEM and reenable the
1106 * port.
1107 *
1108 * Note that this doesn't change any behavior as internal
1109 * command failure results in disabling the device in the
1110 * higher layer for LLDDs without new reset/EH callbacks.
1111 *
1112 * Kill the following code as soon as those drivers are fixed.
1113 */
198e0fed 1114 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1115 err_mask |= AC_ERR_SYSTEM;
1116 ata_port_probe(ap);
1117 }
1118
15869303
TH
1119 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1120
77853bf2 1121 return err_mask;
a2a7a662
TH
1122}
1123
1bc4ccff
AC
1124/**
1125 * ata_pio_need_iordy - check if iordy needed
1126 * @adev: ATA device
1127 *
1128 * Check if the current speed of the device requires IORDY. Used
1129 * by various controllers for chip configuration.
1130 */
1131
1132unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1133{
1134 int pio;
1135 int speed = adev->pio_mode - XFER_PIO_0;
1136
1137 if (speed < 2)
1138 return 0;
1139 if (speed > 2)
1140 return 1;
2e9edbf8 1141
1bc4ccff
AC
1142 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1143
1144 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1145 pio = adev->id[ATA_ID_EIDE_PIO];
1146 /* Is the speed faster than the drive allows non IORDY ? */
1147 if (pio) {
1148 /* This is cycle times not frequency - watch the logic! */
1149 if (pio > 240) /* PIO2 is 240nS per cycle */
1150 return 1;
1151 return 0;
1152 }
1153 }
1154 return 0;
1155}
1156
1da177e4 1157/**
49016aca 1158 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1159 * @dev: target device
1160 * @p_class: pointer to class of the target device (may be changed)
1161 * @post_reset: is this read ID post-reset?
fe635c7e 1162 * @id: buffer to read IDENTIFY data into
1da177e4 1163 *
49016aca
TH
1164 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1165 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1166 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1167 * for pre-ATA4 drives.
1da177e4
LT
1168 *
1169 * LOCKING:
49016aca
TH
1170 * Kernel thread context (may sleep)
1171 *
1172 * RETURNS:
1173 * 0 on success, -errno otherwise.
1da177e4 1174 */
a9beec95
TH
1175int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1176 int post_reset, u16 *id)
1da177e4 1177{
3373efd8 1178 struct ata_port *ap = dev->ap;
49016aca 1179 unsigned int class = *p_class;
a0123703 1180 struct ata_taskfile tf;
49016aca
TH
1181 unsigned int err_mask = 0;
1182 const char *reason;
1183 int rc;
1da177e4 1184
49016aca 1185 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1186
49016aca 1187 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1188
49016aca 1189 retry:
3373efd8 1190 ata_tf_init(dev, &tf);
a0123703 1191
49016aca
TH
1192 switch (class) {
1193 case ATA_DEV_ATA:
a0123703 1194 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1195 break;
1196 case ATA_DEV_ATAPI:
a0123703 1197 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1198 break;
1199 default:
1200 rc = -ENODEV;
1201 reason = "unsupported class";
1202 goto err_out;
1da177e4
LT
1203 }
1204
a0123703 1205 tf.protocol = ATA_PROT_PIO;
1da177e4 1206
3373efd8 1207 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1208 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1209 if (err_mask) {
49016aca
TH
1210 rc = -EIO;
1211 reason = "I/O error";
1da177e4
LT
1212 goto err_out;
1213 }
1214
49016aca 1215 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1216
49016aca 1217 /* sanity check */
692785e7 1218 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1219 rc = -EINVAL;
1220 reason = "device reports illegal type";
1221 goto err_out;
1222 }
1223
1224 if (post_reset && class == ATA_DEV_ATA) {
1225 /*
1226 * The exact sequence expected by certain pre-ATA4 drives is:
1227 * SRST RESET
1228 * IDENTIFY
1229 * INITIALIZE DEVICE PARAMETERS
1230 * anything else..
1231 * Some drives were very specific about that exact sequence.
1232 */
1233 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1234 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1235 if (err_mask) {
1236 rc = -EIO;
1237 reason = "INIT_DEV_PARAMS failed";
1238 goto err_out;
1239 }
1240
1241 /* current CHS translation info (id[53-58]) might be
1242 * changed. reread the identify device info.
1243 */
1244 post_reset = 0;
1245 goto retry;
1246 }
1247 }
1248
1249 *p_class = class;
fe635c7e 1250
49016aca
TH
1251 return 0;
1252
1253 err_out:
f15a1daf
TH
1254 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1255 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1256 return rc;
1257}
1258
3373efd8 1259static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1260{
3373efd8 1261 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1262}
1263
a6e6ce8e
TH
1264static void ata_dev_config_ncq(struct ata_device *dev,
1265 char *desc, size_t desc_sz)
1266{
1267 struct ata_port *ap = dev->ap;
1268 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1269
1270 if (!ata_id_has_ncq(dev->id)) {
1271 desc[0] = '\0';
1272 return;
1273 }
1274
1275 if (ap->flags & ATA_FLAG_NCQ) {
1276 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1277 dev->flags |= ATA_DFLAG_NCQ;
1278 }
1279
1280 if (hdepth >= ddepth)
1281 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1282 else
1283 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1284}
1285
49016aca 1286/**
ffeae418 1287 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1288 * @dev: Target device to configure
4c2d721a 1289 * @print_info: Enable device info printout
ffeae418
TH
1290 *
1291 * Configure @dev according to @dev->id. Generic and low-level
1292 * driver specific fixups are also applied.
49016aca
TH
1293 *
1294 * LOCKING:
ffeae418
TH
1295 * Kernel thread context (may sleep)
1296 *
1297 * RETURNS:
1298 * 0 on success, -errno otherwise
49016aca 1299 */
a9beec95 1300int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1301{
3373efd8 1302 struct ata_port *ap = dev->ap;
1148c3a7 1303 const u16 *id = dev->id;
ff8854b2 1304 unsigned int xfer_mask;
49016aca
TH
1305 int i, rc;
1306
e1211e3f 1307 if (!ata_dev_enabled(dev)) {
49016aca 1308 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1309 ap->id, dev->devno);
1310 return 0;
49016aca
TH
1311 }
1312
ffeae418 1313 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1314
c39f5ebe
TH
1315 /* print device capabilities */
1316 if (print_info)
f15a1daf
TH
1317 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1318 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1319 id[49], id[82], id[83], id[84],
1320 id[85], id[86], id[87], id[88]);
c39f5ebe 1321
208a9933 1322 /* initialize to-be-configured parameters */
ea1dd4e1 1323 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1324 dev->max_sectors = 0;
1325 dev->cdb_len = 0;
1326 dev->n_sectors = 0;
1327 dev->cylinders = 0;
1328 dev->heads = 0;
1329 dev->sectors = 0;
1330
1da177e4
LT
1331 /*
1332 * common ATA, ATAPI feature tests
1333 */
1334
ff8854b2 1335 /* find max transfer mode; for printk only */
1148c3a7 1336 xfer_mask = ata_id_xfermask(id);
1da177e4 1337
1148c3a7 1338 ata_dump_id(id);
1da177e4
LT
1339
1340 /* ATA-specific feature tests */
1341 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1342 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1343
1148c3a7 1344 if (ata_id_has_lba(id)) {
4c2d721a 1345 const char *lba_desc;
a6e6ce8e 1346 char ncq_desc[20];
8bf62ece 1347
4c2d721a
TH
1348 lba_desc = "LBA";
1349 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1350 if (ata_id_has_lba48(id)) {
8bf62ece 1351 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1352 lba_desc = "LBA48";
1353 }
8bf62ece 1354
a6e6ce8e
TH
1355 /* config NCQ */
1356 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1357
8bf62ece 1358 /* print device info to dmesg */
4c2d721a 1359 if (print_info)
f15a1daf 1360 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
a6e6ce8e 1361 "max %s, %Lu sectors: %s %s\n",
f15a1daf
TH
1362 ata_id_major_version(id),
1363 ata_mode_string(xfer_mask),
1364 (unsigned long long)dev->n_sectors,
a6e6ce8e 1365 lba_desc, ncq_desc);
ffeae418 1366 } else {
8bf62ece
AL
1367 /* CHS */
1368
1369 /* Default translation */
1148c3a7
TH
1370 dev->cylinders = id[1];
1371 dev->heads = id[3];
1372 dev->sectors = id[6];
8bf62ece 1373
1148c3a7 1374 if (ata_id_current_chs_valid(id)) {
8bf62ece 1375 /* Current CHS translation is valid. */
1148c3a7
TH
1376 dev->cylinders = id[54];
1377 dev->heads = id[55];
1378 dev->sectors = id[56];
8bf62ece
AL
1379 }
1380
1381 /* print device info to dmesg */
4c2d721a 1382 if (print_info)
f15a1daf
TH
1383 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1384 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1385 ata_id_major_version(id),
1386 ata_mode_string(xfer_mask),
1387 (unsigned long long)dev->n_sectors,
1388 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1389 }
1390
07f6f7d0
AL
1391 if (dev->id[59] & 0x100) {
1392 dev->multi_count = dev->id[59] & 0xff;
1393 DPRINTK("ata%u: dev %u multi count %u\n",
999bb6f4 1394 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1395 }
1396
6e7846e9 1397 dev->cdb_len = 16;
1da177e4
LT
1398 }
1399
1400 /* ATAPI-specific feature tests */
2c13b7ce 1401 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1402 char *cdb_intr_string = "";
1403
1148c3a7 1404 rc = atapi_cdb_len(id);
1da177e4 1405 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
f15a1daf
TH
1406 ata_dev_printk(dev, KERN_WARNING,
1407 "unsupported CDB len\n");
ffeae418 1408 rc = -EINVAL;
1da177e4
LT
1409 goto err_out_nosup;
1410 }
6e7846e9 1411 dev->cdb_len = (unsigned int) rc;
1da177e4 1412
08a556db 1413 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1414 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1415 cdb_intr_string = ", CDB intr";
1416 }
312f7da2 1417
1da177e4 1418 /* print device info to dmesg */
4c2d721a 1419 if (print_info)
12436c30
TH
1420 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1421 ata_mode_string(xfer_mask),
1422 cdb_intr_string);
1da177e4
LT
1423 }
1424
6e7846e9
TH
1425 ap->host->max_cmd_len = 0;
1426 for (i = 0; i < ATA_MAX_DEVICES; i++)
1427 ap->host->max_cmd_len = max_t(unsigned int,
1428 ap->host->max_cmd_len,
1429 ap->device[i].cdb_len);
1430
4b2f3ede 1431 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1432 if (ata_dev_knobble(dev)) {
4c2d721a 1433 if (print_info)
f15a1daf
TH
1434 ata_dev_printk(dev, KERN_INFO,
1435 "applying bridge limits\n");
5a529139 1436 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1437 dev->max_sectors = ATA_MAX_SECTORS;
1438 }
1439
1440 if (ap->ops->dev_config)
1441 ap->ops->dev_config(ap, dev);
1442
1da177e4 1443 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1444 return 0;
1da177e4
LT
1445
1446err_out_nosup:
1da177e4 1447 DPRINTK("EXIT, err\n");
ffeae418 1448 return rc;
1da177e4
LT
1449}
1450
1451/**
1452 * ata_bus_probe - Reset and probe ATA bus
1453 * @ap: Bus to probe
1454 *
0cba632b
JG
1455 * Master ATA bus probing function. Initiates a hardware-dependent
1456 * bus reset, then attempts to identify any devices found on
1457 * the bus.
1458 *
1da177e4 1459 * LOCKING:
0cba632b 1460 * PCI/etc. bus probe sem.
1da177e4
LT
1461 *
1462 * RETURNS:
96072e69 1463 * Zero on success, negative errno otherwise.
1da177e4
LT
1464 */
1465
1466static int ata_bus_probe(struct ata_port *ap)
1467{
28ca5c57 1468 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1469 int tries[ATA_MAX_DEVICES];
1470 int i, rc, down_xfermask;
e82cbdb9 1471 struct ata_device *dev;
1da177e4 1472
28ca5c57 1473 ata_port_probe(ap);
c19ba8af 1474
14d2bac1
TH
1475 for (i = 0; i < ATA_MAX_DEVICES; i++)
1476 tries[i] = ATA_PROBE_MAX_TRIES;
1477
1478 retry:
1479 down_xfermask = 0;
1480
2044470c
TH
1481 /* reset and determine device classes */
1482 for (i = 0; i < ATA_MAX_DEVICES; i++)
1483 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1484
2044470c 1485 if (ap->ops->probe_reset) {
c19ba8af 1486 rc = ap->ops->probe_reset(ap, classes);
28ca5c57 1487 if (rc) {
f15a1daf
TH
1488 ata_port_printk(ap, KERN_ERR,
1489 "reset failed (errno=%d)\n", rc);
28ca5c57 1490 return rc;
c19ba8af 1491 }
28ca5c57 1492 } else {
c19ba8af
TH
1493 ap->ops->phy_reset(ap);
1494
f8c2c420
TH
1495 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1496 if (!(ap->flags & ATA_FLAG_DISABLED))
28ca5c57 1497 classes[i] = ap->device[i].class;
f8c2c420
TH
1498 ap->device[i].class = ATA_DEV_UNKNOWN;
1499 }
2044470c 1500
28ca5c57
TH
1501 ata_port_probe(ap);
1502 }
1da177e4 1503
2044470c
TH
1504 for (i = 0; i < ATA_MAX_DEVICES; i++)
1505 if (classes[i] == ATA_DEV_UNKNOWN)
1506 classes[i] = ATA_DEV_NONE;
1507
b6079ca4
AC
1508 /* after the reset the device state is PIO 0 and the controller
1509 state is undefined. Record the mode */
1510
1511 for (i = 0; i < ATA_MAX_DEVICES; i++)
1512 ap->device[i].pio_mode = XFER_PIO_0;
1513
28ca5c57 1514 /* read IDENTIFY page and configure devices */
1da177e4 1515 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1516 dev = &ap->device[i];
28ca5c57 1517
ec573755
TH
1518 if (tries[i])
1519 dev->class = classes[i];
ffeae418 1520
14d2bac1 1521 if (!ata_dev_enabled(dev))
ffeae418 1522 continue;
ffeae418 1523
3373efd8 1524 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1525 if (rc)
1526 goto fail;
1527
3373efd8 1528 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1529 if (rc)
1530 goto fail;
1da177e4
LT
1531 }
1532
e82cbdb9 1533 /* configure transfer mode */
3adcebb2 1534 rc = ata_set_mode(ap, &dev);
51713d35
TH
1535 if (rc) {
1536 down_xfermask = 1;
1537 goto fail;
e82cbdb9 1538 }
1da177e4 1539
e82cbdb9
TH
1540 for (i = 0; i < ATA_MAX_DEVICES; i++)
1541 if (ata_dev_enabled(&ap->device[i]))
1542 return 0;
1da177e4 1543
e82cbdb9
TH
1544 /* no device present, disable port */
1545 ata_port_disable(ap);
1da177e4 1546 ap->ops->port_disable(ap);
96072e69 1547 return -ENODEV;
14d2bac1
TH
1548
1549 fail:
1550 switch (rc) {
1551 case -EINVAL:
1552 case -ENODEV:
1553 tries[dev->devno] = 0;
1554 break;
1555 case -EIO:
3c567b7d 1556 sata_down_spd_limit(ap);
14d2bac1
TH
1557 /* fall through */
1558 default:
1559 tries[dev->devno]--;
1560 if (down_xfermask &&
3373efd8 1561 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1562 tries[dev->devno] = 0;
1563 }
1564
ec573755 1565 if (!tries[dev->devno]) {
3373efd8
TH
1566 ata_down_xfermask_limit(dev, 1);
1567 ata_dev_disable(dev);
ec573755
TH
1568 }
1569
14d2bac1 1570 goto retry;
1da177e4
LT
1571}
1572
1573/**
0cba632b
JG
1574 * ata_port_probe - Mark port as enabled
1575 * @ap: Port for which we indicate enablement
1da177e4 1576 *
0cba632b
JG
1577 * Modify @ap data structure such that the system
1578 * thinks that the entire port is enabled.
1579 *
1580 * LOCKING: host_set lock, or some other form of
1581 * serialization.
1da177e4
LT
1582 */
1583
1584void ata_port_probe(struct ata_port *ap)
1585{
198e0fed 1586 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1587}
1588
3be680b7
TH
1589/**
1590 * sata_print_link_status - Print SATA link status
1591 * @ap: SATA port to printk link status about
1592 *
1593 * This function prints link speed and status of a SATA link.
1594 *
1595 * LOCKING:
1596 * None.
1597 */
1598static void sata_print_link_status(struct ata_port *ap)
1599{
6d5f9732 1600 u32 sstatus, scontrol, tmp;
3be680b7 1601
81952c54 1602 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1603 return;
81952c54 1604 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1605
81952c54 1606 if (ata_port_online(ap)) {
3be680b7 1607 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1608 ata_port_printk(ap, KERN_INFO,
1609 "SATA link up %s (SStatus %X SControl %X)\n",
1610 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1611 } else {
f15a1daf
TH
1612 ata_port_printk(ap, KERN_INFO,
1613 "SATA link down (SStatus %X SControl %X)\n",
1614 sstatus, scontrol);
3be680b7
TH
1615 }
1616}
1617
1da177e4 1618/**
780a87f7
JG
1619 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1620 * @ap: SATA port associated with target SATA PHY.
1da177e4 1621 *
780a87f7
JG
1622 * This function issues commands to standard SATA Sxxx
1623 * PHY registers, to wake up the phy (and device), and
1624 * clear any reset condition.
1da177e4
LT
1625 *
1626 * LOCKING:
0cba632b 1627 * PCI/etc. bus probe sem.
1da177e4
LT
1628 *
1629 */
1630void __sata_phy_reset(struct ata_port *ap)
1631{
1632 u32 sstatus;
1633 unsigned long timeout = jiffies + (HZ * 5);
1634
1635 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1636 /* issue phy wake/reset */
81952c54 1637 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1638 /* Couldn't find anything in SATA I/II specs, but
1639 * AHCI-1.1 10.4.2 says at least 1 ms. */
1640 mdelay(1);
1da177e4 1641 }
81952c54
TH
1642 /* phy wake/clear reset */
1643 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1644
1645 /* wait for phy to become ready, if necessary */
1646 do {
1647 msleep(200);
81952c54 1648 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1649 if ((sstatus & 0xf) != 1)
1650 break;
1651 } while (time_before(jiffies, timeout));
1652
3be680b7
TH
1653 /* print link status */
1654 sata_print_link_status(ap);
656563e3 1655
3be680b7 1656 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1657 if (!ata_port_offline(ap))
1da177e4 1658 ata_port_probe(ap);
3be680b7 1659 else
1da177e4 1660 ata_port_disable(ap);
1da177e4 1661
198e0fed 1662 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1663 return;
1664
1665 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1666 ata_port_disable(ap);
1667 return;
1668 }
1669
1670 ap->cbl = ATA_CBL_SATA;
1671}
1672
1673/**
780a87f7
JG
1674 * sata_phy_reset - Reset SATA bus.
1675 * @ap: SATA port associated with target SATA PHY.
1da177e4 1676 *
780a87f7
JG
1677 * This function resets the SATA bus, and then probes
1678 * the bus for devices.
1da177e4
LT
1679 *
1680 * LOCKING:
0cba632b 1681 * PCI/etc. bus probe sem.
1da177e4
LT
1682 *
1683 */
1684void sata_phy_reset(struct ata_port *ap)
1685{
1686 __sata_phy_reset(ap);
198e0fed 1687 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1688 return;
1689 ata_bus_reset(ap);
1690}
1691
ebdfca6e
AC
1692/**
1693 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1694 * @adev: device
1695 *
1696 * Obtain the other device on the same cable, or if none is
1697 * present NULL is returned
1698 */
2e9edbf8 1699
3373efd8 1700struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1701{
3373efd8 1702 struct ata_port *ap = adev->ap;
ebdfca6e 1703 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1704 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1705 return NULL;
1706 return pair;
1707}
1708
1da177e4 1709/**
780a87f7
JG
1710 * ata_port_disable - Disable port.
1711 * @ap: Port to be disabled.
1da177e4 1712 *
780a87f7
JG
1713 * Modify @ap data structure such that the system
1714 * thinks that the entire port is disabled, and should
1715 * never attempt to probe or communicate with devices
1716 * on this port.
1717 *
1718 * LOCKING: host_set lock, or some other form of
1719 * serialization.
1da177e4
LT
1720 */
1721
1722void ata_port_disable(struct ata_port *ap)
1723{
1724 ap->device[0].class = ATA_DEV_NONE;
1725 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1726 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1727}
1728
1c3fae4d 1729/**
3c567b7d 1730 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1731 * @ap: Port to adjust SATA spd limit for
1732 *
1733 * Adjust SATA spd limit of @ap downward. Note that this
1734 * function only adjusts the limit. The change must be applied
3c567b7d 1735 * using sata_set_spd().
1c3fae4d
TH
1736 *
1737 * LOCKING:
1738 * Inherited from caller.
1739 *
1740 * RETURNS:
1741 * 0 on success, negative errno on failure
1742 */
3c567b7d 1743int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1744{
81952c54
TH
1745 u32 sstatus, spd, mask;
1746 int rc, highbit;
1c3fae4d 1747
81952c54
TH
1748 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1749 if (rc)
1750 return rc;
1c3fae4d
TH
1751
1752 mask = ap->sata_spd_limit;
1753 if (mask <= 1)
1754 return -EINVAL;
1755 highbit = fls(mask) - 1;
1756 mask &= ~(1 << highbit);
1757
81952c54 1758 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1759 if (spd <= 1)
1760 return -EINVAL;
1761 spd--;
1762 mask &= (1 << spd) - 1;
1763 if (!mask)
1764 return -EINVAL;
1765
1766 ap->sata_spd_limit = mask;
1767
f15a1daf
TH
1768 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1769 sata_spd_string(fls(mask)));
1c3fae4d
TH
1770
1771 return 0;
1772}
1773
3c567b7d 1774static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1775{
1776 u32 spd, limit;
1777
1778 if (ap->sata_spd_limit == UINT_MAX)
1779 limit = 0;
1780 else
1781 limit = fls(ap->sata_spd_limit);
1782
1783 spd = (*scontrol >> 4) & 0xf;
1784 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1785
1786 return spd != limit;
1787}
1788
1789/**
3c567b7d 1790 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1791 * @ap: Port in question
1792 *
1793 * Test whether the spd limit in SControl matches
1794 * @ap->sata_spd_limit. This function is used to determine
1795 * whether hardreset is necessary to apply SATA spd
1796 * configuration.
1797 *
1798 * LOCKING:
1799 * Inherited from caller.
1800 *
1801 * RETURNS:
1802 * 1 if SATA spd configuration is needed, 0 otherwise.
1803 */
3c567b7d 1804int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1805{
1806 u32 scontrol;
1807
81952c54 1808 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1809 return 0;
1810
3c567b7d 1811 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1812}
1813
1814/**
3c567b7d 1815 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1816 * @ap: Port to set SATA spd for
1817 *
1818 * Set SATA spd of @ap according to sata_spd_limit.
1819 *
1820 * LOCKING:
1821 * Inherited from caller.
1822 *
1823 * RETURNS:
1824 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1825 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1826 */
3c567b7d 1827int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1828{
1829 u32 scontrol;
81952c54 1830 int rc;
1c3fae4d 1831
81952c54
TH
1832 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1833 return rc;
1c3fae4d 1834
3c567b7d 1835 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1836 return 0;
1837
81952c54
TH
1838 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1839 return rc;
1840
1c3fae4d
TH
1841 return 1;
1842}
1843
452503f9
AC
1844/*
1845 * This mode timing computation functionality is ported over from
1846 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1847 */
1848/*
1849 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1850 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1851 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1852 * is currently supported only by Maxtor drives.
452503f9
AC
1853 */
1854
1855static const struct ata_timing ata_timing[] = {
1856
1857 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1858 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1859 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1860 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1861
1862 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1863 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1864 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1865
1866/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1867
452503f9
AC
1868 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1869 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1870 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1871
452503f9
AC
1872 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1873 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1874 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1875
1876/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1877 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1878 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1879
1880 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1881 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1882 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1883
1884/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1885
1886 { 0xFF }
1887};
1888
1889#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1890#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1891
1892static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1893{
1894 q->setup = EZ(t->setup * 1000, T);
1895 q->act8b = EZ(t->act8b * 1000, T);
1896 q->rec8b = EZ(t->rec8b * 1000, T);
1897 q->cyc8b = EZ(t->cyc8b * 1000, T);
1898 q->active = EZ(t->active * 1000, T);
1899 q->recover = EZ(t->recover * 1000, T);
1900 q->cycle = EZ(t->cycle * 1000, T);
1901 q->udma = EZ(t->udma * 1000, UT);
1902}
1903
1904void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1905 struct ata_timing *m, unsigned int what)
1906{
1907 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1908 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1909 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1910 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1911 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1912 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1913 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1914 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1915}
1916
1917static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1918{
1919 const struct ata_timing *t;
1920
1921 for (t = ata_timing; t->mode != speed; t++)
91190758 1922 if (t->mode == 0xFF)
452503f9 1923 return NULL;
2e9edbf8 1924 return t;
452503f9
AC
1925}
1926
1927int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1928 struct ata_timing *t, int T, int UT)
1929{
1930 const struct ata_timing *s;
1931 struct ata_timing p;
1932
1933 /*
2e9edbf8 1934 * Find the mode.
75b1f2f8 1935 */
452503f9
AC
1936
1937 if (!(s = ata_timing_find_mode(speed)))
1938 return -EINVAL;
1939
75b1f2f8
AL
1940 memcpy(t, s, sizeof(*s));
1941
452503f9
AC
1942 /*
1943 * If the drive is an EIDE drive, it can tell us it needs extended
1944 * PIO/MW_DMA cycle timing.
1945 */
1946
1947 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1948 memset(&p, 0, sizeof(p));
1949 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1950 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1951 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1952 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1953 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1954 }
1955 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1956 }
1957
1958 /*
1959 * Convert the timing to bus clock counts.
1960 */
1961
75b1f2f8 1962 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1963
1964 /*
c893a3ae
RD
1965 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1966 * S.M.A.R.T * and some other commands. We have to ensure that the
1967 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1968 */
1969
1970 if (speed > XFER_PIO_4) {
1971 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1972 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1973 }
1974
1975 /*
c893a3ae 1976 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1977 */
1978
1979 if (t->act8b + t->rec8b < t->cyc8b) {
1980 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1981 t->rec8b = t->cyc8b - t->act8b;
1982 }
1983
1984 if (t->active + t->recover < t->cycle) {
1985 t->active += (t->cycle - (t->active + t->recover)) / 2;
1986 t->recover = t->cycle - t->active;
1987 }
1988
1989 return 0;
1990}
1991
cf176e1a
TH
1992/**
1993 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
1994 * @dev: Device to adjust xfer masks
1995 * @force_pio0: Force PIO0
1996 *
1997 * Adjust xfer masks of @dev downward. Note that this function
1998 * does not apply the change. Invoking ata_set_mode() afterwards
1999 * will apply the limit.
2000 *
2001 * LOCKING:
2002 * Inherited from caller.
2003 *
2004 * RETURNS:
2005 * 0 on success, negative errno on failure
2006 */
3373efd8 2007int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2008{
2009 unsigned long xfer_mask;
2010 int highbit;
2011
2012 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2013 dev->udma_mask);
2014
2015 if (!xfer_mask)
2016 goto fail;
2017 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2018 if (xfer_mask & ATA_MASK_UDMA)
2019 xfer_mask &= ~ATA_MASK_MWDMA;
2020
2021 highbit = fls(xfer_mask) - 1;
2022 xfer_mask &= ~(1 << highbit);
2023 if (force_pio0)
2024 xfer_mask &= 1 << ATA_SHIFT_PIO;
2025 if (!xfer_mask)
2026 goto fail;
2027
2028 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2029 &dev->udma_mask);
2030
f15a1daf
TH
2031 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2032 ata_mode_string(xfer_mask));
cf176e1a
TH
2033
2034 return 0;
2035
2036 fail:
2037 return -EINVAL;
2038}
2039
3373efd8 2040static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2041{
83206a29
TH
2042 unsigned int err_mask;
2043 int rc;
1da177e4 2044
e8384607 2045 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2046 if (dev->xfer_shift == ATA_SHIFT_PIO)
2047 dev->flags |= ATA_DFLAG_PIO;
2048
3373efd8 2049 err_mask = ata_dev_set_xfermode(dev);
83206a29 2050 if (err_mask) {
f15a1daf
TH
2051 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2052 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2053 return -EIO;
2054 }
1da177e4 2055
3373efd8 2056 rc = ata_dev_revalidate(dev, 0);
5eb45c02 2057 if (rc)
83206a29 2058 return rc;
48a8a14f 2059
23e71c3d
TH
2060 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2061 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2062
f15a1daf
TH
2063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2064 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2065 return 0;
1da177e4
LT
2066}
2067
1da177e4
LT
2068/**
2069 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2070 * @ap: port on which timings will be programmed
e82cbdb9 2071 * @r_failed_dev: out paramter for failed device
1da177e4 2072 *
e82cbdb9
TH
2073 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2074 * ata_set_mode() fails, pointer to the failing device is
2075 * returned in @r_failed_dev.
780a87f7 2076 *
1da177e4 2077 * LOCKING:
0cba632b 2078 * PCI/etc. bus probe sem.
e82cbdb9
TH
2079 *
2080 * RETURNS:
2081 * 0 on success, negative errno otherwise
1da177e4 2082 */
1ad8e7f9 2083int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2084{
e8e0619f 2085 struct ata_device *dev;
e82cbdb9 2086 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2087
3adcebb2
TH
2088 /* has private set_mode? */
2089 if (ap->ops->set_mode) {
2090 /* FIXME: make ->set_mode handle no device case and
2091 * return error code and failing device on failure.
2092 */
2093 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2094 if (ata_dev_enabled(&ap->device[i])) {
2095 ap->ops->set_mode(ap);
2096 break;
2097 }
2098 }
2099 return 0;
2100 }
2101
a6d5a51c
TH
2102 /* step 1: calculate xfer_mask */
2103 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2104 unsigned int pio_mask, dma_mask;
a6d5a51c 2105
e8e0619f
TH
2106 dev = &ap->device[i];
2107
e1211e3f 2108 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2109 continue;
2110
3373efd8 2111 ata_dev_xfermask(dev);
1da177e4 2112
acf356b1
TH
2113 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2114 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2115 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2116 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2117
4f65977d 2118 found = 1;
5444a6f4
AC
2119 if (dev->dma_mode)
2120 used_dma = 1;
a6d5a51c 2121 }
4f65977d 2122 if (!found)
e82cbdb9 2123 goto out;
a6d5a51c
TH
2124
2125 /* step 2: always set host PIO timings */
e8e0619f
TH
2126 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2127 dev = &ap->device[i];
2128 if (!ata_dev_enabled(dev))
2129 continue;
2130
2131 if (!dev->pio_mode) {
f15a1daf 2132 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2133 rc = -EINVAL;
e82cbdb9 2134 goto out;
e8e0619f
TH
2135 }
2136
2137 dev->xfer_mode = dev->pio_mode;
2138 dev->xfer_shift = ATA_SHIFT_PIO;
2139 if (ap->ops->set_piomode)
2140 ap->ops->set_piomode(ap, dev);
2141 }
1da177e4 2142
a6d5a51c 2143 /* step 3: set host DMA timings */
e8e0619f
TH
2144 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2145 dev = &ap->device[i];
2146
2147 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2148 continue;
2149
2150 dev->xfer_mode = dev->dma_mode;
2151 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2152 if (ap->ops->set_dmamode)
2153 ap->ops->set_dmamode(ap, dev);
2154 }
1da177e4
LT
2155
2156 /* step 4: update devices' xfer mode */
83206a29 2157 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2158 dev = &ap->device[i];
1da177e4 2159
e1211e3f 2160 if (!ata_dev_enabled(dev))
83206a29
TH
2161 continue;
2162
3373efd8 2163 rc = ata_dev_set_mode(dev);
5bbc53f4 2164 if (rc)
e82cbdb9 2165 goto out;
83206a29 2166 }
1da177e4 2167
e8e0619f
TH
2168 /* Record simplex status. If we selected DMA then the other
2169 * host channels are not permitted to do so.
5444a6f4 2170 */
5444a6f4
AC
2171 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2172 ap->host_set->simplex_claimed = 1;
2173
e8e0619f 2174 /* step5: chip specific finalisation */
1da177e4
LT
2175 if (ap->ops->post_set_mode)
2176 ap->ops->post_set_mode(ap);
2177
e82cbdb9
TH
2178 out:
2179 if (rc)
2180 *r_failed_dev = dev;
2181 return rc;
1da177e4
LT
2182}
2183
1fdffbce
JG
2184/**
2185 * ata_tf_to_host - issue ATA taskfile to host controller
2186 * @ap: port to which command is being issued
2187 * @tf: ATA taskfile register set
2188 *
2189 * Issues ATA taskfile register set to ATA host controller,
2190 * with proper synchronization with interrupt handler and
2191 * other threads.
2192 *
2193 * LOCKING:
2194 * spin_lock_irqsave(host_set lock)
2195 */
2196
2197static inline void ata_tf_to_host(struct ata_port *ap,
2198 const struct ata_taskfile *tf)
2199{
2200 ap->ops->tf_load(ap, tf);
2201 ap->ops->exec_command(ap, tf);
2202}
2203
1da177e4
LT
2204/**
2205 * ata_busy_sleep - sleep until BSY clears, or timeout
2206 * @ap: port containing status register to be polled
2207 * @tmout_pat: impatience timeout
2208 * @tmout: overall timeout
2209 *
780a87f7
JG
2210 * Sleep until ATA Status register bit BSY clears,
2211 * or a timeout occurs.
2212 *
2213 * LOCKING: None.
1da177e4
LT
2214 */
2215
6f8b9958
TH
2216unsigned int ata_busy_sleep (struct ata_port *ap,
2217 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2218{
2219 unsigned long timer_start, timeout;
2220 u8 status;
2221
2222 status = ata_busy_wait(ap, ATA_BUSY, 300);
2223 timer_start = jiffies;
2224 timeout = timer_start + tmout_pat;
2225 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2226 msleep(50);
2227 status = ata_busy_wait(ap, ATA_BUSY, 3);
2228 }
2229
2230 if (status & ATA_BUSY)
f15a1daf
TH
2231 ata_port_printk(ap, KERN_WARNING,
2232 "port is slow to respond, please be patient\n");
1da177e4
LT
2233
2234 timeout = timer_start + tmout;
2235 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2236 msleep(50);
2237 status = ata_chk_status(ap);
2238 }
2239
2240 if (status & ATA_BUSY) {
f15a1daf
TH
2241 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2242 "(%lu secs)\n", tmout / HZ);
1da177e4
LT
2243 return 1;
2244 }
2245
2246 return 0;
2247}
2248
2249static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2250{
2251 struct ata_ioports *ioaddr = &ap->ioaddr;
2252 unsigned int dev0 = devmask & (1 << 0);
2253 unsigned int dev1 = devmask & (1 << 1);
2254 unsigned long timeout;
2255
2256 /* if device 0 was found in ata_devchk, wait for its
2257 * BSY bit to clear
2258 */
2259 if (dev0)
2260 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2261
2262 /* if device 1 was found in ata_devchk, wait for
2263 * register access, then wait for BSY to clear
2264 */
2265 timeout = jiffies + ATA_TMOUT_BOOT;
2266 while (dev1) {
2267 u8 nsect, lbal;
2268
2269 ap->ops->dev_select(ap, 1);
2270 if (ap->flags & ATA_FLAG_MMIO) {
2271 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2272 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2273 } else {
2274 nsect = inb(ioaddr->nsect_addr);
2275 lbal = inb(ioaddr->lbal_addr);
2276 }
2277 if ((nsect == 1) && (lbal == 1))
2278 break;
2279 if (time_after(jiffies, timeout)) {
2280 dev1 = 0;
2281 break;
2282 }
2283 msleep(50); /* give drive a breather */
2284 }
2285 if (dev1)
2286 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2287
2288 /* is all this really necessary? */
2289 ap->ops->dev_select(ap, 0);
2290 if (dev1)
2291 ap->ops->dev_select(ap, 1);
2292 if (dev0)
2293 ap->ops->dev_select(ap, 0);
2294}
2295
1da177e4
LT
2296static unsigned int ata_bus_softreset(struct ata_port *ap,
2297 unsigned int devmask)
2298{
2299 struct ata_ioports *ioaddr = &ap->ioaddr;
2300
2301 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2302
2303 /* software reset. causes dev0 to be selected */
2304 if (ap->flags & ATA_FLAG_MMIO) {
2305 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2306 udelay(20); /* FIXME: flush */
2307 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2308 udelay(20); /* FIXME: flush */
2309 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2310 } else {
2311 outb(ap->ctl, ioaddr->ctl_addr);
2312 udelay(10);
2313 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2314 udelay(10);
2315 outb(ap->ctl, ioaddr->ctl_addr);
2316 }
2317
2318 /* spec mandates ">= 2ms" before checking status.
2319 * We wait 150ms, because that was the magic delay used for
2320 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2321 * between when the ATA command register is written, and then
2322 * status is checked. Because waiting for "a while" before
2323 * checking status is fine, post SRST, we perform this magic
2324 * delay here as well.
09c7ad79
AC
2325 *
2326 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2327 */
2328 msleep(150);
2329
2e9edbf8 2330 /* Before we perform post reset processing we want to see if
298a41ca
TH
2331 * the bus shows 0xFF because the odd clown forgets the D7
2332 * pulldown resistor.
2333 */
987d2f05 2334 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2335 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2336 return AC_ERR_OTHER;
987d2f05 2337 }
09c7ad79 2338
1da177e4
LT
2339 ata_bus_post_reset(ap, devmask);
2340
2341 return 0;
2342}
2343
2344/**
2345 * ata_bus_reset - reset host port and associated ATA channel
2346 * @ap: port to reset
2347 *
2348 * This is typically the first time we actually start issuing
2349 * commands to the ATA channel. We wait for BSY to clear, then
2350 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2351 * result. Determine what devices, if any, are on the channel
2352 * by looking at the device 0/1 error register. Look at the signature
2353 * stored in each device's taskfile registers, to determine if
2354 * the device is ATA or ATAPI.
2355 *
2356 * LOCKING:
0cba632b
JG
2357 * PCI/etc. bus probe sem.
2358 * Obtains host_set lock.
1da177e4
LT
2359 *
2360 * SIDE EFFECTS:
198e0fed 2361 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2362 */
2363
2364void ata_bus_reset(struct ata_port *ap)
2365{
2366 struct ata_ioports *ioaddr = &ap->ioaddr;
2367 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2368 u8 err;
aec5c3c1 2369 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2370
2371 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2372
2373 /* determine if device 0/1 are present */
2374 if (ap->flags & ATA_FLAG_SATA_RESET)
2375 dev0 = 1;
2376 else {
2377 dev0 = ata_devchk(ap, 0);
2378 if (slave_possible)
2379 dev1 = ata_devchk(ap, 1);
2380 }
2381
2382 if (dev0)
2383 devmask |= (1 << 0);
2384 if (dev1)
2385 devmask |= (1 << 1);
2386
2387 /* select device 0 again */
2388 ap->ops->dev_select(ap, 0);
2389
2390 /* issue bus reset */
2391 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2392 if (ata_bus_softreset(ap, devmask))
2393 goto err_out;
1da177e4
LT
2394
2395 /*
2396 * determine by signature whether we have ATA or ATAPI devices
2397 */
b4dc7623 2398 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2399 if ((slave_possible) && (err != 0x81))
b4dc7623 2400 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2401
2402 /* re-enable interrupts */
2403 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2404 ata_irq_on(ap);
2405
2406 /* is double-select really necessary? */
2407 if (ap->device[1].class != ATA_DEV_NONE)
2408 ap->ops->dev_select(ap, 1);
2409 if (ap->device[0].class != ATA_DEV_NONE)
2410 ap->ops->dev_select(ap, 0);
2411
2412 /* if no devices were detected, disable this port */
2413 if ((ap->device[0].class == ATA_DEV_NONE) &&
2414 (ap->device[1].class == ATA_DEV_NONE))
2415 goto err_out;
2416
2417 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2418 /* set up device control for ATA_FLAG_SATA_RESET */
2419 if (ap->flags & ATA_FLAG_MMIO)
2420 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2421 else
2422 outb(ap->ctl, ioaddr->ctl_addr);
2423 }
2424
2425 DPRINTK("EXIT\n");
2426 return;
2427
2428err_out:
f15a1daf 2429 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2430 ap->ops->port_disable(ap);
2431
2432 DPRINTK("EXIT\n");
2433}
2434
d7bb4cc7
TH
2435/**
2436 * sata_phy_debounce - debounce SATA phy status
2437 * @ap: ATA port to debounce SATA phy status for
2438 * @params: timing parameters { interval, duratinon, timeout } in msec
2439 *
2440 * Make sure SStatus of @ap reaches stable state, determined by
2441 * holding the same value where DET is not 1 for @duration polled
2442 * every @interval, before @timeout. Timeout constraints the
2443 * beginning of the stable state. Because, after hot unplugging,
2444 * DET gets stuck at 1 on some controllers, this functions waits
2445 * until timeout then returns 0 if DET is stable at 1.
2446 *
2447 * LOCKING:
2448 * Kernel thread context (may sleep)
2449 *
2450 * RETURNS:
2451 * 0 on success, -errno on failure.
2452 */
2453int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2454{
d7bb4cc7
TH
2455 unsigned long interval_msec = params[0];
2456 unsigned long duration = params[1] * HZ / 1000;
2457 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2458 unsigned long last_jiffies;
2459 u32 last, cur;
2460 int rc;
2461
2462 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2463 return rc;
2464 cur &= 0xf;
2465
2466 last = cur;
2467 last_jiffies = jiffies;
2468
2469 while (1) {
2470 msleep(interval_msec);
2471 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2472 return rc;
2473 cur &= 0xf;
2474
2475 /* DET stable? */
2476 if (cur == last) {
2477 if (cur == 1 && time_before(jiffies, timeout))
2478 continue;
2479 if (time_after(jiffies, last_jiffies + duration))
2480 return 0;
2481 continue;
2482 }
2483
2484 /* unstable, start over */
2485 last = cur;
2486 last_jiffies = jiffies;
2487
2488 /* check timeout */
2489 if (time_after(jiffies, timeout))
2490 return -EBUSY;
2491 }
2492}
2493
2494/**
2495 * sata_phy_resume - resume SATA phy
2496 * @ap: ATA port to resume SATA phy for
2497 * @params: timing parameters { interval, duratinon, timeout } in msec
2498 *
2499 * Resume SATA phy of @ap and debounce it.
2500 *
2501 * LOCKING:
2502 * Kernel thread context (may sleep)
2503 *
2504 * RETURNS:
2505 * 0 on success, -errno on failure.
2506 */
2507int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2508{
2509 u32 scontrol;
81952c54
TH
2510 int rc;
2511
2512 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2513 return rc;
7a7921e8 2514
852ee16a 2515 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2516
2517 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2518 return rc;
7a7921e8 2519
d7bb4cc7
TH
2520 /* Some PHYs react badly if SStatus is pounded immediately
2521 * after resuming. Delay 200ms before debouncing.
2522 */
2523 msleep(200);
7a7921e8 2524
d7bb4cc7 2525 return sata_phy_debounce(ap, params);
7a7921e8
TH
2526}
2527
f5914a46
TH
2528static void ata_wait_spinup(struct ata_port *ap)
2529{
2530 struct ata_eh_context *ehc = &ap->eh_context;
2531 unsigned long end, secs;
2532 int rc;
2533
2534 /* first, debounce phy if SATA */
2535 if (ap->cbl == ATA_CBL_SATA) {
2536 rc = sata_phy_debounce(ap, sata_deb_timing_eh);
2537
2538 /* if debounced successfully and offline, no need to wait */
2539 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2540 return;
2541 }
2542
2543 /* okay, let's give the drive time to spin up */
2544 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2545 secs = ((end - jiffies) + HZ - 1) / HZ;
2546
2547 if (time_after(jiffies, end))
2548 return;
2549
2550 if (secs > 5)
2551 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2552 "(%lu secs)\n", secs);
2553
2554 schedule_timeout_uninterruptible(end - jiffies);
2555}
2556
2557/**
2558 * ata_std_prereset - prepare for reset
2559 * @ap: ATA port to be reset
2560 *
2561 * @ap is about to be reset. Initialize it.
2562 *
2563 * LOCKING:
2564 * Kernel thread context (may sleep)
2565 *
2566 * RETURNS:
2567 * 0 on success, -errno otherwise.
2568 */
2569int ata_std_prereset(struct ata_port *ap)
2570{
2571 struct ata_eh_context *ehc = &ap->eh_context;
2572 const unsigned long *timing;
2573 int rc;
2574
2575 /* hotplug? */
2576 if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
2577 if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
2578 ehc->i.action |= ATA_EH_HARDRESET;
2579 if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
2580 ata_wait_spinup(ap);
2581 }
2582
2583 /* if we're about to do hardreset, nothing more to do */
2584 if (ehc->i.action & ATA_EH_HARDRESET)
2585 return 0;
2586
2587 /* if SATA, resume phy */
2588 if (ap->cbl == ATA_CBL_SATA) {
2589 if (ap->flags & ATA_FLAG_LOADING)
2590 timing = sata_deb_timing_boot;
2591 else
2592 timing = sata_deb_timing_eh;
2593
2594 rc = sata_phy_resume(ap, timing);
2595 if (rc && rc != -EOPNOTSUPP) {
2596 /* phy resume failed */
2597 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2598 "link for reset (errno=%d)\n", rc);
2599 return rc;
2600 }
2601 }
2602
2603 /* Wait for !BSY if the controller can wait for the first D2H
2604 * Reg FIS and we don't know that no device is attached.
2605 */
2606 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2607 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2608
2609 return 0;
2610}
2611
8a19ac89
TH
2612/**
2613 * ata_std_probeinit - initialize probing
2614 * @ap: port to be probed
2615 *
2616 * @ap is about to be probed. Initialize it. This function is
2617 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2618 *
2619 * NOTE!!! Do not use this function as probeinit if a low level
2620 * driver implements only hardreset. Just pass NULL as probeinit
2621 * in that case. Using this function is probably okay but doing
2622 * so makes reset sequence different from the original
2623 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2624 */
17efc5f7 2625void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2626{
d7bb4cc7
TH
2627 static const unsigned long deb_timing[] = { 5, 100, 5000 };
2628
81952c54 2629 /* resume link */
d7bb4cc7 2630 sata_phy_resume(ap, deb_timing);
1c3fae4d 2631
81952c54
TH
2632 /* wait for device */
2633 if (ata_port_online(ap))
2634 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
8a19ac89
TH
2635}
2636
c2bd5804
TH
2637/**
2638 * ata_std_softreset - reset host port via ATA SRST
2639 * @ap: port to reset
c2bd5804
TH
2640 * @classes: resulting classes of attached devices
2641 *
2642 * Reset host port using ATA SRST. This function is to be used
2643 * as standard callback for ata_drive_*_reset() functions.
2644 *
2645 * LOCKING:
2646 * Kernel thread context (may sleep)
2647 *
2648 * RETURNS:
2649 * 0 on success, -errno otherwise.
2650 */
2bf2cb26 2651int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2652{
2653 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2654 unsigned int devmask = 0, err_mask;
2655 u8 err;
2656
2657 DPRINTK("ENTER\n");
2658
81952c54 2659 if (ata_port_offline(ap)) {
3a39746a
TH
2660 classes[0] = ATA_DEV_NONE;
2661 goto out;
2662 }
2663
c2bd5804
TH
2664 /* determine if device 0/1 are present */
2665 if (ata_devchk(ap, 0))
2666 devmask |= (1 << 0);
2667 if (slave_possible && ata_devchk(ap, 1))
2668 devmask |= (1 << 1);
2669
c2bd5804
TH
2670 /* select device 0 again */
2671 ap->ops->dev_select(ap, 0);
2672
2673 /* issue bus reset */
2674 DPRINTK("about to softreset, devmask=%x\n", devmask);
2675 err_mask = ata_bus_softreset(ap, devmask);
2676 if (err_mask) {
f15a1daf
TH
2677 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2678 err_mask);
c2bd5804
TH
2679 return -EIO;
2680 }
2681
2682 /* determine by signature whether we have ATA or ATAPI devices */
2683 classes[0] = ata_dev_try_classify(ap, 0, &err);
2684 if (slave_possible && err != 0x81)
2685 classes[1] = ata_dev_try_classify(ap, 1, &err);
2686
3a39746a 2687 out:
c2bd5804
TH
2688 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2689 return 0;
2690}
2691
2692/**
2693 * sata_std_hardreset - reset host port via SATA phy reset
2694 * @ap: port to reset
c2bd5804
TH
2695 * @class: resulting class of attached device
2696 *
2697 * SATA phy-reset host port using DET bits of SControl register.
2698 * This function is to be used as standard callback for
2699 * ata_drive_*_reset().
2700 *
2701 * LOCKING:
2702 * Kernel thread context (may sleep)
2703 *
2704 * RETURNS:
2705 * 0 on success, -errno otherwise.
2706 */
2bf2cb26 2707int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2708{
852ee16a 2709 u32 scontrol;
81952c54 2710 int rc;
852ee16a 2711
c2bd5804
TH
2712 DPRINTK("ENTER\n");
2713
3c567b7d 2714 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2715 /* SATA spec says nothing about how to reconfigure
2716 * spd. To be on the safe side, turn off phy during
2717 * reconfiguration. This works for at least ICH7 AHCI
2718 * and Sil3124.
2719 */
81952c54
TH
2720 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2721 return rc;
2722
1c3fae4d 2723 scontrol = (scontrol & 0x0f0) | 0x302;
81952c54
TH
2724
2725 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2726 return rc;
1c3fae4d 2727
3c567b7d 2728 sata_set_spd(ap);
1c3fae4d
TH
2729 }
2730
2731 /* issue phy wake/reset */
81952c54
TH
2732 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2733 return rc;
2734
852ee16a 2735 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2736
2737 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2738 return rc;
c2bd5804 2739
1c3fae4d 2740 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2741 * 10.4.2 says at least 1 ms.
2742 */
2743 msleep(1);
2744
1c3fae4d 2745 /* bring phy back */
d7bb4cc7 2746 sata_phy_resume(ap, sata_deb_timing_eh);
c2bd5804 2747
c2bd5804 2748 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2749 if (ata_port_offline(ap)) {
c2bd5804
TH
2750 *class = ATA_DEV_NONE;
2751 DPRINTK("EXIT, link offline\n");
2752 return 0;
2753 }
2754
2755 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2756 ata_port_printk(ap, KERN_ERR,
2757 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2758 return -EIO;
2759 }
2760
3a39746a
TH
2761 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2762
c2bd5804
TH
2763 *class = ata_dev_try_classify(ap, 0, NULL);
2764
2765 DPRINTK("EXIT, class=%u\n", *class);
2766 return 0;
2767}
2768
2769/**
2770 * ata_std_postreset - standard postreset callback
2771 * @ap: the target ata_port
2772 * @classes: classes of attached devices
2773 *
2774 * This function is invoked after a successful reset. Note that
2775 * the device might have been reset more than once using
2776 * different reset methods before postreset is invoked.
c2bd5804
TH
2777 *
2778 * This function is to be used as standard callback for
2779 * ata_drive_*_reset().
2780 *
2781 * LOCKING:
2782 * Kernel thread context (may sleep)
2783 */
2784void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2785{
dc2b3515
TH
2786 u32 serror;
2787
c2bd5804
TH
2788 DPRINTK("ENTER\n");
2789
c2bd5804 2790 /* print link status */
81952c54 2791 sata_print_link_status(ap);
c2bd5804 2792
dc2b3515
TH
2793 /* clear SError */
2794 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2795 sata_scr_write(ap, SCR_ERROR, serror);
2796
3a39746a 2797 /* re-enable interrupts */
e3180499
TH
2798 if (!ap->ops->error_handler) {
2799 /* FIXME: hack. create a hook instead */
2800 if (ap->ioaddr.ctl_addr)
2801 ata_irq_on(ap);
2802 }
c2bd5804
TH
2803
2804 /* is double-select really necessary? */
2805 if (classes[0] != ATA_DEV_NONE)
2806 ap->ops->dev_select(ap, 1);
2807 if (classes[1] != ATA_DEV_NONE)
2808 ap->ops->dev_select(ap, 0);
2809
3a39746a
TH
2810 /* bail out if no device is present */
2811 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2812 DPRINTK("EXIT, no device\n");
2813 return;
2814 }
2815
2816 /* set up device control */
2817 if (ap->ioaddr.ctl_addr) {
2818 if (ap->flags & ATA_FLAG_MMIO)
2819 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2820 else
2821 outb(ap->ctl, ap->ioaddr.ctl_addr);
2822 }
c2bd5804
TH
2823
2824 DPRINTK("EXIT\n");
2825}
2826
2827/**
2828 * ata_std_probe_reset - standard probe reset method
2829 * @ap: prot to perform probe-reset
2830 * @classes: resulting classes of attached devices
2831 *
2832 * The stock off-the-shelf ->probe_reset method.
2833 *
2834 * LOCKING:
2835 * Kernel thread context (may sleep)
2836 *
2837 * RETURNS:
2838 * 0 on success, -errno otherwise.
2839 */
2840int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2841{
2842 ata_reset_fn_t hardreset;
2843
2844 hardreset = NULL;
81952c54 2845 if (sata_scr_valid(ap))
c2bd5804
TH
2846 hardreset = sata_std_hardreset;
2847
8a19ac89 2848 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2849 ata_std_softreset, hardreset,
c2bd5804
TH
2850 ata_std_postreset, classes);
2851}
2852
2bf2cb26 2853int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
96bd39ec 2854 unsigned int *classes)
a62c0fc5
TH
2855{
2856 int i, rc;
2857
2858 for (i = 0; i < ATA_MAX_DEVICES; i++)
2859 classes[i] = ATA_DEV_UNKNOWN;
2860
2bf2cb26 2861 rc = reset(ap, classes);
a62c0fc5
TH
2862 if (rc)
2863 return rc;
2864
2865 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2866 * is complete and convert all ATA_DEV_UNKNOWN to
2867 * ATA_DEV_NONE.
2868 */
2869 for (i = 0; i < ATA_MAX_DEVICES; i++)
2870 if (classes[i] != ATA_DEV_UNKNOWN)
2871 break;
2872
2873 if (i < ATA_MAX_DEVICES)
2874 for (i = 0; i < ATA_MAX_DEVICES; i++)
2875 if (classes[i] == ATA_DEV_UNKNOWN)
2876 classes[i] = ATA_DEV_NONE;
2877
9974e7cc 2878 return 0;
a62c0fc5
TH
2879}
2880
2881/**
2882 * ata_drive_probe_reset - Perform probe reset with given methods
2883 * @ap: port to reset
7944ea95 2884 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2885 * @softreset: softreset method (can be NULL)
2886 * @hardreset: hardreset method (can be NULL)
2887 * @postreset: postreset method (can be NULL)
2888 * @classes: resulting classes of attached devices
2889 *
2890 * Reset the specified port and classify attached devices using
2891 * given methods. This function prefers softreset but tries all
2892 * possible reset sequences to reset and classify devices. This
2893 * function is intended to be used for constructing ->probe_reset
2894 * callback by low level drivers.
2895 *
2896 * Reset methods should follow the following rules.
2897 *
2898 * - Return 0 on sucess, -errno on failure.
2899 * - If classification is supported, fill classes[] with
2900 * recognized class codes.
2901 * - If classification is not supported, leave classes[] alone.
a62c0fc5
TH
2902 *
2903 * LOCKING:
2904 * Kernel thread context (may sleep)
2905 *
2906 * RETURNS:
2907 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2908 * if classification fails, and any error code from reset
2909 * methods.
2910 */
7944ea95 2911int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2912 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2913 ata_postreset_fn_t postreset, unsigned int *classes)
2914{
2915 int rc = -EINVAL;
2916
e3180499
TH
2917 ata_eh_freeze_port(ap);
2918
7944ea95
TH
2919 if (probeinit)
2920 probeinit(ap);
2921
3c567b7d 2922 if (softreset && !sata_set_spd_needed(ap)) {
96bd39ec 2923 rc = ata_do_reset(ap, softreset, classes);
9974e7cc
TH
2924 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2925 goto done;
f15a1daf
TH
2926 ata_port_printk(ap, KERN_INFO, "softreset failed, "
2927 "will try hardreset in 5 secs\n");
edbabd86 2928 ssleep(5);
a62c0fc5
TH
2929 }
2930
2931 if (!hardreset)
9974e7cc 2932 goto done;
a62c0fc5 2933
90dac02c 2934 while (1) {
96bd39ec 2935 rc = ata_do_reset(ap, hardreset, classes);
90dac02c
TH
2936 if (rc == 0) {
2937 if (classes[0] != ATA_DEV_UNKNOWN)
2938 goto done;
2939 break;
2940 }
2941
3c567b7d 2942 if (sata_down_spd_limit(ap))
90dac02c 2943 goto done;
edbabd86 2944
f15a1daf
TH
2945 ata_port_printk(ap, KERN_INFO, "hardreset failed, "
2946 "will retry in 5 secs\n");
edbabd86 2947 ssleep(5);
90dac02c 2948 }
a62c0fc5 2949
edbabd86 2950 if (softreset) {
f15a1daf
TH
2951 ata_port_printk(ap, KERN_INFO,
2952 "hardreset succeeded without classification, "
2953 "will retry softreset in 5 secs\n");
edbabd86
TH
2954 ssleep(5);
2955
96bd39ec 2956 rc = ata_do_reset(ap, softreset, classes);
edbabd86 2957 }
a62c0fc5 2958
9974e7cc 2959 done:
96bd39ec
TH
2960 if (rc == 0) {
2961 if (postreset)
2962 postreset(ap, classes);
e3180499
TH
2963
2964 ata_eh_thaw_port(ap);
2965
96bd39ec
TH
2966 if (classes[0] == ATA_DEV_UNKNOWN)
2967 rc = -ENODEV;
2968 }
a62c0fc5
TH
2969 return rc;
2970}
2971
623a3128
TH
2972/**
2973 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2974 * @dev: device to compare against
2975 * @new_class: class of the new device
2976 * @new_id: IDENTIFY page of the new device
2977 *
2978 * Compare @new_class and @new_id against @dev and determine
2979 * whether @dev is the device indicated by @new_class and
2980 * @new_id.
2981 *
2982 * LOCKING:
2983 * None.
2984 *
2985 * RETURNS:
2986 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2987 */
3373efd8
TH
2988static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2989 const u16 *new_id)
623a3128
TH
2990{
2991 const u16 *old_id = dev->id;
2992 unsigned char model[2][41], serial[2][21];
2993 u64 new_n_sectors;
2994
2995 if (dev->class != new_class) {
f15a1daf
TH
2996 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2997 dev->class, new_class);
623a3128
TH
2998 return 0;
2999 }
3000
3001 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
3002 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
3003 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
3004 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
3005 new_n_sectors = ata_id_n_sectors(new_id);
3006
3007 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3008 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3009 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3010 return 0;
3011 }
3012
3013 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3014 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3015 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3016 return 0;
3017 }
3018
3019 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3020 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3021 "%llu != %llu\n",
3022 (unsigned long long)dev->n_sectors,
3023 (unsigned long long)new_n_sectors);
623a3128
TH
3024 return 0;
3025 }
3026
3027 return 1;
3028}
3029
3030/**
3031 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
3032 * @dev: device to revalidate
3033 * @post_reset: is this revalidation after reset?
3034 *
3035 * Re-read IDENTIFY page and make sure @dev is still attached to
3036 * the port.
3037 *
3038 * LOCKING:
3039 * Kernel thread context (may sleep)
3040 *
3041 * RETURNS:
3042 * 0 on success, negative errno otherwise
3043 */
3373efd8 3044int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 3045{
5eb45c02 3046 unsigned int class = dev->class;
f15a1daf 3047 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3048 int rc;
3049
5eb45c02
TH
3050 if (!ata_dev_enabled(dev)) {
3051 rc = -ENODEV;
3052 goto fail;
3053 }
623a3128 3054
fe635c7e 3055 /* read ID data */
3373efd8 3056 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
3057 if (rc)
3058 goto fail;
3059
3060 /* is the device still there? */
3373efd8 3061 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3062 rc = -ENODEV;
3063 goto fail;
3064 }
3065
fe635c7e 3066 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3067
3068 /* configure device according to the new ID */
3373efd8 3069 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
3070 if (rc == 0)
3071 return 0;
623a3128
TH
3072
3073 fail:
f15a1daf 3074 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3075 return rc;
3076}
3077
98ac62de 3078static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
3079 "WDC AC11000H", NULL,
3080 "WDC AC22100H", NULL,
3081 "WDC AC32500H", NULL,
3082 "WDC AC33100H", NULL,
3083 "WDC AC31600H", NULL,
3084 "WDC AC32100H", "24.09P07",
3085 "WDC AC23200L", "21.10N21",
3086 "Compaq CRD-8241B", NULL,
3087 "CRD-8400B", NULL,
3088 "CRD-8480B", NULL,
3089 "CRD-8482B", NULL,
3090 "CRD-84", NULL,
3091 "SanDisk SDP3B", NULL,
3092 "SanDisk SDP3B-64", NULL,
3093 "SANYO CD-ROM CRD", NULL,
3094 "HITACHI CDR-8", NULL,
2e9edbf8 3095 "HITACHI CDR-8335", NULL,
f4b15fef 3096 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
3097 "Toshiba CD-ROM XM-6202B", NULL,
3098 "TOSHIBA CD-ROM XM-1702BC", NULL,
3099 "CD-532E-A", NULL,
3100 "E-IDE CD-ROM CR-840", NULL,
3101 "CD-ROM Drive/F5A", NULL,
3102 "WPI CDD-820", NULL,
f4b15fef 3103 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 3104 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
3105 "SanDisk SDP3B-64", NULL,
3106 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
3107 "_NEC DV5800A", NULL,
3108 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 3109};
2e9edbf8 3110
f4b15fef
AC
3111static int ata_strim(char *s, size_t len)
3112{
3113 len = strnlen(s, len);
3114
3115 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3116 while ((len > 0) && (s[len - 1] == ' ')) {
3117 len--;
3118 s[len] = 0;
3119 }
3120 return len;
3121}
1da177e4 3122
057ace5e 3123static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 3124{
f4b15fef
AC
3125 unsigned char model_num[40];
3126 unsigned char model_rev[16];
3127 unsigned int nlen, rlen;
1da177e4
LT
3128 int i;
3129
f4b15fef
AC
3130 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3131 sizeof(model_num));
3132 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3133 sizeof(model_rev));
3134 nlen = ata_strim(model_num, sizeof(model_num));
3135 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 3136
f4b15fef
AC
3137 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3138 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3139 if (ata_dma_blacklist[i+1] == NULL)
3140 return 1;
3141 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3142 return 1;
3143 }
3144 }
1da177e4
LT
3145 return 0;
3146}
3147
a6d5a51c
TH
3148/**
3149 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3150 * @dev: Device to compute xfermask for
3151 *
acf356b1
TH
3152 * Compute supported xfermask of @dev and store it in
3153 * dev->*_mask. This function is responsible for applying all
3154 * known limits including host controller limits, device
3155 * blacklist, etc...
a6d5a51c 3156 *
600511e8
TH
3157 * FIXME: The current implementation limits all transfer modes to
3158 * the fastest of the lowested device on the port. This is not
05c8e0ac 3159 * required on most controllers.
600511e8 3160 *
a6d5a51c
TH
3161 * LOCKING:
3162 * None.
a6d5a51c 3163 */
3373efd8 3164static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3165{
3373efd8 3166 struct ata_port *ap = dev->ap;
5444a6f4 3167 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
3168 unsigned long xfer_mask;
3169 int i;
1da177e4 3170
565083e1
TH
3171 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3172 ap->mwdma_mask, ap->udma_mask);
3173
3174 /* Apply cable rule here. Don't apply it early because when
3175 * we handle hot plug the cable type can itself change.
3176 */
3177 if (ap->cbl == ATA_CBL_PATA40)
3178 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 3179
5444a6f4 3180 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
3181 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3182 struct ata_device *d = &ap->device[i];
565083e1
TH
3183
3184 if (ata_dev_absent(d))
3185 continue;
3186
3187 if (ata_dev_disabled(d)) {
3188 /* to avoid violating device selection timing */
3189 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3190 UINT_MAX, UINT_MAX);
a6d5a51c 3191 continue;
565083e1
TH
3192 }
3193
3194 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3195 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
3196 xfer_mask &= ata_id_xfermask(d->id);
3197 if (ata_dma_blacklisted(d))
3198 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
3199 }
3200
a6d5a51c 3201 if (ata_dma_blacklisted(dev))
f15a1daf
TH
3202 ata_dev_printk(dev, KERN_WARNING,
3203 "device is on DMA blacklist, disabling DMA\n");
a6d5a51c 3204
5444a6f4
AC
3205 if (hs->flags & ATA_HOST_SIMPLEX) {
3206 if (hs->simplex_claimed)
3207 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3208 }
565083e1 3209
5444a6f4
AC
3210 if (ap->ops->mode_filter)
3211 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3212
565083e1
TH
3213 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3214 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3215}
3216
1da177e4
LT
3217/**
3218 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3219 * @dev: Device to which command will be sent
3220 *
780a87f7
JG
3221 * Issue SET FEATURES - XFER MODE command to device @dev
3222 * on port @ap.
3223 *
1da177e4 3224 * LOCKING:
0cba632b 3225 * PCI/etc. bus probe sem.
83206a29
TH
3226 *
3227 * RETURNS:
3228 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3229 */
3230
3373efd8 3231static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3232{
a0123703 3233 struct ata_taskfile tf;
83206a29 3234 unsigned int err_mask;
1da177e4
LT
3235
3236 /* set up set-features taskfile */
3237 DPRINTK("set features - xfer mode\n");
3238
3373efd8 3239 ata_tf_init(dev, &tf);
a0123703
TH
3240 tf.command = ATA_CMD_SET_FEATURES;
3241 tf.feature = SETFEATURES_XFER;
3242 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3243 tf.protocol = ATA_PROT_NODATA;
3244 tf.nsect = dev->xfer_mode;
1da177e4 3245
3373efd8 3246 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3247
83206a29
TH
3248 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3249 return err_mask;
1da177e4
LT
3250}
3251
8bf62ece
AL
3252/**
3253 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3254 * @dev: Device to which command will be sent
e2a7f77a
RD
3255 * @heads: Number of heads (taskfile parameter)
3256 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3257 *
3258 * LOCKING:
6aff8f1f
TH
3259 * Kernel thread context (may sleep)
3260 *
3261 * RETURNS:
3262 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3263 */
3373efd8
TH
3264static unsigned int ata_dev_init_params(struct ata_device *dev,
3265 u16 heads, u16 sectors)
8bf62ece 3266{
a0123703 3267 struct ata_taskfile tf;
6aff8f1f 3268 unsigned int err_mask;
8bf62ece
AL
3269
3270 /* Number of sectors per track 1-255. Number of heads 1-16 */
3271 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3272 return AC_ERR_INVALID;
8bf62ece
AL
3273
3274 /* set up init dev params taskfile */
3275 DPRINTK("init dev params \n");
3276
3373efd8 3277 ata_tf_init(dev, &tf);
a0123703
TH
3278 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3279 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3280 tf.protocol = ATA_PROT_NODATA;
3281 tf.nsect = sectors;
3282 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3283
3373efd8 3284 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3285
6aff8f1f
TH
3286 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3287 return err_mask;
8bf62ece
AL
3288}
3289
1da177e4 3290/**
0cba632b
JG
3291 * ata_sg_clean - Unmap DMA memory associated with command
3292 * @qc: Command containing DMA memory to be released
3293 *
3294 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3295 *
3296 * LOCKING:
0cba632b 3297 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3298 */
3299
3300static void ata_sg_clean(struct ata_queued_cmd *qc)
3301{
3302 struct ata_port *ap = qc->ap;
cedc9a47 3303 struct scatterlist *sg = qc->__sg;
1da177e4 3304 int dir = qc->dma_dir;
cedc9a47 3305 void *pad_buf = NULL;
1da177e4 3306
a4631474
TH
3307 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3308 WARN_ON(sg == NULL);
1da177e4
LT
3309
3310 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3311 WARN_ON(qc->n_elem > 1);
1da177e4 3312
2c13b7ce 3313 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3314
cedc9a47
JG
3315 /* if we padded the buffer out to 32-bit bound, and data
3316 * xfer direction is from-device, we must copy from the
3317 * pad buffer back into the supplied buffer
3318 */
3319 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3320 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3321
3322 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3323 if (qc->n_elem)
2f1f610b 3324 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3325 /* restore last sg */
3326 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3327 if (pad_buf) {
3328 struct scatterlist *psg = &qc->pad_sgent;
3329 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3330 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3331 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3332 }
3333 } else {
2e242fa9 3334 if (qc->n_elem)
2f1f610b 3335 dma_unmap_single(ap->dev,
e1410f2d
JG
3336 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3337 dir);
cedc9a47
JG
3338 /* restore sg */
3339 sg->length += qc->pad_len;
3340 if (pad_buf)
3341 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3342 pad_buf, qc->pad_len);
3343 }
1da177e4
LT
3344
3345 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3346 qc->__sg = NULL;
1da177e4
LT
3347}
3348
3349/**
3350 * ata_fill_sg - Fill PCI IDE PRD table
3351 * @qc: Metadata associated with taskfile to be transferred
3352 *
780a87f7
JG
3353 * Fill PCI IDE PRD (scatter-gather) table with segments
3354 * associated with the current disk command.
3355 *
1da177e4 3356 * LOCKING:
780a87f7 3357 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3358 *
3359 */
3360static void ata_fill_sg(struct ata_queued_cmd *qc)
3361{
1da177e4 3362 struct ata_port *ap = qc->ap;
cedc9a47
JG
3363 struct scatterlist *sg;
3364 unsigned int idx;
1da177e4 3365
a4631474 3366 WARN_ON(qc->__sg == NULL);
f131883e 3367 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3368
3369 idx = 0;
cedc9a47 3370 ata_for_each_sg(sg, qc) {
1da177e4
LT
3371 u32 addr, offset;
3372 u32 sg_len, len;
3373
3374 /* determine if physical DMA addr spans 64K boundary.
3375 * Note h/w doesn't support 64-bit, so we unconditionally
3376 * truncate dma_addr_t to u32.
3377 */
3378 addr = (u32) sg_dma_address(sg);
3379 sg_len = sg_dma_len(sg);
3380
3381 while (sg_len) {
3382 offset = addr & 0xffff;
3383 len = sg_len;
3384 if ((offset + sg_len) > 0x10000)
3385 len = 0x10000 - offset;
3386
3387 ap->prd[idx].addr = cpu_to_le32(addr);
3388 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3389 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3390
3391 idx++;
3392 sg_len -= len;
3393 addr += len;
3394 }
3395 }
3396
3397 if (idx)
3398 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3399}
3400/**
3401 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3402 * @qc: Metadata associated with taskfile to check
3403 *
780a87f7
JG
3404 * Allow low-level driver to filter ATA PACKET commands, returning
3405 * a status indicating whether or not it is OK to use DMA for the
3406 * supplied PACKET command.
3407 *
1da177e4 3408 * LOCKING:
0cba632b
JG
3409 * spin_lock_irqsave(host_set lock)
3410 *
1da177e4
LT
3411 * RETURNS: 0 when ATAPI DMA can be used
3412 * nonzero otherwise
3413 */
3414int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3415{
3416 struct ata_port *ap = qc->ap;
3417 int rc = 0; /* Assume ATAPI DMA is OK by default */
3418
3419 if (ap->ops->check_atapi_dma)
3420 rc = ap->ops->check_atapi_dma(qc);
3421
c2bbc551
AL
3422 /* We don't support polling DMA.
3423 * Use PIO if the LLDD handles only interrupts in
3424 * the HSM_ST_LAST state and the ATAPI device
3425 * generates CDB interrupts.
3426 */
3427 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3428 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3429 rc = 1;
3430
1da177e4
LT
3431 return rc;
3432}
3433/**
3434 * ata_qc_prep - Prepare taskfile for submission
3435 * @qc: Metadata associated with taskfile to be prepared
3436 *
780a87f7
JG
3437 * Prepare ATA taskfile for submission.
3438 *
1da177e4
LT
3439 * LOCKING:
3440 * spin_lock_irqsave(host_set lock)
3441 */
3442void ata_qc_prep(struct ata_queued_cmd *qc)
3443{
3444 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3445 return;
3446
3447 ata_fill_sg(qc);
3448}
3449
e46834cd
BK
3450void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3451
0cba632b
JG
3452/**
3453 * ata_sg_init_one - Associate command with memory buffer
3454 * @qc: Command to be associated
3455 * @buf: Memory buffer
3456 * @buflen: Length of memory buffer, in bytes.
3457 *
3458 * Initialize the data-related elements of queued_cmd @qc
3459 * to point to a single memory buffer, @buf of byte length @buflen.
3460 *
3461 * LOCKING:
3462 * spin_lock_irqsave(host_set lock)
3463 */
3464
1da177e4
LT
3465void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3466{
3467 struct scatterlist *sg;
3468
3469 qc->flags |= ATA_QCFLAG_SINGLE;
3470
3471 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3472 qc->__sg = &qc->sgent;
1da177e4 3473 qc->n_elem = 1;
cedc9a47 3474 qc->orig_n_elem = 1;
1da177e4
LT
3475 qc->buf_virt = buf;
3476
cedc9a47 3477 sg = qc->__sg;
f0612bbc 3478 sg_init_one(sg, buf, buflen);
1da177e4
LT
3479}
3480
0cba632b
JG
3481/**
3482 * ata_sg_init - Associate command with scatter-gather table.
3483 * @qc: Command to be associated
3484 * @sg: Scatter-gather table.
3485 * @n_elem: Number of elements in s/g table.
3486 *
3487 * Initialize the data-related elements of queued_cmd @qc
3488 * to point to a scatter-gather table @sg, containing @n_elem
3489 * elements.
3490 *
3491 * LOCKING:
3492 * spin_lock_irqsave(host_set lock)
3493 */
3494
1da177e4
LT
3495void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3496 unsigned int n_elem)
3497{
3498 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3499 qc->__sg = sg;
1da177e4 3500 qc->n_elem = n_elem;
cedc9a47 3501 qc->orig_n_elem = n_elem;
1da177e4
LT
3502}
3503
3504/**
0cba632b
JG
3505 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3506 * @qc: Command with memory buffer to be mapped.
3507 *
3508 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3509 *
3510 * LOCKING:
3511 * spin_lock_irqsave(host_set lock)
3512 *
3513 * RETURNS:
0cba632b 3514 * Zero on success, negative on error.
1da177e4
LT
3515 */
3516
3517static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3518{
3519 struct ata_port *ap = qc->ap;
3520 int dir = qc->dma_dir;
cedc9a47 3521 struct scatterlist *sg = qc->__sg;
1da177e4 3522 dma_addr_t dma_address;
2e242fa9 3523 int trim_sg = 0;
1da177e4 3524
cedc9a47
JG
3525 /* we must lengthen transfers to end on a 32-bit boundary */
3526 qc->pad_len = sg->length & 3;
3527 if (qc->pad_len) {
3528 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3529 struct scatterlist *psg = &qc->pad_sgent;
3530
a4631474 3531 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3532
3533 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3534
3535 if (qc->tf.flags & ATA_TFLAG_WRITE)
3536 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3537 qc->pad_len);
3538
3539 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3540 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3541 /* trim sg */
3542 sg->length -= qc->pad_len;
2e242fa9
TH
3543 if (sg->length == 0)
3544 trim_sg = 1;
cedc9a47
JG
3545
3546 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3547 sg->length, qc->pad_len);
3548 }
3549
2e242fa9
TH
3550 if (trim_sg) {
3551 qc->n_elem--;
e1410f2d
JG
3552 goto skip_map;
3553 }
3554
2f1f610b 3555 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3556 sg->length, dir);
537a95d9
TH
3557 if (dma_mapping_error(dma_address)) {
3558 /* restore sg */
3559 sg->length += qc->pad_len;
1da177e4 3560 return -1;
537a95d9 3561 }
1da177e4
LT
3562
3563 sg_dma_address(sg) = dma_address;
32529e01 3564 sg_dma_len(sg) = sg->length;
1da177e4 3565
2e242fa9 3566skip_map:
1da177e4
LT
3567 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3568 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3569
3570 return 0;
3571}
3572
3573/**
0cba632b
JG
3574 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3575 * @qc: Command with scatter-gather table to be mapped.
3576 *
3577 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3578 *
3579 * LOCKING:
3580 * spin_lock_irqsave(host_set lock)
3581 *
3582 * RETURNS:
0cba632b 3583 * Zero on success, negative on error.
1da177e4
LT
3584 *
3585 */
3586
3587static int ata_sg_setup(struct ata_queued_cmd *qc)
3588{
3589 struct ata_port *ap = qc->ap;
cedc9a47
JG
3590 struct scatterlist *sg = qc->__sg;
3591 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3592 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3593
3594 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3595 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3596
cedc9a47
JG
3597 /* we must lengthen transfers to end on a 32-bit boundary */
3598 qc->pad_len = lsg->length & 3;
3599 if (qc->pad_len) {
3600 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3601 struct scatterlist *psg = &qc->pad_sgent;
3602 unsigned int offset;
3603
a4631474 3604 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3605
3606 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3607
3608 /*
3609 * psg->page/offset are used to copy to-be-written
3610 * data in this function or read data in ata_sg_clean.
3611 */
3612 offset = lsg->offset + lsg->length - qc->pad_len;
3613 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3614 psg->offset = offset_in_page(offset);
3615
3616 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3617 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3618 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3619 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3620 }
3621
3622 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3623 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3624 /* trim last sg */
3625 lsg->length -= qc->pad_len;
e1410f2d
JG
3626 if (lsg->length == 0)
3627 trim_sg = 1;
cedc9a47
JG
3628
3629 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3630 qc->n_elem - 1, lsg->length, qc->pad_len);
3631 }
3632
e1410f2d
JG
3633 pre_n_elem = qc->n_elem;
3634 if (trim_sg && pre_n_elem)
3635 pre_n_elem--;
3636
3637 if (!pre_n_elem) {
3638 n_elem = 0;
3639 goto skip_map;
3640 }
3641
1da177e4 3642 dir = qc->dma_dir;
2f1f610b 3643 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3644 if (n_elem < 1) {
3645 /* restore last sg */
3646 lsg->length += qc->pad_len;
1da177e4 3647 return -1;
537a95d9 3648 }
1da177e4
LT
3649
3650 DPRINTK("%d sg elements mapped\n", n_elem);
3651
e1410f2d 3652skip_map:
1da177e4
LT
3653 qc->n_elem = n_elem;
3654
3655 return 0;
3656}
3657
0baab86b 3658/**
c893a3ae 3659 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3660 * @buf: Buffer to swap
3661 * @buf_words: Number of 16-bit words in buffer.
3662 *
3663 * Swap halves of 16-bit words if needed to convert from
3664 * little-endian byte order to native cpu byte order, or
3665 * vice-versa.
3666 *
3667 * LOCKING:
6f0ef4fa 3668 * Inherited from caller.
0baab86b 3669 */
1da177e4
LT
3670void swap_buf_le16(u16 *buf, unsigned int buf_words)
3671{
3672#ifdef __BIG_ENDIAN
3673 unsigned int i;
3674
3675 for (i = 0; i < buf_words; i++)
3676 buf[i] = le16_to_cpu(buf[i]);
3677#endif /* __BIG_ENDIAN */
3678}
3679
6ae4cfb5
AL
3680/**
3681 * ata_mmio_data_xfer - Transfer data by MMIO
a6b2c5d4 3682 * @dev: device for this I/O
6ae4cfb5
AL
3683 * @buf: data buffer
3684 * @buflen: buffer length
344babaa 3685 * @write_data: read/write
6ae4cfb5
AL
3686 *
3687 * Transfer data from/to the device data register by MMIO.
3688 *
3689 * LOCKING:
3690 * Inherited from caller.
6ae4cfb5
AL
3691 */
3692
a6b2c5d4
AC
3693void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3694 unsigned int buflen, int write_data)
1da177e4 3695{
a6b2c5d4 3696 struct ata_port *ap = adev->ap;
1da177e4
LT
3697 unsigned int i;
3698 unsigned int words = buflen >> 1;
3699 u16 *buf16 = (u16 *) buf;
3700 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3701
6ae4cfb5 3702 /* Transfer multiple of 2 bytes */
1da177e4
LT
3703 if (write_data) {
3704 for (i = 0; i < words; i++)
3705 writew(le16_to_cpu(buf16[i]), mmio);
3706 } else {
3707 for (i = 0; i < words; i++)
3708 buf16[i] = cpu_to_le16(readw(mmio));
3709 }
6ae4cfb5
AL
3710
3711 /* Transfer trailing 1 byte, if any. */
3712 if (unlikely(buflen & 0x01)) {
3713 u16 align_buf[1] = { 0 };
3714 unsigned char *trailing_buf = buf + buflen - 1;
3715
3716 if (write_data) {
3717 memcpy(align_buf, trailing_buf, 1);
3718 writew(le16_to_cpu(align_buf[0]), mmio);
3719 } else {
3720 align_buf[0] = cpu_to_le16(readw(mmio));
3721 memcpy(trailing_buf, align_buf, 1);
3722 }
3723 }
1da177e4
LT
3724}
3725
6ae4cfb5
AL
3726/**
3727 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3728 * @adev: device to target
6ae4cfb5
AL
3729 * @buf: data buffer
3730 * @buflen: buffer length
344babaa 3731 * @write_data: read/write
6ae4cfb5
AL
3732 *
3733 * Transfer data from/to the device data register by PIO.
3734 *
3735 * LOCKING:
3736 * Inherited from caller.
6ae4cfb5
AL
3737 */
3738
a6b2c5d4
AC
3739void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3740 unsigned int buflen, int write_data)
1da177e4 3741{
a6b2c5d4 3742 struct ata_port *ap = adev->ap;
6ae4cfb5 3743 unsigned int words = buflen >> 1;
1da177e4 3744
6ae4cfb5 3745 /* Transfer multiple of 2 bytes */
1da177e4 3746 if (write_data)
6ae4cfb5 3747 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3748 else
6ae4cfb5
AL
3749 insw(ap->ioaddr.data_addr, buf, words);
3750
3751 /* Transfer trailing 1 byte, if any. */
3752 if (unlikely(buflen & 0x01)) {
3753 u16 align_buf[1] = { 0 };
3754 unsigned char *trailing_buf = buf + buflen - 1;
3755
3756 if (write_data) {
3757 memcpy(align_buf, trailing_buf, 1);
3758 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3759 } else {
3760 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3761 memcpy(trailing_buf, align_buf, 1);
3762 }
3763 }
1da177e4
LT
3764}
3765
75e99585
AC
3766/**
3767 * ata_pio_data_xfer_noirq - Transfer data by PIO
3768 * @adev: device to target
3769 * @buf: data buffer
3770 * @buflen: buffer length
3771 * @write_data: read/write
3772 *
3773 * Transfer data from/to the device data register by PIO. Do the
3774 * transfer with interrupts disabled.
3775 *
3776 * LOCKING:
3777 * Inherited from caller.
3778 */
3779
3780void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3781 unsigned int buflen, int write_data)
3782{
3783 unsigned long flags;
3784 local_irq_save(flags);
3785 ata_pio_data_xfer(adev, buf, buflen, write_data);
3786 local_irq_restore(flags);
3787}
3788
3789
6ae4cfb5
AL
3790/**
3791 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3792 * @qc: Command on going
3793 *
3794 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3795 *
3796 * LOCKING:
3797 * Inherited from caller.
3798 */
3799
1da177e4
LT
3800static void ata_pio_sector(struct ata_queued_cmd *qc)
3801{
3802 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3803 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3804 struct ata_port *ap = qc->ap;
3805 struct page *page;
3806 unsigned int offset;
3807 unsigned char *buf;
3808
3809 if (qc->cursect == (qc->nsect - 1))
14be71f4 3810 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3811
3812 page = sg[qc->cursg].page;
3813 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3814
3815 /* get the current page and offset */
3816 page = nth_page(page, (offset >> PAGE_SHIFT));
3817 offset %= PAGE_SIZE;
3818
1da177e4
LT
3819 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3820
91b8b313
AL
3821 if (PageHighMem(page)) {
3822 unsigned long flags;
3823
a6b2c5d4 3824 /* FIXME: use a bounce buffer */
91b8b313
AL
3825 local_irq_save(flags);
3826 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3827
91b8b313 3828 /* do the actual data transfer */
a6b2c5d4 3829 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3830
91b8b313
AL
3831 kunmap_atomic(buf, KM_IRQ0);
3832 local_irq_restore(flags);
3833 } else {
3834 buf = page_address(page);
a6b2c5d4 3835 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3836 }
1da177e4
LT
3837
3838 qc->cursect++;
3839 qc->cursg_ofs++;
3840
32529e01 3841 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3842 qc->cursg++;
3843 qc->cursg_ofs = 0;
3844 }
1da177e4 3845}
1da177e4 3846
07f6f7d0
AL
3847/**
3848 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3849 * @qc: Command on going
3850 *
c81e29b4 3851 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3852 * ATA device for the DRQ request.
3853 *
3854 * LOCKING:
3855 * Inherited from caller.
3856 */
1da177e4 3857
07f6f7d0
AL
3858static void ata_pio_sectors(struct ata_queued_cmd *qc)
3859{
3860 if (is_multi_taskfile(&qc->tf)) {
3861 /* READ/WRITE MULTIPLE */
3862 unsigned int nsect;
3863
587005de 3864 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3865
07f6f7d0
AL
3866 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3867 while (nsect--)
3868 ata_pio_sector(qc);
3869 } else
3870 ata_pio_sector(qc);
3871}
3872
c71c1857
AL
3873/**
3874 * atapi_send_cdb - Write CDB bytes to hardware
3875 * @ap: Port to which ATAPI device is attached.
3876 * @qc: Taskfile currently active
3877 *
3878 * When device has indicated its readiness to accept
3879 * a CDB, this function is called. Send the CDB.
3880 *
3881 * LOCKING:
3882 * caller.
3883 */
3884
3885static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3886{
3887 /* send SCSI cdb */
3888 DPRINTK("send cdb\n");
db024d53 3889 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3890
a6b2c5d4 3891 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3892 ata_altstatus(ap); /* flush */
3893
3894 switch (qc->tf.protocol) {
3895 case ATA_PROT_ATAPI:
3896 ap->hsm_task_state = HSM_ST;
3897 break;
3898 case ATA_PROT_ATAPI_NODATA:
3899 ap->hsm_task_state = HSM_ST_LAST;
3900 break;
3901 case ATA_PROT_ATAPI_DMA:
3902 ap->hsm_task_state = HSM_ST_LAST;
3903 /* initiate bmdma */
3904 ap->ops->bmdma_start(qc);
3905 break;
3906 }
1da177e4
LT
3907}
3908
6ae4cfb5
AL
3909/**
3910 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3911 * @qc: Command on going
3912 * @bytes: number of bytes
3913 *
3914 * Transfer Transfer data from/to the ATAPI device.
3915 *
3916 * LOCKING:
3917 * Inherited from caller.
3918 *
3919 */
3920
1da177e4
LT
3921static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3922{
3923 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3924 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3925 struct ata_port *ap = qc->ap;
3926 struct page *page;
3927 unsigned char *buf;
3928 unsigned int offset, count;
3929
563a6e1f 3930 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3931 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3932
3933next_sg:
563a6e1f 3934 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3935 /*
563a6e1f
AL
3936 * The end of qc->sg is reached and the device expects
3937 * more data to transfer. In order not to overrun qc->sg
3938 * and fulfill length specified in the byte count register,
3939 * - for read case, discard trailing data from the device
3940 * - for write case, padding zero data to the device
3941 */
3942 u16 pad_buf[1] = { 0 };
3943 unsigned int words = bytes >> 1;
3944 unsigned int i;
3945
3946 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3947 ata_dev_printk(qc->dev, KERN_WARNING,
3948 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3949
3950 for (i = 0; i < words; i++)
a6b2c5d4 3951 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 3952
14be71f4 3953 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3954 return;
3955 }
3956
cedc9a47 3957 sg = &qc->__sg[qc->cursg];
1da177e4 3958
1da177e4
LT
3959 page = sg->page;
3960 offset = sg->offset + qc->cursg_ofs;
3961
3962 /* get the current page and offset */
3963 page = nth_page(page, (offset >> PAGE_SHIFT));
3964 offset %= PAGE_SIZE;
3965
6952df03 3966 /* don't overrun current sg */
32529e01 3967 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3968
3969 /* don't cross page boundaries */
3970 count = min(count, (unsigned int)PAGE_SIZE - offset);
3971
7282aa4b
AL
3972 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3973
91b8b313
AL
3974 if (PageHighMem(page)) {
3975 unsigned long flags;
3976
a6b2c5d4 3977 /* FIXME: use bounce buffer */
91b8b313
AL
3978 local_irq_save(flags);
3979 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3980
91b8b313 3981 /* do the actual data transfer */
a6b2c5d4 3982 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 3983
91b8b313
AL
3984 kunmap_atomic(buf, KM_IRQ0);
3985 local_irq_restore(flags);
3986 } else {
3987 buf = page_address(page);
a6b2c5d4 3988 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 3989 }
1da177e4
LT
3990
3991 bytes -= count;
3992 qc->curbytes += count;
3993 qc->cursg_ofs += count;
3994
32529e01 3995 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3996 qc->cursg++;
3997 qc->cursg_ofs = 0;
3998 }
3999
563a6e1f 4000 if (bytes)
1da177e4 4001 goto next_sg;
1da177e4
LT
4002}
4003
6ae4cfb5
AL
4004/**
4005 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4006 * @qc: Command on going
4007 *
4008 * Transfer Transfer data from/to the ATAPI device.
4009 *
4010 * LOCKING:
4011 * Inherited from caller.
6ae4cfb5
AL
4012 */
4013
1da177e4
LT
4014static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4015{
4016 struct ata_port *ap = qc->ap;
4017 struct ata_device *dev = qc->dev;
4018 unsigned int ireason, bc_lo, bc_hi, bytes;
4019 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4020
eec4c3f3
AL
4021 /* Abuse qc->result_tf for temp storage of intermediate TF
4022 * here to save some kernel stack usage.
4023 * For normal completion, qc->result_tf is not relevant. For
4024 * error, qc->result_tf is later overwritten by ata_qc_complete().
4025 * So, the correctness of qc->result_tf is not affected.
4026 */
4027 ap->ops->tf_read(ap, &qc->result_tf);
4028 ireason = qc->result_tf.nsect;
4029 bc_lo = qc->result_tf.lbam;
4030 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4031 bytes = (bc_hi << 8) | bc_lo;
4032
4033 /* shall be cleared to zero, indicating xfer of data */
4034 if (ireason & (1 << 0))
4035 goto err_out;
4036
4037 /* make sure transfer direction matches expected */
4038 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4039 if (do_write != i_write)
4040 goto err_out;
4041
312f7da2
AL
4042 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4043
1da177e4
LT
4044 __atapi_pio_bytes(qc, bytes);
4045
4046 return;
4047
4048err_out:
f15a1daf 4049 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4050 qc->err_mask |= AC_ERR_HSM;
14be71f4 4051 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4052}
4053
4054/**
c234fb00
AL
4055 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4056 * @ap: the target ata_port
4057 * @qc: qc on going
1da177e4 4058 *
c234fb00
AL
4059 * RETURNS:
4060 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4061 */
c234fb00
AL
4062
4063static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4064{
c234fb00
AL
4065 if (qc->tf.flags & ATA_TFLAG_POLLING)
4066 return 1;
1da177e4 4067
c234fb00
AL
4068 if (ap->hsm_task_state == HSM_ST_FIRST) {
4069 if (qc->tf.protocol == ATA_PROT_PIO &&
4070 (qc->tf.flags & ATA_TFLAG_WRITE))
4071 return 1;
1da177e4 4072
c234fb00
AL
4073 if (is_atapi_taskfile(&qc->tf) &&
4074 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4075 return 1;
fe79e683
AL
4076 }
4077
c234fb00
AL
4078 return 0;
4079}
1da177e4 4080
c17ea20d
TH
4081/**
4082 * ata_hsm_qc_complete - finish a qc running on standard HSM
4083 * @qc: Command to complete
4084 * @in_wq: 1 if called from workqueue, 0 otherwise
4085 *
4086 * Finish @qc which is running on standard HSM.
4087 *
4088 * LOCKING:
4089 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
4090 * Otherwise, none on entry and grabs host lock.
4091 */
4092static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4093{
4094 struct ata_port *ap = qc->ap;
4095 unsigned long flags;
4096
4097 if (ap->ops->error_handler) {
4098 if (in_wq) {
4099 spin_lock_irqsave(&ap->host_set->lock, flags);
4100
4101 /* EH might have kicked in while host_set lock
4102 * is released.
4103 */
4104 qc = ata_qc_from_tag(ap, qc->tag);
4105 if (qc) {
4106 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4107 ata_irq_on(ap);
4108 ata_qc_complete(qc);
4109 } else
4110 ata_port_freeze(ap);
4111 }
4112
4113 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4114 } else {
4115 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4116 ata_qc_complete(qc);
4117 else
4118 ata_port_freeze(ap);
4119 }
4120 } else {
4121 if (in_wq) {
4122 spin_lock_irqsave(&ap->host_set->lock, flags);
4123 ata_irq_on(ap);
4124 ata_qc_complete(qc);
4125 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4126 } else
4127 ata_qc_complete(qc);
4128 }
1da177e4 4129
c81e29b4 4130 ata_altstatus(ap); /* flush */
c17ea20d
TH
4131}
4132
bb5cb290
AL
4133/**
4134 * ata_hsm_move - move the HSM to the next state.
4135 * @ap: the target ata_port
4136 * @qc: qc on going
4137 * @status: current device status
4138 * @in_wq: 1 if called from workqueue, 0 otherwise
4139 *
4140 * RETURNS:
4141 * 1 when poll next status needed, 0 otherwise.
4142 */
4143
4144static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4145 u8 status, int in_wq)
e2cec771 4146{
bb5cb290
AL
4147 unsigned long flags = 0;
4148 int poll_next;
4149
6912ccd5
AL
4150 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4151
bb5cb290
AL
4152 /* Make sure ata_qc_issue_prot() does not throw things
4153 * like DMA polling into the workqueue. Notice that
4154 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4155 */
c234fb00 4156 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4157
e2cec771 4158fsm_start:
999bb6f4
AL
4159 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4160 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4161
e2cec771
AL
4162 switch (ap->hsm_task_state) {
4163 case HSM_ST_FIRST:
bb5cb290
AL
4164 /* Send first data block or PACKET CDB */
4165
4166 /* If polling, we will stay in the work queue after
4167 * sending the data. Otherwise, interrupt handler
4168 * takes over after sending the data.
4169 */
4170 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4171
e2cec771 4172 /* check device status */
3655d1d3
AL
4173 if (unlikely((status & ATA_DRQ) == 0)) {
4174 /* handle BSY=0, DRQ=0 as error */
4175 if (likely(status & (ATA_ERR | ATA_DF)))
4176 /* device stops HSM for abort/error */
4177 qc->err_mask |= AC_ERR_DEV;
4178 else
4179 /* HSM violation. Let EH handle this */
4180 qc->err_mask |= AC_ERR_HSM;
4181
14be71f4 4182 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4183 goto fsm_start;
1da177e4
LT
4184 }
4185
71601958
AL
4186 /* Device should not ask for data transfer (DRQ=1)
4187 * when it finds something wrong.
eee6c32f
AL
4188 * We ignore DRQ here and stop the HSM by
4189 * changing hsm_task_state to HSM_ST_ERR and
4190 * let the EH abort the command or reset the device.
71601958
AL
4191 */
4192 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4193 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4194 ap->id, status);
3655d1d3 4195 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4196 ap->hsm_task_state = HSM_ST_ERR;
4197 goto fsm_start;
71601958 4198 }
1da177e4 4199
bb5cb290
AL
4200 /* Send the CDB (atapi) or the first data block (ata pio out).
4201 * During the state transition, interrupt handler shouldn't
4202 * be invoked before the data transfer is complete and
4203 * hsm_task_state is changed. Hence, the following locking.
4204 */
4205 if (in_wq)
4206 spin_lock_irqsave(&ap->host_set->lock, flags);
1da177e4 4207
bb5cb290
AL
4208 if (qc->tf.protocol == ATA_PROT_PIO) {
4209 /* PIO data out protocol.
4210 * send first data block.
4211 */
0565c26d 4212
bb5cb290
AL
4213 /* ata_pio_sectors() might change the state
4214 * to HSM_ST_LAST. so, the state is changed here
4215 * before ata_pio_sectors().
4216 */
4217 ap->hsm_task_state = HSM_ST;
4218 ata_pio_sectors(qc);
4219 ata_altstatus(ap); /* flush */
4220 } else
4221 /* send CDB */
4222 atapi_send_cdb(ap, qc);
4223
4224 if (in_wq)
4225 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4226
4227 /* if polling, ata_pio_task() handles the rest.
4228 * otherwise, interrupt handler takes over from here.
4229 */
e2cec771 4230 break;
1c848984 4231
e2cec771
AL
4232 case HSM_ST:
4233 /* complete command or read/write the data register */
4234 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4235 /* ATAPI PIO protocol */
4236 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4237 /* No more data to transfer or device error.
4238 * Device error will be tagged in HSM_ST_LAST.
4239 */
e2cec771
AL
4240 ap->hsm_task_state = HSM_ST_LAST;
4241 goto fsm_start;
4242 }
1da177e4 4243
71601958
AL
4244 /* Device should not ask for data transfer (DRQ=1)
4245 * when it finds something wrong.
eee6c32f
AL
4246 * We ignore DRQ here and stop the HSM by
4247 * changing hsm_task_state to HSM_ST_ERR and
4248 * let the EH abort the command or reset the device.
71601958
AL
4249 */
4250 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4251 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4252 ap->id, status);
3655d1d3 4253 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4254 ap->hsm_task_state = HSM_ST_ERR;
4255 goto fsm_start;
71601958 4256 }
1da177e4 4257
e2cec771 4258 atapi_pio_bytes(qc);
7fb6ec28 4259
e2cec771
AL
4260 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4261 /* bad ireason reported by device */
4262 goto fsm_start;
1da177e4 4263
e2cec771
AL
4264 } else {
4265 /* ATA PIO protocol */
4266 if (unlikely((status & ATA_DRQ) == 0)) {
4267 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4268 if (likely(status & (ATA_ERR | ATA_DF)))
4269 /* device stops HSM for abort/error */
4270 qc->err_mask |= AC_ERR_DEV;
4271 else
4272 /* HSM violation. Let EH handle this */
4273 qc->err_mask |= AC_ERR_HSM;
4274
e2cec771
AL
4275 ap->hsm_task_state = HSM_ST_ERR;
4276 goto fsm_start;
4277 }
1da177e4 4278
eee6c32f
AL
4279 /* For PIO reads, some devices may ask for
4280 * data transfer (DRQ=1) alone with ERR=1.
4281 * We respect DRQ here and transfer one
4282 * block of junk data before changing the
4283 * hsm_task_state to HSM_ST_ERR.
4284 *
4285 * For PIO writes, ERR=1 DRQ=1 doesn't make
4286 * sense since the data block has been
4287 * transferred to the device.
71601958
AL
4288 */
4289 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4290 /* data might be corrputed */
4291 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4292
4293 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4294 ata_pio_sectors(qc);
4295 ata_altstatus(ap);
4296 status = ata_wait_idle(ap);
4297 }
4298
3655d1d3
AL
4299 if (status & (ATA_BUSY | ATA_DRQ))
4300 qc->err_mask |= AC_ERR_HSM;
4301
eee6c32f
AL
4302 /* ata_pio_sectors() might change the
4303 * state to HSM_ST_LAST. so, the state
4304 * is changed after ata_pio_sectors().
4305 */
4306 ap->hsm_task_state = HSM_ST_ERR;
4307 goto fsm_start;
71601958
AL
4308 }
4309
e2cec771
AL
4310 ata_pio_sectors(qc);
4311
4312 if (ap->hsm_task_state == HSM_ST_LAST &&
4313 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4314 /* all data read */
4315 ata_altstatus(ap);
52a32205 4316 status = ata_wait_idle(ap);
e2cec771
AL
4317 goto fsm_start;
4318 }
4319 }
4320
4321 ata_altstatus(ap); /* flush */
bb5cb290 4322 poll_next = 1;
1da177e4
LT
4323 break;
4324
14be71f4 4325 case HSM_ST_LAST:
6912ccd5
AL
4326 if (unlikely(!ata_ok(status))) {
4327 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4328 ap->hsm_task_state = HSM_ST_ERR;
4329 goto fsm_start;
4330 }
4331
4332 /* no more data to transfer */
4332a771
AL
4333 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4334 ap->id, qc->dev->devno, status);
e2cec771 4335
6912ccd5
AL
4336 WARN_ON(qc->err_mask);
4337
e2cec771 4338 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4339
e2cec771 4340 /* complete taskfile transaction */
c17ea20d 4341 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4342
4343 poll_next = 0;
1da177e4
LT
4344 break;
4345
14be71f4 4346 case HSM_ST_ERR:
e2cec771
AL
4347 /* make sure qc->err_mask is available to
4348 * know what's wrong and recover
4349 */
4350 WARN_ON(qc->err_mask == 0);
4351
4352 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4353
999bb6f4 4354 /* complete taskfile transaction */
c17ea20d 4355 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4356
4357 poll_next = 0;
e2cec771
AL
4358 break;
4359 default:
bb5cb290 4360 poll_next = 0;
6912ccd5 4361 BUG();
1da177e4
LT
4362 }
4363
bb5cb290 4364 return poll_next;
1da177e4
LT
4365}
4366
1da177e4 4367static void ata_pio_task(void *_data)
8061f5f0 4368{
c91af2c8
TH
4369 struct ata_queued_cmd *qc = _data;
4370 struct ata_port *ap = qc->ap;
8061f5f0 4371 u8 status;
a1af3734 4372 int poll_next;
8061f5f0 4373
7fb6ec28 4374fsm_start:
a1af3734 4375 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4376
a1af3734
AL
4377 /*
4378 * This is purely heuristic. This is a fast path.
4379 * Sometimes when we enter, BSY will be cleared in
4380 * a chk-status or two. If not, the drive is probably seeking
4381 * or something. Snooze for a couple msecs, then
4382 * chk-status again. If still busy, queue delayed work.
4383 */
4384 status = ata_busy_wait(ap, ATA_BUSY, 5);
4385 if (status & ATA_BUSY) {
4386 msleep(2);
4387 status = ata_busy_wait(ap, ATA_BUSY, 10);
4388 if (status & ATA_BUSY) {
31ce6dae 4389 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4390 return;
4391 }
8061f5f0
TH
4392 }
4393
a1af3734
AL
4394 /* move the HSM */
4395 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4396
a1af3734
AL
4397 /* another command or interrupt handler
4398 * may be running at this point.
4399 */
4400 if (poll_next)
7fb6ec28 4401 goto fsm_start;
8061f5f0
TH
4402}
4403
1da177e4
LT
4404/**
4405 * ata_qc_new - Request an available ATA command, for queueing
4406 * @ap: Port associated with device @dev
4407 * @dev: Device from whom we request an available command structure
4408 *
4409 * LOCKING:
0cba632b 4410 * None.
1da177e4
LT
4411 */
4412
4413static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4414{
4415 struct ata_queued_cmd *qc = NULL;
4416 unsigned int i;
4417
e3180499
TH
4418 /* no command while frozen */
4419 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4420 return NULL;
4421
2ab7db1f
TH
4422 /* the last tag is reserved for internal command. */
4423 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4424 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4425 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4426 break;
4427 }
4428
4429 if (qc)
4430 qc->tag = i;
4431
4432 return qc;
4433}
4434
4435/**
4436 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4437 * @dev: Device from whom we request an available command structure
4438 *
4439 * LOCKING:
0cba632b 4440 * None.
1da177e4
LT
4441 */
4442
3373efd8 4443struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4444{
3373efd8 4445 struct ata_port *ap = dev->ap;
1da177e4
LT
4446 struct ata_queued_cmd *qc;
4447
4448 qc = ata_qc_new(ap);
4449 if (qc) {
1da177e4
LT
4450 qc->scsicmd = NULL;
4451 qc->ap = ap;
4452 qc->dev = dev;
1da177e4 4453
2c13b7ce 4454 ata_qc_reinit(qc);
1da177e4
LT
4455 }
4456
4457 return qc;
4458}
4459
1da177e4
LT
4460/**
4461 * ata_qc_free - free unused ata_queued_cmd
4462 * @qc: Command to complete
4463 *
4464 * Designed to free unused ata_queued_cmd object
4465 * in case something prevents using it.
4466 *
4467 * LOCKING:
0cba632b 4468 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4469 */
4470void ata_qc_free(struct ata_queued_cmd *qc)
4471{
4ba946e9
TH
4472 struct ata_port *ap = qc->ap;
4473 unsigned int tag;
4474
a4631474 4475 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4476
4ba946e9
TH
4477 qc->flags = 0;
4478 tag = qc->tag;
4479 if (likely(ata_tag_valid(tag))) {
4ba946e9 4480 qc->tag = ATA_TAG_POISON;
6cec4a39 4481 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4482 }
1da177e4
LT
4483}
4484
76014427 4485void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4486{
dedaf2b0
TH
4487 struct ata_port *ap = qc->ap;
4488
a4631474
TH
4489 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4490 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4491
4492 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4493 ata_sg_clean(qc);
4494
7401abf2 4495 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4496 if (qc->tf.protocol == ATA_PROT_NCQ)
4497 ap->sactive &= ~(1 << qc->tag);
4498 else
4499 ap->active_tag = ATA_TAG_POISON;
7401abf2 4500
3f3791d3
AL
4501 /* atapi: mark qc as inactive to prevent the interrupt handler
4502 * from completing the command twice later, before the error handler
4503 * is called. (when rc != 0 and atapi request sense is needed)
4504 */
4505 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4506 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4507
1da177e4 4508 /* call completion callback */
77853bf2 4509 qc->complete_fn(qc);
1da177e4
LT
4510}
4511
f686bcb8
TH
4512/**
4513 * ata_qc_complete - Complete an active ATA command
4514 * @qc: Command to complete
4515 * @err_mask: ATA Status register contents
4516 *
4517 * Indicate to the mid and upper layers that an ATA
4518 * command has completed, with either an ok or not-ok status.
4519 *
4520 * LOCKING:
4521 * spin_lock_irqsave(host_set lock)
4522 */
4523void ata_qc_complete(struct ata_queued_cmd *qc)
4524{
4525 struct ata_port *ap = qc->ap;
4526
4527 /* XXX: New EH and old EH use different mechanisms to
4528 * synchronize EH with regular execution path.
4529 *
4530 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4531 * Normal execution path is responsible for not accessing a
4532 * failed qc. libata core enforces the rule by returning NULL
4533 * from ata_qc_from_tag() for failed qcs.
4534 *
4535 * Old EH depends on ata_qc_complete() nullifying completion
4536 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4537 * not synchronize with interrupt handler. Only PIO task is
4538 * taken care of.
4539 */
4540 if (ap->ops->error_handler) {
4541 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4542
4543 if (unlikely(qc->err_mask))
4544 qc->flags |= ATA_QCFLAG_FAILED;
4545
4546 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4547 if (!ata_tag_internal(qc->tag)) {
4548 /* always fill result TF for failed qc */
4549 ap->ops->tf_read(ap, &qc->result_tf);
4550 ata_qc_schedule_eh(qc);
4551 return;
4552 }
4553 }
4554
4555 /* read result TF if requested */
4556 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4557 ap->ops->tf_read(ap, &qc->result_tf);
4558
4559 __ata_qc_complete(qc);
4560 } else {
4561 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4562 return;
4563
4564 /* read result TF if failed or requested */
4565 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4566 ap->ops->tf_read(ap, &qc->result_tf);
4567
4568 __ata_qc_complete(qc);
4569 }
4570}
4571
dedaf2b0
TH
4572/**
4573 * ata_qc_complete_multiple - Complete multiple qcs successfully
4574 * @ap: port in question
4575 * @qc_active: new qc_active mask
4576 * @finish_qc: LLDD callback invoked before completing a qc
4577 *
4578 * Complete in-flight commands. This functions is meant to be
4579 * called from low-level driver's interrupt routine to complete
4580 * requests normally. ap->qc_active and @qc_active is compared
4581 * and commands are completed accordingly.
4582 *
4583 * LOCKING:
4584 * spin_lock_irqsave(host_set lock)
4585 *
4586 * RETURNS:
4587 * Number of completed commands on success, -errno otherwise.
4588 */
4589int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4590 void (*finish_qc)(struct ata_queued_cmd *))
4591{
4592 int nr_done = 0;
4593 u32 done_mask;
4594 int i;
4595
4596 done_mask = ap->qc_active ^ qc_active;
4597
4598 if (unlikely(done_mask & qc_active)) {
4599 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4600 "(%08x->%08x)\n", ap->qc_active, qc_active);
4601 return -EINVAL;
4602 }
4603
4604 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4605 struct ata_queued_cmd *qc;
4606
4607 if (!(done_mask & (1 << i)))
4608 continue;
4609
4610 if ((qc = ata_qc_from_tag(ap, i))) {
4611 if (finish_qc)
4612 finish_qc(qc);
4613 ata_qc_complete(qc);
4614 nr_done++;
4615 }
4616 }
4617
4618 return nr_done;
4619}
4620
1da177e4
LT
4621static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4622{
4623 struct ata_port *ap = qc->ap;
4624
4625 switch (qc->tf.protocol) {
3dc1d881 4626 case ATA_PROT_NCQ:
1da177e4
LT
4627 case ATA_PROT_DMA:
4628 case ATA_PROT_ATAPI_DMA:
4629 return 1;
4630
4631 case ATA_PROT_ATAPI:
4632 case ATA_PROT_PIO:
1da177e4
LT
4633 if (ap->flags & ATA_FLAG_PIO_DMA)
4634 return 1;
4635
4636 /* fall through */
4637
4638 default:
4639 return 0;
4640 }
4641
4642 /* never reached */
4643}
4644
4645/**
4646 * ata_qc_issue - issue taskfile to device
4647 * @qc: command to issue to device
4648 *
4649 * Prepare an ATA command to submission to device.
4650 * This includes mapping the data into a DMA-able
4651 * area, filling in the S/G table, and finally
4652 * writing the taskfile to hardware, starting the command.
4653 *
4654 * LOCKING:
4655 * spin_lock_irqsave(host_set lock)
1da177e4 4656 */
8e0e694a 4657void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4658{
4659 struct ata_port *ap = qc->ap;
4660
dedaf2b0
TH
4661 /* Make sure only one non-NCQ command is outstanding. The
4662 * check is skipped for old EH because it reuses active qc to
4663 * request ATAPI sense.
4664 */
4665 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4666
4667 if (qc->tf.protocol == ATA_PROT_NCQ) {
4668 WARN_ON(ap->sactive & (1 << qc->tag));
4669 ap->sactive |= 1 << qc->tag;
4670 } else {
4671 WARN_ON(ap->sactive);
4672 ap->active_tag = qc->tag;
4673 }
4674
e4a70e76 4675 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4676 ap->qc_active |= 1 << qc->tag;
e4a70e76 4677
1da177e4
LT
4678 if (ata_should_dma_map(qc)) {
4679 if (qc->flags & ATA_QCFLAG_SG) {
4680 if (ata_sg_setup(qc))
8e436af9 4681 goto sg_err;
1da177e4
LT
4682 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4683 if (ata_sg_setup_one(qc))
8e436af9 4684 goto sg_err;
1da177e4
LT
4685 }
4686 } else {
4687 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4688 }
4689
4690 ap->ops->qc_prep(qc);
4691
8e0e694a
TH
4692 qc->err_mask |= ap->ops->qc_issue(qc);
4693 if (unlikely(qc->err_mask))
4694 goto err;
4695 return;
1da177e4 4696
8e436af9
TH
4697sg_err:
4698 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4699 qc->err_mask |= AC_ERR_SYSTEM;
4700err:
4701 ata_qc_complete(qc);
1da177e4
LT
4702}
4703
4704/**
4705 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4706 * @qc: command to issue to device
4707 *
4708 * Using various libata functions and hooks, this function
4709 * starts an ATA command. ATA commands are grouped into
4710 * classes called "protocols", and issuing each type of protocol
4711 * is slightly different.
4712 *
0baab86b
EF
4713 * May be used as the qc_issue() entry in ata_port_operations.
4714 *
1da177e4
LT
4715 * LOCKING:
4716 * spin_lock_irqsave(host_set lock)
4717 *
4718 * RETURNS:
9a3d9eb0 4719 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4720 */
4721
9a3d9eb0 4722unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4723{
4724 struct ata_port *ap = qc->ap;
4725
e50362ec
AL
4726 /* Use polling pio if the LLD doesn't handle
4727 * interrupt driven pio and atapi CDB interrupt.
4728 */
4729 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4730 switch (qc->tf.protocol) {
4731 case ATA_PROT_PIO:
4732 case ATA_PROT_ATAPI:
4733 case ATA_PROT_ATAPI_NODATA:
4734 qc->tf.flags |= ATA_TFLAG_POLLING;
4735 break;
4736 case ATA_PROT_ATAPI_DMA:
4737 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
c2bbc551 4738 /* see ata_check_atapi_dma() */
e50362ec
AL
4739 BUG();
4740 break;
4741 default:
4742 break;
4743 }
4744 }
4745
312f7da2 4746 /* select the device */
1da177e4
LT
4747 ata_dev_select(ap, qc->dev->devno, 1, 0);
4748
312f7da2 4749 /* start the command */
1da177e4
LT
4750 switch (qc->tf.protocol) {
4751 case ATA_PROT_NODATA:
312f7da2
AL
4752 if (qc->tf.flags & ATA_TFLAG_POLLING)
4753 ata_qc_set_polling(qc);
4754
e5338254 4755 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4756 ap->hsm_task_state = HSM_ST_LAST;
4757
4758 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4759 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4760
1da177e4
LT
4761 break;
4762
4763 case ATA_PROT_DMA:
587005de 4764 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4765
1da177e4
LT
4766 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4767 ap->ops->bmdma_setup(qc); /* set up bmdma */
4768 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4769 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4770 break;
4771
312f7da2
AL
4772 case ATA_PROT_PIO:
4773 if (qc->tf.flags & ATA_TFLAG_POLLING)
4774 ata_qc_set_polling(qc);
1da177e4 4775
e5338254 4776 ata_tf_to_host(ap, &qc->tf);
312f7da2 4777
54f00389
AL
4778 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4779 /* PIO data out protocol */
4780 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4781 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4782
4783 /* always send first data block using
e27486db 4784 * the ata_pio_task() codepath.
54f00389 4785 */
312f7da2 4786 } else {
54f00389
AL
4787 /* PIO data in protocol */
4788 ap->hsm_task_state = HSM_ST;
4789
4790 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4791 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4792
4793 /* if polling, ata_pio_task() handles the rest.
4794 * otherwise, interrupt handler takes over from here.
4795 */
312f7da2
AL
4796 }
4797
1da177e4
LT
4798 break;
4799
1da177e4 4800 case ATA_PROT_ATAPI:
1da177e4 4801 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4802 if (qc->tf.flags & ATA_TFLAG_POLLING)
4803 ata_qc_set_polling(qc);
4804
e5338254 4805 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4806
312f7da2
AL
4807 ap->hsm_task_state = HSM_ST_FIRST;
4808
4809 /* send cdb by polling if no cdb interrupt */
4810 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4811 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4812 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4813 break;
4814
4815 case ATA_PROT_ATAPI_DMA:
587005de 4816 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4817
1da177e4
LT
4818 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4819 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4820 ap->hsm_task_state = HSM_ST_FIRST;
4821
4822 /* send cdb by polling if no cdb interrupt */
4823 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4824 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4825 break;
4826
4827 default:
4828 WARN_ON(1);
9a3d9eb0 4829 return AC_ERR_SYSTEM;
1da177e4
LT
4830 }
4831
4832 return 0;
4833}
4834
1da177e4
LT
4835/**
4836 * ata_host_intr - Handle host interrupt for given (port, task)
4837 * @ap: Port on which interrupt arrived (possibly...)
4838 * @qc: Taskfile currently active in engine
4839 *
4840 * Handle host interrupt for given queued command. Currently,
4841 * only DMA interrupts are handled. All other commands are
4842 * handled via polling with interrupts disabled (nIEN bit).
4843 *
4844 * LOCKING:
4845 * spin_lock_irqsave(host_set lock)
4846 *
4847 * RETURNS:
4848 * One if interrupt was handled, zero if not (shared irq).
4849 */
4850
4851inline unsigned int ata_host_intr (struct ata_port *ap,
4852 struct ata_queued_cmd *qc)
4853{
312f7da2 4854 u8 status, host_stat = 0;
1da177e4 4855
312f7da2
AL
4856 VPRINTK("ata%u: protocol %d task_state %d\n",
4857 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4858
312f7da2
AL
4859 /* Check whether we are expecting interrupt in this state */
4860 switch (ap->hsm_task_state) {
4861 case HSM_ST_FIRST:
6912ccd5
AL
4862 /* Some pre-ATAPI-4 devices assert INTRQ
4863 * at this state when ready to receive CDB.
4864 */
1da177e4 4865
312f7da2
AL
4866 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4867 * The flag was turned on only for atapi devices.
4868 * No need to check is_atapi_taskfile(&qc->tf) again.
4869 */
4870 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4871 goto idle_irq;
1da177e4 4872 break;
312f7da2
AL
4873 case HSM_ST_LAST:
4874 if (qc->tf.protocol == ATA_PROT_DMA ||
4875 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4876 /* check status of DMA engine */
4877 host_stat = ap->ops->bmdma_status(ap);
4878 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4879
4880 /* if it's not our irq... */
4881 if (!(host_stat & ATA_DMA_INTR))
4882 goto idle_irq;
4883
4884 /* before we do anything else, clear DMA-Start bit */
4885 ap->ops->bmdma_stop(qc);
a4f16610
AL
4886
4887 if (unlikely(host_stat & ATA_DMA_ERR)) {
4888 /* error when transfering data to/from memory */
4889 qc->err_mask |= AC_ERR_HOST_BUS;
4890 ap->hsm_task_state = HSM_ST_ERR;
4891 }
312f7da2
AL
4892 }
4893 break;
4894 case HSM_ST:
4895 break;
1da177e4
LT
4896 default:
4897 goto idle_irq;
4898 }
4899
312f7da2
AL
4900 /* check altstatus */
4901 status = ata_altstatus(ap);
4902 if (status & ATA_BUSY)
4903 goto idle_irq;
1da177e4 4904
312f7da2
AL
4905 /* check main status, clearing INTRQ */
4906 status = ata_chk_status(ap);
4907 if (unlikely(status & ATA_BUSY))
4908 goto idle_irq;
1da177e4 4909
312f7da2
AL
4910 /* ack bmdma irq events */
4911 ap->ops->irq_clear(ap);
1da177e4 4912
bb5cb290 4913 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4914 return 1; /* irq handled */
4915
4916idle_irq:
4917 ap->stats.idle_irq++;
4918
4919#ifdef ATA_IRQ_TRAP
4920 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4921 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4922 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4923 return 1;
1da177e4
LT
4924 }
4925#endif
4926 return 0; /* irq not handled */
4927}
4928
4929/**
4930 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4931 * @irq: irq line (unused)
4932 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4933 * @regs: unused
4934 *
0cba632b
JG
4935 * Default interrupt handler for PCI IDE devices. Calls
4936 * ata_host_intr() for each port that is not disabled.
4937 *
1da177e4 4938 * LOCKING:
0cba632b 4939 * Obtains host_set lock during operation.
1da177e4
LT
4940 *
4941 * RETURNS:
0cba632b 4942 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4943 */
4944
4945irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4946{
4947 struct ata_host_set *host_set = dev_instance;
4948 unsigned int i;
4949 unsigned int handled = 0;
4950 unsigned long flags;
4951
4952 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4953 spin_lock_irqsave(&host_set->lock, flags);
4954
4955 for (i = 0; i < host_set->n_ports; i++) {
4956 struct ata_port *ap;
4957
4958 ap = host_set->ports[i];
c1389503 4959 if (ap &&
029f5468 4960 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4961 struct ata_queued_cmd *qc;
4962
4963 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4964 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4965 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4966 handled |= ata_host_intr(ap, qc);
4967 }
4968 }
4969
4970 spin_unlock_irqrestore(&host_set->lock, flags);
4971
4972 return IRQ_RETVAL(handled);
4973}
4974
34bf2170
TH
4975/**
4976 * sata_scr_valid - test whether SCRs are accessible
4977 * @ap: ATA port to test SCR accessibility for
4978 *
4979 * Test whether SCRs are accessible for @ap.
4980 *
4981 * LOCKING:
4982 * None.
4983 *
4984 * RETURNS:
4985 * 1 if SCRs are accessible, 0 otherwise.
4986 */
4987int sata_scr_valid(struct ata_port *ap)
4988{
4989 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4990}
4991
4992/**
4993 * sata_scr_read - read SCR register of the specified port
4994 * @ap: ATA port to read SCR for
4995 * @reg: SCR to read
4996 * @val: Place to store read value
4997 *
4998 * Read SCR register @reg of @ap into *@val. This function is
4999 * guaranteed to succeed if the cable type of the port is SATA
5000 * and the port implements ->scr_read.
5001 *
5002 * LOCKING:
5003 * None.
5004 *
5005 * RETURNS:
5006 * 0 on success, negative errno on failure.
5007 */
5008int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5009{
5010 if (sata_scr_valid(ap)) {
5011 *val = ap->ops->scr_read(ap, reg);
5012 return 0;
5013 }
5014 return -EOPNOTSUPP;
5015}
5016
5017/**
5018 * sata_scr_write - write SCR register of the specified port
5019 * @ap: ATA port to write SCR for
5020 * @reg: SCR to write
5021 * @val: value to write
5022 *
5023 * Write @val to SCR register @reg of @ap. This function is
5024 * guaranteed to succeed if the cable type of the port is SATA
5025 * and the port implements ->scr_read.
5026 *
5027 * LOCKING:
5028 * None.
5029 *
5030 * RETURNS:
5031 * 0 on success, negative errno on failure.
5032 */
5033int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5034{
5035 if (sata_scr_valid(ap)) {
5036 ap->ops->scr_write(ap, reg, val);
5037 return 0;
5038 }
5039 return -EOPNOTSUPP;
5040}
5041
5042/**
5043 * sata_scr_write_flush - write SCR register of the specified port and flush
5044 * @ap: ATA port to write SCR for
5045 * @reg: SCR to write
5046 * @val: value to write
5047 *
5048 * This function is identical to sata_scr_write() except that this
5049 * function performs flush after writing to the register.
5050 *
5051 * LOCKING:
5052 * None.
5053 *
5054 * RETURNS:
5055 * 0 on success, negative errno on failure.
5056 */
5057int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5058{
5059 if (sata_scr_valid(ap)) {
5060 ap->ops->scr_write(ap, reg, val);
5061 ap->ops->scr_read(ap, reg);
5062 return 0;
5063 }
5064 return -EOPNOTSUPP;
5065}
5066
5067/**
5068 * ata_port_online - test whether the given port is online
5069 * @ap: ATA port to test
5070 *
5071 * Test whether @ap is online. Note that this function returns 0
5072 * if online status of @ap cannot be obtained, so
5073 * ata_port_online(ap) != !ata_port_offline(ap).
5074 *
5075 * LOCKING:
5076 * None.
5077 *
5078 * RETURNS:
5079 * 1 if the port online status is available and online.
5080 */
5081int ata_port_online(struct ata_port *ap)
5082{
5083 u32 sstatus;
5084
5085 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5086 return 1;
5087 return 0;
5088}
5089
5090/**
5091 * ata_port_offline - test whether the given port is offline
5092 * @ap: ATA port to test
5093 *
5094 * Test whether @ap is offline. Note that this function returns
5095 * 0 if offline status of @ap cannot be obtained, so
5096 * ata_port_online(ap) != !ata_port_offline(ap).
5097 *
5098 * LOCKING:
5099 * None.
5100 *
5101 * RETURNS:
5102 * 1 if the port offline status is available and offline.
5103 */
5104int ata_port_offline(struct ata_port *ap)
5105{
5106 u32 sstatus;
5107
5108 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5109 return 1;
5110 return 0;
5111}
0baab86b 5112
9b847548
JA
5113/*
5114 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
5115 * without filling any other registers
5116 */
3373efd8 5117static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
9b847548
JA
5118{
5119 struct ata_taskfile tf;
5120 int err;
5121
3373efd8 5122 ata_tf_init(dev, &tf);
9b847548
JA
5123
5124 tf.command = cmd;
5125 tf.flags |= ATA_TFLAG_DEVICE;
5126 tf.protocol = ATA_PROT_NODATA;
5127
3373efd8 5128 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
9b847548 5129 if (err)
f15a1daf
TH
5130 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
5131 __FUNCTION__, err);
9b847548
JA
5132
5133 return err;
5134}
5135
3373efd8 5136static int ata_flush_cache(struct ata_device *dev)
9b847548
JA
5137{
5138 u8 cmd;
5139
5140 if (!ata_try_flush_cache(dev))
5141 return 0;
5142
5143 if (ata_id_has_flush_ext(dev->id))
5144 cmd = ATA_CMD_FLUSH_EXT;
5145 else
5146 cmd = ATA_CMD_FLUSH;
5147
3373efd8 5148 return ata_do_simple_cmd(dev, cmd);
9b847548
JA
5149}
5150
3373efd8 5151static int ata_standby_drive(struct ata_device *dev)
9b847548 5152{
3373efd8 5153 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
9b847548
JA
5154}
5155
3373efd8 5156static int ata_start_drive(struct ata_device *dev)
9b847548 5157{
3373efd8 5158 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
9b847548
JA
5159}
5160
5161/**
5162 * ata_device_resume - wakeup a previously suspended devices
c893a3ae 5163 * @dev: the device to resume
9b847548
JA
5164 *
5165 * Kick the drive back into action, by sending it an idle immediate
5166 * command and making sure its transfer mode matches between drive
5167 * and host.
5168 *
5169 */
3373efd8 5170int ata_device_resume(struct ata_device *dev)
9b847548 5171{
3373efd8
TH
5172 struct ata_port *ap = dev->ap;
5173
9b847548 5174 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 5175 struct ata_device *failed_dev;
e42d7be2 5176
0737ac89 5177 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
e42d7be2 5178
9b847548 5179 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9 5180 while (ata_set_mode(ap, &failed_dev))
3373efd8 5181 ata_dev_disable(failed_dev);
9b847548 5182 }
e1211e3f 5183 if (!ata_dev_enabled(dev))
9b847548
JA
5184 return 0;
5185 if (dev->class == ATA_DEV_ATA)
3373efd8 5186 ata_start_drive(dev);
9b847548
JA
5187
5188 return 0;
5189}
5190
5191/**
5192 * ata_device_suspend - prepare a device for suspend
c893a3ae 5193 * @dev: the device to suspend
e2a7f77a 5194 * @state: target power management state
9b847548
JA
5195 *
5196 * Flush the cache on the drive, if appropriate, then issue a
5197 * standbynow command.
9b847548 5198 */
3373efd8 5199int ata_device_suspend(struct ata_device *dev, pm_message_t state)
9b847548 5200{
3373efd8
TH
5201 struct ata_port *ap = dev->ap;
5202
e1211e3f 5203 if (!ata_dev_enabled(dev))
9b847548
JA
5204 return 0;
5205 if (dev->class == ATA_DEV_ATA)
3373efd8 5206 ata_flush_cache(dev);
9b847548 5207
082776e4 5208 if (state.event != PM_EVENT_FREEZE)
3373efd8 5209 ata_standby_drive(dev);
9b847548
JA
5210 ap->flags |= ATA_FLAG_SUSPENDED;
5211 return 0;
5212}
5213
c893a3ae
RD
5214/**
5215 * ata_port_start - Set port up for dma.
5216 * @ap: Port to initialize
5217 *
5218 * Called just after data structures for each port are
5219 * initialized. Allocates space for PRD table.
5220 *
5221 * May be used as the port_start() entry in ata_port_operations.
5222 *
5223 * LOCKING:
5224 * Inherited from caller.
5225 */
5226
1da177e4
LT
5227int ata_port_start (struct ata_port *ap)
5228{
2f1f610b 5229 struct device *dev = ap->dev;
6037d6bb 5230 int rc;
1da177e4
LT
5231
5232 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5233 if (!ap->prd)
5234 return -ENOMEM;
5235
6037d6bb
JG
5236 rc = ata_pad_alloc(ap, dev);
5237 if (rc) {
cedc9a47 5238 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5239 return rc;
cedc9a47
JG
5240 }
5241
1da177e4
LT
5242 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5243
5244 return 0;
5245}
5246
0baab86b
EF
5247
5248/**
5249 * ata_port_stop - Undo ata_port_start()
5250 * @ap: Port to shut down
5251 *
5252 * Frees the PRD table.
5253 *
5254 * May be used as the port_stop() entry in ata_port_operations.
5255 *
5256 * LOCKING:
6f0ef4fa 5257 * Inherited from caller.
0baab86b
EF
5258 */
5259
1da177e4
LT
5260void ata_port_stop (struct ata_port *ap)
5261{
2f1f610b 5262 struct device *dev = ap->dev;
1da177e4
LT
5263
5264 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5265 ata_pad_free(ap, dev);
1da177e4
LT
5266}
5267
aa8f0dc6
JG
5268void ata_host_stop (struct ata_host_set *host_set)
5269{
5270 if (host_set->mmio_base)
5271 iounmap(host_set->mmio_base);
5272}
5273
5274
1da177e4
LT
5275/**
5276 * ata_host_remove - Unregister SCSI host structure with upper layers
5277 * @ap: Port to unregister
5278 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5279 *
5280 * LOCKING:
6f0ef4fa 5281 * Inherited from caller.
1da177e4
LT
5282 */
5283
5284static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5285{
5286 struct Scsi_Host *sh = ap->host;
5287
5288 DPRINTK("ENTER\n");
5289
5290 if (do_unregister)
5291 scsi_remove_host(sh);
5292
5293 ap->ops->port_stop(ap);
5294}
5295
3ef3b43d
TH
5296/**
5297 * ata_dev_init - Initialize an ata_device structure
5298 * @dev: Device structure to initialize
5299 *
5300 * Initialize @dev in preparation for probing.
5301 *
5302 * LOCKING:
5303 * Inherited from caller.
5304 */
5305void ata_dev_init(struct ata_device *dev)
5306{
5307 struct ata_port *ap = dev->ap;
72fa4b74
TH
5308 unsigned long flags;
5309
5a04bf4b
TH
5310 /* SATA spd limit is bound to the first device */
5311 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5312
72fa4b74
TH
5313 /* High bits of dev->flags are used to record warm plug
5314 * requests which occur asynchronously. Synchronize using
5315 * host_set lock.
5316 */
5317 spin_lock_irqsave(&ap->host_set->lock, flags);
5318 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5319 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3ef3b43d 5320
72fa4b74
TH
5321 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5322 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5323 dev->pio_mask = UINT_MAX;
5324 dev->mwdma_mask = UINT_MAX;
5325 dev->udma_mask = UINT_MAX;
5326}
5327
1da177e4
LT
5328/**
5329 * ata_host_init - Initialize an ata_port structure
5330 * @ap: Structure to initialize
5331 * @host: associated SCSI mid-layer structure
5332 * @host_set: Collection of hosts to which @ap belongs
5333 * @ent: Probe information provided by low-level driver
5334 * @port_no: Port number associated with this ata_port
5335 *
0cba632b
JG
5336 * Initialize a new ata_port structure, and its associated
5337 * scsi_host.
5338 *
1da177e4 5339 * LOCKING:
0cba632b 5340 * Inherited from caller.
1da177e4 5341 */
1da177e4
LT
5342static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5343 struct ata_host_set *host_set,
057ace5e 5344 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5345{
5346 unsigned int i;
5347
5348 host->max_id = 16;
5349 host->max_lun = 1;
5350 host->max_channel = 1;
5351 host->unique_id = ata_unique_id++;
5352 host->max_cmd_len = 12;
12413197 5353
198e0fed 5354 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
5355 ap->id = host->unique_id;
5356 ap->host = host;
5357 ap->ctl = ATA_DEVCTL_OBS;
5358 ap->host_set = host_set;
2f1f610b 5359 ap->dev = ent->dev;
1da177e4
LT
5360 ap->port_no = port_no;
5361 ap->hard_port_no =
5362 ent->legacy_mode ? ent->hard_port_no : port_no;
5363 ap->pio_mask = ent->pio_mask;
5364 ap->mwdma_mask = ent->mwdma_mask;
5365 ap->udma_mask = ent->udma_mask;
5366 ap->flags |= ent->host_flags;
5367 ap->ops = ent->port_ops;
5a04bf4b 5368 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5369 ap->active_tag = ATA_TAG_POISON;
5370 ap->last_ctl = 0xFF;
ef282407 5371 ap->msg_enable = ATA_MSG_DRV;
1da177e4 5372
86e45b6b 5373 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 5374 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5375 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5376
838df628
TH
5377 /* set cable type */
5378 ap->cbl = ATA_CBL_NONE;
5379 if (ap->flags & ATA_FLAG_SATA)
5380 ap->cbl = ATA_CBL_SATA;
5381
acf356b1
TH
5382 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5383 struct ata_device *dev = &ap->device[i];
38d87234 5384 dev->ap = ap;
72fa4b74 5385 dev->devno = i;
3ef3b43d 5386 ata_dev_init(dev);
acf356b1 5387 }
1da177e4
LT
5388
5389#ifdef ATA_IRQ_TRAP
5390 ap->stats.unhandled_irq = 1;
5391 ap->stats.idle_irq = 1;
5392#endif
5393
5394 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5395}
5396
5397/**
5398 * ata_host_add - Attach low-level ATA driver to system
5399 * @ent: Information provided by low-level driver
5400 * @host_set: Collections of ports to which we add
5401 * @port_no: Port number associated with this host
5402 *
0cba632b
JG
5403 * Attach low-level ATA driver to system.
5404 *
1da177e4 5405 * LOCKING:
0cba632b 5406 * PCI/etc. bus probe sem.
1da177e4
LT
5407 *
5408 * RETURNS:
0cba632b 5409 * New ata_port on success, for NULL on error.
1da177e4
LT
5410 */
5411
057ace5e 5412static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
5413 struct ata_host_set *host_set,
5414 unsigned int port_no)
5415{
5416 struct Scsi_Host *host;
5417 struct ata_port *ap;
5418 int rc;
5419
5420 DPRINTK("ENTER\n");
aec5c3c1
TH
5421
5422 if (!ent->port_ops->probe_reset &&
5423 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5424 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5425 port_no);
5426 return NULL;
5427 }
5428
1da177e4
LT
5429 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5430 if (!host)
5431 return NULL;
5432
30afc84c
TH
5433 host->transportt = &ata_scsi_transport_template;
5434
35bb94b1 5435 ap = ata_shost_to_port(host);
1da177e4
LT
5436
5437 ata_host_init(ap, host, host_set, ent, port_no);
5438
5439 rc = ap->ops->port_start(ap);
5440 if (rc)
5441 goto err_out;
5442
5443 return ap;
5444
5445err_out:
5446 scsi_host_put(host);
5447 return NULL;
5448}
5449
5450/**
0cba632b
JG
5451 * ata_device_add - Register hardware device with ATA and SCSI layers
5452 * @ent: Probe information describing hardware device to be registered
5453 *
5454 * This function processes the information provided in the probe
5455 * information struct @ent, allocates the necessary ATA and SCSI
5456 * host information structures, initializes them, and registers
5457 * everything with requisite kernel subsystems.
5458 *
5459 * This function requests irqs, probes the ATA bus, and probes
5460 * the SCSI bus.
1da177e4
LT
5461 *
5462 * LOCKING:
0cba632b 5463 * PCI/etc. bus probe sem.
1da177e4
LT
5464 *
5465 * RETURNS:
0cba632b 5466 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
5467 */
5468
057ace5e 5469int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
5470{
5471 unsigned int count = 0, i;
5472 struct device *dev = ent->dev;
5473 struct ata_host_set *host_set;
5474
5475 DPRINTK("ENTER\n");
5476 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 5477 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
5478 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5479 if (!host_set)
5480 return 0;
1da177e4
LT
5481 spin_lock_init(&host_set->lock);
5482
5483 host_set->dev = dev;
5484 host_set->n_ports = ent->n_ports;
5485 host_set->irq = ent->irq;
5486 host_set->mmio_base = ent->mmio_base;
5487 host_set->private_data = ent->private_data;
5488 host_set->ops = ent->port_ops;
5444a6f4 5489 host_set->flags = ent->host_set_flags;
1da177e4
LT
5490
5491 /* register each port bound to this device */
5492 for (i = 0; i < ent->n_ports; i++) {
5493 struct ata_port *ap;
5494 unsigned long xfer_mode_mask;
5495
5496 ap = ata_host_add(ent, host_set, i);
5497 if (!ap)
5498 goto err_out;
5499
5500 host_set->ports[i] = ap;
5501 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5502 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5503 (ap->pio_mask << ATA_SHIFT_PIO);
5504
5505 /* print per-port info to dmesg */
f15a1daf
TH
5506 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5507 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5508 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5509 ata_mode_string(xfer_mode_mask),
5510 ap->ioaddr.cmd_addr,
5511 ap->ioaddr.ctl_addr,
5512 ap->ioaddr.bmdma_addr,
5513 ent->irq);
1da177e4
LT
5514
5515 ata_chk_status(ap);
5516 host_set->ops->irq_clear(ap);
e3180499 5517 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5518 count++;
5519 }
5520
57f3bda8
RD
5521 if (!count)
5522 goto err_free_ret;
1da177e4
LT
5523
5524 /* obtain irq, that is shared between channels */
5525 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5526 DRV_NAME, host_set))
5527 goto err_out;
5528
5529 /* perform each probe synchronously */
5530 DPRINTK("probe begin\n");
5531 for (i = 0; i < count; i++) {
5532 struct ata_port *ap;
5a04bf4b 5533 u32 scontrol;
1da177e4
LT
5534 int rc;
5535
5536 ap = host_set->ports[i];
5537
5a04bf4b
TH
5538 /* init sata_spd_limit to the current value */
5539 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5540 int spd = (scontrol >> 4) & 0xf;
5541 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5542 }
5543 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5544
c893a3ae 5545 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 5546 rc = ata_bus_probe(ap);
c893a3ae 5547 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
5548
5549 if (rc) {
5550 /* FIXME: do something useful here?
5551 * Current libata behavior will
5552 * tear down everything when
5553 * the module is removed
5554 * or the h/w is unplugged.
5555 */
5556 }
5557
5558 rc = scsi_add_host(ap->host, dev);
5559 if (rc) {
f15a1daf 5560 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5561 /* FIXME: do something useful here */
5562 /* FIXME: handle unconditional calls to
5563 * scsi_scan_host and ata_host_remove, below,
5564 * at the very least
5565 */
5566 }
5567 }
5568
5569 /* probes are done, now scan each port's disk(s) */
c893a3ae 5570 DPRINTK("host probe begin\n");
1da177e4
LT
5571 for (i = 0; i < count; i++) {
5572 struct ata_port *ap = host_set->ports[i];
5573
644dd0cc 5574 ata_scsi_scan_host(ap);
1da177e4
LT
5575 }
5576
5577 dev_set_drvdata(dev, host_set);
5578
5579 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5580 return ent->n_ports; /* success */
5581
5582err_out:
5583 for (i = 0; i < count; i++) {
5584 ata_host_remove(host_set->ports[i], 1);
5585 scsi_host_put(host_set->ports[i]->host);
5586 }
57f3bda8 5587err_free_ret:
1da177e4
LT
5588 kfree(host_set);
5589 VPRINTK("EXIT, returning 0\n");
5590 return 0;
5591}
5592
17b14451
AC
5593/**
5594 * ata_host_set_remove - PCI layer callback for device removal
5595 * @host_set: ATA host set that was removed
5596 *
2e9edbf8 5597 * Unregister all objects associated with this host set. Free those
17b14451
AC
5598 * objects.
5599 *
5600 * LOCKING:
5601 * Inherited from calling layer (may sleep).
5602 */
5603
17b14451
AC
5604void ata_host_set_remove(struct ata_host_set *host_set)
5605{
5606 struct ata_port *ap;
5607 unsigned int i;
5608
5609 for (i = 0; i < host_set->n_ports; i++) {
5610 ap = host_set->ports[i];
5611 scsi_remove_host(ap->host);
5612 }
5613
5614 free_irq(host_set->irq, host_set);
5615
5616 for (i = 0; i < host_set->n_ports; i++) {
5617 ap = host_set->ports[i];
5618
5619 ata_scsi_release(ap->host);
5620
5621 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5622 struct ata_ioports *ioaddr = &ap->ioaddr;
5623
5624 if (ioaddr->cmd_addr == 0x1f0)
5625 release_region(0x1f0, 8);
5626 else if (ioaddr->cmd_addr == 0x170)
5627 release_region(0x170, 8);
5628 }
5629
5630 scsi_host_put(ap->host);
5631 }
5632
5633 if (host_set->ops->host_stop)
5634 host_set->ops->host_stop(host_set);
5635
5636 kfree(host_set);
5637}
5638
1da177e4
LT
5639/**
5640 * ata_scsi_release - SCSI layer callback hook for host unload
5641 * @host: libata host to be unloaded
5642 *
5643 * Performs all duties necessary to shut down a libata port...
5644 * Kill port kthread, disable port, and release resources.
5645 *
5646 * LOCKING:
5647 * Inherited from SCSI layer.
5648 *
5649 * RETURNS:
5650 * One.
5651 */
5652
5653int ata_scsi_release(struct Scsi_Host *host)
5654{
35bb94b1 5655 struct ata_port *ap = ata_shost_to_port(host);
1da177e4
LT
5656
5657 DPRINTK("ENTER\n");
5658
5659 ap->ops->port_disable(ap);
5660 ata_host_remove(ap, 0);
5661
5662 DPRINTK("EXIT\n");
5663 return 1;
5664}
5665
5666/**
5667 * ata_std_ports - initialize ioaddr with standard port offsets.
5668 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5669 *
5670 * Utility function which initializes data_addr, error_addr,
5671 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5672 * device_addr, status_addr, and command_addr to standard offsets
5673 * relative to cmd_addr.
5674 *
5675 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5676 */
0baab86b 5677
1da177e4
LT
5678void ata_std_ports(struct ata_ioports *ioaddr)
5679{
5680 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5681 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5682 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5683 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5684 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5685 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5686 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5687 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5688 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5689 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5690}
5691
0baab86b 5692
374b1873
JG
5693#ifdef CONFIG_PCI
5694
5695void ata_pci_host_stop (struct ata_host_set *host_set)
5696{
5697 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5698
5699 pci_iounmap(pdev, host_set->mmio_base);
5700}
5701
1da177e4
LT
5702/**
5703 * ata_pci_remove_one - PCI layer callback for device removal
5704 * @pdev: PCI device that was removed
5705 *
5706 * PCI layer indicates to libata via this hook that
6f0ef4fa 5707 * hot-unplug or module unload event has occurred.
1da177e4
LT
5708 * Handle this by unregistering all objects associated
5709 * with this PCI device. Free those objects. Then finally
5710 * release PCI resources and disable device.
5711 *
5712 * LOCKING:
5713 * Inherited from PCI layer (may sleep).
5714 */
5715
5716void ata_pci_remove_one (struct pci_dev *pdev)
5717{
5718 struct device *dev = pci_dev_to_dev(pdev);
5719 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 5720
17b14451 5721 ata_host_set_remove(host_set);
1da177e4
LT
5722 pci_release_regions(pdev);
5723 pci_disable_device(pdev);
5724 dev_set_drvdata(dev, NULL);
5725}
5726
5727/* move to PCI subsystem */
057ace5e 5728int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5729{
5730 unsigned long tmp = 0;
5731
5732 switch (bits->width) {
5733 case 1: {
5734 u8 tmp8 = 0;
5735 pci_read_config_byte(pdev, bits->reg, &tmp8);
5736 tmp = tmp8;
5737 break;
5738 }
5739 case 2: {
5740 u16 tmp16 = 0;
5741 pci_read_config_word(pdev, bits->reg, &tmp16);
5742 tmp = tmp16;
5743 break;
5744 }
5745 case 4: {
5746 u32 tmp32 = 0;
5747 pci_read_config_dword(pdev, bits->reg, &tmp32);
5748 tmp = tmp32;
5749 break;
5750 }
5751
5752 default:
5753 return -EINVAL;
5754 }
5755
5756 tmp &= bits->mask;
5757
5758 return (tmp == bits->val) ? 1 : 0;
5759}
9b847548
JA
5760
5761int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5762{
5763 pci_save_state(pdev);
5764 pci_disable_device(pdev);
5765 pci_set_power_state(pdev, PCI_D3hot);
5766 return 0;
5767}
5768
5769int ata_pci_device_resume(struct pci_dev *pdev)
5770{
5771 pci_set_power_state(pdev, PCI_D0);
5772 pci_restore_state(pdev);
5773 pci_enable_device(pdev);
5774 pci_set_master(pdev);
5775 return 0;
5776}
1da177e4
LT
5777#endif /* CONFIG_PCI */
5778
5779
1da177e4
LT
5780static int __init ata_init(void)
5781{
5782 ata_wq = create_workqueue("ata");
5783 if (!ata_wq)
5784 return -ENOMEM;
5785
453b07ac
TH
5786 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5787 if (!ata_aux_wq) {
5788 destroy_workqueue(ata_wq);
5789 return -ENOMEM;
5790 }
5791
1da177e4
LT
5792 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5793 return 0;
5794}
5795
5796static void __exit ata_exit(void)
5797{
5798 destroy_workqueue(ata_wq);
453b07ac 5799 destroy_workqueue(ata_aux_wq);
1da177e4
LT
5800}
5801
5802module_init(ata_init);
5803module_exit(ata_exit);
5804
67846b30
JG
5805static unsigned long ratelimit_time;
5806static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5807
5808int ata_ratelimit(void)
5809{
5810 int rc;
5811 unsigned long flags;
5812
5813 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5814
5815 if (time_after(jiffies, ratelimit_time)) {
5816 rc = 1;
5817 ratelimit_time = jiffies + (HZ/5);
5818 } else
5819 rc = 0;
5820
5821 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5822
5823 return rc;
5824}
5825
c22daff4
TH
5826/**
5827 * ata_wait_register - wait until register value changes
5828 * @reg: IO-mapped register
5829 * @mask: Mask to apply to read register value
5830 * @val: Wait condition
5831 * @interval_msec: polling interval in milliseconds
5832 * @timeout_msec: timeout in milliseconds
5833 *
5834 * Waiting for some bits of register to change is a common
5835 * operation for ATA controllers. This function reads 32bit LE
5836 * IO-mapped register @reg and tests for the following condition.
5837 *
5838 * (*@reg & mask) != val
5839 *
5840 * If the condition is met, it returns; otherwise, the process is
5841 * repeated after @interval_msec until timeout.
5842 *
5843 * LOCKING:
5844 * Kernel thread context (may sleep)
5845 *
5846 * RETURNS:
5847 * The final register value.
5848 */
5849u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5850 unsigned long interval_msec,
5851 unsigned long timeout_msec)
5852{
5853 unsigned long timeout;
5854 u32 tmp;
5855
5856 tmp = ioread32(reg);
5857
5858 /* Calculate timeout _after_ the first read to make sure
5859 * preceding writes reach the controller before starting to
5860 * eat away the timeout.
5861 */
5862 timeout = jiffies + (timeout_msec * HZ) / 1000;
5863
5864 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5865 msleep(interval_msec);
5866 tmp = ioread32(reg);
5867 }
5868
5869 return tmp;
5870}
5871
1da177e4
LT
5872/*
5873 * libata is essentially a library of internal helper functions for
5874 * low-level ATA host controller drivers. As such, the API/ABI is
5875 * likely to change as new drivers are added and updated.
5876 * Do not depend on ABI/API stability.
5877 */
5878
d7bb4cc7
TH
5879EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5880EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5881EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
1da177e4
LT
5882EXPORT_SYMBOL_GPL(ata_std_bios_param);
5883EXPORT_SYMBOL_GPL(ata_std_ports);
5884EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5885EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5886EXPORT_SYMBOL_GPL(ata_sg_init);
5887EXPORT_SYMBOL_GPL(ata_sg_init_one);
f686bcb8 5888EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 5889EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 5890EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5891EXPORT_SYMBOL_GPL(ata_tf_load);
5892EXPORT_SYMBOL_GPL(ata_tf_read);
5893EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5894EXPORT_SYMBOL_GPL(ata_std_dev_select);
5895EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5896EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5897EXPORT_SYMBOL_GPL(ata_check_status);
5898EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5899EXPORT_SYMBOL_GPL(ata_exec_command);
5900EXPORT_SYMBOL_GPL(ata_port_start);
5901EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5902EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 5903EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
5904EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5905EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 5906EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 5907EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5908EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5909EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5910EXPORT_SYMBOL_GPL(ata_bmdma_start);
5911EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5912EXPORT_SYMBOL_GPL(ata_bmdma_status);
5913EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
5914EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5915EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5916EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5917EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5918EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 5919EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 5920EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
5921EXPORT_SYMBOL_GPL(sata_phy_debounce);
5922EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
5923EXPORT_SYMBOL_GPL(sata_phy_reset);
5924EXPORT_SYMBOL_GPL(__sata_phy_reset);
5925EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5926EXPORT_SYMBOL_GPL(ata_std_probeinit);
f5914a46 5927EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804
TH
5928EXPORT_SYMBOL_GPL(ata_std_softreset);
5929EXPORT_SYMBOL_GPL(sata_std_hardreset);
5930EXPORT_SYMBOL_GPL(ata_std_postreset);
5931EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5932EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5933EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5934EXPORT_SYMBOL_GPL(ata_dev_classify);
5935EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5936EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5937EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 5938EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 5939EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5940EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5941EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5942EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 5943EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
a6e6ce8e 5944EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
5945EXPORT_SYMBOL_GPL(ata_scsi_release);
5946EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
5947EXPORT_SYMBOL_GPL(sata_scr_valid);
5948EXPORT_SYMBOL_GPL(sata_scr_read);
5949EXPORT_SYMBOL_GPL(sata_scr_write);
5950EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5951EXPORT_SYMBOL_GPL(ata_port_online);
5952EXPORT_SYMBOL_GPL(ata_port_offline);
6a62a04d
TH
5953EXPORT_SYMBOL_GPL(ata_id_string);
5954EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5955EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5956
1bc4ccff 5957EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5958EXPORT_SYMBOL_GPL(ata_timing_compute);
5959EXPORT_SYMBOL_GPL(ata_timing_merge);
5960
1da177e4
LT
5961#ifdef CONFIG_PCI
5962EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5963EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5964EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5965EXPORT_SYMBOL_GPL(ata_pci_init_one);
5966EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5967EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5968EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5969EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5970EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5971#endif /* CONFIG_PCI */
9b847548
JA
5972
5973EXPORT_SYMBOL_GPL(ata_device_suspend);
5974EXPORT_SYMBOL_GPL(ata_device_resume);
5975EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5976EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 5977
ece1d636 5978EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
5979EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5980EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
5981EXPORT_SYMBOL_GPL(ata_port_freeze);
5982EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5983EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
5984EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5985EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 5986EXPORT_SYMBOL_GPL(ata_do_eh);